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Abstract

We propose a class of multidimensional higher derivative theories of gravity without extra real degrees of 
freedom besides the graviton field. The propagator shows up the usual real graviton pole in k2 = 0 and extra 
complex conjugates poles that do not contribute to the absorptive part of the physical scattering amplitudes. 
Indeed, they may consistently be excluded from the asymptotic observable states of the theory making use 
of the Lee–Wick and Cutkosky, Landshoff, Olive and Polkinghorne prescription for the construction of a 
unitary S-matrix. Therefore, the spectrum consists of the graviton and short lived elementary unstable par-
ticles that we named “anti-gravitons” because of their repulsive contribution to the gravitational potential 
at short distance. However, another interpretation of the complex conjugate pairs is proposed based on the 
Calmet’s suggestion, i.e. they could be understood as black hole precursors long established in the clas-
sical theory. Since the theory is CPT invariant, the conjugate complex of the micro black hole precursor 
can be interpreted as a white hole precursor consistently with the ’t Hooft complementarity principle. It 
is proved that the quantum theory is super-renormalizable in even dimension, i.e. only a finite number of 
divergent diagrams survive, and finite in odd dimension. Furthermore, turning on a local potential of the 
Riemann tensor we can make the theory finite in any dimension. The singularity-free Newtonian gravita-
tional potential is explicitly computed for a range of higher derivative theories. Finally, we propose a new 
super-renormalizable or finite Lee–Wick standard model of particle physics.
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1. Introduction

We propose a “local” multidimensional gravitational theory compatible with renormalizability 
at perturbative level in addition to Lee–Wick [1] and Cutkosky, Landshoff, Olive and Polking-
horne unitarity [2] (CLOP). This work is a generalization of the theory recently proposed in 
[3,4]. In the last four years a weakly nonlocal action principle for gravity has been extensively 
studied to make up for the shortcomings of the quantization of the Einstein–Hilbert action [5–9]. 
Research records show that Krasnikov in 1988 and Kuz’min in 1989 proposed a similar theory 
[10] following Efimov’s studies in nonlocal interacting quantum field theory [11]. Afterwords 
Tomboulis extended to gauge interactions the Kuz’min ideas and in 1996 proposed a class of 
weakly nonlocal super-renormalizable gauge and gravitational theories [12–14]. You may also 
refer to [15,16] about other excellent contributions in nonlocal theories. Recently in [17] it has
been definitely proved that the theory is actually finite in any dimension when a local potential 
of the Riemann tensor is added. In [18] has been proposed and extensively studied a finite gen-
eralization of the nonlocal theory for gauge interactions proposed for the first time by Tomboulis
[12]. However, the price to pay is that the classical action is weakly nonlocal, although the asymp-
totic polynomial behavior makes the theory very similar to any local higher derivative theory for 
all that concerns the divergent contributions to the quantum effective action.

In this paper we want to expand and specialize the seminal paper [20] about a general local 
super-renormalizable gravitational theory capitalizing what we learned in quasi-polynomial or 
weakly nonlocal theories. Actually, many results can be exported directly to the theory here 
proposed making a proper replacement of the nonlocal form factor in [17] with the local form 
factor that we are going to properly define later in this paper.

The theory here proposed fulfills a synthesis of minimal requirements: (i) Einstein–Hilbert 
action should be a good approximation of the theory at a much smaller energy scale than the 
Planck mass; (ii) the theory has to be super-renormalizable or finite at quantum level; (iii) the 
theory has to be unitary, with no other real poles in the propagator in addition to the graviton; 
if we require other poles neither real nor complex, then the theory will prove non-polynomial 
or weakly nonlocal. The outcome of previous studies is a nonlocal classical theory of gravity 
perturbatively super-renormalizable at quantum level. On the footprint of the nonlocal action 
we propose here a “local” theory that holds the same properties, but showing up extra complex 
conjugate poles besides the graviton.

Studies of higher derivative theories date back to quadratic gravity proposed in 1977 by Stelle 
[19]. This theory is renormalizable and asymptotically free, but unfortunately it violates unitarity 
showing up a real ghost state in the spectrum. In this paper we go behind the Stelle’s action intro-
ducing a finite number of extra higher derivative operators to make the theory even more conver-
gent: super-renormalizable or finite. However, we do not blindly introduce all the possible opera-
tors to a fixed order in the number of derivatives of the metric tensor. We actually consider a class 
of local theories that avoid extra real poles in the propagator. Looking at the above list of require-
ments (i)–(iii), the news with respect to the previous work on non-polynomial theories sits in the 
third point. We indeed do not exclude the possibility of complex conjugate mass poles, which do 
not prevent us from constructing a unitary local theory of gravity in the Lee–Wick formalism [1]. 
Lee and Wick argued that, as long as all ghost degrees of freedom in the interacting theory have 
complex energies, one obtains a unitary theory by constraining the physical subspace to be ex-
actly the one for the states that have real energy. In gravity we end up with a classical theory with 
an extended spectrum in which the graviton is free to propagate on long distances while a bunch 
of other virtual elementary particles can only intrinsically live for a short amount of timeblandly 
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[30]. It is well known that in quantum electro-dynamics a photon can get converted into e+e−
pairs, or more complicated channels, only when it interacts with matter, but when radiated into 
a “perfect vacuum” it will travel on indefinitely distances as a stable particle. In field theory this 
is described by a gauge independent pole at k2 = 0 in the transverse photon propagator, which 
fixes the photon free field equations to �Aμ = 0. By the contrast, we here have a finite number 
of short lived particles (named “anti-gravitons”) that rapidly convert themselves into gravitons. 
The dispersion relation for these particles must show off a finite lifetime through gauge indepen-
dent complex poles in the propagator, and the free equations of motion are [� + (A + iB)]φ = 0
(where A, B ∈ R). In particle physics a Lee–Wick extension of the standard model has been 
proposed to avoid quadratic divergences in the Higgs mass and hence no hierarchy puzzle [22]. 
In this theory, and generalizations, the classical action has a real ghost pole that, at one loop, is 
shifted out the real axes into a complex ghost pair. In gravity a similar Lee–Wick unitarization of 
the Stelle’s theory [19] was evoked in [25–27] to remove the real ghost from the asymptotically 
free quadratic gravity [28]. Indeed, at one loop the real ghost pole splits into a pair of complex 
conjugate poles. In this paper we go beyond four derivatives and following the seminal papers 
[29,31] we propose a theory in which a finite number of complex conjugate poles, or unstable 
particles, are already present in the classical action [32]. Let us give here a taste of the theory,1

SSR = −
∫

dDx
√|g|2κ−2

D

[
R − 2�cc + Gγ (�)Ric + V

]
, (1)

where γ (�) is a polynomial (of the d’Alembertian operator �) constructed so as to avoid extra 
real poles in the propagator besides the graviton, G is the Einstein tensor, Ric is the Ricci tensor, 
and V is a potential at least cubic in the curvature tensor.

At classical level the solutions are stable when Lee and Wick appropriate boundary conditions 
are imposed [1,2]. More recently a mathematically well defined prescription has been defined 
in [33]. However, microcausality is violated.

2. The theory

The class of theories we are going to propose can be read out from the “non-polynomial” 
theories recently introduced and extensively studied in [5,12,17]. We here focus on a general 
local action compatible with unitarity [1,31] and super-renormalizability or finiteness,

Lg = −2κ−2
D

√
g

[
R + Rγ0(�)R + Ricγ2(�)Ric + Riemγ4(�)Riem + V

]
, (2)

where we have distinguished the operators linear and quadratic in the curvature tensor from the 
higher in curvature operators. We can rewrite the theory making use of a more compact notation 
introducing a tensorial form factor, namely

Lg = −2κ−2
D

√
g (R + Riemγ (�)Riem + V)

≡ −2κ−2
D

√
g

(
R + Rμνρσ γ (�)

μνρσ
αβγ δ Rαβγ δ + V

)
≡ −2κ−2

D

√
g
{
R + Rμνρσ [gμρgαγ gνσ gβδγ0(�) + gμρgαγ gνβgσδγ2(�)

+ gμαgνβgργ gσδγ4(�)]Rαβγ δ + V
}
. (3)

1 Definitions and notations. The definitions used in this paper are: the metric tensor gμν has signature (+ − . . .−) ; the 
curvature tensor Rμ

νσρ = −∂ρ

μ
νσ + . . . , the Ricci tensor Rμν = R

ρ
μρν , and the curvature scalar R = gμνRμν . We also 

use the notation R for the Riemann tensor when the indexes are suppressed.
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The theory consists of a kinetic local operator quadratic in the curvature, three polynomials 
γ0(�), γ2(�), γ4(�), and a local potential V made of the following three sets of operators,

V =
N+2∑
j=3

j∑
k=3

∑
i

c
(j)
k,i

(
∇2(j−k)Rk

)
i
+

n+N+1∑
j=N+3

j∑
k=3

∑
i

d
(j)
k,i

(
∇2(j−k)Rk

)
i

+
n+N+2∑

k=3

∑
i

sk,i

(
∇2(n+N+2−k) Rk

)
i
,

where the third set of operators are called killers because they are crucial in making the theory 
finite in any dimension. � is an invariant mass scale and the indices, c(j)

k,i , d(j)
k,i , sk,i are running 

or not coupling constants, while the tensorial structure has been neglected. The last set of op-
erators with front coefficients sk,i are technically called “killers” and are crucial in making the 
theory finite. The capital N is defined to be the following function of the spacetime dimension D: 
2N + 4 = D, while n is a positive integer, i.e. n ∈N

+. Moreover, � = gμν∇μ∇ν is the covariant 
box operator. The polynomials γi(�) are:

γ2(�) = −
N+n+1∑

i=1

ai

�2
zi−1 − 4γ4 ,

γ0(�) = D − 2

4(D − 1)

N+n+1∑
i=1

bi

�2
zi−1 + D

4(D − 1)

N+n+1∑
i=1

ai

�2
zi−1 + 4γ4 , (4)

where z := −�/�2, n ∈ N
+, and we implicitly introduced the following two polynomials,

P(z) = 1 +
N+n+1∑

i=1

aiz
i , Q(z) = 1 +

N+n+1∑
i=1

biz
i, n ∈ N

+ . (5)

The reason of this particular choice of the polynomials γi(�) will be clear in the next subsection 
when we explicitly evaluate the propagator for the theory (2).

2.1. Propagator

Splitting the spacetime metric gμν into the flat Minkowski background and the fluctua-
tion hμν defined by gμν = ημν + κD hμν , we can expand the action (2) to the second order 
in hμν . The outcome of this expansion together with the usual harmonic gauge fixing term 
reads [40] Llin + LGF = 1/2hμνOμν,ρσ hρσ , where the operator O is made of two terms, 
one coming from the linearization of (2) and the other from the following gauge-fixing term, 
LGF = ξ−1∂νhμνω(−��)∂ρhρμ (ω(−��) is a weight functional [19,39]). The d’Alembertian 
operator in Llin and the gauge fixing term must be conceived on the flat spacetime. Inverting the 
operator O [40], we find the two-point function in the harmonic gauge (∂μhμν = 0),

O−1 = ξ(2P (1) + P̄ (0))

2 2 2
+ P (2)

2 2 2
− P (0)

2 2 2
. (6)
2k ω(k /� ) k P (k /� ) k Q(k /� ) (D − 2)
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We omitted the tensorial indexes for the propagator O−1 and the projectors {P (0), P (2),

P (1), P̄ (0)} [40,41] are given in the footnote.2 We also have replaced −� → k2 in the linearized 
action.

In our construction the polynomials P(z) and Q(z) can only show up complex conjugate 
poles and are chosen to satisfy the condition P(0) = Q(0) = 1. The complex conjugate solutions 
of P(z) = 0 and Q(z) = 0 are ghostlike, but they do not contribute to the absorptive part of 
physical scattering amplitudes and may consistently be excluded from the asymptotic observable 
states of the theory making use of the Lee–Wick prescription for the construction of a unitary 
S-matrix over the physical subspace [1,31]. The theory is also classically stable when Lee and 
Wick appropriate boundary conditions are imposed [2,33].

2.2. Four-dimensional theory

In D = 4, assuming P(z) = Q(z) and introducing a potential consisting only of two killer 
operators quartic in the curvature, the theory simplifies to

L = −2κ−2
4

[
−2�cc + R − Gμν

n∑
i=0

ai

�2
(−��)iRμν + s1R

2 �n−2R2

+ s2RμνR
μν �n−2Rρσ Rρσ

]
. (8)

In the search for a finite theory of quantum gravity, the most economic one is obtained for n = 3
and ai = 0 for i = 0, 1, 2 while a3 = 1 in (5), namely

SF =
∫

d4x
√−g 2κ−2

4

[
−R + 2�cc − s0 Gμν�3Rμν − s1R

2�R2 − s2R
2
μν�R2

ρσ

]
, (9)

where s0 = 1/�8. If we are happy with super-renormalizability we can study the following min-
imal action,

SSR =
∫

d4x
√|g|2κ−2

4

[
− R + 2�cc − s0Gμν�Rμν −

∑
i

(Riem3)i

]
, (10)

where now s0 = 1/�4, and the sum is over all possible invariants cubic in the Riemann tensor 
(6 independent operators [34]3). More details about the finiteness will be given later in section 5.

2 Projectors:

P
(2)
μν,ρσ (k) = 1

2
(θμρθνσ + θμσ θνρ) − 1

D − 1
θμνθρσ ,

P
(1)
μν,ρσ (k) = 1

2

(
θμρωνσ + θμσ ωνρ + θνρωμσ + θνσ ωμρ

)
,

P
(0)
μν,ρσ (k) = 1

D − 1
θμνθρσ , P̄

(0)
μν,ρσ (k) = ωμνωρσ , θμν = ημν − kμkν

k2
, ωμν = kμkν

k2
. (7)

3 At the cubic order in the Riemann tensor the basis of curvature invariants consists of eight members [34], namely

R3, RRμνRμν, RναRν
μRαμ, (11)

RναRμβRνμαβ, RRμναβRμναβ, RναRν
βγ εR

βγ εα, RμναβR
μν
γ ε Rαβγ ε, RμναβR

μ
γ

α
ε Rνγβε, (12)

but only three out of the five Riemann terms in (12) are independent in D = 4.
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3. Complex conjugate poles and unitarity

We hereby study the propagator for the two minimal four dimensional theories proposed in 
(9) and (10). Since P(z) = Q(z), the denominator of the propagator consists of the product of the 
monomial k2 times the polynomial P(k2/�2). Therefore, we have the usual graviton massless 
pole with the same tensorial structure already found in the Einstein–Hilbert action, plus other 
complex conjugate poles resulting from the particular choice for the polynomial P(z).

For the theory (10) the polynomial is P(−��) = 1 +(−��)2 = 1 +k4/�4 and the propagator 
in (6), leaving out the gauge dependent terms, decomposes in

O−1 = 1

k2P( k2

�2 )

(
P (2) − P (0)

D − 2

)
︸ ︷︷ ︸

TS

= |η|4 TS

k2(k2 − η2)(k2 − η∗2)

=
(

1

k2 + iε
+ c2

k2 − η2
+ c∗2

k2 − η∗2

)
TS , (13)

with

1 + c2 + c∗2 = 0 , c2η2 + c∗2η∗2 = 0 , η2 = −i�2 , η∗2 = i�2 . (14)

For the theory (9) the polynomial is P(−��) = 1 + (−��)4 = 1 + k8/�8 and the propagator 
decomposes in

O−1 = 1

k2P(k2/�2)
TS = |η1|4|η2|4

k2(k2 − η2
1)(k

2 − η∗2
1 )(k2 − η2

2)(k
2 − η∗2

2 )
TS

=
[

1

k2 + iε
+ c2

1

k2 − η2
1

+ c∗2
1

k2 − η∗2
1

+ c2
2

k2 − η2
2

+ c∗2
2

k2 − η∗2
2

]
TS , (15)

with complex masses square

η2
1 = ei π

4 �2 and η2
2 = −ei π

4 �2. (16)

For the sake of simplicity, we considered p(z) = 1 + z2 and p(z) = 1 + z4, and we found the 
above particular values for the masses η1 and η2 (16). However, following Ref. [31] we can show 
that the group velocity vg for the particles with complex masses is smaller than or equal to the 
light velocity iff the following condition are satisfied,

Re(η2) � 0 , Re(η2
1) � 0 , Re(η2

2) � 0 ,

vg = | �p|√
2

√√
( �p2 + Re(η2))2 + (Im(η2))2 + �p2 + Re(η2))√

( �p2 + Re(η2))2 + (Im(η2))2
. (17)

These inequalities are not met by the theory (9), but are perfectly satisfied by the minimal super-
renormalizable theory (10). If we want (17) to be fulfilled for complex conjugate pairs with a 
strictly positive real part of the mass square, we have just to replace the polynomial in (13) with 
the following one,

P(k2/�2) = k4 − k2Re(η2) + |η|4
4

= �2 + �Re(η2) + |η|4
4

, (18)
|η| |η|
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and the theory reads

S′
SR =

∫
d4x

√|g|2κ−2
4

[
− R + λ̄ − Gμν

� + Re(η2)

|η|4 Rμν −
∑

i

(Riem3)i

]
. (19)

We can also make (9) compatible with (17) by replacing the polynomial with the following one,

P(k2/�2) = k8 + k4m4
1 + k4m4

2 + m4
1m

4
2

�8
= (−�)4 + (−�)2m4

1 + (−�)2m4
2 + m4

1m
4
2

�8
,

(20)

where m4
1m

4
2 = �8 and m1, m2 ∈R. The action now reads

S′
F =

∫
d4x

√−g 2κ−2
4

[
−R + λ̄ − s0 Gμν(�3 + �m4

1 + �m4
2)R

μν

− s1R
2�R2 − s2R

2
μν�R2

ρσ

]
, (21)

where again s0 = 1/�8 and the poles are now located in: 
{−im2

1, im2
1, −im2

2, im2
2

}
. All the 

complex poles in (21) have group velocity zero (and real part of the mass square zero) like for 
the theory (10). We can get positive group velocity taking the following polynomial,

P(k2/�2)

= �−8
(
k8 − k6m2

1 − k6m2
2 + k4m4

1 + k4m4
2 + k4m2

1m
2
2 − k2m2

1m
4
2 − k2m4

1m
2
2 + m4

1m
4
2

)
= �−8

(�4 + �3m2
1 + �3m2

2 + �2m4
1 + �2m4

2 + �2m2
1m

2
2 + �m2

1m
4
2 + �m4

1m
2
2

)
+ 1 ,

(22)

and the complex conjugate poles are now located in:{
1

2

(
1 − √

3i
)

m2
1,

1

2

(√
3i + 1

)
m2

1,
1

2

(
1 − √

3i
)

m2
2,

1

2

(√
3i + 1

)
m2

2

}
. (23)

Now we would illustrate in more detail the unitarity of the proposed actions. The theories 
under consideration are marked by pairs of complex conjugate poles. In (10) we have one pair of 
complex conjugate poles, while in (9) we have two complex conjugate poles, etc. We discarded 
extra real particles from the spectrum of the classical theory, but we allow for conjugate pairs of 
unstable and unphysical particles: “anti-gravitons”. It is well known that, at least for a single pair 
of complex conjugate poles, a unitary S-matrix defined between physical asymptotic states exists 
[1,2]. The unphysical particles do not contribute to the absorptive part of the propagators (13)
or (15) because they occur as complex conjugate pairs. We can easily check that the complex 
conjugate poles do not go on shell by taking the imaginary part of any one of the propagators 
above, namely

Im(O−1(k)) = − ε

k4 + ε2
→ −π δ4(k2) . (24)

Since the incoming particles have real energy and momentum they can not produce on-shell 
intermediate states with complex mass. Therefore the complex poles do not destroy unitarity 
and their contribution to the scattering amplitudes is real. Indeed we can easily verify that the 
tree level exchange satisfies the optical theorem as a consequence of the energy–momentum
conservation that generally follows from the definition of the S-matrix. From unitarity it follows
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that the imaginary part of the forward scattering amplitude, M, must be a positive quantity 
(optical theorem). For example the inequality 2 Im[M(2, 2)] > 0 is satisfied at tree level as a 
mere consequence of (24) [1,29–31]. Only the massless gravitons contribute to the imaginary 
part of the amplitude, while the anti-gravitons give contribution to the real part making it more 
convergent in the ultraviolet regime. Since (24) the tree-level unitarity for every propagators 
obtained in this section reads as follows,

2 Im
{
T (k)μνO−1

μν,ρσ T (k)ρσ
}

= 2π Res
{
T (k)μνO−1

μν,ρσ T (k)ρσ
} ∣∣

k2=0 > 0 , (25)

where Tμν(k) is the conserved energy–momentum tensor (see appendix A for more details about 
tree-level unitarity).

At quantum level the theory can be super-renormalizable or finite (see section 5 for more 
details). For the sake of simplicity and strictness, let us start considering the case of a finite theory. 
For this class of theories the beta functions are zero, we do not have to introduce counterterms, 
the propagator does not change (for what about divergences), and so the Lee–Wick unitarity is 
safe. However, we of course have finite contributions to the quantum effective action at any order 
in the loop expansion. Nevertheless, at perturbative level we typically have a slight displacement 
in the position of the complex conjugate poles or in the worst case a larger number of them up to 
infinity depending on the peculiar finite quantum nonlocal contributions to the effective action. 
Therefore, the unitarity Lee–Wick structure of the classical theory is likely preserved at quantum 
level.

For super-renormalizable theories we have logarithmic divergences and the running of the 
coupling constants comes along with the following nonlocal operators in D = 4,

α1 R log

(−�
μ2

)
R. (26)

In D = 5 the theory is finite and we expect the following contribution,

α2 R
√−�R. (27)

Therefore, we end up with a quantum theory having the same structure of the initial classical 
theory. In the quantum action we can have a shift in the position or an increased number of 
the complex conjugate poles. However, we can easily treat them consistently with unitarity by 
applying again the Lee–Wick prescription. The quantum corrections to the spin two and/or spin 
zero inverse propagators (13) implied by (26) and (27) respectively read

k2
(

1 + k4

�4
+ α1κ

2
4 k2 log

k2

μ2

)
or k2

(
1 + k4

�4
+ α2κ

2
4 k2

√
k2

)
. (28)

It is straightforward to check that the number of complex conjugate poles do not change, even 
though they are slightly moved out from the original classical position. Once again, unitarity is 
not affected by the quantum corrections.

For the special super-renormalizable theory (10) with propagator (13) there are only two com-
plex conjugate poles, therefore, we can apply all the results derived in the paper [2]. In particular 
in [2] it is given a proof of perturbative unitarity compatible with Lorentz invariance exploring a 
large class of Feynman diagrams, while the acausal effects are fantastically small to be detected. 
In [24] it is given an explicit proof of the one-loop unitarity based on the CLOP [2] prescription 
to integrate in the complex energy plane. In [32] we can find a different Feynman iε prescrip-
tion suggested by the Hamiltonian analysis of the theory. Moreover, the formalism developed in 
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[35–37] for any higher derivative theory selects out one particular prescription regardless of the 
real or complex nature of the poles. Here we assume that the quantization of a general gravita-
tional theory with an arbitrary number of complex conjugate poles has to be understood as a mere 
application of the procedure explained in section 2.1 of the report [37]. However, this particu-
lar prescription does not solve the very important ambiguity problem present in the Lee–Wick 
theory. This is a serious issue because the introduction of ambiguities at each order in the loop 
expansion is actually related to the problem of non-renormalizability that the higher derivative 
theory is supposed to solve. Therefore, the general foundations of the Lee–Wick theory and in 
particular the ambiguity referred above deserve to be further investigated in future work.

In short, the Lee–Wick unitarity reads as follows: the S-matrix is unitary in the physical sub-
space of real states (only gravitons in this section), while complex mass particles appear only 
as virtual states. Assuming the Lee–Wick [1] or [31] definitions, the S-matrix vanishes for all 
non-real initial and final states, while the unphysical complex states can appear only as virtual 
states. Therefore, the S-matrix is unitary as a mapping in the subspace of real physical states. 
The complex poles occur in a proper combination to cancel out the divergences that arise from 
the physical states. Once again, complex particles are consistently excluded from the asymp-
totic states preserving the usual unitarity notion in the subspace of real states. The Hamiltonian 
approach remains well defined in the indefinite metric Hilbert space [1,29]. The theory is uni-
tary and Lorentz invariant, but microcausality is violated [1,2,38]. However, macrocausality is 
preserved because the Feynman propagator is convergent in the limit |x0| → +∞, namely the 
propagator does not diverge for infinite separation time, as easy to see making the explicit inte-
gration in the energy complex plane [31]: 

∣∣∣∣〈0|T (hμν(x)hρσ (y)|0〉∣∣∣∣ < ∞ for |x0| → +∞.

4. Propagator in coordinates space and nonsingular gravitational potential

In this section we investigate the behavior of the two point function and of the gravitational 
potential at short distance.

Propagator in coordinates space — We can easily obtain the propagator in coordinate space 
by the Fourier transform of (6). Let us consider the super-renormalizable theory specified by 
the polynomial P(z) = 1 + z4 and omit the tensorial structure in (6), then the propagator in 
coordinate space reads4

G(x − y) = 1

4π2(x − y)2
−

G
5,0
0,8

(
(x−y)8

16777216

∣∣∣ − 1
4 ,0, 1

4 , 1
2 , 3

4 ,0, 1
4 , 1

2

)
(16π)2

, (29)

G(0) = π

64
√

2

(

1
4

)



(
3
4

)2



(
5
4

) . (30)

The first contribution in (29) is due to the massless graviton, while the second one to comes 
from the Lee–Wick complex particles that make finite the propagator in the coincidence limit 
x → y. Indeed, for x − y → 0 the two point function approaches the constant G(0) displayed in 
(30). The high energy behavior of the two point function here derived has a universal character. 
Indeed, whatever the polynomial (or non-polynomial [5]) form factor is, the short distance limit 
always attains a constant value.

4 In (29), Gmn
pq (z|a1, . . . , ap; b1, . . . , bq) is the generalized Majer G function.
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Gravitational potential — To address the problem of classical singularities we can begin by 
calculating the Newtonian gravitational potential. Given any propagator, the graviton solution of 
the linear equations of motion is:

hμν(x) = κD

2

∫
dDx′O−1

μν,ρσ (x − x′)T ρσ (x′)

= κD

2

∫
dDx′

∫
dDk

(2π)D

eik(x−x′)

k2P(k2/�2)

(
Tμν − ημν

D − 2
T μ

μ

)
. (31)

For a static source with energy tensor T μ
ν = diag(M δD−1(�x), 0, . . . , 0), the spherically symmet-

ric solution reads

hμν(r) = −κDM

2
Eμν

∫
dD−1k

(2π)D−1

e−i�k·�x
�k2 P(�k2/�2)

= −κDM

2

π
D−3

2

(2π)D−2

Eμν

rD−3

∫
dp

pD−4
0F̃1

(
D−1

2 ;−p2

4

)
P(p2/r2�2)

, (32)

where 0F̃1(a; z) = 0F1(a; z)/
(a) is the regularized hypergeometric confluent function. In (32), 
we also have introduced the variable p = |�k|r and the matrix Eμν = (D − 2)−1diag(D − 3,1,

. . . , 1). Using the graviton solution above in (31), (32) we can reconstruct all the components 
of the metric tensor and then we can get the spacetime line element for a spherically symmetric 
source. The gravitational potential is related to the h00 component of the graviton field by � =
κDh00/2. Then, using (32) we get

�(r) = −κ2
DM

4

D − 3

D − 2

∫
dD−1k

(2π)D−1

e−i�k·�x

�k2 P
(�k2/�2

)

= −GNM

rD−3
2
D − 3

D − 2

24−D

π
D−3

2

∫
dp

0F̃1

(
D−1

2 ;−p2

4

)
p4−D P

(
p2/r2�2

) . (33)

For example, in D = 4, (33) simplifies to

�(r) = −GNM

r

2

π

+∞∫
0

dp
J0(p)

P
(
p2/r2�2

) , J0(p) = sinc(p) ≡ sin(p)

p
. (34)

We are now ready to evaluate the gravitational potential for three different choices of the 
polynomial P(z).

� For P(z) = 1 + z, which corresponds to a particular theory quadratic in the curvature, the 
potential reads

�(r) = −m(1 − e−�r)

r
. (35)

� For P(z) = 1 + z2, which corresponds to a super-renormalizable gravitational theory, the 
potential reads
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�(r) = �(r) = −
m

(
1 − e

− �r√
2 cos

(
�r√

2

))
r

. (36)

� For P(z) = 1 +z4, which eventually corresponds to a finite gravitational theory, the potential 
reads

�(r) = �(r) = −
m

(
4 − e−η1r − e−η∗

2r − eη2r − eη∗
1r

)
4r

. (37)

For the first choice P(z) = 1 + z the potential is regular in r = 0 because of the real ghost 
pole in the propagator [42], for the second and third choice at short distance (∼1/�) the complex 
ghosts screen the anti-screening effect of the gravitons. For the case of P(z) = 1 + z4 we can 
rewrite the potential in the following explicitly real form,

�(r) = −m

r
+ me−�r sin

(
π
8

)
cos

(
�r cos

(
π
8

))
2r

+ me−�r cos
(

π
8

)
cos

(
�r sin

(
π
8

))
2r

. (38)

The reader can easily recognize the complex conjugate mass poles in the classical gravitational 
potential (37). They clearly play a crucial rule in making the potential singularity free in agree-
ment with the Lee–Wick requirement for a consistent theory at classical and quantum level. This 
result is in agreement with the interpretation given in a previous work [42]. Actually this is a 
generalization of the result in [42] to a theory with complex conjugate poles.

In the same approximation we can reconstruct the metric for black hole or cosmological solu-
tions [43–46]. Exact solutions can be found closely following the derivations in [47–51].

5. Quantum divergences

Let us then examine the ultraviolet behavior of the quantum theory and consider what kind of 
operators present in the action can generate divergences. In the high energy regime the graviton 
propagator in momentum space for the theory (2) schematically scales as

O−1(k) ∼ 1

k2n+D
. (39)

Since the interactions have leading ultraviolet scaling k2n+D, we find the following upper bound 
to the superficial degree of divergence in a D-dimensional spacetime,

ω(G) = D − 2n(L − 1) . (40)

In (40) we used the topological relation between vertexes V , internal lines I and number of 
loops L: I = V + L − 1. Thus, if n > D/2 only 1-loop divergences survive in this theory, there-
fore, it is super-renormalizable. Only a finite number of constants is renormalized in the action 
(2), i.e. κD , λ̄, a subset of the couplings {ai , bi}, and the finite number of couplings that multiply 
the operators O(R3) in the first line of (2) up to RD/2.

Let us now expand on the one-loop divergences. The main divergent integrals contributing to 
the one-loop effective action have the following form,∫

dDk

(2π)D

{
s∏ 1

(k + pi)2m

}
P(k)2sm. (41)
i=1
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P2sm(k) is a polynomial function of degree 2ms in the momentum k (generally it also relies on 
the external momenta p̄a), pi = ∑i

a=1 p̄a , and m = n + N + 2 for the graviton field hμν . We can 
write, as usual,

s∏
i=1

1

(k + pi)2m
∝

1∫
0

(
s∏

i=1

xn−1
i dxi

)
δ
(
1 − ∑s

i=1 xi

)
[k′2 +R]ms

, k′ = k +
s∑

i=1

xipi ,

R=
s∑

i=1

p2
i xi −

(
s∑

i=1

xipi

)2

. (42)

In (41), we move outside the convergent integral in xi and we replace k′ with k∫
dDk

(2π)D

P ′(k,pi, xi)2sm

(k2 +R)ms
. (43)

Using Lorentz invariance and missing the argument xi , we replace the polynomial P ′(k, pi, xi)2ms

with a polynomial of degree m × s in k2, namely P ′′(k2, pi)ms . Therefore, the integral (43) re-
duces to∫

dDk

(2π)D

P ′′(k2,pi)ms

(k2 +R)ms
. (44)

We can decompose the polynomial P ′′(k2, pi)ms in a product of external and internal momenta 
only to obtain the divergent contributions,

P ′′(k2,pi)ms =
[D/2]∑
�=0

α�(pi)k
2ms−2� (45)

= k2msα0 + k2ms−2α1(pi) + k2ms−4α2(pi) + . . . . (46)

Given the polynomial

P(z) = 1 + cn+N+1z
n+N+1 + cn+Nzn+N + cn+N−1z

n+N−1 + . . . , (47)

we find the following logarithmic divergences,

[D/2]∑
�=0

∫
dDk

(2π)D

α�(pi)k
2ms−2�

(k2 +R)ms
=

=
[D/2]∑
�=0

iα�(pi)(R)
D
2 −�

(4π)
D
2



(
� − D

2

)



(
ms − � + D

2

)



(
D
2

)

(ms)

�⇒
counterterms︷ ︸︸ ︷

1

ε
βλ + 1

ε
βRR + . . . + 1

ε
βRD/2RD/2 . (48)

We schematically listed above the counterterms and explicitly introduced the ultraviolet cut-off 
ε in the dimensional regularization scheme.

We can express the one-loop counterterms in any dimension D explicitly displaying the num-
ber of derivatives acting on the metric tensor [20], namely
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Scounterterms = 1

ε

D/2∑
j=0

α2j�
D−2j

∫
dDx

√|g|O2j (∂λgμν) , (49)

where O2j (∂λgμν) denotes the general covariant scalar operator containing 2j derivatives of the 
metric tensor gμν , white the α2j are dimensionless constants.

Now we specify the above general analysis to our particular class of theories (9), (10), and 
(19). The three theories are super-renormalizable, but for the case of (9) we only have one loop 
divergences, while for (10) and (19) we also have divergences at two loops or three loops.

Given the particular choice of the polynomial P(z) for the theory (9), the counterterms can 
only be proportional to R2 and R2

μν . Moreover, it is always possible to tune the front coefficients 
s1 and s2 for the quartic operators R2� R2 and to make zero the beta functions. This is due to the 
linearity in s1 and s2 of the beta functions βR2 and βR2

μν
. For the theory (19) we also expect the 

beta functions βR2 and βR2
μν

to be zero for some special choice of the front coefficients s1 and s2. 
However, the beta function are probably quadratic in s1 and s2 and only an explicit computation 
could confirm this property. At two loops we can have counterterms proportional to the Ricci 
scalar (Einstein–Hilbert operator) or the cosmological constant, while at three loops we only 
have divergences proportional to the cosmological constant.

More details about the one-loop quantum action are given in the appendix B.

6. New Lee–Wick standard model

In the previous papers [17,18] a higher derivative and weakly nonlocal theory beyond the stan-
dard model of particle physics has been proposed. However, such theory is quasi-polynomial in 
many respects and it is straightforward to take into account the results in [17,18] to propose here 
a local higher derivative and super-renormalizable action for gauge interactions and matter. This 
is a forced extension beyond the standard model if we want to preserve super-renormalizability
of the gravitational interactions after coupling to matter. Moreover, Lee–Wick gauge interactions 
turn out to be (super-)renormalizable or finite regardless of the spacetime dimension. Following 
the notation of section 2, the action for gauge bosons reads as follows,

Lgauge = − 1

4g2

[
FμνPg(D2

�)Fμν + sg

�4
F 2(D2

�)2F 2
]
, (50)

where the polynomial Pg(D2
�), as a function of the square of the gauge covariant derivative D, 

must be chosen having only complex conjugate poles and the same asymptotic behavior as the 
analogue functions introduced for the pure gravity sector. For the fermionic and scalar sectors 
we achieve super-renormalizability with the following action,

LF =
Nf∑
a

ψ̄a i/DaPf (D2
�)ψa, (51)

LH = (Dμ�)†Ps(D2
�)(Dμ�) − μ2�†Ps(D2

�)� − λ(�†�)2.

Pf (D2
�) and Ps(D2

�) are again polynomial free of real ghosts. To achieve full finiteness of all 
running coupling constants we need few other local operators, which the interested reader can 
find in Refs. [17,18]. In contrast to the Lee–Wick standard model of particle physics previously 
proposed [21–23] where real ghosts move out the real axis at quantum level, here the complex 
conjugate poles are a feature of the classical theory. Moreover, the theory proposed in this section 
is super-renormalizable or finite at quantum level.
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7. Conclusions and remarks

The class of local higher derivative gravitational theories studied in this paper have extra 
complex conjugate poles besides the standard massless graviton pole in the propagator. Theories 
with complex conjugate poles in the propagator seem to be well defined as shown in [1,2,29–31]. 
The extra unphysical particles associated with the new poles are not in the physical Hilbert space 
for the asymptotic states, but are forced to decay in ordinary gravitational degrees of freedom by 
the real energy conservation.

At quantum level the higher derivative operators make the theory super-renormalizable in any 
dimension. Indeed only one-loop up to three-loops divergences could be present depending on 
the particular set of higher derivative operators included in the action. However, for the case of a 
one-loop super-renormalizable theory, a local potential starting cubic in the Riemann tensor does 
not affect the propagator around the flat spacetime, but makes all the beta functions to vanish, 
and the theory turns out to be finite. Moreover, using dimensional regularization the theory is 
finite in odd dimension because there are no local one-loop counterterms with an odd number of 
derivatives in odd dimension. We here again show a D-dimensional minimal prototype theory,

L = −2κ−2
D

√|g|
[
R − s0 Gμν�n+ D

2 −2Rμν +
nK∑
i=1

si R
D
2 ∇2n−4 R2

]
, (52)

where s0 = (−1)n+(D−4)/2/�2n+D−2, and the sum is over the minimal number “nK” of killer 
operators we need to make the theory finite. Within the quantum field theory framework this 
theory preserves Lorentz and diffeomorphism invariance, and satisfies Lee–Wick unitarity in 
the subspace of real physical states. Furthermore, (52) is finite in odd dimension and super-
renormalizable in even dimension for any choice of the parameters s0, si . Moreover, for particular 
choice of the parameters si all the beta functions can be made to vanish in D = 4 and likely in 
any even dimension. Therefore the theory turns out to be finite.

In our theory tree-level unitarity is guaranty by the real energy conservation that comes to-
gether with the S-matrix definition. In other words the complex conjugate poles never go on 
shell and the optical theorem is satisfied on the real physical and Lorentz invariant subspace. 
At quantum level the CLOP prescription guarantees unitarity at least for the minimal super-
renormalizable theory [2,24].

The singularities that plague the gravitational potential of Einstein gravity are here smeared 
out because of the soft behavior of the propagator at short distance. The complex conjugate par-
ticles contribute to overall cancel out the divergent contribution of the massless physical graviton 
field [42].

Let us further expand on the interpretation of complex conjugate poles. In the theory here 
proposed, by increasing the energy, gravity becomes stronger, but in the short distance limit 
� << 1/� ∼ 1/MP

5 gravity becomes weak again (constant gravitational potential and zero grav-
itational force) due to the anti-screening effect of the gravitons, which wins over the screening 
effect of the virtual anti-graviton particle pairs. In other words, getting closer to the mass the 
anti-screening effect of the surrounding gravitons diminishes, so the full contribution of this ef-
fect would be increasingly weak and the “effective mass” will decrease with decreasing distance. 
This is analog to what occurs in quantum chromo-dynamics where the quarks play the role of 

5 We have two scales in our theory GN and the length scale � = 1/�, but here they are identified in order to simplify 
the discussion.
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anti-gravitons and gluons the role of gravitons. Similarly, also the attractive gravitational force 
increases with the energy, but vanishes in the zero separation distance limit because of the repul-
sion due to the anti-gravitons. In the intermedium energy regime such unstable unphysical pairs, 
the anti-gravitons, are excited without to go on shell. This is reminiscent of classical radiation 
surrounded by a complete absorber. In a complete absorber, radiation has to be absorbed and no 
asymptotic photons exist. Therefore, a quantum theory with complex conjugate poles would not 
have the associated asymptotic particles, as a simple calculation of the absorptive part shows.

On the footprint of the Calmet’s proposal [52–56] we can give here the following alternative 
(or maybe equivalent) interpretation to the complex conjugate poles: they actually are the mass 
and the width of light black holes precursors,

k2
0 =

(
MBH − i


BH

2

)2

. (53)

In our example (18) η2 is identified with the above pole, while the complex conjugate leads to 
the acausal effects. In other words, our local theory describes the usual massless graviton and a 
finite number of micro black holes. This idea can be supported evaluating the classical equations 
of motion. Indeed, it has been shown in [58] that the Schwarzschild and Kerr black holes are 
exact solutions of the theory. Following the ’t Hooft suggestion we could say that the theory 
here proposed is a kind of “unitarization” of the higher derivative Stelle’s gravity throughout the 
explicit introduction of virtual black holes (see below the comparison with the Stelle’s quadratic 
gravity at one loop).

In a nonlocal super-renormalizable theory we expect the same structure not at the classical 
level, but for the quantum action (for example, this can be read out of the finite log contributions 
to the quantum action [4]). However, here the number of complex conjugates poles is infinite 
allowing for a spectrum of arbitrary large black holes.

In Stelle theory we have the same phenomenon because the real ghost pole splits into two 
complex conjugate poles at quantum level. Again we can give the same interpretation and infer 
that at one-loop the spectrum of the quantum action is compatible with unitarity and the real 
ghost is converted into a pair of particles consisting of a black hole and the complex conjugate 
state [59–61].

Let us notice that the above interpretation is based on a one-loop computation, therefore it 
is only perturbative, and in Stelle theory we need to compute higher loop corrections to show 
the stability of the spectrum. However, in a super-renormalizable theory (convergent for L > 1) 
the beta functions are one-loop exact and the asymptotic freedom makes the interpretation likely 
correct at any perturbative order. Indeed, finite perturbative contributions to the quantum action 
can only slightly move the complex conjugates poles.

Following the van Tonder [62] argument, or suggestion, it comes natural (by CPT invariance 
of the theory) to interpret a full scattering process as the creation and evaporation of a black hole 
system. When two gravitons (or matter particles) scatter, a black hole is created, together with a 
white hole (the CPT conjugate solution), that in turn decays into two gravitons again (or matter 
particles) without ever appearing on-shell.

Since we have microcausality violation or more properly effective non-locality in time [62], 
the particles seen by the future observer are emitted from a point causally prior to the collision 
of the incoming matter (which happens at the singularity). This is indeed reminiscent of the way 
Hawking radiation originates causally prior to the singularity that absorbs the incoming matter in 
the black hole. The scattering process happens at the singularity, while the outgoing particles are 
earlier generated at the event horizon. On the other hand, the particles are emitted in the region 
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near the singularity before the Hawking scattering process (CPT revers of the Hawking emission) 
can occur at the horizon.

The spacetime structure is obtained replacing the event horizon with a simply connected 
trapped surface achieved gluing together the black hole and white hole horizons.

This interpretation of complex conjugate pairs as describing black holes – white hole pairs 
seems compatible with the ’t Hooft complementary principle [57] as a consequence of the CPT 
invariance of the theory.

Finally, we hope that the local action here proposed will stimulate cosmologists and people 
of the black hole community in starting looking for exact solutions and eventually infer about 
their stability. The minimal theory here proposed is “just six order” in derivatives of the metric, 
therefore a classic study of the theory can be fielded relatively easily.
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Appendix A. Tree-level unitarity

In quantum field theory unitarity means that the S-matrix meets

S†S = 1 . (54)

If we introduce the T -matrix defined by

S = 1 + iT , (55)

then the unitarity condition (54) turns into

−i(T − T †) = T †T (56)

We must consider the matrix elements of the above equation between all possible states. Let us 
examine the the matrix element between the initial state |i〉 and the final state 〈f |,

−i
(
〈f |T |i〉 − 〈f |T †|i〉

)
= 〈f |T †

(∑
k

|k〉〈k|
)

T |i〉

−i

(
Tf i −

(
T †

)
f i

)
=

∑
k

(
T †

)
f k

Tki

−i
(
Tf i − T ∗

if

)
=

∑
k

T ∗
kf Tki . (57)

Notice that we used the following definition for the scattering amplitude,

〈f |T |i〉 = (2π)DδD(pi − pf )Tf i . (58)

For the forward scattering amplitude, namely i = f (or in any theory invariant under the inversion 
xμ → −xμ, so that Tif = Tf i ), the previous equation (57) simplifies to the following,
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2 ImTii =
∑

k

T ∗
ikTik > 0 (i = f ) or 2 ImTif =

∑
k

T ∗
ikTf k > 0 (Tif = Tf i) .

(59)

We now present a systematic study of the tree-level unitarity [40]. A general theory is well 
defined if “tachyons” and “ghosts” are absent, in which case the corresponding propagator has 
only first poles at k2 − M2 = 0 with real masses (no tachyons) and with positive residues (no 
ghosts). Therefore, to test the tree-level unitarity of a multidimensional super-renormalizable 
local (or nonlocal) higher derivative gravity we couple the graviton to the external conserved 
stress–energy tensor �μν and we examine the amplitude at the pole. When we introduce a general 
source, the linearized action including the gauge-fixing reads

Lh� = 1

2
hμνOμν,ρσ hρσ − g hμν�

μν. (60)

The transition amplitude in momentum space is

S(2) = iT = (−i)2g2 �μν i�Fμν,ρσ �μν ,

〈0|TWick
(
hμν(x

′)hρσ (x)
) |0〉 = i�Fμν,ρσ (k) ≡ iO−1

μν,ρσ (k) , (61)

where S(2) is the S-matrix at the second order in perturbation theory (S = 1 + iT ≈ 1 + S(2)), 
and g is an effective coupling constant. To make the analysis explicit, we can expand the sources 
using the following set of independent vectors in the momentum space,

kμ = (k0, �k) , k̃μ = (k0,−�k) , ε
μ
i = (0, �ε) , i = 1, . . . ,D − 2 , (62)

where �εi are unit vectors orthogonal to each other and to �k. The symmetric stress–energy tensor 
reads

�μν = akμkν + bk̃μk̃ν + cij ε
(μ
i ε

ν)
j + d k(μk̃ν) + eik(με

ν)
i + f i k̃(με

ν)
i . (63)

The conditions kμ�μν = 0 and kμkν�
μν = 0 place constrains on the coefficients a, b, d, ei, f i .

In presence of the usual graviton pole and a finite sequence of complex conjugate poles, the 
Feynman propagator reads

i�F (k) = i

[
1

k2 + iε
+

∑
n

(
cn

k2 − η2
n

+ c∗
n

k2 − (η2
n)

∗

)](
P (2) − P (0)

D − 2

)
, (64)

where for the sake of simplicity we omitted the tensorial structure in �F and in the projectors. 
Plugging the above propagator in (61) we end up with the following expression for the amplitude,

S(2) = iT = (2π)Dδ(Pi − Pf ) i Tif = (−i)2g2 �μν i�Fμν,ρσ �μν

= (2π)Dδ(Pi − Pf ) i

× (−i)2 �μν

[
1

k2 + iε
+

∑
n

(
cn

k2 − η2
n

+ c∗
n

k2 − (η2
n)

∗

)](
P (2) − P (0)

D − 2

)
μν,ρσ

�ρσ

︸ ︷︷ ︸
Tif

,

(65)

where we explicitly pointed out the definition of Tif in the full amplitude, namely
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Tif = (−i)2 �μν

[
1

k2 + iε
+

∑
n

(
cn

k2 − η2
n

+ c∗
n

k2 − (η2
n)

∗

)](
P (2) − P (0)

D − 2

)
μν,ρσ

�ρσ .

(66)

Introducing the spin-projectors and the conservation of the stress–energy tensor kμ�μν = 0 in 
(61), the imaginary part of Tif reads

2 ImTif = 2 Im (−i)2g2

{
�μν�

μν − �
μ 2
μ

D − 2

}[
k2 − iε

k4 + ε2
+

∑
n

(
cn

k2 − η2
n

+ c∗
n

k2 − (η2
n)

∗

)]

= 2g2

{
�μν�

μν − �
μ 2
μ

D − 2

}[
ε

k4 + ε2

]

→ 2g2

{
�μν�

μν − �
μ 2
μ

D − 2

}
π δ(k2) . (67)

In the last step we used the following representation of the Dirac delta,
ε

k4 + ε2
= πδ(k2) , ε → 0+, (68)

and the final result has to be understood in the space of distributions.
From (59) and (67) the tree-level unitarity requirement simplifies to

2 Im
{
�(k)μνO−1

μν,ρσ �(k)ρσ
}

= 2π Res
{
�(k)μνO−1

μν,ρσ �(k)ρσ
} ∣∣

k2=0 > 0. (69)

In particular, (67) can be recast in the following form,

2πRes (A)
∣∣
k2=0 = 2πg2

[
(cij )2 − (cii)2

D − 2

]
(70)

which is zero in D = 3 and positive for D > 3.
In the Lee–Wick theory the propagator shows extra complex conjugate poles and at the mo-

ment it is not obvious how to derive, if any, the usual Largest Time Equation. However, we can 
still analyze (59) for the case of individual graphs by cutting the diagrams. Energy–momentum 
conservation comes together with the S-matrix and must be satisfied by both sides of (59). 
Therefore, if we cut through normal particle propagators (in our case we only have the mass-
less graviton) we have to replace the propagator with δ(k2). If we cut through the Lee–Wick 
propagators, these just correspond to take the imaginary part of the sum in (64), and the imagi-
nary part of the sum of complex conjugates poles vanishes. In particular, in T †T we only have to 
sum over intermediate normal tree particle states. Therefore, the theory is unitary in the subspace 
of the real normal and stable particles as a consequence of the energy–momentum conservation 
and the presence of extra poles in the propagator that always come in complex conjugate pairs.

Since the S-matrix provides a one-to-one map from the past to the future in scattering experi-
ments, the existence of a well-defined S-matrix is enough to show that there are no paradoxes in 
the scattering processes. Nevertheless, the theory manifests acausal effects at short distance [24].

Appendix B. Higher derivative quantum gravity

In this technical section we study a quite general local super-renormalizable quantum gravity. 
The results will be exported to any local super-renormalizable or finite Lee–Wick gravitational 
theory.
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Let us start with the following general prototype for a local super-renormalizable action,

SHD = −2κ−2
D

∫
dDx

√|g|
[
−2�cc + R +

n+N∑
i=0

ωRic,i Rμν �iRμν

+
n+N∑
i=0

ωR,i R �iR + V(R)

]
. (71)

In background field method the metric gμν is split into a background metric ḡμν and a quantum 
fluctuation hμν ,

gμν = ḡμν + hμν. (72)

Sometimes below we will denote these metrics by g, ḡ and h without writing covariant indices 
explicitly. However, we will denote the background metric again by g because we will not speak 
about the full metric g in the rest of this section. Since the theory is Diff. invariant we have to fix 
the gauge and in the quantization procedure we must introduce Faddeev–Popov (FP) ghosts. The 
gauge-fixing and FP-ghost actions read as follows,

Sgf =
∫

dDx
√|g| 1

2
χμ Cμν χν , χμ = ∇σ hσ

μ − βg∇μh ,

Cμν = − 1

αg

(
gμν� + γg∇μ∇ν − ∇ν∇μ

)�N+n
� ,

Sgh =
∫

dDx
√|g|

[
C̄α Mα

β Cβ + 1

2
bαCαβbβ

]
,

Mα
β = �δα

β + ∇β∇α − 2βg∇α∇β. (73)

In (73) we used the covariant gauge-fixing condition χμ with weight function Cμν [20]. The 
standard (complex) FP-ghost and anti-ghost fields we denote by Cβ and C̄α respectively. Due to 
the higher derivative character of our theory we are forced to introduce also a third (real-)ghost 
field [39], which we appoint bα . The gauge-fixing parameters βg and γg are dimensionless, while 
[αg] = M4−D . We notice right here that in our theory the beta functions are independent of these 
gauge parameters (see [20] for a rigorous proof).

The partition function of the full quantum theory with the right functional measure compatible 
with BRST invariance reads

Z[g] =
∫

μ(g,h)
∏
μ�ν

Dhμν

∏
α

DC̄α

∏
β

DCβ
∏
γ

Dbγ ei
[
SHD+Sgf+Sgh

]
. (74)

At one loop we can evaluate the functional integral explicitly and express the partition function 
as a product of functional determinants, namely

Z[g] = eiSg[g]
{

Det

[
δ2(SHD[g + h] + Sgf[g + h])

δhμνδhρσ

∣∣∣∣∣
h=0

]}− 1
2

(DetMα
β) (DetCμν)

1
2 .

By symbol Sg[g] we understand the classical functional of the gravitational action for the back-
ground metric g. To calculate the one-loop effective action we need to expand the action plus the 
gauge-fixing term to the second order in the quantum fluctuation hμν
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Ĥμν,ρσ = δ2SHD

δhμνδhρσ

∣∣∣∣∣
h=0

+ δχδ

δhμν

Cδτ δχτ

δhρσ

∣∣∣∣∣
h=0

. (75)

Following [20] we can recast (75) for the simpler four-dimensional case in the following compact 
form

Ĥμν,αβ =
(

ωRic

4
gμ(ρgν)σ − ωRic(ωRic + 4ωR)

16ωR
gμνgρσ

)
×

{
δαβ
ρσ �n+2 + Vρσ

αβ,λ1...λ2n+2∇λ1 · · ·∇λ2n+2 +

+ Wρσ
αβ,λ1...λ2n+1∇λ1 · · ·∇λ2n+1 + Uρσ

αβ,λ1...λ2n∇λ1 · · ·∇λ2n
+ O(∇2n−1)

}
,

(76)

where δρσ
μν ≡ δ

(ρ
μ δ

σ)
ν = 1

2

(
δ
ρ
μδσ

ν + δσ
μδ

ρ
ν

)
, and the tensors V, W and U depend on curvature 

tensors of the background metric and its covariant derivatives. In (76) the pre-factor in round 
brackets (called de Witt metric Gμν,ρσ ) does not give any contribution to the divergences and, 
therefore, it can be omitted. The coefficients ωR and ωRic (76) stay for ωR,n+N and ωRic,n+N
respectively. The tensor V is linear in a curvature tensor (R), while the tensor U contains con-
tributions quadratic in curvature (R2) and also terms with two covariant derivatives on one 
curvature (∇2R). We obtain expressions for U , V and W tensors by contracting the operator 
Ĥμν,αβ with the inverse de Witt metric and extracting at the end covariant derivatives. They 
have the canonical position of first matrix indices (two down followed by two up) thanks to the 
application of this metric in the field fluctuation space.

The one-loop effective action is defined by [20]


(1)[g] = −i lnZ[g] = SHD[g] + i

2
ln Det(Ĥ ) − i ln Det(M̂) − i

2
ln Det(Ĉ). (77)

Once the relevant contributions to the operator Ĥ are known we can apply the Barvinsky–
Vilkovisky method [37] to extract the divergent part of ln Det(Ĥμν,αβ). It is noteworthy that the 
formalism in [37] has been derived only in D = 4 and its generalization to an arbitrary number 
of dimensions requires some extra efforts.

The explicit calculation of Ĥ in a D-dimensional spacetime goes beyond the scope of this 
paper and here we only offer the schematic tensorial structure in terms of the curvature tensors 
of the background metric and its covariant derivatives. For the action in (71), where we have only 
terms with maximal number of derivatives, here given by 2n +2N +4 and with front coefficients 
ωRic and ωR, the matrix in fully covariant form Hμν,ρσ consists solely of the terms coming from 
the vertices proportional to the non-running constants ωRic and ωR,

Ĥμν,ρσ = G−1
μν,αβ

(�n+N+2 + V
αβ(n+N+2) λ1...λ2n+2N+2
ρσ︸ ︷︷ ︸

∼R

∇λ1 · · ·∇λ2n+2N+2

+ W
αβ(n+N+2) λ1...λ2n+2N+1
ρσ︸ ︷︷ ︸

∼∇R

∇λ1 · · ·∇λ2n+2N+1

+ U
αβ(n+N+2) λ1...λ2n+2N
4 ρσ︸ ︷︷ ︸

2 2

∇λ1 · · ·∇λ2n+2N (78)
∼R +∇ R
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+ U
αβ(n+N+2) λ1...λ2n+2N−1
5 ρσ︸ ︷︷ ︸

∼∇R2+∇3R

∇λ1 · · ·∇λ2n+2N−1

+ U
αβ(n+N+2) λ1...λ2n+2N−2
6 ρσ︸ ︷︷ ︸

∼R3+∇2R2+∇4R

∇λ1 · · ·∇λ2n+2N−2 + . . .

+ U
αβ(n+N+2) λ1...λ2n+2N+4−D

D ρσ︸ ︷︷ ︸
∼RD/2+...+∇D−2R

∇λ1 · · ·∇λ2n+2N+4−D
+ O(∇2n+2N+3−D)

)
. (79)

We wrote above only terms giving rise to quantum divergences. We explicitly showed the rela-
tionship of the tensors

V (i), W(i), U
(i)
4 , U

(i)
5 , . . . ,U

(i)
D

(for the case i = n + N + 2) to the background curvature tensors and its covariant derivatives. 
Employing the universal trace formulae of Barvinsky and Vilkovisky [37]

Tr ln�∣∣∣
div

∼ 1

ε

∫
dDx

√|g|
(
RD

2 + ∇2RD
2 −1 + . . . + ∇D−2R

)
, (80)

∇p 1

�N+n+2
δ(x, y)

∣∣∣y→x

div
∼ 1

ε

(
R

p
2 −(n+N+2)+ D

2 + . . . + ∇p−2n−2N−6+DR
)

(p � 2n + 2N + 4) , (81)

we can derive the following divergent contribution to the effective action,



(1)
div ∼ −1

ε

∫
dDx

√|g|
[
βλ̄ − 2β

κ−2
D

R +
N∑

i=0

(
βai

R �iR + βbi
Rμν�iRμν

)

+
N+2∑
j=3

j∑
k=3

∑
i

β
c
(j)
k,i

(
∇2(j−k)Rk

)
i

]
,

where all the beta functions depend on the “non-running” constants ωRic,i or ωR,i .
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