Constraints on the Exotic Spin-dependent Interactions from Magnetometers Data

L.Y. Wu,1,2,3, H. Yan,2,3

1 Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
2 Key Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
3 Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China

Abstract

The existence of exotic spin-dependent interactions is predicted by various new physics theories. These interactions generate macroscopic forces on polarized spins that can be detected with a magnetometer. The Sun and Moon could be considered mass sources capable of generating such interactions through axion, Z’ boson, or unparticle exchange. New experimental upper limits on exotic spin-dependent interactions mediated by axions or Z’ bosons at astronomical ranges are derived by analyzing magnetometer data measuring Lorentz and CPT violation. Additionally, the first upper limits on monopole-dipole spin-dependent interactions mediated by unparticles are obtained.

Keywords: Exotic spin-dependent interactions, Atomic magnetometer, beyond the Standard Model

DOI: 10.31526/ACPB2023.18

1. INTRODUCTION

In the Standard Model (SM), the spin dominates its interactions with the environment through the electroweak and strong forces. However, other possible interactions of spin with the environment are not precluded. These hypothetical exotic spin-dependent interactions could have wide-ranging implications for fundamental physics, such as new sources of CP violation [1], tests of the weak equivalence principle and Lorentz or CPT invariance [2, 3], and hunting for dark matter [4]. In recent years, an important driving force for the search for exotic spin-dependent interactions has come from the search for new particles [5]. Many theories beyond the SM predict the existence of new particles, such as the QCD axion [6, 7, 8], axion-like-particles (ALPs) [9], and Z’ boson [10]. One common specialty of these particles is that they might mediate spin-dependent interactions between fermions [5]. These new light bosons are also prominent candidates for dark matter [11, 12]. Beyond the quest for new particles, unparticles are another motivation for the search for exotic spin-dependent interactions. It is an attempt to incorporate the scale invariance into the SM [13]. The coupling of unparticles to fermions will result in spin-dependent interactions that depend on a nonintegral power of the distance between the fermions [14, 15].

Given the importance of exotic spin-dependent interactions in the search for new physics, many approaches have been adopted to search for them, such as torsion balance [16, 17, 18], cantilever [19, 20], maser [21], nitrogen-vacancy (NV) center in diamond [22, 23], nuclear magnetometer resonance [24, 25], and atomic magnetometer [26, 27, 28, 29]. Especially, atomic magnetometers, due to their ultrasensitivity to magnetic fields, have been widely used in the search for spin-dependent interactions [30]. Searching for the spin-dependent interactions is typically conducted by positioning a bulk object around the magnetometers, and measuring the effective magnetic field generated by the object. For example, an optical polarized 3He is utilized as a spin source and a spin-based amplifier based on 87Rb-129Xe comagnetometer is installed aside to sense the spin-spin-dependent interactions at a typical interaction range of centimeters [31]. Using the Earth as an unpolarized mass source, Zhang et al. search the exotic spin-dependent interaction at the range of 10^5 km using a 129Xe-131Xe comagnetometer [32]. For a new particle with a mass of m, the typical range of the force it mediates is parameterized by the Compton wavelength \(\lambda = \frac{\hbar c}{m} \), where c is the speed of light in vacuum. Most laboratory experiments focus on searching for exotic spin-dependent interactions with a range smaller than the scale of the Earth’s radius [5], corresponding to a new particle mass greater than 10^{-14} eV. However, exotic spin-dependent interactions over astronomical distances, which could be mediated by much lighter particles, have rarely been studied in laboratory experiments. This letter provides a concise overview of our two recent works, as detailed in [33, 34]. In Ref. [33], we used the Sun and Moon as mass sources and combined the old magnetometers data to constrain the exotic spin-dependent interactions through axion and Z’ exchange at astronomical distances. In Ref. [34], we derived the monopole-dipole spin-dependent interactions between fermions mediated by unparticle. And we used magnetometers data to establish some limits on these interactions.
2. EXOTIC SPIN-DEPENDENT INTERACTIONS

The QCD axion and ALPs have similar properties of interacting with fermions, except that the QCD axion has a definite relationship between its mass and interaction strength, while ALPs do not. In experiments, the techniques of searching for QCD axion and ALPs are similar. Therefore, the exotic spin-dependent interactions search is generally considered in the ALPs model that covers broader parameter space. In this context, we will use the term "axion" to refer to the QCD axion and ALPs. We focus on the interactions between fermion \(\psi \) and axion \(\phi \), and the massive \(Z' \) boson. The coupling of the axion to a Dirac fermion \(\psi \) has the general form of [9]

\[
\mathcal{L}_{a\bar{\psi}\psi} = g_S \phi \bar{\psi} \psi + g_P \frac{\phi}{2m_\phi} \partial^\mu \phi \gamma^\mu \gamma_5 \psi,
\]

where \(g_S \) and \(g_P \) are respectively the dimensionless scalar and pseudoscalar coupling strength, and \(m_\phi \) is the mass of the axion. In the non-relativistic limit, the monopole-dipole interaction through one axion exchange can be written as

\[
V_{SP} = \frac{g_S g_P}{8\pi m_\phi} \left(\frac{1}{\lambda_\phi r} + \frac{1}{r^2} \right) \exp(-r/\lambda_\phi) \sigma \cdot \hat{r},
\]

where \(m_\psi \) is the mass of the fermion, \(\sigma \) is the spin of the particle, \(\hat{r} \) is the unit vector, and \(\lambda_\phi \) is the interaction range. Here we adopt the natural units \((\hbar = c = 1)\). The mass range of axion is extensive. The allowed mass range for the QCD axion is \(10^{-13} \) to \(10^{-2} \) eV, while for ALPs, the mass can extend down to the Hubble scale of \(10^{-33} \) eV [5, 9]. Thus, the axion might mediate interactions in ranges from nanometers to astronomical distances. This interaction violates the party (P) and time-reversal (T) symmetry, thus not CP conserving [35]. In atomic phenomena, this potential will contribute to the electric-dipole-moments (EDMs) in atoms or molecules. The measurement of the EDMs provides a test of such interaction at atomic scale [36].

The \(Z' \) boson raised from the \(U(1)' \) symmetry interacts with the neutral current of the fermions as follows [10]

\[
\mathcal{L}_{Z'\bar{\psi}\psi} = Z'_\mu \bar{\psi}(g_V \gamma^\mu + g_A \gamma_5 \gamma^\mu)\psi,
\]

where \(g_V \) and \(g_A \) are respectively the dimensionless vector and axial-vector coupling strength. The exchange of \(Z' \) boson between fermions will induce the spin-velocity-dependent interactions

\[
V_{VA} = \frac{g_V g_A}{2\pi} \frac{\exp(-r/\lambda_{Z'})}{r} \sigma \cdot \vec{v},
\]

\[
V_{AA} = \frac{g_A^2}{16\pi m_\psi} \left(\frac{1}{\lambda_{Z'} r} + \frac{1}{r^2} \right) \exp(-r/\lambda_{Z'}) \sigma \cdot (\vec{v} \times \hat{r}),
\]

where \(\vec{v} \) is the relative velocity between two fermions, and \(\lambda_{Z'} \) is inversely proportional to the mass of the \(Z' \) boson. Here we only enumerate these three kinds of monopole-dipole spin-dependent interactions related to our discussion, a more comprehensive review of all the possible interactions could be referred from [37, 38].

FIGURE 1: (a) The Sun-centered frame. The relative size of the Sun and the Earth is not to scale. (b) The Earth-based frame. We take \(\hat{z} \) along with the Earth’s rotation axis. The angle between the ecliptic plane and the Earth’s equatorial plane is \(\eta = 23.4^\circ \). The red arrows represent the directions of effective fields of three types (SP, VA, AA) of spin-dependent interactions generated by the Sun’s nucleons. Figure adopted from Ref. [33].
In addition to spin-dependent interactions arising from the exchange of new particles, the coupling of the SM to a hidden sector with scale invariance also manifests spin-dependent interactions. In fact, unlike our familiar SM fields, the quantum excitation of the scale-invariant sector could not be described in terms of particle, therefore dubbed unparticle. The unparticle does not enjoy mass as one of its intrinsic properties and is not even constrained by the dispersion relation. The kinematic property of an unparticle is determined by its scaling dimension d_U [13, 39]. The leading order interaction of the unparticle with fermions in the effective field theory is [14]

$$\mathcal{L}_{U\psi\bar{\psi}} = \Phi_{U\psi} \bar{\psi} (C_S + i \gamma_5 C_P) \psi + \chi_{U\psi}^\dagger \bar{\psi} (C_V \gamma_{\mu} + \gamma_{\mu} \gamma_5 C_A) \psi,$$

where $\Phi_{U\psi}$ and $\chi_{U\psi}^\dagger$ stand for the scalar and vector unparticles, and C_S, C_P, C_V, C_A are the coupling constants with the energy dimension of $1 - d_U$. These coupling constants could be parameterized by $c_i = c_i \Lambda_{U_i}^{1-d_U}$ with c_i a dimensionless constant and Λ_{U_i} an unknown energy scale. Generally, Λ_{U_i} is fixed to 1 TeV, and considers the constraint on c_i. Similarly, in the non-relativistic limit, we could derive three types of spin-dependent interactions

$$U_{SP}(r) = -C_S C_P \frac{A_{d_U}}{8\pi^2} \frac{\Gamma(2d_U)}{(2d_U - 2) m r^{2d_U}} \sigma \cdot \hat{r},$$
$$U_{VA}(r) = C_V C_A \frac{A_{d_U}}{4\pi^2} \frac{\Gamma(2d_U - 2)}{r^{2d_U - 1}} \sigma \cdot \vec{v},$$
$$U_{AA}(r) = C_A^2 \frac{A_{d_U}}{16\pi^2} \frac{\Gamma(2d_U - 2)}{2d_U - 2} \sigma \cdot (\vec{v} \times \hat{r}),$$

where $\Gamma(x)$ is the gamma function, and $A_{d_U} = \frac{16\pi^{3/2}}{(2\pi)^{d_U} \Gamma(d_U + 1/2)} \frac{\Gamma(d_U - 1/2)}{\Gamma(d_U - 1/2)}$ is the normalization factor. We can observe that these interactions adhere to a power-law dependency, resembling a characteristic of electromagentic forces. The performance of these interactions is dictated by the scaling factor d_U. Conventionally, the range of d_U takes $(1, 2)$. Previously, only the dipole-dipole spin-dependent interactions were widely considered [14, 15, 40, 41]. In our recent work [34], we extended the interactions to monopole-dipole interactions, and six kinds of spin-dependent interactions are derived, including scalar-scalar (SS), scalar-pseudoscalar (SP), pseudoscalar-pseudoscalar (PP), vector-vector (VV), vector-axial-vector (VA), and axial-axial-vector (AA) types. Eq. (6) is part of these six interactions. A more comprehensive expression of all the potentials derived from Lagrangian (5) could be found in Ref. [34].

3. DETECTION OF THE INTERACTIONS

Regardless of the different origins of all these spin-dependent interactions, they could be recast as

$$V = -\hbar \gamma \sigma \cdot B_{eff},$$

where γ is the gyromagnetic ratio, and B_{eff} is the effective magnetic field produced by these interactions. The induced effective magnetic field results in an energy shift between opposite spin states, akin to the Zeeman effect caused by an actual magnetic field. Searching for these exotic interactions now becomes a problem of searching for the effective magnetic field acting on the spins. As aforementioned, these spin-dependent interactions could produce effects over macroscopic distances. Therefore, the minute effective magnetic field produced by every particle may coherently superimpose to yield a substantial collective influence at the scale of λ. Experimentally, a mass source or a highly polarized spin source is usually applied as a source of the effective magnetic field.

The atomic magnetometer is a sensitive probe that uses polarized spin to detect the magnetic field acting on it. Its working principle is as follows. The magnetic field exerts a torque, $\mu \times B$, on spins possessing a magnetic moment μ. Consequently, these spins undergo Larmor precession at a frequency proportional to the field’s magnitude. The frequency is read out to determine the magnetic field imposed on the spins. According to different spin species utilized in the magnetometers, it can be divided into electron spin magnetometer, nuclear spin magnetometer, and comagnetometer with mixed spin species. Notably, comagnetometers exhibit inherent magnetic field suppression, retaining sensitivity to fields induced by exotic spin-dependent interactions. Consequently, they find extensive application in this domain [42]. On the one hand, the sensitivity of these magnetometers to the exotic interactions is determined by their magnetic resolution limit. The state-of-art magnetometer could reach a magnetic resolution of about sub fT/√Hz [43]. The fundamental limit of the resolution is decided by the quantum noise, such as spin projection noise and photon scattering noise, therefore further improvement on the sensitivity may be enhanced by spin squeezing [44, 45]. On the other hand, the mundane effect caused by the ambient magnetic field should also be carefully considered. Since B_{eff} is not mediated by photons, it does not obey Maxwell’s equations. Hence, certain magnetic shielding techniques could be employed to diminish the influence of the magnetic field without attenuating the effective magnetic field.
4. EXPERIMENTAL CONSTRAINTS

4.1. Constraints on axion and Z' boson

The Sun is a giant mass source containing about $N_{\odot} \approx 1.2 \times 10^{57}$ unpolarized nucleons. A polarized neutron spin on the Earth is assumed to interact with the nucleons of the Sun through spin-dependent interaction V_{SP} (1). Since there is a relative velocity between the Sun and Earth, the spin-velocity-dependent interactions V_{VA} and V_{AA} (4) mediated by Z' could also be studied. The direction of these three interactions is shown in Fig. 1. In the frame of the Earth’s celestial coordinates, the components of these interactions perpendicular to the Earth’s rotation axis are sidereal modulated. The corresponding oscillating effective magnetic field b_\perp are

$$b_{SP,\perp} = \frac{g_{SP}^N n_{\odot}}{4 \pi m n_{\odot} R} \left(\frac{1}{\lambda_{\phi} R} + \frac{1}{R^2} \right) \exp \left(-R/\lambda_{\phi} \right) \left[\sin (\omega_{\odot} t) \hat{x} + \cos (\omega_{\odot} t) \hat{y} \right],$$

$$b_{VA,\perp} = -\frac{g_{VA}^N n_{\odot}}{R \gamma_n} \exp \left(-R/\lambda_{Z'} \right) \nu_{\odot} \cos \eta \left[-\cos (\omega_{\odot} t) \hat{x} + \sin (\omega_{\odot} t) \hat{y} \right],$$

$$b_{AA,\perp} = \frac{g_{AA}^N n_{\odot}}{8 \pi m n_{\odot} R} \left(\frac{1}{\lambda_{Z'} R} + \frac{1}{R^2} \right) \exp \left(-R/\lambda_{Z'} \right) \nu_{\odot} \sin \eta \left[\cos (\omega_{\odot} t) \hat{x} - \sin (\omega_{\odot} t) \hat{y} \right],$$

where γ_n is the gyromagnetic ratio of the neutron, R the average distance between the Sun and Earth, ω_{\odot} the frequency of the Earth’s rotation, η the Earth’s obliquity, and $\nu_{\odot} = \omega_{\odot} R$ the orbital speed of Earth. g_i^N represents the coupling between axion or Z' boson with the Sun’s nucleons, and g_i^p represents the coupling between axion or Z' boson with the polarized neutron, and $i = S, P, V, A$.

The sidereal modulation due to the Earth’s rotation is also applied in the search of a background field caused by Lorentz violation [48, 49]. The Lorentz violation will induce a constant background field \tilde{b} spreading in the universe, this field interacts with the spin by $\tilde{b} \cdot \sigma$. In Ref [48, 49], a 3He-3Xe comagnetometer and a K-3He one was adopted, respectively, to search for this background field. Both are terrestrial experiments, therefore the background field sensed by the comagnetometer is sidereal modulated. We found that the Lorentz violation background field searching results could be applied to constrain the spin-dependent interactions we are interested in.

Using the result of Ref. [48], we derived the effective field of the three types of spin-dependent interactions generated by the Sun’s nucleons as

$$|b_{\perp}| \leq 0.023 \text{ fT}.$$

(2)

All the parameters in Eq. (1) are known, we could derive the constraints to the coupling constants $|g_{SP}^N|, |g_{VA}^N|$, and $|g_{AA}^N|$ as a function of the interaction range λ. Using the Moon as a mass source, we could obtain the constraints using the same analyzing method. Our obtained constraints are shown in Figs. 2-4. The dark gray region of the coupling strength is excluded. The most stringent constraints are reached when the interaction range is $\sim 10^{12}$ m for the Sun and $\sim 10^9$ m for the Moon. This is understandable since when the interaction range $\lambda \gg R$, these interactions are independent of λ. And when $\lambda < R$, the interactions are suppressed

![FIGURE 2: Constraint to the coupling constant $|g_{SP}^N|$ versus interaction range λ. Solid lines show constraints calculated in our recent work [33] using the Moon (left line) and Sun (right line) as mass sources. The dashed line is the result of Refs. [46, 47], which was derived by combining g_{sp}^N of weak equivalence with g_{sp}^p from SN1987A. The dark gray area is excluded by our result and the light gray one is excluded by the result of Refs. [46, 47]. Figure adopted from Ref. [33].]
FIGURE 3: Constraint to the coupling constant $|S_{NA}^p|_{\lambda}$ versus interaction range λ. Solid lines show constraints calculated in our recent work [33] using the Moon (left line) and Sun (right line) as mass sources, and the dark grey area is excluded. The dashed line is the result of Ref. [50] and the light gray area is excluded. The dotted line is the result of Ref. [51]. Figure adopted from Ref. [33].

by the exponential factor, thereby less stringent constraints are yielded.

FIGURE 4: Constraint to the coupling constant $|\eta_{NA}^p|_{\lambda}$ versus interaction range λ. Solid lines show constraints calculated in our recent work [33] using the Moon (left line) and Sun (right line) as mass sources. The dark grey area is excluded. The dotted line is the result of Ref. [51]. Figure adopted from Ref. [33].

In Fig. 2, the dashed line and the light gray region is the result of a combination of laboratory (g^{N}_{S}) and astrophysical (g^{p}_{P}) bounds. For $\lambda > 10^{12}$ m, our bounds $|g^{N}_{S}g^{p}_{P}| < 1.6 \times 10^{-35}$ (95% CL). This result improves the combined astrophysical-laboratory bound by about 70 times. Figure 3 shows the constraint on $|g^{N}_{V}g^{A}_{A}|_{\lambda}$. The dashed line and dotted line are the results of Refs. [50, 51]. Comparing with the newest published result of Ref. [51], our bounds $|g^{N}_{V}g^{A}_{A}| < 7.1 \times 10^{-59}$ (95% CL) are improved by about 6 orders of magnitude. The constraint on $|\eta_{NA}^p|_{\lambda}$ is shown in Fig. 4. For $\lambda > 10^{12}$ m, our bounds $|\eta_{NA}^p| < 8.1 \times 10^{-31}$ (95% CL). The dotted line is the result of Ref. [51].

4.2. Constraints on unparticle

Assuming the spin-dependent interactions between the nucleon in the Sun and the polarized neutron are mediated by unparticle, we could derive the constraints of the interactions listed in Eq. (6). The constraints on $c_{S}c_{P}$, $c_{V}c_{A}$, and $c_{A}c_{A}$ are shown as the blue solid line in Figs. 5-7.

The $U_{CP}(r)$ potential, originating from the coupling of different vertex types (scalar and pseudoscalar vertex), violates the CP symmetry. The CP violating interactions could contribute to the nonzero EDMs in atoms or molecules. Based on the precise measurement of the EDM of 199Hg atom [53], we obtain a constraint on $c_{S}c_{P}$ between electron and nucleon (e-N) at $d_{ed} = 1.0$, shown as the green triangle in Fig. 5. The constraint between N-e marked in orange diamond is derived from the result of Ref. [52], a
magnetometer-based experiment that searches for exotic spin-dependent interactions. For the $U_{AA}(r)$ potential, we also set constraints on $c_A c_A$ between electron and neutron (e-n) and electron-electron (e-e) at $d_U = 1.0$ using the results of [54, 55], and the results are marked in green triangle and orange diamond in Fig. 7. The constraints on e-e marked in stars in Fig. 7 are the results of Ref. [14], where experimental data on exotic spin-spin dependent interactions search are analyzed.

FIGURE 5: Constraints on the N-e and e-N SP interactions ($c_N^e c_p^N$ and $c_p^N c_N^e$) derived respectively from the results of Refs. [52, 53] and those on the N-n SP interaction ($c_N^n c_p^n$) derived from the results of Ref. [33]. Figure adopted from Ref. [34].

FIGURE 6: Constraints on the N-n and N-e VA interactions ($c_N^n c_A^e$ and $c_N^e c_A^n$) derived from the results of Refs. [33, 28]. Figure adopted from Ref. [34].

FIGURE 7: Constraints on the e-e, e-n, N-n, and N-e AA interactions derived from the results of Refs. [54, 55, 33, 28], in comparison with those on the e-e interaction in Ref. [14]. Figure adopted from Ref. [34].
The red dot-dashed lines in Fig. 6 and 7 are derived from a magnetometer-based experiment [28] that searches for the interactions in Eq. (4). In Ref. [28], two cylindrical BGO crystals were used as sources of the effective magnetic field, and the crystals were rotated by a servo motor. Four Spin-Exchange-Relaxation-Free (SERF) magnetometers were arranged surrounding the BGO crystals to detect the exotic spin-dependent interaction between the nucleon in the crystal and the polarized electrons in the magnetometer. Here if the spin-dependent interactions were mediated by unparticle, we could derive the effective magnetic field for different values of d_{Ut}. The effective magnetic field generated by the BGO crystals are

$$
B_{VA}(r) = \frac{2(\hbar c)^{2d_{Ut} - 2}}{\gamma_e} \frac{1}{c^2} \int_V \frac{N N^c}{A^2} A^2 - 2d_{Ut} A_{d_{Ut}} \frac{A_{d_{Ut}}}{4\pi^2} \Gamma(2d_{Ut} - 2) \frac{1}{|r - r'|^{2d_{Ut} - 2}} v(r') \, dr'^3,
$$

$$
B_{AA}(r) = \frac{2(\hbar c)^{2d_{Ut} - 1}}{c^2 \gamma_e m_N} \frac{1}{c^2} \int_V \frac{N N^c}{A^2} A^2 - 2d_{Ut} A_{d_{Ut}} \frac{A_{d_{Ut}}}{4\pi^2} \Gamma(2d_{Ut} - 2) \frac{1}{|r - r'|^{2d_{Ut} - 2}} v(r') \times \frac{r - r'}{|r - r'|} \, dr'^3,
$$

where the integral is over the volume of the BGO crystal, r' ($v(r')$) denotes the position (velocity) of the volume element of the BGO crystal, r is the position of the magnetometer, and γ_e is the gyromagnetic ratio of the electron. This integral could be implemented through Monte Carlo integration when the coupling constant is assumed to be 1. The actual magnetic field detected by the magnetometers is compared with the simulated ones B_{VA} and B_{AA} to obtain the true coupling constants $C^c_{N c N^c A} c^{N c}_{A A}$ and $C^c_{N c N^c A} c^{N c}_{A A}$. Note that the constraints on these three unparticle mediated interactions are linearly dependent on the value of d_{Ut} in the logarithmic scale, indicating these constraints exhibit an exponential decay trend as d_{Ut} increases. This relation is evident from the Eq. (3), which is an exponential function of d_{Ut}.

5. CONCLUSION

We investigate the exotic spin-dependent interactions mediated by axion, Z' boson, and unparticles. The old magnetometer data from several experiments are used to set constraints on these interactions. For the interactions mediated by axion and Z' boson, we obtained upper bounds on the coupling constants $g_N g_{N^c} g_{N^c} g_{N^c}^c$ and $g_M g_{M^c} g_{M^c}^c$ at astronomical distances. Compared with the previous results, our results on $g_N g_{N^c}$ improve about 70 times and about 6 orders of magnitude on $g_M g_{M^c}$.

We derive the unparticle mediated monopole-dipole spin-dependent interactions, and constraints on them are obtained based on previous magnetometer data. The constraints exhibit an exponential decay trend as d_{Ut} increases. Since these interactions are exponentially dependent on the distance, the d_{Ut} determines the decay rate of these interactions as the distance increases. For large d_{Ut}, the decay of the interactions caused by the distance may counteract the collective effect arising from the numerous particles, therefore yielding a loose constraint. On the contrary, in the atomic scale, these interactions are more significant for larger d_{Ut}, which may imply better constraint for large d_{Ut}.

ACKNOWLEDGEMENTS

The authors thank the committee of the “Beyond Standard Model: From Theory to Experiment (BSM-2023)” workshop. This work is supported by the National Natural Science Foundation of China under Grants No. U2232027, No. U2032029, No. 12305114 and No. 12305125. This work was also supported by the National Key Program for Research and Development of China under Grants No. 2020YFA0406001 and No. 2020YFA0406002.

References

