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Abstract of the Dissertation

Theoretical Considerations for Coherent
Electron Cooling

by

Stephen Webb

Doctor of Philosophy
in
Physics
Stony Brook University
2011

Coherent electron cooling (CeC) offers the potential a very po-
tent method of longitudinal phase-space cooling for high intensity
bunched beam accelerators, such as at the Relativistic Heavy lon
Collider (RHIC) or at proposed electron-ion colliders such as eR-
HIC or LHeC. To develop a complete theoretical description of
CeC requires a detailed model of the phase space dynamics of a
high-gain free-electron laser (FEL) in three dimensions. A three-
dimensional model for the FEL instability is developed using the
Maxwell-Vlasov formalism, and obtains a Green function for arbi-
trary initial phase space perturbations. This Green function as-

sumes a transversely infinite electron beam with zero transverse
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velocity spread. The formalism developed for obtaining the Green
function also provides a solution to the initial value problem of an
FEL with a finite transverse beam, and this formalism is used to

obtain optical guiding.

Using the resulting dispersion relation for the FEL process, I present
a number of theorems and results concerning the roots of the dis-
persion relation, in particular that regardless of the specific func-
tional form of the thermal background of the beam there is one and
only one amplifying mode. A number of criterion and relations on

that mode is also developed and presented.

Finally, I develop a theoretical description of the dynamics of Co-
herent Electron Cooling considering the case of a finite length elec-
tron bunch which paints the longer hadron bunch. This leads to
a kinetic equation for the cooling of synchrotron oscillations in

bunched beams.
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Introduction

Free electron laser (FEL) based Coherent Electron Cooling (CeC) requires
a detailed understanding of the phase space density of the FEL instability,
as well as a firm understanding of the cooling kinetics. In this dissertation, I
present work on both projects, broken into two parts.

In the first part of the dissertation I discuss developments in the theory
of small-signal high-gain free electron lasers, particularly results on the prop-

agation of an initial phase space perturbation through the FEL process. In



this part, I begin by introducing the basic theory of one-dimensional low-gain
FELs to develop insight into the physics behind the FEL process. I then
present a derivation of a Green function for an infinitely large, transversely
cold electron bunch in an FEL undulator, and results obtained for a finite
width, transversely cold bunch. In the final section I discuss analytical results
concerning the nature of the dispersion relation for the FEL instability.

The second part is a study of the cooling kinetics of CeC, in particular a
single-particle study of the equations of motion when considering the slowly
varying electron bunch density and this effect on the cooling equations for CeC.
In this section I present analytical as well as numerical results to understand
the kinetics of CeC in greater detail.

The appendix of this dissertation is exhaustive, and is intended to be used
as a reference for topics that may not be familiar to the reader. Many of
the mathematical techniques used in the research leading to this dissertation
are not standard fare a physicist is likely to encounter in a standard Ph.D.
course. As such a variety of topics from least-action integrals to explanations
of the choice of gauge are discussed, as well as an exhaustive review of relevant

subjects from complex analysis and the theory of Laplace transforms.

1.1 Three-dimensional FEL Theory

In the first part, I detail a derivation for a three-dimensional model of the
FEL amplification process using a coupled Maxwell-Vlasov approach to lin-
earized perturbation theory. This leads to a closed form expression in Fourier

space for the amplification process in terms of the thermal distribution of the



electron bunch. From this the FEL dispersion relation is derived for both finite
and infinite transverse bunches.

Evaluation of the dispersion relation that results from this treatment is the
subject of the following chapter. In standard perturbation theory, a gaussian
energy distribution is analytically intractable, and so an approximation using
k — N distribution functions is used. This approximation has the side effect
that it predicts there to be N 4 2 modes to the initial value problem. I
then prove that, for an arbitrary single-peak energy distribution, there is at
most one amplifying mode, and derive an analytical expression for the critical
frequency above which the mode stops amplifying frequencies. This result is
independent of the particular functional form of the energy distribution, and

may be regarded as a topological quantity of the FEL dispersion relation.

1.2 CeC Kinetics

The second part of this dissertation is dedicated to developing the kinetic
theory of Coherent Electron Cooling from a first principles calculation. I
consider the case of electron bunches that are short compared to the hadron
bunches they cool. This leads to two new effects to consider in the theoretical
description of CeC [1]: a locally variable gain length in the FEL and a painting
scheme.

The local variability of the gain length leads to an RF phase dependent
phase slip in the cooling rate, as well as a suppressed cooling rate due to
the lower gain in regions of lower density. The painting scheme is used to

compensate for having the electron bunches shorter than the hadron bunches,



and involves sweeping the hadron bunches with electron bunches over many
turns. In practice there are many synchrotron oscillations in a single painting
sweep, and many painting sweeps over the cooling time, and this hierarchy of
time scales allows a number of averaging approximations.

By carrying out this averaging, I develop an equation for the evolution
of the envelope function as a function of the painting scheme. From this
equation, it is possible to write down a kinetic equation which includes intra-
beam scattering, synchrotron oscillations, and the cooling rate for Coherent

Electron Cooling.



Part 1

Free-Electron Laser Theory



Background — Free Electron Lasers

Free electron lasers are devices in which an electron bunch is made to
coherently synchrotron radiate, thereby producing an almost monochromatic
light pulse. A description of the configuration of FELs was first written down
by John Madey [2] and later first demonstrated by Madey in 1977 [3]. The
equations for high-gain FELs were first written down by Kondratenko and
Saldin [4], with a simplified picture developed by Bonifacio, Narducci and

Pellegrini [5] and a phase-space evolution picture using the Maxwell-Vlasov



formalism presented by Saldin, Schneidmiller and Yurkov [6].

In this section, I present the theory of FELs with a single-particle phase
space picture, which contrasts with the treatment using the Maxwell-Vlasov
equations in later chapters. While the mathematical formalism of the Maxwell-
Vlasov equation is more germane to later work, I believe that the phase
space picture is more intuitive and therefore more useful for understanding the
physics behind the Maxwell-Vlasov treatment to be presented. I first present
a description of the physical set-up of an FEL, with a schematic overview of
undulator radiation. Then I develop the equations of motion which lead to
the effective hamiltonian and ponderomotive potential and phase. Finally, I
calculate an expression for the gain of a low-gain FEL, and describe how the

high-gain regime is reached.

2.1 Undulator Radiation

An undulator is a configuration of alternating polarity magnetic fields run-

ning along a beam pipe. Its magnetic flux density may be modelled as

B, = Bjcos(k,z) é; — Bysin(k,z) é, (2.1)

where k, = 27/)\, is the undulator wave number. For this and all future
work, we assume an helical undulator. For an electron with energy ymc?, the

electron will undergo transverse oscillations approximately given by

e

yme

VR — éz X Bu (22)



where (3, is the relativistic B, and for almost all applications is approximately

unity. For the purposes of FEL applications, 3, ~ 1 with some small cor-

2

rections that scale as v7. Roughly speaking, the angle of deflection in this

sinusoidal velocity is given by

eB,
kyymc?

tanf = v, /v, &~ (2.3)

Through physical arguments, one can also obtain the resonant frequency
before actually obtaining the equations of motion. By analysing the velocity
equation, the electrons in the bunch will clearly oscillate transversely with a
phase k,z. When this is in phase with the radiation field, which oscillates with
phase w,(z/c — t), resonance will occur.

Defining the ponderomotive phase ¥ = k,z + w,(z/c — t), the resonance
will occur when

dip dt

E:ku‘f'wr/c_w'r@:o (24)

By observing that v~2 = 1 — 8% — 2, that dt/dz = 1/(cf3.), and that 8% =

K?/~? for an helical undulator, this obtains the resonance condition

1 Tk )
wypfc = —ky X (1 - N K2/72)) ~ 2—72(1 + K¥) (2.5)

This is the exact resonance frequency for an undulator, and will be rigorously
derived later. It is convenient for now to explain heuristically the origins of
the resonance frequency. It is also worth noting here that a similar resonance
condition occurs for planar undulators, but since 32 oc sin?(k,z) there are

higher harmonics above the resonance generated, and in general much more



complicated behaviour. I therefore limit my discussion to helical undulators,

which are more convenient to describe from a theoretical standpoint.

2.2 Single Particle Equations of Motion

For this section, I provide a derivation of the single particle equations of
motion, following along derivations present in [7], [8] and others. I consider
here a seeded FFEL, one in which an initial laser field drives the FEL instability
to produce further gain. For a seeding laser field at frequency w, the FEL
will produce coherent radiation at the frequency w, but the gain will suffer if
w — w, s too large. What constitutes “too large” will become apparent in this
derivation.

From the relativistic energy equation, the energy transfer between the elec-

tron and a seeding laser field is given by

€

E:—GUL'EL (26)

where E| = Ej (é, cos|w(z/c —t)] + é,sin[w(z/c —t)]) is the helically polar-
ized laser field at frequency w. From this, it is clear that
d& e

E = —U—(UmEm + 'UyEy) (27)

After some manipulation this leads to the equation for energy transfer

% = —e% cos ¢ (2.8)



Here it should be clear that maximum gain would occur of ¥ remained a
constant, which is the origin of the resonance condition. It is furthermore
worth noting that we have assumed that E is not changing appreciably with
time, i.e. the beam does not appreciably change F, enough to change the
dynamics of the individual particles. This is the fundamental property of the
low-gain limit, and when the modified laser field is self-consistently included
in the equations of motion, the high-gain regime can be obtained.

Finally, we must include the dynamics of the ponderomotive phase, which
are given by

@ B W  w

— k- 2.9
dz +c v, (2.9)

Noting that v, & ¢ and dv, /dE |e—g,~ c(1+ K?)/(7*E), then for a bunch with

sufficiently small energy spread it is sufficient to write

d_fb:kﬁ%_mzcm_ffz)

— 2.1
dz c 2 & (€= &) (2.10)

Consolidating the notation here by writing that

P=£&-¢&
w w
C—ku+z—vz(go) =(w—uw)/c

yields the effective equations of motion

dP K
e —e; cos ¢ (2.11a)

10



&b w(l+K?)
E o 07250

P (2.11b)
These appear to come from some effective hamiltonian with P and ¢ as canon-
ically conjugate variables. The effective hamiltonian is then given by

w(l+ K?)

=CP
H=CP+=) o

K
P? 4+ e— sin (2.12)
v

Because this hamiltonian is independent of z, the (P,1) trajectories in phase
space will move along lines of constant H, but this effective hamiltonian is

clearly not the energy since the energy £ is not conserved.

2.3 Power Balance and Gain Calculation

It is fruitful to consider how much gain is actually made in this scheme.
Gain can be calculated by conservation of energy arguments, in which the
power lost from the electron bunch goes entirely into the radiation field. Cal-
culating the full laser field is a difficult task, but obtaining the total energy
loss of the beam as a function of z is an exercise in perturbation theory that
yields directly an expression for the total power gain for the seeded laser field.

To begin the perturbation calculation, consider the case where the beam
is monoenergetic!, so that P = 0 for all particles in the bunch. The canonical
expansion is to consider order by order beginning with P(®) = 0. Then, to
zeroth order

$O(z) = Cz + 4o (2.13)

! Accounting for a beam with finite energy spread is relatively simple and can be taken
into account when averaging occurs. For brevity, I omit this effect, as it will be studied in
greater detail in Chapter 3.

11



Iterating to first order gives an expression for P(V)(z). Inserting 1 into the

equation of motion for the energy at first order gives

P — —eEE/Z dz cos(ypV(z)) = —GEE (sin(Cz + o) — sin(thy)) (2.14)
Y 0 v

Inserting this expression back to the equation for (!, gives that

pM = M/Zdz PW(z)
0

c7*&o
(1+ K% eK Cz+1y) — (0 .
= )BTE [( 20 Z ) i)z (215)

The average of P vanishes to first order, so to obtain the power lost from the
electron bunch requires taking P to second order. Inserting the first order for

1 back into the equations gives
PO = —eKE/*y/dz cos(hy + Cz + W (2)) (2.16)

By averaging P, over 1)y, which for a bunched beam is done by integrating

over the measure (27)! fo% di)y, the power generated by the beam in a single

pass is given by

(2.17)

where jo is the beam current density, and by power balance this must equal
the opposite of the power added to the laser field, given approximately by
IT =~ cEAE/(2m) for the low gain regime, where AFE is the increase in the
electric field in one pass through the undulator.

The integral to obtain P® cannot be evaluated exactly in closed form, but

12



assuming that 1) < 1y + Cz, it can be approximately evaluated to

1
1= jofs Fond < [ e ysintun + €2 dé> (2.18)
0

which gives as the final gain

27 5002wl d sin?(C/2
= I (_p E PR (€/2) (2.19)
cyzvla ac 2

where, recall, [, is the length of the undulator. This is the gain of the FEL

process in the low-gain regime.

2.4 Overview of the Low-Gain Regime

In the low-gain regime, the power output of the FEL grows approximately
cubicly with distance along the undulator. This particular model of the low-
gain regime requires a monochromatic seeding laser, and accounts for power
gain by looking at energy lost from the electron bunch. Although the descrip-
tion above is inadequate to describe high-gain seeded FELs with space charge,
it gives a good schematic picture of the behaviour of the electrons in phase
space. This intuitive picture can be used as a guide if physical intuition fails
in the treatment of the high-gain FELs.

A fundamental assumption was made in the equations of motion in the
low-gain regime: the electrons in the bunch do not "talk” to each other. Their
dynamics are uncorrelated, as evidenced by the fact that E is taken to be
a constant in the equations motion. A proper, complete description of the

electron dynamics would take into account the changing laser field due to the

13



dynamics of the individual electrons. The detailed treatment of this problem,
using the self-consistent Maxwell-Vlasov equations, will be the topic of a large

part of Chapter 3.
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An Analytical Model of
Three-Dimensional FELs

I present here an analytical model for free-electron lasers in three dimen-
sions, which follows closely the one dimensional high-gain FEL model pre-
sented in [§], and derived by Bonifacio, Pellegrini and Narducci in 1984 [5]
using an averaging method, and then derived using a Maxwell-Vlasov treat-

ment by Saldin, Schneidmiller and Yurkov in 1992 [6]. The derivation follows

15



the Maxwell-Vlasov treatment developed by Saldin, et al. The model is de-
signed to act as a link between analytical models for the CeC pick-up and
kicker already developed [9]. The model itself neglects betatron oscillations in
the FEL, and considers the transverse dynamics of the electron beam only as
a result of the laser field; the transverse dynamics arise purely from Maxwell’s
equations for the propagation of the laser field. This approach neglects beta-
tron oscillations in the FEL wiggler and transverse space charge effects.

In the first part of this chapter, I present the single-body equations of
motion. In the second, I develop the Maxwell-Vlasov instability formalism,
and write down the self-consistent equations of motion for this model of FEL
amplification. I then solve the problem via Laplace transform, leaving the
exact solution in real space in terms of an integral over the Laplace variable

and requires the evaluation of the zeros of the dispersion relation, given by

A

D
s =0
1—1A§D

The evaluation of D, which is an integral over the longitudinal energy spread of
the electron beam, is discussed at some length in the next chapter, and a closed
form series expression for D for any x — N distribution is developed, allowing
for analysis to any degree of accuracy of the dispersion relation. Finally, all
this is put into the context of existing theory with a brief overview of the
Green functions for all three phases of coherent electron cooling: pick-up,

FEL amplifier, and kicker.
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3.1 Single Particle Equations of Motion

I begin by presenting details of results previously published in [10] and [I1].
The single-particle hamiltonian for a relativistic particle in an external

electromagnetic field is given by

c N2
— _° 2,2
H=c (p CA) +m?2c? 4 e (3.1)

where ¢ is the scalar field, and A is the vector potential. For the purposes
of the analysis of FELs, the most convenient independent variable is z, the
longitudinal coordinate along the FEL undulator, and therefore it is best to

make the change of variables to solve for p, as

_ E_§¢ 2_( _fq )2_ 224 %4 (3.2)
Pz = c c Y2 c 1 m=c c z .

In the high energy limit, H/c is large compared to the transverse momentum

and mc, and it is therefore convenient to expand the square root as

_(H e (pL—ﬁAL)Q—I—mz@ e
p. = (z—?b) {1— <%_§¢)2 }+EAZ (3.3)

From an appropriate choice of gauge transformation®, it is always possible to

make ¢ = 0, which leads to the final approximate longitudinal momentum

_cA)? 2.2
pz%<ﬂ) {1_(pj_ c L) +mc}+ZAZ (34)

¢ (H/c)’

1See Appendix B
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First, I break down A, = A, + A, where A, is the laser field, and is in
general much smaller in magnitude than A,,. This allows the numerator to be

linearized in A;. Furthermore, I take p, = 0, which implies that

v = c—(é;coskyz — éysink,z) (3.5)
Y0

This approximation requires that the transverse velocity distribution be cold
for the electron beam. Under this linearized approximation, the new generator

for translation is given by

(RS, 1A 24, A) s e
JR ( C) {1 5 () } + cAZ (3.6)

At this point, we consider an electron beam where the relative energy
spread is small, and therefore we define H = & + £ and expand to terms
quadratic in €. Furthermore, assuming |A;| << |A,]|, I linearize the longitu-
dinal momentum, and thereby obtain

2 2
ponf e LU & CENNTE p2 oa Ayt m22 1A,
c 2 & 2" c
(3.7)

For the equations of motion wherein z is taken as the “time” coordinate, this
p. acts analogously to the hamiltonian. It is the generator of longitudinal
translations.

In this one-dimensional model only the energy and time of flight equations

2 are of interest. Taking the relevant derivatives, and considering the energy

2See Appendix C for a discussion of canonical equations of motion and canonical coor-
dinate transformations.
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deviation variable instead of the energy gives

€ 1 E 9 e? 0A; e0A,

da 1 11 1 & e 2 e?
LA (R (—Aw) 22 19% A, A 3.8b
dz ¢ 2800( 50+ Sg){ c e c? : (3.8b)
The set of equations and determine the longitudinal dynamics in
the FEL, and will be revisited and utilized in section 4, when the linearized

Maxwell-Vlasov equation is considered and solved.

3.2 Maxwell Equations

From the equations just derived, it is clear that Maxwell equations for 0; A;
and 0; A, must be developed. I begin with the transverse laser field, then turn
to the longitudinal field. The transverse equations provide a requirement on
the definitions of the Fourier transforms to be utilized for the coupled Maxwell-
Vlasov equation presented in the next section.

The transverse Maxwell wave equation for the laser field is given by

1 4 .
(az Lo vi) 4= 175 (3.9)

where 7, is the perpendicular current, which comes from the helical oscillations
of the electrons in the undulator field. The laser field is assumed to oscillate

close to the resonance frequency, so it is convenient to introduce the Fourier

19



transformed laser field by

Az t,ry) = /dy d*k, e’”“’r(z/c’t)e‘kr“ﬁl(u, z, k) (3.10)

1
(v2m)?
The envelope function will generally by slowly varying compared to the laser

wavelength, so that
2vw,

| 0.4, [>| 924, |

C

In this slowly varying envelope approximation, the Maxwell equation for the

envelope equation reads

1 wwr(z/c—t) 1k T 1 1 Ar
W /dy A2k, everFletgkimy <2wwr/c 0,A; — kiAl> = ?]L (3.11)

The transverse current can be related to the longitudinal current by

_ K cos ky,z ‘
Ji. = Jz
10\ —sink,z

where the longitudinal current is given approximately by

jz ~ _ec/dg f(Z,t,’l“J_,(c;)

where f is the phase space density to be solved for in the Maxwell-Vlasov
equation. Using this information, I define the Fourier transform of j,, which

by proxy defines the Fourier transform on f, to be

1
N o

/ dv kolezsz—&—wwr(z/c—t)ezklmle—zckf_/(QuwT)zjz (312)
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The ponderomotive phase 9, introduced from considerations of the energy
exchange equation in Chapter 2, has arisen this time in the Maxwell equa-
tions. By dropping rapidly oscillating terms?® the transverse Maxwell equation

becomes in Fourier space

e ZVWT AJ_ = ——jz (313)

Qww, d [ ki ] A K -~
¢ 7

¢ dz

The oscillating term whose phase goes as k2 z is the source of diffraction effects,
and will appear later in the dispersion relation for the transversely infinite
beam.

The solution of this gives for the laser field

- ck2
Aw . Al =e€ 12VL z zsz {A Al ’ il K jde } (314)

It is relevant to solve for A, - A, as that is the term which appears in the
single-particle equations 7?7, to within a factor of ww,.

The longitudinal component of the vector potential accounts for longitu-
dinal space charge effects. From the definition of the electric field in terms of
the vector potential (recall that the scalar potential has been made zero by

gauge transformation) has the equation

18A
c Ot

E, =—-

so that the last term of equation is just —eE,, which is of course the

3In this context, rapidly oscillating terms are terms which vary from the ponderomotive
phase by +k,z. This is equivalent to averaging over one wiggler period.
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energy deposited into a given electron by the longitudinal electric field. From

Maxwell’s equations

ath - __jz
c
so that imposing an identical Fourier transform on E, as for j, gives

~ 4y ~

E,=——], (3.15)
VW,

This solves for all the required terms in the single-particle equations 7?7, and

can now be combined to generate the coupled Maxwell-Vlasov equation.

3.3 Coupled Maxwell-Vlasov Equation

The Vlasov equation was initially developed to study perturbations to a
collisionless plasma [12], and is the standard method for studying instabilities
in many-particle systems. In this treatment, the Vlasov equation is effec-
tively one-dimensional, while the three-dimensional effects arise purely from
the transverse spread of the laser field and space charge. Assuming the ab-
sence of two-body correlations, the single-particle phase space density must be
conserved:

o _9f  ,Of 0 _

dz 0z ot o0& (3.16)

Substituting equations 7?7 directly gives

of (1 11 1 £ e 5 5 af
%—f‘(z 5%( go+2§){<—Aw> +m-c +2 A Al}) 875

L ¢ 6_2A .%_E(Mz or _
goC g() v ot c Ot 85_
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It is conventional then to take the case where f = f; + fo where f; is the
background distribution of the bunch and f; is a small perturbation on fy.
Since A; x fi, linearizing the above gives the proper linearized Maxwell-

Vlasov equation

ofr 1 11 1 E e N2 5,51\ 9%k
E+(E 55( 5—0+25—3){(5Aw) ey ) et

1/1 EN e? 0A; edA\ 0fy
‘(‘(1—5—0)9*4”@—;5)%—0

where it has been assumed that fo = noG(r)F(E), where

/d%L Gry) =1

and

/dg F(&) =1

fixes the normalization for the bunch distribution. This model only considers
an infinitely long bunch, but so far considers the possibility of transverse dis-
tribution. However, this transverse distribution must be frozen, i.e. p, =0
for all electrons in the bunch.

The appropriate Fourier transform for the phase space distribution is given
by

1 kic ~
fi= s [ Pl etk (3
(v2m)?
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takes the linearized Vlasov equation to

1 K] e
dv ko ezsz—&-wwr(z/c t) 2uw7 Zezk:L TLw
(v2r)3 /

& k%c <
_ - 3.19
(zk‘ (1-v) —1—225 kv ZQI/LU &Z) fl}—I— (3.19)
1 g\ 0A 9fo
(Sgc (1_5_0) ate g T E) oe Y

from the definition of the resonance frequency. Substituting in for the values
obtained in the previous section for A, and E, gives the second component in

Fourier space as

_ kic ’
/dl/ de,J_ d2l€/ elsz+ler(Z/C—t)€ Z2VwTZelkJ_'T’J_ e’Lk: T

1 e . K [*- _ F
—e—(—zyw ) Ay - A |amg e7" —1 T J.d7 | — ek, nod—G(k")
VWr Yo d&

(3.20)

where
1

(V2r)?

is the Fourier transform of the transverse electron beam profile. For a ho-

G(ry) =

/d2q le/qléU{:/)

mogeneous beam, G(q) = 276(g) which gives the infinite beam limit to be

considered in later sections. To cope with having two Fourier integrals, one
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on each side, take the inverse Fourier transform over r; on both terms gives

k2 c
{ 1 / dv d2k3Ld2Tl equ.rlezsz-i—ww,«(z/c—t)6—zﬁzesz'rL «

(vam)!
E k2 ~
(ka(l —v)+ ZQE_oka — 1—2;:7" + az) f1}+
2 c
{ 1 /dV koL ko/ dQTL ML ezsz—i-wwr(z/c—t)e—z%zezklml elk""l

1 e? : K [%.
{—6—<—z”” ) (Aw LA g et g T jzdz’) _
vwro Jo

_ 1 dF -
E.|no—G(k)} =
c Z}”Odg ( )} !

(3.21)

For “clarity” I have included the two separate integral terms in the separate
curly braces. The inverse Fourier transform is taken because it retrieves delta
functions out of the individual k , k" and g components, and turns the second
set of curly braces into an integral over the kernel given by G (k. —q), which for
infinite beam is a delta function and for finite beam sizes turns the problem
into an integral equation. The former will be focussed upon in the coming
sections, while I will return to the issue of finite beam size in a later section.
Resolving these delta functions* gives the form for the Maxwell-Vlasov

equation

k2c 2 ~
P et [Z (l{:w(l —v)+ Qgik:wu — ki ) + az} | =
0

2vw,
q26 r 2 K Z~, 4 ~
/d2q e_ZQULurZ |:ZVW 6—2 <Z/{0 — 1 T jz(q)dzl> + e UK ]z(Q):| X (322)
v€ c vwrYo Jo VW,
dF -
Gk, —
no de (kL—q)

4See Appendix C for a discussion of resolving these delta functions, as well as a discussion
of integral equations.
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Pausing for a moment, let’s consider each term from a physical standpoint.
The exponential terms represent the diffraction effects of the laser field prop-
agation through the wiggler. The first term in the braces of the derivative is
the phase factor that includes effects from energy spread (the £ term), and a
detuning term that arises both from frequency spread (the term proportional
to (1 — v)) in the initial seeding, and the detuning caused by the physical
spread of the initial signal (the k% term). On the other side of equality, the
Uy = Ay(2) - Ap |.=0 e % is a constant after dropping fast oscillating terms,
and is the initial source term for a laser field seeding. The term next to it
is amplification from the laser field generated by everything in the amplified
signal from the beginning of the wiggler to the point z. This integral over the
signal that comes before the current point in z is the origin of the exponential
amplification. The space charge term arises from the local tendency of the
electrons to repel each other when they begin to microbunch. The dF/dE
term contains all the thermal effects, and G(k, — q) is the symmetric kernel
that contains the information about the electron beam’s transverse density. In
a sense, it accounts for a continuously varying dielectric constant.

Solving this differential equation for f; is straightforward using an inte-

grating factor, and gives

i = et (ka2 Eo kT e )= |y

/ (k (1— )+2]€ E/S —k2 /2 W )(Z/— ) 2 — (q2 k2 )CZ/
dZ 61 w v wv 0 /eyt N d q e v 2vwy X
0

ww, €2 K [ - Ay ~ dF -
U, - dz" 5, —e——17, —G(qg—k
{ Eoc 2 ( 0 vwrYo Jo =) ) ecywr‘] }no d€ (g 1)

(3.23)
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At this point, it is convenient to introduce the gain length, T ~! and the Pierce
parameter, p, which are the natural length and energy scales of the high-gain
free electron laser. Taking 'z = 2 and p = I'"'k,,, and fixing I'"! to take out
the most physical constants, the above equation can be taken dimensionless.
These terms will be defined when a natural definition is arrived at in the
derivation.

First, consider the phase term, so that defining C' = k71 —v) =
(1—v)/p as the normalized detuning parameter, the normalized energy spread
by & = 20E/p&y, and the normalized k-vector by k% = k%I~ /2vw, fixes all
the relevant scales. It is worth noting that for the purposes of the inverse
Fourier transform into real (z,¢,7, ) space, the important values of v will only
vary on the order of p from unity®. Since for most FELs p ~ .01, v is effec-
tively constant, so including it in the normalization causes no mathematical

complications. The transverse length scale is determined by the constant

F_l
=S 1Tk
(2vw;.) /

To give an example here, for an optical wavelength FEL similar to the one to
be utilized in eRHIC, a typical gain length will be on the order of 2 meters,
while A\, ~ 5 pm, so that ¢2 ~ 167 x 10~* e¢m? or £ ~ 1.2 mm.

It is now important to properly normalize the energy spread function. From

5As we will see, the bandwidth of a high-gain FEL is determined by the width of its
dispersion relation roots as a function of C. The real parts of the dispersion relation vary
on the order of unity with C, and therefore with the order of p- This will be developed in
much greater detail in the next sections.
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the previous normalization condition, it is required that

/Fdé’ /FdS / —dE

which clearly suggests for the preservation of normalization that £ = (p&)/(2v)F.
The transverse Fourier distribution can be directly normalized, but contributes
no major changes to the normalization of the transverse energy distribution
as d*k, G and d?k, G appear as products, so any changes in normalization
cancel.

Integrating over the energy £ to obtain a current equation gives the new

equation of motion as

jz = —ec/dg e_z(kw(l_y)+2k“’l’5/50_k2¢C/QVwr)zJFl |0 N

“k2)e
/ / dz' €' (kw(l v)+2kwvE/E0—k? C/21/wr)(2 —z /dgq e (qQVf;,) Z’X

X K (7 - 47 - dF
W ( T d-" jz> e ijz}no—G(q kL)

Eoc VwrYo

(3.24)

Introducing the properly normalized coordinates and setting the normalization

so that the coefficient of ¢ [ d2’ ’j, is unity requires that the gain length be given

1—\—1 — g()c Yo 1/
2nved K kyng

and the space charge parameter be defined as

by

Az . 87T€2?7/0F_1(1 + KQ)

p

Yome?
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so that the final integral equation for the longitudinal current distribution be

given by

~ &,
= —ec% dE e CHER )Zf1 320 +

/dg / d,’gl ’L C"rg k‘ Z —Z) /(12A _'L(q - X (325)
{L{o + / dz" ., + ZA;]Z} d
0 d

From this point there are two avenues to consider: the case of infinite

esh

Glg—Fk.)

™,

beam and the case of finite beam. Switching to normalized coordinates follows
a similar procedure in both cases, but in the finite beam case the integral
equation remains, and must be considered using a formalism that generalizes
the simpler infinite beam case. Since the infinite beam case is mathematically
easier to consider, and is of interest for the CeC model being developed, I

consider that case first. The finite beam case is left for the next section.

3.4 Infinite Beam

For comparison to the work in [9] regarding Debye screening, I consider
the limit of an infinite beam. In this case, G(q — k,) = 6(q — k) and the

integral equation simplifies greatly.
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3.4.1 Solution by Laplace Transform
Taking the infinite beam case removes the ¢ integration and leaves the
integral equation for the current given by:

- & -
Jo = —ect 2 [ € O o 1

- - R dﬁ G i\ (5 s (326)
dz" g, + 1027, dE — e CHERDE=2)
P d&

/ dz’ z/?0+/
0 0

By happy coincidence, this equation can be solved by a Laplace transform in
the 2 variable® which yields the solution of the initial value problem in Laplace

transformed space as

60’050 fdg mf1 |;3:0 —|—D Z/A{O

1—(;+2A§>D

J(s) = (3.27)

where

1
D= /dS— (3.28)
d€ s+1(C+ € — k)

As discussed in the Appendix, the dispersion relation is related to the zeros of

the denominator, which are solutions to the equation

A

D
s=— (3.29)
1— ZAZQ)D

Once these poles are known, the solution can be straightforwardly solved from
the inverse Laplace transform. I will explore the exact evaluation of the dis-

persion relation in the next chapter.

6see Appendix C for a detailed discussion of these Laplace transforms.
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3.4.2 Green Function for Infinite Beam

I am now in a position to write the solution to the initial value problem
as a triple integral. Looking back at equation [3.27] it is possible to write the

series as a sum over the poles of the dispersion relation in the denominator,

- N 5,2 .
Jz = —602—&]2/@[5 5 _,_;{;(lj — D/) : —|—z(é—1|—é_if2)fl =0
7 7 p \ T 5, ) +

(3.30)
where s, is a root of the dispersion relation, @J is the value of D at the s,
root, and D' is the derivative with respect to s. 1 have dropped the oscil-
lating/decaying mode that arises from the s + 1(C' + & — k2) root that is
non-degenerate with the dispersion roots. The initial seeding field U has also
been dropped as it plays no role in CeC.

Capturing all of the roots in the dispersion relation is necessary for nu-
merical analysis, as it is necessary to be very careful near these points. At
a degeneracy point such as the two-fold degeneracy between the growing and
decaying roots in figure the degeneracy arises in the form of a derivative
with respect to s at that point. For thermal cases it can be seen that the
problem does not arise, as the thermal effects lift the degeneracy.

In any case, for applications to CeC we desire the Green function, which

is obtained by considering the case of
2v A A
f1 |0: —(5(t — t0)5(5 - 50)6(71 — TL())
p€o

where the normalization accounts properly for going from some initial energy
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deviation Fj into the normalized variables. Applying the original definition
of the Fourier transform, and using the proper choice of normalized variables

gives
1 2v

2V 27r3 %

Inserting this into the integral above gives the Green function for the current

o~ k1710 1(1=pC)wrto 5( & go)

f~1 |0:

distribution”’

A 1 5,657
g<'f‘l_07 t07 50) = —¢cC ~ AJ ~ ~ X
Var zj: 1= D) +182 (D; + 5,0,
(3.31)

_ 1 § _ ]- 3671,’23J_.’f'1_06z(17pé)w7‘t0
o+ (Cr - \Var

where k 1 -7, =k, -7, by the choice of normalizing the transverse variable.
Given some general initial condition on phase space given by fi(7.10, to, &)

returns the final current

J. = /dQ""J_O dto d€y GreL (710,10, £0) X f1(7 10, t0, ) (3.32)

with proper normalization to be made on the phase space distribution.

From these considerations, and considering equation [3.26}, it is straightfor-
ward enough to calculate the phase space density Green function. By compar-
ing what is under the energy integral for the current equation to the definition

of the current in terms of the phase space density, a Green function for an

"Obtaining the Green function for the phase space distribution can be obtained by
inserting the resulting Fourier transformed current into equation [3.23]
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arbitrary initial perturbation is given by

_ecflu’%l_’ é? ) = el(CA'Jréfl%i)ﬁfh’ |A= (’%J_a éa é)‘i‘

/d2’f.J_0 dt() /(; dZ/ lC+€ k )(ZL'%)X (333)
A

dz" g(z" ’I"Lo,to,g)%—f G(Z', 710, to, )}fl |50 (710,750,5)

A/

([

where initial laser seeding has been taken to zero and transient oscillatory
terms have been neglected, so that only the FEL amplified process is included

here. Explicitly, this gives the FEL phase space density Green function as

C+E-k2)z
Grpr, = e!(CTEF A4

2
1 1
Z Y / (s +z(é+é—l%2)) g
1—D +zA < —f-S]D) 7 0 1 (3.34)

{(1 T uh2s) [(e _ e_z<0+so_;;3>g) _ (1 _ 6_1<a+so_;;3)2)} } aF
dé

Xe—zlchf’Loez(l—pé)wrtoé‘(é’ _ éO)

so that the final phase space distribution given an initial phase space distri-

bution is given by

fl(éa(-c"A)’%L) - /dQ'f’LO dtO gFEL<éa I%L7é;ﬁLOat0aé’0) X fl |2:0 (ﬁLOat07(§0>
(3.35)
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3.5 Finite Beam Size

Equation is sufficiently general to solve for an arbitrary transverse
distribution. In all but the infinite beam case, the Fourier transform of the
transverse beam profile behaves as a kernel in an integral equation, which is

best solved by an expansion in eigenmodes of the kernel.

3.5.1 Mode Expansion

The correct expansion® to consider for the integral equation is in terms of

the integral of the Fourier transformed current density

| a2 52) = S vtkn)e ) (3.36)
0 ¢

where the a, contains the exponential growth or decay of a given mode. Here

the eigenmodes satisfy the equation

1

k) = - / P Clks —a, e, (3.37)

for some eigenvalue wy. Because G(r ) is a smooth real function, its Fourier
transform is hermitian, therefore wy is real and the eigenvectors are orthogonal.
Because the basis for these kernels are countable, a matrix expansion for the
eigenmodes is possible, which I will exploit later.

Inserting this definition for the expansion of [ dz’ 7, into equationm gives

8Reprinted excerpt with permission from S. Webb, G. Wang and V. Litvinenko, PRST-
AB, Accepted for publication. Copyright (2011) by the American Physical Society.
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a matrix expansion of the a, for each mode as
~ Qs = e [ 4€ [ By OG-

Wy

&

/dg/ d C’+5 Z_Z) X i{an—f-ZAQ [CLE_’_?/ngam]}d_F:

where

Qi = / Py 12 (ke (k)

(3.38)

(3.39)

is a measure of the mode coupling. The resulting matrix equation for the a,

may be solved by Laplace transform, which gives in Laplace space

[(s = D14+ 1582)) G + (1 + 1820) Qe | @ =

(3.40)

Solution of this matrix equation requires understanding the matrix elements

of Q¢m, which in turn requires understanding the eigenvectors of the kernel.

In general the kernel does not have a closed form set of eigenmodes, so some

expansion in a basis of orthonormal special functions is necessary. To illustrate

this procedure, I will take as an example the gaussian transverse beam profile.

3.5.2 Gaussian Beam Profile

Take the transverse profile as

G(r.) =exp (—ri/ﬂ?)
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Then the eigenvalue equation is given by

wlles) = / ’q (%) exp{—("’;i—‘_?}@bm (3.42)

This is separable in cartesian coordinates such that

Ye(P) = Xm (D) Xn (Py) (3.43)

which then satisfies independent eigenvalue equations

1
Am

0 j‘/ .
[ e {2 4 = 2pad) 2L vnlel) (340

Xm<p1) =

where the resulting eigenvalue for ¢, is given by wy = A\, \,,,. It is convenient to
define the normalized variable p = p,f/ so that the above eigenvalue equation

is given by

Xm (1) = Ai /_ " it exp {=(® + 1™ = 2up) 2} X (1) (3.45)

m o0

where A, = A\,,v/27. The appropriate scaling for the transverse beam size for

the full eigenvalue is given by

where W, = S\mj\n To calculate the normalized eigenvalues, we expand the
kernel of this single-variable integral equation in terms of Hermite polynomials,
as they are already related to the paraxial Maxwell equations [I3].

It turns out from the properties of Hermite polynomials that only the evens
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and odds couple, so each x,, is a series in either even or odd Hermite polyno-
mials. In this case, the matrix equation for the even Hermite polynomials is

given approximately by the matrix elements

Gap = / du/ dp’ exp {—(p? + 1 = 2up') )2}
—o —00 (346)

Ha(p)e ™2 Hy ()2

Furthermore, to good approximation, the expansion can be carried out
for the first two Hermite functions in the series. We therefore consider the

two-mode case. For the principle even mode, the matrix is given by

9./T 1 [2¢
G= VS (3.47)

for the vector components (Hy(), Ha(pt))! exp(—p?/2). The eigensystem here

has eigenvalue ;\even = 2.2382 with corresponding eigenvector

.9294
Veven =

.3690
and a smaller eigenvalue A» = .83178 with corresponding eigenvector

—.1465
.3690

To validate these numerical results we take the matrix to next order, i.e.
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to order Hy(u) in the expansion, and the matrix is given by

25 WE WA

L /2r T 17
3V 3 3 54

T 1T

1
9V 2 &4 324

227 /7

(3.48)

which yields an eigensystem given by 5\’1 = 2.3157, 5\’2 = 1.2005 and 5\5 =

27073 with corresponding normalized eigenvectors

8772
vy = | 4244

.2245

—.1724
vy = 2376
2245

03343
vy = | —.1879

2245

We can conclude from this that the largest eigenvalue can be accurately

determined to within 3% with the 2 x 2 matrix expansion, and from analysis

of the eigenvector components the Hy(u) level of expansion is negligibly small

compared to the other two components for the eigenvector with the maximal

eigenvalue.

Carrying out a similar procedure for the Hy(u) - H3(p) eigenmode gives a
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maximal eigenvalue S\Odd = 1.7161 and eigenvector

.8456
Vodd =
.5339

It is now necessary to calculate the various matrix elements for ). For the

purposes orderly book-keeping, we define the following modes

Yeven = Xeven(tha) Xeven (Hy) (3.49a)

Vodd = Xodd(fz)Xodd (/L) (3.49D)

= 7 1) e )+ Xewen 1) o)) (3490

W = = Ot Xeen (1) = Xenn2) ot 1) (3.40d)

as the orthonormal basis of expansion. The corresponding eigenvalues are
given by Wepen, = 5.0095, Woqq = 2.945 and w, = w_ = 3.8410. Under this
particular basis the Hermite polynomials have a particularly nice relation for
the (Q matrix elements, and () is diagonal. The individual modes do not couple,

and their growth rates are determined by the dispersion relation
(s — Dwp (1 + zs/A\f,)) +(1+ zAiwm)Qmﬁm =0 (3.50)

The individual @) are given by Qepen = 2.51446/f/4, Qodd = 6.35275/ﬁ4, and

Qy = Q- = 443333/ L*. The growth rate for these parameters is given in

figure 9, with L = 3.

9Reprinted figure with permission from [FULL REFERENCE CITATION] as follows: S.
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Figure 3.1: Growth rates for three eigenmodes: (i) top is of mode with largest
eigenvalue, (ii) is degenerate case of the odd/even mixtures, (iii) is of smallest
eigenvalue
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To recap, we have calculated an eigenbasis for the transverse beam profile,
yielding a linear superposition of even- and odd-numbered Hermite polyno-
mials, and their corresponding eigenvalues. The series is truncated at two
dominant modes, and because of the particular nature of the Hermite polyno-
mial expansion basis, the () matrix is diagonal. If () had off-diagonal matrix

elements, there would be “gain leakage” between the connected eigenvectors.

3.5.3 One-Dimensional Limit

Because the eigenvalues are totally independent of the transverse size, and
only () is dependent, it is straightforward to get directly to the one-dimensional

beam limit for the dispersion relation. By redefining the normalization as

§=sw /3 (3.51a)

C=Cuw 3 (3.51D)

A2 A2 3

A=A (3.51c)
Qum = Quwy,? (3.51d)

the dispersion relation takes the form

~ 1 o~ ~ ~

Webb, G. Wang and V Litvinenko, PRST-AB. Accepted for publication. Copyright (2011)
by the American Physical Society.
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The actual scaling is such that, for large beams, the portion of this dispersion
relation identical in form to the one-dimensional dispersion relation comes to
strongly dominate over the perturbation correction for finite size, taken by the
value of (),,. For the case of an infinitely large transverse size all functions
are eigenmodes and all all eigenvalues are unity, therefore we can obtain the

one-dimensional limit through this limit.

3.6 Conclusion

In this chapter I provided a derivation for a three-dimensional model of the
FEL amplification process that considers any arbitrary transverse beam profile
and longitudinal energy spread. This model reduces to the one-dimensional
limit under appropriate limits of the parameters. This results in a problem that
may be solved as a three-dimensional Fourier transform in (é , k1) space, and
provides a fast-converging mode expansion method for an arbitrary transverse
beam profile.

A number of restrictions remain for this model. The foremost is that it ne-
glects transverse momentum spread. This, combined with neglecting betatron
oscillations, prevents this model from accounting for the full set of physical
effects on the electron bunch dynamics. Future work should find a way to in-
corporate the transverse motion, probably by some form of averaging under the
assumption that the betatron wavelength in the undulator is small compared
to FEL gain length. However, for the purposes of benchmarking numerical
code, it is reasonable to simply set the input parameters such that this model

matches the dynamics being modeled by the code. Thus, as a benchmarking
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tool, this model is satisfactory.
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Dispersion Relations

Evaluating D is at the core of evaluating the dispersion relation. Results

are analytically known in the published literature [§] for three cases:
1. Cold beam, I = §(P)
2. Lorentzian beam, F' = (¢/7)(P? + ¢*) !

3. Gaussian beam, exp[—P2/2A2]/+/2rAZ
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I present the first two in detail, the first because it provides a necessary limit
to test a general expression, and the second because its method of evaluation
is instructive for evaluating the general case. The third result is presented
without derivation, as it represents the large N limit and due to the function
diverging at 400 the integrals cannot be evaluated in the same way as the
others. It is merely presented for completeness.

A more general method for evaluating the dispersion relations, as well as the
properties of the roots of this dispersion relation, is developed and presented
in full detail, having already been published in [I4]. In this, I prove that the
roots are well-bounded, and furthermore that they converge despite the series
for D diverging in the approach to the gaussian limit. The methods discussed
in this section may be readily applied to other plasma instability problems, as

well.

Cold Beam

For a cold beam

1 d

f):/ dp ————§(P) (4.1)
o $+1(C+P+Ek*)dP

By integration by parts, the derivative on the delta function can be moved to

the argument, so that it can be found that

Dy = 5 (4.2)
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This gives a cubic equation for the dispersion relation, namely
s ((s +(C+ k) + A;) =1 (4.3)

which can be solved in closed form by the Cardano formula. More importantly,
it is an important test for the thermal distributions that they all return to this
cubic equation when their energy spread parameter goes to zero.

The cold beam roots are given in figure [4.1) where the horizontal axis is the
useful parameter Cap =C + /%i In these graphs, the space charge parameter
is set to AIZ) = (0. Notice that there is a cutoff on the exponential growth
regime, above which no further growth is possible. This occurs when the
bunch wavelength is too long to interact with the oscillations constructively.
When space charge is non-zero, there is a cutoff in growth for some value
of C' to the left of the long wavelength cutoff. This short wavelength cutoff
occurs when the longitudinal space charge of the charge “sheets” forming in
the lasing process causes the “sheets” to repel each other too much, and they
cannot grow any further below the critical wavelength.

This result is of interest because it provides the simplest standard on what
the roots look like, and because all of the future distributions should limit to

these dispersion relations in the zero energy spread limit.

Lorentzian Distribution

For a Lorentzian energy distribution

. q 1
F=-— 4.4
. (44)



Re(s)

Figure 4.1: Real and imaginary components of the roots for cold beam.
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Figure 4.2: Pole structure of the D integral.

the integral may be evaluated by looking at the pole structure on the complex
P—plane of the functions. There are poles at £:§ of order two from the energy
spread function, and then there is a pole at 1s — égD from the oscillating
term. The location of that pole affects the integration procedure, particularly
if Re(s) = 0 so that the pole is on the real line (see figure [£.2).

By carefully accounting for these contour integral issues, the value for D

for a Lorentzian distribution is given by [§]

A

D= <s +q+ ZégD> - (4.5)
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Figure 4.3: Gain curves for a x — 1 distribution.

To illustrate the thermal effects on the roots of the dispersion relation, the
real and imaginary parts of s for ¢ = .1 and [\;23 = 0 are presented in figure
[4.3] In this figure, we show the three roots to the dispersion relation for the
case when Re(s) > 0, as there are in fact three different dispersion relations
depending upon the location of the s + z(é’ + P) pole relative to the closed

contours.
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Gaussian Distribution

The Lorentzian distribution is utilized as an approximation to the Gaussian

energy distribution function

A 1 P?
= exp | ——= (46)

A2 2A2

2wA% T

As the contour integration method utilized for the Lorentzian beam is of no

1

use in evaluating the Gaussian, I will omit the details of the calculation® and

simply state the result as

R o0 A2g2 .
D=1 gexpd -~ - (s+zch>5 d¢ forRes>0  (4.7a)
0
. o0 A2¢2 .
D= Z/ gexp{— s (3+203D> 5} de
; 2
N 2
/2 R s+ ZCgD
—1— 7T(s +1C3p) exp g for Re s <0  (4.7b)
X} 242

It is worth noting that a major restriction on the Gaussian distribution is that
its solutions are not well-behaved for the inverse Laplace transform. Asymp-
totic solutions can be obtained, but there is no complete solution available
for a Gaussian distribution. This is due to the nature of D, which diverges
as exp (s?) along the imaginary s-axis, so that the Laplace transform is not
well-behaved at +100.

To get around this restriction, one method is to manipulate the contours

to remove the offending poles at infinity and pick off the largest growing root.

Details can be found in Chapter 2 of [§].
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This root, for large 2z, will dominate over the other roots with smaller real
part. However this method is not satisfactory for applications to CeC, and so

I present an alternative approach to building a Gaussian.

4.1 k — N Distributions

The exact analytical solutions for the electron screening in the pick-up [9]
and analytical solutions in the kicker [I5] are for the case of a k—2 distribution.

The general form of the x distribution is given by

1

T Gy

For the purposes of this dissertation, I only consider the case of k as a positive

integer, and the general K — IV distribution function I utilize is given by

_ ['(N) 1
V2rNo?I'(N —1/2) (1 +]52/(202N)>N

In(P) (4.8)

The choice for changing ¢ as a function of N is made so that in the N — oo
limit, this distribution becomes the Gaussian distribution, and o is fixed by
the measurement of the RMS energy spread by assuming the true distribution
is Gaussian.

The k — N distribution has poles of order N at +i0v/2Nwhich allows the

identical contour integration method utilized for the Lorentzian to be carried

out for arbitrary N [16] [14].
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4.2 Dispersion Relation for k — N

In the one-dimensional theory of small signal high-gain free-electron lasers,

the growth of individual modes is determined by the roots of the dispersion

relation
D
5 — — =10 (4.9)
1-— ZAZ%D

where

X . dF 1

D:/dP - — (4.10)

dP s +1(C + P)

F' is the normalized energy spread, and A; is the space charge parameter, as
defined in [§]. The space charge term is not expected to affect the physical
results of this paper, and is therefore dropped from this point for the sake of
simplicity.

For a lorentzian energy distribution, this equation may be evaluated exactly
to give the familiar cubic equation for the dispersion relation. However, when
this is applied to a gaussian energy distribution, closing the contours in the
upper- or lower-half plane is not possible, as a gaussian diverges anywhere
off the real axis as R — oo in the complex plane. Because of this, only an
asymptotic expression for the largest growing root can be obtained. This does
not allow a study of the number and nature of the growing roots, which would
be useful for studying short FELs.

Motivated by the existence of analytical solutions of other problems for
applications in CeC [I] that consider dynamics in the pick-up [9] and kicker
[15], we considered the case of a k — 2 distribution to calculate the dispersion

relation for a one-dimensional FEL. Realizing that the key to evaluating these
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particular integrals is the existence of a pole in the upper- and lower-half
plane, while vanishing along any closed contour, we were able to obtain a
general formula for the dispersion relation of a high-gain FEL for any xk — N

distribution.

4.2.1 Evaluating D for fy(P)

We define
1

Dy :z/dﬁ (s+z(é+ﬁ))2ﬁv(ﬁ) (4.11)

which is equivalent to D for the Nth kappa distribution, and we have intro-
duced normalized variables for direct comparison to [§]. For Re(s) > 0, the
pole structure is given by fig. .

It is possible to close the contour in a half-plane in which only the imaginary
axis pole is inside the contour for the growing or decaying roots, but for the
oscillating root there is a half-contribution from the contour passing around a

pole on the real axis. The imaginary axis contribution is given by

’ e (s e+ ) (1= pra) " (uaw|
Im = — — S+ — /N —igN
(N - 1)' dpN-1 P=—iqy
(4.12)
which gives the resulting Dy in terms of the single pole
- T[N]
= 4.13

It can be shown that taking M derivatives of a product of two functions
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behaves as a binomial expansion:

M M M
@) =Y g (44)

m=0\ m—1

This allows ¢, to be solved as an expansion in the derivatives of the two
components. The resulting series solution for Dy is given by
. [[N] 27 1

NZUNTIN —1/2] © (N — 1)1 22v1

i N-1 { M qN_l_m(QJ\(/]\;iI)!m)!} (4.15)

! " (s + qn +120)2tm N

Solution of the dispersion equation (4.9)) can then be obtained by whatever

means are best.

4.2.2 The Roots for x — 2

For the case of a k — 2 distribution, which is valuable for the analytical

work on CeC, I take gy = g2 = ¢ and obtain

~ 5+zC’+3q

D =1 - (4.16)
(s +q+:0)3

This yields a fourth order equation in the dispersion relation, with the added
condition that all roots must satisfy Re(s) > 0 to obtain the growing roots. An
analytical formula exists for the quartic, obtained by Ferarri’s method, however
the results are analytically complicated, and we present here only plots of the

results. Supposing that ¢ = .1 for the definition of the gy, this implies that
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g2 = .2, while the result for the Lorentzian distribution has ¢; = .141. We
also consider the case of k — 5 to illustrate how quickly this series begins to

converge. For comparison purposes, I present on the same plot the results for

both in figure (4.4])2.
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Figure 4.4: Growth rates for the x — 1 distribution (blue), x — 2 distribution
(green) and k — 5 distribution (red).

There is a small difference between the x — 1 and x — 2 distribution, most

noticeable at zero detuning.

2Reprinted figure with permission from S. Webb, G. Wang and V. Litvinenko, Phys.
Rev. Lett. Submitted for publication. Copyright (2011) by the American Physical Society.
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4.3 Number of Roots

Determining the number of growing modes is interesting when studying
these problems as there is the outstanding question of how many modes there
are that participate in the FEL amplification process. It turns out that there
is always only one amplifying mode solution for any FEL dispersion relation,
given sufficient criterion. To prove this, I develop a treatment for the FEL
dispersion relation similar to the treatment for linear circuits first developed
by Herbert Nyquist [17].

The idea behind this treatment is the application of the Argument Prin-
ciple from complex analysis to the Laplace transform response function of a
linear system, the dispersion relation in this case. The Argument Principle
is precisely stated in the Appendix, but for here it is sufficient to state that,
given a closed contour C' in the complex plane and a function f(z), then the

difference in the number of poles and zeros is given by

Z-p— zi d arg(f(2)) (4.17)
T Jc

This allows anyone to calculate the difference between the number of zeros
and the number of poles inside a given contour.

For the linear response function we consider, the number of amplifying
modes is related to the number of modes where Re(s) > 0, so the choice of
contour should obviously be a half-circle that encloses the right half-plane, as
in figure (4.5).

This contour can be parameterized into two curves, one an arc given by
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Figure 4.5: Contour for evaluating total number of roots
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s = Re" for t € (7/2,—m/2] in the limit of R — oo, and the vertical line
parameterized by s = e+t for ¢ > 0 and ¢ € (—o00, 00). This parameterization
should be able to include every zero and pole in the right half-plane of the
complex s-plane for the dispersion relation.

First, I must account for the poles in the right half-plane. Such poles could
only originate from poles in D(s), and therefore I consider the evaluation of
the integral in equation (4.10) in very general terms.

From the requirement of causality, the integration must be taken first on
the assumption that Re(s) > 0. If F(P) is some rational function with no
poles on the real line, then it is reasonable to take the contour integration
in evaluating this integral over the lower half of the complex P-plane. Once
this choice is made, the pole due to (s +2(C' 4+ P))~! must remain above the
contour of integration. Because of the form of the integral, a pole in the lower
half-plane in P will manifest as a pole in the left half-plane in the complex
s-plane. This is clearly the case for any rational functional form of F (f’)
Transcendental functions — such as a gaussian distribution — can be written
as the limit of a sequence of rational approximations (such as the definition
of e or successive Padé approximants). So long as the poles do not flip signs
or cross the real axis for any single term in the sequence, it is reasonable to
assume that the poles will remain in the left half-plane of the complex s-plane.
Therefore, P = 0 for this particular contour, and the number of zeros with
Re(s) > 0 is equal to the winding number of the function around the above
contour.

The change in the argument must be calculated in the counter-clockwise

direction. For the arc, as R — oo, the contribution due to 15(3) vanishes as

o8



1 .. § - Dfs)

......

Figure 4.6: Contour for evaluating total number of roots. This corresponds to
one growing root.

O(R™?), and so there is a change in the argument of +7 along that part of the
contour. Thus, this contour of the mapping s — w(s) is the identity mapping.

The real part of the dispersion relation along this contour is given by

Re /dﬁdﬁj% (4.18)
dPu(t +C + P)

From the identity due to Landau that

[]idxzp([]l> dx + |-+ ]0(z)dx (4.19)

T

29



where P denotes the Cauchy Principle Value, this may be expressed as

dPu(t + C + P)

Re P/dﬁd€%+wﬁ'(ﬁ: —t—C)
dP(t+C + P)

(4.20)

Since the Cauchy Principle Value integral is pure imaginary, that component

drops out and we are left with the criterion that

F'(P=—-t—-C)=0 (4.21)

To deal with the winding of the vertical part of the contour, it is necessary
to count how many times the vertical line wraps around the origin before the
contour closes on itself. This is best done by counting where and when the
mapping along the contour crosses the real axis, i.e. when Re(w(s =1t)) = 0.
To keep book, two bits of information are necessary: where the curve is crossing
the the imaginary axis and whether it’s crossing from left to right or from
right to left. Where the crossing occurs is straightforward to calculate. If it is
crossing from left to right or right to left can be determined by the derivative
of I at that point, which is the second derivative of F. Thus, crossing from
left to right corresponds to a negative derivative of F” and a local maximum
of the distribution, while a crossing from right to left is a local minimum. If
the zeros are ordered in descending value of t* as {t1,ts,...,t,} they must
alternate crossing left-right or right-left. From understanding whether each
one crosses left-right or right-left, and where, a schematic of the diagram can

be developed and the winding number calculated fairly directly.
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For a single bell-shaped curve the structure of F'(P) with local maximum
at P=0,t=—C is the only zero for finite values of ¢. This means that there
is at most one growing mode under the definition used in this dissertation,
and that for some C* it crosses the zero line so that frequencies at detuning
less than C* are exponentially damped.

Plugging in t = —C into the dispersion integral, it is clear that the sign

/dﬁ ﬂ 1A
dP 1P

As an example, for a properly normalized gaussian F with spread parameter

change occurs at

C* =Im (4.22)

A?p, Cr = —Af. More generally it is clear from dimensional considerations
that if F has only one energy spread parameter, ¢, that C* ~ ¢~2. This result
is similar to the result obtained for a free Coulomb plasma by Penrose [I8] as

a criterion for the onset of instability.

4.4 Conclusion

A closed form series for the dispersion integral for the FEL process was
presented by evaluating the contour integration of a kK — N distribution. Using
this result I presented numerical evaluation of the roots to illustrate the rapid
convergence in N, which converges to a Gaussian distribution for large N.
This rapid convergence of the sequence of dispersion relations leading to the
Gaussian distribution is encouraging.

Furthermore, I presented results that are topological in the sense that

they depend only on the bell-shaped curve of the energy distribution function.
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These results are totally general, and provide basic criterion for certain analyt-
ical properties of the dispersion relation for any choice of energy distribution
that is reasonable for an electron bunch. In particular, the most compelling
result is that there is always one and only one mode which is amplified by the
FEL process, and all other modes are transients which decay exponentially
or, at most, oscillate and become exponentially small by comparison to the
primary growing mode.

I furthermore presented a set of criterion that includes the importance
of space charge, and at least at what order of magnitude the space charge

parameter may be expected to begin affecting the FEL amplification process.
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Part 11

Coherent Electron Cooling
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Coherent Electron Cooling

The three-dimensional theory of FELs presented in this dissertation was
developed to calculate the cooling decrement for Coherent Electron Cooling
(CeC). CeC is intended to provide order of magnitude luminosity increases for
the proposed eRHIC/MEeRHIC upgrade by rapidly increasing the phase space
density of the hadron bunches. In this section, I discuss briefly the primary
mechanisms of beam heating in RHIC, the method of stochastic cooling that

has been implemented at RHIC, and a comparison with the method of coherent
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electron cooling.

5.1 Beam Heating

The primary source of beam heating at RHIC is intra-beam scattering
(IBS). In a free Coulomb gas, scattering exchanges phase space volume until an
equilibrium is reached. For bunched beams in a storage ring there is dispersion,
which couples the energy deviation from the design energy to the transverse
motion. Under these circumstances, it is possible for a Coulomb scattering
event to heat particles in all directions, so that a final equilibrium state is
never reached.

Consider a physical picture of IBS due to Piwinski [19], illustrated in figure
b.Il In the lab frame, the bunch has very little transverse and longitudinal
momentum spread, and is strongly biased in the longitudinal direction. How-
ever, in the rest frame, the bunch is essentially a Maxwellian gas interacting
through the Coulomb interaction. Suppose two particles with perfectly trans-
verse momentum in the rest frame scatter so that the resulting momentum all
goes into the longitudinal direction. Because of the existence of dispersion in

the lattice, the transverse betatron oscillation is given by

Tg=x—D— 5.1
s ) (5.1)

where D is the dispersion of the lattice and p is the longitudinal design mo-
mentum. The longitudinal emittance increases after a longitudinal momen-

tum spread is added. Because of dispersion, the transverse emittance can also
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T Coulomb Scatter

Figure 5.1: Piwinski picture of intrabeam scattering

change, and the total change at the point x on the lattice is given by

2

Aleor + o) = %% (Dv)* — 62} (5.2)

The transverse coupling means that this particular interaction can increase
the transverse emittance if (Dv/3,)* > 1. In this way, the collision can heat
both the transverse and longitudinal directions simultaneously!

IBS was described by Bjorken and Mtingwa [20] with the relevant equations
for emittance exchange between the transverse and longitudinal directions due
to Coulomb scattering, yielding a total growth rate in terms of lattice param-
eters and the properties of the individual bunches. A simplified treatment [21]

gives the longitudinal growth rate as

2
1 ricN,A

T = (5.3)
R TSN
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and the transverse growth rate is given by

(5.4)

T — =
L e By

-1 _ 013 <‘D37 + (D8, + O‘me)2>

where the brackets average over the ring lattice, D is the dispersion function, o
is the spread parameter (assuming a gaussian distribution), N, is the number
of particles in the bunch, r, is the classical radius of these particles, and A is

a Coulomb logarithm.

5.2 Stochastic Cooling

Stochastic cooling was proposed by van der Mier [22] as a method of using
the discrete nature of bunched beams to provide cooling. For this work he
was awarded the Nobel Prize in Physics in 1984 along with Carlo Rubio for
stochastic cooling’s contribution to the discovery of the W and Z bosons at
the UA1 experiment at the Super Proton Synchrotron.

The process of stochastic cooling can be broken into three parts: the pick-
up, amplifier and kicker. The pick-up samples the bunches with a bandwidth
W and a decay time for the impulse response of a single particle given by
T~ 1/2W [23]. Within this bandwidth N; particles are detected by the pick-
up. In the kicker, the target particle and all the other particles within the

bandwidth are given an energy update
€ = € — — €m (5.5)

where ¢ is the gain. If the particle energies are uncorrelated, taking an ensem-
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ble average gives the new energy variance as

(&) — (€") = (=29 + ¢°)(") /N, (5.6)

which gives an optimal cooling at g = 1. To lowest order this gives an average

cooling time of
2w

~ (5.7)

1
-

where N is the total number of particles in the system, given by N, =
N/(2WT).

Because stochastic cooling as implemented at RHIC is bandwidth limited to
between 5 and 8 GHz, which limits the cooling of intense bunches. Developed
a system with substantially higher bandwidth is necessary for cooling more
intense bunches, and in this sense Coherent Electron Cooling is an almost

infinite bandwidth (on the order of 10 THz) stochastic cooling system.

5.3 Coherent Electron Cooling

Schematically, Coherent Electron Cooling (CeC) is identical to stochastic
cooling. The primary difference is in the physical mechanisms of the pick-up,
amplifier and kicker (see figure (5.2))).

The pick-up is the modulator, and uses dynamical Debye screening as de-
scribed in [9] to create a charge perturbation with a longitudinal Debye radius
on the order of the resonant wavelength of the free-electron laser, rp ~ \,.
In the FEL, this signal is amplified into a wave packet with wavelength \,,

meanwhile the hadrons are given an energy-dependent delay using a disper-
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Figure 5.2: Schematic of Coherent Electron Cooling [I]

sive section (chicane). The hadron is then recombined with its now frequency-
modulated and amplified signal, receiving an energy dependent kick of the
form

¢ = —&gsin(k, Dye) (5.8)

where & is the cooling parameter, k, is the resonant wavenumber of the FEL,
and Dy is the strength of the dispersive section [I]. The cooling decrement

parameter is bounded above by
2
g <2807 21 (5.9)

where Gy is the FEL gain, o is the RMS spread, and €, ,, is the normalized
transverse emittance of the electron bunch.

Incorporating the synchrotron oscillations, which are fast compared to the
cooling time, gives an equation of motion for the envelope function of the

synchrotron oscillations as

a = —&Ji(a) (5.10)

69



where J;(z) is the first order Bessel function. For sufficiently large energy de-
viation, this leads to an antidamping instability, but for practical applications
very few of the particles in the hadron bunches are located in this regime.
This model does not account for the inhomogeneities of the electron bunches,
which are generally shorter than the hadron bunches and have to paint the
hadron bunches. In the following chapter, I present a generalization of the

above cooling equations to account for these two effects.
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Dynamics of Coherent Electron Cooling

with Synchrotron Oscillations

In this chapter I present work for the dynamics of realistic Coherent Elec-
tron Cooling of bunched hadron beams. Beginning from a model set of non-
hamiltonian equations for the energy and RF phase equations, and considering
scaling laws for FEL parameters, I provide a detailed derivation of results pre-

sented in [24]. These equations are analytically intractable, but do provide
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some insight into the dynamics of CeC, and can be quickly numerically solved
to generate a phase space diagram for CeC neglecting effects of intra-beam

scattering.

6.1 Electron Beam Inhomogeneities

The theoretical picture of high gain FEL operation in the previous chapter
assumed an infinitely long, homogeneous electron beam passing through the
undulator. In this case, infinitely long means that the beam is very long
relative to the slippage length of the FEL. Over this relatively short length
scale, the FEL model presented above represents a good picture of how an
initial phase space perturbation amplifies into a frequency-modulated pulse.
However, for the purposes of CeC it is necessary to consider how this particular
amplification may change along the length of the electron bunches.

From the one-dimensional theory of FELs in [5], [6], etc., and knowing that

go < f1, the FEL perturbation, this gives a scaling law that

9(0) = gp e*/tc (6.1)

where Lg is the FEL gain length and p = (k,Lg)~" is the Pierce parameter.
What is relevant here is that Lg oc ng(f)~'/3. This allows me to rewrite the

cooling rate parameter in the original CeC equation as
9(9) = g n(9)1/3 6n(0)1/3:20 (62)

where n(6) is the distribution of electrons in the bunch as a function of the
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hadron bunch RF phase, normalized so that the peak is at # = 0 and n(0) = 1,
so that Zy is the normalized undulator length for the peak current and gq is
the cooling decrement for this peak current.

The most analytically convenient distribution to consider at this point is

one with bounded support, taking
n(9) = (1—6°/65)° ©(1 — |0/60]) (6.3)

where © is the Heaviside step function and 6, is the electron bunch length.
To convert 6y to the RMS bunch length, I assume that the bunch is effectively

zero density at three sigma, so 0y = 3 o..

6.2 CeC Dynamic Equations: Short Electron
Bunches

In a practical application of Coherent Electron Cooling planned as a proof
of principle, the parameters for the electron bunches leave them shorter than
the hadron bunches by approximately a factor of two, and in practice this re-
quires scanning the entire hadron beam many times, and considering a cooling
rate that is dependent upon the RF phase of the particle being cooled.

In the original CeC paper [1] the dynamic equation for bunched hadron
beams was given by

€ ~ —gosin(kDye) (6.4)

where ¢ = (Fy — F)/Ep is the normalized energy deviation. Synchrotron
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oscillations were added phenomenologically in the form of € = asin(Qsn + ;)
and an equation for a was derived assuming gy to be a constant. In practice,
go will be a complicated function of the RF phase 6 and this interaction must
be considered in greater detail.

I begin with the non-hamiltonian system of equations for small synchrotron

oscillations and inhomogeneous cooling, given by

¢ = g(0) sin(kDye) + Vo (6.5a)

0 = —ne (6.5b)

where Vj is the RF cavity energy and 7 is the phase slip factor.

To model the scanning over the bunches, I assume that 6 — 6 + p(wt),
where p(wt) is a periodic function that sweeps over some length of the hadron
bunches. From these considerations, the CeC equations for a bunched beam

are given by

€= go <1 — ¢—2) O(1 —|¢|/6y) exp { (1 — ¢—2) 20} sin(kDge + Lgb—Q,%O) + Vot
02 05 V3 65

(6.6a)

0 = —ne (6.6b)

where the ¢ = 0 + f(wt).

Assuming that Zy > 1 the step function can be dropped as any nonzero
contribution too far from ¢ = 6, will be exponentially small. The above
equations can then be rewritten in normalized form by taking €é = kD,e and

pulling the constant exponential under gy to give the cooling decrement &,
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and the equations

~ 2 2 2 .
e=o(1- ) 00— lolmexn { (-7 ) o fsin (64 =Tz ) + it
(6.7a)

0 = —ije (6.7b)

There are three relevant time scales — the synchrotron oscillation frequency
Q, = v/nVp, the painting frequency of the beam w, and the CeC cooling rate
Toee = &. In order, Q, > w > 75}, and this hierarchy allows a number
of approximations. The first is to remove the fast-oscillating synchrotron os-
cillations using the two-time formalism (see, for example, [25]). Under this

formalism, define 7 = Q) t and T = 507', so that

d
i Q10 + Q. 0r (6.8)

and then match perturbation theory order by order in &, i.e. € = é®+&el +. ..
and the same for . To lowest order this given solutions for the energy deviation

and synchrotron phase as
(1, T) = A(T) sin (1 + ¥(T)) (6.9a)

0°(1,T) = A(T)icos (T + U(T)) (6.9b)

To next order in é(] the energy deviation satisfies the equation

2 + & = =0, (207 + f(6°,€)) (6.10)
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where

2 2 2
f(0,é) = (1 — %) exp { (—%) 730} sin (é + %%EO (6.11)

The first order perturbation is not expected to have secular terms causing
growth, so the first order harmonic of the right hand side has to vanish. That
is to say, if ¢ = 7 + ¥(T') then

/7r dy sinty (207’ + f(0,€)) =0 (6.12a)

/7r dyp costp (20r€’ + f(0,€)) =0 (6.12b)

The first equation yields a differential equation in 7" that involves just A(T),
since the ¥(T) dependence is integrated out. The second equation gives a
differential equation for A0rW¥ that is a pure function of T" once the first
differential equation in A(7T) is solved. Therefore, I focus entirely on the
results of the first equation for the evolution of the envelope function. By a
symmetry argument which removes the part of f even in v, the differential

equation for A(T') can be reduced to

A ™ 2 2 2
Z—T = — /Tr dip sin) <1 - ?—g) exp {—?—820} sin(é°) cos <\)_¢T9(2)20) (6.13)

where ¢ = 0% + p(wt).
Dealing term by term with the Bessel function expansions:
o0

sin(é%) = Jo(A) +2) _ J,(A) sin(ne) (6.14)

n=1

76



( »* ) {AQﬁQ COSQIﬁé N 2Aﬁpcos¢2 } cos (pz,%o )
cos | ——2p | = cos
NET N RYCT /302

6.15
_ {A2ﬁ2 cos?1) . N 2ANp cosp } , <p2,§0 ) (6.15)
— sin 2 2o | sin
vz T B V302
For this term, I exploit the identities that
exp(1z cosa) = Z T (z)e™ (6.16)

and drop fast-oscillating terms in 1) to give that

CoSs < & . ) {cos (A2ﬁ220) COS < %o ) si (A2ﬁ220> si (pz% )} X
—Z | = —— | —sin in | ——
V362 2/362 V362 2v/302 V362

A2, 2AnpZy

Jo Jo
2V/362 V362
(6.17)

Dropping all the higher harmonic terms that are higher harmonic than the
term proportional to J;(A)sin ) and all other terms orthogonal to sin ¢) under
the integration leaves

A2ﬁ2 A2ﬁ2/’2 P2 o e
0 20y ~ 5 0 —p®20/0,
f(@,e)Nexp( 262 ZO)J0< 262 )ngp 0/% x

{ <A2ﬁ220) (p220 ) ) (A2,7220) i ( 2 )} y (6.18)
COS COS — S1n e .
2v/362 V3602 2V/362 V3602

A% ) ( 2AnpZy ) .
Jo (2220 g [ Z20P%0 1 A) sin
0(2 Ton) b (2 ) Aysine
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Taking the sin integration gives the envelope equation as
dA A2 A272 A2
— =—J1(A — 20 ¢ Jo | =520 | Ji
ar = )eXp{ 262 ZO} °< 202 ZO) " (w‘e? O) "

[cos (AQﬁzéo) oS < P ) sin <A2ﬁ220> sin ( L )} X (6.19)
— S1 1 — .
2v/362 /362 2V/362 /302

(1= 12/62) Jo (?ig%) exp {—p20/62)

The first line of the equation comes purely from the finite size of the electron
bunch. J;(A) is the bare cooling function, while the Gaussian envelope and
first Jy come from gain loss due to lower electron bunch density at the edges of
the bunches. The second Jy on that line comes from the phase shift due to the
changing electron density in the bunch. The second two lines come entirely
from the painting scheme, and it is simple enough to see that if p = 0 then
the equation works purely by cooling the center of the hadron bunches with
strong attenuation at the edges.

The painting time being much less than the cooling time, it is sensible to
take some averaging over the painting. If a single cycle of the painting takes

place over T' € (—Tpaint, Tpaint) then I define the average painting as

dA AQ 2 AQ ~2 AQ 2
- [ A 2
(i7) =i { st (G5 » (5
L /Tp“im dt |:COS (AQ?7 ZO) COS ( p ZO ) — sin (AQ??Q%O) sin ( p ZO ):| X
2Tpaint —Tpaint 2\/—‘9(2] \/59(2) 2\/_82 \/50(2)

(6.20)

where, recall, p = p(t/Tpaint) and w = 27/ Tpaine as used earlier.
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6.3 Painting Schemes

In this section I consider some numerical forms for the cooling equation
above, considering first an even painting, linear in time, and then a painting
that lingers near the edges. First, I assume that A < 1 so that Ji(A4) = A

and the equation can be reduced to an almost dimensionless form. Defining

A= 6.21
T (6.21)

and
POy (6.22)

and normalizing 7 = t/T}qin: gives

%iii_;l: _ —%exp{—fp} T (A2> Jo (AQ/\@) X

/11 dr [cos (AQ/\/§> cos (}52/\/§> — sin (AQ/\@) sin <ﬁ2/\/§>} . (6.23)

N | —

(1= 5*/20) Jo (Ap/V3) exp {57}

This equation leaves a handful of free parameters: the amplitude and func-
tional form of the painting scheme (which is now assumed to be periodic with
period 2), and the length of the FEL amplifier.

It is worth noting that, in practice, the normalized A is of the same order of
magnitude as A (for the parameters used in [24] the constant of proportionality
is 2.77). Therefore the objective should be to create as flat a cooling rate as

possible for A < 1.
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Figure 6.1: Cooling rates for zero painting

6.3.1 Zero Painting

I begin by considering the absence of painting, which gives a baseline on
which to measure the performance of the various painting schemes.

In this case, the dimensionless cooling rate is given by figure 6.1, This
gives anti-damping beyond A Z 1.5, which for the given parameters limits the
damping to inside A 5 .54. This is the edge of the linear approximation for
Ji(x) =~ /2, so no painting would have the effect of covering the entire linear
bare cooling regime.

However, it is desirable to keep a more constant cooling rate over the entire
duration to prevent creating local inflection points in the density of hadrons,

which can lead to various instabilities.

6.3.2 Linear Painting

Consider a linear painting in which p = ar. The cooling functions, on the
right hand side of the cooling equation (6.23), are given below for a number

of parameters. There is a competition between making the amplitude of the
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Figure 6.3: Cooling rates for linear painting out to A = 3

cooling too large, which reduces the overall cooling rate, and making it too
small, which may not adequately cool the hadron bunch.

Clearly painting out does not extend the flat initial cooling rate out very
far, and indeed painting too far out strongly suppresses the cooling rate on

the tails.
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Figure 6.5: Cooling rates for edge painting with 7,5 = 1 and py = 3

6.3.3 Edge-Emphasized Painting

To enhance cooling at the edges, I next consider a painting scheme of the

form

B(T) = po tanh (7/7yise) (6.24)

This paint scheme has the advantage of spending more time at the edges than
at the center of the hadron bunches, which cools the tails more than the core.

By considering the various paint schemes, it would appear to be quite
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Figure 6.6: Cooling rates for edge painting with 7,5 = 0.1 and pg = 1
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Figure 6.7: Cooling rates for edge painting with 7,5, = .1 and py = 3
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difficult to extend the location of the crossing over to cool greater amplitudes.
The difficulty comes from the gaussian damping due to the paint scheme.
From these considerations, it is clear that the specifics of the paint scheme
are more or less irrelevant. What is more important is to consider optimizing
the ratio 7v/29/6y to be as small as possible. This expands the range going
from A to A to include a larger range of synchrotron amplitudes. A reduction
in Zy reduces the cooling decrement &, so that the best way to handle cooling

would be to use long electron bunches or have a small phase slip parameter.

6.4 CeC Kinetic Equation

I will conclude this chapter with a discussion of the Coherent Electron Cool-
ing kinetic equation, to include the effects of intra-beam scattering diffusion
and the CeC cooling rate.

Begin by defining the cooling equation as
QA) = ~Agexp { A2} 1y (22) 1y (42/V3)
/_11 dr [cos (Az/\/g> cos (]52/\@) — sin (AQ/\@) sin <ﬁ2/\/§>} x (6.25)
(1= 5%/20) Jo (Ap/V3) exp {5}

N —

This particular equation for A, which is proportional to the action of a simple
harmonic oscillator in the RF cavity, is non-hamiltonian. To treat this, I con-
sider the treatment derived in [26] with no two-particle correlations, thereby
making this treatment simpler. This derivation follows closely the one pre-

sented there.
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For a system with N particles and a phase space of variables {(q,, p.) fo<i<n
an ensemble distribution D({(q,,p,)}) normalized to unity requires that the

total number of particles is conserved. Mathematically, this is expressed as

%—f LV (uD) =0 (6.26)

where w = ({(¢,,p,)}) and V = Opeceq + Op. 1 will later add a phenomenological
intra-beam scattering diffusion term For the small amplitude RF oscillations
and the cooling, using the normalized coordinates, the equations of motion are
given by

A = £Q(A) (6.27a)

=1 (6.27b)

where 7 is a time derivative with respect to 7 = (),¢. From this set of equations

the statement of particle number conservation becomes
oD &
=t ; O, (£0Q(A,)D) + 8y, D =0 (6.28)

Because we are only interested in a single-body distribution function, and the

distribution of amplitudes, I integrate over the measure

/dAQ...dANdwl...dwN

to obtain as an expression for the single-particle amplitude distribution func-
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tion F'(A,t) in the absence of intra-beam scattering as
OF (A1) + 04 (EQ(A)F(A, 1) = 0 (6.29)

This equation predicts the particles will pile up at the origin. However, intra-
beam scattering introduces a synchrotron oscillation averaged diffusion term
on the right-hand side as a source of phase space expansion, so that the kinetic

equation for Coherent Electron Cooling is given by
O F (A t) + 04 (EQ(A)F(A,t)) = 0a (Drps(A)OaF (A, t)) (6.30)

This gives as a solution for the equilibrium distribution the familiar result

F(A) = Fyexp {/dAgO%} (6.31)

6.5 Conclusion

In this chapter I have presented a calculation for the cooling equations of
Coherent Electron Cooling. By considering the scaling laws of the relevant
FEL parameters, I developed an approximate expression for the cooling decre-
ment of synchrotron oscillations in terms of their envelope function. From this
equation, I was able to write down a kinetic equation for Coherent Electron
Cooling that considers synchrotron oscillations, the painting scheme, and the

CeC cooling, as well as intra-beam scattering or other diffusive effects.
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Conclusion

Coherent electron cooling represents a huge potential in the field of cooling
intense, relativistic beams. Its effectively infinite bandwidth and rapid cooling
capabilities are of great interest for making order of magnitude improvements
in the luminosities of intense hadron beam colliders, such as the proposed
eRHIC upgrade. To develop a complete picture of the theory of coherent
electron cooling, a three-dimensional model of free-electron lasers had to be

developed, as well as an understanding of the cooling effects on the phase space
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distribution of bunched beams.

It was the purpose of this dissertation to present a three-dimensional theory
of free-electron lasers for applications to coherent electron cooling. This theory
is compatible with its beam model to the work in [9] and in [I5] in that it
allows for consideration of an infinite electron beam. The model provides an
analytical solution in Fourier-Laplace space, and can be solved in terms of an
initial phase space perturbation.

In developing this three-dimensional FEL model for infinite beams, a finite
beam model arose naturally from the derivation, and presented an opportunity
to consider and characterize the nature of optical guiding. This model predicts
the prevalence of a single eigenmode in propagation, and the extent to which
that mode expands can be calculated directly.

Finally, a system of equations was presented for the dynamics of syn-
chrotron oscillations for Coherent Electron Cooling which incorporates beam
inhomogeneities in the electron bunch, synchrotron oscillations, and the paint-
ing scheme. The painting scheme was developed to maximize the rate of cool-

ing of the RMS spread in the amplitude of synchrotron oscillations.
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A Crash Course on Accelerator Physics

Throughout this dissertation I have used the language of accelerator physics.
Most prevalent are the concepts of betatron oscillations, synchrotron oscilla-
tions, and emittance. In this appendix I will summarize each concept for the
convenience of those uninitiated into the accelerator community. The conven-

tions of this section are taken from a technical note by Sands [27].
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A.1 Betatron Oscillations

Storage rings such as the Tevatron, the Relativistic Heavy lon Collider and
the Large Hadron Collider use the principle of strong focusing first proposed
by Courant, Livingston and Snyder at Brookhaven National Lab [28]. Under
the principle of strong focusing, a series of quadrupole magnets behave like
hyperbolic lenses, defocusing charged particles in one transverse direction while
focusing them in the other. With this analogy to ray tracing, by stringing
together a series of focusing and defocusing lenses with proper focal lengths, a
net focusing effect is created. The resulting oscillations of particles offset from
the design orbit are called betatron oscillations.

Shifting to radial coordinates and carrying out a coordinate transformation

to remove the design orbit, the betatron orbit is described by
ry = K,(s)xg (A1)

where

with By being the magnitude of the magnetic field along the design orbit
parameterized by the longitudinal coordinate s. For a storage ring, clearly
K.(s + L) = K,(s) for some L, and this problem becomes similar to the
problem of solving the Schrédinger equation in a periodic potential.

Because the equation for x4 is linear, a general superposition of sine and

cosine like terms is possible, and in accelerator physics this are parameterized
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by declaring that
2(s) = av/B(s) cos(é(s) + ) (A3)

B(s) is the much-ballyhooed betatron function and amounts to an envelope
function. Because of the above differential equation, the phase advance is

related to the betatron function by

S dS/

¢(s) = B (A.4)

so the betatron function is an effective wavelength of betatron oscillations.
Defining ¢ = 3, the betatron function satisfies the nonlinear differential equa-
tion

1

It’s clear from this that the betatron function never becomes zero, and that
the transverse size of any bunch is well-parameterized and understood in terms
of the betatron function.

Because of this nonlinearity, it is convenient to define an average betatron

number by
ds L

(5) B

where L is the periodicity of the storage ring. This gives an average betatron

(A.6)

oscillation given by

x(8) = ar/ [ cos(s/ B, + 1) (A7)
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and defines the betatron tune v as
L
— =27v (A.8)

For reasons of avoiding resonances, there are a variety of constraints on v
when designing a storage ring lattice. Further discussion along these lines is

interesting, but beyond the scope of this dissertation.

A.2 Synchrotron Oscillations

In bunched beams stored in a synchrotron, clusters of particles are stored
through the lattice of steering and focusing magnets, but they are accelerated
by an RF cavity. A particle arriving at a time 7" in the phase of the RF cavity

will receive an energy kick equal to
€ = e+ Vosin(w,fT) (A.9)

The time of flight 7 for a particle between successive turns is given by

oT €

where Fj is the design energy and « is an average of the magnetic field strength
related to off-energy betatron oscillations. In practice, this leads to a set of
equations given by

de

i Vo sin(w, ¢7 + ¢5) (A.11a)
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dr €

where T = Ty + 7 and Ty is the transit time for the synchronous particle. This
is a pendulum type equation, and the resulting oscillations are referred to as

synchrotron oscillations.

A.3 Emittance

Emittance is a measure of the beam quality, and measure the combined
spread in a coordinate and its canonical conjugate. For a given variable y and
its derivative ¢, the emittance of an ensemble of particles where (y) = 0 and

(y') = 0 is given by

erms =V (V) (Y2 — (yy) (A.12)

For relativistic particles this emittance is not conserved through acceleration,
even if the beam quality remains fixed. This is because the canonical variable
py = py = mcPyy varies with 7. Therefore the normalized emittance is
defined by €, = (ve and is fixed throughout acceleration.

The emittance gives a rough estimate of the transverse size of the beam.
For a betatron function [3(s) and a gaussian beam profile, the transverse size
is given by

oy, =/ B(s)e/m (A.13)

This is relevant for the figure of merit for colliders, the luminosity. The lumi-
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nosity of a given collider is given by
L =2fN;Ng / dxdzdsd(Bet)pi(z, z, s + Bet)pe(z, 2, s — Bet) (A.14)

for a given distribution function of the bunches, where N is the number of
particles in the bunch and f is the frequency of collisions. The emittance
is directly related to these probability distribution functions p,, and coher-
ent electron cooling seeks to make the distributions as narrow as possible to

maximize the above integral.
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Gauge Transformation and Vanishing ¢

The Maxwell equations have a gauge freedom in defining the four-vector
potential that does not affect the result for the electric or magnetic fields. In

particular, since

10
B=VxA (B.1b)
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the following mapping can be made, with the choice of gauge A. Taking

A A+ VA and ¢ — ¢ + ¢ 1O\ or, in relativistic four-vector notation
A — AR 4+ OFA (B.2)

maintains the physical form of the magnetic and electric fields.
From this gauge freedom it is clear that a single component of A* can be
forced to vanish, and in the case being considered it is the scalar potential

that is best removed. To achieve this, define

A= /t dt'o(t',r ., 2) (B.3)

This removes the scalar potential, which greatly simplifies the hamiltonian
given by equation |3.7. Because this expression is independent of the choice
of space-coordinates, this choice of gauge will also work to have the scalar
potential vanish for any number of spatial dimensions. Therefore, we may
assume throughout this dissertation that the scalar potential is zero, for both

the one-dimensional and three-dimensional models.
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Canonical Transformations

The Hamilton equations of motion can be derived from a least-action prin-

ciple on the action integral given by

Dp,q| = /p"da:u = /p-dw—Hdt (C.1)

For the case where t is the independent variable, the familiar Hamilton equa-

tions arise. If, for example, z is taken as the independent variable, the new

97



action integral is minimized with respect to z trajectories in terms of dx, /dz
and dt/dz instead of the more commonly used velocities. The resulting equa-

tions of motion are given by

dpJ_ _ apz
& Omy (C-22)
de_ 8pz
e .2
dz op, (C.2b)
dH op.
2 2
dz ot (C.2¢)
dt  Op,
b .2
dz OH (C.2d)

The equations of motion for any arbitrary set of coordinates may be ob-
tained from the action integral with the appropriate substitutions. This
formalism makes canonical transformations transparent, as they are simply

the set of mappings p*(P*,Q,) and ¢,(P*,Q,) that maintains the form

/p“dqu — /P“dQ,L (C.3)

As a quick example of this, consider a situation in which it is convenient to
define the coordinate ¢g; = x + y. To create canonical coordinates, we have
to have a set of variables that preserves the form of the action integrand. We

therefore write that
pdr + pYdy — Hdt = p*(dz + dy) + p*dg, — Hdt (C4)
It is possible to then make dg, = dy, for example, and then require that p* +
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p? = p¥ and p' = p®. This requires that we define the canonical transformation
to be

pl=p° (C.5a)
pr=p = p (C.5b)

This removes the need to write down a generating function, as per the standard
methods presented in texts such as [29].

It is also convenient for non-canonical transformations, as the resulting
equations are still the correct equations of motion, even if they are no longer
symplectic. An example of such a transformation would be to introduce the
ponderomotive phase 1) = k,z + w(z/c —t) as a coordinate, but not making
the requisite change in the canonical hamiltonian and momenta to maintain
the canonical form. This case can be considered for FEL theory, but is not
the formalism chosen for the approach of this dissertation. I mention it here
purely for completeness, and because of the clarity of exposition that arises
from considering hamiltonian mechanics in this light.

Noting that dy) = (k,, + w/c)dz — wdt, the action integral can be rewritten

as

- / (pz = (h +w/0)g) ds — gdw (C.6)

If we wanted to make these equations canonical, we would write that H = H /w
being canonically conjugate to i) and P = p, — (k, + w/c)H/w as canonically
conjugate to z. This is a great example of how this action integral formalism
can immediately lead to canonical coordinate transformations. However the

point being illustrated here is maintaining non-canonical coordinates. In this
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case, the least action principle gives the following equations to minimize the

action
d 0¢ )0, B
d 0¢ 0¢ B
GO IH (C7b)

These are the familiar Euler-Lagrange equations. If these equations are fol-
lowed to their proper end, they obtain identical equations of motion to those
that would arise from introducing the (H,1; P) canonical coordinate transfor-
mation.

As a final example of a situation in which canonically conjugate variables
can be obtained from this method, I look at the simple harmonic oscillator,

with a hamiltonian given by

1 1
H= §p2 + §w2q2 (C.8)

The action integral is given by

/pdq — Hdt (C.9)

Defining the momentum variable a = p 4 1wq, we seek a canonically conjugate
variable. The hamiltonian is written as H = aa*/2, and it is sensible to use a*
as a second variable. The question is if this choice of coordinates is canonical,

and what the resulting hamiltonian that generates the equations of motion is.
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In this case, the action integral transforms to

®la,a’] = i {(a+a")da — (a +a*)da*} — %aa*dt (C.10)

This form is clearly not canonical, and therefore a and a* are not canonically
conjugate variables. However, minimizing the action integral leads to the
equations of motion

a* = wa (C.11a)
a = —wa" (C.11b)

which may be confirmed to be the correct equations of motion by directly in-
serting the definitions of a and a* into these equations. Therefore this method
of least action obtains the correct equations of motion even for coordinate
transformations which are not canonical.

By taking the hamilton equations of this hamiltonian we obtain the correct
equations of motion. The purpose of this coordinate transformation was to
illustrate the utility of such coordinate transformations in obtaining desired

information from a coordinate system that is likely to greatly simplify matters.
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Contour Integration, Laplace
Transforms, and Other Mathematics ot

Interest

In this appendix I discuss in greater details some of the mathematics uti-
lized in the paper that are probably familiar to the reader, but may require

some brief review for all the details. Each section is meant to be complete,
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but due to the overlap in many of the applications they are not self-contained.
The inquiring reader is therefore advised to read this whole chapter, start to
finish, and without complaint. More thorough discussions of what is outlined
here may be found in Morse and Feshbach [30], Whittaker and Watson [31],

Antimirov Kolyshkin and Vaillancourt [32] and in Tricomi [33].

D.1 Delta Function Properties, for Physicists

that Already Know Them

The Dirac delta function is defined as a functional, so that if f(x) is some

function that is continuous at the point x = a then

c 0 a ¢ b,
/ flz)é(x —a)dx = (D.1)
’ fla) a€b.

Representations of the delta function include limits of all k distributions in the
infinitely narrow limit, as well as the infinitely narrow gaussian distribution.
The key here is that the delta function be normalized to unity, zero everywhere
but one point, and infinite at that point.

Of particular use to the work in this dissertation is the identity

d(k) ! /00 e* dg (D.2)

:% N

It should be clear that this integral is infinite if & = 0, but for £ # 0 the

question is why this integral is zero. The essential argument comes from
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inserting a convergence factor exp(—e|x|) and then taking ¢ — 0. This answers
the question quite nicely. A consequence of this Fourier integral identity is the

frequently utilized identity

/ dr e™" / dic dk' e'*+F)r — / dk dk'S (¢ — (K + k) (D.3)

which is applied in getting from equation to equation This result also
appears frequently in Feynman diagrams as momentum-conserving integrals,
and generally in any case where a convolution integral appears. More explicitly,

consider an equation of the form

/ dr e~ / die di' e FHFT G () (D.4)

This leaves application of the delta function integration gives

/ die Gk — ) (D.5)

This type of transformation appears in arriving at the kernel for the finite size

beam theory of FELs presented in this dissertation.

D.2 Argument Principle

In Chapter 4, I used the Argument Principle to prove that under sufficient
conditions the number of growing FEL modes is always one. The Argument

Principle, properly stated, says

Let f(z) be a meromorphic function in a simply connected domain
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D bounded by the simple closed path C. Suppose that f(z) has
no zeros nor poles on C'. Then the difference between the number
of zeros, Z, and the number of poles, P, in D, counting orders, is

given by the formula

1
Z —P= 2—Varc argf(z) (D.6)
m

The proof of this depends on the existence of branch cuts, which I now
provide:

Proof. Consider the contour integral

PO, g FO g £
Flo) % = 2 Resmn oy + 2 Resmn g (D)

27 C

where Zj, is a zero of order ny of f(z) and z; is a pole of order py of f(z). The

above summation becomes
> m-—pp=2Z-P (D.8)
k

Now observe that f'(z)/f(z) = dIn(f(z))/dz. The contour integral then

becomes

Z-P =3 § dn() = 5 § A0S + 5 § dusf(z) (D)

S 2m Jo T 2m

The first integral vanishes, leaving only the second, thereby proving the Argu-
ment Principle. QED [
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The Argument Principle arises from the branch cuts of the natural log-
arithm in the complex plane, and is an essential way to calculate winding

numbers, for example.

D.3 Laplace Transforms, and their Inverses

A function f(t) has the Laplace transform F'(s) defined by the Laplace

transform integral

F(s) = / Tt et (1) (D.10)

0
It is clear from the definition that Laplace transformation is a linear operation,
with all the identities that brings. Furthermore, it is invertible, with the inverse
given by
200+70
L F(s)) = / ds e F(s) = f(t) (D.11)

—100-+70
where v is selected so that if F'(s) has poles at s1, s .. s, then 79 > sup{Re(s,)}.
It is interesting to note that Laplace transformation is a Wick rotation of
Fourier transformation, under suitable conditions. If F'(s) has a few poles
to the left of the vertical line on the complex plane that passes through the
point on the real axis at s = 7, then those poles will determine the rate of
exponential growth or decay, and oscillation frequency.

Among the useful properties of Laplace transformation is the convolution

property, which states that

z( / f(fv)h(fv—y)dy> — L(f(@)L(h()) (D.12)
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This property will be exploited in a discussion of integral equations. Since
Laplace transforms are very closely related to Fourier transforms, this identity
can be seen as arising from equation [D.3]

For the purposes of taking the Laplace transform of equation |3.26] it is

necessary to evaluate integrals of the form

h(x) :/ dx’ e =) g (") (D.13)
0

where g(x) will be various integrals or derivatives of the longitudinal current,
for the purposes of this dissertation. Taking the Laplace transform of h(z)

gives

/ dr e *"h(x) / dr e~ x/ dz’ e =) g (")
0 0 0

/ ’g(x/)/ dx efszfzkx
0 T

& !/ ]. / /
d / T / —sa’' —ikx
/0 ve g(x ) (8 + Zk?e )

o / 1 1
— d ! _—sx / —
/0 v g(m)s+zk G(S)s+zk

U

s
.T/ ezk
1k

(D.14)

which is obtained by switching the order of integration (see figure [D.1]). This
is also a special case of the convolution identity mentioned above.
This gives the Laplace transform for equation directly, and it remains

to add a table of various Laplace transform identities for easy pickings (see

table [D.1]).
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Figure D.1: The area of integration for the Laplace transform discussed in

equation .

Table D.1: Table of possibly relevant Laplace transforms.

Function | Laplace Transform
kx 1
€ s+k
Jz J:
foz d='j, %JZ
d ~ ~ o
E]z SJz - ]z(z - 0)
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