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Abstract

In this thesis the potential of the ATLAS detector to exclude or discover
quark compositeness is studied in detail. There were four different sensitive
analysis methods developed for this purpose. These methods use a detailed
information about inclusive dijet pT-spectrum or dijet angular distribution and
two of them use Bayesian technique (as is usual in similar analyses at Tevatron).
For all four methods a larger number of systematic errors was taken into account
and their influence was studied in detail too.

It is also shown, that the early data exclusion limit on quark compositeness
reachable by the ATLAS experiment is Λ+

LL = 10.3 TeV at 95% C.L with
100 pb−1 of collision data of a sufficient quality. This limit is considerably higher
than the current limit known from Tevatron: Λ+

LL = 2.7 TeV at 95% C.L. The
highest exclusion limit on quark compositeness with expected total amount of
data to be collected by the ATLAS experiment is above 22 TeV, assuming 3%
jet energy scale uncertainty.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN will move the frontiers of contem-
porary particle physics much further, with its extraordinary high luminosity
and collision energy. With its two multipurpose detectors ATLAS and CMS it
will also bring an unprecedented opportunity to study a substructure of quarks
– quark compositeness – a subject of interest in this paper. In this chapter we
will first outline the physics expectations laid on the ATLAS experiment and
physics motivation of our study and then briefly describe the structure of this
paper.

1.1 Physics motivation

Let us recall some of the main questions we would like to answer in particle
physics:

Do the forces in nature unify? Recalling the history of unification (elec-
tricity and magnetism, electromagnetic and weak forces) it would be desirable
to unify strong, electroweak and gravitational force. Within Standard Model
(SM) this can not happen at Planck scale (1019 GeV), but already if Supersym-
metry (SUSY) is added it is feasible. So is the Supersymmetry the right way
to go? If yes, the ATLAS detector has a great potential to discover some of the
predicted supersymmetric particles.

What gives particles mass? According to SM as the particles are moving
through the Higgs field, it increases their resistance to movement and they ac-
quire mass. The Higgs boson, creating this field, is the last missing cornerstone
of SM. Today we know its mass must lie in the range 114 Gev < MH < 1.2 TeV.
Several processes of Higgs boson decay were chosen as a benchmark for the de-
sign of the ATLAS detector.

What is dark mater? Planets, stars, baryonic dark matter,... all these
make up to ≈ 4% of the universe. 22 % is non-baryonic Dark matter and 74 %
Dark Energy [71]. An evidence for Dark matter comes from observation of
galaxy rotation curves and collisions of galaxy clusters, microwave background
anisotropies, type Ia supernovae, weak lensing, etc. Some of the cold dark
matter particle candidates, such as SUSY neutralino χ might be measured also
under ATLAS experimental conditions.
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Apart from discovering new kinds of particles, the ATLAS experiment should
confirm characteristics of particles already known. Today quarks are known as
fundamental point-like particles with no observed substructure. This fact can
be expressed in a lower cut on quark compositeness scale Λ. The model of
quark compositeness used here is based on left-left isoscalar contact interaction
effective lagrangian with destructive interference [11], Λ is then denoted as Λ+

LL.
The latest results from Tevatron (see Sec. 3.4) show that Λ+

LL > 2.7 TeV at
95% C.L. As will be shown in this study, the ATLAS detector can move this
frontier quickly much further – to Λ+

LL > 10.3 TeV at 95% C.L with already
100 pb−1 of collision data of a sufficient quality, which might be available al-
ready during the first year of its operation. Moreover with all expected collected
data at 300 fb−1, the compositeness frontier will be moved above 22 TeV, un-
less quark compositeness is really discovered. The ATLAS detector potential
of quark compositeness discovery is also analysed in this study.

Quark compositeness would be the most pronounced in high-pT region of in-
clusive dijet pT spectra, where it would cause an excess of events, or in inclusive
dijet angular distribution spectra, where it would cause and excess of events in
the central region. Four analysis methods for these two kind of distributions
were developed and their sensitivity to quark compositeness and to systematic
errors is discussed in detail.

1.2 Structure of this paper

The content of this paper is organised as follows:
In chapter 2 aspects of perturbative QCD necessary for our study are dis-

cussed. Following chapter 3 brings a brief overview of quark compositeness
models and the description of the model used for this study and its implemen-
tation in used Monte Carlo generator. Chapter 4 presents the ATLAS detector
at LHC with its sub-detectors and read-out systems. In the next chapter 5 the
strategy of jet reconstruction and calibration used for full simulation data, and
in the near future also for the physics data, is discussed together with expected
jet energy scale uncertainties that must be taken into account in every analysis
using jets. Chapter 6 brings a description of simulated datasets used in this
study and an overview of jet reconstruction in fast simulation. All four analysis
methods and sources of systematic errors are also discussed therein. Results of
analysis of inclusive dijet pT spectrum are contained in chapter 7, and results
of analysis of inclusive dijet angular distribution are presented in chapter 8. Fi-
nally, results from all four analysis methods are briefly summarised in chapter
9, conclusions are presented in the last chapter 10.
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Chapter 2

Aspects of QCD

An underlying theory for this study is perturbative Quantum Chromodynamics
(pQCD), a very successful theory of strong interaction. In our search for quark
compositeness we will focus on spotting of discrepancies between QCD predic-
tions and measured data. In this Chapter a brief review of QCD aspects, the
most important ones for this study, is presented. Unless stated otherwise, the
facts in this Chapter were taken from [1], [2] and a review article [3], tailored
to the needs of physics at LHC.

2.1 QCD Langrangian

An experimental evidence that quarks come in three colours was obtained al-
ready several decades ago. Another quark quantum number, colour, was re-
quired in order to explain an existence of baryon ∆++ with spin 3/2. More-
over, cross-sections and decay rates of various processes depend on number of
colours, Nc, e.g σ(e+e− → hadrons) ∝ Nc and Γ(π0 → γγ) ∝ N2

c .
QCD is a Yang-Mills gauge theory with SU(3) symmetry. Quarks are put

in triplets:

Ψq(x) ≡





Ψq
1(x)

Ψq
2(x)

Ψq
3(x)



 , (2.1)

where q is a quark flavour. Invariance under local SU(3) transformations is
required. QCD Lagrangian reads:

LQCD = −1

4
F a

µνF aµν +
∑

q

Ψ
q
i (iγ

µDµij − mqδij)Ψ
q
j + Lgauge fixing (2.2)

+ Lghost,

F a
µν = ∂µAa

ν − ∂νA
a
µ + gsf

abcAb
µAc

ν ,

Dµij = δij∂µ − igsT
a
ijA

a
µ,

where gs is the QCD coupling constant, fabc are the structure constants of
SU(3): [T a, T b] = ifabcT c (a, b, c = 1,...,8), Aa

µ are the 8 gluon fields. T a
ij are
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8 ’colour matrices’, i.e. generators of the SU(3) transformation acting on the
fundamental (triplet) representation:

T a
ij =

1

2
λa

ij, (2.3)

where λa
ij are Gell-Mann matrices. This corresponds to the normalisation

Tr(T aT b) = T a
ijT

b
ji =

1

2
δab. (2.4)

The QCD Lagrangian is invariant under local SU(3) transformations:

Ψ → exp

(

i

8
∑

a=1

T aωa(x)

)

Ψ (2.5a)

Aa
µ → Aa

µ − 1

gs
∂µωµ(x) −

8
∑

b,c=1

fabcωb(x)Ac
µ. (2.5b)

In order to quantise the theory and reduce the number of degrees of freedom
of the gauge fields, one needs to introduce a gauge fixing term. In case of
covariant gauges, the Lgauge fixing term in Eq. (2.2) takes form

Lgauge fixing =
1

2α

∑

a

(∂µAa
µ)2, (2.6)

and additional non-physical ghost fields are required to guarantee the uni-
tarity of the theory. Putting α = 1 defines so-called Feynman gauge.

In case of non-covariant (axial) gauges, the gauge fixing term reads

Lgauge fixing =
1

2α

∑

a

(nµAa
µ)2, (2.7)

and no ghost fields are required. Nevertheless, it was proven, that physical
quantities are independent of the choice of gauge fixing term.

2.1.1 QCD coupling constant

When calculating invariant amplitudes corresponding to diagrams with loops,
one must face the ultraviolet (UV) divergences, associated with infinite loop
momenta. In order to manage such divergences and also to give the theory a
better physical meaning the renormalisation procedure is used, which replaces
divergent contributions with finite expressions in a systematic way. The price
one has to pay for that, is an introduction of renormalisation scale µ. Physical
quantities are independent of µ, only if all orders of perturbation expansion are
involved. The higher the number of orders involved, the smaller the dependence
on µ.

Renormalised strong coupling constant satisfies

g(µ) = g0 + g3
0

[

b ln
M

µ
+ c

]

+ . . . , (2.8)
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where g0 is the bare coupling and M the UV cut-off for divergent loop in-
tegrals. Eq. (2.8) represents already a particular convention. We could have
defined another coupling, g′, by say replacing µ→2µ. But in general, the cou-
pling constants in two different schemes will be related by:

g′(µ) = g(µ)
[

1 + κg2(µ) + . . .
]

. (2.9)

The dependence of g(µ) on µ can be written as

µ
∂

∂µ
g(µ) = −bQCD g3(µ) + O(g5(µ)) = −β(g(µ))g(µ), (2.10)

where nf is the number of quark flavours, bQCD = 1
16π2

(

11 − 2
3nf

)

and the
β-function reads

β(g) = β0
g2

16π2
+ β1

(

g2

16π2

)2

+ . . . . (2.11)

Note, that in Eq. (2.10), the factor bQCD is positive - that is an opposite
situation with respect to QED.

In principle one can solve the Eq. (2.10) in terms of g(µ0), determined
from experiment. Explicit leading order solution (so-called running coupling
constant) reads

g2(µ) =
g2(µ0)

1 + g2(µ0)b ln(µ2/µ2
0)

. (2.12)

Introducing αs = g2/(4π), the experimental value for strong coupling con-
stant is αs(MZ) = 0.118 at a scale µ0 = MZ. The interpretation of this result
is that the closer the quarks are to each other (the higher the scale µ is), the
weaker is the ’colour charge’ and the quarks behave almost like free particles.
This phenomenon is called asymptotic freedom and it is one of the corner-stones
of QCD.

2.1.2 Relevant invariant amplitudes

QCD processes will form most of the background, when searching for quark
compositeness. Leading order invariant amplitudes for such relevant processes
are listed in Tab. 2.1, as taken from [2]. The normalisation is such that

dσ

dt
=

1

16πs2
|M |2, (2.13)

s, t and u are Mandelstam variables.
Relative contribution of various initial parton state channels to jet inclusive

pT spectrum are depicted in Fig. 2.1.
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Process 1
g4 |M |2

qαqβ→qαqβ
2
9

[

2(s2+u2)
t2

+
(

2(t2+s2)
u2 − 1

3
4s2

ut

)

δαβ

]

qαq̄β→qαq̄β
2
9

[

2(s2+u2)
t2

+
(

2(t2+u2)
s2 − 1

3
4u2

st

)

δαβ

]

qg→qg
[(

1 − us
t2

)

− 4
9

(

s
u + u

s

)

− 1
]

gg→qq̄ 1
6

[

u
t + t

u

]

− 3
4

[

1 − ut
s2

]

+ 3
8

qq̄→gg 64
9 M(gg→qq̄)

gg→qq 8
9

[

−33
4 − 4

(

us
t2

+ ut
s2 + st

u2

)]

+ 9
16

[

45 −
(

s2

ut + t2

us + u2

ts

)]

Table 2.1: Spin and colour averaged absolute squares of invariant amplitudes
for the simplest two-body QCD processes.
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Figure 2.1: Relative contribution of various initial parton state channels to jet
inclusive pT spectrum. Calculated in Pythia with CTEQ6L1 pdf.
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2.2 Parton showers

Using a leading-order matrix elements leads to an inherent dependence on un-
physical renormalisation and factorisation scale, which is often large. One way
to reduce this source of theoretical uncertainty is to use higher orders in the
perturbative expansion of a given observable. Another way, widely used in
Monte Carlo generators, is a sort of “all orders” approach - parton showers.1

By use of parton showers a few partons produced in a hard interaction at
a high energy scale can be related to partons at an energy scale close to ΛQCD

2.
At this lower energy scale, a universal non-perturbative model can then be

used to provide the transition from partons to the hadrons that are observed
experimentally. This is possible because the parton showering allows for the
evolution, using the DGLAP formalism, of the parton fragmentation function.
The solution of this DGLAP evolution equation can be rewritten with the help
of Sudakov form factor, which indicates the probability of evolving from a higher
scale to a lower scale without the emission of a gluon greater than a given value.
For the case of parton showers from the initial state the evolution proceeds
backwards from the hard scale of the hard process to the cutoff scale with the
Sudakov form factors being weighted by the pdfs at the relevant scales.

We can write an expression for the Sudakov form factor of an initial state
parton as

∆(t) ≡ exp

[

−
∫ t

t0

dt′

t′

∫

dz

z

αS

2π
P (z)

f(x/z, t)

f(x, t)

]

, (2.14)

where t is the hard scale, t0 is the cutoff scale and P (z) is the branching function
(see also Sec. 2.3.1) for the branching under consideration. The Sudakov form
factor has a similar form for the final state parton but without the pdf weighting.
The introduction of the Sudakov form factor re-sums all the effects of soft and
collinear gluon emission, which leads to well-defined predictions even in these
kinematic regions.

To sum up, parton showers provide an excellent description in regions which
are dominated by soft and collinear gluon emission. On the other hand matrix
element calculations provide a good description of processes, where the partons
are energetic and widely separated and, in addition, include the effects of in-
terference between amplitudes with the same external partons. One attempt
to merge these approaches, CKKW formalism, is implemented in Monte Carlo
generator SHERPA and an approximate version also in ALPGEN 2.0.

2.3 Parton distribution functions

Protons are not fundamental particles, they have an inner structure. What
we observe during hard collisions of protons are interactions between proton

1 Numerical implementation done in Monte Carlo generators Pythia or HERWIG and
SHERPA.

2The scale parameter ΛQCD can be formulated in terms of µ0 from Eq. (2.12) as
Λ2

QCD = µ2
0 exp(−1/(b g2(µ0)). Eq. (2.12) can be then rewritten as g2(µ) = 1/(b ln(µ2/Λ2

QCD)).
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constituents – partons (quarks and gluons). The proton structure was probed
in detail in deep inelastic scattering (DIS) experiments – collisions of leptons
and protons. A scheme of DIS process is depicted in Fig. 2.2.

�qµ

proton, pµ

e−

X

e−

Figure 2.2: A scheme of deep inelastic scattering process e + p → e + X.

Standard variables used to describe this process are

Q2 = −q2, (2.15a)

x =
Q2

2pq
, (2.15b)

y =
Q2

xs
, (2.15c)

where s is the the Mandelstam variable. In general, for a corresponding cross-
section, we can write

dσ

dxdQ2
=

4πα2

Q4

[

y2F1(x,Q2) + 2(1 − y)
1

x
F2(x,Q2)

]

, (2.16)

where the Fi(x,Q2) are called structure functions. At the beginning of these
measurements, the experimental data showed, that for Q2 > 1 GeV2 the struc-
ture functions almost do not depend on Q2 and are constant to a good approx-
imation. Thus Fi(x,Q2)→Fi(x). This is so-called Bjorken scaling. Later we
will comment on the fact, how this independence is violated.

There is an important relation between the two structure functions, called
Callan-Gross relation:

F2(x) = 2xF1(x). (2.17)

This relation was confirmed experimentally and provides a convincing evi-
dence that charged partons carry spin 1/2.

The structure function F2 is directly related to the parton distribution func-
tions (pdfs), qi(x), describing the probability density of finding a parton type
i, carrying a fractional nucleon momentum x inside the nucleon:
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F2(x) =
∑

i

x e2
i qi(x), (2.18)

where ei is the electric charge of parton type i. The independence on Q reflects
our assumption of partons behaving as asymptotically free particles.

2.3.1 pdf evolution

Later experiments showed, that the structure function data do exhibit system-
atic violations of Bjorken scaling. This is due to quarks emitting gluons during
the collision. So far we have considered quarks and gluons as free particles
before and after the collision, even though they are confined within the hadrons
and behave like free particles only when probed at short distances. Renor-
malised, or dressed, pdfs take this behaviour into account and they also explain
the violation of Bjorken scaling.

Let us first consider interactions of partons with their own chromodynamic
field. These interactions lead to a non-zero probability of finding parton of one
type within another parton, which is expressed in QCD branching functions.
In leading order3:

P (0)
qq (x) = P

(0)
q̄q̄ (x) =

4

3

[

1 + x2

1 − x

]

+

, (2.19)

P
(0)
Gq (x) = P

(0)
Gq̄ (x) =

4

3

[

1 + (1 − x)2

x

]

,

P
(0)
qG (x) = P

(0)
q̄G (x) =

[

x2 + (1 − x)2

2

]

,

P
(0)
GG(x) = 6

([

x

1 − x

]

+

+
1 − x

x
+ x(x − 1) +

(

33 − 2nf

36
− 1

)

δ(1 − x)

)

,

where e.g. P
(0)
qG is a probability to find a quark inside gluon that would carry

a fractional momentum x of the original gluon momentum. All these branching
functions are the same for all quark flavours.

In a situation described in previous section, corresponding to Eq. (2.18), the
quark was assumed to have no chromodynamic field around itself – so-called bare
quark. Now we can consider a situation, when the bare quark, before interacting
with the probing photon, emits gluons as depicted in Fig. 2.3. When we sum
up all the contributions in Fig. 2.3, we define the renormalised, or dressed quark
distribution functions, q(x, µ):

3The “+” distribution in first function is defined as:

[f(x)]+ ≡ limβ→0+

“

f(x)θ(1 − x − β) − δ(1 − x − β)
R 1−β

0
f(y)dy

”

.
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q(x, µ) ≡ q0(x) +

∫ 1

x

dy

y

[

P (0)
qq

(

x

y

)∫ µ2

m2

dτ1

τ1

αs(τ1)

2π

]

q0(y) +

+

∫ 1

x

dy

y

∫ 1

y

dw

w

∫ µ2

m2

dτ1

τ1

∫ τ1

m2

dτ2

τ2

αs(τ1)

2π

αs(τ2)

2π
×

×
[

P (0)
qq

(

x

y

)

P (0)
qq

( y

w

)

]

qNS,0(x) + . . . , (2.20)

where m is an infrared cut-off, the scale µ has the meaning of maximal virtuality
of the quark which interacts with the photon in the upper, QED, vertex of
Fig. 2.3 and it corresponds to the factorisation scale. At the leading order, the
dressed distribution functions correspond to the valence ones used in Eq. (2.18).

�
x

γ

q0(x)

+

�y

x,τ1

γ

q0(y)

+

�w

y,τ2

x,τ1

γ

q0(w)

+ . . .

Figure 2.3: Diagrams contributing to the dressed parton distribution function
of the non-singlet quark inside a given hadron. τi denote absolute value of the
virtuality of a given intermediate state.

q(x, µ) are not calculable in perturbation theory. Nevertheless its scale
(µ) dependence is. In the leading order this dependence is given by DGLAP
evolution equations, [7]:

dqi(x, µ)

d ln µ
=

αS(µ)

π

[∫ 1

x

dy

y
P (0)

qq

(

x

y

)

qi(y, µ) +

∫ 1

x

dy

y
P

(0)
qG

(

x

y

)

G(y, µ)

]

,

dq̄i(x, µ)

d ln µ
=

αS(µ)

π

[∫ 1

x

dy

y
P (0)

qq

(

x

y

)

q̄i(y, µ) +

+

∫ 1

x

dy

y
P

(0)
qG

(

x

y

)

G(y, µ)

]

, (2.21)

where the gluon distribution function G(x, µ) satisfies similar evolution equation
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dG(x, µ)

d lnµ
=

αS(µ)

π

[

∫ 1

x

dy

y
P

(0)
Gq

(

x

y

) nf
∑

i=1

[qi(y, µ) + q̄i(y, µ)] (2.22)

+

∫ 1

x

dy

y
P

(0)
GG

(

x

y

)

G(y, µ)

]

.

While P (0) are uniquely defined, P (1)’s, used in higher order, are arbitrary.
Choice of P (1)’s defines the factorisation scheme. Similarly higher order terms
in Eq. (2.11) are arbitrary and their choice defines the renormalisation scheme.

A comparison of HERA and LHC parton kinematics is shown in Fig. 2.4.
In case of pdfs, a transition in Q2 from HERA to LHC parton kinematics region
can be done using the DGLAP equations.

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
100

101

102

103

104

105

106

107
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109

fixed
target

HERA

x1,2 = (M/14 TeV) exp(±y)

Q = M

M = 10 GeV

M = 100 GeV

M = 1 TeV

M = 10 TeV

66y = 40 224

Q
2    

(G
eV

2 )

xFIG. 3. A plot of LHC parton kinematics in (x;Q2) space. Also shown are the reach of �xed targetand HERA experiments.III. PARAMETERIZATIONS AND SCHEMESA global pdf analysis carried out at next-to-leading order needs to be performed in aspeci�c renormalization and factorization scheme. The evolution kernels are in a speciicscheme and to maintain consistency, any hard scattering cross section calculations used forthe input processes or utilizing the resulting pdf's need to have been implemented in thatsame renormalization scheme. Almost universally, the MS scheme is used; pdf's are alsoavailable in the DIS scheme, a �xed 
avor scheme (a la GRV [7]) and several schemes thatdi�er in their speci�c treatment of the charm quark mass. The choices for the latter are:zero-mass-charm parton, no charm parton (the �xed 
avor scheme above) and massive-charmpartons. The emergence of quantitative data on charm and bottom production requires a6

Figure 2.4: Accessible LHC Parton Kinematics. Dependence on rapidity y is
also shown.

2.3.2 pdf uncertainties

The calculation of the production cross section at hadron colliders relies upon
a knowledge of the distribution of the momentum fraction x of the partons in
a proton in the relevant kinematic range. These pdfs are determined by global
fits to deep inelastic scattering (DIS), Drell-Yan (DY) and jet production at
current energy ranges. In this study we use two major pdf sets, CTEQ [5], and
MRST [6], enabling also uncertainty studies.

11



A global pdf analysis carried out next-to-leading order needs to be performed
in a specific renormalisation and factorisation scheme. Among others, the MS
scheme is the most often used one. All global analyses use a generic form for
the parameterisation of both the quark and gluon distribution at some reference
value Q0:

F (x,Q0) = A0x
A1(1 − x)A2P (x;A3, . . .) (2.23)

The reference value Q0 is usually chosen in the range of 1-2 GeV. The
parameter A1 is associated with small-x behaviour, while A2 is associated with
large-x valence counting rules. The term P (x;A3, . . .) is a suitably chosen
smooth function.

A conventional method of estimating parton distribution uncertainties has
been to compare different published parton distributions. This is unreliable,
since most published sets of pdfs adopt similar assumptions. The sum of the
quark distributions is, in general well-determined over a wide range of x and Q2.
The individual quark pdfs are known to less accuracy. And the most uncertain
are the gluon distribution functions.

CTEQ and MRST use Lagrange Multiplier and Hessian techniques. In the
Hessian method a large matrix (20 × 20 for CTEQ, 15 × 15 for MRST), with
dimension equal to the number of free parameters used for the fit, has to be
diagonalized. The result is 20 (15) orthonormal eigenvector directions for CTEQ
(MRST) which provide the basis for determination of the pdf error for any cross
section. The eigenvectors are now admixtures of the 20 pdf parameters left free
in the global fit. The larger eigenvalues correspond to directions which are
well-determined; for example, eigenvectors 1 and 2 are sensitive primarily to
the valence quark distribution at moderate x, a region where they are well-
constrained. Eigenvector 5 (pdfs 9 and 10) is most sensitive to the low x
behaviour of the gluon distribution. Eigenvector 15 in the CTEQ6M1 error pdf
set is sensitive to the high x gluon behaviour and thus influences high-pT jet
cross section behaviour.

Each error pdf results from an excursion along the “+” and “−” directions
for each eigenvector. In CTEQ6M1 the excursions in parametric space result in
symmetric “+” and “−” error pdfs for the first 10 eigenvectors but can result
in asymmetric4 error pdfs for the last 10. CTEQ6M1 has 40 error pdfs.

Perhaps the most controversial aspect of pdf uncertainties is the determina-
tion of the ∆χ2 excursion from the central value to determine a reasonable error.
CTEQ uses ∆χ2 value of 100 (corresponding to 90 % CL limit) while MRST uses
a value of 50 (corresponding also roughly to 90 % CL limit). Thus, in general,
the pdf uncertainties will be larger for CTEQ than for MRST. The uncertain-
ties for all predictions should be linearly dependent on the tolerance parameter
used; thus it should be reasonable to scale the uncertainty for an observable
from 90 %CL limit provided by the CTEQ/MRST error pdf to a one-sigma
error by dividing by a factor of 1.64.

4In other words, the resulting “+” and “−” pdfs for a given eigenvector both lie below or
both lie above the central “best fit” pdf.
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2.3.3 Master equation

For an observable X let us denote its value using the central pdf X0. X+
i

(X−

i ) is the value of that variable using the pdf corresponding to the “+”
(“−”) direction for the eigenvector i. In order to calculate the pdf error for an
observable, the Master Equation is used:

∆X+
max =

√

√

√

√

N
∑

i=1

[

max(X+
i − X0,X

−

i − X0, 0)
]2

∆X−

max =

√

√

√

√

N
∑

i=1

[

max(X0 − X+
i ,X0 − X−

i , 0)
]2

(2.24)

The addition in quadrature is justified by the eigenvectors forming an or-
thonormal basis. Either X0 and X±

i can be calculated separately in matrix
element/Monte Carlo program (requiring the program to be run 2N + 1 times)
or X0 can be calculated with the program and at the same time the ratio of the
pdf luminosities (the product of the two pdfs and the x values used in the event
generation) for eigenvector i (±) to that of the central fit can be calculated
and stored (pdf re-weighting). This results in an effective sample with 2N + 1
weights, but identical kinematics, requiring a substantially reduced amount of
time to generate.

An example of pdfs and pdf uncertainties for various partons is shown in
Fig. 2.5.

2.3.4 pdf re-weighting

For each event n, generated with the central pdf, and each pdf member i from
given pdf set (containing 1 central + NPDF error members), a weight W i

n can
be calculated.

W i
n =

f(x1, Q;Si)f(x2, Q;Si)

f(x1, Q;S0)f(x2, Q;S0)
, (2.25)

where n = 1, . . ., Nevents, i = 0, . . .,NPDF and Si denotes individual pdf set
member. Weight W 0

n for the central pdf is equal to 1 by definition. Compared
to standard approach, each event is simulated only once, so the kinematics do
not change and there is no residual statistical variation in uncertainty.

One concern involved in this method is that re-weighting events does not
correctly modify the Sudakov form factors, used for parton showers calculations
(see Sec. 2.2), it only affects the hard process. However, the impact of this
was shown negligible [8]. The weighting method is theoretically correct only
in the limit, when all possible initial states are populated. For this reason,
it is important that reasonably high statistics is generated when using this
technique. Any analysis sensitive to the extreme tails of distribution should use
this method with caution. More detailed information can be found in [9].
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Figure 2.5a: CTEQ6M1 pdf error bands for up and down quark (left, right).
MRST2004 NLO central pdf values are also shown (red line), and usually lie
within the CTEQ error band. Differences between central pdfs from various
pdf sets are usually smaller, than pdf uncertainties within a given pdf set due
to the fit procedure.

Figure 2.5b: The largest pdf uncertainties at high x are caused by our ig-
norance of gluon distribution (left). Comparison of CTEQ6M1 central pdf
values for various partons (right). All figures obtained using a macro at
http://durpdg.dur.ac.uk/hepdata/pdf3.html.
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2.4 Hard scattering formalism and the QCD factori-

sation theorem

The following was adopted from [3]. We begin 30 years ago with the production
of massive lepton pair by quark-antiquark annihilation - the Drell-Yan process.
It was postulated that the hadronic cross-section σ(AB → µ+µ− +X) could be
obtained by weighting the subprocess cross section σ̂ for qq̄ → µ+µ− with the
parton distribution functions fq/A(x) extracted from deep inelastic scattering:

σAB =

∫

dxadxbfa/A(xa)fb/B(xb)σ̂ab→X , (2.26)

where for the Drell-Yan process, X = l+l− and ab = qq̄, q̄q. The good agree-
ment between theoretical predictions and the measured cross sections provided
confirmation of the parton model formalism. Studies were successfully extended
to other hard scattering processes, for example the production of hadrons and
photons with large transverse momentum. Problems, however, appeared with
perturbative corrections from real and virtual gluon emissions. Large loga-
rithms from gluons emitted collinear with the incoming quarks spoil the con-
vergence of the perturbative expansion. But it turned out that they can be
factored into renormalised parton distributions, (2.26) then becomes:

σAB =

∫

dxadxbfa/A(xa, Q
2)fb/B(xb, Q

2)σ̂ab→X . (2.27)

The Q2 that appears in the pdfs is a large momentum scale that characterises
the hard scattering, e.g. M2

l+l− , p2
T, ...

The last step was the recognition that the finite corrections left behind after
the logarithms had been factored were not universal and had to be calculated
separately for each process. Schematically

σAB =

∫

dxadxbfa/A(xa, µ
2
F )fb/B(xb, µ

2
F )× [σ̂0 +αS(µ2

R)σ̂1 + . . .]ab→X . (2.28)

Here µF is the factorisation scale, which can be thought of as the scale that
separates the long- and short-distance physics, and µR is the renormalisation
scale for the QCD running coupling.
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Chapter 3

Quark compositeness

The quark and lepton compositeness models were the most popular among
theorists in 1980th. Until present, no signs of compositeness have been observed
by any experiment. Nevertheless, it still remains an interesting question, how
precisely the inclusive jets cross-sections follow the Standard model predictions,
whether possible discrepancies between theory and data are large enough to
point on compositeness or other physics beyond the Standard model. Such
a question should also be answered by the data from ATLAS detector.

In this section, let us start with a brief review of more advanced composite-
ness models, then describe a model used for our analysis, and eventually review
the present-day limits for quark compositeness.

3.1 Rishon and preon models

When speaking about compositeness, let us mention at least some of the theo-
retical models describing the hypothetical constituents of quarks and leptons.

3.1.1 Rishon model

The rishon model [19] is based upon SU(3)H × SU(3)C × U(1)EM gauge in-
variant lagrangian. The fundamental particles are two types of rishons (one
fermion with charge 1/3 e denoted by T and one neutral fermion, denoted by
V), hypergluons, gluons and the photon. No fundamental scalar exists. Below
the hypercolor scale ΛH only SU(3)H singlets exist. The simplest composite
fermions are made of three rishons or three antirishons and reproduce the ob-
served properties of one generation of quarks and leptons. The weak interaction
appears only at the composite level as residual short-range interaction among
hypercolor singlets.

The ingredients of first generation of composite fermions are presented in
Tab. 3.1.

The rishon model thus solves the vanishing sum of all quark and lepton
charges in one generation. The renormalisability of the standard model requires
the absence of ABJ anomalies, leading to the constraint
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TTT (e+) T̄T̄T̄ (e−)
TTV (u) T̄T̄V̄ (ū)
TVV (d) T̄V̄V̄ (d̄)
VVV (νe) V̄V̄V̄ (ν̄e)

Table 3.1: The ingredients of first generation of composite fermions in the rishon
model.

Q(e−) + Q(νe) + 3Q(u) + 3Q(d) = 0. (3.1)

The total rishon content of e−, ν, u and d is 6T + 6T̄ + 6V+ 6V̄. Hence the
sum of all electric charges vanishes.

One might raise the question, what is the value of scale ΛH . The answer
comes from an analysis of proton decay in rishon model. The authors claim,
that to the lowest order in ΛH (i.e. τp ∼ O(Λ4

H)), proton decay is forbidden. It
is allowed in higher orders and one then obtains

τp ∼ Λ8
H/M9, (3.2)

where the mass factor M may involve quark, lepton, proton or W masses. In
case of proton decay the experimental limit on τp yields ΛH ∼ 108 GeV, well
beyond capabilities of nowadays colliders.

3.1.2 Preons, tweedles, helons

The first model based on compositeness of quarks and leptons was developed
by Pati and Salam [20] in 1974. They called their hypothetical constituent par-
ticles preons and this name was later adopted to refer to sub-quark/sub-lepton
particles of any model. Unfortunately, this model lacked any real explanatory
power.

The Rishon model, mentioned above, was further used as an inspiration for
the Helon model, pedagogically described in [21]. The Helon model uses even
lower level fundamental objects, they could be represented as twists through
±π in a ribbon. A twist through π is called U and twist through −π is called
E. They both are called tweedles and can be left- or right-handed. Tweedles
combine in pairs called helons, forming three types of helons H+, H− and H0.
Helons are then bound into triplets.

In terms of the number of particles, the helon model is more economical,
than even the rishon model, despite allowing helons to be composite. The helon
model also improves on the original rishon model by explaining why the ordering
of helons (which are analogous to rishons) should matter. As an example, the
helon triplet H+H+H+ forms e+, H+H+H0 forms uB , but H+H0H+ forms uG,
where the subscripts of up quark denote colour charges of QCD.

In [21] there is also shown, how the Helon model describes antiparticles,
bosons, annihilation, electroweak interaction and other aspects of the Standard
Model. It has also ambitions to explain gravity and the origin of mass.
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Many other models of quark and lepton compositeness have been developed
in a hope to explain the existence of three generations of quarks and leptons,
the repetitive pattern of these generations, the connection between the electric
charges of quarks and leptons and the existence of more than 20 free parameters
in the standard model. All of these models are now lacking experimental data.
When the ATLAS data will be available, the first search for compositeness will
lead us to comparison of data and standard model predictions.

3.2 Contact interaction

If quarks and leptons are made of constituents, then at the scale of constituent
binding energy, there should appear new interactions among quarks and leptons.
If the compositeness scale (Λ) is much larger than

√
ŝ, the centre of mass energy

of the colliding partons, these interactions are suppressed by inverse powers of
Λ and the quarks and leptons would appear to be point-like. The dominant
effect should come from the lowest dimensional interactions with four fermions
(contact terms), whose most general chirally invariant form reads [10]:

L =
g2

2Λ2

[

ηLLΨLγµΨLΨLγµΨL + ηRRΨRγµΨRΨRγµΨR (3.3)

+ 2 ηLRΨLγµΨLΨRγµΨR

]

.

Usually less general form of Eq. (3.3) is used for practical calculations.
Typical combinations of values of the coefficients ηαβ are

(ηLL, ηRR, ηLR) = (±1, 0, 0) for Λ = Λ±

LL, (3.4)

(ηLL, ηRR, ηLR) = (0,±1, 0) for Λ = Λ±

RR,

(ηLL, ηRR, ηLR) = (±1,±1,±1) for Λ = Λ±

V V ,

(ηLL, ηRR, ηLR) = (±1,±1,∓1) for Λ = Λ±

AA.

Such interactions can arise by constituent interchange (when the fermions
have common constituents, e.g. for qq→qq) and/or by exchange of the binding
quanta, whenever binding quanta couple to constituents of both particles.

Another typical consequence of compositeness is the appearance of excited
leptons and quarks (l∗ and q∗). Phenomenologically, an excited lepton (quark)
is defined to be a heavy lepton (quark) sharing its leptonic number (flavour)
with one of the existing leptons (quarks).

The contact interaction compositeness model used in this study is depicted
in Fig. 3.1 and described by the following effective Lagrangian:

Lqqqq(Λ) =
ηg2

2(Λ+
LL)2q

Ψ̄L
q γµΨL

q Ψ̄L
q γµΨL

q , (3.5)

where η = 1 (destructive interference) and g2/4π = 1. Only quarks are consid-
ered composite, the case of composite leptons is not studied. For the sake of
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Figure 3.1: Feynman diagram of contact four-fermion interaction.

brevity let us further omit the sub- and superscripts of the compositeness scale:
Λ ≡ Λ+

LL. The lagrangian used for our simulations is the sum of the lagrangian
in Eq. (3.5) and QCD langrangian

L(Λ) = LQCD + ηLqqqq(Λ). (3.6)

When calculating relevant cross-sections, this yields for instance

dσΛ

dpT
=

dσ

dpT
(QCD) +

1

Λ2
I +

1

Λ4
C, (3.7)

where the first term on the r.h.s. is the Standard Model QCD contribution and
pT is the transverse momentum of an inclusive jet. I is caused by an interference
of QCD and the contact term (CT), and C is the pure contact term contribution
to the cross-section.

Employing Eq. (3.6) yields absolute squares of invariant amplitudes1 [11]

|A(ud→ud)|2 =
4

9
α2

s(Q
2)

s2 + u2

t2
+
( ηs

Λ2

)2
, (3.8a)

|A(ud̄→ud̄)|2 =
4

9
α2

s(Q
2)

s2 + u2

t2
+
(ηu

Λ2

)2
, (3.8b)

|A(uū→dd̄)|2 =
4

9
α2

s(Q
2)

t2 + u2

s2
+
(ηu

Λ2

)2
, (3.8c)

|A(uu→uu)|2 =
4

9
α2

s(Q
2)

[

s2 + t2

u2
+

s2 + u2

t2
− 2

3

s2

ut

]

(3.8d)

+
8

9
α2

s(Q
2)

η

Λ2
s2

(

1

t
+

1

u

)

+
8

3

( ηs

Λ2

)2
,

|A(uū→uū)|2 =
4

9
α2

s(Q
2)

[

u2 + t2

s2
+

s2 + u2

t2
− 2

3

u2

st

]

(3.8e)

+
8

9
α2

s(Q
2)

η

Λ2
u2

(

1

t
+

1

s

)

+
8

3

(ηu

Λ2

)2
,

such that

1Substitution q ↔ q̄ on l.h.s. yields substitution s↔u on r.h.s.
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dσ

dt
=

π

s2
|A|2. (3.9)

The strong coupling constant αs in Eqs. (3.8) is to be evaluated at a scale
Q2 typical of the process in question. The choice of Q2 is somewhat ambiguous
and thus brings in a systematic error, evaluated in Sec. 7.2.2 and Sec. 8.2.2.

3.2.1 Quark compositeness in Pythia

The Pythia program [14] was used to generate a large part of the Monte Carlo
data for this study. For this purpose, several questions or obstacles must have
been solved. At some point, these solutions have eventually become a part of
Pythia. Analysis that used older versions of Pythia are biased. Therefore it
might be useful to outline, what was found.

Firstly, there are two references in Pythia manual [13] concerning com-
positeness. These are [12] and [11]. The formulas for invariant amplitudes
|A(ud→ud)|2 and |A(uu→uu)|2 referenced therein are in contradiction. Eqs. (3.8)
are in agreement with [11] and we consider them as correct, [15]. We have ver-
ified, that these formulas were also implemented in Pythia [17].

Secondly, there was a problem of implementation of the interference term
in Eq. (3.7), which was after our intervention solved in Pythia 6.223 [17].

Finally, there was an obstacle with double counting of initial-state radiation,
when compositeness was switched on2. It was solved in version 6.404, [18, 16].
See also Fig. 3.2 for an illustration.
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Figure 3.2: Inclusive dijet pT spectra with various lower pT cuts (100, 200
and 300 GeV), generated in Pythia with quark compositeness switched on
(Λ = 3 TeV, MSEL=51, ITCM(5)=2, RTCM(42)=1), corresponding integral
luminosity 30 fb−1. Situation before version 6.404 (left) and from 6.404 on
(right), where the spectra at higher pT agree correctly with each other.

2To be precise, when MSEL=51 was turned on.
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3.2.2 NLO k-factors

The inherent uncertainty in the lowest order calculation derives from its depen-
dence on the unphysical renormalisation and factorisation scales, which is often
large. In order to compare with predictions that have smaller theoretical un-
certainties Next-to-leading order (NLO) calculations should be used. When the
NLO calculations of matrix elements are not available for a given physics chan-
nel, that is also the case for quark compositeness, they can be approximated
by using k-factor - a simple ratio of NLO and LO cross-sections. The ratio can
depend quite strongly on the pdfs that were used in both the NLO and LO
evaluations. k-factor depends strongly on the renormalisation and factorisation
scales at which it is evaluated.

The k-factor for quark compositeness is applied as follows:

σ(sm + ct)NLO =
σ(sm)NLO

σ(sm)LO
σ(sm + ct)LO, (3.10)

where σ(sm) is a cross-section for a given observable with QCD only and σ(sm+
ct) is a cross-section including the contact term (3.5) switched on.

3.3 Bayesian Technique

Before proceeding with Sec. 3.4, where present-day quark compositeness limits
are presented, it is necessary to illustrate Bayesian technique, [22], a widely used
statistical approach, when determining a lower limit on compositeness scale Λ.
Bayesian technique is also used in this study.

3.3.1 Bayes’ theorem

Let us have probability functions P (A), P (B) and conditional probability func-
tions P (A|B) and P (B|A). The Bayes’ theorem reads

P (A|B) =
P (B|A)P (A)

P (B)
. (3.11)

When combined with law of total probability

P (B) =
∑

i

P (B|Ai)P (Ai) (3.12)

it gives

P (A|B) =
P (B|A)P (A)

∑

i P (B|Ai)P (Ai)
, (3.13)

where the subset A could, for example, be one of the Ai. The most commonly,
the probability P (A) is assigned a value equal to the limiting frequency of
occurrence of A. This interpretation forms the basis of frequentists statistics.

Using subjective probability, however, P (A) is interpreted as a degree of
belief that the hypothesis A is true. Subjective probability is used in Bayesian,
as opposed to frequentists, statistics. Bayes’ theorem can be written as
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P (theory|data) ∝ P (data|theory)P (theory), (3.14)

where P (theory) is the prior probability, that the theory (any hypothesis)
is true. Prior must be guessed and is subjective. P (data|theory) is a probabil-
ity to have gotten the data actually obtained, given the theory, which is also
called the likelyhood. We are interested in resulting P (theory|data) - posterior
probability. Using subjective prior, being a matter of choice, brings a certain
systematic error into the analysis. Nevertheless, the posterior should depend
on prior only marginally, if the analysis is to be taken seriously.

Finally, the lower limit on compositeness scale Λlim corresponding to chosen
confidence level, C.L., is defined as:

∫ Λ−2
lim

0
P (Λ−2|d0)dΛ−2 = C.L. (3.15)

3.4 Present-day quark compositeness limits

The latest lower limits on quark compositeness come from analysis of the Teva-
tron data [25] and were obtained using Bayesian technique with prior flat in
ξ = 1/Λ, CTEQ3M pdfs and a scale µ = 0.5Emax

T . The values of the limits are:

Λ+
LL > 2.7 TeV at 95 % C.L.,

Λ−

LL > 2.4 TeV at 95 % C.L.

A comparison of dijet invariant mass data and theory is depicted in Fig. 3.3.
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Figure 3.3: The ratio of cross sections for |ηjet| < 0.5 and 0.5 < |η| < 1.0
for data (solid circles) and theory (various lines). The error bars show the
statistical and systematic uncertainties added in quadrature, and the crossbar
shows the size of the statistical error. Taken from [25].
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Chapter 4

The ATLAS detector at LHC

The new physics discoveries, outlined in Sec. 1.1, as well as precision measure-
ments in SM sector will require new experiments with outstanding performance,
both physical and technical. Nowadays there are four such experiments being
built along the LHC ring at CERN: two general-purpose experiments ATLAS
[29, 30, 31], and CMS [32], experiment ALICE [33] dedicated to the study of
heavy-ion collisions, and LHCb [34], dedicated to the study of B mesons rare
decays and CP violation.

In this Chapter let us start with a short overview of the LHC machine,
providing pp collisions at the centre-of-mass energy

√
s = 14 TeV at a design

luminosity of 1034 cm−2s−1 and then focus on the description of the ATLAS
experiment, whose potential to reveal quark compositeness we study.

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC), [35], is a superconducting proton syn-
chrotron, being constructed at CERN inside the 27 km long tunnel used in
the past years by LEP. LHC will accelerate two beams of protons (or heavy
ions), travelling in opposite directions, from 450 GeV to 7 TeV. The existing
machines at CERN will do the first stages of acceleration (Fig. 4.1): first the
protons are accelerated up to 50 MeV in the proton linac, then the Proton Syn-
chrotron Booster (PSB) will let them reach 1.8 GeV. The Proton Synchrotron
(PS) will accelerate them up to 26 GeV. Finally, the Super Proton Synchrotron
(SPS) will be used to inject the 450 GeV protons into the LHC.

The LHC dipole magnets will house in one single twin bore magnet (with
the same yoke and cryostat) two different magnetic channels. The magnets will
provide a magnetic field of 8.36 T, which allows the colliding beam particles to
reach the design energy of 7 TeV.

At the LHC energies, a total inelastic non-diffractive pp cross-section is
about 70 mb. Since the interesting processes have cross-sections several orders
of magnitude lower (the cross-section for tt̄ pairs production is σtt̄ ≃ 800 pb,
the inclusive Higgs production cross-section is well below 1 nb for any Higgs
mass), a very high luminosity and interaction rate are needed.

Before reaching the design luminosity, it is foreseen to have one year at
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Figure 4.1: Layout of CERN accelerator complex. Before the particles are
finally injected into the LHC, they are pre-accelerated in a chain of other accel-
erators. It is also worth noticing that the oldest part of this complex, the PS,
has been in operation since 1959. Image not to scale. Courtesy of CERN Press
office.
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the so called low luminosity (2.1033 cm−2s−1), which should provide enough
statistics to perform the first physics measurements and machine and detector
tuning.

The design luminosity of 1034 cm−2s−1 with 2808 bunches crossing at 25 ns
intervals is expected to be reached a few years after the first collisions. With
the inelastic proton proton cross-section of 70 mb, this gives approximately
23 events per bunch-crossing, or a total rate of 109 inelastic events/sec. This
means around 1000 particles will emerge from the collision points every 25 ns
within pseudorapidity |η| less than 2.5. A serious experimental difficulty at
LHC is therefore that every candidate event for new physics will on average be
accompanied by 23 inelastic events occurring simultaneously in the detector.
The main parameters of the LHC for pp and heavy-ion collisions are shown in
Tab. 4.1.

Parameters p–p Pb82+–Pb82+

Beam energy (TeV) 7.0 7.0
Centre of mass energy (TeV) 14 1262
Injection energy (GeV) 450 190.6
Bunch spacing (ns) 25 124.75
Particles per bunch 1 × 1011 6.2 × 107

R.M.S. bunch length (m) 0.075 0.075
Number of bunches 2808 608
Initial luminosity (cm−2s−1) 1033 1.95 × 1027

Luminosity (cm−2s−1) 1034 1.8 × 1027

Luminosity lifetime (h) 10 10
Dipole field (T) 8.3 8.3

Table 4.1: The LHC settings for pp and heavy-ion collisions.

4.2 The ATLAS detector design criteria

In this section let us first briefly describe the coordinate system used for the
ATLAS detector and then proceed with its design criteria.

The beam direction defines the z-axis and the x-y plane is transverse to the
beam direction. The positive x-axis is defined as pointing from the interaction
point to the centre of the LHC ring and the positive y-axis is defined as pointing
upwards. The side-A of the detector is defined as that with positive z and side-
C is that with negative z. The azimuthal angle φ is measured around the beam
axis, and the polar angle θ is the angle from the beam axis. The pseudorapidity
η is defined as η = − ln tan(θ/2). The transverse momentum pT, the transverse
energy ET, and the missing transverse energy Emiss

T are defined in the x-y plane
unless stated otherwise.

The design criteria for the ATLAS (A Toroidal LHC ApparatuS) detector
are as follows:
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• Large acceptance in pseudorapidity (η) with almost full azimuthal (φ)
angle coverage.

• Good charged particle momentum resolution and reconstruction efficiency
in the inner tracker.

• Very good electromagnetic (EM) calorimetry for electron and photon iden-
tification and measurements completed by full-coverage hadronic calorime-
try for accurate jet and missing transverse energy (Emiss

T ) measurements.

• Good stand-alone muon identification and momentum resolution over
a wide range of momenta and the ability to determine unambiguously
the charge of high pT muons.

• Triggering on low transverse momenta objects is important to maintain
high kinematic efficiency with sufficient background rejection to obtain an
acceptable trigger rate for most physics processes of interest at the LHC.

• Due to the experimental conditions at the LHC, the detector needs fast,
radiation hard electronics and sensor elements. In addition, a very high
granularity is needed to be able to handle the particle fluxes and to reduce
the influence of overlapping events.

The criteria for the ATLAS calorimeters design follow from the physics
processes to be measured [59]. For EM calorimeters following stringent require-
ments are defined:

• High jet energy resolution at ET ≈ 100 GeV and coverage to low ET

required by rare physics events H → γγ and H → ZZ → 4e,

• e reconstruction down to a few GeV required for b-physics measurements,

• dynamic range of the EM calorimeters should span from mip to Z′ → ee
at a few TeV.

In order to fulfil these requirements, the EM calorimeters should have the fol-
lowing performance at |η| < 2.5:

• energy resolution (E in GeV):

σ(E)

E
=

8 − 11%√
E

⊕ 0.2 − 0.4

E
⊕ 0.7%, (4.1)

• linearity better than 0.1%.

In case of hadron and forward calorimeters the physics channels
H → WW→jjX and Z, W and top quark production require good dijet mass
resolution. Moreover Higgs fusion requires good forward jet tagging and Emiss

T

measurement demands good jet energy resolution and small jet energy scale
uncertainties. It should be stressed, that jet energy scale uncertainty is one of
the most limiting factors for measurement of quark compositeness, as will be
discussed in Chapters 7 and 8. The hadronic and forward calorimeters should
thus meet following criteria of jet energy resolution:
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• for |η| < 3:
σ(e)

E
=

50%√
E

⊕ 3% (4.2)

• for 3 < |η| < 4.9:
σ(e)

E
=

100%√
E

⊕ 5%. (4.3)

4.3 The detector description

Figure 4.2: The ATLAS detector model. The diameter is 22 m and overall
length 46 m. The overall weight of the ATLAS detector is approximately 7000
tons, most of it contained in calorimeters. Courtesy of CERN, Geneva.

The overall detector layout is shown in Fig. 4.2. The two independent
magnetic systems (the solenoidal one in the Inner Detector and the toroidal
one in the muon spectrometer) consist of a thin super-conducting solenoid sur-
rounding the Inner Detector and three sets of eight independent coils arranged
with an eight-fold symmetry outside the calorimeters. The central solenoid
envelopes the Inner Detector and provides a 2 Tesla field oriented along the
beam axis. The Inner Detector makes use of three different technologies, at
different distances from the interaction point (IP). Three inner layers of pixels
allow good secondary vertex identification and, together with the four layers of
silicon micro-strips, good momentum measurements. The tracking is then com-
pleted by continuous straw-tube detectors with transition radiation detection
capability in the outer part.

The calorimetry uses radiation-hard liquid argon (LAr) technology for the
EM barrel and end-cap, for the Hadronic End-Cap (HEC) and for the Forward
(FCAL) calorimeters. In the barrel region the cryostat is shared with the super-
conducting solenoid, while the EM end-cap, the HEC and the FCAL share
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the same cryostat in the forward region. In the barrel region the longitudinal
hermeticity is provided by the Tile calorimeter (Tilecal). Scintillating tiles are
used as an active material, while the passive material is iron. The Tilecal is
subdivided into three regions: a barrel region (|η| < 1) and two extended barrel
(1 < |η| < 1.7) regions. The two gaps between these three regions are covered
by the Inter Tilecal Calorimeters (ITC) and the Intermediate Gap Scintillators,
which allow the recover part of the energy lost in the gap.

Outside the calorimeters there is the Muon Spectrometer (MS). The mag-
netic field is provided by the 25 m long coils in the central region. The coverage
at small angles is completed by two end-cap toroids. The magnetic field bends
the particles inside the open structure that constitutes the support for the muon
chambers. The multiple scattering is therefore minimised. This allows a very
good measurement of the muon momentum with three stations of high precision
tracking chambers. The muon detector includes fast response trigger chambers,
which operate in coincidence to provide a fast trigger decision on the muon pT.

The total radius of the ATLAS experiment, from the interaction point to
the last muon chamber, is about 11 m. The total length is about 46 m, the
overall weight about 7000 tons. Almost 90% of the total ATLAS volume is
occupied by the toroids and by the Muon Spectrometer.

The ATLAS detector is being installed and commissioned at Point 1 of LHC
ring. The status of the installation as of February 2007 is shown in Fig. 4.3.

Figure 4.3: The ATLAS detector during assembly in the underground cavern as
of February 2007. Parts of cryostats of eight large barrel toroid coils are visible,
surrounding Tile Calorimeter with inserted LAr cryostat. Muon stations among
the BT coils are also visible. Courtesy of CERN, Geneva.
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Figure 4.4: Overall view of the inner detector.

4.3.1 Tracking

The strategy used for the ATLAS Inner Detector (ID) [36] is to combine few
high precision measurements close to the interaction point with a large number
of lower precision measurements in the outer radius. The inner detector is
embedded in the 2 T magnetic field provided by the Central Solenoid (CS).
The CS extends over a length of 5.3 m and has a bore of 2.5 m. The position
of CS in front of the EM calorimeter provides a careful minimisation of the
dead material in order to achieve the desired calorimeter performance. As
a consequence, the CS and the LAr calorimeter share one common vacuum
vessel.

The structure of the inner detector is shown in Fig. 4.4. Within a radius
of 56 cm from the interaction point, pixel and silicon micro-strip technologies
offer a fine-granularity, thus a high precision of the track measurement. Charged
particle proceeding from interaction point typically hits three layers of pixels
(which measure both R−φ and z coordinate) and 4 layers of SCT modules, for
a total of 7 tracking points. In each SCT module, two strip sensors are mounted
together, with 40 mrad angle between them, allowing the measurement of the
three coordinates. In the barrel region (which covers up to |η| = 1 for a total
length of 160 cm), the pixels and SCT are arranged in concentric cylinders
around the beam axis, while in the end-cap (up to |η| = 2.5) they are arranged
in disks perpendicular to the beam axis.

A large number of tracking points (36) is provided by the Transition Radia-
tion Tracker (TRT) that also can give e/π separation identifying the transition
radiation emitted by electrons travelling at a high speed. TRT consists of straw
tubes arranged parallel to the beam axis in the barrel region and in wheels
around the beam axis in the end-cap. The reduced resolution with respect to
the silicon detectors is compensated by the higher radius and by the number
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of points measured. Therefore, the relative precisions of the measurements of
the TRT and pixels/SCT are comparable. The TRT detector is intrinsically
radiation hard.

The outer radius of the inner detector cavity is 115 cm, while the total
length is 7 m. The layout provides full tracking coverage within |η| < 2.5,
including impact parameter measurement and vertexing for heavy flavours and
τ tagging. The expected precision for the detector is

σR−φ(µm) = 13 ⊕ 62

pT

√
sin θ

, (4.4)

σz(µm) = 39 ⊕ 90

pT

√
sin θ

. (4.5)

While the radiation impact is lower on the TRT detector, it is not in partic-
ular for the pixels, which are more exposed to the radiation since they are closer
to the interaction point. The intrinsic radiation weakness of the silicon would
probably impose their substitution after a few years of operation, depending on
the luminosity profile.

4.3.2 Calorimeters

A view of the ATLAS calorimeters is presented in Fig. 4.5. The calorimetry
consists of an electromagnetic calorimeter covering the pseudorapidity region
|η| < 3.2, a hadronic barrel calorimeter covering |η| < 1.7, hadronic end-cap
calorimeters covering 1.5 < |η| < 3.2, and forward calorimeters covering 3.1 <
|η| < 4.9. Over the pseudorapidity range |η| < 1.8, the EM calorimeter is
preceded by a presampler detector.

The EM calorimeter is a lead/liquid-argon detector (LAr) with accordion
geometry. The barrel EM calorimeter is contained in a barrel cryostat, which
surrounds the inner detector cavity. The hadronic barrel iron/scintillating tiles
calorimeter (Tilecal) is a cylinder divided into three sections: the central bar-
rel and two identical extended barrels. Two end-cap cryostats house the LAr
end-cap EM and hadronic calorimeters, as well as the integrated forward calori-
meter. The hadronic end-cap calorimeter is a copper LAr detector with parallel-
plate geometry, and the forward calorimeter, a dense LAr calorimeter with rod-
shaped electrodes in a copper and tungsten matrix. The barrel and extended
barrel tile calorimeters support the LAr cryostats and also act as the main
solenoid flux return.

The pseudorapidity coverage, granularity, and longitudinal segmentation of
the calorimeters are summarised in Tab. 4.2.

The LAr electromagnetic calorimeter

The EM calorimeter, [45], is divided into a barrel part (|η| < 1.5) and two
end-caps (1.4 < |η| < 3.2). The barrel calorimeter consists of two identical half-
barrels, separated by a small gap (6 mm) at z = 0. Each end-cap calorimeter is
mechanically divided into two coaxial wheels: an outer wheel covering the region
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EM Calorimeter Barrel End-Cap

Coverage |η| < 1.475 1.375 < |η| < 3.2
Long. segmentation 3 samplings 3 samplings 1.5 < |η| < 2.5

2 samplings 1.375 < |η| < 1.5
2.5 < |η| < 3.2

Granularity (∆η × ∆φ)
Sampling 1 0.003 × 0.1 0.25 × 0.1 1.375 < |η| < 1.5

0.003 × 0.1 1.5 < |η| < 1.8
0.004 × 0.1 1.8 < |η| < 2.0
0.006 × 0.1 2.0 < |η| < 2.5
0.1 × 0.1 2.5 < |η| < 3.2

Sampling 2 0.025 × 0.025 0.025 × 0.025 1.375 < |η| < 2.5
0.1 × 0.1 2.5 < |η| < 3.2

Sampling 3 0.05 × 0.025 0.05 × 0.025 1.5 < |η| < 2.5

Presampler Barrel End-cap

Coverage |η| < 1.52 1.5 < |η| < 1.8
Long. segmentation 1 samplings 1 samplings

Granularity (∆η × ∆φ) 0.025 × 0.1 0.025 × 0.1

Tilecal Barrel Extended Barrel

Coverage |η| < 1.0 0.8 < |η| < 1.7
Long. segmentation 3 samplings 3 samplings

Granularity (∆η × ∆φ)
Sampling 1 and 2 0.1 × 0.1 0.1 × 0.1

Sampling 3 0.2 × 0.1 0.2 × 0.1

Hadronic LAr End-cap

Coverage 1.5 < |η|3.2
Long. segmentation 4 samplings

Granularity (∆η × ∆φ) 0.1 × 0.1 1.5 < |η| < 2.5
0.2 × 0.2 2.5 < |η| < 3.2

FCAL Calorimeter Forward

Coverage 3.1 < |η| < 4.9
Long. segmentation 3 samplings

Granularity (∆η × ∆φ) 0.2 × 0.2

Table 4.2: Design parameters of the ATLAS calorimeters.
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Figure 4.5: Overall view of the ATLAS calorimeters.

1.375 < |η| < 2.5, and an inner wheel covering the region 2.5 < |η| < 3.2. The
EM calorimeter is a lead LAr detector with accordion-shaped kapton electrodes
and lead absorber plates over its full coverage. The accordion geometry pro-
vides complete symmetry without azimuthal cracks. The lead thickness in the
absorber plates has been optimised as a function of η in terms of EM calorimeter
performance in energy resolution. The total thickness of the EM calorimeter
is larger than 24 radiation lengths (X0) in the barrel and larger than 26 X0 in
the end-caps. Over the region devoted to precision physics (|η| < 2.5), the EM
calorimeter is segmented into three longitudinal sections. For |η| > 2.5, i.e. for
the end-cap inner wheel, the calorimeter is segmented in two longitudinal sec-
tions and has a coarser lateral granularity than for the rest of the acceptance.
This is sufficient to satisfy the physics requirements (reconstruction of jets and
measurement of Emiss

T ).
The total material seen by an incident particle before the calorimeter front

face is approximately 2.3 X0 at η = 0, and increases with pseudorapidity in the
barrel because of the particle trajectory angle. In region |η| < 1.8, a presampler
is used to correct for the energy lost by electrons and photons upstream of the
calorimeter. The presampler consists of an active LAr layer of thickness 1.1 cm
(0.5 cm) in the barrel (end-cap) region.

At the transition between the barrel and the end-cap calorimeters, i.e. at
the boundary between the two cryostats, the amount of material in front of the
calorimeter reaches a localised maximum of about 7 X0 . In this region, the
presampler is complemented by a scintillator slab inserted in the crack between
the barrel and end-cap cryostats and covering the region 1.0 < |η| < 1.6. The
region 1.37 < |η| < 1.52 is not used for precision physics measurements involving
photons because of the large amount of material situated in front of the EM
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calorimeter.
The linearity of the EM calorimeters has been verified (both for the barrel

and for the extended barrel) with electron test beams up to 350 GeV. Obtained
linearity is better than 1%. The resolution found for the barrel at η = 0.9 is

σ(E)

E
=

10%
√

E(GeV
⊕ 0.38 GeV

E
⊕ 0.3%. (4.6)

The hadronic calorimeters

The ATLAS hadronic calorimeters cover the range |η| < 4.9 using different tech-
niques suited for the widely varying requirements and radiation environment
over the large η-range.

An important parameter in the design of the hadronic calorimeter is its
thickness: it has to provide good containment for hadronic showers and reduce
to a minimum punch-through into the muon system. Close to 10 λ of active
calorimeter are adequate to provide good resolution for high energy jets. The
total thickness, including 1.5 λ from the outer support, is 11 λ interaction
lengths (λ) at η = 0 and has been shown both by measurements and simulation
to be sufficient to reduce the punch-through well below the irreducible level
of prompt or decay muons. Together with the large η-coverage, this will also
guarantee a good Emiss

T measurement, which is important for many physics
signatures and in particular for SUSY particle searches.

The Tile calorimeter. The large hadronic barrel calorimeter, [46], is
a non-compensating sampling calorimeter using iron as the absorber and scin-
tillating tiles as the active material. The tiles are placed radially and staggered
in depth. The structure is periodic along z. The scintillating tiles are 3 mm
thick and the total thickness of the iron plates in one period is 14 mm. The
two opposite sides of the scintillating tiles are read out by wavelength shift-
ing (WLS) fibres into two separate photo-multipliers (PMTs), that is read out
channels. A read out cell of the calorimeter is formed by a group of scintillating
tiles read out by such two channels. The read out cells then form pseudopro-
jective towers, providing an essential information for the detector trigger. The
tile calorimeter is composed of one barrel and two extended barrels. Radially,
the tile calorimeter extends from an inner radius of 2.28 m to an outer radius
of 4.25 m. It is longitudinally segmented in three layers, approximately 1.4,
4.0 and 1.8 interaction lengths thick at η = 0. Azimuthally, the barrel and
extended barrels are divided into 64 modules. In η, the readout cells, built
by grouping fibres into PMTs, are pseudo-projective towards the interaction
region. The total number of channels is approximately 10,000. The calorimeter
is placed behind the EM calorimeter. The total thickness at the outer edge of
the tile-instrumented region is 9.2 λ at η = 0.

The barrel cylinder covers the region of |η| < 1.0. A vertical gap of 68 cm
provides space for cables from the ID, feed-throughs, and 5 service pipes for
the EM calorimeter and the CS; it also houses front-end electronics for the
EM calorimeter. The extended barrel covers the region 0.8 < |η| < 1.7. The
energy lost in the inactive materials in the gaps between the tile barrel and
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extended barrel calorimeters is sampled by the scintillators of ITC, which has
the same segmentation as the rest of the tile calorimeter. It is composed of
two radial sections attached on the face of the extended barrel. The ITC is
extended further inwards by a scintillator sheet, covering the inner part of the
extended barrel and extending to the region between the LAr barrel and end-
cap cryostats over 1.0 < |η| < 1.6. This scintillator samples the energy lost in
the cryostat walls and other dead materials.

The Tilecal standalone resolution for single pions was measured at the test
beam, [47]. Resolution was obtained from analysis of 20 to 350 GeV pion beams
impinging at pseudorapidities 0.2 to 1.2:

σ(E)

E
=

(52 ± 2)%
√

E(GeV )
+ (5.0 ± 0.2%). (4.7)

LAr hadronic end-cap calorimeters (HEC). Each HEC consists of two
independent wheels of outer radius 2.03 m. The upstream wheel is built out of
25 mm copper plates, while the second one further from the interaction point
uses 50 mm plates. In both wheels, the 8.5 mm gap between consecutive copper
plates is equipped with three parallel electrodes, splitting the gap into four drift
spaces of about 1.8 mm. The readout electrode is the central one.

Each wheel is built out of 32 identical modules, assembled with fixtures at
the periphery and at the central bore. Each wheel is divided into two longitu-
dinal segments.

To minimise the dip in the material density at the transition between the
end-cap and the forward calorimeter (around |η| = 3.1), the HEC calorimeter
reaches |η| = 3.2, thereby overlapping the forward calorimeter.

The HEC standalone resolution for single pions (6–200 GeV) was measured
at the test beam, [44]. The result is:

σ(E)

E
=

(70.6 ± 1.5)%
√

E(GeV )
⊕ (5.8 ± 0.2). (4.8)

LAr forward calorimeter. The forward calorimeter (FCal) has a front
face at about 4.5 m from the interaction point and is integrated into the end-cap
cryostat as this provides clear benefits in terms of uniformity of the calorimetric
coverage as well as reduced radiation background levels in the muon spectrom-
eter. In order to minimise the amount of neutron albedo in the ID cavity, the
front face of the FCal is recessed by about 1.2 m with respect to the EM calori-
meter front face. This severely limits longitudinal space for installing about 9.5
active interaction lengths, and therefore calls for a high-density design, which
also avoids energy leakage from the FCal to its neighbours.

The FCal consists of three sections: the first one is made of copper, while
the other two are made of tungsten. In each section the calorimeter consists of
a metal matrix with regularly spaced longitudinal channels filled with concentric
rods and tubes. The rods are at positive high voltage while the tubes and
matrix are grounded. The LAr in the gap between is the sensitive medium.
This geometry allows for an excellent control of the gaps which are as small as
0.25 mm in the first section.
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4.3.3 Muon spectrometer

The conceptual layout of the muon spectrometer is shown in Fig. 4.6. One of
the most important features of the muon spectrometer, [37], is the possibility
of a precise standalone measurement of the muon momentum. The magnetic
field provided by the superconducting air-core toroid magnets deflects the muon
trajectories that are measured by high precision tracking chambers. The mag-
netic field in the |η| < 1.4 range is provided by the large barrel toroid (BT),
[38], while the region 1.6 < |η| < 2.7 is covered by two smaller end-cap toroid
magnets (ECT) inserted at the both ends of the barrel toroid. In the so called
transition region (1.4 < |η| < 1.6) the combined contributions of both the barrel
and end-cap toroid magnets provide the magnetic field coverage. The magnetic
field is mostly orthogonal to the muon trajectory in the covered pseudorapidity
range, while the effect of multiple scattering is minimised. The ECT coil sys-
tem is rotated by 22.5o with respect to the BT coil system in order to provide
optimised radial overlap. The BT provides a bending power of 2 to 6 Tm and
the ECT contributes with approximately 1 to 8 Tm.

Figure 4.6: Overall view of the ATLAS muon system.

In the barrel region, the muon chambers are arranged in three cylindrical
layers (stations), while in the end-cap regions they form three vertical walls.
The transition region is instrumented with one extra station.

The azimuthal layout follows the magnet structure: there are 16 sectors.
The so called Large sectors lie between the coils, and they overlap with the
Small sectors, placed in correspondence with the coils themselves. The R − z
layout of the chambers is shown in Fig. 4.7.

The choice of the different chamber technologies has been driven by the
particle fluxes foreseen in the different regions of the detector. Criteria of
rate capability, granularity, ageing properties and radiation hardness have been
considered. Tab. 4.3 summarises the chamber technologies used in the various
pseudorapidity regions.

The measurement of the track bending coordinate (η) is provided (in most
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Figure 4.7: A view of one φ plane (φ = 22o) of the muon chamber layout.

of the η region) by the Monitored Drift Tubes (MDT), while at large pseudo-
rapidity, the higher granularity Cathode Strip Chambers (CSC) are used.

Region station I station E station M station O

Barrel |η| < 1 MDT MDT RPC MDT RPC
End-Caps 1 < |η| < 1.4 MDT TGC MDT

1.4 < |η| < 2 MDT TGC MDT TGC
2 < |η| < 2.4 CSC MDT
2.4 < |η| < 2.7 CSC MDT TGC

TRIGGER CHAMBERS PRECISION CHAMBERS
Technologies used RPC TGC MDT CSC
Number of channels 354K 440K 372K 67K
Area (m2) 3650 2900 5500 27
Time resolution < 5 ns < 7 ns 500 ns <7 ns
Spatial resolution 5-10 mm 80 µm 60 µm

Table 4.3: Design parameters of the Muon spectrometer.

The requirements on the momentum resolution (∆pT/pT ≃ 10% at 1 TeV/c)
call for an accuracy of the relative positioning of chambers traversed by a muon
track that matches the intrinsic resolution and the mechanical tolerances of the
precision chambers.

The knowledge of the chamber positioning with an accuracy of 30 µm is
required within a projective tower. The accuracy required for the relative posi-
tioning of different towers to obtain adequate mass resolutions for multi-muon
final states is in the millimetre range. This accuracy can be achieved by the
initial positioning and survey of chambers at the installation time. The rel-
ative alignment of muon spectrometer, calorimeters and ID will rely on the
measurement of the high-momentum muon trajectories.

The MDT chambers are equipped with a in-plane alignment system aiming
at a measurement of the tube position displacements, with respect to their
nominal positions at the assembly phase, with a precision better than 10 µm. In
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order to achieve such a precision, the spectrometer is equipped with a RASNIK
system: a laser, mounted at one side of a chamber, projects a pattern to a CCD
camera positioned at the other end of the chamber. From the displacement of
the pattern-figure with respect to what is expected, corrections for chambers
deformation can be computed.

The chambers for the LVL1 muon trigger system covers the region |η| < 2.4.
Resistive Plate Chambers (RPC) are used in the barrel region, while the Thin
Gap Chambers (TGC) are used in the end-cap region. Their first task is to
identify without any ambiguity the bunch crossing of the triggered event. This
requires a time resolution better than 25 ns. Next, they have to provide a well
defined pTcut-off for the LVL1 choice. This is obtained considering a window of
a size defined by the LVL1 pTthreshold considered on the second RPC (or TGC)
station once a hit has been obtained in the first station. Finally, the trigger
chambers measure the non-bending coordinate (φ), in a plane orthogonal to the
one measured by the precision chambers, with a typical precision of 5–10 mm.

4.3.4 Forward detectors

Three smaller detector systems are built to cover the forward region of ATLAS.
These are closely connected to the luminosity determination in ATLAS, but are
in addition foreseen to study forward physics. In order of their distance from the
ATLAS interaction point, the first system is a Cerenkov detector called LUCID
(LUminosity measurement using Cerenkov Integrating Detector, [40]). LUCID
is the main luminosity monitor in ATLAS, detecting inelastic pp scattering in
the forward direction, and is located 17 m away from the interaction point.

The second system is the so-called Zero Degree Calorimeter (ZDC, [41])
which is located at a distance of 140 m from the IP. This corresponds to the
location where the LHC beam-pipe is divided into two and the ZDC is located
between the beam pipes, thus it will measure neutral particle at 0o polar angle.

The most remote system is the Absolute Luminosity for ATLAS (ALFA)
system. It consists of scintillating fibre trackers located inside roman pots at
a distance of 240 m from the ATLAS IP, and determines the absolute luminosity
of CERN LHC at ATLAS IP by measuring elastic scattering in the Coulomb
interface region to a precision ∆L/L ∼ 3%.

4.3.5 Data Acquisition, Trigger and Control systems

Data Acquisition

The ATLAS trigger and data acquisition systems (TDAQ) and the detector
control system (DCS) are responsible for the data-flow of data from detector
front-end electronics modules to data storage at CERN computing centre, for
the selection of events and for the control and monitoring of the detector, [39].

A schematic diagram is presented in Fig. 4.8 and can be divided into four
principal systems, namely:

• The Data Flow System - responsible for receiving of the detector data,
serving data to the trigger system, and transporting the data for selected
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Figure 4.8: Main components of the Data Flow (right) and trigger systems
(left). Black lines represent a path of a physics data, red lines movements of
trigger data.
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events to mass storage,

• The Trigger System - subdivided into three layers. The first level (LVL1)
purely hardware based, other two levels software based (collectively called
High Level Trigger, HLT),

• The Online System - responsible for all aspects of experiment and TDAQ
operation and control during data-taking, and during testing and calibra-
tion runs, and

• The DCS - responsible for a coherent and safe operation of the ATLAS
detector, as well as for the interface with external systems and services,
including the LHC itself.

The Online system is implicitly understood to be connected to all elements
in Fig. 4.8, and the DCS to all hardware elements which need to be monitored
and controlled.

In the right-half of Fig. 4.8 the data flow system is represented in the differ-
ent components. The signals coming from the detectors (upper part), read by
the input-output systems are managed by the back-end electronics boards: the
so called Read Out Drivers (ROD). They are detector-specific and they have
the responsibility of the reading of the data from the front-end electronics when
a Level 1 trigger request is propagated to the system. The RODs, equipped
with Digital Signal Processors (DSP), have also the responsibility to make the
first pre-formatting of the data to the ATLAS TDAQ final format and, in some
cases, like for the calorimeters, apply some simple algorithms and performing
calculations. From this point on, the components of the Data Flow are no more
detector specific.

The data are then moved to the ROSes (Read Out System), normal PCs
equipped with one or more buffer cards, the Read Out Buffers (ROBs). Here
they will be further formatted and moved, after request, to the Event Building
Network (EBN), passed to the last stage of trigger, and in case of acceptance,
stored to a set of local disk pools (SFO: Sub Farm Output).

Trigger

Starting from an initial bunch-crossing rate of 40 MHz, the rate of selected
events must be reduced to about 200 Hz for permanent storage. The event
rate is determined by the total pp cross section, and is about 109 evt/sec at
the nominal luminosity. Hence an overall rejection factor of about 5 × 106

against minimum bias events is required. This strong requirement must match
an excellent trigger efficiency for rare physics processes of interest.

The LVL1 trigger makes an initial selection based on a reduced granularity
information from a subset of detectors. Objects searched by the calorimeter
trigger are high pTelectrons and photons, jets, and τs decaying into hadrons,
as well as large missing and total transverse energies. High and low transverse
momentum muons are identified using only the muon trigger chambers.

The calorimeter selections are based on a reduced-granularity information
from all the calorimeters. In case of the electron/photon and hadron/τ triggers,

39



energy isolation cuts can be applied. The missing and total scalar transverse
energies used in the LVL1 trigger are calculated by summing over trigger towers.
In addition, a trigger on the scalar sum of jet transverse energies is also available.
No tracking information is used at LVL1 due to timing restrictions and the
inherent complex nature of the information from the inner detector.

The maximum rate at which the ATLAS front-end systems can accept LVL1
triggers is limited to 100 kHz. An essential requirement on the LVL1 trigger
is that it should uniquely identify physics events of interest. Given the short
(25 ns) bunch-crossing interval, this is a non-trivial task. In case of the muon
trigger, the physical size of the muon spectrometer is comparable to the bunch
spacing. For the calorimeter trigger, a serious challenge is, that the pulse shape
of calorimeter signals extends over many bunch crossings. During this time,
information for all detector channels is stored in pipeline memories. The LVL1
latency, measured from the time of the pp collision until the trigger decision is
available to the front-end electronics, is required to be less than 2.5 µs. In order
to achieve this, the LVL1 trigger is implemented as a system of purpose-built
hardware processors.

Results from the L1 muon and calorimeter triggers are processed by the
Central Trigger Processor, which implements a trigger ’menu’ made up of com-
binations of trigger elements. Prescaling of the trigger menu items is also avail-
able, allowing optimal use of the rate bandwidth as luminosity and background
conditions change.

Another important functionality of the LVL1 system is the identification of
the Regions Of Interest (ROIs) representing the position of the triggering ob-
jects in the (η,φ) space. This is one of the main peculiarities of ATLAS trigger-
ing system. This information is used to greatly reduce the needed computation
time at the LVL2 triggering system and the size of data to be transferred in the
system.

The LVL2 runs offline-like algorithms, optimised for the on-line use, using
the full granularity information from the inner detector as well as from the
muon detectors and calorimetry. However, it is structured to process the data
belonging only to a spatial window around the ROIs identified by the LVL1
trigger. Simulations showed that this corresponds to roughly 2-5% of the overall
ATLAS data size. LVL2 has a maximum latency time of 10 ms, after this time
the event is selected (and hence moved to the Event Filter system for further
processing) or discarded and removed from the Data Flow chain (up to this
moment the event fragments have been buffered in the ROBs. The final LVL2
rate is expected to be about 1-2 KHz.

After LVL2, the last stage of the on-line selection is performed by the Event
Filter. It employs offline algorithms and methods, slightly adapted to the on-
line environment, and uses the most up to date available calibration and align-
ment information and the magnetic field map, thus making a complete event
reconstruction. Events, that have passed the Event Filter, are written to mass
storage for a subsequent off-line analysis.

The time available for a decision at the event filter is 1 s. The output rate
from LVL2 should be reduced by an order of magnitude, giving about 200 Hz.
The final event size is expected to be 1.5 MBytes corresponding to an output
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data rate of about 300 MByte/s resulting in 1015 bytes of data per year.

Detector Control System

In order to enable coherent and safe operation of the ATLAS detector, a Detec-
tor Control System (DCS) has been defined and implemented. It has the task
to set up the detector hardware in a selected state and to continuously monitor
its operation. The DCS consists of two parts: the Front-end systems (FE) and
the Back-end (BE) control station.

The FE connects to the detector hardware and the equipment to supervise
ranges from simple sensors to complex devices like software controllable power
supplies. A small set of commercial devices has been selected as a standard,
such as crates and power supplies. A general purpose I/O concentrator has
been developed, called Embedded Local Monitor Board (ELMB). It comprises
a multiplexed ADC (64 channels with 16 bit resolution), 24 digital I/O lines
and a serial bus to drive external devices. The ADC part of the ELMB can be
configured for various types of sensors.

The BE is organised in three layers: the Global Control Station (GCS)
with human interfaces in the ATLAS control room for overall operations, the
Subdetector Control Stations (SCS) for stand-alone operation of a subdetector,
and the Local Control Stations (LCS) for process control of subsystems.

4.3.6 Computing

The complexity and size of the ATLAS experiment imposes the use of new
paradigms also in what the processing of the data is concerned once they are
made available on mass storage. The events rate of 200 Hz, the size of the
events (approximately 1.5 MB per event), the number of physicists involved
in the analysis requires that the data distribution, processing and analysis is
carried out according to a multi-tier schema, that is well suited to distribute
the computing and storage loads among the different participating institutes.
Even if similar strategies have been used in the past it is the first time that this
kind of distributed analysis are performed on a ATLAS-size scale requiring the
development of completely new tools extremely performing, [42].

At the output of the Event Filter the raw data are transferred to the CERN’s
computing centre, known as Tier-0, that is the first layer of the ATLAS analysis
system. Here a complete copy of the raw data is stored and a first-pass recon-
struction is applied producing ESD (Event Summary Data) and AOD (Analy-
sis Object Data). The ESD data-format contains the reconstructed quantities
measured by the detector (energy in the calorimetric cells, clusters information,
tracks) as well as the reconstructed physics objects (electrons and gammas, jets,
taus, muons). The small-sized data in AOD format are well suited for distribu-
tion to the physicists groups, to reduce their size only the physics objects are
recorded. Each event can be characterised by few quantities, like, for example,
the number of jets in the event, pT of the leading jet, lepton multiplicity and
so on, this information, produced by Tier-0 and stored in the TAGs and allows
for a very fast filtering of the datasets. Tier-0 has also the responsibility to run
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calibration and alignment algorithms that will be refined in future steps.
Distribution of data to the community is done copying raw data, ESDs,

AODs and TAGs to the Tier-1s. Tier-1s are big regional computer centres
spread around the world (at the moment ATLAS foresees 10 of these centres).
A copy of the raw data is divided among all the Tier-1s (each one having on
average 10% of the entire raw data) while a complete copy of the ESDs, AODs
and TAGs is distributed to each Tier-1. Tier-1s have also the responsibility
to reprocess raw data performing more accurate reconstructions and produce
updated version of ESDs, AODs and TAGs spread them among the different
computer centres.

Most of the physics analyses are performed at the Tier-2s centres, in average
5 Tier-2s are directly connected to one Tier-1 and typically receive a copy of
one third of the most updated ESD and AOD data and a complete copy of
the TAGs. Tier-2s have the entire responsibility for the official Monte Carlo
production (the simulated data is stored in the more reliable Tier-1s). The
physics groups analysis and the development and refinement of calibration and
reconstruction algorithms are also performed at the Tier-2 centres. The physics
analysis will be performed mainly on the AOD data set (with the help of TAGs
for pre-selections) or on even more compact derived formats like ntuples.

The multi-tier paradigm is deployed using grid technology and middle-ware
that completely hides to the physicists the complex multi-tier structure, [43].
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Chapter 5

Jet reconstruction

Asking for a certain number of partons being present in the final state is not
meaningful in pQCD. Particles are therefore combined into groups, called jets.
Jets can be defined at parton level, particle level (from final states), or detector
level (from detector towers). Jets are the observable final states also for our
study of quark compositeness.

In this chapter we will start with a short description of jet clustering algo-
rithms, then briefly summarise current ATLAS procedure of reconstructing and
calibrating jets, describe basic methods of in-situ validation of jet calibration,
and finally mention expected values of jet energy scale uncertainty in early data.

5.1 Jet clustering algorithms

The two default jet-clustering algorithms in ATLAS are a seeded fixed cone
algorithm and a successive recombination (k⊥) algorithm. Both algorithms are
used to produce narrow jets (for events containing large multiplicities of jets
etc.) and wider jets (for studies of dijet final states or multi-jet final states at
low luminosities).

The seeded cone algorithm uses two parameters, the transverse energy
threshold for a seed, ET = 1 GeV for all cone jets, and the cone size, R =
√

∆η2 + ∆φ2, with R = 0.4 for narrow jets and R = 0.7 for wide jets. In all
cases, a split-and-merge step follows the actual cone building, with an overlap
fraction threshold of 50%. The cone algorithm is sensitive to soft gluon emis-
sion and embodies collinear sensitivity [60]. However, this sensitivity is greatly
reduced for larger pT jets. When jet reconstruction becomes 100% efficient, the
collinear sensitivity is reduced to a second order effect. As will be described
in Sec. 6.1, in this study we use only jets with pT > 350 GeV, for which the
reconstruction is almost 100% efficient.

The k⊥ algorithm in ATLAS is implemented following the suggestions in
[61], which makes it efficient even for a rather large number of input objects and
avoids the usual pre-clustering step. The distance parameter D =

√

∆η2 + ∆φ2

is adjusted for narrow jets to D = 0.4 and for wide jets to D = 0.6. The physics
performance is very similar to the one of the corresponding cone configurations.
The k⊥ algorithm is infrared and collinear safe to all orders of calculation.
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In all cases the full four-momentum recombination is used to calculate the
jet kinematics after each clustering step.

5.2 Input to jet reconstruction

The inputs for calorimeter or reconstructed jet-finding are calorimeter signals.
Fig. 5.1 presents an overview of the reconstruction flow for calorimeter jets.
Calorimeter jets are reconstructed by applying a jet-clustering algorithm to
calorimeter signals, typically followed by a calibration step. Two different sig-
nals from the calorimeter are used for jet-finding, towers and topological cell
clusters (topoclusters). Towers are formed by collecting cells into bins of a rect-
angular ∆η ×∆φ = 0.1 × 0.1 grid. All calorimeter cells are used in the towers.
Towers with negative signals dominated by noise are recombined with nearby
positive signal towers until the net signal is positive.

Topoclusters represent an attempt to reconstruct three-dimensional energy
deposition in the calorimeter [62, 63]. First, nearest neighbours are collected
around seed cells with a significant absolute signal above the major seed thresh-
old, such as |Ecell| > 4σcell of the total noise (electronics plus pile-up, that is
incoherent and coherent noise). If the absolute value of signal of these neigh-
bouring cells is above a secondary seed threshold, typically |Ecell| > 2σcell, they
are considered secondary seeds, and their direct neighbours are also collected.
Finally, all surrounding cells above a very low threshold (typically set to 0σcell

are added if no more secondary seeds are among the direct neighbours.
Contrary to the signal tower formation, topological cell clustering includes

noise suppression, meaning that cells with no signal at all are most likely not
included in the cluster. This results in substantially less noise. However, the
topological cell clustering will require careful validation with real data, in par-
ticular in terms of the possible impact of long-range noise correlations and of
detailed studies of pile-up effects as the luminosity increases.

5.3 Jet calibration

The following was adopted from [64]. The ATLAS calorimeter jet calibration is
based on the application of cell signal weighting similar to the original approach
developed for the H1 calorimeter [65]: all calorimeter cells with four-momenta
(Ei,

−→p i), where Ei = |−→p i|, in tower or cluster jets are considered and re-summed
with weighting functions, w, such that the resulting new jet four-momentum is:

(Erec,
−→p rec) =

(

Ncells
∑

i

w(ρi,
−→
X i)Ei,

Ncells
∑

i

w(ρi,
−→
X i)

−→p i,

)

. (5.1)

The weighting functions w depend on the cell signal density, ρi = Ei/Vi,

and on the cell location in the calorimeter,
−→
X i, consisting basically of mod-

ule and compartment identifiers. They are fitted using simulated QCD di-jet
events, covering the whole kinematic range expected at the LHC, and matching
calorimeter cone-tower jets, with R = 0.7, with nearby truth-particle cone jets

44



Tower Building
(û�×û 3=0.1×0.1, non-discriminant)

CaloCells
(em scale)

CaloTowers
(em scale)

Calorimeter Jets
(em scale)

Jet Based Hadronic Calibration
(cell weighting in jets etc.)

Calorimeter Jets
(fully calibrated had scale)

Physics Jets
(calibrated to particle level)

Jet Energy Scale Corrections
(algorithm effects, additional dead material corrections, etc.)

Refined Physics Jet
(calibrated to interaction level)

In-situ Calibration
(underlying event, pile-up, physics environment, etc.)

ProtoJets
(E>0,em scale)

Tower Noise Suppression
(cancel E<0 towers by re-summation)

Topological Clustering
(includes noise suppression)

CaloClusters
(em scale)

 Jet Finding
(cone R=0.7,0.4; KT D=0.6,0.4)

Figure 5.1: Jet reconstruction flow for calorimeter jets from towers or clusters.
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(jets builded from all stable particles before interacting with the detector or its
magnetic field) of the same size and with energy Etruth, and then constraining
Erec in Eq. (5.1) to Etruth by:

∂χ2

∂w(ρi,
−→
X i)

=
∂

∂w(ρi,
−→
X i)





∑

matched jets

((Erec + EDM ) − Etruth)2

Etruth



 = 0. (5.2)

The weighting functions determined in this way absorb all detector effects.
Implicitly included also are corrections for energy loss in inactive materials,
except for losses between the electromagnetic barrel and tile barrel calorimeters,
which are parametrised in Eq. (5.2) as

EDM = α
√

EEMB3ETILE0, (5.3)

where EEMB3 is the sum of the energies of the cells in the last compart-
ment of the barrel EM calorimeter belonging to the jet and ETILE0 is the
corresponding sum in the first compartment of the hadronic tile calorimeter.
Both quantities are reconstructed at the electromagnetic energy scale. The pa-
rameter α was assumed to be independent of energy and η and was determined

together with w(ρi,
−→
X i) in a combined fit according to Eq. (5.2).

The calibration applied in this way only corrects to the level of the truth-
particle jet. The extracted weighting functions were obtained for cone-tower
jets with R = 0.7 and are not universal, since they depend on the choice of
calorimeter signals used, on the jet algorithm chosen and on its specific config-
uration, and on the choice of (simulated) physics calibration samples used to
extract them. Residual mis-calibrations of all other jet-clustering algorithms
and their configurations are corrected for by functions depending on |η| and
pT of each measured jet. Whole this jet calibration procedure is called global
calibration.

5.3.1 Jet energy linearity and resolution

The following signal features are extracted from simulations including a model
for the electronic noise in each calorimeter cell, tuned with parameters extracted
from various beam test measurements. Pile-up fluctuations are not included.

The signal linearity for calorimeter jets shown in Fig. 5.2 is expressed by
the ratio of the reconstructed jet energy and the matched truth-jet energy,
Erec/Etruth, in simulated QCD dijet events. The signal linearity of global cali-
brated jets is reasonable over the whole energy range. It is also shown, that the
energy of jets at the electromagnetic energy scale (that is without any hadronic
calibration applied) corresponds to only ∼ 70% to ∼ 80% of the true jet energy.

The fractional energy resolution for the same jets, again after global cali-
bration is shown for two different η regions in Fig. 5.3. The energy resolution
was fitted by a formula

σ

E
=

√

a2

E
+

b2

E2
+ c2. (5.4)
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In the central region 0.2 < |η| < 0.4, the stochastic term is ≈ 60%
√

GeV, while
the high-energy limit of the resolution c ≈ 3%. The noise term b increases from
0.5 GeV to 1.5 GeV when going from the barrel to the end-cap η ranges.
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Figure 260. Signal li nearity for cone-tower jets
Figure 5.2: Signal linearity for cone-tower jets with R = 0.7, as expressed by
the ratio of reconstructed tower jet energy to the matching truth-jet energy
Erec/Etruth.

5.3.2 Jet signal uniformity

The variation of the jet energy response with jet direction depicted in Fig. 5.4
is a measure of the jet signal uniformity across the full rapidity coverage of
the calorimeters. The dips in response for 1.2 < |η| < 2.0 and 2.8 < |η| <
3.4 correspond to the two transition regions with higher abundance of dead
material, while the decrease of response in the last bin |η| > 4.4 is caused by
the limited fiducial coverage of the jet reconstruction. The dips are much more
apparent at lower transverse energies.

5.4 In-situ validation of jet calibration

Several final states at the LHC provide signals for validation of the jet energy
calibration, and even the extraction of further corrections. The final states
with a well measured electromagnetic object balancing one or more jets in
transverse momentum are suitable for this task. The γ +jet(s) process provides
high statistics in the pT range from 40 to 400 GeV, but lower purity than the
Z + jet(s) process covering precisely lower pT region up to 100 GeV.

One example of measuring the jet response using γ + jet(s) is the missing
transverse momentum projection fraction. The basic idea of this method is to
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project the hadronic pT vectors onto the pT vector of the photon and to measure
the apparent Emiss

T fraction. In events where the photon is back-to-back with
the jet, the jet response Rjet can then be determined by

Rjet = −
∑

signals
−→p T,had · η̂γ

pT,γ
, (5.5)

where η̂γ = −→p Tγ/pT,γ is the direction of the photon in the transverse plane.
The hadronic transverse momentum can be calculated using reconstructed jets,
or just using the sum of cluster signals. Rjet can be directly measured and used
for a global jet energy scale calibration derived from collision data.

The other important final state for jet calibration are hadronically decaying
W bosons in tt̄ production. Here, mW constraints the energy scale of the two
quark jets. With further in-situ corrections aimed at re-scaling je energies as
a function of |η| to obtain a uniform response, a linearity of better than 2% can
be achieved up to values of the true transverse momentum of the W -boson as
high as 200 GeV.

5.5 Validation of high-pT jet calibration

The upper pT limit of the above discussed in-situ methods to validate the global
calibration is about 400 GeV, where these methods are expected to fail due to
insufficient statistics. In order to validate even higher pT regions, the multi-jet
bootstrap method [66] was developed. This method utilises already validated pT

region as its base and iteratively validates the calibration in higher pT regions,
using QCD jets only, where large statistics is available up to several TeV region.

In the bootstrap method, events with at least three jets are selected, with
one jet having significantly higher pT than all others. This jet is balanced in
pT with the vector sum of the remaining jets and used to set the jet energy
scale in higher pT region. This process can be iterated. The bootstrap method
also includes corrections for effects spoiling the vector momentum sum balance,
such as very soft radiation favouring one side of the event and migration effects
caused by limited jet energy resolution. With the bootstrap method, the jet
energy scale set in the base pT region (up to 400 GeV) can be bootstrapped up
to 1 TeV with precision of ±1% with 1 fb−1of collected data and the limits of
this method with 300 fb−1are expected to be around 3 TeV [67].

Jet energy scale in the pT region above 3 TeV cannot be validated directly
with experimental data and we must rely on our extrapolation. The systematic
error of this extrapolation above 4 TeV due to uncertainty in our knowledge
of e/h of the ATLAS non-compensating calorimeters might be as small as 1 –
2% [68]. Nevertheless at such very high pT region other sources of systematic
errors will arise, for example due to a punch-through of hadronic showers and
leak of the jet energy into the Muon Spectrometer. These uncertainties still
need to be studied and will be specified also using the real data.
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5.6 Early data JES systematic errors

Due to the composite character of jets and a corresponding lack of test beam
data it is impossible to specify precisely the jet energy scale uncertainty prior
to having a collision data of sufficient quality. The values of JES systematic
errors recommended by the ATLAS community for the early data analysis (0.1
– 1 fb−1) are listed in Tab. 5.1, [69, 70]. It is very likely that with increasing
amount of collected collision data these uncertainties will decrease.

JES systematic error

|η| < 3.2 7%
3.2 < |η| < 4.9 15%

Table 5.1: Recommended values of JES uncertainty to be taken into account
in early data analysis.
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Chapter 6

Simulated Monte Carlo data
and analysis strategy

In this chapter let us describe the data samples analysed in following chapters.
The analysis strategy used for these samples is also briefly introduced.

6.1 Simulated data sets

As the startup of the LHC machine is expected in 2008, no physics data from the
ATLAS detector to study quark compositeness is available yet. Nevertheless,
the aim of this work is to be prepared for the real data and to find an optimal
analysis approach to search for quark compositeness. For this purpose, several
kinds of large Monte Carlo data samples were simulated.

The private compilation of Pythia 6.323 program was used to generate the
particle collisions. The only difference with respect to the official Pythia 6.323
code is, that in our version the ISR error affecting compositeness generation
was corrected, as described in Sec. 3.2.1. Our private code is, in terms of com-
positeness, equivalent to that of official Pythia 6.404, which was not available
at the moment of generation of the data samples.

The full simulation of the ATLAS detector response was done in ATLAS
dedicated framework Athena 11.0.42, [48]. The full GEANT4 [49, 50] simula-
tion of the ATLAS response is extremely CPU time consuming, therefore it is
available only for limited number of events and only for QCD dijets. The most
of the statistics was obtained in fast simulation of the ATLAS detector response
ATLFAST [51, 52], in Athena release 11.0.41 (which is, in case of ATLFAST,
equivalent to 11.0.42). A detailed overview of settings of Pythia parameters
used for ATLFAST simulation is presented in Appendix A.

Only jets with pT > 350 GeV were used. The value of this threshold is
based on the ATLAS inclusive physics prescaled trigger 2j350, passing events
with at least 2 jets with pT > 350 GeV. The reconstruction efficiency for such
rather high-pT jets is taken to be 100%.
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6.1.1 Full simulation data

The full simulation of the ATLAS detector response is considered as more real-
istic than the fast simulation (see Sec. 6.1.2), unfortunately it is also extremely
CPU time consuming. In order to use its computing resources effectively, the
ATLAS community decided to manage the production of full simulation data
centrally. One of the latest results of this effort are so-called CSC (Computing
System Commissioning) data samples.

There are two sets of CSC dijet samples used in this study: Pythia gener-
ated dijet samples used for a comparison with fast simulation and Herwig [72]
generated (with Jimmy plug-in for multiparton interactions [73]) dijet samples
used for an estimate of a systematic error due to the choice of Monte Carlo
generator. A detailed overview of used settings of Monte Carlo generator para-
meters is presented in Appendix A.

The Pythia generated CSC data consists of several QCD inclusive dijet
samples with various values of lower and upper cuts on pT of the jets. Physical
spectra from these samples are weighted according to their total cross-sections
and then summed together (or sewed, in one word) in order to reconstruct the
full inclusive dijet QCD spectrum. An overview of these samples is available in
Tab. 6.1.

sample pT cuts (GeV) σ (pb) Number of events

J4 140 to 280 3.08 × 105 167947
J5 280 to 560 1.25 × 104 277491
J6 560 to 1120 360 246195
J7 1120 to 2240 5.71 246345
J8 > 2240 0.24 259588

Table 6.1: Selected CSC Pythia dijet samples. Numbers of events correspond
to all AOD events fully simulated and reconstructed in Athena 11.0.42.

The Jimmy/Herwig generated CSC data consists of several QCD inclusive
dijet samples covering a kinematic region of J4 – J7 samples and denoted simi-
larly as J4 Jimmy – J7 Jimmy. The amount of fully reconstructed J4 Jimmy –
J7 Jimmy events is only about 20% of Pythia generated J4 – J7 events.

The CSC dijet samples were simulated using the CTEQ6L1 pdfs (LO fit
with LO αs), in agreement with ATLAS recommendation to use LO pdfs with
LO generator (such as Pythia). The jet reconstruction procedure used for
these jets is described in chapter 5.

To be complete, the jets were retrieved from Analysis Object Data (AOD,
[54]) containers. The Cone jet algorithm with a cone size of ∆R = 0.7 was
used.

Full simulation data for compositeness switched on is not available.

6.1.2 Fast simulation

The following was adopted from [52]. Fast simulation of the ATLAS detector
response is performed by ATLFAST. No detailed simulations of any interactions
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of the particles in the detector media are performed. These interactions are
implicitly taken into account by using a parametrised detector response. The
following steps are carried out:

• Stable particles from the event generators are tracked through the mag-
netic field by using a helix model as an explicit track model. In order to
calculate the particle tracks, no multiple scattering, energy loss or nuclear
interactions are taken into account. These effects are, however, implicitly
taken into account by the application of appropriate resolution functions,
when calculating the response of the calorimeters.

• The energies of the electrons, photons and hadrons are deposited in a calo-
rimeter cell map. The response of the calorimeter is assumed to be the
same for EM and hadronic showers (that means e/h = 1) and uniform
over the full calorimeter region. The energy of the particle is entirely de-
posited in the hit calorimeter cells (there is no punch-through), assuming
a granularity of the calorimeter cell map of ∆η × ∆φ = 0.1 × 0.1 up to
|η| < 3.2 and ∆η ×∆φ = 0.2× 0.2 for 3.2 < |η| < 4.9. Neither lateral nor
longitudinal shower development is simulated.

• The reconstruction of the physics objects in ATLFAST relies to a large
extent on the Monte Carlo truth information. No reconstruction layer
based on the simulated detector information is implemented.

The steps carried out to classify physics objects are the following:

1. Clusters. Cluster reconstruction is carried out on the map of energies
deposited in cells. A cone algorithm with a cone size of ∆R = 0.7 is used.
The cone is initiated by the seed cells with energies above 1.5 GeV. The
cluster energy must pass a threshold of 5 GeV. The clusters may get re-
classified as electrons, photons, taus or jets in one of the following steps.
If they are associated with one of these objects, they get removed from
the list of clusters.

2. Electrons. For each true electron a calorimeter cluster is searched that
could be matched to the electron in (η, φ) space. The separation is chosen
to be less than ∆R = 0.15. Other isolation criteria are then used and the
reconstructed electron energy is smeared.

3. Photons In terms of isolation criteria, photons are treated in the same
way as electrons. In addition a smearing of the photon direction in η is
applied.

4. Muons. For each true muon with pT > 0.5 GeV1 the reconstructed
momentum is calculated from the true muon momentum, using Gaussian
smearing.

1In this study c = 1 and the unit of particle momentum is (eV).
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5. Jets. All clusters that have not been assigned to a true electron, pho-
ton or a muon are considered as jets, if their transverse energy exceeds
a threshold of 10 GeV. The jet energy is smeared according to the follow-
ing resolution functions:

for |η| ≤ 3.2
σ

E
=

50%√
E

⊕ 3%, (6.1)

for 3.2 < |η| < 4.9
σ

E
=

100%√
E

⊕ 7%. (6.2)

This corresponds to the calorimeter design criteria as described in Sec. 4.2.
The jet direction is taken to be the cluster direction. Since the response
function of the calorimeter is set to one (e/h = 1), no jet calibration is
needed to correct for the lower and non-uniform calorimeter response to
hadrons. However, an out-of-cone energy correction is needed.

6. Next steps include identification of taus, b and c jets, missing transverse
momentum and tracks.

The labelling of the jets is done using the MC truth, possible labels are b,
c, τ and u for jets originated by b quark, c quark, τ lepton and other parti-
cles, respectively. The ATLFAST jets may be also calibrated in ATLFASTB
algorithm:

• Based on efficiency functions of tagging that have been evaluated from
full simulation, it gives a reconstruction label to light jets and to b, c and
τ jets.

• It applies calibration constants to jets depending on the jet pT and η
and reconstruction label. The calibration constants take into account
mainly the out of cone energy. The applied calibration factor is Kjet =

pparton
T /pjet

T , where pparton
T denotes the transverse momentum of the parton

that initiated the jet.

Concerning our data, no ATLFASTB corrections were applied to ATLFAST
jets. The treatment of ATLFAST jets in release 11.0.41 is the one obtained in
[53].

The ATLFAST data was also generated with CTEQ6L1 pdfs. It consists
of samples with compositeness switched off (SM only) and switched on (with
values of Λ = 3, 5, 10, 15 and 20 TeV). There were 450 millions of ATLFAST
events simulated. To be complete, the jets were retrieved from Analysis Object
Data (AOD, [54]) containers (which are created by copying information from
internal ATLFAST objects).
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6.1.2.1 Comparison with CSC samples

In order to benefit from the full simulation/reconstruction CSC samples and to
transfer the results of full simulation of ATLAS detector response also to the
ATLFAST data, a comparison of CSC samples with corresponding ATLFAST
data was done. In this case, the same generated events are used both for
full simulation/reconstruction and for ATLFAST. In both cases with jet cone
algorithm parameter ∆R = 0.7.

We should point out here some intrinsic differences between these two kinds
of data. While ATLFAST builds clusters (initiated from cluster seeds ordered
in pT) without applying a split-and-merge procedure, the full reconstruction
uses a standard seed cone algorithm [55]. This can lead to differences in the
reconstructed final state. Moreover, the largest effects to be corrected for in the
full reconstruction are detector effects, mainly the non-linearities coming from
the non-compensating ATLAS calorimeter system. Such effects are not present
in ATLFAST.

6.1.3 pdf uncertainty studies

The pdf experimental uncertainty studies were done at a parton level using two
pdf error sets of CTEQ6M1 and MRST2001E (both with NLO fit and NLO αs,
as there are no LO pdf error sets.) and Pythia. The simulated data consists
of samples with compositeness switched off (SM only) and switched on (with
values of Λ = 3, 5, 10, 15 and 20 TeV). There were 350 millions of events
simulated.

In case of dijet pT spectra only, the pdf uncertainties were also studied with
NLOJET++ generator [56, 57] and CTEQ6M1, in order to verify, that the
order of the matrix elements used in the generator (LO or NLO) does not affect
significantly the value of obtained relative pdf errors. This was verified to an
accuracy of one per mille.

6.1.4 Next-to-leading order approach

As already said, the full simulation/reconstruction and the fast simulation dijet
samples were generated with CTEQ6L1 pdfs (LO fit, LO αs) and Pythia (LO
generator). In order to be consistent with the pdf uncertainty results (NLO) and
to benefit from NLO dijet cross-section calculations the following two factors
were applied to this data:

• k-factors: a ratio of NLO and LO cross-sections for a given observable
(SM spectra only), as calculated in NLOJET++ at parton level (hard
process only), and

• a ratio of cross-sections as calculated in Pythia with NLO and LO pdfs,
here referred to as ll2nn factors (“LO fit + LO αs pdf to NLO fit +
NLO αs pdf”). There are two sets of these factors: one for the step
from CTEQ6L1 to CTEQ6M1 and the other for the step from CTEQ6L1
to MRST2001E. The ll2nn factors were calculated with compositeness
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switched off (SM only) and switched on (with values of Λ = 3, 5, 10, 15
and 20 TeV).

Both of these kinds of factors are functions of the variable they are used for,
e.g. k-factor used for inclusive dijet pT spectrum is a function of pT.

6.2 Analysis strategy

In order to find an analysis method the least sensitive to systematic errors and
the most sensitive to quark compositeness, four different analysis approaches
were studied:

• pT-Bayes method. In Sec. 7.3 the Bayesian technique was applied to
inclusive dijet pT-spectrum. This method uses a detailed information
about the pT-spectrum shape.

• Rdist3 “ratio” method is based on a comparison of a numbers of events
in pT spectra below and above some defined pT cut. Hopes laid on this
method – a smaller sensitivity to systematic errors – were not fully met,
as shown in Sec. 7.4.

• R1 “ratio” method is based on a comparison of a numbers of events in
dijet angular distribution spectra (or χ spectra) below and above some
defined χ cut. This is studied in Sec. 8.3.

• χ-Bayes method applies Bayesian technique to dijet angular distribution
spectra in Sec. 8.4.

The results from all four methods are compared in Sec. 9.
The following systematic errors were taken into account for each of these

methods:

• pdf uncertainties. The uncertainties of parton distribution functions
caused by the experimental uncertainties of data used for the pdf global
fits. CTEQ6M1 and MRST2001E pdf error sets were used.

• renormalisation and factorisation scale uncertainties. Used k-
factors depend on non-physical scales µR and µf . The uncertainty caused
by this dependence must be somehow quantified, if we neglected it, we
would obtain higher exclusion limits for compositeness, stating, that there
is not uncertainty at fixed-order perturbation calculation, which is not
true. The k = k(µr, µF ) dependence could be a subject to a further
study, nevertheless for the purpose of this paper a standard approach was
used. The k-factors for each analysis method were evaluated at following
scales: µR = µF = 0.5, 1.0 and 2.0 pmax

T , where pmax
T is the highest jet pT

in a given event.
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• Jet energy scale (JES) uncertainty. At the point of real physics data
analysis, the JES uncertainty will depend on both pT and η, it might be
as good as a few percent up to pT = 3 TeV and might be much worse
above pT = 3 TeV, depending on accumulated integral luminosity. For
the purpose of this paper an “all-inclusive” JES uncertainty of 3% for all
values of pT and η was used, in order to make a comparison of all analysis
methods more simple. The JES uncertainty of 3% might be reached
with larger amount of sufficient quality collision data. In case of early
data (0.1 – 1.0 fb−1) larger JES uncertainty is foreseen (see Tab. 5.1),
a prediction of exclusion limits on quark compositeness involving this
higher JES uncertainty is presented in Sec. 9.2.

• Absolute luminosity measurement uncertainty of 3% (see Sec. 4.3.4
for details).

• Uncertainty of the comparison with full simulation. This uncer-
tainty rises from limited statistics of full simulation data samples and
from systematic differences between the full and fast reconstruction. It is
different for each analysis method.

In addition, two other systematic errors were studied in special cases. Firstly,
in case of the most sensitive Bayesian method pT-Bayes, a dependence on prior
probabilities was studied. Secondly, in case of dijet inclusive pT spectrum,
a dependence on used Monte Carlo generator was studied with Pythia and
Jimmy/Herwig generated CSC dijet samples.

Yet another study concerning systematic errors would be interesting: the de-
pendence of systematic errors on the type and parameters of used jet algorithm.
For a certain jet algorithm the dependence of cross-sections on renormalisation
and factorisation scales might be minimal or the jet energy scale uncertainty
might be minimal. Nevertheless, such a study was not performed in this paper.
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Chapter 7

Inclusive dijet pT-spectrum

In this Chapter the effect of quark compositeness on inclusive dijet pT-spectrum
is studied with two methods, pT-Bayes and Rdist3 (in Sections 7.3 and 7.4). Let
us start with the description of the pT-spectra and related systematic errors.

In order to cover almost ten orders of magnitude range of differential cross-
section dσ/dpT, the data was sewed from 5 pT-slices with following cuts1 on
pT: 200, 350, 600, 1200, and 2000 GeV as shown in Fig. 7.1. This procedure
was done for SM and for all values of Λ too.

 (GeV)
T

p
500 1000 1500 2000 2500 3000 3500 4000 4500

 (
p

b
/G

eV
)

T
/d

p
σd

-810

-710

-610

-510

-410

-310

-210

-110

1

10 Leading di-jets

SM di-jets
 slice 200 - 350 GeV.

T
p

 slice 350 - 600 GeV.
T

p

 slice 600 - 1200 GeV.
T

p

 slice 1200 - 2000 GeV.
T

p

 slice > 2000 GeV.
T

p

Figure 7.1: Summing QCD inclusive leading dijet pT-spectra from pT-slices.
ATLFAST.

Inclusive leading dijet pT-spectra for various values of compositeness scale Λ
are shown in Fig. 7.2, the spectra consists of 50 pT-bins in a range from 350 to
4500 GeV. Note, that for every value of Λ there always exist a pT-range or bin
where the expected number of events is lower than that of pure QCD spectrum.

1Pythia CKIN(3) and CKIN(4) cuts.
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This is due to the interference terms O(Λ−2) in Eqs. (3.8) and it is visible in
Fig. 7.8. The higher the Λ value, the higher in pT these undershoot bins are.

 (GeV)
T

p
500 1000 1500 2000 2500 3000 3500 4000 4500

 (
p

b
/G

eV
)

T
/d

p
σd

-810

-710

-610

-510

-410

-310

-210

-110

1

10

Leading di-jets
SM

 = 3 TeVΛ
 = 5 TeVΛ
 = 10 TeVΛ
 = 15 TeVΛ
 = 20 TeVΛ

ATLAS Preliminary

Figure 7.2: Inclusive leading dijet pT-spectra for Λ = 3, 5, 10, 15, 20 TeV and
QCD only as obtained with ATLFAST, Pythia and CTEQ6L1.

7.1 Λ-fit

The simulated data samples include five different values of Λ, but for our studies
we need to know the pT-spectra for a whole continuum of Λ values and it is
possible to obtain this pT-spectra Λ dependence with the following procedure.

The differential cross-section dσ/dpT in kth pT-bin is proportional to the
convolution of pdf contribution and the matrix element:

σk ∝ f(x1, Q
2, f lavour1)f(x2, Q

2, f lavour2) ⊗ σ̂, (7.1)

where the factorisation scale is set to Q2. Within the given pT-bin the value
of Q is well limited and the dependence of pdfs on x1, x2 and flavours of incident
partons is very small. So the major dependence of dσ/dpT in kth on Λ follows
from Eqs. (3.8) and the cross-sections in pT-bins for simulated values of Λ can
be fitted by the following formula:

σk(Λ) = pk
1 +

pk
2

Λ2
+

pk
3

Λ4
, (7.2)

where pk
i are the fit parameters for the given bin. This method is called

Λ-fit and it is one of the corner stones of this study.
Of course, the most rigorous method would be to make Λ-fit on contents

of (pT, x, flavour) bins at parton level (even without detector simulation). So,
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what are the consequences of our simple approximation (including detector
simulation)?

Firstly, the fit is very efficient: the difference between the 6 fitted data points
and the fit function is not more than 0.3 %, which can be neglected with respect
to other sources of errors (statistical error, pdf uncertainties, JES uncertainties).
Secondly, (pT, x, flavour) bins would require a substantial increase of statistics,
in order to keep their statistical errors reasonably small. That is hardly feasible.

We consider the Λ-fit as an enough precise approximation of the ideal Λ-
fit. An example of this fit for two different pT bins is shown in Fig. 7.3. The
resulting Λ-fit functions are used for calculation of number of events in a given
pT-bin for any given value of Λ.

7.2 Systematic errors

In this Section systematic errors of inclusive dijet pT-spectra are shown. The
effect of 3% uncertainty in absolute luminosity measurement is not shown, ne-
vertheless it is included in further calculations.

7.2.1 PDF uncertainties

Inclusive dijet pT-spectra pdf errors were obtained with the pdf re-weighting
method (see Sec. 2.3.4). The SM pT-spectra obtained with 40 error pdfs of
CTEQ6M1 (30 error pdfs of MRST2001) normalised to the pT-spectrum ob-
tained with the central CTEQ6M1 pdf (central MRST2001 pdf) are shown in
Fig. 7.4. The yellow master error bands correspond to 90% C.L. The compa-
rison of MRST and CTEQ relative pT master errors is presented in Fig. 7.5,
where the pT spectra obtained with error pdfs of both groups were always nor-
malised to the pT-spectrum obtained with CTEQ6M1 central pdf. The MRST
master error band lies mostly within the CTEQ master error band, but the
pT-spectrum obtained with central MRST pdf is decreasing at high pT with
respect to the pT-spectrum obtained with central CTEQ pdf. At pT = 4 TeV
the difference is almost 40%.

In order to calculate the pdf error for any value of Λ, Λ-fit was performed on
simulated pT-spectra (corresponding to SM and Λ = 3, 5, 10, 15 and 20 TeV)
obtained with every pdf error set member (from CTEQ and MRST) and result-
ing master error, depending on Λ and pT was calculated and divided by a factor
of 1.64 to correspond to 1-sigma uncertainty.

7.2.2 NLO k-factors

NLOJET++ generator was used to calculate dijet pT-spectra at parton level
(hard process only) at LO and NLO order and their renormalisation and factori-
sation scale dependence, see Fig. 7.6. The red hatched band in the right-hand
side plot is obtained with setting µR = µF = 0.5, 1.0, 2.0 pTmax and is taken
as a contribution to systematic error.

Complementary ll2nn factors, that are ratios of pT-spectra obtained with
NLO and LO pdfs (see Sec. 6.1.3) are shown in Fig. 7.7. It is apparent, that the
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Figure 7.3: An example of various pT-bin Λ-fit. The red squares correspond to
the values obtained directly from simulated data samples with compositeness
switched off and on (Λ = 3, 5, 10, 15 and 20 TeV). Statistical errors of the
simulated data are usually smaller than the red squares. In both plots the low
1/Λ2 areas are zoomed in floating windows. The resulting Λ-fit functions are
used for calculation of number of events in a given pT-bin for any given value
of Λ.
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Figure 7.4: Relative pdf errors of SM inclusive dijet pT-spectrum as obtained
with CTEQ6M1 error pdfs (left) and MRST2001E error pdfs (right). The yellow
master error band corresponds to 90% C.L. In case of CTEQ6M1 the relative
master error grows rapidly with pT up to about +70% and −30%. In case
of MRST2001E the relative master error in pT-region from 2000 to 4500 GeV
is about +10% and −7% and is roughly constant with pT. This behaviour is
caused mainly by MRST2001E error pdf members number 17, 18, 19 and 20.
At high-pT region (above 4 TeV) statistical error influences this uncertainty
too.

Figure 7.5: Inclusive dijet pT-spectra master error bands and central values
(solid lines) as obtained with CTEQ6M1 and MRST2001E, normalised to pT-
spectrum obtained with CTEQ central pdf. The master error bands correspond
to 90% C.L. The MRST master error band lies mostly within the CTEQ master
error band, but the pT-spectrum obtained with central MRST pdf is decreasing
at high pT with respect to the pT-spectrum obtained with central CTEQ pdf.
At high-pT region (above 4 TeV) statistical error influences this uncertainty
too.
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Figure 7.6: Inclusive dijet pT-spectra at parton level (hard process only) as gen-
erated with NLOJET++ at LO and NLO order (left) and their renormalisation
and factorisation scale dependence (right), obtained with setting µR = µF =
0.5, 1.0, 2.0 pTmax.

ll2nn factors strongly depend on Λ. This is caused by the fact, that the relative
abundance of quarks and gluons depends on the value of Λ and different pdf
sets give different results for each kind of partons.

7.2.3 Jet energy scale uncertainty

The effect of 3% jet energy scale uncertainty on SM pT-spectrum is shown in
Fig. 7.8. In order to calculate the systematic error due to this uncertainty for
any value of Λ, the JES for simulated samples (that is for SM, and Λ = 3, 5, 10,
15 and 20 TeV) was shifted ±3% and Λ-fit was performed on resulting shifted
JES pT-spectra.

7.2.4 Comparison with Full Simulation

Standard model inclusive dijet pT-spectrum sewed from full simulation CSC
samples J4 – J8 is depicted in Fig. 7.9. For the purpose of this comparison, the
generated events, used for this full simulation were also used as an input for
ATLFAST.

The ratio of full and fast inclusive dijet pT-spectra (FA factor – “full over
ATLFAST”) is depicted in Fig. 7.9. The pT-spectrum ranging from 350 to
4500 GeV is divided into 50 bins. It is apparent, that full simulation predicts
smaller number of high-pT jets with respect to the pT spectrum obtained by
ATLFAST.

7.2.5 Dependence on Monte Carlo Generator

There are many Monte Carlo generators capable of computing hard process
matrix elements, but only a few of them (such as Pythia, Herwig or Sherpa)
are able to generate the complete event. The description of parton showers and
hadronisation in Pythia and Herwig is based on different models. In order
to estimate the systematic error caused by the selection of Pythia as a main
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Monte Carlo generator for this study, a comparison of inclusive dijet pT-spectra
generated with Pythia and Jimmy/Herwig was performed. The result is
presented in Fig. 7.10. It is apparent, that Jimmy/Herwig predicts about
15% less events than Pythia in whole studied pT-range. This systematic error
was not taken into account in further calculations, it would cause a decrease of
compositeness exclusion limits in an order of per cent.

The detailed settings of both Monte Carlo generators used for this compa-
rison are available in Appendix A.

Figure 7.10: Inclusive dijet pT-spectra at the detector level generated with
Pythia and Jimmy/Herwig, normalised to the Pythia case. Full simulation
CSC dijet samples were used. The shape of Jimmy/Herwig normalised pT-
spectrum is affected by a smaller statistics available in full simulation. It is
apparent, that Jimmy/Herwig predicts about 15% less events than Pythia.

7.3 Bayesian approach

Bayesian technique is widely used in order to determine the lower limit on com-
positeness scale [25, 23]. The output of this technique is the posterior probabil-
ity density P (Λ|d), telling us how probably is given value of Λ incorporated in
nature, given the data d we measured in our experiment. Employing the Bayes’
theorem (3.14) for inclusive dijet pT-spectrum is done as follows:

P (Λ|d) =
1

Z
P (Λ)

kmax(L)
∏

k=1

P k(Nk
d |NΛ,k

exp ) ⊗ Gk(JES(Λ), pdf(Λ), δL, µ, FA),

(7.3)
where 1/Z is a normalisation factor and the product runs over pT-bins start-

ing at 350 GeV up to the kmax(L) bin, which is the highest pT-bin of Standard
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Model QCD spectrum containing at least one event at a given total integral
luminosity L. The likelyhood function takes a form of Poisson distribution2:

P k(Nk
d |NΛ,k

exp ) =
e−NΛ,k

exp (NΛ,k
exp )N

k
d

Nk
d !

, (7.4)

where Nk
d is a number of events in kth pT-bin in experimental data and NΛ,k

exp

is an expected number of events in kth pT-bin as predicted by theory for a given
value of Λ. The values NΛ,k

exp were obtained as a product of FA factor (at given
pT) and a result a Λ-fit of ATLFAST data, to which k-factors and ll2nn factors

were applied. Similarly for Nk
d the values of NΛ,k

exp were used, either with Λ = ∞
corresponding to pure SM, when we are interested in exclusion limits, or with
finite value of Λ, when we are interested in discovery of compositeness.

In order to include smearing due to systematic errors, the likelyhood is con-
voluted with a Gaussian distribution Gk(JES(Λ), pdf(Λ), δL, µ, FA) of mean
equal to zero and σ involving contributions from jet energy scale uncertainty
and parton distribution function uncertainty (both Λ dependent), absolute lu-
minosity measurement uncertainty, renormalisation and factorisation scale un-
certainty and FA factor uncertainty. All systematic errors are treated as inde-
pendent.

Concerning the prior probability density P (Λ), a common choice is P (Λ) ∝
1/Λ2 or P (Λ) ∝ 1/Λ4, as inspired by the form of langrangian in Eq. (3.5).
Another choice, P (Λ) ∝ exp (−Λ/µ), where µ is a chosen scale, was used in
[24]. We tried this last prior with µ = 10 TeV, this value is higher, than the
current limit on quark compositeness set by Tevatron, but such a compositeness
scale still could be measured by ATLAS.

There is also a good statistical reason, why to choose one of the priors above.
It is so-called maximum information entropy choice of prior probability, [58].
As our current knowledge about Λ is very limited (we know only its lower limit),
the prior pdfs should represent our ignorance of Λ and their information entropy
should be the largest. This is really the case: P (Λ) ∝ 1/Λ2 gives a maximum
entropy for 1/Λ2 in interval [0,1/Λ2

min], P (Λ) ∝ 1/Λ4 gives a maximum entropy
for 1/Λ4 in interval [0,1/Λ4

min] and P (Λ) ∝ exp (−Λ/10 TeV) gives a maximum
entropy for Λ in interval [Λmin,∞), when a mean value µ = 10 TeV of this pdf is
given. As the best choice of prior we would favour the first choice: P (Λ) ∝ 1/Λ2,
as 1/Λ2 is the parameter present in the effective Lagrangian in Eq. (3.5). The
least favourable choice is P (Λ) ∝ exp (−Λ/10 TeV); firstly Λ1 is not present in
the Lagrangian, and secondly this prior requires an arbitrary parameter µ.

The value Λmin can be set to 2.7 TeV, according to the limit already mea-
sured (see Sec. 3.4), as long as this limit is far enough from the limits achievable
by ATLAS, it does not affect the results anyway. Finally, the results of Bayesian
technique can only be relevant, if the bias introduced by the choice of prior, is
reasonably small. This will be discussed in Sec. 7.3.1.

The exclusion limits Λlim obtained with prior P (Λ) ∝ 1/Λ2 and correspond-
ing to a given confidence level C.L. are calculated according to Eq. (3.15) and
their values are listed in Tab. 7.1 and shown in Fig. 7.11.

2in case of Nk
d > 30 this is approximated by a Gaussian distribution for technical reasons.
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Figure 7.11: Dependence of pT-Bayes exclusion limits Λlim (TeV) on total in-
tegral luminosity.

Int. luminosity 95% C.L. 3-sigma
(fb−1) MRST CTEQ MRST CTEQ

0.1 10.65 10.64 9.51 9.36
0.3 12.08 12.13 10.82 10.69
1.0 13.68 13.75 12.30 12.13
3.0 15.30 15.29 13.77 13.50

10. 17.28 17.21 15.56 15.17
30. 18.94 18.80 17.06 16.55

100. 20.68 20.36 18.64 17.95
300. 22.46 22.01 20.20 19.32

Table 7.1: Values of exclusion limits Λlim (TeV) at 95% C.L. and 3-sigma level
obtained by pT-Bayes with CTEQ6M1 or MRST2001E pdfs for various values
of total integral luminosity.

68



7.3.1 Dependence of posterior probabilities on priors

In this section we study the dependence of posterior probabilities on priors. Pos-
terior pdf computed with various priors are shown in Fig. 7.12. Corresponding
values of Λlim are listed in Tab. 7.2. Although the shapes of posteriors appar-
ently differ, the difference in exclusion limits is less pronounced: 5% between
the smallest and the largest value. This difference is still not small, but it is
not surprising: after the measurement our ignorance of Λ is still large - we still
do not know its value, we only know its lower limit.

On the contrary to the case, when measured data corresponds to SM pT-
spectrum, the dependence of posterior on prior is much more modest, when the
likelyhood function is more narrow, that is when measured data corresponds to
pT-spectrum with some finite value of Λ switched on. This is studied in next
section.

Yet another issue must be clarified. If the measured data corresponds to
SM pT-spectrum, why the maximum of the posterior pdf is not at 1/Λ2 = 0,
as we see in Fig. 7.12? Firstly, it depends on the prior, the priors 1/Λ4 and
exp(−Λ/10 TeV) obviously move the maximum position to the right. But even
in case of prior flat in 1/Λ2 the maximum is not at zero. That is caused by
a combination of two effects: the existence of undershoot pT-bins for spectra
with compositeness switched on (see introduction of Sec. 7 and Fig. 7.8) and
the dependence of systematic error on Λ which follows these undershoot bins.
But as we are aware of this effect we can take it into account. The posterior
pdf maximum position corresponds much better to the measured value of Λ,
when compositeness would be discovered, as illustrated in the next section.
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Figure 7.12: Posterior pdf computed with various priors. Measured data = SM
only, compositeness switched off. These pdfs are used for the calculation of
exclusion limits. CTEQ6M1 pdf used, total integrated luminosity is 300 fb−1.
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prior Λlim (TeV)

1/Λ2 22.01
1/Λ4 20.86
exp(−Λ/10 TeV) 21.86

Table 7.2: Values of exclusion limits Λlim (TeV) at 95% C.L. for pT-Bayes
method at 300 fb−1 computed with various prior probabilities. CTEQ6M1 pdfs
used.

7.3.2 Discovery potential

The pT-Bayes method can be used to test any kind of measured pT spectra for
compositeness. In this section two other cases are studied with compositeness
switched on: Λ = 15 TeV and Λ = 10 TeV. Compare Figs. 7.13 and 7.14 for
the shapes of posterior pdf obtained with various priors. In these cases, when
compositeness would be discovered a 5-sigma discovery interval can also be
calculated. As the posterior pdfs are non-Gaussian asymmetric functions, the
shortest 5-sigma (and for illustration 3-sigma) confidence levels were found, as
stated in Tabs. 7.3 and Tab. 7.4.
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Figure 7.13: Posterior probability density for Λ = 15 TeV and various priors at
300 fb−1. CTEQ6M1 pdfs used.

We also observe, that the lower the value of Λ, the better the positions
of posterior maxima correspond to it and the smaller dependence on priors is
present – in case of Λ = 10 TeV it almost disappears. In this case our ignorance
of Λ would be very small, so our choice of prior naturally plays only a negligible
role.
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prior Λmax (TeV) 3-sigma 5-sigma

1/Λ2 15.44 14.09 to 17.08 13.30 to 18.51
1/Λ4 15.41 14.07 to 17.04 13.27 to 18.45
exp(−Λ/10 TeV) 15.46 14.11 to 17.11 13.31 to 18.55

Table 7.3: Values of the most probable value Λmax and the shortest 5-sigma
interval for various priors when compositeness with Λ = 15 TeV is switched on.
CTEQ6M1 pdfs, 300 fb−1.
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Figure 7.14: Posterior probability density for Λ = 10 TeV and various priors at
300 fb−1. CTEQ6M1 pdfs used.

prior Λmax (TeV) 3-sigma 5-sigma

1/Λ2 10.146 9.684 to 10.612 9.379 to 10.933
1/Λ4 10.141 9.680 to 10.608 9.374 to 10.928
exp(−Λ/10 TeV) 10.150 9.689 to 10.617 9.384 to 10.938

Table 7.4: Values of the most probable value Λmax and the shortest 5-sigma
interval for various priors when compositeness with Λ = 10 TeV is switched on.
CTEQ6M1 pdfs, 300 fb−1.
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7.4 Rdist3

In this method, in order to quantify the difference between pT spectra with
compositeness switched on and off, the following ratio of number of event below
and above chosen p0

T cut is used:

R(Λ) =

(

N(pT > p0
T)

N(pT < p0
T)

)

Λ

(7.5)

The difference between SM and SM+CT spectra, measured in standard
deviation of the difference between R values of these spectra is simply:

Rdist3 =
R(Λ) − R(SM)
√

σ2
R(Λ) + σ2

R(SM)

(7.6)

The value of p0
T cut is chosen to get maximum value of Rdist3 for every

simulated Λ, as shown in Fig. 7.15. In order to be able to calculate Rdist3
for any value of Λ, we must fit the p0

T cut dependence on Λ and the resulting
fit function use as a new definition of the p0

T cut (see Fig. 7.15). The only
requirement for the fit function is, that it should be a smooth function, that
fits p0

T cut values for simulated Λ well. p0
T cut is now defined according to the

formula:

p0
T (GeV) = −520.7 + 109.7 × Λ(TeV) + 1099 × (Λ(TeV) − 2 TeV)0.1 (7.7)

One might wonder, which value of Λ shall we use for the calculation of p0
T

cut when the value of Λ is the one we want to measure and we do not know
that value prior to the experimental measurement. Therefore, we must calculate
Rdist3 for all possible cases of Λ and corresponding cuts. The highest value of
Rdist3 will be reached with p0

T cut optimal for the Λ which is experimentally
observed. Practically, R(SM) in Eq. 7.6 will be based on our Monte Carlo
prediction and R(Λ) in Eq. 7.6 will be calculated from real measured data.

The values of N(pT > p0
T) and N(pT < p0

T) for a given Λ were calculated
using the Λ-fit functions from Sec. 7.1. There are 50 bins of dijet pT-spectra
from 350 to 4500 GeV: edges of its 35 pT-bins ranging from 848 to 3753 GeV
correspond to p0

T cuts optimised for values of Λ spanning from 2.75 TeV to
25.24 TeV, as expressed in Eq. 7.7. The contents of pT-bins below and above
p0
T cuts were summed in order to calculate Rdist3 = Rdist3(Λ) – see Fig. 7.16.

7.4.1 Exclusion limits

When calculating Rdist3 exclusion limits, the following factors and systematic
errors are included: k-factors and ll2nn factors, pdf uncertainties, JES uncer-
tainties, FA factor and its uncertainties. The uncertainty on integral luminosity
measurement cancels in Rdist3 by definition. A comparison of relative Rdist3
systematic errors is in Fig. 7.17. It is apparent, that the largest contribution to
the systematic error comes from the JES uncertainty.
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Figure 7.15: Rdist3 dependence on p0
T cut at 30 fb−1. ATLFAST, Pythia,

CTEQ6L1 (top). Note, that the maximum of the curves is rather flat. Fitted
dependence of p0

T cuts on Λ (bottom). The resulting fitting function is used as
a definition of the optimal p0

T cut for a given value of Λ.
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Figure 7.16: Rdist3 dependence on Λ at 30 fb−1 as obtained with the aid of Λ-fit
and p0

T cut definition in Eq. (7.7). Statistical error shown by the red band. The
blue points represent the values of Rdist3 as calculated directly from simulated
data samples.

Finally, Rdist3 exclusion limits are depicted in Fig. 7.18 and listed in
Tab. 7.5. At higher integral luminosities Rdist3 exclusion limits grow more
slowly due to larger systematic errors – an effect of collecting higher statistics
is not that large anymore.

To be complete, the discovery limits for Rdist3 method are not calculated,
as it is not as sensitive as pT-Bayes method.

Int. luminosity 95% C.L. 3-sigma
(fb−1) MRST CTEQ MRST CTEQ

0.1 10.49 10.39 9.47 9.36
0.3 11.72 11.61 10.62 10.49
1.0 13.09 12.96 11.84 11.68
3.0 14.25 14.10 12.87 12.69

10. 15.25 15.09 13.80 13.60
30. 15.95 15.77 14.25 14.04

100. 16.31 16.12 14.44 14.22
300. 16.40 16.21 14.47 14.25

Table 7.5: Values of exclusion limits Λlim (TeV) at 95% C.L. and 3-sigma level
obtained by Rdist3 method with CTEQ6M1 or MRST2001E.
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Figure 7.17: Rdist3 relative systematic error comparison (top). It is apparent,
that the largest contribution to the systematic error of Rdist3 comes from JES
uncertainty. Rdist3 pdf master error comparison as obtained with CTEQ6M1
and MRST2001E pdf sets (bottom). The pdf errors were divided by a factor of
1.64 in order to scale down from original 90% C.L. to a 1-sigma level.
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Figure 7.18: Rdist3 exclusion limits, as obtained with CTEQ6M1 and
MRST2001E.
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Chapter 8

Dijet angular distribution

In this Chapter the effect of quark compositeness on inclusive dijet angular
distribution is studied with two methods, R1 and χ-Bayes (in Sections 8.3 and
8.4). Let us start with the description of the inclusive dijet angular distribution
and related systematic errors.

To study a leading dijet angular distribution it is useful to employ the
variable χ, which is Lorentz-invariant for massless objects:

χ = exp |η1 − η2|, (8.1)

where η1 and η2 are pseudorapidities of the two leading jets. A typical
example of χ-distribution for various values of Λ, normalised to the total number
of events, passing the cuts, is shown in Fig. 8.1. Quark compositeness causes
an excess of events at small values of χ, as can be derived from Eqs. 3.8.
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Figure 8.1: Normalised χ-distribution for various values of Λ with cut on dijet
invariant mass mjj > 1 TeV (left) and mjj > 5.9 TeV (right). χ is in the range
of 1 to 35, and the spectra are binned into 10 bins.

One would like to benefit from measuring angular distributions and get a rid
of JES uncertainties. But when we are interested in measuring quark compos-
iteness, this is unfortunately not possible – without a lower cut on leading dijet
invariant mass mjj, the effect of compositeness is very week, as presented in
Fig. 8.1: with mjj > 1 TeV the angular distribution for Λ = 5 TeV almost
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coincides with SM distribution, while with mjj > 5.9 TeV even Λ = 15 TeV
can be spot, despite very reduced statistics at such a high mjj.

8.1 Λ-fit

Analogically to pT-spectra Λ-fit performed in Sec. 7.1, the Λ-fit method was
performed on the contents of dijet angular distribution bins and Eq. (7.1) was
employed. The χ-distribution is binned into 10 bins in the range of χ from 1
to 35 in order to keep the statistical error of the simulation reasonably small.
The highest cut on dijet invariant mass was chosen to be mjj = 5.9 TeV. This
value is somewhat arbitrary (in fact, it was inspired by R1 method, as will
be shown later), but it would not make much sense to set even higher mjj

cut, as the uncertainty in JES of corresponding jets might be rather large and
statistics fairly low. An example of χ-bin Λ-fit is shown in Fig. 8.2. The largest
difference of fitted data and the fit function in case of χ-bin Λ-fit is 0.5%.
Corresponding χ-Λ plane is depicted in Fig. 8.3. The results of Λ-fit performed
on χ-distribution, where k-factors and ll2nn factors were applied, were used for
χ-Bayes method in Sec. 8.4. For the needs of R1 method, Λ-fit was performed
on different angular distributions, as described in Sec. 8.3.
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Figure 8.2: The Λ-fit of χ-bin (1.0; 4.4) with cut mjj > 5.9 TeV applied.
ATLFAST, Pythia, CTEQ6L1. The red squares correspond to the values
obtained directly from simulated data samples with compositeness switched off
and on (Λ = 3, 5, 10, 15 and 20 TeV). The low 1/Λ2 area is zoomed in a floating
window. The resulting fitting function is used for calculation of number of
events in the given bin for any given value of compositeness scale Λ.
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Figure 8.3: Dependence of differential cross-section dσ/dχ on χ and Λ when
cut mjj > 5.9 TeV is applied. One can see, that with Λ not only the shape of
χ-distribution changes, but the absolute values of dσ/dχ change rapidly, too.
ATLFAST, Pythia, CTEQ6L1.

8.2 Systematic errors

In this Section systematic errors of χ-spectra are shown. The effect of 3%
uncertainty in absolute luminosity measurement is not shown, nevertheless it
is included in further calculations.

8.2.1 PDF uncertainties

Analogically to pT-spectra pdf uncertainties in Sec. 7.2.1, the pdf uncertain-
ties were calculated for χ-distribution obtained from dijets passing the cut
mjj > 5.9 TeV as shown in Fig. 8.4. A comparison of master error bands
from CTEQ6M1 and MRST2001 is illustrated in Fig. 8.5. Again MRST master
error band lies mostly within CTEQ master error band and is significantly more
narrow. MRST pdfs also predict smaller number of events in χ-distribution at
high mjj.

8.2.2 NLO k-factors

NLO k-factors and their scale dependence were calculated with NLOJET++
generator analogically to procedure in Sec. 7.2.2. The k-factor systematic error
due to scale dependence was again obtained by varying µR = µF = 0.5, 1.0, 2.0
pTmax (see Fig. 8.6). Complementary ll2nn factors were applied to χ-spectra
too.
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Figure 8.4: Relative pdf uncertainties of SM χ-distribution with cut mjj >
5.9 TeV. CTEQ6M1 (left) and MRST2001E (right) sets used. Uncertainties
correspond to 90% C.L.
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Figure 8.5: A comparison of pdf uncertainty of SM χ-distribution with cut
mjj > 5.9 TeV applied as obtained with CTEQ6M1 and MRST2001E. The
MRST master error band lies almost within the CTEQ master error band. The
MRST predicts smaller mean value of the χ-distribution than CTEQ.
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Figure 8.6: χ-distribution k-factor (solid red line). The blue and red hatched
band were obtained by setting µR = µF = 0.5, 1.0, 2.0 pTmax at LO, NLO,
respectively.

8.2.3 Jet energy scale uncertainty

The jet energy scale uncertainty is introduced into angular distribution spectra
due to the necessity to use lower cuts on dijet invariant mass (see introduction
of Sec. 8). An effect of 3% JES on χ-distribution calculated with different mjj

cuts is illustrated in Fig. 8.7.
In order to specify χ JES uncertainty for any value of Λ, the JES for sim-

ulated samples (that is for SM, and Λ = 3, 5, 10, 15 and 20 TeV) was shifted
±3% and Λ-fit was performed on resulting shifted JES χ-spectra.

8.2.4 Comparison with Full Simulation

Full simulation CSC samples J4 – J8 were used to study the difference between
full and fast simulation. For the purpose of this comparison, the generated
events, used for full simulation were also used as an input for ATLFAST.

The ratio of full and fast χ-spectra (FA factor – “full over ATLFAST”)
is depicted in Fig. 8.8. Only events with dijet invariant mass mjj passing
a threshold of 5.9 TeV were used in this case. The region of dijets with such
high mjj is very important for compositeness study, unfortunately the statistical
error due to a limited amount of events available in full simulation is so large,
that in case of χ-spectra the FA factor was not applied at all.

8.3 R1

Analogically to Rdist3 method for pT-spectrum (Sec. 7.4) the R1 method uses
a similar ratio of number of event below and above chosen χcut to quantify the
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Figure 8.7: χ-distribution for SM and various values of Λ obtained with mjj >
1.4 TeV (left) and mjj > 5.9 TeV (right). Black dashed lines show 3% JES
uncertainty band for SM. With cut mjj > 1.4 TeV applied the χ-distributions
for Λ ≥ 10 TeV would practically sit on the top of SM χ-distribution and
therefore they are not shown. Even Λ = 5 TeV is almost “lost” within the JES
uncertainty. With cut mjj > 5.9 TeV on the other hand, even Λ = 15 TeV is
distinguishable from the SM case.
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Figure 8.8: Ratio of χ spectra from full and fast simulation, cut mjj > 5.9 TeV
used. Showed error band corresponds to a statistical error due to limited
amount of events available in full simulation. In this case the statistical er-
ror is so large, that the obtained FA factor for χ spectrum was not used.
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difference between χ spectra with compositeness switched on and off:

Rχ(Λ) =

(

N(χ < χcut)

N(χ > χcut)

)

Λ

(8.2)

The difference between SM and SM+CT spectra, measured in standard
deviation of the difference between Rχ values of these spectra is then:

R1 =
Rχ(Λ) − Rχ(SM)
√

σ2
Λ + σ2

SM

(8.3)

As already mentioned, it is necessary to introduce a lower cut on mjj in order
to obtain χ-spectra, where the effect of compositeness can be spot. Thus, for the
R1 method, there are now two cuts to be optimised to get the highest value of
R1 for a given Λ: χcut and a lower cut on dijet invariant mass mjj. An example
of R1 dependence on both these cuts is depicted in Fig. 8.9 for Λ = 10 TeV.
Optimal values of χcut and mjj cut were found for all five simulated values of
Λ (3, 5, 10, 15 and 20 TeV).
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Figure 8.9: χ-cut and mjj-cut R1 dependence for Λ = 10 TeV. It is apparent,
that the value of R1 near its maximum depends only a little on both cuts.

In order to be able to calculate R1 for any value of Λ, the optimal values of
χcut and mjj cut for simulated Λ were fitted by suitable smooth functions, as
presented in Fig. 8.10. The resulting fit functions are used as a new definition
of the χ-cut and mjj-cut.
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Figure 8.10: Dependence of optimal χ-cut on Λ (left). Dependence of optimal
mjj-cut on Λ (right). The resulting fitting functions are used as new definitions
of χ-cuts and mjj-cuts.

χ-cut is now defined according to the formula:

χcut = 35.03 + 0.02924 × Λ(TeV) − 23.67 × (Λ(TeV) + 8 TeV)0.1 (8.4)

mjj-cut is now defined according to the formula:

mjjcut(GeV) = −1.9640+0.2140×Λ(TeV)+2.7076×(Λ(TeV)−2 TeV)0.1 (8.5)

One might wonder, which value of Λ shall we use for the calculation of χ-cut
and mjj-cut when the value of Λ is the one we want to measure and we do not
know that value prior to the experimental measurement. Therefore, we must
calculate R1 for all possible cases of Λ and corresponding cuts. The highest
value of R1 will be reached with χ-cut and mjj-cut optimal for the Λ which is
experimentally observed. This procedure is also illustrated in Sec. 8.3.2.

Due to the range of χ and mjj cuts it was necessary to make a dedicated
Λ-fit for the needs of R1. The following binning was chosen. Let us have 44 bins
in Λ from 3 to 25 TeV (bin width of 0.5 TeV). According to Eqs. (8.4) – (8.5) we
obtain corresponding values of χ and mjj cut for each Λ bin edge. For each mjj

bin, the χ spectrum was divided into two bins: (1;χcut) and (χcut; 35). These
bins were then fitted. The largest relative difference between the fitted data and
the fitting function was 0.3%. Thanks to this R1 dedicated Λ-fit and Eqs. (8.4)
– (8.5) the R1 = R1(Λ) dependence is calculated as shown in Fig. 8.11.

8.3.1 Exclusion limits

When calculating R1 exclusion limits, the following factors and systematic er-
rors are included: k-factors (see Fig. 8.12) and ll2nn factors, pdf uncertainties,
JES uncertainties, FA factor and its uncertainties. The uncertainty of absolute
luminosity measurement cancels in R1 by definition. A comparison of relative
R1 systematic errors is in Fig. 8.13. In this case all sources of systematic errors
are similarly important.

R1 exclusion limits are depicted in Fig. 8.14 and listed in Tab. 8.1.

84



Figure 8.11: R1 dependence on Λ at 30 fb−1. CTEQ6L1. The red band shows
statistical error.
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Figure 8.12: R1 k-factors and their scale dependence calculated in NLOJET++.
Low χ-bin contains χ in interval (1;χcut), high χ-bin contains χ in interval
(χcut;35).
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Figure 8.14: R1 exclusion limits with CTEQ6M1 and MRST2001E pdf sets.
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Int. luminosity 95% C.L. 3-sigma

(fb−1) MRST CTEQ MRST CTEQ

0.1 9.05 9.03 8.07 8.00
0.3 10.43 10.36 9.32 9.26
1.0 11.88 11.77 10.85 10.67
3.0 13.19 12.98 12.13 11.84

10. 14.90 14.43 13.68 12.97
30. 16.24 15.51 15.05 14.01

100. 17.43 16.33 16.43 14.74
300. 18.14 16.70 17.29 15.11

Table 8.1: Values of exclusion limits Λlim (TeV) at 95% C.L. and 3-sigma level
obtained by R1 method with CTEQ6M1 or MRST2001E pdf uncertainties.

8.3.2 Discovery potential

R1 discovery potential at 300 fb−1 is illustrated in Fig. 8.15. When we calculate
R1, then for a given value of Λ we know the best value of these cuts according
to Eqs. (8.4) – (8.5). The solid blue line in the Fig. 8.15 corresponds to our
prediction of the highest R1 values for Λ given by the horizontal axis. When
we measure χ spectrum by the experiment, corresponding to some fixed value
Λ = Λexp, we do not know the value of Λexp in advance and so we do not know,
what values of χcut and mjj to choose. Therefore we calculate the R1 curve
with values of these cuts for any meaningful value of Λ. An example of such
a curve for Λexp = 10 TeV and Λexp = 15 TeV is also shown in Fig. 8.15. In
these cases, Λ given by the horizontal axis influences only the values of cuts, but
the angular spectra are fixed. The intersections of these “experimental” curves
with our R1 prediction indicate the value Λexp that was eventually measured.
The highest value of R1 is obtained with mjj-cut and χ-cut optimal for the
measured Λexp.

5-sigma discovery intervals are listed in Tab. 8.2. It is also interesting to
compare these intervals with corresponding values (obtained with prior flat in
1/Λ2) in Tabs. 7.3 – 7.4 obtained with pT-Bayes method. As the pT-Bayes
method is more sensitive to quark compositeness, its discovery intervals are
also narrower.

Λ (TeV) 3-sigma 5-sigma

10 9.18 to 11.02 8.64 to 11.75
15 12.95 to 18.46 11.85 to 21.24

Table 8.2: 3 and 5-sigma discovery intervals of “measured” Λexp (TeV) at 300
fb−1 obtained by R1 method with CTEQ6M1 pdf uncertainties for various
values of Λ implemented in the “measured data”.
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Figure 8.15: R1 5-sigma discovery potential at 300 fb−1, CTEQ6M1. Three
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8.4 Bayesian approach

The χ-Bayes method is based on a comparison of measured and predicted χ-
spectra obtained with a given lower cut on dijet invariant mass mjj. Analog-
ically to pT-Bayes method, the χ-Bayes posterior probability density function
is calculated as:

P (Λ|d) =
1

Z
P (Λ)

10
∏

k=1

P k(Nk
d |NΛ,k

exp ) ⊗ Gk(JES(Λ), pdf(Λ), δL, µ, FA). (8.6)

The only difference is, that the product on the right-hand side of Eq. (8.6)
runs over a fixed number of 10 χ-bins ranging from 1 to 35. The χ-spectra were
obtained with a fixed lower cut on dijet invariant mass mjj > 5.9 TeV. The
meaning of the symbols in Eq. (8.6) is the same as o those in (7.3), except for
the fact, that now we deal with a given χ-spectra.

Although the mjj cut strongly reduces the statistics, the higher it is, the
more quark compositeness is pronounced and observable, as shown in Fig. 8.16.
In this figure, the NLO k-factors and scale dependence errors are not included,
qualitatively they would not change the results. In case of lower mjj cuts
(especially 1.4, 2.1 and 3.5 TeV) the dependence of exclusion limits on integral
luminosity is almost flat. This is caused by systematic errors, overwhelming
the indistinctive effect of quark compositeness in this kinematic region.

One might wonder, why the values of mjj cuts were chosen as stated in the
legend of Fig. 8.16. These are the optimal values of mjj cuts in R1 method for
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Figure 8.16: Dependence of χ-Bayes 3-sigma exclusion limits on mjj-cuts and
total integral luminosity. At higher integral luminosities, the highest exclusion
limits are obtained with the highest mjj-cut. In case of lower integral lumi-
nosities, this is not completely the case, as the statistical error plays a larger
role and the higher mjj-cut reduces the statistics significantly. CTEQ6M1 pdfs
used. NLO k-factors are not included.
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individual simulated data sets (with Λ = 3, 5, 10, 15 and 20 TeV), so they were
chosen as a good reference to start with. Any other values of mjj cuts would
do the similar job.

8.4.1 Exclusion limits

The χ-Bayes method exclusion limits with mjj > 5.9 TeV are depicted in
Fig. 8.17 and listed in Tab. 8.3.

To be complete, the discovery limits were not calculated with this method,
as it is not as sensitive as the R1 method.
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Figure 8.17: Dependence of χ-Bayes exclusion limits Λlim (TeV) on total inte-
gral luminosity.

Int. luminosity 95% C.L. 3-sigma

(fb−1) MRST CTEQ MRST CTEQ

0.1 9.48 9.40 7.70 7.57
0.3 11.42 11.27 9.39 9.16
1.0 13.26 12.96 11.04 10.68
3.0 14.46 14.33 12.14 11.79

10. 15.18 14.98 12.89 12.32
30. 15.46 15.21 13.18 12.49

100. 15.57 15.31 13.29 12.56
300. 15.60 15.33 13.33 12.58

Table 8.3: Values of exclusion Λlim (TeV) at 95% C.L. and 3-sigma level ob-
tained by χ-Bayes method with CTEQ6M1 or MRST2001E pdfs for various
values of total integral luminosity.
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Chapter 9

Summary of results

In this chapter the results obtained with all four analysis methods are briefly
summarised and compared. The value of jet energy scale uncertainty involved
is 3% unless stated otherwise.

9.1 Exclusion limits

Exclusion limits for quark compositeness computed with CTEQ6M1 pdfs are
shown in Fig. 9.1 and listed in Tab. 9.1. Exclusion limits for quark compos-
iteness computed with MRST2001 pdfs are shown in Fig. 9.2 and listed in
Tab. 9.2.
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Figure 9.1: Dependence of exclusion limits of Λlim at 95% C.L. on total integral
luminosity as obtained with all four analysis methods. CTEQ6M1 pdfs used.

The largest values of Λlim are obtained with pT-Bayes method with prior
flat in 1/Λ2, and 5% systematic error due to choice of prior. The largest values
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Int. luminosity pT-Bayes R1 Rdist3 χ-Bayes

(fb−1)

0.1 10.64 9.03 10.39 9.40
0.3 12.13 10.36 11.61 11.27
1.0 13.75 11.77 12.96 12.76
3.0 15.29 12.98 14.10 14.33

10. 17.21 14.43 15.09 14.98
30. 18.80 15.51 15.77 15.21

100. 20.36 16.33 16.12 15.31
300. 22.01 16.70 16.21 15.33

Table 9.1: Values of exclusion limits Λlim (TeV) at 95% C.L. for various methods
and integral luminosities with CTEQ6M1.
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Figure 9.2: Dependence of exclusion limits Λlim at 95% C.L. on total integral
luminosity as obtained with all four analysis methods. MRST2001E pdfs used.

Int. luminosity pT-Bayes R1 Rdist3 χ-Bayes
(fb−1)

0.1 10.65 9.05 10.49 9.48
0.3 12.08 10.43 11.72 11.42
1.0 13.68 11.88 13.09 13.26
3.0 15.30 13.19 14.25 14.46

10. 17.28 14.90 15.25 15.18
30. 18.94 16.24 15.95 15.46

100. 20.68 17.43 16.31 15.57
300. 22.46 18.14 16.40 15.60

Table 9.2: Values of exclusion limits Λlim (TeV) at 95% C.L. for various methods
and integral luminosities with MRST2001E.
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of Λlim based on angular distribution analysis are obtained with R1 method.
Exclusion limits computed with MRST2001E pdfs are slightly higher than those
computed with CTEQ6M1. This is caused by a prediction of smaller systematic
pdf error in case of MRST, nevertheless that does not mean, that MRST limits
are better. We have calculated only predictions based on nowadays knowledge
of pdfs, this knowledge will hopefully evolve to a higher precision during running
the ATLAS experiment and so our compositeness exclusion limits might still
increase a little. The crucial influence on the exclusion limits follows from our
knowledge of jet energy scale.

9.2 Early data exclusion limits

In this section the exclusion limits on quark compositeness using our most ef-
fective method pT-Bayes and involving foreseen early data JES uncertainty (7%
for |η| < 3.2, see Tab. 5.1) are listed. See Tab. 9.3 for details. Compared to
results presented in previous Sec. 9.1, the early data exclusion limits involving
a higher JES uncertainty are naturally lower. However, this difference is not
very large due to the fact, that the statistical error for early data plays a larger
role, compared to the systematic error. Concerning the systematic error itself,
the largest contribution is now caused by JES uncertainty, therefore the differ-
ence between exclusion limits calculated using CTEQ or MRST pdfs is almost
negligible.

Int. luminosity pT-Bayes
(fb−1) MRST2001E CTEQ6M1

0.1 10.340 10.334
0.3 11.809 11.800
1.0 13.403 13.401

Table 9.3: Values of exclusion limits Λlim (TeV) at 95% C.L. calculated using
pT-Bayes method. Expected early data JES uncertainty (see Tab. 5.1) involved.

9.3 Discovery potential

The discovery potential – the ability of our methods to measure quark compos-
iteness in a situation when it is discovered – was studied with pT-Bayes and
R1 method for compositeness scales Λ = 10 TeV and Λ = 15 TeV. Both these
methods are the most promising ones for analysis of inclusive dijet pT-spectra
and dijet angular distribution, respectively. It should be stressed, that if quark
compositeness is measured, it must be measured in both pT and χ-spectra or
even in its two dimensional (pT, χ) combination. There is a whole spectrum of
new physics predicted to be measured at ATLAS (and there might always be
something unpredicted) that might fake quark compositeness either in pT or in
χ-spectra. The discovery intervals are listed in Tab. 9.4. As pT-Bayes method
is more sensitive to compositeness, its discovery intervals are also narrower, but
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both methods are independent and both should be used and checked, whether
they give compatible results.

Λ (TeV) 10 15

pT-Bayes (1/Λ2) 9.38 to 10.93 13.30 to 18.51
R1 8.64 to 11.75 11.85 to 21.24

Table 9.4: The shortest 5-sigma intervals for pT-Bayes method (with prior flat
in 1/Λ2) and R1 method with compositeness scales Λ = 10 TeV and Λ = 15 TeV
switched on. CTEQ6M1 pdfs, 300 fb−1.
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Chapter 10

Conclusions

In this paper the potential of the ATLAS detector to exclude quark compos-
iteness or to discover it was studied in great detail. There were four different
analysis methods developed for this purpose. Two of them use Bayesian tech-
nique (as is usual in similar analyses at Tevatron) and a detailed information
about inclusive dijet pT spectrum or dijet angular distribution. The other two
“ratio” methods use the ratio of events below and above a given cut in the
investigated spectra. It was newly shown, that the value of this cut should
be optimised in order to obtain the best sensitivity to quark compositeness.
Moreover, larger number of systematic errors was taken into account in men-
tioned analysis methods and their influence was studied too. It turned out, that
even the “ratio” methods are affected by the systematic errors. The most sen-
sitive method for quark compositeness measurement is the pT-Bayes method,
the most sensitive method using angular distribution is the R1 method. Both
methods should be used in order to ensure, that the results correspond indeed
to quark compositeness and not to some other kind of new physics.

As a very important spin-off of this study, two bugs in Pythia Monte Carlo
generator were identified and later corrected for in the official Pythia code.

It was also shown, that the early data limits (including expected early data
jet energy scale uncertainty) on quark compositeness reachable by ATLAS are
much higher than those currently known from Tevatron. The highest limit on
quark compositeness with expected total amount of data to be collected by the
ATLAS experiment is above 22 TeV, assuming 3% jet energy scale uncertainty.

Finally, this paper brings new, more detailed insight into quark compos-
iteness studies at the ATLAS detector. Very sensitive analysis methods were
developed and tested, including systematic errors, and expected limits on quark
compositeness and discovery potentials were calculated.
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Appendix A

Monte Carlo generator
settings

In this Appendix the complete settings of Monte Carlo generators Pythia and
Jimmy/Herwig used for simulation of analysed samples are listed. In case of
production of CSC dijet samples (that is full simulation), these settings were
completely defined by the ATLAS collaboration, including the underlying event
settings. The settings of Pythia for ATLFAST mass production (that is almost
all the data analysed in this study) were defined by the author.

The format of the settings is copied from the original jobOption files used
for steering of jobs in Athena and written in Python. However, its connection
to FORTRAN format is straightforward.

A.1 CSC dijet samples J4 – J8 Pythia settings

Pythia.PythiaCommand = [

"pysubs msel 0",

"pysubs ckin 3 140.",

"pysubs ckin 4 280.",

"pysubs msub 11 1",

"pysubs msub 12 1",

"pysubs msub 13 1",

"pysubs msub 68 1",

"pysubs msub 28 1",

"pysubs msub 53 1",

"pypars mstp 82 4",

"pyinit pylisti 12",

"pyinit pylistf 1",

"pystat 1 3 4 5",

"pyinit dumpr 1 5"

]

The values of upper and lower pT-cuts CKIN(3)=140 and CKIN(4)=280 corre-
spond to J4 sample. Values of these cuts for other samples were set according
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to Tab. 6.1. Additional underlying event settings:

Pythia.PythiaCommand += [

"pypars mstp 70 2",

"pypars mstp 72 0",

"pypars mstp 81 21",

"pypars mstp 82 4",

"pypars mstp 84 1",

"pypars mstp 85 1",

"pypars mstp 86 2",

"pypars mstp 87 4",

"pypars mstp 88 0",

"pypars mstp 89 1",

"pypars mstp 90 1",

"pypars mstp 95 1",

"pypars parp 78 0.2",

"pypars parp 80 0.01",

"pypars parp 82 1.9",

"pypars parp 83 0.3",

"pypars parp 84 0.5",

"pypars parp 89 1800",

"pypars parp 90 0.22",

"pydat1 parj 81 0.14"

]

A.2 CSC dijet samples J4 – J7 Jimmy/Herwig set-

tings

Jimmy.JimmyCommand = [

"iproc 11500",

"modpdf 10042",

"autpdf HWLHAPDF",

"msflag 1",

"jmbug 0",

"jmueo 1",

"ptjim 4.91",

"jmrad 73 1.8",

"pltcut 0.0000000000333",

"prsof 0",

"rmass 198 80.425",

"rmass 199 80.425",

"rmass 200 91.19",

"gamw 2.124",

"gamz 2.495",

"clpow 1.20",

"ptmin 140.",
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"ptmax 280."

]

The values of upper and lower pT-cuts ptmin=140 and ptmax=280 correspond
to J4 sample. Values of these cuts for other samples were set according to
Tab. 6.1.

A.3 Pythia settings for ATLFAST mass production

Pythia.PythiaCommand = [

"pysubs msel 51", # compositeness processes

"pysubs ckin 3 350.", # lower pT cut

"pysubs ckin 4 600.", # upper pT cut

"pydat1 mstu 54 1",

"pydat1 paru 53 10.",

"pytcsm rtcm 41 15000.", # Lambda (GeV)

"pytcsm rtcm 42 1", # interference sign

"pytcsm itcm 5 2", # 2-on,1-ud,0-off

"pypars mstp 82 4", # Rome settings

"pydat1 mstj 11 3", # Rome settings

"pydat1 mstj 22 2", # Rome settings

"pydat1 parj 54 -0.07", # Rome settings

"pydat1 parj 55 -0.006", # Rome settings

"pypars parp 82 1.8", # Rome settings

"pypars parp 84 0.5" # Rome settings

]

An example of Pythia settings in jobOptions file with a lower pT-cut of
350 GeV and an upper pT-cut of 600 GeV. In this case the value of com-
positeness scale Λ = 15000 GeV, compositeness is switched on for all quarks
(ITCM(5)=2) with positive interference sign (RTCM(42)=1). The so-called
Rome settings were recommended by the ATLAS collaboration as a tune of
Pythia during Rome production, which was a predecessor of CSC production.
So the CSC settings are more up-to-date than Rome settings, but a correction
for that is taken into account in FA factors, where possible – that is in case of
inclusive dijet pT spectra.
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