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De la renormalisation perturbative
à la renormalisation

non-perturbative dans les théories de
champ sur groupe à interactions

tensorielles
Résumé en Français

La gravité quantique, à savoir la compréhension des phénomènes
gravitationnels dans le formalisme de la physique quantique demeure
un problème ouvert pour la physique contemporaine. La théorie des
cordes reste l’approche la plus courante pour aborder cette probléma-
tique. Mais il existe une autre stratégie, fondée sur l’approche de la
géométrie aléatoire et dite "indépendante de fond". Les théories de
champs sur groupe à interactions tensorielles (Tensorial Group Field
Theories (TGFTs) en Anglais) sont des candidates sérieuses et promet-
teuses dans cette voie. Elles sont à la fois le point de convergence et
une source d’inter-fécondité entre deux approches essentiellement in-
dépendantes : Les Théories de champs sur groupe d’une part (Group
Field Theories (GFTs) en Anglais), et les modèles de tenseurs aléa-
toires (Random Tensor Models (RTMs) en Anglais) d’autre part. Les
GFTs sont une classe particulière de théories des champs définies sur
des variétés munies d’une structure de groupe et caractérisées par une
forme spécifique de non-localité au niveau de leurs interactions, don-
nant aux diagrammes de Feynman de la théorie des perturbations la
structure combinatoire de complexes cellulaires au lieu de celle de sim-
ples graphes. Les diagrammes de Feynman des GFTs ont ainsi la struc-
ture des mousses de spins (Spin Foams (SFs) en Anglais) des formu-
lations covariantes de la gravité quantique à boucle (Loop Quantum
Gravity (LQG) en Anglais), dont les GFTs correspondent à une sec-
onde quantification. Les GFTs offrent ainsi un cadre théorique unifié
pour les mousses de spins et la LQG. Les modèles de tenseurs aléa-
toires quant à eux sont une extension, en dimension supérieure à deux,
des modèles de matrices utilisés pour la quantification de la gravité à
deux dimensions, et forme le bagage mathématique et combinatoire de
fond des GFTs. Les premiers modèles de tenseurs sont apparus dans
les années 1990. Mais la grande révolution dans cette approche date
de 2009, avec les travaux de Gurau et ses collaborateurs. Ils ont intro-
duit les modèles de tenseurs colorés (Colored Tensor Models (CTM) en
Anglais), caractérisés par une invariance spécifique de leurs interactions
sous l’action du groupe unitaire U(N)d, N étant la taille des tenseurs
et d leur rang (A noter que d est également la dimension des com-
plexes d-dimensionnels générés par le développement perturbatif "à la
Feynman"). Pour ces modèles, il a été montré que l’on peut définir
rigoureusement un développement en 1/N , comme pour les modèles
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de matrices, et que ce développement est contrôlé par un indice, "Le
degré de Gurau", qui n’est pas un invariant topologique en dimension
d > 2, mais se réduit essentiellement au genre en dimension 2.

Le secteur dominant de la théorie, occupé par les graphes planaires
pour les matrices aléatoires a également été identifié pour les tenseurs
colorés de rang arbitraire. Il s’agit du secteur dit "melonique", dont
les graphes correspondent à des complexes sphériques. Le comporte-
ment critique des modèles dans ce secteur a également été étudié, et
des transitions de phases ont été mises en évidence vers des phases de
polymères branchés.

L’incorporation du critère de tensorialité hérité des tenseurs dans
les GFTs, au niveau des interactions est le chemin classique menant
aux TGFTs, qui ne sont rien d’autre que des GFTs dont les interac-
tions présentent la même structure et les mêmes propriétés d’invariance
que les interactions des modèles de tenseurs colorés. Ainsi, les TGFTs
possèdent à la fois les ingrédients "pré-géométriques" suggérés par la
LQG et les modèles de mousses de spins et le solide fond mathéma-
tique des modèles de tenseurs aléatoires. Cette inter-fécondité des deux
approches permet non seulement d’établir solidement le comptage de
puissance des théories, mais fournit également un principe de localité
appelé tracialité, permettant de définir un groupe de renormalisation
dans un cadre théorique où les interactions sont à priori non-locales.
A noté que tous les modèles considérés dans cette thèse ont en com-
mun l’incorporation d’une forme spécifique d’invariance de Jauge, dite
contrainte de fermeture, traduisant une forme de platitude locale de la
métrique de la variété triangulée. Cette condition, de plus, donne aux
amplitudes de Feynman l’apparence d’une théorie de Jauge discrétisée
sur un réseau aléatoire, dont la structure est générée par le développe-
ment perturbatif.

L’importance de la renormalisation pour les TGFTs est double. En
premier lieu, la renormalisation est un ingrédient essentiel pour donner
une définition rigoureuse d’une théorie des champs dès que des diver-
gences apparaissent, ce qui est le cas dans la plupart des TGFTs. En
second lieu, le groupe de renormalisation permet de déduire le com-
portement effectif d’une théorie dont les détails fins sont progressive-
ment intégrés, et reste un outil essentiel en théorie des champs pour
l’étude et la compréhension des transitions de phases. Or, de telles
transitions de phase sont fortement suspectées comme étant le mécan-
isme par lequel les degrés de liberté de la théorie fondamentale, les
"atomes d’espace-temps" s’organisent, se condensent pour former une
structure pré-géométrique s’approchant de notre espace-temps clas-
sique, décrite dans un cadre effectif impliquant un grand nombre de
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degrés de libertés quantiques. Ce scénario d’émergence d’un espace-
temps continu depuis la description fondamentale de degrés de libertés
discrets, appelé géométrogénèse reste un problème ouvert pour les ap-
proches indépendantes de fond de la théorie quantique de la gravita-
tion. Toutefois, le scénario de condensation est appuyé par plusieurs
travaux récents en cosmologie quantique et en physique des horizons
isolés. La mise en œuvre d’un programme de renormalisation, et le
développement d’outils a même de construire le groupe de renormali-
sation de la classe des TGFTs est donc un problème majeure dans cette
direction de recherche. Beaucoup de travaux ont été effectués dans ce
domaine, dont une partie au cours de cette thèse, et la construction du
groupe de renormalisation fonctionnel a récemment permis de mettre
en évidence de nombreux effets non perturbatifs, comme l’existence de
points fixes non-triviaux, suggérant des transitions de phase.

Cette thèse a pour objet l’étude du groupe de renormalisation dans
les TGFTs, prenant la suite des travaux déjà effectués dans ce do-
maine. En partant du cadre perturbatif, on se propose d’explorer le
régime non-perturbatif, en suivant essentiellement deux approches :
Le groupe de renormalisation fonctionnel, basé sur le formalisme de
Wetterich-Morris, et la théorie constructive des champs, en suivant la
technique de la LVE (loop-vertex expansion en Anglais).

Les trois premiers Chapitres dressent un panorama de l’état de l’art
du domaine, et présentent les notions de bases utiles à la compréhen-
sion des Chapitres ultérieurs. Le premier chapitre est une introduction
générale à la problématique de la gravité quantique, et une ouverture
vers le formalisme des GFTs. Le second Chapitre introduit les GFTs
pour elles mêmes, et met en exergue les relations entre différentes ap-
proches de la gravité quantique, la LQG, les mousses de spins, et la
géométrie aléatoire à deux dimensions dans le cadre des modèles de ma-
trices. Le troisième Chapitre enfin introduit les GFTs colorés, et justifie
le choix des couleurs dans la définition des modèles. Deux arguments
sont essentiellement avancés. Le premier concerne la suppression des
triangulations singulières, qui non seulement sont présentent dans les
modèles non colorés type Boulatov, mais dominent les sommes per-
turbatives. Le second concerne la possibilité de définir sans ambiguïté
un groupe des difféomorphismes déformé discret, au moins en dimen-
sion 3. A la suite de ses arguments, les définitions et concepts de base
sont ensuite présentés et illustrés. Le degré de Gurau est introduit, et
la famille des graphes meloniques, jouant le rôle des graphes planaires
des modèles de matrices est définie. Enfin, les comportements critiques
du secteur dominant et du secteurs juste sous-dominant sont présentés,
ouvrant la voie vers l’étude de la limite continue de la théorie. A cette
occasion, la nature de polymères branchés des graphes meloniques est
soulignée par la valeur prise par l’exposant critique dans ce secteur,
justifiant ainsi la nécessité d’explorer les secteurs sous-dominants.
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Le chapitre 4 présente les bases de la renormalisation dans le cadre
spécifique des TGFTs. Là encore, les concepts sont introduits progres-
sivement, bien que ce chapitre marque une rupture avec les précédents,
puisqu’il présente également, et notamment dans sa seconde partie
des résultats originaux obtenues durant la thèse. Sont ainsi présentés
dans un premiers temps les notions clefs de tracialité, d’analyse multi-
échelle, de graphes hauts et bas, de forêts de Zimmermann, d’amplitude
renormalisée et de série effective. Parmi ces notions, la plupart sont
standard, seule la notion de tracialité, jouant le rôle essentielle de
"principe de localité" est une nouveauté spécifique aux TGFTs. La sec-
onde partie du Chapitre se focalise sur un modèle particulier, Abélien,
juste-renormalisable en dimension 6, pour lequel on montre que les am-
plitudes renormalisées sont finies à tout ordre. Enfin, dans le secteur
divergent de la théorie, on montre qu’un système d’équations fermées
existe, pour lequel les résultats précédent assurent qu’il existe bien une
solution sur le domaine d’analycité de la série perturbative restreinte
au secteur melonique.

Les chapitres 5 et 6 quittent le cadre perturbatif pour une ap-
proche non-perturbative du groupe de renormalisation, basée sur le
formalisme du groupe de renormalisation fonctionnel et de l’équation
de Wetterich-Morris. Le chapitre 4 présente le formalisme, et ses adap-
tations au cadre spécifique de la TGFT étudiée, concernant notam-
ment la structure non-locale des interactions considérées, la présence
d’une invariance de jauge particulière, et le choix d’une notion appro-
priée de dimension canonique pour les observables. Une fois dérivée
l’équation de Wetterich-Morris, le choix d’une troncation particulière
dans l’espace des couplages pour le modèle de rang 6 considéré dans
le Chapitre 4 permet d’écrire un système d’équations fermé rendu au-
tonome par l’utilisation des variables adimensionnées vis à vis de la
dimension canonique. Ce système est ensuite étudié, d’abord au voisi-
nage du point fixe Gaussien, montrant la liberté asymptotique du mod-
èle considéré, puis numériquement et sans approximation, montrant
l’existence d’un point fixe non-Gaussien dont les caractéristiques évo-
quent le point fixe de Wilson et Fisher et une transition de phase.
Le Chapitre 5 lui s’intéresse à un modèle de rang 3, version Abéli-
enne sur un tore de dimension trois d’un modèle basé sur le groupe
SU(2) et étudier dans la littérature pour ses connexions possibles avec
la gravité quantique à trois dimensions. Plus précisément, on considère
l’interpolation analytique entre deux famille de modèles, basés respec-
tivement sur un groupe de dimension 3 et 4. Ses modèles ont été mon-
trés juste-renormalisables pour des interactions meloniques de valence
6 et 4 respectivement, et un développement en epsilon au voisinage
de la dimension 4 du groupe a mis en évidence un point fixe non-
Gaussien. Le formalisme de la FRG permet de suivre la trajectoire de
ce point fixe pour des troncations quartiques et des valeurs arbitraires
de 0 ≥ ε ≤ 1, dont la présence est également confirmée pour une tron-
cation de rang six. Finalement, cette troncation, en dimension 3 du
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groupe, révèle l’existence d’un point fixe non-Gaussien attractif dans
l’ultraviolet, suggérant un scénario de "sureté asymptotique" pour ce
modèle.

Le chapitre 7 finalement, clôt la thèse par l’application dans le
cadre des TGFTs des méthodes constructives connues sous le nom de
développement boucle-vertex (loop-vertex expansion, LVE en Anglais)
et développement boucle-vertex multi-échelles (multi-scale loop-vertex
expansion, MLVE en Anglais). Les méthodes constructives visent en
générales a étudier les propriétés analytiques des séries perturbatives,
et a en définir un domaine d’analyticité. La LVE est une de ses tech-
niques, associant une transformation de Hubbard-Stratonovich à la for-
mule de forêt BKAR. La transformation de Hubbard-Stratonovich rem-
place la théorie tensorielle initiale par une théorie multi-matricielle,
dont les interactions sont en nombre infinie. La contrainte de ferme-
ture, réduit les degrés de libertés matriciels à des degrés vectoriels
correspondant aux parties diagonales des dites matrices. La méthode
de la LVE permet de remplacer la série perturbative originelle indexée
par des graphes de Feynman, par une série indexée par des arbres.
L’avantage repose sur le fait que les arbres prolifèrent bien moins vite
que les graphes de Feynman avec le nombre de vertex, dont la crois-
sance rapide est une source de divergence de la série. La technique a
été appliquée directement et avec succès au cas d’un modèle sans diver-
gence ultraviolette, et dans sa version raffinée, incluant un développe-
ment multi-échelle, à un modèle de TGFT super-renormalisable. La
suite, visant a réalisé le même travail dans le cas d’un modèle juste-
renormalisable reste toutefois un problème plus compliqué, laissé à une
publication ultérieure.
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Chapter 1

Motivations

“From a fundamental point of view
it is totally wrong to aim at basing
a theory only on observable quantities.
For in reality it is just the other way around.
Only the theory decides about what can be observed"
(Einstein according to Heisenberg, 1979)

1.1 Gravitation and Quantum Theory

The XX th century have seen two major achievements in fundamental physics: quantum theory
and general relativity. Both drastically modified our understanding and our representations of
Nature. General relativity interprets the gravitational phenomena as pure geometric effects,
the trajectories of the test particles being geodesic on a curved space-time with Lorentzian
signature, the metric tensor of this space-time being nothing but the gravitational field [6].
The most important conceptual modification in the general relativity framework is the dynamic
nature of space-time. Indeed, the space-time in general relativity is no longer the fixed arena
of the Newtonian physics, and becomes itself a physical system, whose geometry, the values of
the tensor metric, depends on its interaction with all material system that it contains, via the
Einstein equation (without cosmological constant):

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (1.1)

As to the quantum theory, which concerns essentially the microscopic physics, it revealed the
limits of the classical Newtonian conceptual pictures, and the notions of trajectories, forces,
picturability, as well as the idea of classical determinism disappeared in the quantum picture.
Moreover, the quantum revolution is not only conceptual, but also technical. Indeed, it requires a
new mathematical framework, far away from the familiar physical mathematics which have been
used since Newton. In the “standard” representation of the theory, the classical phase space is
replaced by an Hilbert-space, whose elements are state-vectors, encoding the physical state of the
considered system. Moreover, the observables, whose spectra can be experimentally measured,
become Hermitian operators acting on the state-vectors. Out of these operators, the Hamiltonien
Ĥ can be considered as the most important. It controls the state evolution through Schrödinger’s
equation

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉 . (1.2)

13



14 CHAPTER 1. MOTIVATIONS

Finally, in the probabilistic interpretation of the theory, the square of the absolute value of the
components of a normalized vector-state in a complete basis corresponds to the probability to
find the system alongside the corresponding basis vector. General relativity and quantum physics
are said to be irreconcilable, but we can argue that such a split is not a problem of language.
For instance, quantum mechanics can be expressed in a geometric framework [8], in which the
Hilbert-space state is replaced by a Kähler manifold, playing the role of a quantum phase-
space (with metric data added to the symplectic structure), and the probability corresponds to
the geodesic distance between two points on this space. The incompatibility between the two
theories comes from their requirement for space-time. In quantum mechanics for instance, the
time parameter, as well as space, remains the absolute Newtonian one. The principles of quantum
physics can be translated into the space-time of special relativity, and this achievement is known
as quantum field theory. Therefore quantum physics does not require absolute time and absolute
space. But it seems to require an absolute arena, that is the space and time of the Newtonian
physics or the space-time of the special relativity. Even if we can build a quantum field theory
on a curved classical space-time, if there is a global Killing vector of time type (as is the case for
a Schwarzschild black-hole), the quantization procedure considers the field as a “test-field”, and
ignores its influence on the background, determined by a classical distribution of mass-energy.
The reason is not only technical, but conceptual. For instance, an hybrid dynamic for space-time,
described by a semi-classical Einstein equation as:

Rµν −
1

2
Rgµν =

8πG

c4
〈Ψ|T̂µν |Ψ〉 , (1.3)

for some quantum state Ψ and the corresponding energy-momentum tensor operator T̂µν , is
inconsistent with the superposition principle, and in particular with “Schrödinger cats”. This is a
standard argument due to Unruh [9], which considered a physical system inside a box, formed by
two masses connected by a spring and a radioactive source. Until a radioactive decay happens,
the two masses remain rigidly connected. But one radioactive decay is enough to break this rigid
connection, giving a swing move to the masses. As a result, denoting by |0〉 and |1〉 the two states
of the system, the physical state at time t describing the situation is a superposition state:

|Ψ(t)〉 = a0|0〉+ a1|1〉 , (1.4)

where the amplitudes a0 and a1 are approximately given by |a0|2 = e−λt, |a1|2 ≈ 1− e−λt, where
λ denotes the radioactive constant decay. In a semi-Newtonian approximation, only the mean
value of the Hamiltonian operator Ĥ is relevant for 〈T̂µν〉, which is, assuming that the two vector
states |0〉 and |1〉 are (at least approximately) eigenstates of Ĥ:

〈Φ|Ĥ|Ψ〉 ≈ e−λt〈0|Ĥ|0〉+ (1− e−λt)〈1|Ĥ|1〉 . (1.5)

Such a term for the right-hand-side of the equation 1.3 implies slow variations for the gravita-
tional field, which could be measured by a Cavendish balance, and have never been observed [10].
Other Unruh arguments end up to the same conclusion: it is impossible to maintain a complete
conceptual separation between the description of the gravitational field and of the quantized
microscopic system. From this point of view, the reconciliation between quantum physics and
general relativity goes much beyond aesthetic considerations based on the reductionist motiva-
tion of unification.

Of course, historically, the search for unification has been very fruitful, and has made at
least part of the success of the standard model of particle physics. Nevertheless note that, even
if the standard model has received many experimental confirmations, our understanding of it
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beyond the perturbative level remains very incomplete. In this point of view general relativity
is in a much better situation. However gravitation is certainly not included yet in the standard
model, and is not a Yang-Mills theory, as the other three interactions, namely electromagnetism,
weak and strong forces. Moreover, it is a long range interaction which is always attractive, in
contrast with the others. These considerations may be related to the difficulty of unifying gravity
with the other forces. Nevertheless the standard model forces and general relativity are also not
completely estranged to each other. They come in contact in several phenomena, even if they
are rare. A good example is given by cosmology and black-holes physics. Indeed, the singularity
theorems of Penrose and Hawking [11] ensure the break-down of general relativity. For black-
holes, the horizon entropy is another point of contact between gravity, quantum mechanics (and
thermodynamic), which is explicit in the formula of Bekenstein and Hawking:

SBH =
kBc

3

4~G
A , (1.6)

where A is the area of the horizon, and kB is the Boltzmann constant. The beauty of this
formula comes from the association of all the fundamental constants: the speed of light c, the
Planck constant ~, and the gravitational constant G. Therefore it is not solely an extrapolation
of the domain of validity of one of the current fundamental theories, but a real point of con-
tact between quantum, statistical and gravitational physics. The fact that black-hole horizon
has an entropy suggests that it has a microscopic canonical description. This is why the compu-
tation of the horizon remains a challenge and a test for any candidate theory of quantum gravity.

1.2 The difficulty to quantize the gravitational field

One first attempt to quantize the gravitational field is to treat it exactly as the other interac-
tions, for instance as the electromagnetic field. We can consider the metric gµν as the sum of
a background (Minkowski or other) metric ηµν plus a perturbation γµν . At the classical level,
and at first order in γµν , this leads to the classical theory of gravitational waves, which can be
quantized canonically as electromagnetic waves, leading to the concept of graviton, a particle
with zero mass and spin 2. More formally, the resulting theory, taking into account all non-linear
effects, can be obtained by considering the partition function of a path integral à la Feynman:

Z =

∫
Dγµνe−SEH(ηµν+γµν) , (1.7)

where Dγµν is a formal Lebesgue measure and SEH the Einstein-Hilbert action. This approach
to the problem is very conservative, as the other fields still live in a fixed background arena
with a fixed metric. The first complication of this traditional approach appears immediately,
since the resulting theory is not renormalizable. The situation can be improved by introducing
super-symmetry, with cancellation of one and two loop counter-terms. Extending this kind of
cancellation to all orders seems to require the full complications of superstring theory [5]. In
this more complicated formalism all point-like particles are replaced by vibration modes of
extended one dimensional objets, the strings. This ambitious “theory of everything” passes several
important tests, such as providing a unified theory of matter and radiation including gravity
and all standard model interactions and a microcanonical derivation of black-hole entropy and
the Bekenstein-Hawking formula. Nevertheless it is fair to add that it passes these tests at the
price of introducing many new unobserved degrees of freedom (new particles, extra dimensions)
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and that even then, ultraviolet finiteness is not rigorously established at all orders. Given the
enormous amount of efforts devoted to study superstrings during the last thirty years, it seems
unlikely to be fully proved in a near future.

The second complication is more conceptual, but not independent from the first. As argued
in [6], the introduction of a background space is in contradiction with general relativity1, for
which the gravitational field corresponds to the full metric. Moreover, the use of the background
metric seems the source of the ultra-violet divergencies. This last point is one of the main
motivations for the background independent approaches, in which the gravitational field is not
treated separately from space-time, and which it is the point of view adopted all along this thesis.

To summarize, we can already distinguish at least two strategies to approach the problem. The
first one, which is often the point of view preferred by particle physicists, and best embodied in
string theory, still at least starts with a fixed space-time arena with its background metric, in
which objects move, whether they are particles, gravitons or strings. In particular the gravita-
tional degrees of freedom are embodied in a perturbation γµν . The price to pay seems to be that
it leads to many new unobserved additional degrees of freedom, such as super-symmetric parti-
cles and extra-dimensions. In this point of view, unification is the main goal, and quantization of
gravity is a mere byproduct. Note that history does not necessarily contradict this approach. A
favorite example is the Fermi theory, which is non-renormalizable, but appears as a low-energy
limit of a renormalizable theory, through the introduction of new degrees of freedom at high
energy, namely the Bosons W± and Z0. However this undeniable success remains insufficient to
make this strategy totally convincing as a general rule. Remark in particular that in this respect
gravity is quite different from weak interactions, because for a satisfying well-defined theory of
quantum gravity, renormalizability is not the sole key requirement (see footnote 1).

The second strategy, often preferred by physicists with a background in general relativity,
focuses on quantizing gravity alone and postpones the unification question. It can in particular
follow the path opened up by Wheeler and DeWitt in 1967 [12]. Using the ADM decomposition,
providing a slicing of space-time according to a time, they wrote down a “Schrödinger" equation
for gravity: (

(~G)2(qabqcd −
1

2
qacqbd)

δ

δqac

δ

δqbd
− det qR[q]

)
Ψ(q) = 0 (1.8)

where q denotes the 3-metric on the slices, and Ψ is the famous “wave function of the universe”. It
is the first background independent quantum equation for gravity, which treats space-time itself
as the gravitational field. This is the beginning of an history which is nowadays incarnated in the
canonical approach of loop quantum gravity (LQG) and its covariant formulations as spin foams
models. Loop quantum gravity, that we shall briefly discuss in the second chapter, allows to
quantize gravity, but only at the kinematical level. Implementation of the dynamics through the
so-called scalar constraint, and a complete implementation of four dimensional diffeomorphism
invariance remains an open challenge for the theory. Despite these difficulties, two interesting
lessons can be learnt from canonical loop quantum gravity. The first one is that the success of
the quantization procedure is closely related to the choice of the variables encoding the classical
degrees of freedom. The second is the prediction of the discreteness of the area and volume oper-
ators at the kinematical level. This last point, the discreteness of space-time at the Planck scale,
is of great importance. Understanding the path between this discrete setting and the continuum
space-time of general relativity is a main goal of quantum gravity. From the LQG point of view,

1Note that the contradiction is not only ideological. As explained for instance in [7], there is no canonical way
to decompose the full metric in a sum “background+fluctuations".
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this transition is difficult to study, because the formalism does not allow to treat a large number
of degrees of freedom. It remains a challenge for the theory. The situation seems to improve in
the covariant point of view of spin foam models. It allows to introduce some proper dynamic,
and so, to define a scalar constraint for the kinetic states. But as we shall explain in Chapter 2,
up to now, the best, most complete way to encode both the discreteness of the geometry and
the dynamic in such a covariant approach is the group field theory formalism [2] .

Although we focused until now our discussion on string theory as a mainstream approach to
quantum gravity and on loop quantum gravity because of its connection to the subject of this
thesis, we should mention at this point that there are many other approaches to quantum grav-
ity, neither of the string theory nor of the LQG type, which are currently also the subject of
active research. We can cite the asymptotic safety scenario, dynamical and causal triangulations,
non-commutative geometry, Horava-Lifschitz gravity, causal sets...

The relationship we have briefly sketched between loop quantum gravity, spin foams and group
field theories can be thought as a kind of logical trajectory in the history of ideas. But it is
not the only one, and one can arrive roughly at the group field theory formalism through a
functional rather than Hamiltonian quantization in which one simply tries to discretize and
randomize geometry within a field theory framework. Indeed group field theory performs a
kind of synthesis between a main message of general relativity, summarized as gravitation ∼
geometry, and a main message of quantum mechanics, summarized as quantizing ∼ discretizing
and randomizing2.

Quantizing Gravity ∼ Discretizing and Randomizing Geometry

is therefore in our opinion a good mantra and guiding thread towards a theory of quantum
gravity. Following this thread leads in particular to the very successful background-independent
approach to two dimensional quantum gravity through random matrix models. In this approach,
a rather detailed understanding of the transition from discrete to continuum random spaces can
be now achieved. Moreover during the last decade, non-commutative field theories generalizing
matrix models have been introduced which are both renormalizable and asymptotically safe [13].

Group field theories can be seen as an extension of such matrix models and non-commutative
field theories to higher dimensions. During the last years, an improved class of group field
theories, called tensor group field theories, has been introduced. Such theories have modified
propagators and interactions with an additional tensorial symmetry. When I started this thesis,
perturbative renormalization had been just established for a rather large class of such models,
including some models of direct interest to quantum gravity, especially in three dimensions.
Moreover many such models had been proved asymptotically free, like QCD, the theory of strong
interactions. These two properties are very promising. However, the non-perturbative aspects of
these models remained to be studied. In this context, my PhD work can be mainly described as
applying non-perturbative techniques of quantum field theory to deepen our understanding of
these tensor group field theories.

1.3 Organization of this thesis
The organization of the thesis is the following. After this introduction, the second chapter gives
a general presentation of group field theory and its recent results. The third chapter introduces

2Of course quantum randomness is different from ordinary statistical randomness, but the two notions are
reconciled in the Euclidean (imaginary time) setting.
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colored and tensor group field theory. The addition of colors by Gurau in 2009 led quickly to
the solution of an old open problem, namely the correct generalization of the large N expansion
of matrix models to tensor models. It also led to the introduction of a new class of group field
theories, called tensor group field theories. They have a kind of substitute for the usual notion
of locality, called traciality, together with a rigorous notion of power counting which stems di-
rectly from the large N tensorial expansion. They have also modified propagators allowing for a
multiscale analysis. Combining power counting with traciality and the multiscale analysis allows
for their successful perturbative renormalization at all orders.

This perturbative renormalization is the subject of the fourth chapter. We introduce on a spe-
cific model all the concepts of perturbative renormalization. At the same time we summarize and
discuss the results contained in our first publication, with Daniele Oriti and Vincent Rivasseau
[1]. In particular we emphasize the interest of the intermediate field decomposition and of the
closed equations for the melonic sector which leads the theory in terms of power counting. A
main interest of this chapter is also to put forward all the concepts that we shall use in the
following three chapters.

Chapters 5 and 6 indeed introduce a non-perturbative framework for the renormalization group
flow discussed at the end of Chapter 4. We introduce there the Wetterich equation for ten-
sor group field theories with closure constraint, and explain in detail how we can extract
non-perturbative physical information from it. We focus essentially on three perturbative just-
renormalizable theories. In the case studied in Chapter 5, we show the existence of a non-trivial
Wilson-Fisher-like fixed point and of a critical line in the phase space of the theory, which
seem to indicate a phase transition to a condensed phase, both in the ultra-violet and infrared
regimes. Chapter 6 is devoted to the application of this method to just-renormalizable models
with melonic interactions of valence six, in dimensions three. We concentrate on the the ultra-
violet sector show the existence of some isolated fixed points, and argue in favor of asymptotic
safety the the theory. The pertinence of each fixed point is discussed, in regard to the choice
of the truncation, and the analysis is supported by an analytic continuation from a φ4 quartic
melonic model defined on the group SU(2) × U(1) to the φ6 model on the group SU(2) These
two chapters are based on a published paper in collaboration with Dario Benedetti [3], and on
two soon to be published papers, with Sylvain Carrozza and Dine Samary Ousmane.

The seventh and last chapter is based on two papers [4], in which we apply for the first time
constructive field theory techniques to tensorial group field theories with closure constraints. We
focus on the two simplest models of this type, with quartic interactions, which are respectively
UV-divergences free and super-renormalizable, and for which we establish Borel-summability in
the coupling constant. The first model can be treated with the constructive technique of the
loop vertex expansion, whereas the second model requires the enhanced technque called multi-
scale loop vertex expansion.

Finally in our conclusion we discuss a program, already partly under way, of possible extensions
of this work. In particular we want to study the perturbative renormalization of group field
theories including simplicial constraints, a possible 1/d expansion for the model discussed in
Chapter 4, and the application of the Wetterich method to an “enhanced” field theoretic model
mixing planar and branched polymers phases.
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Chapter 2

Group field theories for quantum gravity

This chapter is a presentation of group field theories (GFTs), which are the basic tool of this
thesis. The first occurrence of GFTs in the literature came as a development of tensor models,
which are themselves an extension of matrix models for dimension space higher than 2 [2]. In
this context, the domain of tensors indices are formally replaced by a group manifold. More-
over, some pregeometric constraints are added, and the most popular is the closure constraint,
which takes the form of a gauge invariance, and gives to the Feynman perturbative expansion
the structure of a random lattice with discrete gauge connection. For quantum gravity models,
the choice of the group manifold depends on the space-time dimension and signature, and the
current choices are SU(2) or SL(2,R) in dimension 3, and SO(4), SL(2,C) in dimension 4.
The motivation of the authors was to make contact with other formulations of quantum gravity,
especially the Ponzano-Regge and the Turaev-Viro models in dimension 3 [2], as well as with
simplicial quantum gravity, Regge calculus and topological BF theory in dimension higher than
3. Then, in a historical perspective, group field theories emerged as improved tensor models
“over” a group manifold, enriched with algebraic data and gauge invariance.

As an interesting result, it has been shown that the GFT formulation of state sum models for
purely topological field theories is related to loop quantum gravity, whose spin networks states
match with the boundary states of the corresponding GFTs, and conversely describe the Hilbert
space of the GFTs. Then, GFTs can be understood as quantum field theories for spin networks,
providing them with a covariant and coherent dynamic, in the sense that they allow to repro-
duce any spin foam model, arising as Feynman amplitude in the perturbative expansion, with a
summation rule given by the perturbative expansion itself. That this sum makes sense beyond
the formal level is however not generally guaranteed, and is one of the motivations for this thesis,
renormalization being the best tool in a field theory framework to answer this question.

The plan of this chapter is the following. After a brief and formal presentation of GFTs in
Section 2.1.1, we give a brief presentation of canonical quantum gravity and of spin foams, and
explore their relations with GFTs in Section 2.2. In Section 2.3 we shall explore the relations
with matrix models and random geometry approach, and finally, in Section 2.4, we shall list
some achievements of the GFT approach.

21



22 CHAPTER 2. GROUP FIELD THEORIES FOR QUANTUM GRAVITY

2.1 Formal definition and basic example

2.1.1 A field theory over a group manifold

At the classical level, a rank-d GFT is a theory for a complex field φ defined on d-copies of a
group manifold G:

φ : Gd → C
g := (g1, ..., gd)→ φ(g), (2.1)

whose action has the generic form:

S(φ, φ̄) =

∫
dgdḡφ̄(ḡ)K(ḡ,g)φ(g)

+
∑
b

λb
Sym(b)

∫ nb∏
i=1

dgidḡiφ̄(ḡi)φ(gi)Vb(g1, ḡ1; ...;gnb , ḡnb). (2.2)

This expression is the occasion to introduce the notation that we shall use in the rest of this
thesis. dg :=

∏d
i=1 dgi is the product of the Haar measure over the group manifold. The index b

labels all the monomial interaction terms, weighted by coupling constant λb. nb corresponds to
the number of fields of type φ or φ̄ involved in the interaction labeled by b. The factor 1/Sym(b)
in front of the interaction, which is the inverse of the dimension of the symmetry group of b,
ensures that the symmetry factors of the perturbative expansion of the corresponding quantum
theory match exactly with the dimension of the automorphism group of the Feynman diagrams.
The kernels Vb are products of delta functions, identifying some group variables between dif-
ferent fields, and a source of non-locality, which is a characteristic of GFTs in contrast with
standard local field theories over space-time. Then, the definition 2.2 points out that a specific
GFT corresponds to a choice of a group manifold G, of a rank d, as well as of a kinetic kernel
K and interactions Vb.

The quantum theory is formally defined by the partition function :

Z({λb}) :=

∫
DφDφ̄e−S(φ,φ̄) =

∑
G

1

Sym(G)

∏
b∈G

(
− λb

)
AG , (2.3)

where Dφ (resp. Dφ̄) denotes the formal Lebesgue measure over L2(Gd), AG is the Feynman
amplitude associated to the Feynman diagram G, with automorphism group dimension Sym(G).
The amplitudes are obtained from the Feynman rules, and are expressed as products of prop-
agators i.e. in term of the inverse of the kinetic kernel K. However, if the explicit expression
depends on the specific GFT, the non-locality of the interactions gives the Feynman diagrams
the structure of cellular complexes rather than graphs, i.e. sets of vertices, lines and faces.

With this definition, the amplitudes of the GFT do not differ from the amplitudes of the
tensor models. But as explained in the abstract of this chapter, GFTs are usually enriched by
some group-theoretic data. One of these enrichments, the closure constraint, takes the form of a
gauge invariance under diagonal right action of G on the field variables:

φ(g1, ..., gd) = φ(g1h, ..., gdh) ∀h ∈ G. (2.4)

The role played by this gauge invariance and its relationship with LQG can be well understood
at the kinematic level, by considering the Hilbert space of the free theory and the related oberv-
ables. Then, we shall close this short section with some results about the kinematic Hilbert



2.1. FORMAL DEFINITION AND BASIC EXAMPLE 23

space, useful for the discussions of Section 2.2.2.

In an operational framework, the quantum theory can be defined by imposing commutation
relations, as well as in standard quantum mechanics. We shall see that in order to make contact
with LQG, the relevant definition for commutation relations between operators φ̂ and φ̂† have
to be the following:

[φ̂(g), φ̂†(ḡ)] = P̂ (g, ḡ) , [φ̂(g), φ̂(g ′)] = [φ̂†(ḡ), φ̂†(ḡ ′)] = 0 , (2.5)

where P̂ is the projector into the gauge invariant fields, whose components P̂ (g, ḡ) are defined
by:

P̂ (g, ḡ) :=

∫
G

dh
d∏
i=1

δ(gihḡ
−1
i ). (2.6)

As in standard quantum field theory, we construct the Fock space as an infinite sum of tensorial
product of Hilbert spaces Hv := L2(Gd) for a single quantum of space. The Fock space is then
obtained as a superposition of such individual particule states:

F :=
∞⊕
V=0

Sym
(
H(1)
v ⊗H(2)

v ⊗ · · · ⊗ H(V )
v

)
(2.7)

where Sym in this context means the symmetrisation of the tensorial products with respect to
the labels 1, 2, ..., V . The choice of this symmetrisation is in accordance with the commutation
relations 2.5, corresponding to a Bosonic statistic. For each summand in 2.7, the inner product
descends from the one on L2(Gd×V /GV ).

As in standard quantum field theory, observables are functionals of the field operators φ̂ and φ̂†
acting on the Fock space F . However, in contrast with ordinary quantum field theory, for the
GFTs, the relevant operators may be non-local, as well as for the generic interaction structure
of the classical action 2.2.

Finally, note that the definition of GFT given in this section only concerns a single field, and
does not include gravitational degrees of freedom i.e. describes topological and not geometric
configurations. This point will be discussed in the next section. A large part of this thesis is in
fact only dedicated to the material described in this section. The issue of the geometric models
requires an extended GFT formalism, and is for instance discussed in [2].

2.1.2 The Boulatov model and Ponzano-Regge amplitudes

The Boulatov model is a good example of a GFT for 3-d quantum gravity, whose perturbation
theory generates Ponzano-Regge amplitudes [2], that we shall discuss in Section 2.2.2. Assuming
that the field φ has support on SU(2)3, which is a natural assumption in dimension 3, and is
square integrable with respect to the Haar measure over the group manifold, we impose the
gauge invariance 2.4 at the classical level, and the classical action for this model has only two
terms, which are:

S(φ) =

∫ 3∏
i=1

dgiφ
2(g1, g2, g3)

+λ

∫ 6∏
i=1

dgiφ(g1, g2, g3)φ(g3, g5, g4)φ(g5, g2, g6)φ(g4, g6, g1). (2.8)
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Note that in this case we have a single field φ rather than φ and φ̄. Each field variable is
associated to each of the three boundary lines of a triangle, and the interaction term in 2.8
sticks four triangles together, according to their common boundary lines, to form a tetrahedron
(a 3-simplex). The kinetic term, corresponding to the simplest choice for K, dictates the gluing
rules for these tetrahedra along triangles (see Figure 2.1).

g1 g2

g3

(1)

(2)

(3)
(5)

(6)

(4)

(a) (b)

Figure 2.1: Graphical definition of the field variables (a) and interaction vertex (b).

At the quantum level, the field theory is defined by the partition function, and the closure
constraint has to be implemented at the graph level in the perturbative expansion by convolution
of the fields variables with the projector P̂ . Due to the fact that, by definition, P̂ 2 = P̂ , the
projection can be imposed only in the kinetic term, or in other words, in the definition of the
propagator: ∫

Dφe−Skin(φ)φ(g1, g2, g3)φ(g′1, g
′
2, g
′
3) =: C(g1, g2, g3; g′1, g

′
2, g
′
3) , (2.9)

where Skin denotes the kinetic part of the action. The standard strategy consists in averaging
over the group manifold, imposing the identification

C(g1h, g2h, g3h; g′1, g
′
2, g
′
3) = C(g1, g2, g3; g′1, g

′
2, g
′
3)∀h ∈ SU(2). (2.10)

With the definition of the kinetic action in 2.8, it is not difficult to convince oneself that the
good choice is:

C(g1h, g2h, g3h; g′1, g
′
2, g
′
3) =

∫
SU(2)

dh

3∏
i=1

δ(gihg
′ −1
i ) ≡ P̂ (g1h, g2h, g3h; g′1, g

′
2, g
′
3). (2.11)

With these definitions, the generic expressions for the amplitudes AG in the perturbative expan-
sion 2.3 can be obtained from the Feynman rules, and we find:

AG =

∫ ∏
e∈G

dhe
∏
f∈G

δ(Hf ) , (2.12)

where Hf , the holonomy around face f is defined as the oriented product of holonomies,

Hf :=
~∏

e∈∂f
he , (2.13)
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where ∂f ⊂ G denotes the boundary of the face f . Then, the formal perturbative expansion of
the quantum partition function writes as:

Z(λ) =
∑
G

(−λ)V (G)

Sym(G)
AG , (2.14)

where the last sum over G runs over all the vacuum (i.e. without boundaries) 2-complexes, and
V (G) denotes the number of vertices in G. The amplitude 2.12 matches exactly with the well
known Ponzano-Regge amplitudes for spin foams in dimension 3, that we shall shortly discuss in
the next section. For the moment, note that, interestingly, the amplitude 2.12 takes the form of a
discretized gauge theory, with discrete connections along the lines of a random lattice generated
by the perturbation theory itself. The identification with a gauge theory becomes complete by
noting that the amplitude 2.12 remains unchanged under the discrete gauge transformation:

he → gs(e)heg
−1
t(e) , (2.15)

where the labels s and t mean "source" and "target" vertices of the line e. A complementary
point of view on the physical picture given by the Boulatov model can be obtained in the Lie
algebra representation as a non-commutative Fourier transform [8]. In our case, this improved
Fourier transform is a mapping from L2(SO(3)3) to L2

?(so(3)3), where the label ? refers to a
non-commutative ?-product. Formally, the Fourier transform of a field φ ∈ L2(SO(3)3), say φ̂,
is defined as:

φ̂(x1, x2, x3) :=

∫
dgφ(g1, g2, g3)

3∏
i=1

egi(xi) , (2.16)

where xi ∈ so(3) i = 1, 2, 3, eg : so(3) → U(1) are “non-commutative plane waves”, and the
technical subtleties that functions over SO(3)3 are now understood as functions over SU(2),
invariant under the transformation g → −g of their group variables1. The choice of a complete
family of plane waves is not unique. Here, we adopt the definition:

eg(x) := eiTr(x|g|) ∀g ∈ SU(2) , (2.17)

where |g| := Tr(g)
|Tr(g)|g, and Tr means the trace in the fundamental representation of SU(2). The

non-commutative ?-product, dual to the convolution product for functions on the group, can be
defined between planes waves:

(eg ? eg′)(x) := egg′(x) . (2.18)

The Lie group variables have the advantage to provide a direct metric interpretation, as 3-vectors
associated to the edges of dual triangles, as explained in [8]. Moreover, it is especially interesting
in regard to the geometric constraints. More precisely, due to the basic properties of the Fourier
transform, the projector P̂ over the gauge invariant field defined in 2.6 turns to be a Dirac
distribution δ0(x1 + x2 + x3), where δx is defined as

δx(y) :=

∫
dgeg−1(x)eg(y) , (2.19)

and verifies: ∫
dy(δx ? f)(y) =

∫
dy(f ? δx)(y) = f(x) . (2.20)

1Which is nothing but the translation of the group identification:SO(3) = SU(2)/Z2.
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As a result, on shell, the edge vectors x1, x2, x3 of a dual triangle are such that:

x1 + x2 + x3 ≡ 0 , (2.21)

which is exactly the constraint verified by the edge vectors of a flat triangle ! Then, the gauge
invariance can be nicely understood as a local flatness condition for elementary quantum trian-
gles. The GFT, in this point of view, is a quantum theory describing interactions of such flat
triangles. More details can be found in [8].

2.2 Relation with loop quantum gravity and spin foams

2.2.1 Canonical quantization of general relativity

The most popular approach to canonical quantization of general relativity is loop quantum
gravity. Conceptually, it is closely related to the old idea first proposed by Wheeler and DeWitt,
know as Wheeler-DeWitt (WdW) equation. The WdW equation was a first step in building
a background independent quantum theory of gravity, but it has suffered dramatically of the
choice of the variables used by the authors to formulate their theory. These authors were ac-
customed to a metric-description of the classical field prior to quantization, and the resulting
quantum equation inherited some untractables technical difficulties (in particular, there was no
well defined associated Hilbert space). Then, even if it represents a conceptual progress towards a
quantum theory, the WdW approach remains highly formal, and far from any true achievement.
Loop quantum gravity started with new variables proposed by Ashtekar [6] in the early 1980s to
describe general relativity. In this description, the constraints over the classical phase space in
the ADM formulation are drastically simplified, allowing to circumvent the intractable problem
of operator ordering occuring in the WdW formulation, and to start the first steps of a rigorous
canonical program, at least up to the construction of a kinematical Hilbert space [6].

The starting point of LQG is the vierbein formalism. Let M be the space-time manifold,
assumed to be hyperbolic for canonical formulation. One introduces the frame field e : M×
R3,1 → TM, providing a trivialization of TM, and sending, for each x ∈ TM, the standard
basis of R3,1 to a basis of tangent vectors at x. More concretely, we introduce the vierbein
field-form:

eI(x) = eIµ(x)dxµ x ∈M , (2.22)

where the Greek indices µ = 0, ..., 3 refer to the spacetime and the Latin indices I = 0, ..., 3 refer
to the canonical basis of the internal Minkowski space. In this formalism, what we usually call
metric looses its fundamental status, and is deduced from the knowledge of the fields {eIµ}:

gµν(x) := eIµ(x)eJν (x)ηIJ (2.23)

where we use the Einstein convention for summation over repeated indices. Interestingly, this
definition makes clearly apparent an internal symmetry, coming from the invariance under any
local Lorentz transformation. In this formalism, the Einstein’s equations (without matter fields)
can be derived from a first order variational principle, called the Holst action:

SH(e, ω) =
1

κ

∫
M

Tr

[(
? e ∧ e+

1

γ
e ∧ e

)
∧ F (ω)

]
, (2.24)

where κ is the gravity constant, which can be expressed in terms of Newton’s constant and of
c, the celerity of light. ω is the (Lie algebra valued) 1-form spin-connection, whose curvature
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is F (ω) := dω + ω ∧ ω, ? is the standard Hodge star, and γ ∈ C is the Barbero-Immirizi
parameter2, which is undetermined at the classical level. Slicing the manifoldM = (Σ,R) in a
3 + 1 decomposition framework, and using the density of vierbein Ea

i := det(e)eai , a = 1, 2, 3
rather than the metric as a coordinate in phase space, the conjugate variable, the Ashtekar
connection, writes as:

Aia :=
1

2
εijkω

jk
a + γω0i

a , (2.25)

with canonical Poisson bracket:

{Ea
i (x), Ajb(y)} = κγδab δ

j
i δ(x− y). (2.26)

In this formalism, Ea
i plays the role of an “electric field”, and Aia is an SU(2) connection encoding

parallel transport over the 3d foliation Σ. As spoiled in the introduction of this section, the most
interesting part of this formulation appears in the expression of the three first-class constraints
on the classical phase space:

Gi = DaEa
i , Ca = Eb

iF
i
ba , C = εijkEa

i E
b
jFabk + 2

(
1− 1

γ2

)
Ea

[iE
b
j](A

i
a − ωia)(Ajb − ωjb) . (2.27)

Each of these constraints restricts the phase space to a physical sub-manifold, and in addition
generates gauge transformations. The first one, called Gauss constraint generates SU(2) local
transformations over the foliation, the second one, called vector constraint generates spatial dif-
feomorphism (over the foliation), and finally the third and last constraint, called scalar constraint
is related to the invariance under a change of time.

In this formulation, the description of the quantum theory is encoded in a complex-valued
wave function Ψ : A → C over the space A of the 3d SU(2) connections. The quantization of the
classical theory follows Dirac’s program [24]. The first step requires a representation of classical
phase space variable as (self-adjoint) operators acting on a suitable subspace of (square inte-
grable) functionals overA with Hilbert-space structure, whose eigenvalues describe the quantized
physical quantities. Then we have to take into account the quantized version of classical con-
straints. The subset of states in Hkin annihilated by the quantum constraints inherits a Hilbert
space structure, and we call Hphy this physical Hilbert space. The LQG formalism allows to start
the first steps of the quantization program. It provides a well defined kinematical Hilbert space
Hkin, on which the two first constraints can be solved. Moreover, the resulting Hilbert space has
been proved to be unique, up to some assumptions [6]. However, some difficulties remain for the
scalar constraint, encoding the dynamic of the LQG states.

The kinematical Hilbert space Hkin is defined as the space spanned by cylindrical functionals :

ΨΓ,f [A] = f
(
hγ1(A), ..., hγn(A)

)
A ∈ A , (2.28)

where Γ = {γ1, ..., γn} is a set of n smooth oriented paths on Σ, which form a closed oriented
graph, f : SU(2)n → C is a smooth function defined on n copies of SU(2), and

hγ(A) := P exp

(∫
γ

A

)
, (2.29)

2Note that, even if the classical theory is defined for all γ ∈ C, the quantification procedure fails for purely
imaginary Immirizi parameters.
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where P is the path ordering, denoting the holonomy along the path γ. For these states 2.28,
we have the natural scalar product:

(ΨΓ,g|ΨΓ,f ) :=

∫
SU(2)n

n∏
i=1

dhig(h1, ..., hn)f(h1, ..., hn) (2.30)

where dhi denotes the Haar measure over SU(2). Note that this scalar product can be extended
to the case where the closed oriented graphs are different for the two functions, considering a
bigger graph containing the two considered graphs as subgraphs. Roughly speaking, Hkin is the
completion with respect to the scalar product 2.30 of the vector space spanned by cylindrical
functionals, which is isomorphic to the Hilbert space L2(Ā, dµAL), the space of square-integrable
functionals over the generalized connection space Ā with respect to the Ashtekar-Lewandowski
measure dµAL [see [6]].

The Gauss constraint can be solved straightforwardly in this Hilbert space, since its action on
cylindrical functionals can be inferred from its action on holonomies,

hγ(A)→ gs(γ)hγ(A)g−1
t(γ). (2.31)

Then, we call gauge invariant Hilbert space, and denote by HG the subspace of Hkin spanned by
gauge invariant cylindrical functionals. Using a standard Peter-Weyl decomposition, an explicit
orthonormal basis can be obtained for these functionals, as tensor invariants under tensorial
products of irreductible representation of the SU(2) group, that we call spin-network functionals.
A spin-network functional ΨΓ,{jγ},{ıv} - whose a basic example is pictured in Figure 2.2 - is a set
of representation matrices of SU(2), labeled by jγ and associated to each link γ ∈ Γ, contracted
with a set of intertwiners ıv between the representations carried by the links hooked to the node
v ∈ Γ:

ΨΓ,{jγ},{ın}(A) =
∏
v∈Γ

ıv ·
∏
γ∈Γ

Djγ (hγ(A)), (2.32)

where Djγ (hγ(A)) denotes the matrix of the irreductible representation of SU(2) labeled by jγ
and associated to the group element hγ(A). The · means contraction between indices.

j1 = 1/2

j2 = 1/2

j3 = 1

n1 n2

Figure 2.2: A basic example of a spin network state, namely a closed graph with two trivalent
nodes, and lines labeled by spin representations

In the same way, we can show that solving the vector constraint requires states which are
invariant under the extended diffeomorphisms Diff ∗, and then define the Hilbert space HDiff

as the completion with respect to the scalar product 2.30 of the equivalent class of spin-network
states under extended diffeomorphisms, called s-knot states. The strategy can be summarized
by the following sequence of Hilbert spaces:

Hkin ⊃ HG ⊃ HDiff ⊃ Hphy. (2.33)
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The last step, the implementation of scalar constraint remains an open problem for LQG. For-
mally, it can be achieved by applying the projector onto the physical states, P̂phy,

P̂phy :=

∫
R
dteitĈ , (2.34)

such that, for any physical state |s〉 ∈ Hphy, P̂phy|s〉 = |s〉. Obviously, this strategy is highly
formal at this stage, because the quantum operator corresponding to the scalar constraint is
undefined at the quantum level, but it is an argument in favour of spin foams, which is the
subject of Section 2.2.2. Note that, in spite of these difficulties, the physical outcome of LQG
is not empty ! It provides an interesting notion of quantum geometry, by transposing classical
expressions for area and volumes into operators acting on spin-networks states. More concretely,
we can show that quanta of area are carried by the links of spin-networks states, with value
±8πγ`2

p

√
j(j + 1) for the representation j, the sign depending on the orientation of the surface.

In the same way, we can show that the volume operator is quantized, with values associated
to each node of the spin-networks. Note that loop quantum gravity, that we shall discuss in
the next section, can be fruitfully described in a non-commutative flux representation, using the
group Fourier transform defined in Section 2.1.2, see [5].

We can make contact with group field theories as follows. Alternatively to the geometrical
picture given by Figure 2.1, a single field can be interpreted as an elementary d-valent spin
network vertex. As an illustration of the link between GFT kinematic Hilbert space described in
Section 2.1.1 and LQG, we choose G = SU(2). Using the Peter-Weyl decomposition theorem,
the single particule state |φ(g)〉 := φ̂(g)|0〉

φ(g) =
∑

j`,m`,m
′
`

c{j`,m`,m′`}

d∏
`=1

Dj`
m`,m

′
`
(g`) =:

∑
j`,m`,m

′
`

ϕ{j`,m`,m′`}(g) , (2.35)

and the gauge constraint 2.4 allows group averaging, leading to:

φ(g) =
∑

j`,m`,m
′
`

ϕ{j`,m`,m′`}(g) ı{j`,m`,m′`} , (2.36)

with : ı{j`,m`,m′`} :=
∫
dh
∏d

`=1D
j`
m`,m

′
`
(g`h) ∈ -1

(
SU(2)⊗d

)
. A general V -particule state writes as:

φ({gI}) =
∑

{j`I ,m`I ,m′`I }
ϕ{j`I ,m`I ,m′`I }

({gI})
V∏
i=1

ı
(i)

j`I ,m`I ,m
′
`I

, (2.37)

which can be interpreted as a wave function for V particules in a first quantisation language.
Then, considering a closed d-valent graph Γ with V vertices, we can build a wave function for Γ
by group-averaging such a wave-function, pairwise along open links:

ΨΓ({(gai )−1gbj}) =
∏

e∈E(Γ)

∫
SU(2)

dαabij φ({αabij gai }) = (2.38)

∑
{j`I ,m`I ,m′`I }

[ ∏
e∈E(Γ)

∫
SU(2)

dαabij ϕ{j`I ,m`I ,m′`I }
({αabij gai })

] V∏
i=1

ı
(i)

j`I ,m`I ,m
′
`I

,
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where E(Γ) denotes the set of edges e = [(ia), (jb)], linking the vertices i and j from the
edge a hooked to i to the edge b hooked to j, and where αabij = αabji . 2.38 is nothing but
an example of a LQG gauge invariant cylindrical function, and provides a faithful embed-
ding of elements of the LQG kinematical Hilbert space L2(SU(2)E/SU(2)V , dµ =

∏
e∈E dhe)

into L2((SU(2)d/SU(2))V , dµ). There are some fundamental differences between the kinemati-
cal Hilbert spaces for LQG and GFTs, pointed out in [7]. For instance, if the GFT kinematic
state encodes combinatorial and algebraic structure of LQG states, there is no natural embed-
ding of GFTs kinematic states into a continuous manifold, meaning that there is no action of
a well-defined diffeomorphism group. In the current GFT point of view, these differences are
accepted, and understood as a consequence of the effective nature of general relativity. Then, in
this point of view GFTs provide a fundamental framework, from which we expect to construct
a pattern from discreteness to continuum in a proper “thermodynamic limit”, a physical picture
motivated by the choice of Bose statistics, as well as by the absence of a consistent continuum
intuition.

In the second quantization formalism of GFTs, the operator P̂phy which projects onto solutions
of the Hamiltonian constraint can be written as an operator acting on the Fock space, and can
be decomposed as a sum of n+m-body operators, involving n operators ϕ̂ and m operators ϕ̂†
[21]:

P̂phy =
∑
n,m

λn,m

∫
[dg]n[dg′]mPn+m({gI}I=1,...,n, {g ′J}J=1,...,m)

n∏
I=1

ϕ̂(gI)
m∏
J=1

ϕ̂†(gJ) (2.39)

such that, for any physical states |S〉,

F̂ |S〉 =

[
P̂phy −

∫
dgϕ̂†(g)ϕ̂(g)

]
|S〉 = 0. (2.40)

Heuristically, the path from this second quantized framework to the GFT classical action can
be understood, up to some assumptions, as follows [see [7]]. Let us consider the grand-canonical
ensemble with partition function:

Zg =
∑
S

〈S|e−(F̂−µN̂)|S〉 , (2.41)

where N̂ :=
∫
dgϕ̂†(g)ϕ̂(g) and, as currently, the sign of the chemical potential µ determines

whether states with many or few “atoms of space” are favoured. This definition, rewritten in the
(over-complete) basis of coherent states |φ〉 := e

∫
dgφ(g)ϕ̂†(g)|0〉, leads to:

Zg =

∫
DφDφ̄e−|φ|2〈φ|e−(F̂−µN̂)|φ〉 =:

∫
DφDφ̄e−Seff (φ,φ̄) , (2.42)

where Dφ denotes the formal Lebesgue path-integral measure, and the effective action corre-
sponds to the classical action of the GFT, plus quantum corrections [7, 21]:

Seff (φ, φ̄) = S(φ, φ̄) +Q.C =
〈φ|F̂ |φ〉
〈φ|φ〉 +Q.C, (2.43)

where S may be identifyed with the classical GFT action 2.2, providing in particular the relation
m2 = 1−µ. The quantum corrections generate new interactions, or modify the coupling constant
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values. We insist on the fact that this construction is highly heuristic, and the partition function,
as well as the integration measure, have to be properly defined. At this end, the GFT formu-
lation allows to use the tools of standard quantum field theories, renormalization, constructive
techniques,.... These techniques allow to define the theory perturbatively, i.e. for physical pro-
cesses involving a few degrees of freedom, as well as in the complementary regime involving a
lot of degrees of freedom. In quantum gravity, we are especially interested in the second regime.
The main challenge for background independent quantum gravity approaches is to recover the
classical general relativity in the classical continuum limit, and many results have been already
obtained [17, 21]. It has for instance been established that, even in the classical limit, a state
involving a few geometrical degrees of freedom allows to recover some partial information on
classical physics, and for special regimes only [7]. The so-called “classical approximation” is then
not necessarily related to the continuum one, and such an effective continuum limit requires in
principle a lot of microscopic degrees of freedom, which can then be understood as a “thermo-
dynamic limit”, very far from the perturbative regime.

2.2.2 Covariant loop quantum gravity and spin foam models

By covariant loop quantum gravity, we refer in fact to the so-called spin-foam models. Historically,
spin foam models were introduced to circumvent the difficulties encountered in the canonical
approach with the scalar constraint [6]. Basically, the spin foam approach is an attempt to
define properly the Feynman amplitudes:

〈S1|S2〉 =

∫
DgeiSGR(g), (2.44)

where |Si〉 i = 1, 2 are two (physical) 3-dimensional geometry states which are boundaries of the
space-time g, Dg is a probability measure on the space-time interpolating the two 3-geometries,
and SGR is the classical action for general relativity. Such an amplitude, written in this form,
is highly formal, and the right and the left hand sides are both undefined mathematically. This
warning does not only concern the path-integral, but the left hand side as well, because a priori
we have no “background independent labels” for boundary states. Moreover, the object of the
sum itself remains unclear, because no prescription coming from the classical theory indicates
if we have to sum over metric degrees of freedom in a fixed topology, and on the topologies as well.

Heuristically, spin foams can be approached by reproducing the Feynman derivation of the path-
integral applied to the projector 2.34, i.e. cutting the integral over t and inserting the closure
relation in the spin-networks basis, leading to the spin foam general Ansatz [5, 6]:

〈S1|S2〉 =
∑

F|S1∪S2=∂F
AF , (2.45)

where Si = (Γi, {jei}, {ıvi}) i = 1, 2 are spin-network states, and the spin foam F interpolates
between them, in the following sense. F = (G, {jf}, {ıe}) is a decorated 2-complex G whose
boundary is the union of the two spin-network graphs ∂G = Γ1 ∪ Γ2, {jf} denotes the set of
SU(2) representations associated to the faces {f}, and {ıe} is the set of intertwiners shared by
the edges {e}, such that any face touching a boundary edge has the same spin representation, and
that any edge e touching a boundary vertex shares exactly the same intertwiner. Conceptually,
the decomposition 2.45 is exactly the same as 2.44. The superiority of the second with respect to
the first is clear : not only the left hand side is now well defined, but the combinatorial sum “over
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histories” on the right hand side make sense as well. However, the heuristic argument given above
for the derivation of the spin foam Ansatz does not precise how the amplitude AF is computed.
There are in fact essentially three paths to spin foams. The one that we have described above is
historically the first, and as explained just above, it has to be completed, because the dynamics
of LQG is itself not well defined. In this approach, the general strategy consists in reversing the
construction, and infers the physical Hilbert space from the definition of a suitable spin-foam
model, giving a prescription for the computation of the amplitudes. The references [6] detail
the construction of spin foam models following this strategy. It is important for our purpose to
mention that in spin foam approaches, the 2-complexes that we have denoted by F are physi-
cally interpreted to be dual to simplicial decompositions of a topological 4-dimensional manifold.

The second strategy mentioned above can be seen as a continuation of the Ponzano-Regge model
for 3-dimensional Euclidean quantum gravity. The corresponding classical theory is described
by the topological action

S3d(e, ω) =

∫
M

Tr(e ∧ F (ω)) , (2.46)

where the su(2)-valued 1-form e is the triad form, and F (ω) is the curvature of the su(2)-
connection ω. Varying with respect to the triad provides the classical 3-dimensional version of
the Einstein equation, namely F (ω) = 0, meaning that space-time is flat, and that relevant
degrees of freedom are topological. A formal argument suggests that this remains the case at
the quantum level. Indeed, integrating over e in the partition function leads to:

Z3d =

∫
Dω

∫
DeeiS3d(e,ω) ∼

∫
Dωδ(F (ω)) . (2.47)

Then, this argument seems to indicate that the partition function for 3d quantum gravity is
nothing but the volume of the set of flat connections over M. The argument can be made
rigorous in a discrete setting, by introducing a cellular decomposition ∆, as well as its dual
decomposition ∆∗ for the manifoldM. The dual 2-complex ∆∗ is assumed to be a set of vertices,
say v, dual to 3-cells in ∆, edges e, dual to 2-cells , and faces f , dual to 1-cells in ∆. Elementary
3-cells are tetrahedra, glued one to the other along their boundary triangles. As for lattice gauge
field theory, we replace the connection variables by its holonomies {he ∈ SO(3)} along the lines
e ∈ ∆∗, and the triad by vectors X i

` of R3 along each edge of ∆, which can be understood as
integration of the su(2) 1-form ei (i = 1, 2, 3) along this edge, and correspond to the Lie group
elements X` = X i

`τi (where the τi are the Pauli matrices with suitable normalization). Noting
that an edge of the triangulation corresponds to a face of the dual 2-complex, these variables
can be denoted as Xf in ∆∗. Then, we can write the discretized classical action as [6]:

S∆(X, h) =
1

8πG

∑
f∈∆∗

Tr(XfHf ) , (2.48)

where
Hf =

~∏
e∈∂f

he , (2.49)

is the oriented product of the holonomies around the boundary of the face f . The quantum
theory can then be defined by the partition function:

ZPR3d (∆) =

∫
[dXf ]

∫
[dhe]e

iS∆(X,h) ∼
∫

[dhe]
∏
f∈∆∗

δ(Hf ) , (2.50)
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where δ(Hf ) is the delta-function over SO(3) and where in this case, not only the measures
with respect to which we sum, but also the final integration are clearer. Finally let us use the
Peter-Weyl theorem for δ-functions

δ(g) =
∑
j∈N/2

(2j + 1)χj(g) ∀g ∈ SU(2) , (2.51)

where χj are the characters of the jth representation of SU(2). Decomposing each character
in 2.50 in products of Wigner matrices associated to a single holonomy he, and noting that a
given he appears only three times (one for each edge of the dual triangle), we can integrate over
each of them. Each integration gives one 3j symbol per edge, which are contracted following the
pattern given by the tetrahedral decomposition, leading to the well-known formulation of the
Ponzano-Regge partition function

ZPR3d (∆) =
∑
{jf}

∏
f∈∆∗

(−1)2jf (2jf + 1)
∏
v∈∆∗

{6j}v , (2.52)

where {6j}v denotes the 6j symbol associated to the spin attribution in ∆∗ of the faces running
through v. This spin-foam model for quantum gravity in dimension 3 is the first ever pro-
posed. It has been extended in higher dimension, especially in dimension four, with Euclidean or
Lorentzian signatures, in the class of constrained topological BF theories classically described
by the Holst-Plebanski action:

S[B,ω, λ] =
1

κ

∫
M

[(
? BIJ +

1

γ
BIJ

)
∧ FIJ(ω) + λIJKLB

IJ ∧BKL

]
, (2.53)

where λIJKL is a Lagrange multiplier, chosen such that the so(1, 3)-valued 2-form B verifies the
“on shell” condition:

B = ±e ∧ e , (2.54)

ensuring that the Holst-Plebanski action turns to the Holst action when the Plebanski constraint
is satisfied. The major interest of this approach is that BF theories can be rigorously quantized
in this way, as the Ponzano-Regge model. We start by defining a discretization of the space on
some cell-complex, as well as a discretized version of the field B and of the connection. Then,
we quantize the resulting discretized theory with the path integral method. In dimension higher
than 3, and especially in dimension 4, the strategy is to start from the quantization of the
topological BF -theory, and to introduce a discrete version of the Plebanski constraint in order
to recover the geometric degrees of freedom at the quantum level. This road to the quantum
theory is in fact ill-defined, in the sense that it introduces a large variety of models, and some
ambiguities in the discretization procedure, which are discussed in the references.

Interestingly for our purpose, the expression 2.50 matches exactly with 2.12, making the rela-
tion with GFT more concrete. Whereas we have illustrated the correspondence between spin
foams and GFTs [1] in this simple example, the correspondence is in fact widely discussed in
the literature. The superiority of the GFT formalism with respect to the spin foam approach
and LQG itself is evident. Firstly, the QFT formalism allows to fix the weights for the sums
over spin foams (which are not fixed in the spin foam approach). Moreover, these weights can
be justified, in the sense that, up to a suitable normalization of couplings, they correspond to
the dimension of automorphism group, which can be understood as a discrete version of the
diffeomorphism group. Secondly, the field theory framework allows to use standard methods in
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quantum field theory, especially renormalization, in order to circumvent the divergences of the
amplitudes. Finally, in the GFT framework, the topology of space-time itself is generated by the
perturbative expansion as well as the amplitudes. These advantages of the GFT approach are
discussed extensively in the references.

2.3 Relationship with random discrete geometry

2.3.1 Discrete random geometry in dimension 2: Matrix models

By definition, matrix models are statistical field theory for matrices. For instance, by denoting
M an N ×N Hermitian matrix, we can construct an action for M by requiring invariance under
conjugation - providing an exotic locality principle - exactly is the same way as symmetries
or gauge invariance in standard QFTs. Note that this principle is nothing but the reflection of
the fact that, for such a theory, the point-wise product of standard field theories is replaced by
the non-commutative matrix product. With this assumption, and assuming that only connected
interactions are relevant, we can show that the action S(M) for M is a sum of terms of the form
Tr(M)k , k ∈ N∗. As an example:

S(M) =
1

2
TrM2 − λTrM3 , (2.55)

for some coupling constant λ, is the simplest matrix model, with partition function:

Z =

∫
dMe−S(M) , (2.56)

where dM is the invariant measure on the N×N Hermitian matrices. Expanding the right hand
side perturbatively in λ with the propagator

Cij,kl = δjkδil , (2.57)

we generate Feynman amplitudes labeled by connected ribbon graphs G rather than graphs. The
interaction vertex has three external points, identifying the six strands pairwise. Propagator and
vertex are pictured in Figure 2.3, and an example of ribbon graph is given in Figure 2.4.

Mij Mij

i

j

i j

j

kk

i

Mij

MjkMki

Figure 2.3: Propagator and vertex interaction of the matrix model. The dashed lines correspond
to the dual representation: it corresponds to an edge for a propagator, and to a triangle for a
vertex.
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Figure 2.4: An example of a ribbon graph with its dual triangulation.

Using Feynman rules, it is not hard to see that:

Z =
∑
G

1

s(G)
λV (G)AG , (2.58)

with:
AG = NF (G)− 1

2
v(G) , (2.59)

and where F (G) and v(G) are respectively the number of faces and vertices of G. Note that
we have performed a rescaling of the coupling constant in order to obtain 2.59, in such a way
that there are infintely many leading configurations as N →∞. The interest of this rescaling is
explicit in the dual representation. Denoting by V (∆G), E(∆G), T (∆G) respectively the numbers
of vertices, edges and triangles in the dual representation ∆G of G, and using the topological
constraint 2E(∆G) = 3T (∆G), leads to:

F (G)− 1

2
v(G) = V (∆G)− E(∆G) + T (∆G) = 2− 2g(∆G) , (2.60)

where we have used the fact that vertices of the dual representation correspond to faces of
the original one. We have recognized, in the intermediate expression, the Euler characteristic
of ∆G, and used its standard expression in term of the genus g(∆G). The dual representation
of the Feynman ribbon graphs then allows to associate a triangulated surface to each of them.
Therefore matrix models can be interpreted as statistical models for discretized surfaces, and
the type of discretization depends on the form of the interaction that we choose. For instance,
an interaction of order four gives quadrangulations rather than triangulations. The fact that the
degree of divergence only depends on the genus is also a consequence of the choice of the theory.
Indeed, a closed 2-dimensional topological manifold is fully characterized by genus (or equiva-
lently by Euler characteristic) and orientability. Note that we only generate orientable surfaces
because of the restriction to Hermitian matrices. Otherwise, non-orientable triangulations would
be included.

The fact that, for the orientable case, the genus fully determines the topology of the triangula-
tion allows to capture non-perturbative effects. Indeed, the perturbative expansion 2.58 can be
rewritten as a topological expansion :

Z =
∑
g∈N∗

N2−2gZg(λ) , (2.61)
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where we have defined the sum over all triangulations with genus g as Zg(λ). Then, the leading
order contribution in the N → ∞ limit comes from the triangulations with zero genus, corre-
sponding to spherical topologies. Interestingly, one can show that the partition function for zero
genus surfaces, Z0(λ) has the following critical behavior [3]:

Z0(λ) ∼ |λ− λc|2−γ , (2.62)

where γ = −1/2 in this case. As a result, the free energy of the spherical sector diverges around
the critical point λ = λc. This is an important conclusion, in accordance with the idea that a
continuum phase of the theory occurs when λ → λc. This conclusion is supported by the fact
that in the vicinity of the critical value, Z0 is dominated by arbitrary large triangulations. To
make this more concrete, we can assume that each triangle has a fixed area, say a, and compute
the mean area :

〈A〉 = a〈T (∆G)〉 = a
d

dλ
ln(Z0(λ)) ∼ a

|λ− λc|
. (2.63)

Then, sending a→ 0 when λ→ λc, such that 〈A〉 remains unchanged, we find an infinitely refined
spherical triangulation for a fixed area, in accordance with the intuitive idea of a continuum limit.
Going beyond the spherical sector requires a double scaling limit, consisting in taking the two
limits N →∞ and λ→ λc in a correlated manner [3]. More precisely, we can show that Zg has
the same critical point than Z0 for any g:

Zg(λ) ∼ |λ− λc|
(2−γ)(2−2g)

2 (2.64)

which suggests to take both the limits N →∞ and λ→ λc in such a way that the ratio

N |λ− λc|(2−γ)/2 (2.65)

remains fixed. As a result, all the topologies contribute to the free energy when we are close to
the critical point:

Z ∼
∑
g

fg
[
N |λ− λc|(2−γ)/2

]2−2g
. (2.66)

These results suggest a way to understand the continuum limit, but a proper understanding
requires a detailed analysis. For instance, using Schwinger-Dyson equations, we can show that
loop observables turn to be the Witt algebra, which can be related to Wheeler-DeWitt equation
in dimension two. The reader interested by technical details may consult standard references [3]
on this subject.

We close this section with some physical remarks. We have seen that matrix models are statis-
tical models for triangulated surfaces, but we have not made contact yet with quantum gravity
in dimension two ! This correspondence can be understood as follows. Including cosmological
constant, classical gravity in dimension two is described by the action:

S2d =
1

G

∫
M
d2x
√−g(−R(g) + Λ) = −4π

G
χ(M) +

Λ

G
AM , (2.67)

where we used the Gauss-Bonnet theorem to compute the integral in term of the Euler charac-
teristic χ(M), and where we have denoted by AM the area of the surfaceM. Then, the theory
only depends on two parameters, and we generally assume that only these two parameters are
relevant to define the discretization. As a basic example, introducing an equilateral triangulation
∆M ofM, such that each triangle has a fixed area a, the action 2.67 can be discretized as

S2d(∆M) := −4π

G
χ(∆M) +

Λa

G
T (∆M) , (2.68)
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and the quantum theory described by the partition function:

Z2d =
∑

∆

e
4π
G
χ(∆M)−Λa

G
T (∆M) (2.69)

matches the partition function 2.58, up to the identification:

λ↔ e−Λa/G , N ↔ e4π/G . (2.70)

As a conclusion, it seems that the large N limit of matrix models (involving a lot of “microscopic”
degrees of freedom) matches the weak coupling regime of two dimensional gravity. To summarize,
the matrix models are statistical models for random surfaces, which make contact with quantum
gravity. In the large N limit, they seem to reach a continuum phase, dominated by spherical
topologies. We can extend to all manifolds using a double scaling limit. Relation with GFTs
is then obvious. In dimension two, matrix models are therefore the minimalistic backbone of
a discrete path integral approach to quantum gravity, in the sense that degrees of freedom
are purely combinatorial. This is fine enough because of the purely topological nature of two
dimensional quantum gravity. In higher dimensions, however, topological manifold has to be
endowed with a differential structure and presumably local Euclidean or Lorentz invariance (the
choice depending on the signature of the space that we want to quantize). In GFTs, such a
local invariance is assumed at a fundamental level, with the consequence that indices of matrix
models become elements of the rotation group, Lorentz group, or a suitable subgroup of them.
Moreover, as discussed in the first section, GFTs introduce a discrete connection on the random
graphs, with the variables {he} interpreted as a connection from a reference point inside of a
dual triangle associated to a field, to the same point in another triangle sharing an edge with
the first one. Some aspects in relation with this point are discussed in [2].

2.3.2 Higher dimensions and tensors

In this section, we briefly discuss the higher dimensional extension to matrix models, say tensor
models [14], for which we give only an informal discussion. As matrices with 2 indices in 2
dimensions, it is natural to consider tensor of rank d in dimension d. The recipe used to construct
the action for matrices 2.55 can be easily extended for a tensor of rank d. For instance, in
dimension 3, a counterpart of 2.55 can be :

S[T ] =
1

2

∑
~n

Tn1n2n3Tn3n2n1 − λ
∑
~n,~n′

Tn1,n2n3Tn3n5n4Tn5n2n6Tn4n6n1 , (2.71)

where ~n ≡ (n1, n2, n3), and all indices ni run from 1 to N . In counterpart of the matrix case, each
tensor is interpreted as a (d − 1)-simplex, and the pattern in which the indices are contracted
in the interaction term represents an elementary d-cell. As for matrix models, the challenge is
to keep control on the sum over triangulations in the perturbative expansion of the associated
statistical model. Unfortunately, unlike the case of matrices, all the generated triangulations are
not discretization of topological manifolds. Indeed, singular contributions as pseudo manifolds
or more dramatic configurations are generated [see [20] for instance]. The source of these patho-
logical configurations has been clearly identified. They come from the fact that in dimension
higher than two, the gluing rules for d-simplices along their (d− 1)-boundaries do not guarantee
elimination of singular structures. Note that such a situation occurs also for the standard GFTs.
As a result, no 1/N expansion could be formulated for such tensor models, breaking down the
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hope to generalize the achievements of matrix models in higher dimensions. Due to this dra-
matic issue, tensor models were aborted in favor of the Dynamical triangulations and Causal
Dynamical Triangulations programs [19].

However, the failure of the earlier tensors models was not the end of the history, and in 2009,
they were reborn with the work of Gurau on a special class of tensor models, called colored tensor
models. The introduction of colors gave control over the combinatorics and topology, allowing to
construct a proper 1/N expansion where contributions are labeled by a generalization of genus,
the Gurau degree, and essentially eliminating the undesired singular structures [20]. Similarly
with the matrix case, it has been established that leading order contributions in the large N
limit correspond to melonic diagrams, which are dual to triangulations of sphere, maximizing
the number of faces for a given number of vertices. We shall return to this point in the next
chapter (see also [15]).

2.4 Achievements and perspectives
In this section we summarize the current research directions and some achievements of the GFT
approach. As explained in this chapter, one of the main challenges of GFTs is to understand how
the quantum degrees of freedom organize to make sense as a continuum limit corresponding to a
semi-classical space-time. Such a program requires to control the sums over triangulations. How-
ever, due to the combinatorial structure of 2-complexes, such a goal is much more complicated
than for ordinary Feynman diagrams. As explained at the end of the next section, colored tensor
models made possible a huge step forward in that direction. They allow to give control over
combinatorics and topology of Feynman graphs, as well as over their sums, providing a power
counting and a well defined 1/N expansion, whose leading order graphs, the so-called melons,
have spherical topology [15]. The same expansion has been achieved for topological GFTs, i.e.
GFTs with closure constraint, where the parameter playing the role of N is expressed in term
of the cut-off regularizing the theory [12], with the same leading order diagrams as for tensors
models and the same suppression of singular topologies. Then, melonic diagrams seem to be uni-
versal in any models whose amplitudes scale with the number of faces. This counting is in fact
the first step of a proper renormalization program, requiring to control sums over 2-complexes.
It highlights the behavior of the theory in the large N limit, involving a lot of degrees of free-
dom. Because it is in this sector that divergences occur, we call this limit the UV limit, and the
opposite one, for small N , the IR limit. Note, however, that this convention is the opposite of the
one considered in loop quantum gravity, where large spins correspond to large area and volumes.
But such a conflict is essentially semantic, due to the confusion between classical limit of quan-
tum object, and classical limit of the (quantum) continuum limit. Anyway, ignoring physical
meaning of these limits, such a conflict does not affect the renormalization procedure. From this
point of view, only the localisation of divergent graphs is relevant. That we call this sector UV,
IR, or otherwise is clearly secondary. We shall return on this specific point in the next chapter.
Note that systematic renormalization requires a notion of scale at the graph level, in order to
apply standard techniques as multi-scale analysis, as well as a good notion of locality. There is
one class of models which provides both conditions, namely the so called tensorial group field
theories (TGFTs), that we shall introduce in the next chapter and shall be concerned with in the
rest of this thesis. “Tensorial” in this context refers to a specific pattern of contraction between
tensorial indices, coming from colored models, and it is this tensorial invariance that provides a
notion of locality, called traciality, which enables one to clearly define the contraction notion of
“high” (i.e. UV) subgraphs. In addition, this class of models is characterized by the presence of
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a Laplace-Beltrami type kinetic operator in the classical action:

Skin =

∫
dgφ̄(g)

(
−

d∑
i=1

∆Gi
+m2

)
φ(g) . (2.72)

∆G denotes the Laplace-Beltrami operator on the group manifold G. This non-trivial kinetic op-
erator, motivated in particular by the computation of radiative corrections in topological GFTs
[10], endows the graphs with a notion of scale corresponding to its eigenvalues. Some results have
been obtained for this class of models, with or without closure constraint in several dimensions,
and some of these topological models have been proved to be renormalizable in dimensions 3
and 4 [10]. Moreover, a classification of some interesting renormalizable models with melonic
interactions has been obtained. A similar systematic analysis of renormalizability is currently in
progress for models implementing the simplcity constraint, as an additional geometric condition
imposed at the quantum level in order to guarantee that (in dimension four) bivectors associ-
ated to boundary triangles of a quantum tetrahedron are built from edges vectors of a geometric
quantum tetrahedron [9]. In the future, renormalizability for models of the EPRL or BO types
would be an important achievement for a more realistic quantum field theory for space time.

Another important tool, closely related to perturbative renormalization is the renormalization
group, which determines the flow of effective GFT dynamics across scales. It is an helpful frame-
work to map out the phase structure of the theory and is currently extensively studied. In
particular, perturbative beta functions have been obtained for several models - including models
with non-Abelian gauge invariance and geometric constraints [10]. All these computations seem
to indicate that asymptotic freedom or safety is a generic feature of TGFTs. Then, for such
models, no Laudau poles are to be feared, and the perturbative expansion can be well-defined all
the way in the UV sector. Moreover, as in QCD, one expects that this property could be respon-
sible for phase transitions generated dynamically across the scales (as from quarks to hadrons
for QCD). One or several such transitions are expected from “discrete to continuum”’ [25]. This
scenario is sometimes called geometrogenesis in the literature. Understanding such phase tran-
sitions requires more advanced techniques. The most popular is the Functional Renormalization
Group (FRG), allowing in many cases to compute the flow far from the perturbative regime (i.e.
the Gaussian fixed point), mapping out phase diagrams and finding non-trivial fixed points. Such
a program has been started with matrix models [22], and extended to TGFTs as well, with and
without closure constraint [17]. We shall return to this point in Chapter 4. In all cases interesting
information has been obtained on the phase structure of the theory, and there are indications
of a phase transition from a phase characterized by a vanishing mean field to a non-vanishing
one. Such a transition can be likely interpreted as a “condensed phase” of quantum degrees of
freedom. In the GFT context, the existence of a phase transition has been proved in the melonic
sector for topological BF models in any dimensions [13]. However, tensor models went analyt-
ically far beyond that stage, and, as for matrix models, critical points and critical exponents
have been computed exactly for the leading order (which is the same as for topological GFTs),
and likewise for subdominant orders [16].

In relation with the non-perturbative tools, another important current line of research concerns
the constructive aspects of GFTs. Constructive field theory is a set of techniques allowing to
make sense non only of the amplitudes but of the sum of the perturbative expansion as well. More
precisely it allows to prove that this sum is convergent, usually in a certain extended sense such
as Borel-summability [22]. The leading order, namely the melonic approximation, is summable
in the ordinary sense, as adressed in Chapter 3 of this thesis. But Borel summability of the full
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theory, including all subdominant orders, has been now obtained for many tensor models with
quartic interactions [23]. The last chapter of this thesis will present the first such constructive
results for TGFTs with Boulatov projectors.

To conclude this first chapter, we mention interesting (at least for the author) results about
GFTs concerning cosmology and black-hole (more precisely “isolated horizon”) entropy. In both
case, we focus our attention on a special class of GFT states, the GFT condensates [21]. As
in standard condensed matter physics, such states are characterized by an arbitrary number of
quanta, the simplest case corresponding to the situation in which all these quanta are in the same
quantum state. The interesting fact concerns the quantum dynamics of such states. Indeed, it
has been established that, taking into account closure and simplicity constraint, such condensed
states admit a nice interpretation as a continuum homogeneous space. More precisely, consider
the Gross-Pitaevskii-like condensed state :

|Ψ〉 := N (Ψ)e
∫
dgΨ(g)ϕ̂†(g)|0〉 , (2.73)

where the “macroscopic wave function” Ψ satisfies geometrical constraints, and N is a normal-
ization factor. Inserting this Ansatz into the Schwinger-Dyson equations, one can show that the
macroscopic wave function verifies [21]:∫

dg′K(g,g′)Ψ(g′) + λ
δV [φ, φ̂]

δφ̄(g)

∣∣∣∣
φ→Ψ,φ̄→Ψ̄

= 0 , (2.74)

where K and V are respectively the kinetic kernel and the interaction part of the classical action:

S =

∫
dgdg′φ̄(g)K(g,g′)φ(g′) + λV [φ, φ̄] . (2.75)

From the interpretation of Ψ as a macroscopic wave function, describing continuum homogeneous
geometry, equation 2.74 can be likely interpreted as a non linear extension of the Wheeler-DeWitt
equation for quantum cosmology, which turns to be a semi-classical Friedman equation (up to
some approximations), for simple models describing Lorentzian and Riemannian gravity. The
beautiful point in this approach is that a quantum equation for cosmology and the semi-classical
limit can be derived from a fundamental description of quantum gravity, for a suitable choice
of quantum states, accordingly to the intuition of the condensation mechanism. The same trick,
using condensed states describes continuum spherical (quantum) geometry of an horizon in fully
quantum gravity. The quantum states are then described by a density matrix, whose reduced
form, obtained by tracing over the bulk degrees of freedom, allows to recover the standard
Bekenstein-Hawking entropy for an isolated horizon. This does not require to fix or fine tune the
Immirizi parameter, as in the derivation from loop quantum gravity.
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Chapter 3

Colors and Tensoriality

As pointed out in the previous chapter, standard GFTs, like e.g. the Boulatov model, are prob-
lematic. Indeed they generate singular topologies which are not even pseudo-manifolds and which
generically dominate the power counting. These singular topologies appear at each order in the
perturbative expansion [1]. To circumvent this difficulty, Gurau [4] introduced in 2009 colored
group field theories and showed that, unlike standard GFTs, their Feynman graphs are dual to
pseudo-manifolds [1]. Colored GFTs and colored tensor models have then considerably devel-
oped. The introduction of colors is a way to take control on topological sums and to suppress too
singular topologies. Perhaps even more importantly it allows to define properly and canonically
the concept of faces of the associated Feynman graphs1, clearly a key point in order to dis-
cretize the Einstein-Hilbert action on the dual triangulations, and it provides a 1/N expansion
as for matrix models. Moreover, a complementary result obtained in 2011 [2] shows that, for
topological Boulatov-like models, to encode the action of discrete diffeomorphisms into a field
transformation requires the colored framework. Both results signaled the birth of colored GFTs
and colored tensors models as a promising renewed approach to quantum gravity. A second
evolution for GFTs and tensors came with the discovery of tensor invariance. Indeed, it has
been shown that color structure can be implemented in an efficient way as a U(N)×d invariance
[3], where d denotes the rank of the tensors, opening the way to tensorial group field theories
(TGFTs), a formalism in which at last a renormalization program could be launched and has
recently witnessed dramatic progress.

The structure of this chapter is the following. In the first section, we shall give a formal
definition of colored GFTs in any dimension. Note that we shall focus on a Boulatov-like model,
describing topological BF-theories. After a brief reminder of the essential arguments for colors,
we shall move on to the special case of colored tensor models, for which we recall some basic
topics like the 1/N expansion, the characterization of leading order graphs and their critical
behavior. We shall then extend these topics to colored GFTs, introduce the tensorial invariance,
and show how all this leads us to TGFTs.

1For the impatient reader, here is a spoiler of this canonical definition: the set of faces of a regular edge-colored
graph is simply the (disjoint) union over all color pairs of the connected components of the subgraph made of
edges of the graph with colors in that pair.
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3.1 Colored Group Field Theories

3.1.1 Formal definition and colored graphs

Considering G a group manifold, the colored version of the Boulatov group field theory in
dimension d is a field theory for a collection of d+ 1 complex fields : φc, φ̄c : Gd → C, c ∈ J0, dK.
Moreover, each field is assumed to satisfy the closure constraint, that is to say, to be invariant
under diagonal action of the group manifold:

φc(g1, ..., gd) = φc(g1h, ..., gdh) ∀h ∈ G,∀c . (3.1)

The classical field theory is defined by its action S, which is the sum of two terms:

• The “kinetic term", Skin, whose kernels are generically assumed to be identically distributed:

Skin[{φc, φ̄c}] :=
d∑
c=0

∫
Gd

dgφ̄c(g)φc(g) . (3.2)

• The interaction part, −Sint = λV + λ̄V̄ , with simplicial pattern for contraction of group
variables:

− Sint[{φc, φ̄c}, λ, λ̄] := λ

∫ ∏
i<j

dgij

d∏
c=0

φc(gc) + λ̄

∫ ∏
i<j

dgij

d∏
c=0

φ̄c(gc) , (3.3)

where λ, λ̄ are coupling constants, gc := (gcc−1, ..., gc0, gcd, ..., gcc+1) and gij = gji. Moreover, we
adopt the same conventions as in Chapter 1, and for instance dgij refers to the Haar measure
over the group manifold G. The quantum theory is then defined by the partition function. As
discussed in Chapter 1, the closure constraint has to be implemented in the definition of the
Gaussian measure dµP [{φc, φ̄c}], or, equivalently, in the definition of the propagator, which in
our case, reduces to the projector P̂ into the gauge invariant fields subspace:

∫
dµP [{φc, φ̄c}]φ̄c(g)φc′(g

′) = δcc′

∫
G

dh
d∏
c=1

δ(gchg
′
c′) . (3.4)

The following partition function defines the quantum theory:

Z(λ, λ̄) =

∫
dµP [{φc, φ̄c}]e−Sint[{φc,φ̄c},λ,λ̄] . (3.5)

The two terms of the interaction Sint are interpreted as involving (d + 1) (d − 1)-simplices,
glued pairwise along (d − 2) sub-simplices, along a pattern dictated by the requirement that
the interaction corresponds to a d-simplex. The rules for contractions are pictorially described
on Figure 3.1 and 3.2 below, for the case d = 3. Figure 3.1a gives the strand structure of
the generic interaction, and Figure 3.1b gives a colored edge representation for each of the two
interactions, with the convention that black (respectively white) vertices correspond to the fields
φc (respectively φ̄c). Figure 3.2 illustrates the correspondence with the dual tetrahedron, and
highlights the contraction scheme.
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Figure 3.1: Stranded representation of a vertex (a) and colored edges representation of the vertex
V and V̄ (b), both for the special case d = 3. We have adopted the standard graphical convention
and represented lines of colors 0 by a dashed line.

Figure 3.2: Dual tetrahedron associated to the vertex V .

The free energy W := ln(Z) can be computed (at least formally) in perturbation theory as a
Feynman expansion:

Wformal =
∑
G

(λλ̄)V (G)/2

Sym(G)
AG (3.6)

where each term is labeled by a closed connected d+ 1-colored bipartite regular graph G:

Definition 1. A d + 1-colored graph G is a set G = (V,E), with V and E respectively the sets
of vertices and edges, such that:

• The set V is bipartite : V = V ∪ V̄, such that V and V̄ have the same cardinality, and, for
each e ∈ E, e = (v, v̄), v ∈ V, v̄ ∈ V̄.

• The edge set E is partitioned into d+ 1 subsets : E = ∪dc=0E
c, where Ec is the subset of edges

of colors c.

• Each (black or white) vertex is d + 1-valent, with all edges incident to a given vertex having
distinct colors.

Figure 3.3 gives an example of such a vacuum graph. At this stage, we have to precise
some key points. In a nutshell, we can say that the only difference with conventional GFTs is
the obligation for Feynman graphs generated by the perturbative expansion to be colorable and
bipartite. These two conditions are sufficient to generate (infinitely many) random triangulations
of any (piecewise linear) pseudo-manifold and only of these. In particular, singularities known as
tadfaces - i.e. a face running several times around the same line - are automatically suppressed.



50 CHAPTER 3. COLORS AND TENSORIALITY

Figure 3.3: An example of vacuum Feynman graph with d = 3.

Moreover, due to the color structure, any Feynman graph G has the structure of a D-dimensional
cellular complex. This relies on the fact that each d-dimensional tetrahedron is colored, hence
carries more information than the basic tetrahedron for standard GFTs. More precisely, given a
fixed dimension d, a tetrahedron of a colored triangulation has d type of colored faces, such that
the general (d− k)-faces are labeled by k-uplet of colors (1 ≤ k ≤ d). Note that this point, and
in particular the unambiguous definition of the concept of face, which is required for discretizing
the Einstein-Hilbert action on the triangulated space-time, is perhaps the most important aspect
of colored models.

Definition 2. We call D-bubble with colors {i1, ..., iD} of a d+ 1-colored graph G any connected
component Bi1,...,iD of G made of edges of colors {i1, ..., iD} only.

As an illustration, Figure 3.4 below gives two basic examples of bubbles of the vacuum graph
pictured on Figure 3.3.

a b

Figure 3.4: Examples of 3-bubbles obtained from the graph of Figure 3.3 by removing the edges
of color red (a) and 2-bubbles obtained by removing the green and dashed edges (b).

Definition 3. Let G a d+ 1-colored graph. A k-dipole, with 1 ≤ k ≤ d+ 1 is made of two black
and white vertices linked by k colored edges.

Definition 4. A k-dipole contraction is the deletion of the k colored edges together with the
two black and white vertices, such that the remaining edges initially hooked to these vertices are
reconnected following their color.

Figure 3.5 gives an example of k-dipoles and k-dipole contractions. In the same way, we can
define the inverse operation, the k-dipole creation, which, together with the contraction, forms
the dipole moves. These moves generate discrete homeomorphisms. Interestingly for our purpose
is the following proposition [5]:

Proposition 1. Consider a k-dipole dk. The two pseudo-manifolds dual to G and G/dk are
homeomorphic if at least one of the bubbles separated by dk is a sphere.

a b

Figure 3.5: An example of 2-dipole with d = 4 (a) and the result of its contraction (b).
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For completeness, we now introduce the notions of jacket and Gurau degree:

Definition 5. Let G be a (d+1)-colored graph. A jacket Jσ of G, labeled by a (d+1)-cycle σ in
the color set (up to orientation), is a ribbon graph made from the same vertices and edges than
G, but with the restricted set of faces F = {σq(0), σq+1(0) , q ∈ Zd+1}.

Hence a (d+ 1)-colored graph has exactly d!/2 jackets, leading to the next definition.

Definition 6. The Gurau degree $(G) of a d + 1-colored graph G is the integer given by the
sum of the genera of all its d!/2 jackets:

$(G) =
∑
J
gJ . (3.7)

The Gurau degree appears in the large N -expansion for colored tensor models, that we shall
discuss in the Section 3.1.3. The notion of jacket is important, not only for the definition of
that degree, but for the characterization of the triangulated pseudo-manifold. For instance, in
dimension 3, they are dual to quadrangulation of a normal Heegaard surface, bounding two
handlebodies [6]. Graphically, from the dual tetrahedron, the choice of a cyclic ordering of the
colors corresponds to the choice of a quadrilateral in the tetrahedron, see Figure 3.6. More details
about colored graphs can be found in [5].

Figure 3.6: Two examples of jacket quads in a tetrahedron, corresponding to two different cycles.

Note that, thanks to the complex nature of the fields φc, the dual manifold associated to the
ribbon graph of any jacket is orientable. Finally, we end this section by the following relation
between the degree, the number of faces and the dimension, which will be useful in the next
section:

Proposition 2. Let G be a d + 1-colored graph, V (G) and F (G) the cardinality of its sets of
black and white vertices and faces. We have:

2

(d− 1)!
$(G) =

d(d− 1)

4
V (G) + d− F (G) . (3.8)

This proposition follows from combining the Euler relation for each jacket of the graph with
the observation that each face, being associated to a pair of colors, always belongs to the same
number of jackets, namely those in which these two colors are adjacent in the cycle defining the
jacket.

3.1.2 Comment about diffeomorphisms in dimension three

In this section we recall briefly the relation between colors and diffeomorphisms, which played an
important role in the genesis of colored GFTs. The understanding of the discrete counterpart of
gravity symmetries in the GFT framework is an important step towards the understanding of the
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continuum classical limit and its relation with general relativity. A partial achievement in this
direction has been established for d = 3 in [2]. The authors have shown that colored Boulatov
models have a quantum symmetry, corresponding to the action of the deformed Drinfeld double
DSO(3) := C(SO(3)) o CSO(3), and in particular, uncovered a translation symmetry that
they identified as a discrete diffeomorphism invariance. As an additional insight, they showed
that diffeomorphism symmetry is unbroken at the quantum level only for the colored models,
pointing out the relevance of the color structure for 3d gravity andBF theories. We insist however
on the fact that, roughly speaking, this argument does not concern realistic four-dimensional
quantum gravity models, and as far as the author knows, it has not been successfully extended
to dimensions higher than three, except for topological models. In absence of extensions to
models implementing simplicity constraints, the argument in favor of colors coming from discrete
symmetries remains only partly convincing. Nevertheless it is fair to consider it as another
advantage of the colored formalism, at least in the context of toplogical gravity.

3.1.3 The tensors models

In this section we move on to the colored tensor models. These models have the same combi-
natorial structure as the class of colored GFTs presented above, but with a minimal algebraic
structure. It makes the analytic computations of amplitudes easier, and they are an ideal frame-
work to explore only the combinatorial aspects of the colored theories. For general references on
this subject, the reader may consult [5, 7].

Definition

Let us start by a definition of colored tensor models in any dimension d (assumed to be higher
than 2, where tensors reduce to matrices). A colored tensor model is a statistical description
of a set of d + 1 Nd-indexed complex random variables, denoted as T cn1,...,nd

, where c ∈ J0, dK,
and ni ∈ J1, NK, for some positive integer N . The statistical model is defined by the partition
function:

Ztensors(λ, λ̄) =

∫ ∏
c,nc∈NdN

1

2iπ
dT cnc1,...,ncddT̄

c
nc1,...,ncd

e−Sλ,λ̄[T,T̄ ] (3.9)

where n := {n1, ..., nd}, dT cn1,...,nd
dT̄ cn1,...,nd

/2iπ is the Lebesgue measure over C, and the action
Sλ,λ̄ is the sum of a kinetic and interacting part, both defined as:

Skin =
∑
c

∑
nc

T̄ cncT
c
nc , (3.10)

− Sint(λ, λ̄) =
λ

Nd(d−1)/4

∑
nij ,i<j

∏
c

T cnc +
λ̄

Nd(d−1)/4

∑
nij ,i<j

∏
c

T̄ cnc (3.11)

where we have used the short-hand notation

T cn ≡ T cn1,...,nd
, nc := {ncc−1, ..., nc1, ncd+1, ..., ncc+1} ∀c ∈ J0, dK, (3.12)

and we assumed that nij = nji. Note that, because the dual of U(1) is Z, a tensor model
may be considered as a colored GFT over the simpler group manifold U(1), written in Fourier
representation, and with a sharp cut-off truncation in momentum space.
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Large N-expansion

In a perturbative framework, the partition function 3.9 can be expanded in power of λ and λ̄ as
a sum over Feynman d+ 1 colored vacuum graphs:

Ztensor(λ, λ̄) =
∑
G

(λλ̄)V (G)/2

Sym(G)
AG . (3.13)

Due to the simple algebraic structure of tensors, the amplitude AG can be easily computed, and
only depends on N . First of all, each (black or white) vertex contributes to the amplitude with
a factor N−d(d−1)/4. Then, with our choice for the kinetic part of the action, the propagator is
simply a product of Kronecker deltas:∫ ∏

c

dT cdT̄ ce−SkinT c1n1
T̄ c2n2

= δc1c2
∏
c

δn1cn2c , (3.14)

implying that each face contributes with a factor N to any amplitude. Taking into account all
these contributions, we have then :

AG = NF (G)− d(d−1)
4

V (G). (3.15)

This expression gives the power counting, that is to say, the dependence in N of the amplitude.
But it is not a priori a 1/N expansion in the sense of matrix models for instance. In the case
of matrix models, the scaling with N depends on a quantity, the genus, which is topological in
nature. For the moment (3.15) alone does not prove yet the existence of a 1/N expansion. To
unlock such an expansion we have to combine (3.15) with Proposition 2. This allows to rewrite
the amplitude in terms of the Gurau degree $:

AG = Nd− 2
(d−1)!

$(G). (3.16)

Contrary to the genus for 2-dimensional manifolds, the Gurau degree $ is not a topological
invariant2. However, it is clear from its definition 6 that it is a positive integer, because the
genus is always a positive integer. Hence in any case the amplitude AG is bounded by Nd.
A leading set of graphs (the ones with $(G) = 0) dominates, and subleading contributions
can be organized according to their increasing degree. Reorganizing the perturbative expansion
according to the Gurau degree follows the pattern we discussed in Chapter 1 for ribbon graphs
according to their genus. The tensorial 1/N expansion for colored tensors models follows and
generalizes the ’tHooft expansion of matrix models!

Critical behavior: leading and next to leading order

The leading order graphs, with vanishing degree, play the same role as planar graphs for matrix
models, and therefore have been actively studied in the first age of colored tensor models. An
important step in their understanding was achived in [8], where a proper characterization of
these graphs, the so-called melons-graphs has been first established.

Definition 7. A melon is a colored graph G with zero Gurau degree: $(G) = 0.

Due to the fact that the genus is a positive number, the vanishing of the degree implies the
vanishing of the genus of all the jackets, and then :

2The degree combines in fact some topological and some combinatorial information.
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Proposition 3. Topologically, a d+ 1-colored graph with vanishing Gurau degree is dual to the
triangulation of a sphere Sd for d > 2.

Note that this result can be proved by recursion using Proposition 3.1.1. The melons have a
simple recursive definition. The simplest of them, the mother of melons with only two vertices
is pictured in Figure 3.7 below, for which it is easy to check that $ = 0.

0
1
2

d

Figure 3.7: The mother of melons: the simplest melon with two black and white vertices.

Let us denote the set of melons with 2p vertices asMp. Obviously,M1 has only one element. The
rule to generate the setMp+1 fromMp is the following: we replace any colored edge, say of color
i of an element mp ∈Mp by an elementary melon as pictured in Figure 3.8, and an example of a
generic melon is pictured on Figure 3.9. The proof that the melon family obeys to this recursive
definition is a little subtle. Indeed, it is easy to check that such a melonic insertion does not
change the degree. And then, the recursive family, as we just described it, is certainly included
in the set of melonic graphs. It is however more difficult to prove that melons have necessarily
this structure, and this step is the object of [8], where the authors show that a melonic graph
has necessarily at least one elementary melon of the type of the right side of Figure 3.8. Because
the contraction of such a subgraph does not affect the degree, the proof follows.

i i i

i+1

i-1

Figure 3.8: A melonic insertion on an edge of color i.

Figure 3.9: Structure of a generic melon graph with d = 6.

Interestingly, melonic graphs with a marked edge are in bijection with d-ary trees, and therefore
can be counted with (generalized) Catalan numbers [8].

As for matrix models, the analyticity of the free energy with respect to g := λλ̄ has been
investigated first in the leading sector. Thanks to the recursive structure of melonic graphs, we
can easily establish a closed relation with the melonic 2-points function G2,melo(g). Indeed the
one particule irreductible (1PI) 2-points function, says Σmelo, is necessarily of the form pictured
on the Figure 3.10, where each grey disk is a melonic 2-point function insertion.
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0 0

1

2

3

Figure 3.10: Structure of the melonic 1PI 2-point function Σmelo, for external edges of colors 0
and with d = 3. Each grey disk represents the 2-point function G2,melo (which is the same for
any choice of the colors of the external edges).

Then:
Σmelo = gGd

2,melo. (3.17)

Moreover, because the propagator is a product of Kronecker deltas, Σmelo and G2,melo are related
by:

G2,melo = 1 + Σmelo + Σ2
melo + · · · = 1

1− Σmelo

, (3.18)

which, together with 3.17, leads to:

G2,melo(g) = 1 + g[G2,melo(g)]d+1. (3.19)

Solving this equation, we find the following critical behavior in the vicinity of the critical value
gc

G2,melo(g) ∼ (g − gc)γmelo , (3.20)

where the critical value gc depends only on the dimension d : gc := dd/(d+1)d+1, and the critical
(or entropy) exponent γmelo = 1/2. From this result, and using a Schwinger-Dyson equation we
deduce also the critical behavior of the free energy:

Wtensors ∼
(
g − gc
gc

)2−γmelo
. (3.21)

The “physical” meaning of this behavior is the same as for matrices. In the vicinity of the critical
value gc, melon graphs of arbitrary order proliferate without control, which, following the au-
thors of [8], can be understood as a phase transition to a continuum phase. Note that, in contrast
with the critical value gc, the critical exponent γmelo does not depend on the dimension d, and
then, is a universal quantity. The corresponding continuum phase has been studied, and due to
the tree structure of melonic graphs, it corresponds to a singular branched polymers phase, with
Hausdorff dimension 2 and spectral dimension 4/3 (which can be intuitively understood as a
consequence of the mapping of d-ary trees to positive random excursions). Due to the branched
polymer structure of melons, such a continuum phase does not correspond to the idea of a smooth
manifold, with smooth metric. This is why we generally think that many phase transitions are
necessary to reach the continuum phase corresponding to our space-time, eventually assisted by
the addition of some pre-geometric data.

The next to leading order (NLO) sector has also been investigated, see for instance [12]. The
authors have established that NLO graphs have degree $NLO := (d− 1)!(d− 2)/2, studied the
critical behavior and computed the critical exponent of this sector. Their strategy for character-
ization of the NLO graphs exploits the fact that not only d-dipole contractions but also 1-dipole
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contractions keep the Gurau degree unchanged. Hence, starting with the mother of melons and
performing a 2-dipole insertion leads to the graph pictured on Figure 3.11b, which have degree
$NLO.

1
2

d-1
d

1
2

a b

Figure 3.11: 2-dipole insertion between the edges labeled from 3 to d (a) in the mother of melons
(b).

The next step consists in the insertion of an elementary melon on one of the edges of the diagram,
as in Figure 3.12a which, up to a proper 1-dipole creation, turns to be the diagram of Figure
3.12b. Iterating the procedure gives the family of graph pictured in Figure 3.13, denoted as
G2−dipole,` by authors of [12], where ` refers to the number of insertions of type 3.12b. From this
family, the authors construct a new set of closed graphs by considering all the possible insertions
of melonic graphs.

a b

Figure 3.12: Melonic insertion (a) and creation of a 1-dipole (b). d = 4.

`− 1

Figure 3.13: General structure of the graph G2−dipole,`.

The final step consists in listing all the possibilities for building a 1PI 2-points graph. The first
one, the simplest way, consists in replacing one of the internal line of an elementary melon by
the NLO 2-point function, says G2,NLO, and replacing all the remaining internal lines by G2,melo.
The second one corresponds to the two schemes for cutting an edge of G2−dipole,` in an optimal
way. Then, at the end of the day, we obtain the following expression for the NLO 2-point function
G2,NLO:

G2,NLO =

d(d+1)
2

g2G2d+2
2,melo

(G2,melo − 2)(1− dgG2,melo)
, (3.22)

with critical behavior:

G2,NLO ∼
(

1− g

gc

)−1/2

, (3.23)
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which seems to indicate that γNLO = 3/2. Note that the critical point for the NLO sector is the
same as for the leading sector, which is encouraging for a double scaling analysis. Double scaling
has been studied in details for colored [10] and for uncolored quartic models [11] (see Section
3.2), and some progress has been made in the understanding of the nature of the corresponding
phase transition. In particular, the nature of the symmetry breaking has been studied in [9]. We
shall return to these aspects at the beginning of Chapter 4.

3.1.4 Regularization and large N-expansion for GFTs

The definition 3.6 is highly formal, because the delta functions in the propagator introduce
some divergences in the computation of a general Feynman graph. In order to circumvent this
difficulty, as in standard quantum or statistical field theory, it is critical to adopt a regularization
scheme. The most popular is the regularization via the heat kernel at time α, Kα:

δ(g) = lim
α→0

Kα(g) . (3.24)

We recall that the heat kernel satisfies the heat equation 3:(
∂

∂α
−∆g

)
Kα(g) = 0 , (3.25)

and, assuming that G is a compact connected Lie group, can be expanded as a sum over irre-
ductible representations ρ of G as [13]:

Kα(g) =
∑
ρ

dρe
−αCρTrρ(g) , (3.26)

where dρ is the dimension of the representation ρ, Trρ is the trace in this representation, and Cρ
is the quadratic Casimir operator. Due to the convolution property of heat kernels:∫

dhKα(gh)Kα′(h
−1g′) = Kα+α′(gg

′) , (3.27)

the amplitude AG can then be expressed as:

AG,α =

∫ ∏
e∈E(G)

dhe
∏

f∈F (G)

K|∂f |α

(
~∏

e∈∂f
h
εef
e

)
, (3.28)

where E(G) and F (G) are respectively the sets of edges and faces of G, ∂f denotes the boundary
of the face f , with length |∂f | (i.e. the number of edges in the boundary of f). Finally, εef is
the adjacency matrix, with entries ±1 if e ∈ ∂f , the sign depending on the relative orientation
of the face with respect to the line, and 0 otherwise. Note that this expression only requires 0,
1 and 2-cells (i.e. vertices, edges and faces respectively, reminding that an edge is labeled by a
color c ∈ J0, dK, and a face is labeled by a pair (c, c′) ∈ J0, dK2). Then, we only need to consider
the 2-complex associated to G. A large N expansion can be defined as for tensor models, and has
been partially investigated in the literature. The strategy is the following. The large parameter
N playing the role of the size of the tensor and allowing to organize the perturbative expansion
as a proper large N -expansion is no longer necessarily an integer but simply:

N =
1√
4πα

. (3.29)

3It can be nicely understood as a consequence of the representation of the heat kernel as a sum of Markovian
paths.
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Indeed, up to rescaling of the couplings:

λ→ λ/Ndim(G)
(d−2)(d−1)

4 , (3.30)

one can show [13] that the amplitude 3.28 scales with N as:

AG,α . (λλ̄)V (G)/2
[
Ndim(G)

](d−1)− 2(d−2)
d!

$(G)
. (3.31)

Therefore, as for tensor models, we recover that leading order graphs have degree zero. As for
tensors, the critical behavior of the melonic sector has been investigated. More precisely, in the
large N limit, definingW(0) such as :W ∼ NdimG(d−1)W(0), we can prove, using some homology
machinery, a higher dimensional generalization of the popular Kirchhoff tree-matrix theorem [13],
leading to:

K
∑
p∈N

Fpc
p(λλ̄)p ≤ W(0) ≤

∑
p∈N

Fp(λλ̄)p, (3.32)

for some positive constant K and c. The authors of the reference conclude that W(0) has a
finite radius of convergence, hence a critical behavior. However, for the moment, this result
concerns only the topological GFTs, and should be extended to more realistic models for 4d
quantum gravity. Moreover, even if the existence of a critical behavior has been proved, the
specific behavior of the free energy (i.e. its critical exponent) remains unknown. Finally, the
investigation of the next to leading order behavior is still an open problem.

3.2 Tensor invariance

3.2.1 Uncoloring the colored tensor models

Inspired by the corresponding situation for colored matrix models, a statistical field theory for
d+1-complex tensors fields can be equivalently understood as an effective statistical field theory
for a single rank-d complex tensor field with an infinite number of interactions, called tensor
invariants. It is characterized by a unitary symmetry group U(N)×d, where, as previously, N
denotes the size of the tensors. The equivalence between the two constructions can be cheeked
explicitly, by integrating the partition function 3.9 over all colors expect the color 0, and has
been first considered in [3]. At the perturbative level, in the expansion of the partition function in
power of λλ̄, this procedure can be understood as follows. Instead of summing over d+1-colored
graphs, we disconnect the 0-lines, and sum separately over their contractions. The remaining
graphs are d-colored, which can be disconnected or not, and correspond exactly to the idea of
an integration over d-colors. They can be re-summed as an infinite set of interactions, whose
couplings depend on the product λλ̄. Each interaction can be labeled by a d-bubble, and its
kernel in simply a product of Kronecker deltas, whose indices are contracted following the pattern
dictated by the d-bubble. As an example, the diagram in Figure 3.3 can be understood in this
framework as the Wick-contraction of dotted lines between fields represented by black and white
vertices, in the interaction vertex:

Trb1(T, T̄ ) =
∑
~n,~n ′

Tn1n2n3T̄n1n′2n
′
3
Tn′1n′2n′3T̄n′1n2n3

, (3.33)

where T (resp. T̄ ) are the tensor fields of color 0 in the original colored representation. The label
1 refers to the intermediate colors (see Figure 3.14), and ~n, ~n ′ ∈ J1, NK3.
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T T̄

T̄ T

1 1

Figure 3.14: Graphical representation of the interaction bubble b1 given by 3.33. The green edges
are associated to the color 1.

The notation Trb1 has a precise meaning. It takes into account the invariance of the interaction
3.33 under the transformation:

Tn1n2n3 →
∑
~n ′

U
(1)

n1n′1
U

(2)

n2n′2
U

(3)

n3n′3
Tn′1n′2n′3 , (3.34)

T̄n1n2n3 →
∑
~n ′

U
(1)

n1n′1
U

(2)

n2n′2
U

(3)

n3n′3
T̄n′1n′2n′3 , (3.35)

where U (i), i = 1, 2, 3 are arbitrary N ×N unitary matrices, whose set is denoted as U(N).

a b c

Figure 3.15: Example of interaction bubbles in dimension 4 (a) and 3 (b-c).

Definition 8. In dimension d, the interaction bubbles are d-bubbles, that is to say, connected
colored bipartite regular graphs, where the black (resp. white) vertices are associated to the tensors
T (rep. T̄ ), and the connectivity structure gives the pattern of contraction for the tensor indices,
providing a U(N)×d invariance.

Figure 3.15 gives three examples of interaction bubbles in dimension d = 3 and d = 4. These
interaction bubbles are denoted as an invariant trace Trb(T, T̄ ), labeled by a bubble b, and have
the following generic expression:

Trb(T, T̄ ) =
∑
{~nv ,~nv̄}

( ∏
v,v̄∈b

T~nv T̄~nv̄

)( d∏
c=1

∏
lcvv̄∈b

δnvcnv̄c

)
, (3.36)

where v (resp. v̄) denotes white (resp. black) vertices, and lvv̄ denotes the edge of color c joining
v and v̄. Note that in the expression 3.36, the invariance U(N)×d is obvious. As a conclusion,
with a little of algebra, we can show that the initial colored model in dimension d defined by 3.9
can be rewritten as an effective statistical field theory for a single complex rank-d tensor T :

Ztensors =

∫
dTdT̄ e−Suncolored[T,T̄ ] , (3.37)

where dTdT̄ :=
∏

~n dT~ndT̄~n, and:

Suncolored[T, T̄ ] :=
∑

~n∈J1,NKd

T̄~nT~n +
∑
b∈Bd

(λλ̄)p(b)

Sym(b)
N−(d−1)(p(b)−1)− 2

(d−2)!
$(b)Trb[T, T̄ ] , (3.38)
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where p(b) denotes the number of black vertices of b, and Bd the set of all connected bubbles
in dimension d. This result has been considered by the authors of [14] as the starting point of
a new axiomatic definition of tensor models, based on the U(N)×d invariance, coming from a
single tensor field but with an arbitrary number of couplings, and the recipe is the following:

• We select a subset B̄ ⊂ Bd of U×d-invariant interactions ,

• We associate a coupling tb for each bubble b ,

such that, up to an appropriate changing of field normalization, an arbitrary tensor model is
defined in this axiomatic point of view by an action of the form

S[T, T̄ ] :=
∑

~n∈J1,NKd

T̄~nT~n +
∑
b∈B̄

tbN
− 2

(d−2)!
$(b)Trb[T, T̄ ] , (3.39)

and a partition function

Z =

∫
dTdT̄ e−N

d−1S[T,T̄ ] . (3.40)

As a result, we obtain an extended tensorial space, well defined by the internal symmetry U(N)×d,
allowing to construct arbitrary models for freely adjustable interactions. This new class of sta-
tistical models can be studied perturbatively, by expanding the corresponding partition function
in a power of the couplings {tb}:

Z =
∑
G

1

s(G)

(∏
b∈G

(−tb)
)
AG. (3.41)

The graphs G labeling the amplitude AG are made of several interaction bubbles playing the role
of effective vertices, connected together by dotted lines, such that Wick contractions pair black
and white vertices. An example of such a Feynman graph is pictured in Figure 3.16. Note that
this kind of graph is therefore a (d + 1)-colored one. Taking into account that each dotted line
provides a factor N−(d−1), each face of colors (0c), c ∈ J1, dK provides a factor N , and that each
vertex bubble b comes with a factor Nd−1− 2

(d−2)!
$(b), the amplitude AG writes as:

AG = N (d−1)|V (G)|− 2
(d−2)!

∑
ρ∈V (G)$(bρ)−(d−1)|L(G)+

∑
c |F0c(G)| , (3.42)

where V, L and F0c are respectively the sets of vertex bubbles, dotted lines and faces of colors 0c.
Using Proposition 2, this amplitude matches exactly with the amplitude 3.16. Then, the power
counting makes sense for the extended axiomatic formalism of uncolored tensor models.

Figure 3.16: A vacuum Feynman graph with d = 3.
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The uncolored tensor models have been actively investigated since 2012, especially for quartic
melonic truncation, for which a double-scaling limit has been studied [11]. Phase transitions have
also been studied, and in particular the symmetry breaking aspects in [9], where the authors link
continuum phase transition to a break of the symmetry U(N)×d. Finally, a constructive program
has been started in [7] and is currently in active development for several models [16], providing
a deep definition of such models at the non-perturbative level.

I conclude this section by some discussion of the terminology. At this stage, the word vertex
refers to the black and white nodes of the colored graph and to the interaction bubbles of
the uncolored formalism. In order to avoid any ambiguity, we save the word “vertex” for the
interaction bubbles in the rest of this thesis, and we denote by node the black and white vertices
in the colored extension shown in Figure 3.16.

3.2.2 Tensorial Group Field Theories

The U(N)×d invariance, say tensor invariance, highlights the fundamental mistake of the earli-
est tensor models, and, as explained in this chapter, the color structure of the Feynman graphs
makes the topology and the combinatorics tractable. For this reason it has been argued that
tensor invariance seems to be a good prescription for the GFTs interactions, instead of the usual
simplicial prescription. This new class of GFTs corresponds to the so-called tensorial group field
theories (TGFTs), to which a large part of this thesis is dedicated. At the classical level, a TGFT
is a group field theory for a single complex field ϕ in dimension d, defined by:

• The choice of a group manifold G on which the field is defined: ϕ : Gd → C ,

• A kinetic action Skin[ϕ, ϕ̄],

Skin[ϕ, ϕ̄] =

∫
G2d

dgdg′ϕ̄(g)K(g,g′)ϕ(g′) , (3.43)

• An interaction action Sint[ϕ, ϕ̄], which is a sum of tensorial bubbles, weighted by different
couplings {λb}:

Sint[ϕ, ϕ̄] =
∑
b

λb
Sym(b)

Trb[ϕ, ϕ̄] , (3.44)

• The choice of a set of constraints or gauge symmetries acting on the group variables. The most
popular, and the only used in this thesis, is the closure constraint :

ϕ(g1h, ..., gdh) = ϕ(g1, ..., gd) ∀h ∈ G . (3.45)

The structure of the interaction bubbles is exactly the same as for tensors, up to the replace-
ment of sums by integration. As an example, for the bubble of Figure 3.14, the corresponding
interaction term writes as:

Trb1 [ϕ, ϕ̄] =

∫
G2d

dgdg′ϕ(g1, g2, g3)ϕ̄(g1, g
′
2, g
′
3)ϕ(g′1, g

′
2, g
′
3)ϕ̄(g′1, g2,3 ). (3.46)

As discussed in Chapter 1, at the quantum level, the gauge symmetries, and especially the
closure constraint, have to be implemented in the definition of the covariance, or equivalently of
the Gaussian measure dµC : ∫

dµC [ϕ, ϕ̄]ϕ(g)ϕ̄(g′) = (P̂KP̂ )(g,g′) , (3.47)
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where P̂ is the projector into the gauge invariant fields. The quantum theory is then defined by
the partition function

ZTGFT =

∫
dµC [ϕ, ϕ̄]e−Sint[ϕ,ϕ̄] . (3.48)

To conclude, we introduce the usual notation T nd , and we refer to the “T nd -model" for the TGFT
in dimension d whose higher valent interaction bubbles have valence n.

For the topics of this thesis, which treats essentially of renormalization aspects of TGFTs, the
tensor invariance will play an important role, because it provides a notion of locality, the tra-
ciality, well-adapted to the renormalization procedure. We shall explore it in detail in the third
chapter. However, we shall dedicate the end of this section to an important point, closely re-
lated with the renormalization procedure, concerning the choice of the kinetic action. Up to
now, for all the models that we have considered in this chapter, the kinetic kernel K reduces to
the identity operator, hence to a product of Kronecker deltas, and the propagator to the quan-
tum theory given by P̂ for topological models. There are nevertheless some arguments in favor
of a different choice. Firstly, as mentioned at the end of Chapter 1, for the Boulatov-Ooguiri
models, radiative corrections of the 2-points functions [17] generate a Laplacian contribution,
which therefore should be also included in the definition of the classical action. Secondly, such a
Laplace operator provides a notion of scale, which is a good point for renormalization. Thirdly,
recent results [18] about GFT condensates seem to indicate that Friedman’s equation can be
recovered only for kinetic terms including a Laplacian. For the purpose of this thesis, the second
point remains the most relevant, and is quite flexible, in the sense that models with lower order
differential operators can be also considered. This will be the case in Chapter 6.

Finally, note that, when the power of this differential operator is smaller or equal to that
of the Laplacian, we may hope for some analog of Osterwalder-Schrader positivity to hold [19].
This hope at the moement just relies on an analogy with the ordinary quantum field theory
case, in which the (Euclidean) OS positivity axiom requires precisely such a bound on the
degree of the kinetic term. Remember OS positivity is the key Euclidean property which ensures
continuation to Minkovski time. Without such an OS condition, divergence-free quantum field
theories could be built easily by simply using a high power of the Laplacian to suppress any
ultraviolet problem. But we know that such “cheap” constructions violate OS positivity, hence
have no continuation to Minkovski time. We feel a similar selection rule probably will be needed
also in the pregeometric tensor models, to ensure not just a random geometric simulation of the
Euclidean world, but ultimately a real time interpretation. It is however a deep problem far from
a complete understanding at this point.

In conclusion the TGFT framework appears as a very flexible framework, and a large vari-
ety of models, depending on the choice of the kinetic kernel and bubbles interactions, can be
considered. As for standard quantum field theories, renormalizability, studied in the next chap-
ters of this thesis, and probably other conditions in the future, analog to OS positivity, should
drastically restrict this family.
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Chapter 4

Perturbative renormalization: The
U(1)− T 4

d

This chapter is devoted to the perturbative renormalization of TGFTs. It performs a transition
between the description of the state of the art in TGFTs, given in Chapters 1 and 2, and
the specific models studied in this thesis. Indeed, this chapter has two entangled objectives.
It provides a presentation of the key notions for renormalization in the TGFT context (which
differs essentially from the renormalization in standard field theory by the non-locality of their
interactions) on a concrete example, the melonic Abelian T 4

d model with closure constraint.
Although we focus our attention on this model, which will be our favorite example for the rest
of this thesis, some of the results of this chapter are common to all the Abelian models, and in
the leading sector, to the non-Abelian models. We then indicate for each key result whether it is
a specific aspect of the T 4

d or a general one. Some aspects of this chapter are based on [1]. The
general reference on renormalization via multiscale analysis which we use is [2]. More details on
renormalization in the TGFT context can be found in [3, ?, 12, 6].

65
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4.1 Definition of the model
Let us focus our attention on the Abelian T 4

d melonic model. More precisely, in order to study
simultaneously the effect of the dimension of the space and of the group manifold, and to give the
more general treatment, we consider the U(1)D − T 4

d melonic model, described by the classical
action:

Skin[T, T̄ ] =
∑

~p∈(ZD)d

T̄~p(~p 2 +m2)T~p , (4.1)

Sint[T, T̄ ] = λ

d∑
i=1

∑
{~pc,c=1,...,4}

W(i)
~p1,~p2,~p3,~p4

T~p1T̄~p2T~p3T̄~p4 . (4.2)

In these definition, ~p denotes a set of d-vectors of size D: ~p := (p1, ...,pd), ~p 2 denotes the usual
norm on (ZD)d : ~p 2 :=

∑d
i=1

∑D
k=1 p

2
ki, T~p corresponds to the Fourier components of the field

ϕ : (U(1)D)×d → C, and the symbols W(i)
~p1,~p2,~p3,~p4

are products of delta functions whose indices
follow the pattern corresponding to the quartic melon pictured in Figure 4.1. Explicitly:

W(i)
~p1,~p2,~p3,~p4

:= δ~p1i~p4i
δ~p2i~p3i

∏
j 6=i

δ~p1j~p2j
δ~p3j~p4j

. (4.3)

Finally, note that we have chosen the same coupling λ for each of the interaction bubbles. More-
over, the “melonicity” of the interaction is obvious, indeed, it is easy to see that the interaction
pictured in Figure 4.1 is obtained from the mother of melons in dimension d by insertion of an
elementary melon on the line of color i.

i i

i+ 1

i− 1

Figure 4.1: Melonic interaction corresponding to the symbol W(i)
~p1,~p2,~p3,~p4

.

The corresponding quantum field theory is then described by the generating functional:

ZU(1)D−T 4
d

:=

∫
dµCΛ

[T, T̄ ]e−Sint[T,T̄ ]+J̄ ·T+T̄ ·J , (4.4)

where J , J̄ denote the external sources, and where we have used the shorthand notation

J̄ · T :=
∑

~p∈(ZD)d

J̄~pT~p. (4.5)

The subscript Λ in the covariance refers to the ultra-violet (UV) cut-off, introduced in order to
circumvent the apparition of eventual UV divergences in the perturbative Feynman expansion.
In the Schwinger scheme, our covariance writes as:∫

dµCΛ
[T, T̄ ]T~pT̄~p ′ = δ~p~p ′

∫ +∞

1/Λ2

dαe−α(~p 2+m2)

∫
[−π,π[D

dβ

(2π)D
ei

∑D
k=1 βk

(∑d
i=1 pki

)
, (4.6)
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where β = (β1, ...βD) ∈ [−π, π[D, and where we have used the integral representation of the
Kronecker delta, implementing the closure constraint. Moreover : δ~p~p ′ :=

∏d
i=1

∏D
k=1 δpkip′ki .

More than the partition function Z(J = J̄ = 0) and its vacuum amplitudes, the objects of
interest for this chapter are the connected N -point functions, or Schwinger functions, SN , which
can be expanded as a Feynman series in power of the coupling λ:

SN =
∑
G∈GN

1

Sym(G)
(−λ)V (G)AG , (4.7)

where GN denotes the set of connected Feynman diagrams with N external lines and V (G) the
number of vertices. A typical Feynman diagram is pictured on Figure 4.2. Using Feynman rules,
the amplitude AG takes the form:

AG =
∏

e∈L(G)

∫ +∞

1/Λ2

dαee
−αem2

∫
[−π,π[D

dβe
(2π)D

∏
f∈F(G)

∑
pf∈ZD

e−αfp
2
f+i

∑D
k=1(βf )kpfk

×
∏

f∈Fext(G)

e−αfpf
2+i

∑D
k=1(βf )kpfk (4.8)

where αf :=
∑

e∈∂f αe, (βf )k :=
∑

e∈∂f εfe(βe)k, L(G),F(G) and Fext(G) are respectively the sets
of lines, internal and external faces, with L(G), F (G) and Fext(G) denoting their cardinals.

Figure 4.2: An example of Feynman graph with 6-external lines and five vertices in dimension 3.

4.2 One-loop computations and renormalization

In order to understand the behavior of physical quantities, and to introduce the formalism of
renormalization for TGFTs, we now compute the leading order contributions of the correlation
functions. We limit our attention to the 2 and 4-point functions, respectively at order λ and
λ2. Finally, we shall use these examples to discuss the general procedure for renormalization of
TGFTs.
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4.2.1 Divergences of 2 and 4-point functions at one-loop

The 2-point functions at order λ

At first order in λ, the one-particule irreductible (1PI) 2-point function, say Γ1−loop
2 , with external

momentum ~p has the following structure:

Γ1−loop
2 (~p) = −2λ

d∑
i=1

∑
m=1,2

AGi,m(~p) , (4.9)

where the two graphs Gi,m for a fixed i correspond to the two Wick contractions pictured on
Figure 4.3 below, and the factor 2 in front of the right hand side comes from the fact that we
have two contractions giving the same diagram Gim. Using the Feynman rules, the computation
of the two amplitudes is straightforward, and we get:

AGi,1(~p) :=
∑

qj∈ZD,j 6=i

∫
[−π,π[D

dβ

(2π)D

∫ +∞

1/Λ2

dαe−α(~q 2+m2)ei
∑D
k=1 βk

(∑d
i=1 qki

)∣∣∣∣
qi=pi

, (4.10)

AGi,2(~p) :=
∑

qi∈ZD

∫
[−π,π[D

dβ

(2π)D

∫ +∞

1/Λ2

dαe−α(~q 2+m2)ei
∑D
k=1 βk

(∑d
i=1 qki

)∣∣∣∣
qj=pj ,j 6=i

. (4.11)

i i

i+ 1

i− 1

i

i

i+ 1

i− 1

Gi,1 Gi,2

Figure 4.3: The two Wick contractions Gi,m.

Note that the first diagram Gi,1 corresponds to a melonic insertion on the line of color i of the d+1-
elementary melon with external edges of colors 0. Such a diagram is therefore called melonic. In
contrast the second diagram Gi,2 is not melonic. Remark also that due to the closure constraint,
the momentum running over the single face of the second contribution 4.11 is completely fixed
by the external momenta. The sum is therefore trivial in this case:

AGi,2(~p) =
1∑

j 6=i p
2
j + (

∑
j 6=i pj)

2 +m2
. (4.12)

The first contribution 4.10 involves sums of the type
∑

p∈Z e
−αp2+iβp, which can be exactly

computed as

∑
p∈Z

e−αp
2+iβp =

(
π

α

)1/2∑
n∈Z

e
|β+2πn|2

4α =

(
π

α

)1/2

e−
β2

4α

(
1 + 2

∑
n>0

e−
π2n2

α cosh

(
πnβ

α

))
, (4.13)
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and the amplitude AGi,1 writes as

AGi,1(~p) :=

∫
dβ

(2π)D

∫ +∞

1/Λ2

dαe−αm
2

(
π

α

)(d−1)D/2

× e− (d−1)Dβ2

4α

(
1 + 2

∑
n>0

e−
π2n2

α cosh

(
πnβ

α

))(d−1)D

e−αp
2
i+i

∑D
k=1 βkpk,i . (4.14)

We are interested by the UV-divergences, occurring in the vicinity of α = 0. In order to isolate
the potentially divergent contributions, i.e. the part of the expression 4.14 having potentially
singular behavior in the limit α→ 0, we use the distributional identity:

e−θ
2/4α =

∑
n

√
4π

n!
[α]n+ 1

2 δ2n(θ) . (4.15)

Then, taking into account the bounds

∑
n>0

e−
π2n2

α ≤
∫ ∞

1

dxe−
π2x2

α ≤ 1

2

√
α

π
e−

π2

α , (4.16)

we deduce that the second term in the sum 4.13 converges in the limit α → 0. Therefore, the
divergent part of the amplitude 4.14 writes as:

A∞Gi,1(~p) :=
∑

n1,...,nD

(−1)
∑
k nk

(D(d− 1))D/2
(4π)D/2∏D
k=1 nk!

π(d−1)D/2

(2π)D

×
∫ +∞

1/Λ2

dαe−α(p2
i+m

2)α
∑
k nk−

(d−2)D
2

D∏
k=1

[
p2
i,k

D(d− 1)

]nk
(4.17)

=
π(d−2)D/2

(D(d− 1))D/2

∫ +∞

1/Λ2

dαe−α((1+ 1
D(d−1)

)p2
i+m

2)α−
(d−2)D

2 . (4.18)

At this stage, we find a condition on d and D if we want that the Laplacian kinetic term remains
stable. Indeed, if d > 2 + 4/D, singular contributions with higher derivative couplings have to
be introduced. As a result, it seems that the dimensions of the group manifold and space-time
cannot be chosen too large in a consistent model of this type. We shall return to this perturbative
argument in Section 4.4, in which we shall make it more precise and rigorous.

The 4-point function at order λ2

At zero-loop order, the 1PI 4-point function, for which a typical contribution is pictured on
Figure 4.4, involves only one vertex, and has the following structure:

Γ1−loop
4 (~p1, ~p2, ~p3, ~p4) = −4λ

d∑
i=1

1

2
SymW(i)

~p1,~p2,~p3,~p4
, (4.19)

where the factor 4 in front of the right-hand-side counts the number of contractions for the
external fields (there are 2 ways for contracting the T , and 2 for contracting the T̄ ), and:

SymW(i)
~p1,~p2,~p3,~p4

:= W
(i)
~p1,~p2,~p3,~p4

+W
(i)
~p3,~p2,~p1,~p4

. (4.20)
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i i

T T̄

T̄ T

Figure 4.4: Contributions to the 1PI 4-point function at zero-loop order.

At one-loop order, the 1PI 4-point Γ1−loop
4 receives many contributions, corresponding to all the

Wick contractions. But as for the 2-point function, some of these contributions are trivial, due
to the closure constraint. For instance, the momentum running along the internal face of the
diagram pictured on Figure 4.5a is completely determined by external momenta. As a result,
only the contribution corresponding to the diagram pictured on Figure 4.5b may be divergent
in the UV. Moreover, note that, in the case i 6= j, the sum:

I1(p1,p2) :=
∑

qm,m 6=i,j

∏D
k=1 δ(

∑d
i=1 qki)

(~q2 +m2)2

∣∣∣∣
(qi,qj)=(p1,p2)

, (4.21)

is absolutely convergent if the condition d ≤ 2 + 4/D is satisfied. Therefore, only the diagrams
with i = j may be singular in the limit α → 0, which scales as Λ(d−2)D−4. One more time, note
that these contributions are melonic, in the sense that they correspond to melonic insertions
from the original interaction1. Hence, Γ1−loop

4 has the following structure:

Γ1−loop
4 (~p1, ~p2, ~p3, ~p4) =

d∑
i=1

∆Γ
(i)
melo(p4i)

1

2
SymW(i)

~p1,~p2,~p3,~p4
+ Γ1−loop

4,NLO(~p1, ~p2, ~p3, ~p4) , (4.22)

where Γ1−loop
4,NLO gathers all the non-melonic, UV-convergent contributions, and

∆Γ
(i)
melo(p) := 8λ2

∑
qj∈ZD,0<j≤d

∫ ∞
1/Λ2

dα1dα2e
−(α1+α2)(p2+m2)

∏
j 6=i

e−(α1+α2)q2
j

×
∫

[−π,π[D

dβ

(2π)D
ei

∑D
k=1 βk(pk+

∑d
i=2 qki) . (4.23)

As for the zero-loop contribution, the factor 8 in front of the right hand arises because we have
4 ways to contract the fields between the two vertices in a melonic diagram, 4 ways to contract
the external lines, and an additional factor 1/2 coming from the expansion of the exponential.
Computing the sums with 4.13, we find for the divergent contribution

∆Γ
(i)∞
melo(p) :=

8λ2π(d−2)D/2

(D(d− 2))D/2

∫ ∞
1/Λ2

dα1dα2e
−(α1+α2)((1+ 1

D(d−1)
)p2+m2)(α1 + α2)−

D(d−2)
2 .

Note that some convergent contributions do not have the same structure as the melonic inter-
action. It is in particular the case of the contribution 4.5b, for i 6= j.

1We shall give a precise definition of melonic diagrams in Section 4.4
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i

i j

j

ii ii

a

b

Figure 4.5: Contributions to the 1PI 4-point function at one-loop order.

4.2.2 Counter-terms and renormalization

If the condition d ≤ 2 + 4/D is satisfied, only the terms up to p2 in 4.18 may be UV divergent,
and:

A∞Gi,1(~p) =
π(d−2)D/2

(D(d− 1))D/2

[
IΛ(d,D)− JΛ(d,D)

(
1 +

1

D(d− 1)

)
p2
i

]
+ convergent, (4.24)

with the definitions:

IΛ(d,D) :=

∫ +∞

1/Λ2

dαe−αm
2

α−
(d−2)D

2 , (4.25)

JΛ(d,D) :=

∫ +∞

1/Λ2

dαe−αm
2

α1− (d−2)D
2 . (4.26)

The extraction of the divergent part of the 4-point contribution ∆Γ
(i)∞
melo requires more precau-

tions. We have to isolate the contributions in each of the two Hepp’s sector α1 ≤ α2 and
α1 ≥ α2. Due to their symmetry, the contributions of each Hepp sector are the same, and we
only need to extract the divergences of the first one α1 ≥ α2. Performing the change of variables
(α1, α2)→ (α, x), defined as

α1 = α , (4.27)

α2 −
1

Λ2
= x

(
α1 −

1

Λ2

)
, (4.28)

and such that α ∈ [1/Λ2,∞], x ∈ [0, 1], dα1dα2 = (α− 1/Λ2)dαdx, we get

∆Γ
(i)∞
melo(p) =

8λ2π(d−1)D/2

(D(d− 2))D/2
JΛ(d,D) + UV − convergent . (4.29)

The basic idea of renormalization comes from the observation that in one-loop graphs the di-
vergences amount to shifts in the parameters of the action, spliting the classical action as a
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renormalized part, involving renormalized couplings, and a counter action, involving counter-
terms, whose values are adjusted in order to cancel the one-loop divergences as Λ → ∞. More
precisely:

Skin[Tr, T̄r] =
∑

~p∈(ZD)d

T̄r,~p(~p 2 +m2
r)Tr,~p , (4.30)

Sint[Tr, T̄r] = (λr + δλ)
d∑
i=1

∑
{~pc,c=1,...,4}

W(i)
~p1,~p2,~p3,~p4

Tr,~p1T̄r,~p2Tr,~p3T̄r,~p4

+
∑

~p∈(ZD)d

T̄r,~p(δZ~p 2 + δm2)Tr,~p . (4.31)

This form of the action is useful in doing perturbation theory. We treat the terms involving
counter-terms as interactions, and expand the counter-terms in infinite series, each term can-
celling the divergences of one specific graph. Indeed, with this new parametrization, and assuming
that all the counter-terms δλ, δZ and δm2 are of order λ2

r, the 2 and 4-point functions computed
above become:

Γ1−loop
2,ren (~p) = −2λr

d∑
i=1

∑
m=1,2

AGi,m(~p)− (δZ~p 2 + δm2) , (4.32)

Γ1−loop
4,ren (~p1, ~p2, ~p3, ~p4) =

d∑
i=1

∆Γ
(i)
melo(p4i)

1

2
SymW(i)

~p1,~p2,~p3,~p4
+ Γ1−loop

4,NLO(~p1, ~p2, ~p3, ~p4) (4.33)

− 4δλ
d∑
i=1

1

2
SymW(i)

~p1,~p2,~p3,~p4
, (4.34)

where we use the subscript “ren” for renormalized. Then, at one-loop, with the choices:

δZ =
2λrπ

(d−2)D/2

(D(d− 1))D/2
JΛ(d,D)

(
1 +

1

D(d− 1)

)
, (4.35)

δm2 = − 2dλrπ
(d−2)D/2

(D(d− 1))D/2
IΛ(d,D) , (4.36)

δλ =
2λ2

rπ
(d−1)D/2

(D(d− 2))D/2
JΛ(d,D) , (4.37)

all the one-loop renormalized amplitudes become UV-finite. We now extend this procedure to
all orders in the next subsection.

4.2.3 Running coupling constant

In standard notations, the relationship between the initial - also called bare - and the renormal-
ized parameters of the action may be rewritten as follows:

T = Z1/2Tr , λ = Z−2Zλλr , m2 = Z−1Zmm
2
r , (4.38)

where, as usually, Zm and Zλ are the mass and coupling renormalizations and Z is the field-
strength renormalization. They are related to the counter-terms δm2, δλ and δZ by

δZ := Z − 1 , δλ = (Zλ − 1)λr , δm2 = (Zm − 1)m2
r . (4.39)



4.2. ONE-LOOP COMPUTATIONS AND RENORMALIZATION 73

Since each counter-term depends explicitly on the UV cut-off, the bare couplings inherit this
dependence. Moreover, the renormalized couplings do not depend on the UV cut-off. The de-
pendence of Λ is therefore entirely contained in the factor Z−2Zλ. At one-loop:

Z−2Zλ =
1 + 2λrπ(d−2)D/2

(D(d−1))D/2
JΛ(d,D)[

1 + 2λrπ(d−2)D/2

(D(d−1))D/2
JΛ(d,D)

(
1 + 1

D(d−1)

)]2

≈ 1− 4λrπ
(d−2)D/2

(D(d− 1))D/2
JΛ(d,D)

(
1

2
+

1

D(d− 1)

)
. (4.40)

The beta-function β(λ) describes the way in which the coupling constant depends on the funda-
mental scale Λ,

β(λ) := Λ
dλ

dΛ
. (4.41)

At one-loop, we find:

β(λ) = − 8λ2π(d−2)D/2

(D(d− 1))D/2

(
1

2
+

1

D(d− 1)

)
Λ(d−2)D−4 . (4.42)

In analogy with standard quantum field theory, the factor Λ(d−2)D−4 seems to indicate that
we can associate a dimension 4 − (d − 2)D to the corresponding operator2. Then, defining the
dimensionless coupling λ̄ as λ = Λ4−(d−2)Dλ̄, the corresponding beta function β̄(λ̄) := Λdλ̄/dΛ
is:

β̄(λ̄) = [(d− 2)D − 4]λ̄− 8λ̄2π(d−2)D/2

(D(d− 1))D/2

(
1

2
+

1

D(d− 1)

)
. (4.43)

The beta function admits a fixed point for the value :

λ̄∗ =
((d− 2)D − 4)(D(d− 1))D/2

8π(d−2)D/2
(

1
2

+ 1
D(d−1)

) . (4.44)

We shall return to this non-trivial fixed point in Chapter 5, and focus our attention on a special
model. In a quantum gravity perspective, we are essentially interested in the small dimensions,
and the canonical dimension vanishes for :

d = 6, D = 1 ; d = 4, D = 2 ; d = 3, D = 4 . (4.45)

The second case has the most interesting value d = 4 for a model of quantum gravity, but the
dimension of the group is too small from a standard group field theory perspective. The most
interesting toy model, allowing to study combinatorial and qualitative aspects of the theory,
seems then to be the first one, in dimension 6 and with D = 1. The vanishing of the canon-
ical dimension seems to indicate that the theory is just-renormalizable, a statement that we
shall establish rigorously in the next section, and which agrees with the one-loop computations
above. (It is easy to check that Green functions with more than four external lines are super-
ficially convergent: only the 2 and 4-point functions show divergences, respectively square and
logarithmically divergent with the cutoff). For this model, the one-loop beta function writes as:

β(λ) = −28π2

5
√

5
λ2 , (4.46)

2We shall give another, more systematic, definition of the canonical dimension in Chapter 5.
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and in this context, it is interesting to comment the sign in front of this equation. The minus
sign means that the theory is asymptotically free. This is very good news for a field theory!
Indeed, the coupling decreases with the fundamental scale, and the perturbation theory is then
well defined in the UV (we do not crash on a Landau-pole in the UV). At this stage of our
knowledge of particle physics, asymptotic freedom is indeed an essential aspect of the standard
model. It is a property of all non-Abelian gauge theories without too many Fermionic matter
fields, hence it holds both for the weak and strong interactions and may be communicated to the
electromagnetic and Higgs sector in case of some grand unification scheme. Moreover, this prop-
erty is generally associated to very interesting physics, in particular to phase transitions which
can be dynamically generated in the infrared. In the case of QCD the confinement from quarks
to hadrons is such a phase transition and it is fundamental for nuclear physics. To find such a
property in this toy model of quantum gravity is very encouraging from the physical perspective
of emergent effective space-time which motivates this thesis. Note that this phenomena seems
to be quite general for TGFTs, see [4].

Finally, note that, as in the standard quantum field framework, the independence of the renor-
malized quantities on the fundamental scale can be translated into a dynamical equation, the
Callan-Symanzik equation, describing how any change of scale modifies the parameters of the
theory. For a 1PI vertex function ΓN with N external lines, this equation writes[

Λ
∂

∂Λ
+ β(λ)

∂

∂λ
+ (m2γm2 + δm2)

∂

∂m2
− N

2
γ

]
ΓN = 0 . (4.47)

The derivation of this equation is quite standard, and will not be reproduced here. However,
note that, at one-loop, this equation is verified for the value 5.86, and for:

γ = −24π2λ

5
√

5
, (4.48)

γm2 =
24π2λ√

5
, (4.49)

δm2 = −12π2λ√
5

Λ2 . (4.50)

4.2.4 Why does renormalization make sense?

In the previous section we illustrated at one-loop order the mechanism of renormalization but
we shall now show that it is more general. Our formulas 4.32 and 4.34 for renormalized one-loop
amplitudes take the general form:

AG,ren(λr,mr)(pext) = AG(λr,mr)(pext)− τ ∗HAG(λr,mr)(pext) , (4.51)

where pext refers in both cases to the external momentum running along the external face of the
divergent subgraph H (see below). Such a structure is very familiar in standard quantum field
theory, where the ∗-operator τH replaces in the graph G the subgraph H by its local approx-
imation. However, contrary to the standard quantum field theory, the interactions for TGFTs
are non-local over the group manifold Gd that we consider. The one-loop computations are then
also interesting at this level. They shall allow us to understand what is the general principle that
plays the role of locality in the TFGT framework.

On the way to our understanding of this principle, we first need some material. More precisely,
we have to define what a subgraph is and what its contraction means.
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Definition 9. (Subgraph) A subgraph H of a graph G is a subset of (dotted) lines. Therefore
any G has exactly 2L(G) subgraphs. H is then completed by first adding all the vertices to which
these lines hook. The closed faces in G are those which go only through lines of H and are also
called internal faces. The external faces of H are the maximal open connected pieces of either
open or closed faces of G that pass through at least one line of H. Finally, the external half-lines
of H are the ones that connect to one of its vertices.

Definition 10. (Contraction). Let b an interaction bubble with L(b) dash-dotted lines. Let
L0 = {li} ⊂ L(b) an ordered subset of dash-dotted lines in b. The contracted graph b/L0 is
obtained from b by:
• Deleting the line li ∈ L0 and its two (black and white) end vertices and all the colored lines
joining these two vertices.
• Identifying the colored line linked to the deleted black vertex with the line of corresponding color
linked to the white vertex.
• Repeat for li+1.

1 2

1

2

v1 v2 v3 v4

v1 v2

v3 v4

Figure 4.6: Contraction of a dotted line between two vertices with d = 6. Some black and white
vertices are labeled as vi in order to facilitate the understanding of the picture.

Now we observe more closely the structure of the one-loop graphs, and especially why in both
cases the amplitude depends on a single external momentum pext. For instance, consider the
(leading) one-loop correction to the interaction bubble. We can summarize the expression 4.22,
skipping several details, as

M(i)
~p1,~p2,~p3,~p4

:=
∑
~p,~p′

W(i)
~p1,~p2,~p,~p′

W(i)
~p,~p′,~p3,~p4

C(~p′)C(~p) (4.52)

where C(~p) denotes the propagator of the theory. Firstly, note that, due to structure of the vertex
coefficients W(i), the internal sum can be splitted into a sum over d internal faces. Explicitly:

M(i)
~p1,~p2,~p3,~p4

= δ~p1i~p4i
δ~p2i~p3i

∏
j 6=i

δ~p1j~p2j
δ~p3j~p4j

∑
qj j 6=i

C(q1, ...,p1i, ...qd)C(q1, ...,p2i, ...qd) . (4.53)

It seems at this stage that we have two external momenta, p1i and p1i. However, an additional
constraint occurs in the propagators themselves. Indeed, they share a delta function δ(

∑
j 6=i qj +

pki), k = 2, 4, implying p2i = p4i, hence

M(i)
~p1,~p2,~p3,~p4

= δ~p1i~p4i
δ~p2i~p3i

∏
j 6=i

δ~p1j~p2j
δ~p3j~p4j

∑
qj j 6=i

C2(q1, ...,p1i, ...qd) . (4.54)

The fact that the 4-point amplitude only depends on one external momentum is therefore due
as much to the melonic structure of the vertices of the Feynman graphs than to the closure
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constraint. The property of the theory responsible for this fact is called traciality. It is essential
for renormalization. In standard QFT, for the scalar φ4 theory for instance, a 4-point loop such
as Figure 4.7 only depends of one external momentum P = q1 + q2 = q3 + q4, providing a factor
e−αP

2 . This factor occurs because the φ4 theory is local in space-time, implying conservation
of the momentum at each vertex. It allows to approximate the complete graph by a sequence
of local approximations, obtained by expanding around P = 0 the exponential factor in power
of α. The counter-terms in this context are nothing but the first UV divergent terms in this
expansion into local approximations.

q1

q2

q3

q4

P − q

q

Figure 4.7: One-loop contribution to the 4-point function in scalar φ4 theory

As a result, the fact that the divergent amplitudes only depend on one momentum implies that
such a factor e−αp2

ext occurs also for the TGFTs amplitudes, as we have seen in the one-loop
computations. Therefore, each amplitude can be expanded around pext = 0, which is naturally
understood as a kind of generalization of a local approximation. For instance, for the U(1)− T 4

6

model, the one-loop 4-point amplitude is logarithmically divergent, meaning that all the terms
in pnext with n > 0 are convergent in the UV. Hence, the first term, which is:

M(i)
~p1,~p2,~p3,~p4

= δ~p1i~p4i
δ~p2i~p3i

∏
j 6=i

δ~p1j~p2j
δ~p3j~p4j

( ∑
qj j 6=i

C2(q1, ...,p1i = 0, ...qd)

)
, (4.55)

contains all the UV singularities. Note that the product of deltas is nothing but W(i), meaning
that the first term of the local approximation corresponds to the original vertex multiplied by
a factor corresponding to the divergent subgraph H whose external faces are discarded (see
Figure 4.8). This is exactly the action of the operator τH, and the factor corresponds to the
counter-term. For the 2-point function, the first term of the expansion corresponds to a mass
counter-term. But pushing the expansion one step further is required to cancel the stronger UV
divergence. This further step generates a deviation to exact locality, proportional to p2

ext, which
is nevertheless again a counter-term for the initial action, which corresponds to the wave-function
renormalization.

i i i

×≈

H

Figure 4.8: Local approximation of the melonic one-loop 4-point graph.

This picture illustrates the general mechanism for renormalization, and points out the role of
traciality, which provides a good notion of locality. We shall give a more general definition in
the next Section. But we insist at this stage on the fact that renormalization in such models
succeeds because the melonic sector contains all the divergences, and because all melonic graphs
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display the traciality property3. A similar although slightly different phenomenon occurs in the
Grosse-Wulkenhaar matrix model, in which the renormalization mechanism can work only be-
cause the divergent graphs are all planar with a single external face [13].

To summarize this section, since the divergent sector is made only of tracial graphs, the formula
4.51 can be generalized at all orders in λ by the standard BPHZ method using Zimmermann’s
divergent forests. It is the subject of Section 4.5.1, where we shall show a uniform bound for
renormalized amplitudes of given order and divergent forest structure.

4.3 Hubbard-Stratanovic decomposition
The Hubbard-Stratanovic (or intermediate field) decomposition is a standard trick in field the-
ory. For tensor models, this trick, first introduced in [14], leads to a convenient reorganization of
the set of graphs with respect to their scaling in N . For instance, the melonic graphs discussed
in the second chapter become exactly the trees of this new representation. Moreover, this inter-
mediate field representation is at the core of the loop vertex expansion in constructive theory
[15], and has many other virtues, as confirmed by the large number of recent publications which
use it [16]. These benefits apply particularly well to the melonic quartic TGFTs, as we shall
see in this chapter and in Chapter 7. However, in this section, we only give the recipe of the
decomposition.

We start with the original action 4.2, and introduce the d Hermitian matrices Mi, i = 1, ..., d
with elements

Mi
mn :=

∑
{~p1,~p2}

∏
j 6=i

δp1jp2j
δp1inδp2imT~p1T̄~p2 , m,n ∈ ZD , (4.56)

so that the action 4.2 can be rewritten in terms of these matrices Mi:

Sint = λ
d∑
i=1

tr(Mi)2 (4.57)

where “tr” means the trace over indices of the matrices Mi. The intermediate field decomposition
arises as an application of the well-known properties of Gaussian integration to the partition
function 4.4:

ZU(1)D−T 4
d
[J, J̄ ] =

∫
dµC(T, T̄ )e−λ

∑d
i=1 tr(Mi)2+〈J̄ ,T 〉+〈T̄ ,J〉 (4.58)

=

∫ ∏d
i=1 σie

−tr(σi)
2∫ ∏3

i=1 dσ
′
ie
−tr(σ′i)

2

∫
dµC(T, T̄ )ei

√
2λ

∑d
i=1 tr(σiMi)+〈J̄ ,T 〉+〈T̄ ,J〉 (4.59)

=

∫
dνI(σ)e−Tr ln(1−i

√
2λCΣ)−J̄RJ , (4.60)

where in the last line the integration over T̄ , T has been performed. R := (1− i
√

2λCΣ)−1C is
the resolvent matrix, dνI(σ) is the normalized Gaussian integration over the σi with covariance
the identity matrix I (Gaussian unitary ensemble), and:

Σ :=
d∑
i=1

I⊗i−1 ⊗ σi ⊗ Id−i . (4.61)

3Traciality also occurs in some non-melonic graphs, but in contrast with locality in ordinary quantum field
theory, it is definitely not a property of all Feynman graphs.
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In perturbation theory, we expand the big trace of the logarithm and the resolvents as

Tr ln(1− i
√

2λCΣ) =
∑
n

1

n
Tr(i
√

2λCΣ)n ; (1− i
√

2λCΣ)−1C =
∑
n

(i
√

2λCΣ)nC. (4.62)

Following the standard nomenclature in the literature, we call the interactions Tr(i
√

2λCΣ)n

loop vertices, and the resolvents (i
√

2λCΣ)nC ciliated vertices [14]. The graphical representation
of the intermediate field Feynman graphs are the following. A loop vertex Tr(i

√
2λCΣ)n is

pictured as a grey disk with n half colored wavy lines. A ciliated vertex (i
√

2λCΣ)nC is pictured
as a lighter grey disk with n half colored wavy lines and one dotted cilium (which can be
thought of either as representing an intermediate field external half-line, or as a conjugate pair
of tensor sources). The propagators of the intermediate fields are represented by colored wavy
lines, joining the half wavy lines of the grey disks, accordingly to each color (see [6]). Figure
4.9 gives an example of Feynman graph in this intermediate field representation for d = 3. Note
that the dotted lines of the original representation 4.4 are in a one-to-one correspondence with
the arcs of the grey disks in the intermediate field decomposition.

Figure 4.9: Example of a Feynman graph in intermediate field representation with one ciliated
vertex for d = 3. Note that in this graph, the half wavy-lines are think to be connected to the
rest of the graph.

We conclude this section by underlining an important simplification coming from gauge
invariance, first pointed out in [1]. If we call τi(pi) := (σi)pipi the diagonal part of the matrix
σi, we have:

Tr(i
√

2λCΣ)n = (i
√

2λ)n
∑

~p∈(ZD)d,~k∈Nd|
∑
i ki=n

n!∏
i ki!

∏D
l=1 δ

(∑
i pli
)

(~p 2 +m2)n

d∏
i=1

[τi(pi)]
ki , (4.63)

and a similar result holds for the ciliated vertices [6]. Hence, only the diagonal part of the
intermediate field contributes effectively, so that we can reduce our three intermediate field
matrices σi to three intermediate vector fields τi. Therefore 4.58 writes:

ZU(1)D−T 4
d
[J, J̄ ] =

∫
dνI(τ)e−

∑
~p∈P ln(1−i

√
2λC0(~p)Γ(~p))

e−
∑
~p∈P J̄(~p)(1−i

√
2λC0(~p))Γ(~p))−1C0(~p)J(~p), (4.64)

where C0(~p) := (~p 2 + m2)−1, P := {~p ∈ (ZD)d|∑i pki = 0 , 1 ≤ k ≤ D}, Γ(~p) :=
∑

i τi, and
dνI(τ) is the Gaussian measure of the three vector fields, defined as:∫

dνI(τ)τi(p)τj(p
′) := δijδpp′ . (4.65)
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4.4 Power-counting and Abelian classification

4.4.1 Multi-scale decomposition

We move on to a more systematic analysis provided by the multi-scale expansion [2]. It attributes
a scale to each line e ∈ L(G) of any amplitude of any Feynman graph G, and allows to deduce
power-counting in a more systematic and rigorous way. Moreover, it renormalizes any graph in
a sequence of successive steps, providing a concrete implementation of Wilson’ ideas directly at
the graphical level.

For convenience, we choose the UV-regulator Λ so that Λ = M−2ρ, and the complete propagator
CΛ ≡ Cρ is then given by:

Cρ =

ρ∑
i=0

Ci. (4.66)

A corresponding sharp momentum cut-off χ≤ρ(~p) is 1 if |~p|2 ≤ M2ρ and zero otherwise. The
theory with cut-off ρ is defined by using the covariance

Cρ(~p) = C(~p)χ≤ρ(~p). (4.67)

Then we slice the theory according to

Cρ(~p) =

ρ∑
i=1

Ci(~p), Ci(~p) = C(~p)χi(|~p|2) (4.68)

where χ1 is 1 if |~p|2 ≤M2 and zero otherwise and for i ≥ 2 χi is 1 if M2(i−1) < |~p |2 ≤M2i and
zero otherwise.

4.4.2 Power-counting Theorem

Let us start by establishing general power counting via a multi-scale analysis, following the no-
tations and general strategy of [2]. We can perform this analysis both with parametric or sharp
cut-offs, ending with the same conclusions. In this subsection we prefer to use sharp cut-offs since
thanks to the closure constraint and melonicity of the interaction, they attribute the same scale
to all arcs of any loop vertex or chain, hence a single scale to any loop vertex of the intermediate
field representation.

The amplitude of a graph G, A(G), with fixed external momenta, is thus divided into the sum
of all the scale attributions µ = {ie, e ∈ L(G)}, where ie is the scale of the momentum p of line
e:

A(G) =
∑
µ

Aµ(G). (4.69)

At fixed scale attribution µ, we can identify the power counting in powers of M . The essential
role is played by the subgraph Gi formed by the subset of lines of G with scales higher than i.
By the momentum conservation rule along any loop vertex, this subgraph is automatically a PI
subgraph which decomposes into k(i) connected PI components : Gi = ∪k(i)

k=1G
(k)
i . These connected

components form, when (i, k) take all possible values, an abstract tree for the inclusion relation
(the famous Gallavotti-Nicolò tree [12]). We have
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Theorem 1. The amplitude Aµ(G) is bounded by:

|Aµ(G)| 6 KL(G)
∏
i

k(i)∏
k=1

Mω(Gki ), K > 0, (4.70)

and the divergence degree ω(H) of a connected subgraph H is given by:

ω(H) = −2L(H) +D(F (H)−R(H)), (4.71)

where L(H) and F (H) are respectively the number of lines and internal faces of the subgraph H,
and R(H) is the rank of the adjacency matrix εef for the lines and faces of H.

Proof : Obviously we have (for K = M2)

|Ci(~p)| ≤ Kδ(
∑
c

pc)M
−2iχ≤i(~p). (4.72)

Fixing the external momenta of all external faces of the Feynman amplitude, we obtain the
bound

|Aµ(G)| ≤

 ∏
e∈L(G)

KM−2ie

 ∏
f∈Fint(G)

∑
pf∈Z

∏
e∈∂f

χ≤ie(~p)
∏

e∈L(G)

δ(
∑
c

p`c). (4.73)

The key to multiscale power counting is to attribute the powers of M to the G(k)
i connected

components. For this, we first remark that M i = M−1
∏i

j=0 M , a trivial but useful identity
which allows e.g. to rewrite

∏
e∈L(G) M

−2ie = M2
∏

e∈L(G)

∏ie
i=0M

−2. Then, inverting the order
of the double product leads to

∏
e∈L(G)

M−2ie =
∏
i

∏
e∈L(∪k(i)

k=1Gki )

M−2 =
∏
i

k(i)∏
k=1

∏
l∈L(Gki )

M−2 =
∏
i

k(i)∏
k=1

M−2L(Gki ). (4.74)

The goal is now to optimize the cost of the sum over the momenta pf of the internal faces.
Summing over pf with a factor χ≤i(~p) leads to a factor KM i, hence we should sum with the
smallest values i(f) of slices i for the lines e ∈ ∂f along the face f . This is exactly the value at
which, starting form i large and going down towards i = 0 the face becomes first internal for
some Gki . Hence in this way we can bound the sums

∏
f∈Fint(G)

∑
pf∈Z by

∏
i

k(i)∏
k=1

MDF (Gki ). (4.75)

However this can still be improved, because we have not yet taken into account the gauge factor∏
e∈L(G) δ(

∑
c pc). It clearly tells us that some sums over pf do not occur at all. Their amount

obviously depends on the rank R of the incidence matrix εef . Indeed rewriting the delta functions
in terms of the pf(e,c) we have ∏

e∈L(G)

δ(
∑
c

p`c) =
∏

e∈L(G)

δ(
∑
f

εefpf ). (4.76)
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Hence writing the linear system of L equations
∑

f εefpf = 0 corresponding to the delta functions
we can solve for R momenta pf in terms of L−R others. It means that in the previous argument
we should pay only for F −R sums over internal face momenta instead of F 4.
This argument can be made more precise and rigorous and distributed over all scales. Starting
from the leaves of the Gallavotti-Nicolò tree (the smallest subgraphs Gki ) and progressing towards
the root we can select faces such that the restricted sub-matrix εef still has maximal rank R(Gki )
in each Gki . We discard all decay factors for other faces. Then we can select lines in order to find
a restricted square submatrix ε`f with maximal rank R(Gki ) in each Gki . This leads to

|Aµ(G)| ≤ KL(G)
∏
i

k(i)∏
k=1

M−2L(Gki )+D(F (Gki )−R(Gki )) = KL(G)
∏
i

k(i)∏
k=1

Mω(Gki ). (4.77)

This equation completes the proof, and the exponent ω(Gki ) = −2L(Gki ) + D(F (Gki ) − R(Gki ))
identifies the divergence degree.

�

For the rest of this Chapter, we set D = 1.

4.4.3 Leading sector and classification

The intermediate field formalism is particularly suitable to understand the leading order sector.
Indeed, we have the following result:

Proposition 4. Let G be a vacuum leading order Feynman graph, H(G) its intermediate field
decomposition. Then, if d ≥ 3, H(G) is a tree.

Proof. The proof proceed by recursion in the number of wavy lines. With one wavy-line, it is not
hard to see that the only divergent configuration is pictured on Figure 4.10, and has ω = 2d− 8.

Figure 4.10: The leading configuration with one wavy line

Now, starting with a graph H(G) with ` wavy lines, we have only two types of moves for adding
a new wavy line. The first one is pictured on Figure 4.11. We can add a leaf on a grey disk or
replace a wavy line by a grey disc with two external wavy lines.

4Note that the remaining product of unused or redundant δ functions is simply bounded by 1 because the
pf variables are discrete, hence the δ functions are simply Kronecker symbols, all bounded by 1; of course this
would not be true for continuous variables as a product of redundant Dirac δ distributions in the continuum is
ill-defined.
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r r

Figure 4.11: The first two moves: we add a leaf on a grey disk or replace a wavy line by a grey
disk with two external wavy lines.

These moves add two dotted lines in the original representation and they create d − 1 faces.
Moreover, in both cases, the rank increases by one, and the variation of the divergent degree is:

δω = −2δL+ δF − δR = d− 6 . (4.78)

For d < 6, the move cost at least −1, and the convergence increases quickly. The second possi-
bility is pictured in Figure 4.12: we can add a wavy line between two grey disks or add a self
wavy loop on a single grey disk.

r

r

q

r

r

q

Figure 4.12: The second two moves: we add a wavy line between two grey disks or a self-loop on
a single grey disk.

In both cases δL = 2. Adding a self-loop increases by one the number of faces (i.e. the face
running in the internal arc), and by one the rank of εef . If we add a wavy line, say of color i
between two grey disks, either it connects together two disconnected faces of color i, and then
δF = −1, δR = 0,−1, or it disconnects a face of color i, and δF = 1, δR = 1. In both cases, we
conclude that

δω ≤ −2× 2 + (1− 1) = −4 . (4.79)

Therefore, if d ≥ 3, the trees are the leading order graphs.

�

Now, consider first the case of a vacuum subgraph which is particle irreducible (PI) in terms
of the propagators of the initial representation, hence in terms of the arcs of the intermediate
field representation. If it is a tree with B grey disks, it has L = 2(n − 1) arcs, (d − 1)B + 1
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faces (since each wavy line glues two faces) and it is easy to check by induction (adding leaves
one by one from a root) that the rank R of the ε matrix is maximal, namely n. Hence ω =
−4(B − 1) + (d− 1)B + 1− n = (d− 6)B + 5 in this case. Next let us consider the case of a PI
tree subgraph with n external wavy lines, hence 2n external arcs.

• if n = 1 the subgraph is a 1-point function5 and the single external wavy line adds one arc,
suppresses one face and does not change the rank, hence ω = (d− 6)B + 2 in this case.

• if n = 2 the subgraph is a 4-point function and the two external wavy lines add two arcs.
If they have different colors, or have the same color i and hook to two components of the
tree not connected by lines of color i, then they open two different faces and do not change
the rank, so that ω = −1. However there is a special case, when the two external wavy
lines have same color and hook to the same loop vertex or to different loop vertices joined
by a path in the tree made of wavy lines all of the same color i. In that case and only in
that case, the wavy lines open only the single face of color i common to all loop vertices
along this path, the rank again has not changed and ω = (d− 6)B.

• if n > 2, each new external line turning L into L + 1, can either keep F unchanged (if it
hits a face already opened), in which case R is also unchanged, or change F to F − 1, in
which case either R is unchanged or goes to R − 1; hence ω decreases at least by 1. As a
result, for d ≤ 6, this proves

ω(G) ≤ −(n− 2) if n > 2. (4.80)

Finally we still have to study the case of non-vacuum, non-PI graph. Since they add at least
one new arc to a PI graph, it is easy to check that they have ω < 0, except in two particular
cases corresponding both to one-particle reducible graphs:

• a chain of arcs joining PI two-point trees, with one of them at both ends. Such subgraphs
are one-particle reducible two-point subgraphs of the initial theory with ω = 2.

• a chain of arcs joining PI two-point trees, with one of them at a single of its two ends.
Such subgraphs are one-particle reducible four-point subgraphs of the initial theory, with
ω = 0.

Translated into the original representation, this result shows that for leading graphs the
divergent degree is:

ω(G) = (d− 2)− (6− d)V (G)− (d− 4)
N(G)

2
, (4.81)

where we used the fact that each wavy line corresponds to a bubble vertex in the original rep-
resentation, that each arc corresponds to a dotted line, and that the rank is exactly the number
of grey disks. We can then classify the theory, from d = 3 to d = 6:

• For d = 3, the divergent degree is reduced to ω = 1−3V +N/2. Hence, because the number of
external lines of a graph with V (G) vertices is bounded by Nmax = 2(V (G) + 1), when the graph
is a tree, without faces, the divergent degree is strictly smaller than ωmax = 2(1 − V (G)) ≤ 0,
which is strictly smaller than 0 for V > 1. For V = 1 our bound could indicate a logarithmic

5Hence a two-point function in the original representation.
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divergence, but a direct calculation shows that the divergent degree of a melonic graph with one
vertex, as depicted below, is :

ωmelo(V = 1) = −2 + 2− 1 = −1,

so that the model is in fact divergence free, at least for non-vacuum graphs. The vacuum graphs
are not directly concerned by our purpose in this chapter, but our conclusion about the finiteness
of the model can be complete only if these graphs are finite as well; and it is not hard to see
that it is the case. Indeed, for these graphs, the bound [12](saturated for melonic graphs) can
be established:

F (Gvac)−R(Gvac) ≤ L(Gvac)− V (Gvac) + 2 (4.82)

so that
ωmelo(Gvac) = 2− 3V (Gvac) < 0. (4.83)

a b

Figure 4.13: The two configurations for tadpole graphs

• For d = 4, it reduces to ω = 2(1 − V ), and the theory becomes super-renormalizable. ω
is negative for V > 1. For V = 1, the degree vanishes, so that such a graph with one vertex
diverges at least logarithmically. The two possible diagrams are pictured in Figures 4.13a and
4.13b. But by direct inspection, it can be shown that the graph of Figure 4.13b is finite, with
divergent degree ω = −2 + 1 − 1 = −2. The melonic tadpole of Figure 4.13a however has a
vanishing divergent degree ω = −2 + 3 − 1 = 0, so that it diverges logarithmically. Hence, the
only divergent graphs in that model are melopoles [12] whose definition we now recall6.

Definition 11. In a graph G, a melopole is a tadpole (or single-vertex) subgraph H, such that
there is at least one ordering (or “Hepp’s sector") of its k-dotted lines as e1, ..., ek such that
{e1, ..., ei}/{e1, ..., ei−1} is a d-dipole for 1 ≤ i ≤ k.

• For d = 5, the degree becomes ω = 3−V −N/2, and the theory remains super-renormalizable.
The divergences come only from the 2-point graphs. However, in this case, divergences occur
not only for melopole graphs, with one vertex and divergent degree ω = 1, but also for melonic
graphs with two vertices, and divergent degree ω = 0.
• For d = 6, the divergent degree ω = 4 − N becomes independent of the number of vertices
number and the theory is called just-renormalizable: There are infinitely many divergent graphs.
However all the divergences can be removed with counter-terms of valence zero, two and four.

It is easy to see that the leading graphs are nothing but melonic graphs. The tree structure
reflects the recursive definition of the melons. Therefore:

Proposition 5. The T 4
6 model with closure constraint is just-renormalizable. All the divergences

of the 2 and 4-point functions. are restricted to the melonic sector.
6The finiteness of the number of divergent graphs is a characteristic of super-renormalizable theories.
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Definition 12. In a graph G, a melonic subgraph is a face-connected subgraph H containing at
least one maximal spanning tree T such that H/T is a melopole.

In this definition the concept of face-connectivity refers to the factorization of the incidence
matrix εef as rectangular blocks. A face-connected component is then defined as the subset of
lines of such a block, and a graph is face-connected if it has a single face-connected component.
Note that in the rest of this chapter, we call “melonic” any leading order graph with 0, 2 or 4
external lines.

4.4.4 Locality and traciality

The remaining question concerns the locality principle suitable for the TGFTs. We have dis-
cussed this principle, called traciality in Section 4.2.4, and we shall give in this section a general
definition of this concept, and a minimal discussion of the way it works. In the original repre-
sentation, and in term of the group variables (the notations are those of Chapter 3), a graph
is said to be tracial if it is contractible, and the resulting graph is connected. The notion of
contractibility is the following:

Definition 13. Let G be a vertex-connected graph, and H be one of its face-connected subgraphs.

• If H is a tadpole, H is contractible if, for any group element assignments {he, e ∈ L(H)}:

∀f ∈ F(H),
~∏
e∈f
h
εef
e = I⇒ ∀e ∈ L(H), he = I . (4.84)

• In general, H is contractible if it admits a spanning tree T such that H/T is a contractible
tadpole.

In order to understand the meaning of this concept in momentum space and intermediate field
representation, let us consider a melonic graph in the intermediate field representation, with 2
external wavy lines of the same color, say 1. An example is pictured on Figure 4.14 below, in
which the path surrounding the external faces of color 1 has been shown. We denote by pext the
momentum running along these faces.

1

1
1

1

1

b1

b3

b2

b4

Figure 4.14: A leading graph with two external wavy lines in the intermediate field representation.
The grey disks sharing the external faces have been surrounded.
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For such a graph, the corresponding amplitude AG is:

AG =
∏

e∈L(G)

∫ +∞

1/Λ2

dαee
−αem2

∏
b∈B

δ

(∑
i

pbi

) ∏
f∈F(G)

∑
pf∈Z

e−αfp
2
f e−αextp

2
ext , (4.85)

where B (for “blobs") denotes the set of grey disks, ~pb the momentum running along the strands of
the grey disk b, and αext is the sum of Schwinger parameters along the external faces. Expanding
the delta functions in Fourier components, the previous expression becomes:

AG =
∏

e∈L(G)

∫ +∞

1/Λ2

dαee
−αem2

∏
b∈B

∫ π

−π

dβb
2π

∏
f∈F(G)

∑
pf∈Z

e−αfp
2
f+iβfpf e−αextp

2
ext+iβextpext , (4.86)

where αf :=
∑

e∈∂f αe and βf :=
∑

b∈∂f εbfβb, εbf := 1
|∂f∩b|

∑
e∈∂f∩b εef . Computing the sums

using 4.13, the amplitude behaves as:

AG ∝
∏

e∈L(G)

∫ +∞

1/Λ2

dαee
−αem2

∏
b∈B

∫ π

−π

dβb
2π

∏
f∈F(G)

1

α
1/2
f

e−β
2
f/4αf e−αextp

2
ext+iβextpext . (4.87)

Now, consider the vicinity of the point αe = 0∀e. As for the one-loop computations, the Gaussian
e−β

2
f/4αf must be expanded as a distribution

∏
f e
−β2

f/4αf ∼ ∏f

∑
nb
anbδ

(2nb)(βf ). But it is easy
to see that, due to the melonic structure :

Lemma 1. For any melonic graphs in the intermediate field representation:

∀f , βf = 0⇒ ∀b , βb = 0 , (4.88)

which is nothing but the translation of Formula 4.84. The proof can be easily checked recursively
on the number of (internal) wavy lines from the tree structure of the melonic graph, using the
operations pictured in Figure 4.11. Obviously, the two-point graph with two external wavy lines
and one grey disk

verifies 4.88. Now, starting with a graph with ` internal wavy lines, we can either add a leaf or
replace a wavy line by a two-point grey disk (the first case corresponds to the grey disks b1 and
b2 on the Figure 4.14, the second to the grey disk labeled b4). In both cases, we introduce at
least 4 internal faces running into the added bubbles, meaning that the relation 4.88 remains true.

As a result,
∏

f e
−β2

f/4αf ∼∏b

∑
nb
anbδ

(2nb)(βb). Moreover, each grey disk sharing external faces
(surrounded in Figure 4.14) makes contact with internal faces. Therefore, the amplitude 4.87
can be consistently expanded in powers of pext, as in the one-loop case of Section 4.2.1. The
factorized part corresponds as in Figure 4.8, to the original amplitude whose external faces have
been discarded. Then, our claim is the following:

Proposition 6. Any melonic subgraph H is tracial.

It will entail that we shall be able to renormalize it.
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4.5 Systematic renormalization of T 4
6

4.5.1 Bound of the renormalized amplitudes

In this section we truly prove that T 4
6 is a just-renormalizable theory, to all orders in perturbation

theory. We introduce a systematic renormalization leading to a well-defined renormalized series,
with finite renormalized amplitudes at all orders. The best way to prove that they are finite is to
do more, and to give precise explicit bounds on any renormalized amplitudes. It will depend of
their Zimmermann forest structure. We begin by a uniform bound for convergent graphs, which
is an adapted version of the same theorem in the ordinary field theory case [2]. Then we shall
study broadly the renormalization of divergent graphs, before closing the section by a proof of
finiteness of any renormalized amplitude.

Uniform Weinberg Theorem

An important aspect of the multiscale analysis is that it provides easily a uniform exponential
bound on convergent amplitudes:

Theorem 2. The amplitude A(G) for a completely convergent connected graph G (i.e. a graph
for which ω(H) < 0∀H ⊂ G) is uniformly bounded in terms of its size, i.e. there exists a constant
K such that if n is the order (number of vertices) of the graph:

|A(G)| ≤ Kn(G). (4.89)

Proof. We assume that N(G) ≥ 1, so that ∀H ⊂ G, N(H) ≥ 1 (the vacuum case N(G) = 0 is
an easy extension left to the reader). (4.80) implies that for a convergent PI graph with 2N > 4
external arcs

ω(H) ≤ −N(H)/3 = −2N(H)/6. (4.90)

This is also true if H is convergent with N = 1 or 2, since we saw that in this case ω ≤ −1 ≤
−N(H)/3. For a φ4 graph of order V = n with 2N external legs, we have 2L = 4V + 2N .
Therefore (4.77) implies that for another constant K

A(G) ≤ Kn
∑
µ

∏
i

k(i)∏
k=1

M−2N(Gki )/6. (4.91)

Let us now define
iv(µ) = sup

e∈Lv(G)

ie(µ) , ev(µ) = inf
e∈Lb(G)

ie(µ), (4.92)

where v denotes a vertex v ∈ G, and Lv(G) the set of its external (half)-lines. v is external to a
high subgraph Gki if and only if eb < i ≤ ib, and then it is hooked to at least one of the 2N(Gki )
external half-lines of Gki . Therefore∏

i,k

M−2N(G(k)
i )/6 ≤

∏
i,k

∏
v∈G(k)

i |ev<i≤iv

M−1/6. (4.93)

Using the fact that there are at most 4 half-lines, and thus 6 = 4×3/2 pairs of half-lines hooked
to a given vertex, and that, for two external lines e and e′ of a vertex v, |ev − iv| ≥ |ie − ie′|, we
obtain:

A(G) ≤ Kn
∑
µ

∏
v

∏
(e,e′)⊥v

M− |ie−ie′ |
36 , (4.94)
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where the product over (e, e′) ⊥ v means the product over all pairs of half-lines hooked to v.
The bound means that there is exponential decay in scale differences between all such pairs7.
Organizing the sum over µ = {ie} along a tree of lines of G as in [2], it is easy to bound it by
KL(G, hence to complete the proof of (4.89), hence of Theorem 2.

Divergent graphs and renormalization

Definition 14. Consider a non-vacuum Feynman graph G and let h ⊆ G be a subgraph of G
with nh external wavy lines. The subgraph h is said to be
• superficially convergent if ω(h) < 0,
• superficially divergent if ω(h) ≥ 0⇒ nh ≤ 2.

Definition 15. Consider a Feynman graph G. A Zimmermann forest F is a forest of connected
divergent subgraphs {h ⊆ G|ω(h) ≥ 0}. Here the word forest should be understood in the sense
of inclusion relations. It simply means that taking two elements h1, h2 ∈ F, they are either line
and vertex disjoint or included one into the other. The set of all Zimmermann forests of G is
noted DZ(G).

Taking into account these definitions, we shall give a general definition of the counter-terms
and contraction operator τH introduced in Section 4.2.4.

Let us start with the case of a 1-point subgraph in the intermediate field representation, as the
graph calledM in Figure 4.15a, with external wavy line of color 1, `1 and amplitudeMj. The
index j refers to the lower scale attribution ofMj, and it is included in the amplitude AG,µ, for
a scale attribution µ. We denote by ĀG,µ the part of the amplitude AG,µ, amputated ofMj and
of the two arcs hooked to the wavy line `1, and by i1 the scale attribution of the arcs of the grey
disk hooked to `1. We assume thatM is the only divergent subgraph of G. The amplitude AG,µ
takes the form:

AG,µ =
∑
~p∈Z6

ĀG,µ(p1, {pj, j 6= 1})C2
i1

(~p)Mj(p1) . (4.95)

i1 i1

Mj

ĀG,µ

1
i1

i1

M(2)
j

Ā(1)
G,µ

1

i2

i2

Ā(2)
G,µ

1

a b

Figure 4.15: Sub-divergent 1-point graph (a) and 2-point graph (b).

7(4.94) is of course a very sloppy estimate, that could be easily improved. For instance we could take advantage
of the momentum representation conservation rules to remark that only one pair of different scales is in fact hooked
to any vertex, rather than 6, but it won’t change the structure of the result, only improve numerical constants.
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Now, we introduce a real parameter t ∈ [0, 1], and define:

AG,µ(t) :=
∑
~p∈Z6

ĀG,µ(p1, {pj, j 6= 1})C2
i1

(~p)Mj(tp1) , (4.96)

such that AG,µ(t = 1) = AG,µ. The operator τM acting on the sub-divergent graphM is

τ ∗MAG,µ :=

ω(M)∑
n=0

1

n!

dn

dtn
AG,µ(t = 0) , (4.97)

For instance ω(M) = 2 in the case considered, hence the sum over n in (4.97) has a priori three
terms in this case, but by symmetry consideration the one with n = 1 vanishes. We shall prove
that the remaining term in the Taylor expansion,

ARG,µ := (1− τ ∗M)AG,µ(t = 1) =

∫ 1

0

dt
(1− t)ω(M)

ω(M)!

dω(M)+1

dtω(M)+1
AG,µ(t) (4.98)

is convergent. Obviously, it follows from the bounds 4.72 that∣∣∣∣ dkdpki Ci(~p)
∣∣∣∣ ≤ KM (−2−k)iδ(

∑
c

pc)χ≤i(~p) . (4.99)

Then, the derivative in 4.98 generates a factor M−(ω(M)+1)j. Moreover, the derivative generates
a factor pω(M)+1

1 , increasing the convergent degree by a factor M (ω(M)+1)i1 . As a result, if the
divergent subgraphM is high, i.e. if i > i1, the total decay factor is bounded by −1

ω(M) + (ω(M) + 1)(i1 − j) < −1 , (4.100)

meaning that the remaining term 4.98 is convergent. In the same way, for the 2-point sub-
divergent graphM(2) pictured on Figure 4.15b, the amplitude “at time t" writes as:

AG,µ(t) :=
∑
~p1,~p2

Ā(1)
G,µ(~p1)C2

i1
(p11, {p1l, l 6= 1})C2

i2
(~p2)Ā(2)

G,µ(p21

= p11, {p2l, l 6= 1})M(2)
j (tp11) . (4.101)

As for the 1-point function, we can introduce the operator τM(2) , whose action is defined by 4.97,
and in the same way, we prove that the remaining term is superficially convergent.

The general procedure, extending the one-loop subtraction of Section 4.2 is then the following,
defining the renormalized amplitude ARG :

Definition 16. The renormalized amplitude ARG for a Feynman graph G with sub-divergences is
defined from the bare amplitude AG through the Zimmermann (or forest) formula :

ARG :=
∑

F⊂DZ(G)

∏
h∈F

(−τ ∗h)AG , (4.102)

where DZ(G) is the set of Zimmermann forests.
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The form of the counters-terms ensures the stability of the original classical action. Indeed:

• For a one point function graph, because M only depends on one external momenta, the
zero-derivative with respect to AG,µ(t) generates a mass counter-term:

τ 1 ∗
MAG,µ :=Mj(0)×AG/M . (4.103)

where G/M corresponds to the contraction operation defined in Definition 10.
• The first derivative with respect to t vanishes, because of the structure of the amplitude (see
4.87). Indeed,Mj ∝ e−αextp

2
1+iβextp1 , and the first derivative with respect to t generates a factor

iβext.
• The last derivative, involving two derivatives with respect to t, generates a wave-function
counter-terms. Indeed,

τ 2 ∗
MAG,µ :=

(
1

2

d2

dp2
Mj(p)

∣∣∣∣
p=0

)
×
∑
~p∈Z6

p2
1ĀG,µ(p1, {pj, j 6= 1})C2

i1
(~p) (4.104)

• Finally, for the 2-point graphs, for which ω = 0, there is only a zero-derivative term which
generates a coupling constant counter-term

τ ∗M(2)AG,µ =M(2)
j (0)×AG/M(2),µ. (4.105)

Again, G/M(2) corresponds to the connected contracted graph, pictured on Figure 4.16.

i1

i1

1

i2

i2

Figure 4.16: The graph G/M(2).

Bounds of the renormalized amplitudes

The finiteness of the renormalized amplitude can be proved rigorously, and we do this in this
section, following closely [2]. In fact, we shall prove like in [2] that, when the graph contains some
subdivergences, the renormalized amplitude ARG is finite, but can increase dramatically with its
size, as a factorial of the maximal number of elements in a Zimmermann forest. Proving this
theorem requires to define precisely the so-called “dangerous” and “safe” divergent forests:

Definition 17. Dangerous and safe forests Consider a fixed graph G and a fixed attribu-
tion µ. Let AG,µ be the corresponding amplitude for the scale attribution µ, and F ∈ DZ(G) a
Zimmermann forest. Consider then h ⊂ F. We define ih and eh as:

ih = inf{il|l ∈ h/AF(h)} eh = sup{il|l ∈ Lh ∩ BF(h)}

where Lh is the set of external lines of h, BF(h) is the ancestor of h in F and AF(h) the union
of all its immediate descendants (for the inclusion relation).

The set Dµ(F) of dangerous or “high” subgraphs in F with respect to the scale assignment µ
is defined as made of all h ∈ F with ih > eh}. The safe forest Sµ(F) is then its complement in F.
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A key property is that taking the safe part of a forest is a projector, namely SµoSµ = Sµ. More
explicitly, for any Zimmermann forest Sµ(Sµ(F)) = Sµ(F). This identity is not obvious and a
general proof can be found in [2].

Let us define safe forests as the fixed points under this projection. The forests which project
onto a given safe forest S have then a simple structure: they are exactly the forest including S
and included in an other Zimmermann forest, S∪Hµ(S). Hµ(S) can be though of as the maximal
set of high subgraphs compatible with S.

In particular the cardinal of S−1
µ (S) is always a power of 2. This is not true in general for the

full set DZ(G), because of the famous problem of overlapping divergencies [2]. This particular
structure of any S−1

µ (S) allows to reorganize in any attribution µ the renormalized amplitude
as a sum indexed by safe forest, and in each safe forest contribution to factorize a product of
(1− τ ∗h) operators, using a binomial identity. This is the essential point which in turn will allow
to subtract any dangerous high subgraph in any attribution. More precisely

ARG,µ =
∑

S safe for µ

ARG,µ,S , (4.106)

with:
ARG,µ,S :=

∏
h∈S

(−τ ∗h)
∏

h∈Hµ(S)

(1− τ ∗h)AG,µ . (4.107)

Beginning with the contractions over the safe forest S, we obtain, after appropriate organization
of the successive contractions a series of terms each associated to a subgraph g of G ∪S reduced
by its descendants in S.

ARG,µ =
∏

g∈S∪{G}
ARµ (g/AS(g)) . (4.108)

Note that all these terms are not exactly disconnected, because the contraction of the 2-point
graphs reveals a non-local operator, which acts on another contracted component. Using a Taylor
remainder formula for each (1 − τ ∗h)AG,µ piece, we can cure every high divergent subgraph in
each of the contracted pieces g/AS(g) It follows then from the multiscale analysis, in the same
way than in the previous subsection, that the renormalized amplitude for that attribution is
bounded by ∣∣ ∏

g∈S∪{G}
ARµ (g/AS(g))

∣∣ ≤ ∏
g∈S∪{G}

∏
i,ρ

Mω′
[

(g/AS(g))ρi

]
. (4.109)

where :
ω′
[
(g/AS(g))ρi

]
:= inf

(
− 1, ω

[
(g/AS(g))ρi

])
.

From the decay factor of equation (4.109), we can extract the factorM−δimax(µ), where imax(µ) :=
sup(µ). With the rest of the decay, we can sum over each component g/AS(g) , as in the proof
of the uniform Weinberg theorem. Because of the following bound:∏

g∈S∪{G}
K |V (g/AS(g))| ≤ K ′ |V (G)| , (4.110)

the sum over all internal scale assignments in each g/AS(g) is bounded by K ′ |V (g)|, and from the
convergence we can always spare a decay factor at least M−δimax for some δ > 0, where imax is
the maximal scale for the whole attribution µ.

However for any safe element h ∈ S it remains to sum over one scale, say ih, which is only
bounded by some external line scale of h, hence by eh. In the worst case we may have up to |S|
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different such sums one for all the ih, h ∈ S indices to perform, and only a single decay M−δimax

factor for all of them. Now since∑
imax

M−δimax
∏
h∈S

∑
ih≤imax

1 =
∑
imax

(imax)
|S|M−δimax ' |S|!K |S| , (4.111)

where |S| is the cardinality of S, it is impossible to conclude to a uniform bound of type (2) for
the renormalized amplitudes. Indeed in a graph with n vertices, there can be forests with almost
n elements, and they can be safe for some attributions. We finally deduce the following theorem
[2]:

Theorem 3. (BPH uniform) Consider a Feynman graph G of order |V (G)|. The renormalized
amplitude ARG has the following bound:

|ARG | ≤ K |V (G)|d(G)!, K ∈ R+ , (4.112)

where d(G) := supF∈DZ(G) |F| is the maximum cardinal of any Zimmermann forest of G.
As announced, the amplitude is finite but can increase dramatically with the maximal size

of divergent forests. This is the well-known problem of renormalons. It is a second source of
divergence of the full renormalized perturbative series (4.102), completely independent of the
much better known first source, which exists for any model, and is the large (factorial) growth
in n of the number of Feynman graphs at order n.

To see why this problem exists also in our model, and even in its melonic approximation, we
consider the 2-point subgraph of Figure 4.17; made of an arbitrarily large monocolor chain of n
simple loop vertices with two arcs, ending on a leaf with a single arc. All wavy lines have the
same color i and carry the same momentum pi.

j 6= i i i ii

Figure 4.17: Typical melonic graph with renormalon effect

Because the renormalized 4-point function, i.e the renormalized loop vertex with two arcs, be-
haves as log(pi) at large pi, inserting such a chain on a convergent loop in a convergent melonic
vertex function will lead to a very large sum over pi which typically can behave at large n as∑

pi∈Z
[log pi]

n 1

p2
i +m2

∼ Knn! (4.113)

for some constant K. This is the renormalon problem.

Typically nobody knows how to resum rigorously the renormalon problem when the theory is
neither asymptotically free nor asymptotically safe. One must then perhaps rely on computer
simulations to search for an eventual ultraviolet fixed point. But our model is asymptotically
free. Continuing along the strategy of [2] we can pass to the effective series, defined in the next
section, which reshuffles the renormalized power series as a series in many effective couplings,
all related through a flow equation. This effective series is renormalon-free (although of course
the first source of diveregnce, the large number of graphs still remains). Asymptotic freedom,
proved at the one loop order, is enough to control the flow equation. This result indicates that
the effective series should be convergent and the renormalized series Borel-summable, although
a full proof would require constructive techniques beyond the scope of this thesis.



4.5. SYSTEMATIC RENORMALIZATION OF T 4
6 93

4.5.2 The effective series

The effective series is a more physical way to compute perturbation theory, and a natural solution
to the renormalon problem when the theory is asymptotically free [2]. The basic idea is to
renormalize in the Wilsonian spirit, namely step by step, expanding in a whole sequence of
effective couplings rather than in the single renormalized coupling. Consider a graph G and its
bare amplitude Aµ(G) with scale attribution µ as defined in the previous section. There are
some Gki subgraphs which are divergent (ω(Gki ) ≥ 0). They form a forest Hµ(G) (because it is a
subset of the Gallavotti-Nicolò tree containing all Gki high subgraphs). 8. The effective amplitude
Aeff (G) is defined by

Aeff (G) =
∑
µ

Aeffµ (G), Aeffµ (G) :=
∏

h∈Hµ(G)

(1− τ ∗h)Aµ(G). (4.114)

Theorem 4. (Existence of the effective expansion): Consider the formal (bare) power
series defined by:

SΛ
N =

∑
G,µ

1

s(G)

 ∏
v∈V(G)

(
− λ(Λ)

v

)Aµ(G) , (4.115)

where λ(Λ)
v designates the coupling constant of the vertex v. This series can be rewritten in a

more convenient form in terms of the effective amplitudes:

SΛ
N =

∑
G,µ

1

s(G)

 ∏
b∈V(G)

(
− λ(Λ)

v,ev(G,µ)

)Aeffµ (G) , (4.116)

where the λ(Λ)
v,ev(G,µ) are the effective couplings, generated by the local part of the high divergent

subgraphs. They obey the following inductive relation

−λ(Λ)
v,i = −λ(Λ)

v,i+1 +
∑

(H,µ,Ŝ)Ŝ 6=∅
φi(H,µ,Ŝ)=(v,µ,∅)

1

s(H)

 ∏
v′∈V(H)

(
− λ(Λ)

v′,i′v(H,µ)

)

×

 ∏
h∈Hi+1

µ \Ŝ

(1− τ ∗h)

 ∏
M∈Ŝ

τ ∗MAµ(H) , (4.117)

with ev = sup{µl, l hooked to v}. The notation introduced above will be defined precisely in the
proof, for which we give only the main steps, referring to [2, 12] for details.

Proof. The basic idea is to introduce an intermediate step between the bare and the effective
series as follows. We consider a slice i and define:

SΛ
N =

∑
G,µ

1

s(G)

 ∏
v∈V(G)

(−λ(Λ)
v,sup(i,iv(G,µ))

Aeff,iµ (G) , (4.118)

where
Aeff,iµ (G) :=

∏
h∈Hi

µ

(1− τ ∗h)Aµ(G) , (4.119)

8This forest exactly corresponds also to Hµ(∅) associated to the empty safe forest in the previous subsection.



94 CHAPTER 4. PERTURBATIVE RENORMALIZATION: THE U(1)− T 4
D

and
H i+1
µ (G) = {h ∈ H(G)|ih > i} ih := inf{µl, l hooked to v} .

It is obvious that, if i = ρ, where Λ = Mρ, the effective series reduces to the bare one. Assuming
this is true at scale i + 1, we can prove it at scale i by induction, by multiplying the effective
amplitude at scale i+ 1 by a suitable form of the identity, adding and subtracting the counter-
terms in H i

µ(G) \H i+1
µ (G) = {h ∈ H(G)|ih = i+ 1}, which changes Aeff,i+1

µ (G) into Aeff,iµ (G),

Aeff,iµ (G) :=
∏

S⊆Hi
µ\Si+1

µ

S 6=∅

∏
M∈S

(1− τ ∗M + τ ∗M)
∏
h∈Hi

µ

(1− τ ∗h)Aµ(G) .

The completely subtracted piece changes Aeff,i+1
µ (G) into Aeff,iµ (G), and the second one is de-

veloped as a sum over S as follows:

SΛ
N =

∑
(G,µ,S)

S⊆Hi
µ\Hi+1

µ

1

s(G)

 ∏
v∈V(G)

(−λ(Λ)
b,sup(i+1,iv(G,µ))

Aeff,iµ,S (G) ,

with
Aeff,iµ,S :=

∏
M∈S

(−τ ∗M)
∏

h∈Hi\S
(1− τ ∗h)Aµ(G) ,

and in particular Aeff,iµ,∅ = Aeff,iµ . A subtlety appears in this case because the 2-point divergent
graphs (with degree ω = 2) introduce two counter-terms, one for the mass and one for the
wave-function. For this reason we change the previous definition of S, and introduce the new
definition:

Ŝ = {(M,kM)|M ∈ S, kM ∈ 0, 2, kM ≤ ω(M)} .

Secondly, we introduce the collapse φi which sends the triplet (G, µ, Ŝ) to its contracted version
(G ′, µ′, ∅), such that the previous sum can be rewritten as a sum on G ′

SΛ
N =

∑
G′,µ′

∑
{(G,µ,S)}=
φ−1
i (G′,µ′,∅)

Aeff,iµ,S (G)

s(G)

 ∏
v∈V(G)

(−λ(Λ)
v,sup(i+1,iv(G,µ))

 . (4.120)

Decomposing ∏
M∈Ŝ

(−τ ∗M) =
∏

v′∈V(G)

 ∏
M∈Ŝ,M⊂φ−1

i (v′)

(−τ ∗M)


in the sum (4.120), we find that it gives exactly the effective sum at scale i given by (4.118), if
the coupling satisfies the recursive relation of the theorem.

�

Remark also that such recursive equations are non-Markovian. By this we mean that the effec-
tive coupling λi is itself a multi-series in the sequence of all effective couplings λρ, · · · , λi+1. Any
attempt to rewrite it in terms of the single coupling λi+1 would automatically reintroduce the
renormalon problem.

Thanks to Theorem 1 the effective expansion is therefore able to define the theory, if all couplings
on the trajectory from λρ to λ0 = λr are uniformly bounded by a small enough constant, and
the number of graphs is not too big. This is the case when
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• the theory is asymptotically free or asymptotically safe in the ultraviolet regime,

• the set of graphs considered does not proliferate more than exponentially with size n.

Planar “wrong sign” φ4 [9] or the Grosse Wulkenhaar model [13] satisfy these two conditions.
Since melonic graphs, like trees, proliferate no more than exponentially in size and since our
theory is asymptotically free, its melonic approximation is a free from the two sources of diver-
gence of perturbation theory discussed above. Hence the effective expansion should allow us to
define rigorously and non perturbatively any Green function Gmelo

2N or vertex function Γmelo2N in
this melonic approximation.

Comparing (4.114) with (4.102), we see that such amplitudes are very different from the renor-
malized ones. Because in (4.114) all divergent high graphs are subtracted, effective amplitudes,
like renormalized ones, have a finite limit when the ultraviolet cut-off is removed. However unlike
renormalized amplitudes, effective amplitudes are free of renormalons [2]. More precisely:

Corollary 1. The effective amplitude Aeff (G) for a graph G with V (G) internal wavy lines is
uniformly exponentially bounded in term of its size, hence for some constant K

|Aeff (G)| ≤ KV (G). (4.121)

This result follows directely from the analysis of the previous section. The effective series corre-
spond to the special case of an empty safe forest S, hence the factorial of its cardinal in (4.111)
is simply 1.

4.6 Closed equations in the melonic sector

In this section, we establish a closed equation for the melonic two-point vertex function, and
an equation expressing the melonic four-point vertex function in terms of the two-point one.
Combining this with the effective bounds of the previous section we shall prove existence and
unicity of the solution of these equations at small renormalized coupling.

4.6.1 Bare equations

Let us consider the U(1)− T 4
d model, and 〈τ〉(p) the mean values of an intermediate field τi(p),

which, due to the color symmetry, does not depend on the color i:

〈τ〉(p) :=

√
−2λ

ZU(1)−T 4
d

∫
dνI(τ)τi(p)e

−∑
~p∈P ln(1−i

√
2λC0(~p)Γ(~p)) , (4.122)

where we have added a factor
√
−2λ in the definition for convenience.

Proposition 7. Consider the melonic restriction 〈τ〉melo(p), whose perturbative Feynman ex-
pansion contains only melon graphs, i.e. is labeled by connected trees T in the intermediate field
representation:

〈τ〉melo(p) =
√
−2λ

∑
T

(−2λ)`(T )/2AT (p) . (4.123)
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Then, 〈τ〉melo(p) verifies the closed equation:

〈τ〉melo(p) = −2λ
∑

qj∈Z,j>1

δ
(
p+

∑d
j=2 qj

)
p2 +

∑
j>1 q

2
j +m2 − 〈τ〉melo(p)−

∑
j>1〈τ〉melo(qj)

. (4.124)

Proof. The formula can be established recursively in λ. Let b be the grey disk hooked to the
external wavy live. At first order, this grey disk reduces to a single loop made of a single
dotted line of the original representation (see Figure 4.18a). Therefore we recover the one-loop
expression, and the formula works.

a b c d

i i

j

i

j
k

i

j

k

+ · · ·

Figure 4.18: The first melonic contributions to τmelo.

The first next melonic contributions are pictured on Figures 4.18b, c and d. Grouping together,
orders by orders, the contributions to each hooked 1-point functions to the disc b, we build the
exact 〈τ〉melo function. As a result, the loop of the disc b corresponds to the effective propagator

Geff (~q) = C(~q) +
∑
i

C(~q)〈τ〉melo(qi)C(~q) + · · ·

+
∑
i,j

C(~q)〈τ〉melo(qi)C(~q)〈τ〉melo(qj)C(~q) + · · ·

= C(~q)

[
1 +

∞∑
n=1

(∑
i

〈τ〉melo(qi)C(~q)

)n]
= C(~q)

1

1−∑i〈τ〉melo(qi)C(~q)
, (4.125)

where C is the bare propagator

C(~q) =
δ(
∑

i qi)

~q 2 +m2
. (4.126)

Then, fixing the color of the external wavy line to 1, and taking into account 〈τ〉melo(p) writes
as:

〈τ〉melo(p) = −2λ
∑
qj ,j>1

Geff (~q)
∣∣
q1=p

, (4.127)

which is nothing but the theorem, taking into account 4.126.

�



4.6. CLOSED EQUATIONS IN THE MELONIC SECTOR 97

In the same way, we define the connected 2-point function 〈τi(pi)τj(pj)〉 as

〈τi(pi)τj(pj)〉 :=
−2λ

ZU(1)−T 4
d

∫
dνI(τ)τi(pi)τj(pj)e

−∑
~p∈P ln(1−i

√
2λC0(~p)Γ(~p))

+2λ〈τ(pi)〉〈τ(pj)〉 . (4.128)

Note that in the melonic sector i = j and pi = pj, and we can simplify the notation, and we
denote by 〈τ 2〉melo(p) the 2-point function in this sector. We have the following proposition:

Proposition 8. The connected melonic 2-point function 〈τ 2〉melo(p) verifies:

〈τ 2〉melo(p) = −2λ
1

1 + 2λΣ(p)
, (4.129)

with

Σ(p) :=
∑
qj ,j>1

δ(p+
∑

j>1 qj)[
p2 +

∑
j>1 q

2
j +m2 − 〈τ〉melo(p)−

∑
j>1〈τ〉melo(qj)

]2 . (4.130)

Proof. As for the 1-point function, we fix to 1 the color of the external half-wavy lines. The
function −2λΣ is nothing but the 1PI-2 point version9 of 〈τ 2〉melo(p). The first terms of its
perturbative expansion are pictured in Figure 4.19.

= + + + + · · ·1PI

Figure 4.19: First terms of the perturbative expansion of Σ.

The complete 2-point function is then obtained as a sum of particle reductible contributions
pictured in Figure 4.20.

= 1PI 1PI++
+ · · ·1PI1PI

Figure 4.20: The complete 2-point function.

Then, since the propagator for the intermediate fields is the identity, the complete 2-point
function is given by the simple geometric series:

〈τ 2〉melo(p) = −2λ[1 + (−2λΣ(p)) + (−2λΣ(p))2 + · · · ] , (4.131)

which proves the proposition.

�

9Here ”1PI” means that we cannot find a wavy line whose cut gives two connected components with exactly
two external lines
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The closed equations of the two previous propositions determine the 1-point and 2-point func-
tions of the intermediate field in the melonic sector. However in the renormalizable case d = 6,
the sums inside the equations are divergent. The equations become therefore highly formal, and
must be replaced by their analogues for renormalized functions.

Before ending this section, note that in the point of view of the original representation, the 1-
point intermediate field function corresponds to the melonic 1P1 2-point function. More precisely,
denoting the latter by Γ2,melo(~p):

Γ2,melo(~p) =
d∑
i=1

〈τ〉melo(pi) . (4.132)

In the same way, the melonic 1PI 4-point function Γ4,melo(~p1, ~p2, ~p3, ~p4) is related to the 2-point
function 〈τ 2〉melo(p) by:

Γ4,melo(~p1, ~p2, ~p3, ~p4) =
d∑
i=1

〈τ 2〉melo(p4i)SymW(i)
~p1,~p2,~p3,~p4

. (4.133)

4.6.2 Renormalized equations

In this section, for convenience, we assume the existence of a sharp UV cut-off Λ in momentum
space. All sums are on ZΛ.

Definition 18. The renormalized melonic 1-point function 〈τ〉melo,R(p) is defined as:

〈τ〉melo,R(p) := 〈τ〉melo(p)− 〈τ〉melo(p = 0)− p2 d
2

dp2
〈τ〉melo(p = 0) (4.134)

where the terms without index “R” are unrenormalized, and assumed to be expressed in terms of
the renormalized couplings λr,mr.

From these definitions we can extract the relation between “bare” and renormalized couplings.
Indeed, the two subtracted terms are nothing but the counter-terms for mass and wave-function
renormalization, then:

m2 =
m2
r + d× 〈τ〉melo(p = 0)

Z
, Z = 1 +

d

dp2
〈τ〉melo(p = 0) . (4.135)

From Definition 18, 4.135 and Proposition 7, we deduce the closed equation for the renormalized
1-point function10 :

Corollary 2. The renormalized 1-point function 〈τ〉melo,R(p) satisfies the equation:

〈τ〉melo,R(p) = −2Z2λ
∑

qj∈ZΛ,j>1

[
δ
(
p+

∑d
j=2 qj

)
p2 +

∑
j>1 q

2
j +m2

r − 〈τ〉melo,R(p)−∑j>1〈τ〉melo,R(qj)

−
δ
(∑d

j=2 qj
)

+ d
dp2 δ

(
p+

∑d
j=2 qj

)∣∣
p=0∑

j>1 q
2
j +m2

r −
∑

j>1〈τ〉melo,R(qj)

+
δ
(∑d

j=2 qj
)[∑

j>1 q
2
j +m2

r −
∑

j>1〈τ〉melo,R(qj)
]2] . (4.136)

10To deduce this corollary, we assume that all the sums are UV-regularized, for instance with a sharp cut-off,
so that it is legal to invert the sums and the subtractions of the standard BPHZ-scheme.
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In the same way, the closed equation for the bare 2-point function can be translated as a
closed equation for the renormalized vertex function:

Definition 19. We define the renormalized 1PI 2-point function ΣR as:

ΣR(p) := Σ(p)− Σ(0) , (4.137)

where, again, the unrenormalized function is expressed in terms of the renormalized couplings.

The 1PI version of the renormalized 2-point function 〈τ 2〉melo,R(p) is then−2Z2λΣR, and 〈τ 2〉melo,R(p)
is obtained by summing the geometric series, as in the proof of Proposition 8. We deduce the
following corollary:

Corollary 3. The renormalized 2-point function 〈τ 2〉melo,R(p) (i.e. the usual 2-point renormalized
function multiplied by 2λr) verifies:

〈τ 2〉melo,R(p) = −2λr
1

1− 2λrΣR(p)
. (4.138)

It is compatible with the standard definition, the renormalized coupling λr being related to the
vertex function through

λr := −1

2
〈τ 2〉melo,R(p = 0) . (4.139)

The system is then completely determined. From Definition 19 and equation 4.39, we have
Z2λ = λr + δλ, with

δλ = λ2
rΣ(0). (4.140)

Then Zλ = 1 + λrΣ(0) and
Z2λ = [1 + λrΣ(0)]λr . (4.141)

As a result:

Proposition 9. The 1-point function obeys the following closed equation:

〈τ〉melo,R(p) = −2λr

(
1 + λr

∑
qj ,j>1

δ(
∑

j>1 qj)[∑
j>1(q2

j − 〈τ〉melo,R(qj)) +m2
r

]2)

×
∑

qj∈ZΛ,j>1

[
δ
(
p+

∑d
j=2 qj

)
p2 +

∑
j>1 q

2
j +m2

r − 〈τ〉melo,R(p)−∑j>1〈τ〉melo,R(qj)

−
δ
(∑d

j=2 qj
)

+ d
dp2 δ

(
p+

∑d
j=2 qj

)∣∣
p=0∑

j>1 q
2
j +m2

r −
∑

j>1〈τ〉melo,R(qj)

+
δ
(∑d

j=2 qj
)[∑

j>1 q
2
j +m2

r −
∑

j>1〈τ〉melo,R(qj)
]2] . (4.142)

Its solutions only depend on the renormalized couplings.
The previous closed equations define, in principle, the renormalized melonic vertex functions.

Neither the existence nor the unicity of their solutions, however, are obvious at all, since the
bare equations do not have an ultraviolet limit and the renormalized ones typically have zero
convergence radius in λr because of renormalons (except at very special values such as zero
external momenta). But we can expand these equations according to the multiscale expansion of
Section 4.4 and reshuffle them in terms of the effective amplitudes and effective constants λi of
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Section 4.5.1. Subtractions in loop sums will then occur only when the external momentum pc
has scale strictly lower than the one of ~q c and the coupling λr will be replaced by the effective
coupling corresponding to the scale of ~q c.

Expanding in a multiseries for all couplings gives therefore an effective expansion with

• at most (K1)n graphs at order n, since it is a well-know fact that trees proliferate only
exponentially in their number of vertices,

• effective melonic amplitudes bounded by (K2)n by Theorem 1 (which applies to any effec-
tive amplitude, hence in particular to the melonic ones),

• effective constants all bounded by the last λr because of asymptotic freedom.

Hence this effective melonic expansion converges and defines a unique solution of the renor-
malized equations for 0 ≤ λr < (K1K2)−1. As usually for flow equations, the solution is in fact
analytic in λr in a disk tangent to the real axis, with uniform Taylor remainder estimates at order
s in Kss! [2]. We leave the details to the reader, but have no doubt that the unique solution sum
of the effective series is therefore the Borel sum of the renormalized expansion for the melonic
vertex functions Γmelo2N,r , and that this holds not just for N = 1 and 2 but for any number 2N of
external arguments. This completes the control of the melonic sector of the theory.

Theorem 5. The effective expansions of the renormalized melonic vertex functions converge for
0 ≤ λr < K−1 to the Borel sum of their renormalized expansions.

It is tempting to believe that like for tensor models, for |λr| large enough we reach singularities
at which phase transitions occur. However, the complexity of the previous equations for d =
6 complicates the outcome. Numerical studies for a similar model without closure constraint
[11, 10] give encouraging results, but without definitive conclusion. This is why we choose to
focus on non-perturbative renormalization methods for the rest of this thesis. In the next section,
we introduce the renormalization group “à la Wilson”, which will be our conceptual framework
for the next two chapters.

4.7 Renormalization group flow

In a modern point of view, thanks to the work of Wilson in the seventies, renormalization and
renormalization group are understood as a coarse-graining process from a microscopic theory
toward an effective long-distance theory. There are in fact different implementations of this
idea, depending on the context. In this section, we present a derivation of the Wilson-Polchinski
equation in the TGFT context, which corresponds to an infinitesimal step of the renormalization
group flow, and gives a perturbative solution at first orders. Standard reference on the approach
detailed in this section may be found in [17]

4.7.1 Wilson-Polchinski equation

Theorem 6. Let us consider two non-normalized Gaussian measures dµC and dµC′ whose co-
variances C and C ′ are related by C ′ = C + ∆. C, C ′ and ∆ are all assumed positive. Then:∫

dµC(T̄1, T1)dµ∆(T̄2, T2)e−Sint(T1+T2,T̄1+T̄2) =

(
det(∆C)

det(C ′)

)1/2 ∫
dµC′(T̄ , T )e−Sint(T,T̄ ). (4.143)
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The proof of this theorem, which links two Gaussian integrations with two propagators, relies
only on the standard properties of Gaussian measures (Isserlis-Wick theorem). In a Wilsonian
point of view, we shall interpret this theorem as a partial integration over rapid modes, associated
to the propagator ∆. This requires the introduction of an UV-cut-off Λ playing the role of a
fundamental scale. Broadly speaking, we can write the propagator as a Laplace transform:

CΛ(~p) =

∫ +∞

0

dtχ(tΛ2)e−t(~p
2+m2)δ

(∑
i

pi

)
, (4.144)

where the function χ(t) is chosen so that |1 − χ(t)| ≤ Ce−kt, for C, k > 0 and t → +∞. Here,
we shall make the simpler choice χ(t) = θ(t − 1), θ(t) being the Heaviside function, defined on
R by: θ(t) = 1 for t ≥ 0 and θ(t) = 0 on the complementary ] −∞, 0[, so that we recover the
Schwinger regularization:

CΛ(~p) =
e−(~p 2+m2)/Λ2

~p 2 +m2
δ
(∑

i

pi

)
. (4.145)

Then, we introduce a dilatation parameter s < 1. This parameter will be used as a step to the
gradual integration of the UV modes, and it is at this step that Theorem 6 plays a role. Indeed,
defining the variation

∆s,Λ(~p) := CΛ(~p)− CsΛ(~p) (4.146)

=

∫ +∞

0

dt

∫ 1

s2
dx

d

dx
χ(txΛ2)e−t(~p

2+m2)δ
(∑

i

pi

)
,

and its infinitesimal version Ds,Λ(~p), when s is close to 1:

∆s,Λ(~p) ' 2(1− s)
Λ2

e−(~p 2+m2)/Λ2

δ
(∑

i

pi

)
=: (1− s)Ds,Λ(~p) , (4.147)

we can write the partition function as an integral over two fields, respectively associated to “slow”
and “rapid” modes. Starting with the partition function ZΛ at scale Λ:

ZΛ[Sint] :=

∫
dµCΛ

(T̄ , T )e−Sint,Λ(T,T̄ ) , (4.148)

Theorem 6 allows to decompose it into two Gaussian integrals over two fields, T> and T<, the
“rapid” and “slow” modes, respectively with covariances ∆s,Λ and CsΛ:

ZΛ[Sint] =

(
det(∆s,ΛCsΛ)

det(CΛ)

)−1/2 ∫
dµCsΛ(T̄<, T<)

∫
dµ∆s,Λ

(T̄>, T>)e−Sint(T<+T̄>,T̄<+T̄>) . (4.149)

Then, identifying the effective action Sint,sΛ at scale sΛ as:

e−Sint,sΛ(T<,T̄<) :=
1√

det ∆s,Λ

∫
dµ∆s,Λ

(T̄>, T>)e−Sint(T<+T>,T̄<+T̄>) , (4.150)

the decomposition 4.149 becomes:

ZΛ =

(
detCsΛ
detCΛ

)−1/2 ∫
dµCsΛ(T̄<, T<)e−Sint,sΛ(T<,T̄<) . (4.151)
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Now, for an infinitesimal step, keeping only the leading order terms in 1− s when s is very close
to 1, we find:

e−∆Sint,Λ(T<,T̄<) = 1− Tr
[(δ2Sint,Λ

δTδT̄
− δSint,Λ

δT

δSint,Λ
δT̄

)
∆s,Λ

]
+O(1− s), (4.152)

with ∆Sint,Λ(T<, T̄<) := Sint,sΛ(T<, T̄<) − SintΛ(T<, T̄<). At the same time, expanding the left
hand side of 4.151 in powers of 1− s, and identifying the power of 1− s leads to :

dSint,sΛ
ds

= −Tr

{(δ2Sint,sΛ
δTδT̄

− δSint,sΛ
δT

δSint,sΛ
δT̄

)
Ds,Λ

}
. (4.153)

Note that we can consider Λ not as a fundamental scale, but as an arbitrary step on the flow,
meaning that equation 4.153 holds at each step of that flow. Physically, equation 4.153 tells how
the couplings are affected when the fundamental scale changes, and is therefore an incarnation
of the renormalization group flow and of the original Wilson’s idea.
This description does not include the field renormalization, which is usually required to obtain
fixed points of the renormalization group equations [17] and to ensure the regularity of the
solution obtained. A pragmatic way to introduce field strength renormalization is the following.
We consider a derivable parameter Z(s) as well as a new field for the scale sΛ: T =

√
Z(s)T̃ . A

new functional S̃sint is associated to this field such as S̃int,sΛ[T̃ , ¯̃T ] = Sint,sΛ[T, T̄ ]. The equation
4.153 is then modified into (leaving out the tildes):

dSint,sΛ
ds

=− Tr

{(δ2Sint,sΛ
δTδT̄

− δSint,sΛ
δT

δSint,sΛ
δT̄

)
Ds,Λ

}
− 1

2
γ(s)

[
Tr
(δSint,sΛ

δT
T
)

+ Tr
(
T̄
δSint,sΛ
δT̄

)]
, (4.154)

where γ(s) is defined by

γ(s) :=
d

ds
lnZ(s). (4.155)

In the next section we shall show how the flow equations can be solved in a perturbative way
for the UV modes, and allow to recover the equations obtained in Section 4.2. In that purpose,
the flow equation 4.154 has to be rewritten in a more practical way. As explained in Section 4.2,
Sint is a sum of tensorial bubbles, which are characterized by their connectivity, their topology
and their degree, which correspond to half the number of fields involved in the tensorial trace.
Hence, in order to study the evolution of each interaction separately, it is more convenient to
rewrite the flow equation in terms of bubble interactions. To this end, connectivity and topology
do not play a role, and we label the interactions only by the valence, that is, the number of black
or white nodes of the bubbles.

Let us consider the following expansion for Sint,sΛ[T, T̄ ]:

Sint,sΛ[T, T̄ ] =
∑
nl

V(nl) =
∑
nl

∑
{~pi,~̄pi}

V(nl) ~̄p1,...,~̄pl
~p1,...,~pl

l∏
i=1

T~piT̄~̄pi , (4.156)

where nl denotes the number of black and white nodes in each interactions. By replacing this
expression of the action in the flow equation 4.153, we obtain the set of renormalization group
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equations :

dV(nl)

ds
= −

∑
~p~̄p

Ds,Λ,~p~̄p

∂

∂T̄~p

∂

∂T~̄p
V(nl+1)

+

nl−1∑
nm=0

∑
~p~̄p

Ds,Λ,~p~̄p

∂V(nm+1)

∂T̄~p

∂V(nl−nm)

∂T~̄p
− nlγ(s)V(nl) , (4.157)

where Ds,Λ,~p~̄p = Ds,Λ(~p)δ~p~̄p. In Appendix B, we show that Wilson-Polchinski equation can be
turned into a Fokker-Planck equation and formally solved by a standard method [17]. The rest
of this section, however, is devoted to a perturbative analysis of the flow equations.

4.7.2 Perturbative solution

Before starting the calculation, we have to precise our regime of approximation. We shall consider
only the ultra-violet limit, and we assume that sΛ and Λ are large. However, we are interested
in infra-red physics much below the fundamental cut-off Λ. More precisely, our approximation
can be characterized by sΛ and Λ both large, but sΛ/Λ small.

At scale Λ, and up to contributions of order λ2, the action is assumed to be of the form

Sint,sΛ[T̄ , T ] = λ
6∑
i=1

∑
{~pi,~̄pi}

W(i)

~p1,~̄p1;~p2,~̄p2
T~p1T~p2T̄~̄p1

T̄~̄p2
+ δm2

∑
~p

T̄~pT~p + δZ
∑
~p

~p 2T̄~pT~p., (4.158)

where the last two terms take into account the fact that the parameter of Gaussian measure,
the mass and the Laplacian term, can be affected by the integration of the UV modes, and these
counter-terms, assumed to be of order λ, take into account these modifications. Moreover, note
that in this approach the corrections to the Laplacian term are not suppressed by an effective
counter-term in the action, but absorbed in the wave function renormalization. It is fixed such
that all the Laplacian corrections are canceled by the γ term in the RGE for V(1).

We adopt the standard Ansatz, namely that the generic interaction of valence n are of order
λn/2−1. This allows to organize systematically the perturbative solution, for which we shall
construct the λ2 order.

V(1) at order λ

The first corrections occur at order λ for V(1), whose flow equation write as:[ d
ds

+ γ(s)
]
V(1) = −4λ

∑
~p1,~̄p1

~p2,~̄p2

DsΛ ~p1,~̄p1
SymW~p1,~̄p1;~p2,~̄p2

T̄~̄p2
T~p2 (4.159)

where SymW :=
∑

i SymW(i) and W =
∑6

i=1W(i). The r.h.s involves two typical contributions
which are pictured graphically in Figure 4.21, where the contraction with Ds,Λ is represented
by a dotted line with a white box. These two contributions are exactly the same as the one we
found in the perturbative analysis of Section 4.2.
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6

6

a b

Figure 4.21: Typical graph contributing to the interaction V(1) of degree 2.

In the UV limit that we consider, the non-melonic contractions of type 4.21b, creating only
one internal face (of color 6 in the Figure), can be neglected in comparison to the melonic
contributions of the form of Figure 4.21a. Retaining only the melonic contractions, equation
4.159 becomes: [ d

ds
+ γ(s)

]
V(1) = −2λ

∑
~p1,~̄p1

~p2,~̄p2

DsΛ, ~p1~̄p1
W~p1,~̄p1;~p2,~̄p2

T̄~̄p2
T~p2 . (4.160)

Note that, because the propagator, and therefore DsΛ := dCsΛ/ds, includes a projection onto
the gauge invariant space, the connectivity structure of the interaction implies that the r.h.s of
the previous equation can be rewritten as follows∑

~p1,~̄p1

~p2,~̄p2

DsΛ ~p1,~̄p1
W(1)

~p1,~̄p1;~p2,~̄p2
T̄~̄p2

T~p2 =
∑
~p1∈P
~p2∈P

DsΛ(~p1)T̄~p2T~p2δp11,p21 =
∑
~p1∈P

f(p11)T̄~p1T~p1 , (4.161)

where P = {~p ∈ Z6|∑i pi = 0} ⊂ Z6 and f(p11) :=
∑

p1i i 6=1DsΛ(~p1). This is nothing but
a manifestation of the traciality of the melonic diagrams. Expanding f in power of p11, we
generate mass and wave function corrections, and sub-dominant corrections, involving powers of
p11 greater than two. They correspond to the first deviation to the original form 4.158. Neglecting
these sub-dominant contributions, and using the sum∑

p1,...,p5

2

s3Λ2
e
− 1

(sΛ)2
(~p 2+m2)

δ
(∑

i

pi

)
∼ 2π2

√
5
sΛ2 − 2π2

√
5

1

s
m2 − 12π2

5
√

5

1

s
p2

6 +O(s), (4.162)

for which we only keep the leading order terms in s, we can extract the dominant contributions
to the mass and wave-function renormalization. The term in p2

6 generates a non-local 2-point
interaction of the form −δZ(s)Tr(T̄∆~gT ), where ∆g is the Laplacian on U(1)×6, and the first
term generates a mass correction. Summing over the six colors, we find, at first order in λ:

γ(s) =
24π2λ

5
√

5

1

s
. (4.163)

d

ds
δm2 = −24π2λ√

5
sΛ2 +

24π2λ√
5

1

s
m2. (4.164)

V(3) and V(2) at order λ2

At order λ2, we have to take into account the contributions of interactions of valence six, V(3),
verifying the flow equation:

dV(3) ~̄p1,~̄p2,~̄p3

~p1,~p2,~p3

ds
= 4λ2

∑
i,j,~p,~̄p

W(i)

~p1,~̄p1,~p,~̄p2
W(j)

~p2,~̄p3;~p3,~̄p
Ds,Λ,~p~̄p. (4.165)
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It can be easily integrated, with Ds,Λ = dCsΛ/ds and the initial condition

V(3) ~̄p1,~̄p2,~̄p3

~p1,~p2,~p3
(1) = 0.

We get:

V(3) ~̄p1,~̄p2,~̄p3

~p1,~p2,~p3
(s) =− 4λ2

∑
i,j,~p,~̄p

W(i)

~p1,~̄p1,~p,~̄p2
W(j)

~p2,~̄p3;~p3,~̄p

(
CΛ − CsΛ

)
~p~̄p
. (4.166)

As for the interaction of degree 1, the structure of this effective interaction can be understood
as a contraction between two bubbles, as pictured in Figure 4.22, where the dotted line with a
black box represents the contraction with CΛ − CsΛ.

i j

Figure 4.22: Typical graph contributing to the interaction of V(3) of degree 6.
.

We have now all the material to build the effective coupling for the quartic melonic interaction
at order λ2, for which we shall extract the leading behavior. From the flow equations, it seems
that the coupling evolution receives many contributions. The first one comes from V(3). By
deriving two times this interaction we obtain an interaction of degree two, which can be either
1PI, when the contraction with DsΛ links two black and white nodes of two different bubbles,
or one particule reducible if the two nodes stand on the same interaction bubble. Explicitly:

[ d
ds

+ 2γ(s)−4δm2D̄s,Λ[{pi}]
]
λW(i)

~p2,~̄p1;~p3,~̄p2
= 4λ2

∑
~p,~̄p~p ′,~̄p ′

[
¯Sym
(
W(i)

~p ′,~̄p1;~p,~̄p2
W(i)

~p2,~̄p ′;~p3,~̄p

)

+ 2
∑
j

¯Sym
(
W(i)

~p2,~̄p1;~p,~̄p2
W(j)

~p ′,~̄p ′;~p3,~̄p

)]
×
(
CΛ − CsΛ

)
~p~̄p
Ds,Λ,~p ′~̄p ′ , (4.167)

where:

¯Sym
(
W(i)

~p ′,~̄p1;~p,~̄p2
W(j)

~p2,~̄p ′;~p3,~̄p

)
:=W(i)

~p ′,~̄p1;~p,~̄p2
W(j)

~p2,~̄p ′;~p3,~̄p
+W(i)

~p,~̄p1;~p ′,~̄p2
W(j)

~p3,~̄p ′;~p2,~̄p
, (4.168)

and
D̄s,Λ[{pi}] := Ds,Λ(~p2) +Ds,Λ(~̄p1) +Ds,Λ(~p3) +Ds,Λ(~̄p2). (4.169)

Equation 4.167 gives the exact behavior for the beta function at order λ2, but it is not hard
to see that it reduces to the expression 5.86 already obtained in Section 4.2 in the deep UV
sector that we consider. Indeed, retaining only the melonic contributions, and noting that 1PR
contributions of the r.h.s are exactly canceled by the term involving the mass correction δm in
the l.h.s, we get:[ d

ds
+ 2γ(s)

]
λW(i)

~p2,~p3;~̄p1,~̄p2
≈ 4λ2

∑
~p,~̄p~p ′,~̄p ′

W(i)

~p ′,~p;~̄p1,~̄p2
×W(i)

~p2,~p3;~̄p ′,~̄p

(
CΛ − CsΛ

)
~p~̄p
Ds,Λ,~p ′~̄p ′ . (4.170)
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The computation of the loop appearing on the r.h.s leads to∑
p1,...,p5

∫ s

1

ds′
4

s′3s3Λ4
e
−
(

1
(sΛ)2

+ 1
(s′Λ)2

)
(~p 2+m2)

δ
(∑

i

pi

)
∼ − π

2

√
5

1

s
+O(s), (4.171)

from which we finally deduce, using the value 4.163,

s
dλ

ds
= −28π2

5
√

5
λ2 (4.172)

which, as claimed before, is exactly the value of the one-loop beta function already obtained in
the first section.

4.7.3 Toward non-perturbative renormalization

The main advantage of the Wilson-Polchinski equation is that it provides a very transparent
interpretation of the renormalization group flow in the space of couplings. However, except for
perturbative computations, the Wilson-Polchinski equation is more adapted to mathematical and
formal proofs than to non-perturbative analysis. Going beyond the perturbative level requires an-
other formulation of the coarse-graining renormalization group, called Wetterich equation, which
allows usually to better capture the non-perturbative effects. The price to pay is an approxima-
tion scheme a bit more difficult to use. This non-perturbative approach to the renormalization
group flow will be the subject of the next two chapters.



Appendix A

Closed melonic equation for d = 3

The aim of this section is to prove that our closed equation 4.124 has a unique solution for d = 3.
We shall prove that it is the case if the coupling constant λ does not exceed a finite critical value
λc. To this end, we shall prove that the transformation that we call Tλ,m, defined by its action
on a sequence fp by

Tλ,m[f ](p) := 2λ
∑
~q∈Z3

δ(
∑

i qi)

~q2 +m2 +
∑

i f(qi)

∣∣∣∣
q1=p

, (A.1)

admits a unique fixed point in a set of sequences that will be precisley defined below, but which
include the “physical set” Ophy of such sequences. The latter is a subclass designed to include
the perturbative solutions for the 1-point function. The proof is entirely based on the Banach
fixed point theorem. This theorem involves the notion of contracting map, defined as:

Definition 20. (Contracting map) Let f a map f : E → F , from a metric space E with
the norm ||.|| to a subset F = =(f) and k ∈ R+ a positive real number. This map is said to be
k-lipschitz if:

∀(x, y) ∈ E2 ||f(x)− f(y)|| ≤ k||x− y|| (A.2)

A k-lipschitz map is said to be contracting if k ∈]0, 1[.

The theorem states

Theorem 7. (Banach) Let E be a complete metric vector space, i.e. a Banach space, and
f : E → E a k-contractible map. There is a unique fixed point x∗, such as f(x∗) = x∗. In
addition, the sequence defined as xn+1 = f(xn), verifies the bound :

||xn − x∗|| ≤
kn

1− k ||x0 − x∗|| (A.3)

where ||.|| is the norm of the metric space E.

It has the following corollary, since any closed subspace of a complete metric space is also
complete for the induced norm:

Corollary 4. Let F ⊂ E a closed subset of a Banach space, and f : F → F a k-contractible
map on F which is stable under f . The map f has a unique fixed point.

In order to identify a large enough complete metric space, we first note that the self-energy
Γ̃melo2 must be negative. It is a consistency condition ensuring that any singularity occurs for the
effective 2-point function:

G(~p) =
δ
(∑

i pi
)

~p2 +m2 − Γ̃melo2 (~p)
. (A.4)
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It implies the following bound:

σ(p) = 2λ
∑
~q∈Z3

δ
(∑

i qi
)

~q2 +m2 +
∑3

j=1 F (qj)

∣∣∣∣
q1=p

≤ 2λ
∑
~q∈Z3

δ
(∑

i qi
)

~q2 +m2

∣∣∣∣
q1=p

:= σo(λ)(p) (A.5)

where the sum defining σo(λ)(p) can be computed exactly using standard complex analysis. We
find:

σo(λ)(p) =
πλ√

3p2 + 2m2
coth

[
π
√

3p2 + 2m2
]
≤ πλ√

2m
coth

(√
2πm

)
. (A.6)

Hence, σo(λ)(p) is a positive bounded sequence. The space of bounded sequences with the norm
sup : ||u|| := sup |up| is a Banach space that we call traditionally `∞, and the closed subset
`+
∞ := {u ∈ `∞|u ≥ 0} of positive bounded sequences is complete for the norm inherited from
`∞. On this subset, we define the map Tλ,m by:

Tλ,m : `+
∞ → =[Tλ,m] (A.7)

∀u ∈ `+
∞ → Tλ,m[u] (A.8)

where the sequence Tλ,m[u] is defined by A.1. Clearly from this definition, Tλ,m sends any positive
sequence to another positive sequence, bounded by σo(λ), so that =[Tλ,m] ⊂ `+

∞. So far, all the
assumptions of Corollary 4 are verified. We have now to check if our map Tλ,m is contracting.
To see this, we must prove that, for any f, g ∈ `+

∞ and k ∈]0, 1[:

||Tλ,m[f ]− Tλ,m[g]|| ≤ k||f − g||. (A.9)

In fact, we have the following lemma:

Lemma 2. Our map Tλ,m satisfies the inequality A.9 when the coupling λ does not exceed a
finite critical value λc depending on the mass parameter m2.

Proof. For any f, g ∈ `+
∞, expanding ||Tλ,m[f ]− Tλ,m[g]|| with the definitions of ||.|| and Tλ,m[.],

we find:

df,g := ||Tλ,m[f ]− Tλ,m[g]||

= 2λ sup
p∈Z

∣∣∣∣∑
~q∈Z3

δq1,p

(
δ
(∑

i qi
)

~q2 +m2 +
∑

i fqi
− δ

(∑
i qi
)

~q2 +m2 +
∑

i gqi

)∣∣∣∣
≤ 2λ sup

p∈Z

∣∣∣∣∑
~q∈Z3

δq1,p

∑
i(gqi − fqi)

(~q2 +m2)2
δ

(∑
i

qi

)∣∣∣∣
≤ 6πλ√

2m
coth

(√
2πm

)
× ||f − g||. (A.10)

Hence there is a non vanishing real number k(m2), depending on m2, so that our map is con-
tractible if λ < 1/k(m2), where:

0 < k(m2) ≤ 6π√
2m

coth
(√

2πm
)
. (A.11)

�

Our map Tλ,m satisfies all the assumptions of the Banach theorem. Hence,

Proposition 10. The map Tλ,m admits a unique fixed point on `∞ when λ does not exceed a
finite critical value.

If the coupling exceeds the finite critical value λc := 1/k(m2), the leading perturbative expansion
may become ill-defined.
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Formal solution of RG equation

The flow equation 4.153 admits a formal solution which is the generating functional of connected
functions, defined as:

Definition 21. : The generating functional of connected functions W [J, J̄ , s] is

e−W[J,J̄,s] :=

∫
dµ∆s,Λ

(T̄ , T )e−Sint,Λ(T,T̄ )+Tr(J̄T )+Tr(T̄ J) (B.1)

= eTr δ
δT

∆s,Λ
δ
δT̄ e−Sint,Λ(T,T̄ )+Tr(J̄T )+Tr(T̄ J)

∣∣∣∣
T,T̄=0

, (B.2)

where the covariance ∆s,Λ, as well as the functional Sint,sΛ, are assumed to be derivable functions
with respect to the parameter s, and the measure dµ∆s,Λ

is normalized, hence
∫
dµ∆s,Λ

= 1 .

Differentiating term by term, we get:

dW
ds

e−W[J,J̄,s] = eTr δ
δT

∆s,Λ
δ
δT̄ Tr

( δ

δT

d∆s,Λ

ds

δ

δT̄

)
e−Sint,Λ(T,T̄ )+Tr(J̄T )+Tr(T̄ J)

∣∣∣
T=T̄=0

, (B.3)

leading to:

Proposition 11. : The generating functional of correlation functions Ξ[J, J̄ , s] = e−W[J,J̄,s]

verifies the following time-dependent equation of the Fokker-Planck type

dΞ

ds
= −Tr

[dΘ
(0)
s,Λ

ds

δ2Ξ

δJδJ̄
P̂
]
, (B.4)

where Θ
(0)
s,Λ := (∆

(0)
s,Λ)−1, ∆

(0)
s,Λ = 2(1−s)

Λ2 e−(~p2+m2)/Λ2, and P̂ is the projector into the gauge invariant
subspace.

Proof : The Gaussian integral properties allow us to demonstrate the following lemma.

Lemma 3.

eTr δ
δT
C δ
δT̄ T (~θ)e−Sint(T,T̄ )

∣∣∣
T=T̄=0

= eTr δ
δT
C δ
δT̄

∫
d~θ′C(~θ, ~θ′)

δ

δT̄ (~θ′)
e−Sint(T,T̄ )

∣∣∣
T=T̄=0

. (B.5)
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Besides, the definition of the operator P̂ implies: ∆s,Λ = P̂∆
(0)
s,ΛP̂ . From equation B.3 we get

dΞ

ds
= eTr δ

δT
∆s,Λ

δ
δT̄ × Tr

( δ

δT
P̂
d∆

(0)
s,Λ

ds
P̂
δ

δT̄

)
e−Sint,Λ(T,T̄ )+Tr(J̄T )+Tr(T̄ J)

∣∣∣
T=T̄=0

(B.6)

= −eTr δ
δT

∆s,Λ
δ
δT̄ Tr

( δ

δT
P̂∆

(0)
s,ΛP̂

dΘ
(0)
s,Λ

ds
P̂∆

(0)
s,ΛP̂

δ

δT̄

)
× e−Sint,Λ(T,T̄ )+Tr(J̄T )+Tr(T̄ J)

∣∣∣
T=T̄=0

= −eTr δ
δT

∆s,Λ
δ
δT̄ Tr

(
P̂ [T̄ ]

dΘ
(0)
s,Λ

ds
P̂ [T ]

)
× e−Sint,Λ(T,T̄ )+Tr(J̄T )+Tr(T̄ J)

∣∣∣
T=T̄=0

= −Tr
(
P̂
δ

δJ

dΘ
(0)
s,Λ

ds
P̂
δ

δJ̄

)
eTr δ

δT
∆s,Λ

δ
δT̄ × e−Sint,Λ(T,T̄ )+Tr(J̄T )+Tr(T̄ J)

∣∣∣
T=T̄=0

.

This is nothing but the definition of the connected correlation function given by B.1, hence the
proposition is proved.

�

The equation given in Proposition 11 can be formally solved by using a functional Fourier
transform:

Ξ[J, J̄ , s] =

∫
dTdT̄ e−H(T,T̄ ,s)+Tr(J̄T )+Tr(T̄ J) , (B.7)

leading, from Proposition 11, to the differential equation

dH
ds

= Tr
(
P̂ [T̄ ]

dΘ
(0)
s,Λ

ds
P̂ [T ]

)
, (B.8)

which we can be easily integrated :

H(T, T̄ , s) = Tr
(
P̂ [T̄ ]Θ

(0)
s,ΛP̂ [T ]

)
+ Vint[T, T̄ ] . (B.9)

In this solution, the interaction Vint[T, T̄ ] does not depend on s. This equation directly gives the
classical effective action at scale sΛ. The solution is unique, once the initial conditions fixed,
that is the interaction and the propagator.
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Chapter 5

Functional Renormalization Group

From the quantum gravity point of view, one of the main challenges of (T)GFTs is to understand
how the quantum degrees of freedom organize to form a geometric structure which can be identi-
fied with a semi-classical space-time 1. In this quest, the physics of phase transitions seems to be
a promising route. In the most widely admitted scenario [5], and according to recent works [6, 7],
these phase transitions should correspond to the condensation of quanta corresponding to the
fields involved in the GFTs. This phenomenon, very similar to the Bose-Einstein condensation,
implies the spontaneous acquisition of a nonzero value by the mean field (something similar has
also been explored recently in tensor models [8, 9]), and, as discussed in the Chapter 2, the physi-
cal content of such states has started to be investigated for instance in a cosmological context. In
this approach, as discussed in the previous chapter, the help of the renormalization machinery,
which perfectly matches with the GFTs formalism, is invaluable [2]. Several approaches have
been followed, especially perturbative ones, and some characteristics of these models start to
emerge. An interesting and important aspect is the presence of non-trivial fixed points, which
started being explored only recently by means of the Functional Renormalization Group (FRG)
[10, 11], and the ε-expansion [2].

In this chapter we develop the general functional renormalization group (FRG) formalism for a
tensorial group field theory with closure constraint, and discuss two examples of melonic just
renormalizable Abelian models over U(1)×d, for d = 6 and d = 5, namely respectively the T 4

6

and T 6
5 models. We begin by giving a general introduction on the non-perturbative framework

applied to TGFTs, and by deriving the so-called Wetterich’s equation for TGFTs with closure
constraint. Then we focus on the melonic T 4

6 -model, that we shall consider in detail. The method
that we shall use allows us to obtain a closed but non-autonomous system of differential equations
which describe the renormalization group flow of the couplings beyond perturbation theory. The
explicit dependence of the beta functions on the running scale is due to the existence of an
external scale in the model, the radius of S1 ' U(1). We study this system in two different
approximation regimes, corresponding to the deep UV and deep IR, in which it turns to be
autonomous. In both cases, we study the occurrence of non-trivial fixed points, in addition to
the Gaussian one, and recover the asymptotic freedom of the model discussed in the previous
chapter with the same beta function at the one-loop order. Interestingly, we show the occurrence
of a non-trivial Wilson-Fisher-like fixed point with one relevant and one irrelevant direction.

1This is a challenge that GFTs share with loop quantum gravity [4]
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5.1 Functional renormalization group for TGFTs

In ordinary quantum field theory, there are essentially two approaches to the non-perturbative
renormalization group. The most popular one, that we have briefly discussed at the end of the
previous chapter, is based on a local version of Wilson’s ideas, called the Wilson-Polchinski
equation. However, except for the derivation of formal results, or in exceptional situations, the
Wilson-Polchinski equation leads to untractable computations. The functional renormalization
group method is an alternative, formally equivalent implementation of the Wilson strategy, firstly
proposed by C. Wetterich [20, 15, 16, 17, 18], but more suited to effective computations. As ex-
plained before, the original strategy proposed by Wilson and Kadanoff is to map actions onto
other actions at large scale via a coarse-graining procedure. The effective action that we obtain
by this coarse-graining procedure only concerns the modes that have not been yet integrated
out in the partition function, that we call ϕ<. But these actions remain very abstract, and in
practice it is usually impossible to extract easily any physical information out of it. Conversely,
in the FRG approach, we compute the Gibbs free energy, or effective action Γ[φ, φ̄] (which is
the Legendre transform of the free energy). More precisely, one builds a one-parameter family
of Gibbs free energies Γk[φ, φ̄] indexed by a scale k, such that:

• When k = Λ, for some UV cut-off Λ, no fluctuation has been integrated out, the effective
action Γk[φ, φ̄] is therefore equal to the microscopic action.

• When k = 0, all fluctuations are integrated out, and Γk=0 is nothing but the effective action
of the original model.

Then, when k decreases from Λ to 0, more and more fluctuations are integrated out. Interest-
ingly, the parameter k plays the role of an IR cut-off in the FRG framework, in contrast with
the role of the analogue parameter in the Wilson-Polchinski approach (where the cut-off is an
UV cut-off). This distinction is due to the fact that Γk is the effective action for the high energy
modes. Moreover, the low energy modes, which play a fundamental role in the Wislon-Polchinski
formulation, are absent in the FRG method, which only describes the high energy modes. Finally,
an important advantage of the FRG approach is that any information on the model, renormal-
ization group flows, existence of a fixed point, correlations functions, etc, are all derived from
the effective action.

We shall now present the FRG formalism in some generality, and then build explicitly the one
parameter family Γk for the Abelian TGFT models.

5.1.1 Effective average action for TGFTs

Concretely, the point of the FRG is to decouple the low energy modes in the partition function,
and the standard strategy is to give them a large mass. Indeed, for modes with large mass, quan-
tum fluctuations are important only for a small range of distances. It means in particle physics
language that a very heavy particle should decouple from the low energy physics. Therefore
we introduce the following one-parameter family of partition functions, for which a momentum
dependent mass term has been added to the original fundamental action:

Zs[J̄ , J ] :=

∫
dµC(ϕ̄, ϕ)e−Sint(ϕ̄,ϕ)−∆Ss[ϕ̄,ϕ]+〈J̄ ,ϕ〉+〈ϕ̄,J〉, (5.1)
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where we think about Sint as the action e.g. for the T 4
6 model, and s := ln(k). The added IR cutoff

or “momentum-dependent mass term” ∆Ss is chosen ultralocal in the momentum representation,
and formally defined as:

∆Ss[ϕ̄, ϕ] := 〈ϕ̄, Rsϕ〉 =
∑
~p∈Zd

Rs(~p)T~pT̄~p, (5.2)

where as in the previous chapter, T~p denotes the Fourier transform (or Peter-Weyl decompo-
sition) of the field ϕ(~θ). As usual, in order to give sense to the partition function we assume
that a UV regulator is also present, e.g. a sharp cutoff on the momenta |p| ≤ Λ (for the usual
norm: |p| =

√
~p · ~p). We refer to Λ as the “fundamental cut-off”. In practice, we often work in

the limiting case Λ→∞, because the Wetterich equation is well defined in that limit (although
not its path integral origin).

The cutoff function Rs(~p) is a positive definite function chosen so that:

• Rs(~p) ≥ 0 for all ~p ∈ Zd and s ∈ (−∞,+∞).

• lims→−∞Rs(~p) = 0, implying:

Zs=−∞[J̄ , J ] = Z[J̄ , J ]. (5.3)

This condition ensures that the original model is in the family (5.1). Physically, it means that
the original model is recovered when all the fluctuations are integrated out.

• lims→ln Λ Rs(~p) = +∞, ensuring that all the fluctuations are frozen when es = Λ. As a
consequence, the bare action will be represented by the initial condition for the flow at s = ln Λ.

• For −∞ < s < ln Λ, the cutoff Rs is chosen so that

Rs(|p| > es)� 1, (5.4)

a condition ensuring that the UV modes |p| > es are almost unaffected by the additional cutoff
term, while Rs(|p| < es) ∼ 1, or Rs(|p| < es)� 1, will guarantee that the IR modes |p| < es are
decoupled.

• d
d|~p|Rs(~p) ≤ 0, for all ~p ∈ Zd and s ∈ (−∞,+∞), which means that high UV modes should

not be suppressed more than lower modes.

As it stands, (5.1) defines an infinite-dimensional deformation of the original partition function.
However, the role of the precise cutoff function, chosen to satisfy the above requirements, is
secondary with respect to the role of the parametric dependence on s. From a Wilsonian point
of view, the former corresponds to a choice of coarse graining scheme, while the latter corresponds
to the coarse graining scale. We are primarily interested in the scale dependence of the theory,
and therefore we take the point of view that a specific cutoff function has been chosen, and
view (5.1) as a one-parameter family of theories.2 We thus obtain a one-parameter family of free

2In principle, physical quantities, such as critical exponents, are independent of the coarse graining scheme (see
for example the universality of the one-loop beta function for marginal couplings, which we discuss in appendix
C.2), but approximations generally spoil this property. Scheme dependence is thus an important issue, which has
been greatly developed into a full art of optimization [24], but we shall not discuss it further here.
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energies,
Ws := logZs[J̄ , J ], (5.5)

and by their Legendre transform, a one-parameter family of effective actions, collectively called
effective average action. To be more precise, the effective average action Γs is defined as:

Γs[φ̄, φ] + 〈φ̄, Rsφ〉 = 〈J̄ , φ〉+ 〈φ̄, J〉 −Ws[J̄ , J ], (5.6)

where the source J is to be expressed as a function of the effective mean field φ via the solution
of

φ =
δWs

δJ̄
. (5.7)

The previous properties concerning the cutoff term ∆Ss ensure that:

• Γints=ln Λ = Skin +Sint, for gauge invariant fields, so that when all the fluctuations are frozen,
the effective average action coincides with the initial bare action.

• Γs=−∞ = Γ, meaning that when all the fluctuations are integrated out, the effective average
action coincides with the full effective action.

This is nothing but the desired relationships for the effective averaging action Γk.

Interestingly, and to make contact with the Wilson-Polchinski point of view (or to point out their
differences!), the modified action appearing in (5.1) can be usually interpreted as originating from
a modification of the propagator. For a standard Gaussian measure, with usual kinetic action,
this property is obvious, but it is not so obvious for our model, for which the covariance has
been defined without an explicit kinetic action.3 To prove this point, we use Wick theorem.
Considering the following covariance:

Cs(~p, ~p
′) =

δ
(∑

i pi

)
~p 2 +m2 +Rs(~p)

δ~p,~p ′ , (5.8)

and the two Gaussian integrations:

Cs(~p, ~p
′) :=

∫
dµCs(T, T̄ )T̄ (~p)T (~p ′) (5.9)

Js(~p, ~p
′) :=

∫
dµC(T, T̄ )e−

∑
~p ′′ RsT̄ (~p ′′)T (~p ′′)T̄ (~p)T (~p ′), (5.10)

where dµC is the normalized Gaussian integration:
∫
dµC = 1. In a first step, we shall prove that

Js ∝ Cs. This comes obviously from the Wick theorem. Using the derivative representation of a
Gaussian integral:

Js(~p, ~p
′) = exp

(
δ

δϕ
C
δ

δϕ̄

)
e−

∑
~pRsT̄ (~p)T (~p)T̄ (~p)T (~p ′)

∣∣∣
T,T̄=0

(5.11)

=
d

dx
exp

(
δ

δϕ
C
δ

δϕ̄

)
e−〈T̄ ,(Rs+xL)T 〉

∣∣∣
T,T̄ ,x=0

=
d

dx
e−Tr ln(1+C(Rs+xL))

∣∣∣
x=0

= Cs(~p, ~p
′)× det

[Cs
C

]
,

3We can define our covariance C in its momentum representation, directly via equation (5.8). In this case, we
see that because of the projector δ(

∑
i pi), the definition of the inverse C−1, which usually appears in the kinetic

action, is slightly subtle and we prefer to present a more formal derivation involving only C.
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where the elements of the (super-) matrix L are defined as L~p1,~p2 = δ~p1,~pδ~p2,~p ′ . Next, consider the
following Gaussian integral:

J ′s :=

∫
dµCs(T, T̄ )

N∏
j=1

T̄ j(~pj)T
j(~p ′j). (5.12)

Using the Wick theorem, and the previous result, we obtain:

J ′s =
∑
πN

∏
j

(∫
dµC′(T, T̄ )T̄ πN (j)(~pπN (j))T

j(~p ′j)

)

=
∑
πN

∏
j

(
det

[
C

Cs

] ∫
dµC(T, T̄ )e−〈T̄ ,RsT 〉 × T πN (j)(~pπN (j))T

j(~p ′j)

)
,

where πN is the permutation group of N elements. Now, using the Wick theorem, the big
parenthesis can be written as:

Is := det

[
C

Cs

] ∫
dµC(T, T̄ )e−〈T̄ ,RsT 〉T πN (j)(~pπN (j))T

j(~p ′j)

=
∑
n

(−1)n

n!
det

[
C

Cs

] ∫
dµC(T, T̄ )× 〈T̄ , RsT 〉nT̄ πN (j)(~pπN (j))T

j(~p ′j)

= det

[
C

Cs

]∑
n

n∑
p

(−1)n−p+p

n!

n!

p!(n− p)! (5.13)

×
〈
〈T̄ , RsT 〉p

〉
C

〈
〈T̄ , RsT 〉n−pT̄ πN (j)(~θπN (j))T

j(~θ ′j)
〉
C,NV

,

where the brackets 〈.〉C mean the Gaussian contractions with covariance C, and 〈.〉C,NV with
subscript NV means that we select only the non-vacuum contractions (i.e. involving external
fields only). The Cauchy decomposition formula allows to rewrite the double sum as:

Ijs =
∑
p

〈
(−1)p

p!
〈T̄ , RsT 〉p

〉
C

×
∑
n

〈
〈T̄ , RsT 〉nT̄ πN (j)(~pπN (j))T

j(~p ′j)
〉
C,N.V

=
〈
e−〈T̄ ,RsT 〉

〉
C
×
〈
e−〈T̄ ,RsT 〉T̄ πN (j)(~pπN (j))T

j(~p ′j)
〉
C,N.V

.

The first term
〈
e−

∫
ϕ̄∆ϕ
〉
C
is nothing but the trivial Gaussian integral, i.e. the normalization of

the Gaussian measure dµCs :〈
e−〈T̄ ,RsT 〉

〉
C

= e−Tr ln(1+C∆) = det(1 + C∆)−1 = det

(
Cs
C

)
,

implying finally:
Ijs =

〈
e−〈T̄ ,RsT 〉T̄ πN (j)(~pπN (j))T

j(~p ′j)
〉
C,N.V

.

Reporting this result into equation (5.13) for J ′s leads to:

J ′s =
∑
πN

∏
j

Ijs = det

(
C

Cs

)〈
e−〈T̄ ,RsT 〉

〉
C

∑
πN

∏
j

Ijs . (5.14)
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Finally, since the factor
〈
e−〈T̄ ,RsT 〉

〉
C

is nothing but the vacuum contribution of the measure
dµCe

−〈T̄ ,RsT 〉, we find:∫
dµCs(T, T̄ )

N∏
j=1

T̄ j(~pj)T
j(~p ′j) = det

(
C

Cs

)∫
dµC(T, T̄ )e−〈T̄ ,RsT 〉

N∏
j=1

T̄ j(~pj)T
j(~p ′j). (5.15)

With no surprise, this result is exactly what is expected for a standard Gaussian integration with
well-defined kinetic action. Hence, it follows from the properties of the Gaussian integration that
the definition (5.1), with modification of the action, can be interpreted as a modification of the
covariance, i.e.

Z ′s[J̄ , J ] :=

∫
dµCs(ϕ̄, ϕ)e−Sint(ϕ̄,ϕ)+〈J̄ ,ϕ〉+〈ϕ̄,J〉. (5.16)

In fact, the flow equations for (5.1) and (5.16) differ for vacuum terms due to the det(Cs) im-
plicit in the measure of (5.16) (see (5.15)), but as usual such vacuum terms are completely
unimportant4. The difference between the Wilson-Polchinski strategy can be stressed on an ex-
plicit example, and is very clear with the choice of the regulator used in Appendix C.2, where
the role of k as an IR regulator is explicit.

Let us remind in this context the definitions of the projector into the gauge invariant field P̂ ,
introduced in Chapter 2:

P̂ : ϕ→ P̂ [ϕ](θ1, ..., θd) =

∫
dη

2π
ϕ(θ1 + η, ..., θd + η), (5.17)

and of the invariant field subspace as G = ker(P̂ − I), where I means the identity in the space of
fields. Interestingly, because of the projection in the propagator, the gauge symmetry is imple-
mented, at the graphical level, at each colored line hooked to a black or white node. Hence the
mean field φ, defined by (5.7), lives in G. The gauge symmetry is then dynamically implemented
by the propagator, and affects each N -point function : GN ∈ G⊗N .

Using the Legendre transform (5.6) and the definition (5.1), we obtain formally the so-called
Wetterich equation, describing the evolution of the effective average action. We have:

Proposition 12. (Wetterich equation)
For a given cutoff Rs, the effective average action Γs satisfies the following partial differential
equation:

∂sΓs =
∑
~p∈Zd

∂sRs(~p) ·
[
Γ(2)
s +Rs

]−1
(~p, ~p) δ

(
d∑
i=1

pi

)
(5.18)

=Tr

[
P̂

∂sRs

Γ
(2)
s +Rs

]
,

where Tr is the super-trace, meaning the trace over the block-indices, and Γ
(2)
s ≡ δ2Γs

δφ̄δφ
. The

presence of P̂ restricts the sums over the subspace of Zd which we denote by P and define by :
P = {~p ∈ Zd|∑i pi = 0}.

4Note that in the pregeometric interpretation of tensor models, vacuum terms are completely unrelated to the
cosmological constant.
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Proof: The proof is rather standard [20, 21], but it is useful to review it because of the
TGFT context and the appearance of the projector P̂ in the equation. Applying the operator
∂s on the two members of the equation (5.6), we have

∂sΓs = 〈∂sJ̄ , φ〉+ 〈φ̄, ∂sJ〉 − ∂sWs − 〈∂sJ̄ ,
δWs

δJ̄
〉 − 〈δWs

δJ
, ∂sJ〉 − 〈φ̄, ∂sRsφ〉. (5.19)

The term ∂sWs can be easily computed from the definitions (5.1) and (7.2.1):

∂sWs = −
∑
~p∈Zd

∂sRs(~p)

(
δ2Ws

δJ~pδJ̄~p
+
δWs

δJ~p

δWs

δJ̄~p

)
. (5.20)

Using (5.7), many terms cancel in (5.19), and we are left with

∂sΓs =
∑
~p∈Zd

∂sRs(~p)
δ2Ws

δJ~pδJ̄~p
. (5.21)

Deriving (5.7) with respect to J we find

δ2Ws

δJδJ̄
=
δφ

δJ
, (5.22)

while deriving (5.6) with respect to φ and then φ̄ gives

δ2Γs
δφ̄δφ

=
δJ

δφ
−Rs. (5.23)

Therefore we obtain, in matrix notation:

δ2Ws

δJδJ̄

[
δ2Γs
δφ̄δφ

+Rs

]
= I. (5.24)

The second functional derivative W (2)
s is the 2-point function which, as the effective mean field

φ = W
(1)
s , is gauge invariant: W (2)

s ∈ G ⊗ G. Hence, the previous equation (5.24) means that
Γ(2) + Rs is the inverse of W(2) on the subspace P only. Finally, using (5.24) in (5.21), and the
fact that, because W(2) is a gauge invariant matrix, W(2) ∈ G⊗G→ P̂W(2)P̂ =W(2), we find
the Wetterich equation (5.18).

�

The Wetterich equation is nothing but a renormalization group equation, governing how the
couplings change under a change of scale, and it is an exact equation. Moreover, in contrast
with perturbation theory, where l-loop diagrams require l d-dimensional integrals, the Wetterich
equation has a one-loop structure, and then, only one integral has to be computed, which is an
important point in practice.
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5.1.2 Canonical dimension of a tensorial bubble

In order to investigate the influence of the dimension d on the occurrence of fixed points in the
FRG analysis, we need to work with dimensionless quantities, as in usual quantum or statistical
field theories. In the present case, there is an external scale L (the radius of S1 ' U(1)) which we
have set to 1, thus implicitly making all quantities dimensionless in the usual sense. In fact, as
pointed out in [10], and as usual in the presence of an external scale [23], this is the reason why
we shall obtain non-autonomous RG flow equations. However, what matters for our purpose
is how such quantities scale with the cutoff. We need therefore to compute what we refer to
as their scaling dimension. Such scaling dimensions appear quite naturally in the perturbative
calculations. For instance, in Schwinger regularization and in dimension d, we have shown at the
beginning of Chapter 4 that, at the dominant order, the 2 and 4-point functions behave as:

Σ1 loop,∞ = λΛ(d−4K1 (5.25)

Γ
(4)
1 loop,∞ = 24

(
− λ+ λ2Λd−6K2

)
, (5.26)

where K1 and K2 are two numerical constants independent of λ,Λ or m. The exponent of Λ in
the above expressions is in general a universal number, meaning that it does not depend on the
chosen renormalization (for example, we find the same exponent by regularizing the theory by
means of a momentum cutoff). We therefore define the (canonical5) scaling dimension [X] of a
quantity X in such a way that by redefining X = X̄Λ[X] we obtain an homogeneous expression
in Λ for the renormalization of X. The equation (5.26) then shows that the scaling dimension of
λ is [λ] = 6−d, so that both summands have the same dimension. Inserting this result in (5.25),
we find [Σ1 loop,∞] = 2, implying that [m] = 1, since Σ1 loop,∞ gives the radiative corrections of
the mass term.

We can easily check the coherence of these definitions at all orders, noting that the exponent of Λ
appearing in (5.25) and (5.26) is nothing else but the divergence degree ω of the corresponding
graph. The divergent degree has been studied in Chapter 4, and we have show that the leading
order graphs correspond to the so-called melonic graphs. Due to their recursive definition, it is
not hard to see that it obeys6:

F (G)−R(G) = (d− 2)(L(G)− V (G) + 1), (5.27)

where V (G) is the number of vertices in the G graph. The equation (5.27), together with the
combinatorial relation L(G) = 2V (G)−Next(G)/2, leads to

ω(G) = (d− 6)V (G) +
[
(d− 2) +

4− d
2

Next(G)
]
. (5.28)

We limit ourselves to the interactions that we can find in the initial theory. A 1PI graph with
four external legs has, a priori the same dimension as the coupling constant λ. That is to say:

(d− 6 + [λ])
(
V (G)− 1

)
+ (d− 6) +

[
(d− 2) +

4− d
2
× 4
]

= 0,

implying [λ] = 6 − d. The same argument applied to an 1PI function with two external legs
justifies [m] = 1:

(d− 6 + [λ])V (G) +
[
(d− 2) +

4− d
2
× 2
]

= 2. (5.29)

5At a non-trivial fixed point the scaling dimension will in general be anomalous, i.e. different from the canonical
one.

6See the discussion at the begining of Chapter 6.
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Note that, for the ordinary scalar field theory with λ4φ
4 interaction, the local nature of the

interaction leads to [λ4] = 4 − d. Therefore, the tensorial nature of the interaction leads to a
shift in the critical dimension, from 4 to 6. The same argument can be extended to a general
melonic coupling tb with nb-external points, and we get:

[tb] = (d− 2) +
1

2
(4− d)nb . (5.30)

5.2 The truncation procedure for T 4
6

One of the many advantages of the FRG is the possibility to make an approximation directly
at the level of the effective average action. The latter is in principle a complicated functional,
containing infinitely many terms, and therefore an exact solution of the Wetterich equation is
generally beyond reach. One of the most common approximation method, besides perturbation
theory, consists in truncating the space of functionals in which Γs is defined, retaining only a
finite-dimensional subspace, or a simple infinite-dimensional one. This allows to obtain a closed
and tractable system of differential equations, which can be analytically studied in some cases,
or numerically integrated for most cases. As an organizational principle for such truncations, we
usually start off by Taylor expanding the effective average action in powers of ~p. Truncating such
expansion to some given order is expected to be a valid approximation in a context where we
are interested in the long distance physics. Subsequently, we can proceed to expand each order
in powers of the fields, and truncate that expansion too, thus leading to a finite-dimensional
subspace of functionals. The main idea is that by systematically expanding such subspace one
should observe some convergence pattern in the values of physical quantities, such as the crit-
ical exponents. This justifies a posteriori the approximation procedure. A nice example of this
method is provided by the Ising universality class, associated to the Wilson-Fisher fixed point
in three dimensions [25]. However, when applying the FRG in a new context, before reaching
such advanced level of systematization, it is often necessary to start from the simplest possible
approximation in such a class of truncations, to work out the formalism and understand possible
outcomes. In our case, the simplestand most obvious truncation boils down to write Γs exactly
in the same form as the bare action we have in mind, but with coupling, mass and wave function
normalization depending on s. This is the approximation we shall now adopt.

More precisely, we henceforth consider the following simple truncation:

Γs[φ, φ̄] =

∫
d~θφ̄(~θ)

[
− Zs∆~θ +m2

s

]
φ(~θ) (5.31)

+ λs
∑
i

∫ ( 4∏
j=1

d~θj

)
W(i)

~θ1,~θ2,~θ3,~θ4
φ(~θ1)φ̄(~θ2)φ(~θ3)φ̄(~θ4),

where ∆~θ is the Laplacian operator on U(1)×d, λs and ms are the effective coupling and mass at
the scale s, and Zs is the field strength normalization. Furthermore, as explained below equation
(5.17), the fields φ ∈ G appearing in (5.31), are gauge invariant fields. We can give a qualitative
critera for the consistency of this truncation, based on the anomalous dimension η := ∂s ln(Z).
Indeed, at the vicinity of a fixed point, η can reach a non-zero value η∗. As a result, the effective
propagator becomes:

Z−1

~p 2 + (m2
s/Z)

≈ e−η∗s

~p 2 +m2
∗
. (5.32)
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This modifies the perturbative power counting, which becomes in the melonic sector (all the
star-quantities refer to the non-Gaussian fixed point that we consider):

ω∗(G) = −(2 + η∗)L(G) + (F (G)−R(G)) = (d− 6− 2η∗)V (G) +
[
(d− 2) +

4 + η∗ − d
2

Next(G)
]
.

(5.33)
As a result, the canonical dimension 5.30 turns to be

[tb]∗ = (d− 2) +
1

2
(4− d+ η∗)nb = [tb] +

1

2
η∗nb , (5.34)

from which we can argue that, as long as η∗ � 1, the classification in terms of essential, inessen-
tial and marginal couplings remains unchanged, and the truncation around marginal couplings
with respect to the perturbative power counting makes sense.

Evaluating the second derivative of (5.31), we get, in momentum representation:

Γ(2)
s (~p, ~p ′) =

[
Zs~p

2 +m2
s

]
P̂~p,~p ′ + 2λs

∑
{~pi}

P̂~p,~p1P̂~p ′,~p2SymW~p1,~p2,~p3,~p4T~p3T̄~p4 , (5.35)

where we recall that
SymW~p1,~p2,~p3,~p4 :=W~p1,~p2,~p3,~p4 +W~p3,~p2,~p1,~p4 . (5.36)

and

P̂~p1,~p2 = δ~p1,~p2δ

(
d∑
i=1

pi

)
. (5.37)

Let us also define:
Fs(~p, ~p

′) := 2
∑
{~pi}

P̂~p,~p1P̂~p ′,~p2SymW~p1,~p2,~p3,~p4T~p3T̄~p4 (5.38)

and
Ks(~p) :=

(
Zs~p

2 +m2
s +Rs(~p)

)
. (5.39)

The next step is the choice of the regulator Rs, for which we adopt Litim’s cutoff [24]:

Rs(~p) = Zs(e
2s − ~p 2)Θ(e2s − ~p 2), (5.40)

where Θ stands for the Heaviside step function. The special dependence on ~p 2 and the inclusion of
a wave function renormalization will lead to substantial simplifications. Applying the derivative
operator on Rs, we find:

∂sRs(~p) =
{
∂sZs(e

2s − ~p 2) + 2Zse
2s
}

Θ(e2s − ~p 2). (5.41)

Using the equations (5.35) and (5.41) in the flow equation (5.18), we shall obtain the renormal-
ization group flow equations, which are the subject of the next section.
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5.2.1 Renormalization group flow equations

Using our Ansatz (5.31) in the Wetterich equation (5.18), expanding its r.h.s. of in power of φ,
and truncating at order φ4, we find:

r.h.s. =
∑
~p∈P

∂sRs

Ks(~p)

[
1− λs

Fs(~p, ~p)

Ks(~p)
+ λ2

s

∑
~p ′∈P

Fs(~p, ~p
′)Fs(~p ′, ~p)

Ks(~p)Ks(~p ′)
+O(φ6)

]
.

The RG flow equations for coupling, mass and wave function renormalization can be obtained
from this expansion, identifying the corresponding powers of φ̄φ.

• Equations for ms and Zs. Identifying the terms of order φ̄φ leads to:

∑
~p∈P

(∂sm
2
s + ∂sZs~p

2)T~pT̄~p = −2λs
∑
~p∈P
|~p|≤es

(
∂sZs(e

2s − ~p 2) + 2Zse
2s
)

(Zse2s +m2
s)

2

×
∑
~q1,~q2

SymW~p,~p,~q1,~q2T~q1T̄~q2 . (5.42)

We start the analysis with some considerations about the r.h.s.. Because of the form of the
interaction matrices W(i) and T~p ∈ G:∑

~p∈P

∑
~q1,~q2

f(~p 2)W(i)
~p,~p,~q1,~q2

T~q1T̄~q2 =
∑
~p,~p ′∈P

f(~p 2)T~p ′ T̄~p ′δpi,p′i . (5.43)

Defining ~p⊥ to be the set (p1, . . . , pi−1, pi+1, . . . , pd), and

f̃(p2
i ) =

∑
~p⊥

f(~p 2) δ

(
d∑
j=1

pj

)
, (5.44)

equation (5.43) can be rewritten as:∑
~p∈P

∑
~q1,~q2

f(~p 2)W(i)
~p,~p,~q1,~q2

T~q1T̄~q2 =
∑
~p∈P

f̃(p2
i )T~pT̄~p. (5.45)

In the same way, because of the closure constraint,∑
~p∈P

∑
~q1,~q2

f(~p 2)W(i)
~q1,~p,~p,~q2

T~q1T̄~q2 =
∑
~p∈P

f(~p 2)T~pT̄~p. (5.46)

We can therefore rewrite (5.42) as

∑
~p∈P

(∂sm
2
s + ∂sZs~p

2)T~pT̄~p = −2λs
∑
~p∈P

(
d∑
i=1

f̃(p2
i ) + d f(~p 2)

)
T~pT̄~p, (5.47)

where

f(~p 2) =
(
A+B ~p 2

)
θ(e2s − ~p 2), (5.48)
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and we have defined

A :=

(
∂sZs + 2Zs

)
e2s

(Zse2s +m2
s)

2
, (5.49)

B := − ∂sZs
(Zse2s +m2

s)
2
. (5.50)

We want to satisfy (5.47) up to order ~p 2, meaning that we want to expand

d∑
i=1

f̃(p2
i ) + d f(~p 2) = d

(
f̃(0) + f(0)

)
+ ~p 2

(
f̃ ′(0) + d f ′(0)

)
+O(~p 4), (5.51)

equating the coefficients of ~p 0 and ~p 2,

∂sm
2
s = −2λs d

(
f̃(0) + f(0)

)
, (5.52)

∂sZs = −2λs

(
f̃ ′(0) + d f ′(0)

)
(5.53)

and discarding the rest. The expansion of f(~p 2) is trivial, as the step function is equal to one at
all orders of the Taylor expansion, and we thus have f(0) = A and f ′(0) = B. The expansion of
f̃(p2

i ) is instead slightly more involved. We can first write f̃(p2
i ) as

f̃(p2
i ) = AS1(p2

i ) +BS2(p2
i ), (5.54)

where

S1(k2) :=
∑
~p⊥

δ

(
k +

∑
l 6=i

pl

)
θ(e2s − k2 − ~p⊥ 2), (5.55)

S2(k2) :=
∑
~p⊥

(k2 + ~p 2
⊥)δ

(
k +

∑
l 6=i

pl

)
θ(e2s − k2 − ~p⊥ 2), (5.56)

so that

∂sm
2
s = −2λs d (A (1 + S1(0)) +B S2(0)) , (5.57)

∂sZs = −2λs (AS ′1(0) +B (d+ S ′2(0))) . (5.58)

Since we shall be mostly interested in the large-s limit (the small-s case will be treated sepa-
rately), we can approximate the sums by integrals, replacing the Kronecker deltas by Dirac deltas.
The support of the integrals is in the intersection of the hyperplane of equation k +

∑
l 6=i pl = 0

and the (d− 1)-ball of radius
√
e2s − k2. Note that the Kronecker delta of the closure constraint

can be rewritten as k + ~p⊥ · ~n = 0, where ~n = (1, 1, ...1) is the vector with all components equal
to 1 in Rd−1. Using the rotational invariance of our integral, we can choose one of our coordinate
axis to be in the direction ~n. If we choose the axis 2 in this direction, our constraint writes as
δ(k + p′2|~n|) = δ(k + p′2

√
d− 1) = δ(k/

√
d− 1 + p′2)/

√
d− 1, and we find the following integral

approximation:

S1(k2) ' 1√
d− 1

Ωd−2

[
e2s − dk2

d− 1

] d−2
2

=: S̃1(k2) (5.59)

S2(k2) ' 1√
d− 1

[ dk2

d− 1
+
d− 2

d

(
e2s − dk2

d− 1

)]
Ωd−2

(
e2s − dk2

d− 1

) d−2
2

=: S̃2(k2), (5.60)



5.2. THE TRUNCATION PROCEDURE FOR T 4
6 127

where Ωd := πd/2/Γ(d/2 + 1) is the volume of the unit d-ball. The integral approximations are
easily expanded to yield:

I1 := S̃1(0) =
1√
d− 1

Ωd−2e
(d−2)s, (5.61)

I2 := S̃2(0) =
1√
d− 1

d− 2

d
Ωd−2e

ds, (5.62)

I3 := S̃ ′1(0) = − 1√
d− 1

d(d− 2)

2(d− 1)
Ωd−2e

(d−4)s, (5.63)

I4 := S̃ ′2(0) = − 1√
d− 1

d(d− 4)

2(d− 1)
Ωd−2e

(d−2)s. (5.64)

Therefore we obtain

∂sm
2
s = −2λs d (A (1 + I1) +B I2) , (5.65)

∂sZs = −2λs (AI3 +B (d+ I4)) , (5.66)

which, using (5.49)-(5.50) and (5.61)-(5.64), can be translated into

∂sm
2
s = −2λsZs

(
2 Ωd−2√

d−1
eds + de2s

)
ηs + 2d

(
Ωd−2√
d−1

eds + e2s
)

(Zse2s +m2
s)

2
, (5.67)

and

ηs =
2d(d− 2)

(d− 1)3/2

λsΩd−2e
(d−2)s

(Zse2s +m2
s)

2 − 2λs

[
d

(d−1)3/2 Ωd−2e(d−2)s + d
] , (5.68)

where we have defined
ηs :=

∂

∂s
log(Zs). (5.69)

• Equation for λs. In order to obtain the equation describing the running coupling constant
flow, we must identify the correct melonic structure among the terms of order (φ̄φ)2 in the r.h.s.
of the flow equation, i.e. in ∑

~p∈P

∂sRs

Ks(~p)
λ2
s

∑
~p ′∈P

Fs(~p, ~p
′)Fs(~p ′, ~p)

Ks(~p)Ks(~p ′)
.

The expression above involves a term of the form

SymW~p,~p ′,~p1,~p2SymW~p,~p ′,~p′1,~p
′
2
,

giving three types of contributions,

W i
~p,~p ′,~p1,~p2

Wj
~p,~p ′,~p′1,~p

′
2
,

W i
~p1,~p ′,~p, ~p2

Wj
~p,~p ′,~p′1,~p

′
2
,

W i
~p1,~p ′,~p,~p2

Wj
~p′1,~p

′,~p,~p′2
,

all depicted in Figure 5.1 below.
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The connectivity of the original melonic interaction induces a selection rule for the inter-
actions generated by the r.h.s of the flow equation. This selection rule is based on the study
of the “ultra-local” version of the interactions depicted in Figures 5.1a, 5.1b and 5.1c, i.e. the
interactions obtained by replacing the propagators with Kronecker delta functions, or equiva-
lently, by the contraction of the dotted lines following the contraction procedure of the Chapter4.
Indeed, this contraction procedure is just to allow us to obtain the connectivity structure of an
interaction, and therefore we do not keep track of the black square (the insertion of the cutoff
operator) in the definition above and in the figures. Of course we shall keep track of that once
we have identified the correct structures.

a

i

j

i

j

c

j

i

b

Figure 5.1: Interactions involved in the r.h.s of the Wetterich equation. The dash-dotted line
represents a contraction involving the operator K−1

s , and the dash-dotted line with a square
represents a contraction involving the propagator P̂ ∂sRsK

−2
s P̂ .

As an example of contraction, we can consider the interaction depicted in 5.1a, for which we
obtain, after contraction over the two dash-dotted lines, the result depicted in Figure 5.2.

i

i

i

i

j

i

j

Figure 5.2: Connecting structure of the interactions 5.1a.

We observe that the first contraction gives exactly a vertex of the original form, while the second
contraction gives a disconnected vertex corresponding to the square of a mass-term, which is
outside of our truncation, and thus will be discarded. As a second example, the case i = 1
and j = 2 for the last 5.1c case gives, after contraction of its two dash-dotted lines, the result
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depicted in Figure 5.3, showing that the interaction does not have the connectivity structure of
a melonic bubble, and will also be discarded.

1

2

1

2

3
4
5

6

Figure 5.3: Connecting structure of the interactions 5.1c with i 6= j

Of all the possible interactions, only those of type 5.1a and 5.1c with i = j, and 5.1b with
i 6= j, respect the connectivity of the original melonic interaction. Therefore, we retain only such
terms for the computation of ∂sλs, i.e. we make the approximation

SymW~p,~p ′,~p1,~p2SymW~p ′,~p,~p3,~p4 '
d∑
i=1

[
W(i)

~p,~p ′,~p1,~p2
W(i)

~p ′,~p,~p3,~p4
+W(i)

~p1,~p ′,~p,~p2
W(i)

~p3,~p,~p ′,~p4
(5.70)

+W(i)
~p,~p ′,~p1,~p2

∑
j 6=i
W(j)

~p3,~p,~p ′,~p4

]
=:
(

¯Sym
2W
)
~p,~p ′,~p1,~p2,~p3,~p4

,

after which we obtain the equation

∂sλsW~p1,~p2,~p3,~p4T~p1T̄~p2T~p3T̄~p4 =4λ2
s

∑
~p,~p ′∈P

(
∂sZs(e

2s − ~p 2) + 2Zse
2s
)

(Zse2s +m2
s)

3
θ
(
e2s − ~p 2

)
(5.71)

×
(

¯Sym
2W
)
~p,~p ′,~p1,~p2,~p3,~p4

T~p1T̄~p2T~p3T̄~p4 .

As before, we want to satisfy this equation to the desired order in ~pi2, in this case meaning
to zeroth order. The easiest way to accomplish that is to project the equation onto the field
T

(0)
~p =

∏d
i=1 δ

0
pi
, leading to the equation:

d∂sλs = 4λ2
s

∑
~p, |~p|≤es

∑
~p ′

(
∂sZs(e

2s − ~p 2) + 2Zse
2s
)

(Zse2s +m2
s)

3
× δ
(

d∑
i=1

pi

)(
¯Sym

2W
)
~p,~p ′,~0,~0,~0,~0

.

Taking into account the closure constraint
∑

i pi = 0, we findW(i)
~0,~p,~p ′,~0

=
∏d

i=1 δ
0
pi

∏d
j=1 δpj ,p′j and

W(i)

~p,~p ′,~0,~0
= δpi,0δ

(∑
j 6=i pj

)∏d
j=1 δpj ,p′j , and as a consequence:

δ

(
d∑
i=1

pi

)(
¯Sym

2W
)
~p,~p ′,~0,~0,~0,~0

=

(
d2

d∏
i=1

δ0
pi

+
d∑
i=1

δ0
pi
δ

(∑
j 6=i

pj

))
δ~p,~p ′ . (5.72)
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As for the mass and anomalous dimension, the flow of λs can be expressed in terms of S1 and
S2, defined in (5.55) and (5.56), giving

∂sλs = 4λ2
s

(
de2s + e2sS1(0)− S2(0)

)
∂sZs + 2e2s

(
d+ S1(0)

)
Zs

(Zse2s +m2
s)

3
, (5.73)

or, in terms of the integral approximations (5.61) and (5.62):

∂sλs = 4λ2
s

(
de2s + 2

d

Ωd−2√
d−1

eds
)
∂sZs + 2

(
de2s + Ωd−2√

d−1
eds
)
Zs

(Zse2s +m2
s)

3
. (5.74)

5.2.2 RG equations for dimensionless parameters

The RG flow equation obtained above describes the evolution of the couplings in our truncation
with respect to the scale/time s. But, as in the quantum field theory or condensed matter models,
a trivial contribution to the evolution comes from the dimension of the operator associated to
these couplings. We define the dimensionless parameters λ̄s and m̄s as

λs = e(6−d)sλ̄s, ms = esm̄s, (5.75)

using the results on the dimension of the local operators introduced in Section 1.2. The flow
equations for the dimensionless couplings are easily deduce from the previous ones. The equation
for ηs is unchanged, and the equations for λs and ms become:

∂sm̄
2
s = −2m̄2

s − 2λ̄s

(
2 Ωd−2√

d−1
+ de(2−d)s

)
∂sZs + 2d

(
Ωd−2√
d−1

+ e(2−d)s
)
Zs

(Zs + m̄2
s)

2
,

∂sλ̄s = (d− 6)λ̄s + 4λ̄2
s

(
d e(2−d)s + 2

d

Ωd−2√
d−1

)
∂sZs + 2

(
d e(2−d)s + Ωd−2√

d−1

)
Zs

(Zs + m̄2
s)

3
.

Another more physical redefinition concerns the relations between the different renormal-
ization parameters. The couplings λs and ms which appear in the original model are not the
effective mass and effective coupling at the scale s. Indeed, the evolution of the wave function
renormalization Zs, from 1 to an arbitrary value, modifies the effective couplings, which become:
λ̄s = Z2

s λ̄
r
s, m̄s =

√
Zsm̄

r
s. Hence, from the two previous equations, we finally deduce:

∂sm̄
r 2
s = −2

(
1 +

ηs
2

)
m̄r 2
s − 2λ̄rs

(
2 Ωd−2√

d−1
+ de(2−d)s

)
ηs + 2d

(
Ωd−2√
d−1

+ e(2−d)s
)

(1 + m̄r 2
s )2

, (5.76)

∂sλ̄
r
s = (d− 6− 2ηs)λ̄

r
s + 4λ̄r 2

s

(
d e(2−d)s + 2

d

Ωd−2√
d−1

)
ηs + 2

(
d e(2−d)s + Ωd−2√

d−1

)
(1 + m̄r 2

s )3
, (5.77)

with:

ηs =
2d(d− 2)

(d− 1)3/2

Ωd−2λ̄
r
s

(1 + m̄r 2
s )2 − 2λ̄rs

[
d

(d−1)3/2 Ωd−2 + de(2−d)s
] . (5.78)
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Note that, similarly to what was found in [10], the system of differential equations we just ob-
tained is not autonomous, in the sense that even after switching to dimensionless couplings it
maintains an explicit dependence on the RG scale s. This was interpreted in [10] (based on
more general cases in which a similar phenomenon takes place, e.g. [23]) as consequence of the
implicit scale set by the compactness of the group, i.e. the radius of S1 ' U(1), an interpreta-
tion corroborated by the recent results of [11], where autonomous equations are obtained in the
non-compact limit U(1)→ R.

In the next section we examine the flow equation in the large-s approximation, or in the UV
limit. In this sector, the equations are much simpler, since they become autonomous, and thus
it is possible to find fixed points, and their relevant or irrelevant perturbations.

5.2.3 Large s approximation, vicinity of the Gaussian fixed point

In the UV regime, corresponding to the large-s limit, the previous equations (5.76), (5.77), and
(5.78), for d > 2, reduce to:

∂sm̄
r 2
s = −2

(
1 +

ηs
2

)
m̄r 2
s − 2λ̄rs

Ωd−2√
d− 1

2ηs + 2d

(1 + m̄r 2
s )2

, (5.79)

∂sλ̄
r
s = (d− 6− 2ηs)λ̄

r
s + 4λ̄r 2

s

Ωd−2√
d− 1

2
d
ηs + 2

(1 + m̄r 2
s )3

, (5.80)

ηs =
2d(d− 2)Ωd−2λ̄

r
s

(d− 1)3/2(1 + m̄r 2
s )2 − 2dΩd−2λ̄rs

. (5.81)

Note that, unsurprisingly, only the melonic contributions survive in the large cut-off limit. These
equation form an autonomous system, whose fixed points can be studied with standard methods.
A trivial fixed point occurs for mr

s = λrs = 0, corresponding to the so-called Gaussian fixed point
(GFP). In order to study the stability of this fixed point, we expand the previous RGEs around
this fixed point, at second order in the coupling constant. We obtain the following system (we
limit the development of ηs to the first order in λs, because the anomalous dimension appears
always as a quantum correction):

∂sm̄
r 2
s = −2m̄r 2

s + 2d
Ωd−2√
d− 1

3d− 2

(d− 1)
λ̄rsm̄

r 2
s − 4d

Ωd−2√
d− 1

λ̄rs −
8d(d− 2)

(d− 1)2
Ω2
d−2λ̄

r 2
s (5.82)

∂sλ̄
r
s = (d− 6)λ̄rs − 4

[
d(d− 2)

d− 1
− 2

]
Ωd−2√
d− 1

λ̄r 2
s , (5.83)

ηs =
2d(d− 2)

(d− 1)3/2
Ωd−2λ̄

r
s. (5.84)

At d = 6 the coupling λ̄rs becomes marginal, and using Ω4 = π2/2 we obtain:

∂sm̄
r 2
s = −2m̄r 2

s +
96π2

5
√

5
λ̄rsm̄

r 2
s −

12√
5
π2λ̄rs −

48

5
√

5
π2λ̄r 2

s (5.85)

∂sλ̄
r
s = −28π2

5
√

5
λ̄r 2
s , (5.86)
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ηs =
24π2

5
√

5
λ̄rs. (5.87)

Then, we recover the (perturbative) asymptotic freedom already obtained at the beginning of
Chapter 4. We insist on the fact that it is not an accident, due to the choice of our regulator.
A general argument, given in Appendix C.1 shows that the one-loop computation is universal,
and therefore does not dependent on the choice of Rs.

For d > 6, the theory is perturbatively non-renormalizable, but the equations (5.82) and (5.83)
show the existence of a non-trivial fixed point for λ̄s and m̄ at:

λ̄∗ =
1

4

(d− 6)(d− 1)3/2

(d2 − 4d+ 2)Ωd−2

, (5.88)

m̄∗2 =
d(d− 6)(d− 1)

d2 − 4d+ 2

3d2 − 16d+ 16

d(d− 6)(3d− 2)− 4(d2 − 4d+ 2)
. (5.89)

For d = 6 the fixed point merges with the GFP, and for small ε = d − 6 it occurs at small
values of the couplings. Therefore the use of the expansion (5.82) and (5.83) is justified (but
note that the mass grows rapidly and diverges at d ' 6.65). In order to analyze the stability of
this fixed point, we compute the first derivative, at the point (m̄2 ∗, λ̄∗) ≡ (g∗1, g

∗
2) of the functions

βi defined by (5.82) and (5.83), where the index i labels the couplings (m̄r 2, λ̄r) ≡ (g1, g2). These
derivatives build the stability matrix β∗ij = ∂βi(g

∗)/∂gj, whose expression for general d is not
particularly enlightening. More important are its eigenvalues (which, up to a sign, correspond to
the so-called critical exponents), which, at leading order in ε, are −2+24ε/7 and −ε, respectively,
meaning that we have two relevant perturbations (an operator is said to be relevant if it becomes
important in the IR limit, irrelevant if it disappears in the IR limit, and marginal for vanishing
critical exponent). Therefore, for small ε > 0 we have asymptotic safety. Whether this survives
or not at ε = 1 is a question that we shall not address here.

For d = 6, (5.82) and (5.83) admit only the GFP, and the stability matrix reads:

β∗ diagij :=

(
−2 −12π2√

5

0 0

)
, (5.90)

with eigenvalues (−2, 0) (for the GFP the critical exponents coincide with the canonical dimen-
sion of the associated operators), and eigenvectors

h1 =

(
1
0

)
, h2 =

(
−6π2√

5

1

)
. (5.91)

The first direction is associated to a relevant operator (the mass), and the second one is marginal.
To decide whether the marginal coupling is marginally relevant (i.e. asymptotically free) or
marginally irrelevant (i.e. trivial) we have to go to the next order in the expansion, as we did in
(5.86).

Rather than expanding (5.82) and (5.83) in powers of the couplings, the flow can be studied
numerically, and this is the subject of the next section (for the case d = 6).

5.2.4 Non-Gaussian fixed point at d=6

At d = 6, the autonomous system (5.79), (5.80), (5.81) has other non trivial fixed points than
the trivial GFP. After a simple analysis of the equations, we find two fixed points, for the values:
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{λ̄∗±, m̄∗±} =

{√
5(43309∓ 79

√
1141)

2135484π2
,
−175±

√
1141

234

}
. (5.92)

As for the Gaussian fixed point, we can study the stability of these fixed points by computing
the eigenvalues of the stability matrix, i.e. the critical exponents. Diagonalizing the stability
matrix at the two fixed points, we find:

β
(+) diag
ij ≈

(
4.86 0

0 −0.9

)
, (5.93)

β
(−) diag
ij ≈

(
262.8 0

0 7

)
, (5.94)

showing that the fixed point {λ̄∗+, m̄∗+} has one relevant and one irrelevant direction, whereas
the other one has only irrelevant directions.

The result is very similar to the one obtained in [10] for a TGFT of rank-3 without closure
constraint. As for that model, we find the existence of non-trivial fixed points (one of which car-
rying one relevant eigen-direction) in the critical dimension at which the model is asymptotically
free. Note that, as we have seen in Section 5.2.3, moving infinitesimally away from the critical
dimension implies the loss of asymptotic freedom, but a new non-trivial fixed point emerges
from the Gaussian one. Such merging or splitting of fixed points near the critical dimension are
standard phenomena, but have nothing to do with the fixed points (5.92), which appear precisely
at the critical dimension. On the contrary, this is not a standard phenomenon, and it has to be
attributed to the non-local structure of the TGFT interaction.
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Figure 5.4: The flow diagram at large cutoff. The blue dot is the GFP, while the red and black
are the non trivial ones, labelled with + and −, respectively. The black line corresponds to the
singularity of the flow equations, which disconnects the shaded region from the GFP. In green
and brown are respectively the eigen-perturbation for the GFP and the NGFP.
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The numerical integration of the large-s flow leads to the phase diagram of Figure 5.4, which
shows again a strong resemblance to the one found in [10]. Note that, due to our choice of trun-
cation (5.31) and parametrization, and in particular due to the choice of the regulator (5.40), the
flow equations (5.79), (5.80), and (5.81) have singularities at λ̄r = 53/2(1 + m̄r 2)2/6π2. A similar
singularity was found in [10], where its origin is discussed in more details. As a consequence of
that singular line, the fixed point {λ̄∗−, m̄∗−} is disconnected from {λ̄∗+, m̄∗+} and the GFP.

The non-Gaussian fixed point {λ̄∗+, m̄∗+} is a reminiscence of the Wilson-Fisher fixed point.
It appears as an IR fixed point associated to a broken phase, with positive coupling and nega-
tive mass. More precisely, as discussed in [10], the region above the irrelevant trajectory at the
NGFP can be interpreted as a symmetric phase, with coupling and mass of the same sign, and
the region below this irrelevant trajectory has a broken phase, with negative mass and positive
coupling.

Within the present truncation, our conclusion about the existence of such non-trivial fixed point
is only valid in the large cutoff limit, i.e. in the UV limit. Therefore, the occurrence of a non-
trivial behavior associated to the broken phase rests upon the survival of such fixed points in
the IR, and this is why we need to look at the counterpart of the regime studied in this section,
the small cutoff limit, in the next section.

Finally, computing the anomalous dimension for the two non-trivial fixed points, we find:

η+ ≈ 0.68, η− ≈ −7.27 . (5.95)

As a result, the qualitative criteria that we have discussed in the Section 5.2 seems to be failed.
Indeed, it can be easily cheeked from equation 5.34 that, with η∗ = 0.68, the truncation have to
include interactions of valence six, which become essentials. Then, the dependence of our result
on the choice of the truncation becomes unclear. We will return on this question in the next
Chapter, where other pathological effects will occur.

5.2.5 Small-s limit

When the cutoff becomes very small, es < 1, all the sums in 5.2.1 reduce to a single element,
the zero mode ~p = ~0. In this limit, for the sums defined in (5.55) and (5.56), we find S1 = 1 and
S2 = 0, independently of k < es. Therefore, from equations (5.57), (5.58), and (5.73), we find
that the anomalous dimension vanishes, implying that we are free to choose Zs = 1, and that
the beta function becomes, in d = 6:

∂sm
2
s = −48λs

e2s

(e2s +m2
s)

2
, (5.96)

∂sλs = 56λ2
s

e2s

(e2s +m2
s)

3
. (5.97)

Using the rescaling ms = esm̄s and λs = e4sλ̄s leads to the following autonomous system:

∂sm̄
2
s = −2m̄2

s − 48
λ̄s

(1 + m̄2
s)

2
, (5.98)

∂sλ̄s = −4λ̄s + 56
λ̄2
s

(1 + m̄2
s)

3
. (5.99)
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In addition, as in the previous case, the system admits again a GFP, and a NGFP for the values:

λ̄∗ =
49

13718
, m̄∗ = −12

19
. (5.100)

In order to study the stability of these fixed points, we compute the matrix βij as before. For
the Gaussian fixed point, we find:

βGFPij =

(
−2 −48
0 −4

)
, (5.101)

whose eigenvalues (−4,−2) correspond to the two relevant eigen-directions.

For the non-Gaussian fixed point, we find the matrix:

βNGij =

(
34
7

−17328
49

− 42
361

4

)
, (5.102)

with eigenvalues (76/7,−2), corresponding to one relevant and one irrelevant direction. As in
the large s limit case, the numerical integration of these flow equations gives Figure 5.5 below.

Note that in this IR regime the rescaling for the mass and coupling constant does not corre-
spond to the canonical one defined in Section 5.1.2. Again, this is a consequence of the fact that
at small s our model is essentially a zero dimensional field theory, and our rescaling matches
exactly with the one expected for such a theory, by fixing to zero the dimension of the (effective)
action, and to 1 the dimension of the mass parameter. Indeed, by direct inspection of our trun-
cation (5.31), we find [λ] = 4. This is an essential indication of the symmetric phase restoration
in our model, as ultimately expected for a field theory on a compact space. Indeed phase tran-
sitions strictly speaking only occur in an infinite volume limit7. that is in the thermodynamic
limit or, in other words, for a non-compact manifold. This limit, in our case, can be approached
by restoring in our expressions the radius L of S1 ' U(1), here always fixed to 1, and by sending
this radius to infinity. Such a non-compact limit has been recently studied in [11], confirming
that in this limit we recover a picture identical to the large-s regime, and thus a non-trivial
phase transition.

We have not extended our results in the intermediate cutoff regime, between small and large
cutoff, but the two asymptotic regimes being qualitatively very similar to the ones in [10], we
expect the intermediate regime to add no new qualitative insight with respect to the analysis
performed there.

7For a related discussion on effective dimensional reduction and symmetry restoration see also [26].
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Figure 5.5: The flow diagram at small cutoff. The color rules are the same as in Figure 5.4. Ordi-
nary trajectories are in blue, eigen-perturbations of the GFP are in green, and eigen-perturbation
of the NGFP are in brown.

5.3 Discussion

Among the many results obtained with the renormalization group, two of the most famous are
certainly the asymptotic freedom of QCD and the non-trivial IR behavior of scalar field theories
below the critical dimension, due to the presence of a Wilson-Fisher fixed point. However, the
two phenomena are hard to find in the same system: the non-trivial IR behavior of QCD is
due to confinement, not to an IR fixed point, and the marginal couplings of scalar field theories
do not go to zero in the UV, running instead into Landau poles. One example of coexistence
is provided by gauge theories with Nf massless fermions, with Nf close to the critical number
above which asymptotic freedom is lost: in such cases we find the so-called Banks-Zaks fixed
point [1]. However, such a fixed point is not a generic feature of gauge theories, it exists only for
a restricted “fine-tuned” range of parameters. The result obtained in this chapter is interesting
in this respect, since it provides an explicit example of coexistence of asymptotic freedom with
a Wilson-Fisher fixed point. Moreover it is quite general, as this coexistence has been stressed
for other TFGTs, for instance in [10].

For quantum gravity, the main lessons of this non-perturbative analysis can be summarized
as follows. First, we have shown that the presence of the closure constraint can be incorporated
in the FRG formalism without too much pain. We have thus obtained a Wetterich equation for
this class of TGFTs.

Second, in the UV limit, we have found a non-Gaussian fixed point, of which we have stud-
ied the stability, and identified the critical directions. Interestingly, this non-trivial fixed point
has qualitatively similar characteristics as the Wilson-Fisher one, and is associated to a phase
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transition in the flow diagram.
Lastly, in the IR sector, due to the compactness of the group manifold, we have obtained

an effective zero-dimensional theory, with symmetry restoration in the deep IR. This is not
surprising, given the compact nature of the manifold. The compactness of space can be seen
as an additional regularization, to be removed in order to study the non-compact limit [11], or
otherwise we can see the latter as the UV approximation, as we did here. In the non-compact
limit we are left with just the large-s regime of the analysis (because s = ln(kL), if L is the radius
of S1 and k the dimensionful RG scale), and thus with a non-trivial IR fixed point associated to
a phase transition between a broken and a symmetric phase.

Overall, the above picture is strikingly similar to the one obtained in [10], and in part to
the one in [11], despite the models having essential differences. The model in [10] is in three
dimensions, whereas our is in six; the model in [10] has no closure constraint, whereas our
does; and the model in [10] has a kinetic term linear in momentum, whereas our is quadratic.
These are all important differences. Nevertheless the fact that the final result is so similar points
towards the conclusion that the non-local tensorial melonic nature of the interaction is the
most important feature responsible for this similarity between the two models. We are therefore
tempted to conjecture that renormalizable TGFTs with melonic quartic interactions enjoy in
quite some generality not only asymptotic freedom, but also a Wilson-Fisher-like fixed point.
Of course, the approximation we used here is the simplest one, and making our result more
solid will require to study larger truncations. Also more models should be studied in order to
understand whether our conjecture applies to all asymptotically free TGFTs or only to some
specific sub-class. Grasping also at a more qualitative level how this common feature arises is
also an open question. Ideally we should try to relate it to some kind of universal argument just
as asymptotic freedom in quartic TGFTs was understood to simply arise from the combinatorics
of wave function versus coupling constant renormalization in [29]). We are just at the beginning
of the FRG investigations of TGFTs and hopefully these and other aspects will be clarified soon.
The models that we study in the rest of this thesis already allow to identify some general aspects.
However, some additional material seems to be required to come to the claim that “there exists
a Wilson-Fisher fixed point” and to make it a solid result. For the original Wilson-Fisher fixed
point, the claim is supported by a ε-expansion, which allows to keep control on the distance
between the non-trivial fixed-point and the Gaussian one. More concretely, the expansion of the
beta function for the coupling g of the φ4-theory leads to:

β(g) = −εg +
3

16π2
g2 +O(g3, εg2) , (5.103)

which shows a fixed point for g∗ = 16π2ε/3. Unfortunately, in the TGFT context, such an
expansion is yet unknown. But a promising way to investigate this question is based on a
modification of the propagator so that the coupling constant remains marginal in any dimension
[28]. The hope is that such a modified theory may have a well-defined 1/d expansion, allowing
to gain control over the distance between fixed points, as in the standard ε-expansion.
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Appendix C

Universality of the one-loop beta function

In this section we review a well-known argument explaining why the one-loop beta function does
not depend on the choice of the regularization, and we give an explicit example of this result for
the computation of the beta function for T 4

6 with the FRG method around the Gaussian fixed
point using a different regulator than the one used in the main part of the paper. Note that a
similar regulation will be used in the next chapter for a non-Abelian TGFT.

C.1 A standard argument for one-loop universality
Different computational schemes result from physical predictions being made in terms of different
couplings. Suppose that in some scheme we have a dimensionless coupling λ, whose flow equation
reads

∂sλ = b1λ
2 + b2λ

3 + b3λ
4 + . . . . (C.1)

In a different scheme we have a different coupling λ′ with flow

∂sλ
′ = b′1λ

′2 + b′2λ
′3 + b′3λ

′4 + . . . . (C.2)

At tree level the two couplings are the same, because tree level does not involve any ambiguity,
thus the relation between the two couplings must be of the form

λ′ = λ+ C1λ
2 + C2λ

3 + . . . . (C.3)

Now write

∂sλ
′ =

∂λ′

∂λ
∂tλ

= (1 + 2C1λ+ 3C2λ
2 + . . .)(b1λ

2 + b2λ
3 + b3λ

4 + . . .) (C.4)
= b1λ

2 + (2C1b1 + b2)λ3 + (3C2b1 + 2C1b2 + b3)λ4 + . . .

= b1λ
′2 + b2λ

′3 + (b3 − 2C1b2 − C2
1b1 + C2b1)λ′4 + . . . ,

where in the last row we used the inverse of (C.3),

λ = λ′ − C1λ
′2 − (C2 − 2C2

1)λ′3 + . . . , (C.5)

and we assumed that ∂tC1 = 0. Therefore, under these assumptions, b1 and b2, i.e. the one- and
two-loop coefficients of the beta function, are scheme independent.

Note that if ∂sC1 6= 0, the flow of λ′ is not autonomous, unless C1 = as + b, or unless the
s-dependence of C1 is related to the beta function of another coupling. This is precisely what
happens in general within the FRG, which is a mass-dependent renormalization scheme [27].
However, when expanding the beta functions around zero mass, the above argument must hold
true also for the FRG.
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C.2 Example with a different regulator
As we mentioned in section 5.2.3, the choice of a cutoff function corresponds to a choice of coarse
graining scheme. Different choices thus affect the flow, but we expect that physical quantities,
such as the critical exponents, will not depend on it. As we argued above, one such quantity is
the one-loop coefficient of the beta function for the marginal coupling. To illustrate this point
more explicitly, we choose here a different regulator:

R ′s(~p) =
Zs~p

2 +m2
s

exp
[
Zs~p 2+m2

s

Zse2s

]
− 1

, (C.6)

and study the large cutoff limit (s� 1) of the flow equations around the Gaussian fixed point,
in order to compare them with the ones obtained in section 5.2.3. At the leading order inλs, i.e.
discarding the derivative of Zs, the derivative of the regulator writes as:

∂sR
′
s(~p) '

2

e2sZs

[
Zs~p

2 +m2
s

e(Zs~p 2+m2
s)/Zse

2s

]2(
1− e−(Zs~p 2+m2

s)/Zse
2s)2

. (C.7)

Following the same procedure as in section 5.2.1, we find the three equations:

∂sm
2
s ' −

4λs
Zs

∑
~p∈Z6

e−2se−
Zs~p

2+m2
s

e2s δ
(∑

i

pi

)
× SymW~p,~p,~0,~0, (C.8)

∂sZs ' −
4λs
Zs

d

dk2

[∑
~p∈Z6

e−2se−
Zs~p

2+m2
s

e2s δ
(∑

i

pi

)
× SymW~p,~p,~k,~k

]
k=0

∂sλs '
8λ2

s

Zse2s

∑
~p∈Z6

e
−Zs~p

2+m2
s

Zse2s − e−
Zs~p

2+m2
s

Zse2s/2

Zs~p 2 +m2
s

δpi,0δ
(∑

i

pi

)
. (C.9)

For each of these equations the leading order can be easily extracted. Using the following sum
formula ∑

n∈Z
e−αn

2

eiβn =
(π
α

)1/2∑
n∈Z

e−
|β+2πn|2

4α

=
(π
α

)1/2

e−
β2

4α

(
1 + 2

∑
n>0

e−
π2n2

α cosh

(
πnβ

α

))
, (C.10)

the Fourier decomposition of δ
(∑

i pi

)
and the distributional identity:

e−β
2/4α =

∑
n

√
4π

n!
[α1/2]2n+1δ(2n)(β), (C.11)

we find:

∂sm
2
s ' −

24π2

√
5

λs
Z2
s

e2s, (C.12)
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η(s) ' 24π2

5
√

5

λs
Z2
s

, (C.13)

∂sλs '
4π2

√
5

λ2
s

Z2
s

. (C.14)

Using both equations (C.13) and (C.14), we find for the effective coupling λs/Z2
s := λrs:

∂sλ
r
s ' −

28π2

5
√

5
λr 2
s , (C.15)

in agreement with our results of section 5.2.3, and with the universality argument.
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Chapter 6

Flowing rank-3 TGFTs in the UV

In this chapter, we address the issue of the non-perturbative technique developed in the pre-
vious chapter for rank-3 TGFTs with Laplacian kinetic operator. It has been established that
just-renormalizable models support group manifold of dimension 3 and 4, for which we can
thinks about SU(2) and SU(2) × U(1). These group manifolds, and in particular SU(2), are
interesting in a quantum gravity perspective, and the existence of just-renormalizable models
is already an interesting point. However, as far as we know, we do not have for the moment
any satisfactory physical understanding of this term in a quantum gravity perspective. Yet, the
results of the previous chapter seem to be improving this situation, as shown by the occurrence
of IR attractive fixed points with non-zero mass. Ultimately, in the deep IR, the effect of the
Laplacian becomes irrelevant, and the theory becomes essentially ultralocal, as required for spin
foams amplitudes. In this point of view, the Laplacian operator can be understood as a deep
UV property of the GFT, needed for the UV completion but for which no quantum gravity
interpretation is required. In this point of view, a non perturbative analysis is interesting in a
physical perspective. But it is also interesting for another deep reason. The model based on the
group manifold SU(2), which is the most interesting, involves interactions of valence six. It has
been studied in perturbation theory [1], and the beta functions as well as the qualitative picture
of the phase space around the Gaussian fixed point have been obtained. In particular, the author
of [1] shows that, despite the domination of the wave function renormalization, large domains
of the phase space are incompatible with asymptotic freedom. As a result, the consistency of
the theory in the UV is not guaranteed, as for the asymptotically free quartic models studied in
Chapter 4. The natural question is then to investigate the existence of non-trivial fixed points
whose properties provide a natural UV completion, and make the theory at least asymptotically
safe. Generally, this question is difficult, and requires non-perturbative methods. The problem
is in fact very close to the situation in standard Euclidean field theory in dimension 3, and the
most popular and simpler way to discuss the occurrence of non-Gaussian fixed points is to define
a formal continuation in dimension 4−ε, interpolating between the φ4 model in dimension 4 and
the φ6 model in dimension 3. The same trick has been used successfully in the TGFT context [2].
Indeed, defining an analytic continuation on the group manifold SU(2)× U(1)D−3 with respect
to the parameter ε = 4 − D, we interpolate between a quartic asymptotically free model and
the φ6 model for D = 3. The author of [2] shows that this ε-expansion implies the existence of a
non-trivial fixed point very similar to the Wilson-Fisher fixed point, and suggests that the theory
is indeed asymptotically safe. However, as for standard Euclidean field theory, this conclusion
may be supported by a non-perturbative analysis, which is the aim of this chapter. The results
that we shall discuss here rely primarily on [3, 4] (works in preparation), as well as on references
[1, 2, 8], and on other yet unpublished results. In fact, we shall focus on the Abelian version
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of the model, on (U(1)D)×3, the non-Abelian case being discussed in [3]. The interest of this
approximation is essentially motivated by simplicity. Indeed, the Abelian version can be easily
treated analytically using Litim’s regulator. Moreover, the two versions of the theory have the
same gauge invariance, the same interactions, and we claim that they are in the same universal-
ity class. This chapter is then essentially a spoiler of the results of the corresponding papers in
preparation.

The organization of the chapter is the following. We start by a short overview of the classification
of just-renormalizable models in dimension 3, which can be understood as an addendum to
Chapter 4. Then, we move on to the quartic model in dimension D = 4, for which we deduce
the flow equation in a quartic truncation, and show that the phase space has essentially the
same structure as for the T 4

6 studied in Chapter 5. We then extend our flow equations into
arbitrary dimension D, and perform an analytic continuation from D = 4 to D = 3. We show
the occurrence of a new fixed point whose characteristics match with the ones obtained in the
perturbative ε-expansion, and we show its persistence for large values of ε. Finally, we discuss
the case D = 3 in a truncation around the marginal φ6 interactions, and find non-trivial fixed
points which both valid the ε-expansion and provide a new argument in favor of asymptotic
safety. Note that we restrict our attention to the UV limit, essentially because we are ultimately
interested by the UV completion of the theory.

6.1 Just-renormalizable models in dimension 3

The power counting Theorem obtained in Chapter 4 does not depend on the specific family of
models that we have considered, and there are no reference to the specific form of the interactions
in the proof. Moreover, this is also true for our conclusions about the leading order sector, and
it is not hard to see [5, 6] that for any non-vacuum Feynman graph G :

F (G)−R(G) = (d− 2)(L(G)− V (G) + 1) + ρ(G) , (6.1)

where ρ is bounded by 0, for melonic graphs, and strictly negative when G is not melonic. A
proof of this property can be found in [5, 6], but intuitively comes directly from the definition
of melonic graphs. Indeed, after contraction of a spanning tree, the remaining L − V + 1 lines
must be ordered such that each contraction of a line costs exactly d− 2 (the contraction deletes
d − 1 internal faces, and decreases the rank by 1). Moreover, it is easy to check that this way
is optimal, so that any deviation to the melonicity costs at least one unit at a given step with
respect to the optimal configuration.

In full generalities, we consider a model with interactions of maximal valence 2pmax. Then, the
number of vertices of a graph G writes as: V (G) =

∑pmax
p=1 Vp(G), and using the topological relation

:
2L(G) =

∑
p

2pVp(G)−N(G) , (6.2)

where N(G) denotes the number of external lines of G, the divergent degree ωmelo(G) for the
melonic graphs writes as:

ωmelo(G) = D(d− 2)− N(G)

2
[D(d− 2)− 2] +

∑
p

[D(d− 2)(p− 1)− 2p]Vp . (6.3)
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We recall that for a renormalizable theory the power counting does not increase with the number
of vertices. Setting d = 3, we find two just-renormalizable models with melonic interactions:

• For D = 4, with melonic interactions of maximal valence pmax = 4, of the same type as we
have considered in Chapter 4.

• For D = 3, with melonic interaction of maximal valences pmax = 6.

The last category will be considered in Section 6.3. First we shall have a look at the quartic
melonic model, as in Chapter 5. More precisely, we shall perform our analysis for arbitrary D,
and we shall see that the resulting beta functions can be analytically continued to non-integer
values of D. In a second time, we shall discuss a truncation up to melonic interactions of valence
six for D = 3, and compare the fixed points with the analytic continuation in D.

The canonical dimension of the melonic interaction comes directly from the expression 6.1 as a
simple extension of our discussion of Chapter 5. Hence, for arbitrary D and d = 3, the canonical
dimension of the coupling λb, associated to a bubble b of valence nb, is:

[λb] := D − nb
2

(D − 2) . (6.4)

Note that, as in standard quantum field theory, we recover that renormalizable interactions have
positive or null dimensions.

6.2 FRG for Quartic model with 3 < D ≤ 4 in the deep UV
In this Section we discuss the application of the FRG method to the quartic model in dimension
D. We shall see that the resulting system of differential equations supports an analytic continu-
ation from D = 4 to D = 3, and we shall explore the behavior of the phase space between these
two limits.

6.2.1 Truncation and β-functions

The theory has essentially the same structure as the one studied in Chapter 5, and we can
transpose our method in this case. The first step is to choose a regulator and a truncation. In
the notation of Chapters 4 and 5, we consider the IR Litim’s regulator:

Rs(~p) = Z(s)(e2s − ~p 2)Θ(e2s − ~p 2) , (6.5)

and the following truncation around the quartic melonic interactions:

Γs[T̄ , T ] =
∑

~p∈ZD×d
Z(s)T̄~p

(
~p 2 + m̄2(s)e2s

)
T~p

+ e(4−D)sZ2(s)λ̄1(s)
3∑
`=1

∑
{~pi} i=1,...,4

W(`)
~p1,~p2,~p3,~p4

T~p1
T̄~p2

T~p3
T̄~p4

, (6.6)

in which we used the dimensionless renormalized couplings m̄2(s) and λ̄1 instead of the bare
couplings. Except for the dimension of the group manifold and the value of the rank of the
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tensors, the Wetterich equation derived in the previous chapter remains structurally unchanged:

∂sΓs =
∑
~p∈Z3D

∂kRk(|~p|) ·
[
Γ

(2)
k +Rs

]−1
(~p, ~p)δ

( 3∑
i=1

pi

)
. (6.7)

Thus, our results of Chapter 5 can be directly translated in this case with minor modifications.
We recall that, in the UV limit, which is the sector in which we focus in this chapter, only the
melonic diagrams are relevant. Then, in the same notations as in the previous chapter, we find:

(∂s + 2 + η(s))m̄s = −6λ̄(s)e−(2+D)sη(s)[S1(0)e2s − S2(0)] + 2S1(0)e2s

(1 + m̄2(s))2
, (6.8)

(∂s + 4−D + 2η(s))λ̄ = 4λ̄2(s)e−(2+D)sη(s)[S1(0)e2s − S2(0)] + 2S1(0)e2s

(1 + m̄2(s))3
, (6.9)

η(s) = − 4λ̄S ′1(0)e(2−D)s

(1 + m̄2(s))2 + 2λ̄e−Ds[S ′1(0)e2s − S ′2(0)]
, (6.10)

where the sums involved in these expressions are the following:

S1(k2) =
∑
p1,p2

Θ(e2s − p2
1 − p2

2 − k 2)δ(p1 + p2 + k) , (6.11)

S2(k2) =
∑
p1,p2

(p2
1 + p2

2 + k 2)Θ(e2s − p2
1 − p2

2 − k 2)δ(p1 + p2 + k) . (6.12)

As announced in the first section and in the introduction, we shall limit our attention to the UV
sector, in which the sums can be legally replaced by their integral approximations. Following the
same strategy and in the same notations as in the previous chapter, it is not hard to find:

S1(~k
2
) ≈ I1(~k

2
) :=

ΩD

(
√

2D)D

(
e2s − 2D + 1

2D
k 2

)D/2
, (6.13)

S2(k2) ≈ I2(k2) := I1(k)k 2 +
ΩD

(
√

2D)D
D

D + 2

(
e2s − 2D + 1

2D
k 2

)D+2
2

, (6.14)

leading to the autonomous system of differential equations:
βm = −(2 + η)m̄2 − 12ΩDλ̄

(2D)D/2
1+ η

2+D

(1+m̄2)2 ,

βλ = −(4−D + 2η)λ̄+ 8ΩDλ̄
2

(2D)D/2
1+ η

2+D

(1+m̄2)3 ,

η = 2D+1
(2D)D/2

ΩDλ̄

(1+m̄2)2−2
ΩD

(2D)D/2
λ̄
.

(6.15)

As announced, the beta functions are analytic functions which can be formally continued ana-
lytically to non-integer values. This is the starting point of the standard ε-expansion.
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6.2.2 D=4: RG-flows and fixed points

We start our analysis by the case D = 4. In this case, our flow equations reduce to the following
autonomous system: 

βm = −(2 + η)m̄2 − π2λ̄
64

6+η
(1+m̄2)2 ,

βλ = −2ηλ̄+ π2λ̄2

96
6+η

(1+m̄2)3 ,

η(s) = 9
128

π2λ̄

(1+m̄2)2−π2

64
λ̄
.

(6.16)

The behavior of the system is quite similar to the T 4
6 studied in the previous chapter. In partic-

ular, in addition to the trivial UV-stable Gaussian fixed point, we find two non-Gaussian fixed
points, and one of them is reminiscent of the Wilson-Fisher fixed point.

• Gaussian fixed point. The previous system admits a trivial fixed point for the values λ̄ = m̄ = 0,
around which it reduces to: 

βm ≈ −2m̄2 − 3π2

32
λ̄ ,

βλ ≈ −5π2

64
λ̄2 ,

η(s) ≈ 9π2

128
λ̄ .

(6.17)

Hence, as for the model studied in Chapter 5, the Gaussian fixed point is UV-stable, and the
model is perturbatively asymptotically free. Without surprise, the computation of the stability
matrix βij shows that we have one relevant and one marginal direction, respectively for the
eigenvalues −2 and 0. Moreover, note that we recover the values computed at the one-loop order
at the beginning of Chapter 4, in accordance with the universality argument discussed in the
Appendix of Chapter 5.

• Non-Gaussian fixed points. As spoiled before, in addition to the Gaussian fixed point, we have
two non-Gaussian fixed points, for the values (λ̄, m̄2):

FP1 ≈ (0.32;−0.59) FP2 ≈ diag(0.58;−0.80) . (6.18)

The computation of the eigenvalues of their respective stability, which are the opposite values
of the critical exponents, leads to:

βFP1 ≈ diag(5.31,−2.24) , βFP2 ≈ (64, 82, 7.90) . (6.19)

The fixed point FP1 has then one relevant (UV-attractive) direction and one irrelevant (UV
repulsive) direction, whereas the fixed point FP2 has two irrelevant directions. Moreover, this
fixed point is under the singularity line defined by the zeros of the denominator of the anomalous
dimensions :(1 + m̄2)2 − π2

64
λ̄ = 0. The situation is then very reminiscent of the UV-behavior of

the T 4
6 model. The system can be numerically integrated, providing the phase diagram pictured

in Figure 6.1.
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Figure 6.1: Flow of the theory in the deep UV with D = 4. The blue, red and black points
are respectively the Gaussian fixed points, and the two non-Gaussian FP1 and FP2. The green
and brown lines are respectively the eigenperturbations around the Gaussian and the FP1 fixed
points. The thick black line is the sigularity of the flow.

We recover in this case a large river effect [7], meaning that along the eigendirections connecting
the three fixed points, the trajectories in a neighborhood of these eigendirections get closer
and closer in the UV, and reach the corresponding fixed point. Then, the relevant directions of
the non-Gaussian fixed point FP1 appear as a critical surface separating the lines reaching the
Gaussian fixed point of the lines reaching the singularity line. Once more, this scenario suggests
a phase transition between a symmetric and a broken phase, with non-zero expectation value of
the field operator. Finally, computing the value of the anomalous dimension, we find ηFP1 ≈ 1.80.
The effect of the neglected irrelevant couplings is then highly enhanced in the vicinity of this
point.

6.2.3 Analytic continuation in D, from 4 to 3

We now move on to the essential purpose of this section, which is the study of the behavior
of the analytic continuation in D, interpolating between D = 3 and D = 4. We introduce the
interpolation parameter ε := 4−D. First, we can consider ε as an infinitesimal parameter, and
perform a perturbative expansion both in the couplings and ε. The system 6.2.1 reduces to:

βm ≈ −2m̄2 − 3π2

32
λ̄ ,

βλ ≈ −ελ̄− 5π2

64
λ̄2 ,

η(s) ≈ 9π2

128
λ̄ .

(6.20)

As a result, in addition to the Gaussian fixed point, the flow equations admit a non-Gaussian
fixed point, which occurs at the perturbative level for the values:

λ̄∗ = − 64

5π2
ε , m̄2

∗ =
3

5
ε , (6.21)
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leading to eigenvalues for the stability matrix:

β∗ = diag

(
− 2− 3

2
ε, ε

)
. (6.22)

Once again, the characteristics of this fixed point are quite similar to the Wilson-Fisher fixed
point, and the qualitative phase diagram is pictured on Figure 6.2. We have one UV-attractive
and one UV-repulsive direction, and the ε-expansion allows to keep an analytic control on the
distance separating this fixed point from the Gaussian one. Moreover, the universality of the one-
loop computations ensures that our conclusions do not depend on the choice of the regulator.
The only particularity of this fixed point is that it has “wrong signs”. The mass is positive, and
the coupling λ̄ is negative, a result which has already been pointed out by the author in [2]. This
result may be pathological, because it breaks down the convergence of the path integral in the
definition of the partition function. However, we note that our analytic continuation is highly
formal, and no real models have non-integer values for D.

λ̄

m̄2

m̄2
∗

λ̄∗

Figure 6.2: Qualitative phase space around the Gaussian fixed point for small ε.
More precisely, we are only interested by the continuity of the path from ε = 0 to ε = 1, and at
this stage we have a priori no problem of convergence on the boundaries of this path. Indeed,
for ε = 0, the non-Gaussian fixed point disappears, and for ε = 1, a negative value for λ̄ is
not necessarily a problem because the just-renormalizable truncation receives at least marginal
interactions of valence six, which enforce the convergence of the path integral if their couplings
are positive.
The FRG formalism allows to go beyond the ε-expansion, and to track the evolution of this
new fixed point from ε = 0 to ε = 1−. Figure 6.3 shows the phase space obtained by numerical
integration for the values D = 3.9, D = 3.5 and D = 3.1. The new fixed point, that we call FP3,
deviates more and more from the Gaussian fixed point when we increase the value of ε, but the
qualitative structure of the phase space remains unchanged.

Fixed Points λ̄ m̄2 η θ+ θ−

FP1(D = 3.9) 0.27 -0.60 1.75 -5.55 2.24
FP3(D = 3.9) -0.13 0.06 -0.09 2.26 -0.17
FP1(D = 3.5) 0.14 -0.60 1.70 -6.62 2.24
FP3(D = 3.5) -0.69 0.38 -0.40 2.53 -0.34
FP1(D = 3.1) 0.08 -0.61 1.35 -7.73 2.24
FP3(D = 3.1) -1.55 0.87 -0.67 2.71 -0.47
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Figure 6.3: From left to right: flow equation in the deep UV with D = 3.9, D = 3.5, and D =
3.1. The black points correspond to the non-Gaussian fixed point FP3, and the orange lines
correspond to its eigenperturbations.

Figure 6.4: Summary of the properties of the non-Gaussian fixed points FP1 and FP3 for three
values of the dimension D. The critical exponents θ± are the opposite values of the eigenvalues
of the stability matrix: β∗ =: diag(−θ+

∗ ,−θ−∗ ).

Again, our conclusions about phase transitions hold. We observe the splitting of the phase space
in connected regions (i.e. which are not connected by any flow trajectory) separated by relevant
eigenperturbations around the fixed points FP1 and FP3. We summarize the properties of the
fixed points for the three values of D considered on Figure 6.3 and on Table 6.4.

6.3 RG-flows of the D = 3 model

6.3.1 Truncation and β-functions

With D = 3, we have to keep melonic interactions of valence six in order to make a truncation
around marginal couplings. As a result, we consider a truncation of the form:

Γs[T̄ , T ] =
∑
~p

Z(s)

(
~p2 + e2sm̄2(s)

)
T~pT̄~p

+ Z2(s)esλ̄4(s)
3∑
`=1

∑
{~pi} i=1,...,4

W(`)
~p1,~p2,~p3,~p4

T~p1
T̄~p2

T~p3
T̄~p4

+

+ Z3(s)λ̄6,1(s)
3∑
`=1

∑
{~pi} i=1,...,6

X (`)
~p1,~p2,~p3,~p4,~p5,~p6

T~p1
T̄~p2

T~p3
T̄~p4

T~p5
T̄~p6

+ Z3(s)λ̄6,2(s)
3∑
`=1

∑
{~pi} i=1,...,6

Y(`)
~p1,~p2,~p3,~p4,~p5,~p6

T~p1
T̄~p2

T~p3
T̄~p4

T~p5
T̄~p6

. (6.23)
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The interaction bubbles involved in the action Γs[T̄ , T ] are associated to the following bubbles:

` ` ←→
∑

{~pi} i=1,...,4

W(`)
~p1,~p2,~p3,~p4

T~p1
T̄~p2

T~p3
T̄~p4

(6.24)

`

``

←→
∑

{~pi} i=1,...,6

X (`)
~p1,~p2,~p3,~p4,~p5,~p6

T~p1
T̄~p2

T~p3
T̄~p4

T~p5
T̄~p6

(6.25)

` ←→
∑

{~pi} i=1,...,6

Y(`)
~p1,~p2,~p3,~p4,~p5,~p6

T~p1
T̄~p2

T~p3
T̄~p4

T~p5
T̄~p6

, (6.26)

where the index ` runs from 1 to 3 and characterizes each bubble (up to automorphisms). Note
that we have used the notations λ̄4, λ̄6,1, λ̄6,2 for the coupling constant, in accordance with the
standard conventions in the literature. Moreover, for the rest of this chapter we shall freely sub-
stitute bubble drawings for the interactions they represent.

We have now all the material to move on to the extraction of the truncated flow equations for
the couplings from the full Wetterich equation 6.2.1. We write the second derivative of Γs as:

Γ(2)
s [T̄ , T ](~p, ~p′) = Z(s)

(
−∆ + e2sm̄2(s)

)
P̂ (~p, ~p′)

+Fs,(1)[T̄ , T ](~p, ~p′) + Fs,(2)[T̄ , T ](~p, ~p′) , (6.27)

in such a way that all the field-dependent terms of order 2n are in Fs,(n), and where we have
introduced:

P̂ (~p, ~p′) := δ

( 3∑
i=1

pi

) d∏
i=1

δpip′i , (6.28)

coming from the fact that the mean fields T and T̄ involved in the truncation are assumed to
be gauge invariant. We can pictorially represent them as:

Fs,(1)[T̄ , T ](g,g′) = 2Z(s)2 λ4(k)
3∑
`=1

` `

~p ~p′

T T̄

+ · · · (6.29)

and

Fs,(2)[T̄ , T ](~p, ~p′) = 3Z(s)3 λ6,1(s)
3∑
`=1

`

``

~p ~p′

T̄

T̄T

T
(6.30)

+ Z(s)3 λ6,2(s)
3∑
`=1

 `

~p ~p′

T T̄

T̄ T

+
`

T T̄

T̄ T

~p ~p′

+ · · ·
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where the external variables ~p and ~p′ are represented as dashed half-lines, and will be traced over
in the Wetterich equation. We furthermore only represented those diagrams which will eventu-
ally contribute in the large s limit, that is those which will yield melonic 1-loop Feynman graphs.

Expanding the right-hand side of the Wetterich equation (??), and denoting by Γs,(n) the field-
dependent terms of order 2n in our Ansatz (5.31), the identification of terms with the same
order gives the following equations (in matricial notation):

∂sΓs,(1) = −Tr
[
∂sRsK−1

s Fk,(1)K−1
s P̂

]
, (6.31)

∂sΓs,(2) = −Tr
[
∂sRsK−1

s Fs,(2)K−1
s P̂

]
+ Tr

[
∂sRsK−1

s (Fs,(1)K−1
s )2P̂

]
, (6.32)

∂sΓs,(3) = Tr
[
∂sRsK−1

s Fs,(1)K−1
s Fs,(2)K−1

s P̂
]

+ Tr
[
∂sRsK−1

s Fs,(2)K−1
k Fs,(1)K−1

s P̂
]

− Tr
[
∂sRsK−1

s (Fs,(1)K−1
s )3P̂

]
, (6.33)

where the operator Ks has been defined in the previous chapter:

Ks(~p, ~p′) =
[
Z(s)(~p 2 + m̄2) +Rs(~p)

]
δ~p~p′ . (6.34)

We furthermore need to project back the right-hand side on the finite dimensional subspace
corresponding to our ansatz, and identify terms according to their combinatorial structure. For
instance, we have to extract the β-functions of both λ6,1 and λ6,2 from equation (??).

P̂ ∂sRsP̂

P̂ ∂sRsP̂ P̂ ∂sRsP̂

K−1
k

a b c

Figure 6.5: Typical melonic graphs contributing to the flow of λ4.

The beta function βm for the mass parameter, as well as the anomalous dimensions, receive
only contributions of the quartic interactions, and their expressions remain unchanged. In the
contrary, in addition to the contributions pictured on Figure 6.5c, the beta function βλ4 receives
contributions of the six-valent interactions, whose typical diagrams are pictured on Figure 6.5a
and 6.5b. It is easy to see by contraction of the dotted lines that they have the same connectivity
structure that a quartic interaction. As a result, in our graphical picture, we obtain the following
equation for βλ4 :

∂s

(
Z(s)2λ4(s)

2

) 3∑
`=1

` ` ≈ −Z(s)3 λ6,1(s)
3∑
`=1

`

``

− Z(s)3 λ6,2(s)
3∑
`=1

 ` +
`


+
(
Z(s)2λ4(s)

)2
3∑
`=1

`

`

`

`

. (6.35)
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Since we did not include any derivative coupling in our truncation, we need to evaluate each
diagram appearing on the right-hand side at zeroth order in a Taylor expansion with respect
to its external variables. The diagrams appearing in the first two lines of (6.35) have the same
loop structure as the mass counter-terms computed in the previous subsection. Hence we may
proceed identically. We find for instance:

`

`` ≈ 1

Z(s)
e−(2+D)sη(s)[S1(0)e2s − S2(0)] + 2S1(0)e2s

(1 + m̄2(s))2
× ` ` . (6.36)

In the same way, listing all the melonic contractions contributing to the right-hand-sides of the
equation 6.33, and separating the contractions with the connectivity of the interactions of type
6, 1 to the contractions with connectivity of the interactions of type 6, 2, we get:

∂k
(
Z(s)3λ6,2(s)

) 3∑
`=1

` ≈ 4Z(k)5 λ4(s)λ6,2(s)
3∑
`=1

 `

+

`


.

(6.37)

∂k
(
Z(s)3λ6,1(s)

) 3∑
`=1 `

``

≈ 12Z(s)5 λ4(k)λ6,1(s)
3∑
`=1

`

``

− Z(s)6 λ4(s)3

3∑
`=1

` `

`

` `

`

. (6.38)

One more time, some local approximations of the diagrams appearing in the right-hand-side are
known. This is in fact the case of all diagrams involving a loop of length 2, occurring in the
computation of the beta function βλ. For instance:

`

≈ 1

Z(s)2
e−(2+D)sη(s)[S1(0)e2s − S2(0)] + 2S1(0)e2s

(1 + m̄2(s))3
× ` . (6.39)
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The real novelty is the appearance of diagrams with loop of length 3 in the right-hand-side of
equation 6.38. Following the same method as for the loops of lengths one and two, we find:

` `

`

` `

`

≈ 1

Z(s)3
e−(2+D)sη(s)[S1(0)e2s − S2(0)] + 2S1(0)e2s

(1 + m̄2(s))4
×

`

``

. (6.40)

To summarize, using the integral approximations for the sums, we find the autonomous system
: 

βm = −(2 + η)m̄2 −
√

2
3

4πλ̄
15

5+η
(1+m̄2)2 ,

βλ4 = −(1 + 2η)λ̄4 +
√

2
3

8πλ̄2
4

45
5+η

(1+m̄2)3 −
√

2
3

2π(3λ̄6,1+2λ̄6,2)

45
5+η

(1+m̄2)3 ,

βλ6,1 = −3ηλ̄6,1 −
√

2
3

16πλ̄3
4

45
5+η

(1+m̄2)4 +
√

2
3

12πλ̄4λ̄6,1

45
5+η

(1+m̄2)3 ,

βλ6,2 = −3ηλ̄6,2 +
√

2
3

8πλ̄4λ̄6,2

45
5+η

(1+m̄2)3 ,

(6.41)

where the anomalous dimension η is:

η(s) =
7
√

6π

27

λ̄4(s)

(1 + m̄2(s))2 − 2π
√

6
27

λ̄4(s)
. (6.42)

6.3.2 RG-flows and fixed points

As for the quartic melonic model, we shall study the behavior of the renormalization group
equations 6.41. More precisely, we shall focus on the fixed point and the local characteristic of
the flow in their vicinity.

• Gaussian fixed points. In the vicinity of the Gaussian fixed point, the system 6.41 reduces to:

βm ≈ −2m̄2 −
√

2
3

4πλ̄
3
,

βλ4 ≈ −λ̄4 −
√

2
3

2π
9

(3λ̄6,1 + 2λ̄6,2) ,

βλ6,1 ≈ −π
√

2
3
λ̄4λ̄6,1 ,

βλ6,2 ≈ −13π
9

√
2
3
λ̄4λ̄6,2 .

(6.43)

Interestingly, the system admits a non-trivial line of fixed points, of equation: m̄ = λ̄4 = 0,
λ̄6,1 = −2/3λ̄6,2. This line of fixed points is not a manifestation of the perturbative limit, be-
cause it occurs also in the non-perturbative system 6.41. However, such a line of fixed points is
usually a pathological manifestation of the truncation rather than a real effect, which disappears
when using a higher truncation. This analysis has been made for a similar model in dimension 5
[4], and the authors have pointed out the disappearance of the line of fixed points where inter-
actions of valence 8 are taken into account in the truncation. For this reason, we ignore this line
of fixed points in our current discussion. But the issue of this line of fixed points in the context
of a non-Abelian rank-3 model will be discussed in [3], in preparation.

Returning to the system 6.43, we observe that all coefficients are positive. One more time, this
is due, in particular for the terms in λ̄4λ̄6,1 and λ̄4λ̄6,2, to the enhancement of the anomalous
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dimension which dominates the positive vertex contributions. However, as pointed out by the
author in [1], despite the positivity of the coefficients, the model is not really asymptotically free.
Indeed, we can easily find a trajectory which can approach arbitrarily close to the Gaussian fixed
point, but which is ultimately repelled in the es → ∞ limit. This phenomenon is extensively
discussed in [1, 2] (for the non-Abelian version of this model, but the conclusion holds for the
Abelian version). As an illustration, one can restrict our attention to the stable subspace λ̄6,2 =
01. The numerical integration of the system 6.43 is pictured on Figure 6.6, on the plane (λ̄4, λ̄6,1),
and shows explicitly that there are no trajectories with λ̄6,1 > 0 which are asymptotically free.

-0.4 -0.2 0.0 0.2 0.4

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

λ4

λ
6
,1

Figure 6.6: Numerical integration of the flow trajectories in the stable subspace λ̄6,2 = 0.

This phenomenon is in fact quite common for the φ6 interactions, for which the asymptotic
freedom is complicated because of the back-reaction of the φ4 super-renormalizable coupling. It
has a non trivial influence on the flow of the φ6 interaction.

• Non-Gaussian fixed points. The fact that a theory is not asymptotically free is not necessarily
the end of the story. But the analysis of its consistency in the UV becomes a difficult question
to investigate, and requires a non-perturbative analysis to show the existence of non-trivial fixed
points. The standard ε-expansion is the simplest method, and the most popular to keep control
over the distance between the Gaussian fixed point and the non-Gaussian one, and it allowa to
use perturbative computations at small ε. Following [2], we have discussed such an ε-expansion
for the quartic model in the previous section, and stressed a path from D = 4 to D = 3. In these
considerations, we have found a fixed point with the same characterization as the Wilson-Fisher
fixed point, up to a global sign. Even if it has the wrong sign, and if it survives in the limit
D = 3, this fixed point may be nice for the UV completion of the theory. Indeed, the trajectories
away from the Gaussian fixed point in Figure 6.6 reach a region with negative λ̄4, where we have
found the fixed point in the ε-expansion. A strong argument in favor of this scenario is that we
have shown that this fixed point survives to a non-perturbative analysis, for non-infinitesimal
values of ε. But the most solid confirmation comes from the computation of the fixed points of
the system 6.43. We find six fixed points (in addition to the Gaussian one and to the line of

1Note that, due to the form of the equation, it is obvious to see that the sign of the couplings λ̄6,i i = 1, 2 is
invariant.



158 CHAPTER 6. FLOWING RANK-3 TGFTS IN THE UV

fixed points, which we discard of our analysis), whose properties are summarized in the Table
6.7 below.

Fixed
Points λ̄6,1 λ̄6,2 λ̄4 m̄2 η θ1 θ2 θ3 θ4

FP1 -0.71 0. -0.43 -0.68 -5.90 -72.75 -16.44 -12.08 -5.03
FP2 0.02 0. 0.02 -0.80 2.53 -6.87-59i -6.87+59i -7.93 0.30
FP3 0.14 -0.18 0.07 -0.87 -6.5 -105.35 42.08 -18.0 -6.26
FP4 -0.03 0. 0.09 -0.23 0.31 2.45 0.90 -0.70 0.49
FP5 -1.62 0. -2.69 1.26 -0.80 2.82 -2.14 -1.97 -0.47

Figure 6.7: Summary of the properties of the non-Gaussian fixed points for D = 3. Again, the
critical exponents θi are the opposite values of the eigenvalues of the stability matrix: β∗ =:
diag(−θ1

∗,−θ2
∗,−θ3

∗,−θ4
∗).

Among all these fixed points, only FP2, FP4 and FP5 give a positive value for (1 + m̄2(s))2 −
2π
√

6
27

λ̄4(s), the denominator of η. Among these three fixed points, FP2 seems to be a novelty of
the new terms in the truncation. It has three irrelevant and one relevant direction, and corre-
sponds to an IR fixed point, with three dimensional separatrix (or IR-critical surface) spanned
by the irrelevant directions. The two imaginary eigenvalues provide some oscillations for the
trajectories in this sub-manifold, and the trajectories, repelled by the fixed point in the UV,
make it a focal point. Once more, this picture suggests a phase transition in the IR.

The fixed points FP4 and FP5 however are very reminiscent of the non-Gaussian fixed points
that we have called FP1 and FP3 in the previous section (see Table 6.4). In both cases, the
values for m̄ and λ4 obtained for FP4 and FP5 are close to the ones obtained for FP1(D = 3.1)
and FP3(D = 3.1) respectively. Moreover, the signs of the corresponding critical exponents are
in agreement with this interpretation. This is especially true for the fixed point FP5. As FP2,
it corresponds to an IR fixed point, with three relevant directions and one irrelevant direction
in the IR, suggesting a phase transition. Finally, for the fixed point FP4 the sign of the second
critical exponent is positive, and the value of the anomalous dimension is quite improved with
respect to the previous truncation. It has three relevant directions in the UV. Then, the set of all
points that flow towards the fixed point in the UV span a three dimensional UV-critical surface.
This fixed point is interesting, and even if it does not correspond to the fixed point considered
in the previous section, it seems to confirm our intuition concerning the UV completion of the
theory. The critical surface has a controllable UV behavior, and is predictive, which corresponds
to an asymptotically safe theory. One more time, however, the question of the bad sign of this
fixed point holds. The problem could have been solved by the sign of the coupling λ̄6.1, but it has
also the wrong sign. Note that it is also the case of the fixed point FP5, and seems to be the sign
of a failure of the truncation approximation, and a truncation with higher valence interactions
could have positive couplings for these fixed points (if they resist to higher truncation!). At this
stage, we can assert that the FRG method supports the perturbative argument about the UV
completion of the theory, and we claim that:

Claim 1. The rank-3 Abelian tensorial group field theory with Laplacian kinetic term and closure
constraint is asymptotically safe in the UV.

The discussion of the introduction of this Chapter seems to indicate that this property
must be shared by the non-Abelian version. The fact that in the UV limit the non-commutative
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structure of the group should not play an important role, and that this is essentially its dimension
which is relevant is a strong argument which should be supported by a similar analysis for the
non-Abelian case, currently in preparation.
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Chapter 7

Constructive methods for TGFTs

Constructive field theory is a set of techniques allowing to resum perturbative quantum field
theory in order to obtain a rigorous definition of quantities such as Schwinger functions for
interacting models [6]. The Loop Vertex Expansion (LVE) is such a constructive technique
[7, 8, 9], improving the traditional constructive tools in order to treat more general models with
non-local interactions and/or more general geometries. Following [10], it can be described as a
reorganization of the perturbative series, combining an intermediate field decomposition with
replicas and a forest formula. It allows to write the connected Schwinger functions as convergent
sums indexed by spanning trees rather than as divergent sums indexed by Feynman graphs.
Indeed a connected Schwinger function S is usually expanded in term of a Feynman series as

S =
∑
G
AG, (7.1)

where AG is the Feynman amplitude associated to the graph G. However, even if each of these
amplitudes is ultra-violet convergent, the sum is generally badly divergent, because of the very
large number of graphs of large size. As a result the perturbative expansion has zero radius of
convergence in the coupling(s), hence ∑

G
|AG| =∞. (7.2)

The LVE allows to circumvent this difficulty. The first step is to consider, for any pair made
of a connected graph G and of a spanning tree T ⊂ G in it, a universal non trivial weight
w(G, T ), which is the percentage of Hepp’s sectors of G in which T is leading, in the sense of
Kruskal greedy algorithm (see [10] for details). These weights, being by definition percentages,
are normalized: ∑

T ⊂G
w(G, T ) = 1. (7.3)

They allow to rewrite the Feynman expansion as a sum indexed by spanning trees:

S =
∑
G
AG =

∑
G

∑
T ⊂G

w(G, T )AG =
∑
T
AT , (7.4)

where:
AT :=

∑
G⊃T

w(G, T )AG. (7.5)
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Since trees do not proliferate as fast as Feynman graphs, in good cases it can be shown that:∑
T
|AT | <∞ (7.6)

at least in a certain domain that we call the summability domain. Strictly speaking, such a pro-
gram can be achieved with standard Feynman graphs only for Fermionic theories, because of the
Pauli principle, since in that case amplitudes of same order combine into a determinant implying
nice compensations [11]. Such compensations do not occur at fixed order for Bosonic theories,
hence the sum (7.6) does not converge, even if it is repacked as a tree expansion. Fortunately
the loop vertex expansion overcomes this difficulty by working in another representation, called
intermediate field, or Hubbard-Stratonovic. This representation amounts to a clever exchange
of the roles of propagators and vertices. The program summarized by equations (7.5)-(7.6) then
works, but for the graphs of the intermediate field representation, and the corresponding sum
(7.6) converges absolutely to the Borel sum of the initial expansion.

In this Chapter, based on research papers [4] and [5] we shall discuss constructive aspects for
the Abelian T 4

d model with closure constraints. More precisely, we shall apply the Loop Vertex
Expansion (LVE) to the T 4

3 and T 4
4 models, which are the two simplest non trivial models of

rank 3 and 4, respectively UV-divergent free and super-renormalizable.

7.1 BKAR Forest formula and Borel summability

7.1.1 The “constructive swiss knife”

The BKAR (Brydges-Kennedy-Abdesselam-Rivasseau) forest interpolation formula [15], nick-
named the “constructive swiss knife”, is the heart of the LVE. A forest formula expands a quan-
tity defined on n points in terms of forests built on these points, and is a multi-variable Taylor
expansion with integral remainder. There are in fact many forest formulas, but the BKAR for-
mula seems to be the only one which is both symmetric under permutation of the n points and
positive [7].

Let [1, · · · , n] be the finite set of points considered above. An edge l between two elements
i, j ∈ [1, · · · , n] is a couple (i, j) for 1 ≤ i < j ≤ n, and the set of such edges can be identified
with the set of lines of Kn, the complete graph with n vertices. Consider the vector space Sn of
n×n symmetric matrices, whose dimension is n(n+1)/2 and the compact and convex subset PSn
of positive symmetric matrices whose diagonal coefficients are all equal to 1, and off-diagonal
elements are between 0 and 1. Any X ∈ PSn can be parametrized by n(n − 1)/2 elements Xl,
where l runs over the edges of the complete graph Kn [7]. Let us consider a smooth function
f defined in the interior of PSn with continuous extensions to PSn itself. The BKAR forest
formula states that:

Theorem 8. (The BKAR forest formula)

f(1) =
∑
F

∫
dwF∂Ff [XF(wF)] (7.7)

where 1 is the matrix with all entries equal to 1, and:
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• The sum is over the forests F over n labeled vertices, including the empty forest.

• The integration over dwF means integration from 0 to 1 over one parameter for each edge of
the forest. Note that there are no integrations for the empty forest since by convention an empty
product is 1.

• ∂F :=
∏

l∈F ∂l means a product of partial derivatives with respect to the variables Xl associated
to the edge l of F .

• The matrix XF(wF) ∈ PSn is such that XFii (wF) = 1∀i, and for i 6= j XFij (wF) is the infimum
of the wl variables for l in the unique path from i to j in F . If no such path exists, by definition
XFij (wF) = 0.

7.1.2 Borel summability

The third key ingredient is Borel summability, and a helpful theorem is [16]:

Theorem 9. (Nevanlinna) A series
∑

n
an
n!
λn is Borel summable to a function f(λ) if the

following conditions are met:

• f(λ) is analytic in a disk Re(λ−1) > R−1 with R ∈ R+.

• f(λ) admits a Taylor expansion at the origin:

f(λ) =
r−1∑
k=0

fkλ
k +Rrf(λ), |Rrf(λ)| ≤ Kσrr!|λ|r, (7.8)

for some constants K and σ independent of N .

If f(λ) is Borel summable in λ, then:

B(t) =
∞∑
n=0

1

n!
fnt

n (7.9)

is an analytic function for |t| < σ−1 which admits an analytic continuation in the strip {z| |Im(z)| <
σ−1} such that |B(t)| ≤ Bet/R for some constant B and f(λ) is represented by the absolutely
convergent integral:

f(λ) =
1

λ

∫ +∞

0

dtB(t)e−t/λ. (7.10)

The aim of the rest of this chapter is to combine the intermediate field representation with
the forest formula in order to obtain a tree expansion for the free energy and Schwinger functions
of our theory. This expansion will be shown to converge in a cardioid domain [8, 9], larger than
the one of the Nevanlinna theorem. Bound (7.8) can also be proven, hence Borel summability
follows.

7.2 Convergence and summability for T 4
3

This section is devoted to the proof of convergence and to the analyticity theorem for T 4
3 using

the LVE. We begin with the free energy, then extend to connected Schwinger functions. For the
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convenience of the reader, two lemmas with their respective proofs are reported at the end of
the first subsection.

We first recall the Hubbard-Stratonovic decomposition of the T 4
3 -model, already obtained in

dimension d in Chapter 4. It writes

Z[J, J̄ ] =

∫
dνI(τ)e−

∑
~p∈P ln(1−i

√
2λC0(~p)Γ(~p))−∑~p∈P J̄(~p)(1−i

√
2λC0(~p))Γ(~p))−1C0(~p)J(~p), (7.11)

where C0(~p) := (~p2 +m2)−1, P := {~p ∈ Z3|∑i pi = 0}, Γ(~p) :=
∑

i τi, and dνI(τ) is the Gaussian
measure of the three vector fields, defined as:∫

dνI(τ)τi(p)τj(p
′) := δijδpp′ . (7.12)

Moreover, we recall that the divergence degree is strictly negative for any Feynman graph (vac-
uum or not) ω(G) < 0 ,∀G, meaning that the model is well defined in the UV.

7.2.1 Free energy

We start with the partition function 7.77 and we expand to infinity the exponential of the
interaction (note that sources are discarded):

Z(λ) =

∫
dν(τ)

∞∑
n=0

1

n!
(−W (τ))n, (7.13)

where: W :=
∑

~p∈P ln(1− i
√

2λC0(~p)Γ(~p)). The first step is to introduce a replica trick for the
Bosonic intermediate fields. We duplicate the intermediate field into copies, so that:

(−W (τ))n →
n∏

m=1

(−Wm(τm)) (7.14)

and at the same time we replace the single variable covariance by 1n, the n × n matrix with
all entries equals to 1, so that our measure write as: dν1(τm). Indeed this does not change the
value of the integral, as can be checked using Wick Theorem. Exchanging sum and Gaussian
integration, 7.13 becomes

Z(λ) =
∞∑
n=0

1

n!

∫
dν1n(τm)

n∏
m=1

(−Wm(τm)). (7.15)

In order to apply the forest formula, we introduce the coupling parameters xmp, so that xmp =
xpm, xpp = 1 between the replicas. Hence

Z(λ) =
∞∑
n=0

1

n!

∫ ∏
i,m

dτi,me
− 1

2

∑n
m,p=1 xmpτi,mτi,p

n∏
m=1

(−Wm(τm))

∣∣∣∣
xpm=1

(7.16)

where the first indice of τi,m is the color index (running from 1 to 3), and the second is the
replica index (running from 1 to n). Note that in our notation, the sum over momenta in the
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expression of the Gaussian measure is implied. Applying the BKAR forest formula, we find, in
the derivative representation of Gaussian integration [7]:

Z(λ) =
∞∑
n=0

1

n!

∑
Fn

∫ 1

0

( ∏
l∈Fn

dwl

)[
e

1
2

∑n
m,p=1 Xmp(wl)

∂
τi,m

∂
τi,p (7.17)

×
∏
l∈F

(
∂2

∂τis(l)∂τit(l)

) n∏
m=1

(−Wm(τm))

]
τim=0

where s(t) and t(l) are respectively the replica indices for source and target of the edge l. As
well-known in quantum and statistical field theory, the free energy F := ln(Z) expands as a sum
over amplitudes labeled by connected Feynman graphs. Because the expansion (7.17) factorizes
over the connected components of the forest and since the connected version of a forest is a tree,
we obtain the following tree expansion for the free energy F :

F − F0 =
∑
T

1

V (T )!

∫ 1

0

(∏
l∈T

dwl

)
[∫

dνX(wl)(τ)
∏
l∈T

3∏
i=1

(
∂2

∂τis(l)∂τit(l)

) V (T )∏
m=1

(−Wm(τm))

]
(7.18)

where the sum runs over non-empty trees (with at least one edge), V (T ) ≥ 2 is the number of
vertices of the tree T , and F0 is the contribution of the trivial “empty” tree with no edges and
V (T ) = 1, namely:

F0 :=

∫
dνX(wl)(τ)

∑
~p∈P

ln(1− i
√

2λC0(~p)Γ(~p)). (7.19)

Note that the replica indices run now from 1 to V (T ). The derivatives can be performed, leading
to:

F − F0 =
∑
T

(−2λ)V (T )−1

V (T )!

∫ 1

0

(∏
l∈T

dwl

)[∫
dνX(wl)(τ)

V (T )∏
m=1

(7.20)

×
∑
~pm∈P

(c(m)− 1)!R(~pm)c(m)
∏
l∈T

( 3∑
i=1

δpt(l)ips(l)i

)]
(7.21)

where c(m) is the set of arcs of the vertex m and R(~p) is the resolvent of section 7.3.3 (in
momentum representation):

R(~p) =
C0(~p)

1− i
√

2λC0(~p)Γ(~p)
. (7.22)

Each contribution to the sum over trees 7.20 can be pictured as in Figure 7.2.1 below, where
each disk or vertex represents a product over arc-resolvents with the same variable ~pm, and
the labeled 1, 2, 3 lines represent the identification of internal index between two (necessarily
different) vertices, coming from the Kronecker deltas δpt(l)ips(l)i . The labels of the lines refer to
the color i of these Kronecker delta, and the number of lines starting from a given vertex m
equals the number of arcs c(m) of this vertex.
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Figure 7.1: A tree contributing to the sum 7.20.

We close this section with two useful lemmas:

Lemma 4. For c(V) > 1, and with the parametrization λ = ρeiφ, φ ∈ [0, π/2[, we have the
bound: ∣∣∣∣∑

~p∈P

(
C0(~p)

1− i
√

2λC0(~p)Γ(~p)

)c(m)∣∣∣∣ ≤ K1(m)

∣∣∣∣ 1

cos(φ/2)

∣∣∣∣c(m)

(7.23)

where K1(m) is a positive constant, depending on the mass parameter in a way that we shall
precise in the proof.

Proof. Observe that we have not precised the domain of λ. Choosing the parametrization
λ = ρeiφ, φ ∈ [0, π/2[, and because C0(~p)Γ(~p) is real:∣∣∣∣ 1

1− i
√

2λC0(~p)Γ(~p)

∣∣∣∣ ≤ ∣∣∣∣ 1

cos(φ/2)

∣∣∣∣, (7.24)

implying: ∣∣∣∣∑
~p∈P

(
C0(~p)

1− i
√

2λC0(~p)Γ(~p)

)c(m)∣∣∣∣ ≤ ∣∣∣∣ 1

cos(φ/2)

∣∣∣∣c(m)∑
~p∈P

∣∣∣∣ 1

~p2 +m2

∣∣∣∣c(m)

(7.25)

≤
∣∣∣∣ 1

cos(φ/2)

∣∣∣∣c(m)∑
~p∈P

∣∣∣∣ 1

~p2 +m2

∣∣∣∣2.
Since the last sum converges, the lemma is proved.

�

Lemma 5. The sequence Wp verifies the bound:

|Wp| ≤
∣∣∣∣ 1

cos(φ/2)

∣∣∣∣K2(m) (7.26)

where K2(m) is a positive constant.
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Proof. From the definition

|Wp| =
∑
~p∈P

∣∣∣∣ C0(~p)

1− i
√

2λC0(~p)Γ(~p)
δpp1

∣∣∣∣ ≤ ∣∣∣∣ 1

cos(φ/2)

∣∣∣∣∑
~p∈P

δ0p1

~p2 +m2
, (7.27)

one more time, because the last sum converges, the lemma is proved1.

�

Convergence

The presence of the Kronecker deltas δpt(l)ips(l)i in 7.20 gives to the sums the form of a multi-
product. More precisely, each loop vertex with k external wavy lines can be represented as a
multi-indexed operator Wp1,...,pk , containing an internal sum over non-external momenta. Then,
formula 7.20 can be written in the form:

F − F0 =
∑
T

(−2λ)V (T )−1

V (T )!
N (T )

∫ 1

0

(∏
l∈T

dwl

)[
e

1
2

∑n
m,p=1 Xmp(wl)

∂
τi,m

∂
τi,p (7.28)

×
V (T )∏
m=1

(c(m)− 1)!
∑
{pmi}

V (T )∏
m=1

W(m)
pm1,...,pmk(m)

]
τim=0

,

where N (T ) is the number of trees with the same structure but different colors for their inter-
mediate field lines. We distinguish the leaves of the tree from the rest. A leaf is a terminal loop
vertex involving only one resolvent, and with only one external wavy line attaching it to trhe
rest of the tree. It can be represented by a function of a single variableWp, so that we can write
the last term of the previous equation 7.28 as:

∑
{pmi}

V (T )∏
m=1

W(m)
pm1,...,pmk(m)

=
∑

~P∈Zl(T )

A~P (T )

l(T )∏
a=1

WPa , (7.29)

where l(T ) is the number of leaves in T , and the big vector ~P lives in the space of external
momenta of the leaves : Zl(T ). A~P (T ) is the rest of the amplitude, for the tree without its leaves.
Thanks to Lemma 5, the previous sum obeys the bound:∣∣∣∣ ∑

{pmi}

V (T )∏
m=1

W(m)
pm1,...,pmk(m)

∣∣∣∣ ≤ K
l(T )
2

∣∣∣∣ 1

cos(φ/2)

∣∣∣∣l(T )

×
∣∣∣∣ ∑
~P∈Zl(T )

A~P (T )

∣∣∣∣. (7.30)

The remaining sum is :∣∣∣∣ ∑
~P∈Zl(T )

A~P (T )

∣∣∣∣ =

∣∣∣∣ ∑
{pmi}

V (T )−l(T )∏
m=1

W(m)
pm1,...,pmk(m)

∣∣∣∣ ≤ ∣∣∣∣ V (T )−l(T )∏
m=1

∑
{pm1,...,pmk(m)}

W(m)
pm1,...,pmk(m)

∣∣∣∣ (7.31)

=

∣∣∣∣ V (T )−l(T )∏
m=1

∑
~pm∈P

R(~pm)c(m)

∣∣∣∣ (7.32)

1Note that the sums involved in the proofs of Lemmas 4 and 5 can be computed exactly. For example, using
standard complex analysis, we can show that :∑

~p∈P

δpp1
~p2 +m2

=
π/2√

3p2 + 2m2
coth

[
π
√

3p2 + 2m2
]
≤ π/2√

2m
coth

(√
2πm

)
.
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and thanks to Lemma 4,∣∣∣∣ ∑
~P∈Zl(T )

A~P (T )

∣∣∣∣ ≤ K1(m)V (T )−l(T )

∣∣∣∣ 1

cos(φ/2)

∣∣∣∣
∑
{V ∈T̄ } c(m)

. (7.33)

∑
{V ∈T̄ } c(m) is the number of arcs in the tree T̄ , amputated of its leaves. Note that the number

of arcs is equal to the number of half wavy lines, or two times the number of wavy lines. Since
the number of lines of a tree with V vertices is V − 1, we finally deduce that:∑

{V ∈T̄ }
c(m) = 2V (T )− 2− l(T ). (7.34)

Grouping together the results 7.30 and 7.33, and defining N ′(T ) = N (T ) ×∏V (T )
m=1 (c(m) − 1)!,

we obtain the following bound:

|F − F0| ≤
∣∣∣∣∑
T

(−2λ)V (T )−1

V (T )!
N ′(T )

[
sup

(
K1, K2

)]V (T ) ×
∣∣∣∣ 1

cos2(φ/2)

∣∣∣∣V (T )−1∣∣∣∣ (7.35)

=

∣∣∣∣ 2λ

cos(φ/2)

∣∣∣∣−1∣∣∣∣ ∞∑
n=2

Ω(n)
(2λ)n

n!

[
sup

(
K1, K2

)]n × 1

cos2n(φ/2)

∣∣∣∣
where Ω(n) is a number depending only on n, and defined as:

Ω(n) = 3n−1
∑
{c(m)}∑n

m=1 c(m)=2n−2

Ω(n, {c(m)})
n∏

m=1

(c(m)− 1)! (7.36)

where Ω(n, {c(m)}) counts the number of trees with n labeled vertices and coordination numbers
{c(m)}, and the factor 3n−1 corresponds to the three possible choices for the color of each
intermediate field line, From Cayley’s theorem, we have

Ω(n, {c(m)}) =
n!∏n

m=1(c(m)− 1)!
(7.37)

hence
Ω(n) = 3n−1n!

∑
{c(m)}∑n

m=1 c(m)=2n−2

1. (7.38)

The remaining constrained sum can be easily bounded by the area of the n − 1 sphere with
radius

√
2n− 2, which, by Stirling’s formula, obeys the bound:

2πn/2(
n
2
− 1
)
!
(2n− 2)

n−1
2 ≤ 2

√
2e

(
2

√
π

e

)n−1

, (7.39)

so that:

Ω(n) ≤ 2
√

2e 3n−1

(
2

√
π

e

)n−1

n! (7.40)

and 7.35 becomes

|F − F0| ≤ 2
√

2e

∣∣∣∣12
√
π/eλ

cos2(φ/2)

∣∣∣∣−1∣∣∣∣ ∞∑
n=2

(12
√
π/eλ)n

[
sup

(
K1, K2

)]n × 1

cos2n(φ/2)

∣∣∣∣
≤
(

6|λ|
cos2(φ/2)

)−1 ∞∑
n=2

(|λ|K)n, (7.41)
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with:

K :=
12
√
π/e sup

(
K1, K2

)
cos2(φ/2)

. (7.42)

Finally, the first term F0 is trivially bounded. Indeed, with integral representation of logarithm
and a partial integration over intermediate fields, we find:∣∣∣∣ ∫ dνX(wl)(τ)

∑
~p∈P

ln(1− i
√

2λC0(~p)Γ(~p))

∣∣∣∣ (7.43)

=

∣∣∣∣ ∫ dνX(wl)(τ)

∫ 1

0

dt
∑
~p∈P

−i
√

2λC0(~p)Γ(~p)

1− i
√

2λtC0(~p)Γ(~p)

∣∣∣∣ (7.44)

= 3

∣∣∣∣ ∫ dνX(wl)(τ)

∫ 1

0

dt
∑
~p∈P

2λ[C0(~p)]2t

(1− i
√

2λtC0(~p)Γ(~p))2

∣∣∣∣,
so that using Lemma 4, convergence is easy. Hence, we have proved the first result of this chapter:

Theorem 10. The free energy expansion is absolutely convergent for a small enough coupling.
More precisely, the analyticity domain is defined by the equation |λ| < 1

K
, which, with definition

7.42 for K, corresponds to the interior of a cardioid in the complex plane.

Borel summability

After the convergence, we now move on to the Borel summability of the perturbative expansion.
The previous result shows that the first requirement of Theorem 7.1.2 is satisfied, because we
can find a disk inside of the cardioid in which the series converge, and we shall establish the
second point in this section. Calling RrF (λ) the Taylor remainder of order r for the free energy
F :

RrF (λ) := λr+1

∫ 1

0

(1− t)r
r!

F (r+1)(tλ)dt. (7.45)

Expanding with the tree formula, we get:

RrF (λ) :=
∞∑
n=1

2n−1

n!

∑
Tn

∫ 1

0

(∏
l∈Tn

dwl

)∫
dνX(wl)(τ)Rr[YTn ], (7.46)

where:

YTn := (−λ)n−1

n∏
m=1

∑
~pm∈P

n∏
m=1

(c(m)− 1)!R(~pm)c(m)
∏
l∈Tn

( 3∑
i=1

δpt(l)ips(l)i

)
. (7.47)

When n − 2 ≥ r, Rr[YTn ] = YTn . In this case, each term of the sum has a bound of the form
Kn|λ|n, and the sum converges absolutely for small enough coupling. For n−2 < r, however, the
remainder is obtained by a Taylor expansion of the resolvents involved in YT . We can extract
the factor λn−1 in front of YT , and write: YTn = λn−1ȲTn , so that: Rr[YTn ] = λn−1Rr−n+1[ȲTn ].
Introducing z = i

√
2λ, since

rz(~p) =
1

1− z(C0Γ)(~p)
, (7.48)

we have
∂n

∂zn
rz(~p) = (C0Γ)n(~p)n!rn+1

z (~p), (7.49)
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and the Taylor expansion of formula 7.47 in powers of z leads to:

ȲTn =
∞∑
k=0

zk

k!

n∏
m=1

∑
{kl}|

∑
kl

=k

k!∏n
l=1 kl!

(7.50)

∑
~pm

[
(C0Γ)kmC

c(m)
0

]
(~pm)(c(m) + km)!

∏
l∈Tn

( 3∑
i=1

δpt(l)ips(l)i

)
. (7.51)

From formula 7.45 we then find:

Rr−n+1[ȲTn ] = z2(r−n)

∫ 1

0

dt
(1− t)2r−2n+2

(2r − 2n+ 2)!

∑
{kl}|

∑
kl

=2r−2n+3

(2r − 2n+ 3)!∏n
l=1 kl!

n∏
m=1

(7.52)

∑
~pm

[
(C0Γ)kmC

c(m)
0

]
(~pm)r

c(m)+km
tz (~pm)(c(m) + km)!

∏
l∈Tn

( 3∑
i=1

δpt(l)ips(l)i

)
.

We can now report this expression in equation 7.46. First, note that because Cp
n ≤ 2n, the factor

c(m)(c(m) + km)!/[km!c(m)!] is bonded by eln(c(m))2c(m)+km ≤ (2e)c(m)2km , and the product over
m gives a factor (2e)2n−222r−2n+3. Secondly, we can perform the Gaussian integration. Because
there are 2r − 2n fields, the number of Wick contractions is (2(r − n)!! = 2r−n(r − n)! ≤ 2rr!.
These contractions add many intermediate loop lines to the original tree. A typical contribution
to the Wick contractions can be pictured as in Figure 7.2.1 below.
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Figure 7.2: Typical contribution of the sum 7.52, with loops and tadpoles. The root tree lines
are pictured in blue.

In this picture, which is based on the tree of Figure 7.2.1, that we call root tree, the original tree in
blue is enriched with additional loop lines coming from the Wick contraction of the intermediate
fields which were hidden in the tree resolvents. Each vertex has coordination c(m) + km, where
c(m) is the original number of arcs. The km intermediate fields of a given vertex m can be
contracted together, giving tadpoles, or with the intermediate fields of others vertices, forming
the loops. From Lemma 4, it follows that |rtz| ≤ | cos(φ/2)|−1. Moreover, the contribution of
the intermediate fields is twofold. The Ckm(~pm) decreases the weight of each vertex, and the
additional lines can be seen as constraints on the sums over ~pm. As a result, all the contributions
are bounded by the one of the rooted tree, giving the bound:

(2r − 2n)!!
[

sup(K1, K2)
]n∣∣∣∣ 1

cos(φ/2)

∣∣∣∣4n−2+2r−2n

≤ 2rr!

[
sup(K1, K2)

cos2(φ/2)

]n∣∣∣∣ 1

cos2(φ/2)

∣∣∣∣r−1

. (7.53)
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Finally, the remaining integration over t gives
∫ 1

0
(1− t)2r−2n+2 = 1/(2r−2n+3), which together

with the denominator (2r−2n+2)! exactly compensates the combinatorial factor (2r−2n+3)!.
As in the previous section, using Cayley’s theorem for the number of trees with n vertices and
Stirling’s formula, as in 7.2.1, we find a bound of the form: ABn

1B
r
2r! for some constants A, B1 and

B2. Because n−2 < r, summing over n, we find the final bound : A′|λ|rBrr! for the contributions
in 7.46 for which n− 2 < r. As explained before, the contributions for n− 2 ≥ r are all bounded
by bounds of the form : |λ|nKn, and the sum behaves as : A′′|λ|rKr. Ultimately, because, for
positive constants k1 and k2, k1r! + k2 ≤ (k1 + k2)r!, we find that |RrF (λ)| ≤ A′′(B′)r|λ|rr!,
which corresponds to the second condition of Theorem 7.1.2. It completes the proof of Borel
summability.

7.2.2 Schwinger functions

Schwinger functions, or connected correlation functions are obtained from the logarithm of 7.77
by functional derivatives with respect to the sources J and J̄ . More precisely, the connected
function S2N({~pi, ~̄pi}) with 2N external lines and external momenta ~pi and ~̄pi, i = 1, ..., N , is
given by:

S2N({~pi, ~̄pi}) :=
N∏
i=1

∂

∂J(~̄pi)

∂

∂J̄(~pi)
ln
(
Z[J, J̄ ]

)∣∣
J,J̄=0

. (7.54)

Expanding ln
(
Z[J, J̄ ]

)
with the help of the forest formula, as in the previous section for the

free energy, we find that the term that we called W includes the source term involved in 7.77.
Because of 7.54, only the terms with N such source terms give a non-zero contribution. Each
such source term corresponds to an additional resolvent. The remaining terms, involving the
logarithm are then derived, but the connectivity imposes that the resolvent factors coming from
the derivative of the source terms are derived at least one time with respect to the τi. Once
more, using Lemma 4, each resolvent or derivative of resolvent can be bounded by a constant
in the cardioid domain, in the same way as for the free energy, and the absolute convergence of
the expansion of any Schwinger function follows.

7.3 Multi-scale loop vertex expansion for T 4
4

In case of super-renormalizable theories, requiring subtraction of a finite set of divergent graphs,
a simple LVE is not enough. Indeed, even in the simplest quartic case, with only one divergent
tadpole, the LVE breaks down because of the divergences of the leaves in each trees. These diver-
gences are compensated by counter-terms, whose proliferation introduces a spurious divergence
of the perturbative expansion. The multi-scale loop vertex expansion (MLVE) is an improved
method based on two successive Forest decompositions, and which expands higher and higher
orders of perturbation theory only when they contain higher and higher ultraviolet scales [13].
The MLVE has been successfully applied to matrix theory [1] and tensors [2, 9], and in this final
section, after a short overview on the two-levels jungle expansion, we will use MLVE to prove
the convergence of the perturbative free energy for the U(1)− T 4

4 with closure constraint.
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7.3.1 List of divergent graphs

We start our investigation by listing the divergent graphs. For a non-vacuum graph, we have
seen in Chapter 4 that the divergent degree writes as:

ω(G) = 2(1− V (G)). (7.55)

As a result, ω is negative for V > 1. For V = 1, the degree vanishes, so that such a graph with one
vertex diverges logarithmically. The two possible diagrams are pictured in Figure 7.3a and 7.3b.
But by direct inspection, it can be shown that the graph of Figure 7.3b is finite, with divergent
degree:ω = −2 + 1 − 1 = −2. The melopole2 of Figure 7.3a however has a vanishing divergent
degree :ω = −2 + 3− 1 = 0, so that it diverges logarithmically. Hence, the only divergent graphs
in our model are the melopole ones, the only ones that need to be renormalized3.

a b c d

Figure 7.3: The two configurations for tadpole graphs and the two vacuum graphs with one
vertex.

In the same way, for a vacuum amplitude, we can show that the melonic bound 7.55 is
replaced by :

ω(G) = 3− 2V (G). (7.56)

One more time, the degree is negative for V > 1, and the two possible configurations for V = 1 are
pictured in Figure 7.3c and 7.3d. A direct calculation shows that the contribution 7.3d converges.
Indeed, there are 2+3 = 5 faces, 2 lines andR = 2, so that: ω = −2×2+(5−2) = −1. The melonic
contribution 7.3c however, with 2×3+1 = 7 faces, is linearly divergent: ω = −2×2+(7−2) = 1,
and have to be renormalized.

7.3.2 Counter-terms and renormalization

As seen previously, only the melopole needs to be renormalized. Let us start with the non-vacuum
case. Let AMi

(p) the amplitude for a melopoleMi, of color i. From Feynman rules, using sharp
momentum regularization on discrete interval [−N,N ], we find:

AMi
(p) = −2λ

∑
~q∈[−N,N ]4

δ
(∑4

j=1 qj
)

~q2 +m2
δpqi ∼ ln(N), (7.57)

so that only the first term, AMi
(0) of its Taylor expansion around p = 0 diverges and must be

subtracted. This subtraction can be systematically implemented with an appropriate ordering
of the fields in the interaction Sint, called melordering [12], and consisting, for each melonic

2For our purpose, a melopole is a melonic tadpole
3The finiteness of the number of divergent graphs is a characteristic of super-renormalizable theories.
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interaction bubble, in the subtraction of all the contractions over the meloforest of the corre-
sponding vacuum melopole. These contractions appear as mass counter-terms in the partially
renormalized classical action SPRint , defined as:

SPRint [T̄ , T ] = λ
4∑
i=1

Trbi [T̄ , T ]− 4δm2

∫
T̄ T, (7.58)

with:

δm2 := AMi
(0) = −2λ

∑
~q∈[−N,N ]4

δ
(∑4

j=1 qj
)

~q2 +m2
δ0qi , (7.59)

so that all the non-vacuum amplitudes generated by the non-vacuum renormalized generating
functional

Zren[J̄ , J ] :=

∫
dµC [T̄ , T ]e−S

R
int[T̄ ,T ]+〈J̄ ,T 〉+〈T̄ ,J〉 (7.60)

are finite. Taking into account the vacuum divergences requires additional counter-terms, sub-
tracting divergent graphs. From the conclusions of the previous section, the vacuum melon graphs
of the type of Figure 7.3c must be subtracted, requiring the counter-term (one for each bubble
bi):

CT 1
v = λ

∑
~q1∈[−N,N ]4

∑
~q2∈[−N,N ]4

δ
(∑

j q1j

)
~q2

1 +m2

δ
(∑

j q2j

)
~q2

2 +m2
δq11q21 . (7.61)

The index 1 signals the fact that an additional counter-term is necessary to make the vacuum
contributions finite. Indeed, the mass counter-term introduced previously generates a divergent
vacuum graph, and must be renormalized, with corresponding counter-term :

CT 2
v = −2λ

∑
~q1∈[−N,N ]4

∑
~q2∈[−N,N ]4

δ
(∑

j q1j

)
~q2

1 +m2

δ
(∑

j q1j

)
~q2

2 +m2
δ0q22 . (7.62)

Taking into account all these counter-terms, the completely renormalized classical action

SRint[T̄ , T ] = λ
4∑
i=1

Trbi [T̄ , T ]− 4δm2

∫
T̄ T − 4CT 1

v − 4CT 2
v

subtracts all the divergences of the original model, and all the amplitudes generated by the
completely renormalized generating functional

Zren[J̄ , J ] := e4CT 1
v+4CT 2

v

∫
dµC [T̄ , T ]e−λ

∑4
i=1 Trbi [T̄ ,T ]+4δm2

∫
T̄ T+〈J̄ ,T 〉+〈T̄ ,J〉 (7.63)

are finite.

7.3.3 Hubbard-Stratonovic decomposition and subtraction

In this section, we shall recast the renormalized theory that we have just obtained in the in-
termediate field language. Explicitly, the partially renormalized action 7.58 with counter-terms
writes as:

SPRint = λ

4∑
i=1

∑
{~pi}
W(i)

~p1, ~p2,~p3,~p4
T~p1T̄~p2T~p3T̄~p4 − 4δm2

∑
~p

T̄~pT~p. (7.64)
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Introducing the four Hermitian matrices Mi with elements

Mi
mn :=

∑
{~p1,~p2}

∏
j 6=i

δp1jp2j
δp1inδp2imT~p1T̄~p2 , (7.65)

the renormalized action 7.64 writes as:

SPRint = λ
4∑
i=1

[
tr(Mi)2 − δm2tr(Mi)

]
(7.66)

= λ
4∑
i=1

tr

[
Mi − δm2

λ

]2

− 8N
(δm2)2

λ
, (7.67)

where “tr” means the trace over indices of the matrices Mi. The last term can be added to the
vacuum counter-terms, so that the renormalized classical action becomes:

SRint = λ

4∑
i=1

tr

[
Mi − δm2

λ

]2

− 4

[
2N

(δm2)2

λ
+ CT 1

v + CT 2
v

]
. (7.68)

The required mass counter-term can then be absorbed in a global translation of the quartic
interaction. Then, denoting

X := 4

[
2N

(δm2)2

λ
+ CT 1

v + CT 2
v

]
,

the Hubbard-Stratanovic transformed partition function writes as:

Z[J, J̄ , λ] = eX
∫
dνI(σ)e−Tr ln(1−i

√
2λCΣ)−i∑4

j=1

√
2λδ̄m2tr[σi]−J̄RJ (7.69)

where the integration over T̄ , T have been performed, and we recall that R := (1− i
√

2λCΣ)−1C
is the resolvent matrix, dνI(σ) is the normalized Gaussian integration over the σi (I designates
the covariance), δ̄m2 := δm2/λ, and:

Σ :=
4∑
i=1

⊗i−1
j=1I⊗ σi ⊗4

i+1 I. (7.70)

The additional term i
∑4

j=1

√
2λδ̄m2tr[σi] in 7.69 exactly compensates the divergences of the

term of order
√
λ coming from the perturbative expansion of the logarithm. As a result, the

partition function 7.69 can be rewritten as:

Z[J, J̄ , λ] = eX
∫
dνI(σ)e−Tr ln2(1−i

√
2λCΣ)−i∑4

j=1

√
2λ

∑
pi
A(pi)σi,pipi−J̄RJ (7.71)

with ln2(1− x) := x+ ln(1− x) = O(x2) and:∑
i

∑
pi

A(pi)σi,pipi := Tr(CΣ)− δ̄m2
∑
i

tr(σi). (7.72)

Note that −2λA(pi) is nothing but the renormalized amplitude AMi
(pi) for the melopole Mi.

As a result:

λ

4∑
i=1

∑
pi∈[−N,N ]

A2(pi) = X. (7.73)
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As already explained in [4], due to the closure constraint, only the diagonal part τi(pi) := (σi)pipi
of the matrix σi contributes, so that 4.58 writes as

Z[J, J̄ , λ] = eX
∫
dνI(τ)e

−∑
~p∈P ln2(1−i

√
2λC0(~p)Γ(~p))−i

√
2λ

∑4
j=1

∑
pj∈P

A(pj)τj(pj) (7.74)

× e−
∑
~p∈P J̄(~p)(1−i

√
2λC0(~p))Γ(~p))−1C0(~p)J(~p),

where C0(~p) := (~p2 +m2)−1, P := {~p ∈ Z4|∑i pi = 0}, Γ(~p) :=
∑

i τi, and dνI(τ) is the Gaussian
measure of the three vector fields, defined as:∫

dνI(τ)τi(p)τj(p
′) := δijδpp′ . (7.75)

Interestingly, the definition 7.74 can be further simplified. Indeed, because of equality 7.73,

4∑
i=1

∑
pi

1

2
τ 2
i (pi) + i

√
2λ

4∑
j=1

∑
pi∈P

A(pi)τi(pi)−X =
1

2

4∑
i=1

∑
pi

(
τi(pi)− i

√
2λA(pi)

)2
, (7.76)

the Gaussian measure for the intermediate field involves a translation. Taking into account this
translation, the partition function 7.74 becomes:

Z[J, J̄ , λ] =

∫
dνI(τ)e−

∑
~p∈P ln2(1−i

√
2λC0(~p)Γ(~p)+2λD(~p)) (7.77)

× e−
∑
~p∈P J̄(~p)(1−i

√
2λC0(~p))Γ(~p)+2λD(~p))−1C0(~p)J(~p), (7.78)

with the definition:
D(~p) := C0(~p)

∑
i

A(pi). (7.79)

7.3.4 Slicing the intermediate field decomposition

The regularization adopted in the previous part, in the cubic domain [−N,N ]4 is not the most
natural with respect to the rotational invariance of the Laplacian. A more natural choice, taking
into account this invariance, and closer to the Schwinger regularization used in Chapter 4 is
the restriction: 0 ≤ ~p 2 ≤ N2, and we shall adopt such a cutoff for the rest of this chapter. In
addition, we shall proceed to a slicing, in order to make multi-scale analysis. To this end, we
introduce an integerM > 1, the reason of a geometric progressionM j so that the upper j = jmax
verifies: M jmax = N , and the notation χ≤x(y) := θ(x − y), with θ the Heaviside step function.
Then, we define the following functions on `2(Z4), implementing closure constraint:

χ≤1 := θ(M2 − ~p2)δ

( 4∑
i=1

pi

)
(7.80)

χ≤j := θ(M2j − ~p2)δ

( 4∑
i=1

pi

)
j ≥ 2 (7.81)

χj := χ≤j − χ≤j−1 j ≥ 2, (7.82)

where χi defines the i-th slice. With the definition

U(~τ) := i
√

2λC0(~p)Γ(~p) + 2λD(~p) (7.83)
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where ~τ = (τ1, τ2, τ3, τ4); the interaction with cutoff M j writes

V≤j := Tr ln2(1− U≤j) = Tr[χ≤j ln(1− U)] (7.84)

U≤j := i
√

2λC0(~p)Γ(~p)χ≤j + 2λD(~p)χ≤j, (7.85)

and the interaction in the slice j is defined as the difference:

Vj := V≤j − V≤j−1 (7.86)

so that the sum over scale is equal to the original interaction with cut-off N :

jmax∑
j=0

Vj = V, (7.87)

and the partition function 7.77 can be written as

Z[J, J̄ , λ] =

∫
dνI(τ)

jmax∏
j=0

e−Vj . (7.88)

From the definitions 7.84 and 7.86, we deduce the explicit expression for Vj:

Vj := Tr[χj ln2(1− U)] = Tr ln2(1− Uj) (7.89)

with the definition:
Uj := i

√
2λC0(~p)Γ(~p)χj + 2λD(~p)χj. (7.90)

7.3.5 Two-levels jungle expansion

As explained briefly in the introduction, the two-levels jungle expansion of the MLVE, which we
summarize in this section, follows closely [13]. It is an improved version of the standard Loop-
Vertex Expansion, combining two successive forest-formulas.

We start with the definition
Wj(~τ) := e−Vj(~τ) − 1 (7.91)

and rewrite the product over scales in 7.88 as a Grassmann integration:

Z[J, J̄ , λ] =

∫
dνI(τ)

jmax∏
j=0

dµ(η̄j, ηj)e
−∑

j η̄jWj(~τ)ηj . (7.92)

Let S := [0, jmax] the integer set of scales, and IS the |S| × |S| identity matrix, which is the
covariance of the Grassmann integration measure. Hence, the previous decomposition can be
rewritten as:

Z[J, J̄ , λ] =

∫
dνI(τ)dµIS(η̄, η)e−W =

∞∑
n=0

1

n!

∫
dνI(τ)dµIS(η̄, η)(−W )n (7.93)

whereW :=
∑

j η̄jWj(~τ)ηj, and η, η̄ denote all the Grassmann variables collectively. The first step
is to introduce a replica trick for the Bosonic intermediate fields. We duplicate the intermediate
field into copies, so that:

(−W (τ))n →
n∏

m=1

(−Wm(τm)) (7.94)
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and at the same time we replace the covariance I by 1n, the n× n matrix with all entries equal
to 1, so that our measure writes as dν1(τm). Exchanging sum and Gaussian integration, 7.93
becomes:

Z[J, J̄ , λ] =
∞∑
n=0

1

n!

∫
dν1n(τm)dµIS(η̄, η)

n∏
m=1

(−Wm(τm)). (7.95)

The obstacle to factorize this integral over vertices lies now in the Bosonic degenerate blocs 1n
and the Fermionic fields, which couple the vertices Wm. Following the method exposed in [13],
solving this difficulty requires two successive forest formulas. The first one concerns the Bosonic
fields. Introducing the coupling parameters xmp, so that xmp = xpm, xpp = 1 between the vertex
vector replicas, the equation 7.95 can be rewritten as:

Z[J, J̄ , λ] =
∞∑
n=0

1

n!

[
e

1
2

∑n
a,b=1 xab

∑4
i=1

∂
∂τa
i

∂

∂τb
i

+
∑jmax
j=0

∂
∂η̄j

∂
∂ηj

n∏
m=1

(
−
∑
j

η̄jWj(~τm)ηj

)]
~τ,η̄,η=0
xab=1

(7.96)

where as in [13] we use the derivative formula equivalent to Gaussian integration. Applying the
BKAR forest formula for the variables xab, it follows:

Z[J, J̄ , λ] =
∞∑
n=0

1

n!

∑
Bn

∫ 1

0

( ∏
l∈Bn

dwl

)[
e

1
2

∑n
a,b=1Xab(wl)

∑4
i=1

∂
∂τa
i

∂

∂τb
i

+
∑jmax
j=0

∂
∂η̄j

∂
∂ηj

×
∏
l∈Bn

(
∂2

∂τis(l)∂τit(l)

) n∏
m=1

(
−
∑
j

η̄jWj(~τm)ηj

)]
~τ,η̄,η=0

(7.97)

where Bn denotes a Bosonic forest with n vertices, and where the positive symmetric matrices
Xab are defined in Theorem 8. The forest Bn partitions the set of vertices into blocs, corresponding
to its connected components, which are trees, and that we denote by V. Obviously, each vertex
belongs to a unique Bosonic block. Contracting every Bosonic block into an “effective vertex”,
we obtain a graph which we denote by {1, ..., n}/Bn. The last forest formula concerns Fermionic
fields. We introduce replica Fermionic fields ηVj for the effective vertices of {1, ..., n}/Bn, and
replica coupling parameters yVV′ . Applying the forest formula to these variables, and denoting
by F the generic Fermionic forest connecting blocks, and V(lf ),V(lf ) the end blocks of the
Fermionic lines in lf ∈ F , we find:

Z[J, J̄ , λ] =
∞∑
n=0

1

n!

∑
Bn

∑
F

∫ 1

0

∏
l∈Bn

dwl
∏
lf∈F

dwlf

×
[
e

1
2

∑n
a,b=1 Xab(wl)

∑4
i=1

∂
∂τa
i

∂

∂τb
i

+
∑

V,V′ YVV′ (wlf )
∑jmax
j=0

∂

∂η̄V
j

∂

∂ηV
′

j

×
∏
l∈Bn

(
∂2

∂τis(l)∂τit(l)

) ∏
lf∈F

( jmax∑
j=0

( ∂

∂η̄
V(lf )
j

∂

∂η
V′(lf )
j

+
∂

∂η̄
V′(lf )
j

∂

∂η
V(lf )
j

))

×
∏
V

∏
m∈V

(
−
∑
j

η̄Vj Wj(~τm)ηVj

)]
~τ,η̄,η=0

. (7.98)

Note that the Fermionic lines are oriented. Expanding the sums over j, using the basic properties
of the derivations for Bosonic and Fermionic fields, and expanding explicitly each sum over pairs
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of internal vertices in blocks V in order to reveal the detailed Fermionic edges `f between vertices
in the end blocks of a given Fermionic line lf joining together these two blocks (see Figure 7.4
below); we obtain, following [13] the two-levels jungle formula:

Z[J, J̄ , λ] =
∞∑
n=0

1

n!

∑
J

[ n∏
k=1

jmax∑
jk=0

] ∫
dwJ

∫
dνJ ∂J

[∏
V

∏
m∈V

Wjm(~τm)η̄Vjmη
V
jm

]
where

• The sum over J runs over all two-levels jungles, hence over all oriented pairs J = (Bn,FF )
of two disjoint forests on the set {1, ..., n}, such that J̄ = Bn ∪ FF is still a forest on {1, ..., n}.
The Bn and FF are called the Bosonic and Fermionic components of J . Note that the lines of
J are partitioned into Bosonic and Fermionic lines.

•
∫
dwJ means integration from 0 to 1 over parameters wJ , one for each line in J̄ , coming from

the forest formula.

•

∂J =
∏
l∈Bn

(
∂2

∂τis(l)∂τit(l)

) ∏
`f∈FF

δjs(`f )jt(`f )

(
∂

∂η̄
V(s(`f ))
js(`f )

∂

∂η
V(t(`f ))
jt(`f )

+
∂

∂η̄
V(t(`f ))
jt(`f )

∂

∂η
V(s(`f ))
js(`f )

)
(7.99)

where V(m) denotes the Bosonic blocks to which m belongs.

• The measure dνJ , mixing Bosonic and Fermionic integrations is defined by∫
dνJF := e

1
2

∑n
a,b=1 Xab(wl)

∑4
i=1

∂
∂τa
i

∂

∂τb
i

+
∑

V,V′ YVV′ (wlf )
∑
m∈V,m′∈V δjmjm′

∂

∂η̄V
jm

∂

∂ηV
′

jm′ F

∣∣∣∣
~τ,η̄,η=0

(7.100)

where F is the function to integrate.
Since the slice assignments, the fields, the measure and the integral are now factorized over the
connected components of J̄ , the logarithm of Z is easily computed as the restriction of the
previous sum 7.99 to the two-levels spanning trees (the connected component of the two-levels
forests):

lnZ[J, J̄ , λ] =
∞∑
n=1

1

n!

∑
J tree

[ n∏
k=1

jmax∑
jk=0

] ∫
dwJ

∫
dνJ ∂J

[∏
V

∏
m∈V

Wjm(~τm)η̄Vjmη
V
jm

]
. (7.101)
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Figure 7.4: An example of two levels tree. Each grey blob represents a Bosonic bloc V whose
internal vertices are joined by Bosonic lines (the solid lines) to form a tree, and the blobs are
joined together by Fermonic detailed lines (the dashed lines), linking black vertices of different
blobs.

The rest of this section is devoted to the proof of the following Theorem

Theorem 11. Let λ = ρeiφ, φ ∈ [0, π/2]. For ρ small enough, the series 7.101 is absolutely and
uniformly convergent in jmax, for g in the small open cardioid domain defined by |λ| ≤ ρ cos(φ/2).
The ultra-violet limit ln(Z) = limjmax→∞ ln(Z[λ, jmax]) is therefore well-defined and analytic in
that cardioid domain, and is the Borel sum of its perturbative expansion in power of λ.

7.3.6 Bound of the Grassmann integrals

The sum 7.101 splits into Grassmann and Bosonic integrals, and we start with the first. As
explained in [13]], due to the standard properties of Grassmann integration, the Gaussian inte-
gration over these variables can be written as:∏

V

∏
m∈V

(
∂

∂η̄Vjm

∂

∂ηVjm

)
e
∑

V,V′ YVV′ (wlf )
∑
m∈V,m′∈V δjmjm′

η̄Vjmη
V′
jm′

×
∏
`f∈FF

δjs(`f )jt(`f )

(
η̄
V(s(`f ))
js(`f )

η
V(t(`f ))
jt(`f )

+ η̄
V(t(`f ))
jt(`f )

η
V(s(`f ))
js(`f )

)∣∣∣∣
η̄,η=0

. (7.102)

Denoting Ymm′ := YV(m)V(m′)δjmjm′ , and taking into account that this matrix is symmetric, the
previous Gaussian integral turns to the more familiar form:∫ ∏

V

∏
m∈V

dη̄Vjmdη
V
jm e−

∑n
a,b η̄

V(m)
jm

Ymm′η
V(m′)
jm (7.103)

∏
`f∈FF

δjs(`f )jt(`f )

(
η̄
V(s(`f ))
js(`f )

η
V(t(`f ))
jt(`f )

+ η̄
V(t(`f ))
jt(`f )

η
V(s(`f ))
js(`f )

)
.

Defining:

Yp1,...,pk
m1,...,mk

:=

∫ ∏
V

∏
m∈V

dη̄Vjmdη
V
jme
−∑n

a,b η̄
V(m)
jm

Ymm′η
V(m′)
jm

k∏
r=1

η̄
V(r)
jr

η
V(r)
jr

, (7.104)

and taking into account what the authors of [13] have called the hard core constraint inside each
blocks, meaning that the integral 7.103 vanishes if two vertices belong to the same Bosonic block
V with the same scale attribution,7.103 rewrites as:(∏

V

∏
m,m′∈V
m 6=m′

(1− δjmjm′ )
)( ∏

`f∈FF
δjs(`f )jt(`f )

)(
Yp1,...,pk
m1,...,mk

+ Ym1,...,pk
p1,...,mk

+ · · ·+ Ym1,...,mk
p1,...,pk

)
(7.105)

where the sum runs over the 2k ways to exchange the upper and lower indices, and k := |FF | is
the cardinal of the Fermionic forest, and the first product implements the hard core constraint.
For our purpose, the following result, for which a proof can be found in [13], is important:

Lemma 6. Due to the positivity of the covariance Y, for any {mi} and {pi} the minor Yp1,...,pk
m1,...,mk

defined in 7.104 satisfies:
|Yp1,...,pk

m1,...,mk
| ≤ 1. (7.106)
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7.3.7 Bosonic integrals

We now move on to the problem of the Bosonic integrals, whose bound is more subtle than
the Fermionic one. From formula 7.101, Bosonic integration factorizes over each blocks V. As a
result, we can only consider and bound one of these block contributions. Let us consider such a
block V. It involves the Gaussian integration:∫

dνVFV(~τ) = e
1
2

∑n
a,b=1 Xab(wl)

∑4
i=1

∂
∂τa
i

∂

∂τb
i Fv(~τ)

∣∣
~τ=0

(7.107)

with Fv(~τ) defined as:

FV(~τ) =
∏
l∈V

(
∂2

∂τis(l)∂τit(l)

) ∏
m∈V

Wjm(~τm). (7.108)

The derivatives ∂/∂τ can be evaluated from the famous Faà di Bruno formula, extending the
standard derivation rule for composed functions, and easily proved by induction:

∂qxf(g(x)) =
∑
π

f |π|(g(x))
∏
B∈π

g|B|(x), (7.109)

where π runs over the partitions of the set {1, ..., q} and B runs through the blocks of the
partition π. With this helpful result, and from the definitions 7.89 and 7.91, we have, for k > 0:

∂kτ (−Vj) = (i
√

2λ)k(k − 1)!
∑
~p∈Pj

Ck
0 (~p)Rk

j (7.110)

where Pj is the intersection of the gauge invariant subset P ∈ Z4 with the support of the function
χj on the slice j and:

Rj :=
1

1− Uj
. (7.111)

The k-th derivative of Wj can be deduced from the Faà di Bruno formula. For k > 0:

∂kτ (−Vj) = e−Vj
∑
{ml}∑

l≥1 lml=k

k!∏
l≥1ml!(l!)ml

∏
l≥1

[∂lτ (−Vj)]ml . (7.112)

In 7.108, we can rewrite the product as a product over the arcs of the vertices:

FV(~τ) =
∏
m∈V

(
∂

∂τim

)c(m)

Wjm(~τm), (7.113)

where c(m) is the coordination number of the vertex m, equal to the number of half lines of the
intermediate-fields hooked to this vertex. Then, the Bosonic integral 7.107 becomes:∫

dνV

[ ∏
m∈V

(i
√

2λ)c(m)
∑
{x(m)
l }∑

l≥1 lx
(m)
l =c(m)

c(m)!∏
l≥1 x

(m)
l !lx

(m)
l

(7.114)

×
( ∑
~pα1∈Pjm

C0(~p)Ujm(~p)Rjm(~p)

)x(m)
1
( ∑
~pαl∈Pjm

C l
0(~p)Rl

jm(~p)

)x(m)
l
]
.
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Lemma 7. Because C0 and Γ are real, and D(~p) is positive, Rjm obeys the following bounds:

|Rj| ≤
∣∣∣∣ 1

cos(φ/2)

∣∣∣∣ (7.115)

with φ := arg(λ) ∈]− π, π[.

Then, using the constraint:
∑

m c(m) = 2(|V| − 1), with |V| the number of vertices of V,
7.114 admits the bound:

∣∣ ∫ dνVFV(~τ)
∣∣ ≤ ( 2λ

cos2(φ/2)

)|V|−1 ∫
dνV

[ ∏
m∈V

e−Vjm (~τm)
∑
{x(m)
l }∑

l≥1 lx
(m)
l =c(m)

c(m)!∏
l≥1 x

(m)
l !lx

(m)
l

×
( ∑
~pα1∈Pjm

C0(~p)Ujm(~p)

)x(m)
1 ∏

l>1

( ∑
~pαl∈Pjm

C l
0(~p)

)x(m)
l
]
. (7.116)

Note that Ujm involves intermediate fields. Defining:

GV :=
∏
m∈V

∑
{x(m)
l }∑

l≥1 lx
(m)
l =c(m)

c(m)!∏
l≥1 x

(m)
l !lx

(m)
l

( ∑
~pα1∈Pjm

C0(~p)Ujm(~p)

)x(m)
1

∏
l>1

( ∑
~pαl∈Pjm

C l
0(~p)

)x(m)
l

, (7.117)

and since the Gaussian measure dνV is positive, we can use the Cauchy-Schwarz inequality to
get: ∫

dνV
∏
m∈V

e−Vjm (~τm)GV ≤
(∫

dνV
∏
m∈V

∣∣e−2Vjm (~τm)
∣∣)1/2(∫

dνV|GV|2
)1/2

. (7.118)

We shall treat separately each term, calling the first term the non-perturbative factor, and the
second the perturbative factor, following the conventions of [13]. Note that in our derivation of
the bound 7.118, we have not considered the special case for which the tree has one vertex only.
This particular contribution involves melonic vacuum diagrams, discarded by construction with
their corresponding counter-terms, and non-melonic vacuum diagrams. Because these diagrams
are convergent, these contributions can be easily bounded, and they do not spoil the conclusion4.

7.3.8 Bound of the Bosonic integral

We begin with the first term, the non perturbative contribution:

B1 :=

∫
dνV

∏
m∈V

∣∣∣∣e−2Vjm (~τm)

∣∣∣∣. (7.119)

4This can be easily proved rigorously with integration by part with respect to the intermediate field, following
a standard strategy exposed for instance in [13].
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Firstly, note that:
∣∣e−2Vjm (~τm)

∣∣ ≤ e2|Vjm (~τm)|. Secondly, because of the identity:

ln2(1− x) =

∫ 1

0

dt
tx2

1− tx, (7.120)

we have, from Lemma 7:

|Vj| ≤
∣∣∣∣ 1

cos(φ/2)

∣∣∣∣∣∣∣∣∑
~p

Uj(~p)

∣∣∣∣2 ≤ ∣∣∣∣ 1

cos(φ/2)

∣∣∣∣∑
~p

|Uj(~p)|2 (7.121)

and we get:

B1 ≤
∫
dνV

∏
m∈V

exp

(∣∣∣∣ 2

cos(φ/2)

∣∣∣∣∑
~p

|Uj(~p)|2
)
. (7.122)

Using Definition 7.77,∑
~p

|Uj(~p)|2 = 2|λ|
[
C2

0(~p)Γ2(~p) + 2|λ|D2(~p) + 2
√

2|λ|C0(~p)D(~p)Γ(~p)
]
. (7.123)

From Definition 7.79 ofD(~p), and because the renormalized function A(p) behaves as ln(p2+m2),
D2(~p) ≤ O(1). Similarly,

∑
~p δp1pC0(~p)D(~p) ≤ O(1). For λ small enough, we deduce that:∑
~p

|Uj(~p)|2 ≤ 2λ
[
O(1) +

∑
~p∈Pj

C2
0(~p)Γ2(~p)

]
. (7.124)

Since one more time,
∑

~p δp1pC
2
0(~p) ≤ O(1), it leads to

∑
~p

|Ujm(~p)|2 ≤ 2λ sup
(
O(1)

)[
1 +

∑
i,j

∑
pi,pj

τim(pi)τjm(pj)

]
(7.125)

where the notation sup
(
O(1)

)
stands for the highest of the numerical constants involved in the

first bound. The term of degree 2 in τ gives an effective variance I4 ⊗ X−1
B −

∣∣∣∣ 8λ
cos(φ/2)

∣∣∣∣14 ⊗ IB,

where 14 is the matrix in the color space of intermediate fields with all entries equal to 1, I4 the
identity matrix in the same space, and IB is the identity matrix in replica space. The Gaussian
integration is easy, and gives (taking into account the normalization of the original Gaussian
measure):

B1 ≤ eO(1)

∣∣ 4λ|V|
cos(φ/2)

∣∣ × det

[
I4 ⊗ IB −

∣∣∣∣ 8λ

cos(φ/2)

∣∣∣∣14 ⊗XB
]
. (7.126)

The determinant can be computed in terms of traces with the formula det(1−X) = eTr ln(1−X).
Denoting:

X =

∣∣∣∣ 8λ

cos(φ/2)

∣∣∣∣14 ⊗XB, (7.127)

we have:
Tr(X) =

∣∣∣∣ 32λ

cos(φ/2)

∣∣∣∣|B|, (7.128)

and, for the norm of X:

||X|| ≤
∣∣∣∣ 32λ

cos(φ/2)

∣∣∣∣. (7.129)
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where in both cases we used the fact that all diagonal entries of XB are equal to 1. Using the
Taylor expansion − ln(1−X) =

∑
n≥1X

n/n, the two previous bounds imply:

− Tr ln(1−X) =
∑
n≥1

Tr(Xn)

n
≤ Tr(X)

∑
n≥2

||X||n
n
≤ |B| ×

∑
n≥1

∣∣∣∣ 32λ

cos(φ/2)

∣∣∣∣n (7.130)

and for λ small enough, we find:

B1 ≤ eO(1)

∣∣ λ
cos(φ/2)

∣∣|V|. (7.131)

We now move on to the perturbative bound:

B2 :=

(∫
dνV|GV|2

)1/2

. (7.132)

For l > 1 we have: ∑
~p∈Pj

C l
0(~p) ≤

∑
~p∈Pj

C2
0(~p) ≤ 1

M4(j−1)

∑
~p∈Pj

1. (7.133)

The last sum can be bounded by the integral over the volume of the intersection between the
plane of R4 of equation

∑4
i=1 pi = 0 and the volume in between the hyper-spheres of equations

~p2 = M2(j−1) and ~p2 = M2j. This volume corresponds to the volume between the two spheres
of R3 of radius M j and M j−1, times a factor 1/2 coming from the normalization of Kronecker
delta: ∑

~p∈Pj
1 ≤ 1

2
×
(
Vj − Vj−1

)
≤ 2

3
πM3j (7.134)

and: ∑
~p∈Pj

C l
0(~p) ≤ 2

3
πM4M−j. (7.135)

The Gaussian integrals can be computed more easily by reversing the field translation 7.76.
Because, obviously: |e−i

√
2λ

∑4
j=1

∑
pj∈P

A(pj)τj(pj)| ≤ 1, we can treat the integral for the back-
translated intermediate fields with the simple replacement: C0(~p)Ujm(~p)→ i

√
2λC0(~p)χjmΓm(~p),

and an additional factor e−4Tr(XB)
∑
p A

2(p)χj ≤ 1. We then have a Gaussian integral of the form:

HV :=

∫
dνV

∏
m∈V

( ∑
~pα1∈Pjm

C2
0(~p)Γm(~p)

)km
. (7.136)

Such an integral can be pictured as a graph with |V| vertices, labeled by m, and with m half
colored intermediate field lines hooked to them. By Wick theorem, the Gaussian integration joins
together half lines between the vertices. In the worst case the graph has no loop, and because
||XB|| ≤ 1, it follows that the Gaussian integration 7.136 is bounded by:

|HV| ≤ 4
∑
m km

∏
m∈V

(
2

3
πM4M−jm

)km
×
(∑
m∈V

km

)
!! (7.137)

where we have taken into account the 4 choices for the colors of intermediate field lines through
the factor 4

∑
m km . For 7.132, the double factorial is:(

2
∑
m∈V

x
(m)
1

)
!! ≤ (4|V| − 4)!! (7.138)
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Moreover, taking into account that ∑
{x(m)
l }∑

l≥1 lx
(m)
l =c(m)

1∏
l≥1 x

(m)
l !lx

(m)
l

(7.139)

is the coefficient of xc(m) in the Taylor expansion of
∏

k e
xk/k = 1/(1 − x) allows to treat easily

the square of the combinatorial factor in 7.132. We find the bound:

|B2| ≤
√

(4|V| − 4)!!×
∏
m∈V

∑
{x(m)
l }∑

l≥1 lx
(m)
l =c(m)

c(m)!∏
l≥1 x

(m)
l !lx

(m)
l

(2λ)x
(m)
1 /2

(
8π

3

)c(m)

M−(jm−4) (7.140)

where, following [13], we assume that the scales j have an inferior bound jmin > 4 (this is
certainly not essential, since the first slices can be treated by a simple LVE). Choosing |λ| ≤ 1,
and with the remark following 7.139, we find finally the pessimistic bound

|B2| ≤
√

(4|V| − 4)!!×
∏
m∈V

(
8π

3

)c(m)

c(m)!M−jm . (7.141)

Taking into account the bound 7.131, we find, using 7.118:

∣∣ ∫ dνV
∏
m∈V

e−Vjm (~τm)GV

∣∣ ≤ eO(1)

∣∣ λ
cos(φ/2)

∣∣|V|√(4|V| − 4)!!×
∏
m∈V

c(m)!

(
8π

3

)c(m)

M−jm (7.142)

and:

∣∣ ∫ dνVFV(~τ)
∣∣ ≤ ( 2λ

cos2(φ/2)

)|V|−1√
(4|V| − 4)!!×

∏
m∈V

c(m)!

(
8π

3

)c(m)

M−jm . (7.143)

7.3.9 Final Bound

Collecting together the results of sections 7.3.6 and 7.3.8, we find the bound for the expansion
7.101 of the free energy ln(Z):

| lnZ[J, J̄ , λ]| ≤
∞∑
n=1

1

n!

∑
J tree

[ n∏
k=1

jmax∑
jk=0

]
2L(FF )

( ∏
`f∈FF

δjs(`f )jt(`f )

)∏
V

∏
m,m′∈V
m 6=m′

(1− δjmjm′ )

×
(

2|λ|
cos2(φ/2)

)|V|−1√
(4|V| − 4)!!×

∏
m∈V

c(m)!

(
8π

3

)c(m)

M−jm . (7.144)

At this stage, the reasoning follows exactly that of [13]. Thanks to Cayley’s Theorem, the number
of trees with n labeled vertices and coordination numbers ci for each vertex i = 1, ..., n is given
by:

(n− 2)!∏
i(ci − 1)!

. (7.145)
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This result shows that the sum involved in 7.144 obeys∑
c(m)|∑m c(m)=2

V|−2

∏
m∈V

c(m) =
(3|V| − 3)!

(|V| − 2)!(2|V| − 1)!
. (7.146)

Collecting all the factorials leads to:√
(4|V| − 4)!!

(3|V| − 3)!

(2|V| − 1)!
. (7.147)

Using Stirling’s formula as in [13]

2
√

(4|V| − 4)!!
(3|V| − 3)!

(2|V| − 1)!
≤ (|V| − 1)!3|3V|e−|V||V||V|. (7.148)

We now move on to the sum over scale attributions, taking into account the hard core constraint.
As explained in details in [13], the hard core constraint imposes that the scale assignments of
vertices in a same block are all different, which implies:∑

m∈V
jm ≥ jmin + (jmin + 1) + · · ·+ (jmin + |V| − 1) = jmin|V|+

|V|(|V| − 1)

4
(7.149)

and: ∑
m∈V

(jm − 2) ≥ 1

2

∑
m∈V

jm +
jmin − 4

2
|V|+ |V|(|V| − 1)

4
, (7.150)

where we have introduced explicitly the minimal scale jmin > 4. This result implies that,

∑
{jm}

∏
m,m′∈V
m6=m′

(1− δjmjm′ )
∏
m∈V

M−jm ≤
( jmax∑
j=jmin

M−j/2
)|V|

1

M
jmin−4

2
|V|+ |V|(|V|−1)

4

(7.151)

which, for jmin > 4 and M > 4, is uniformly bounded by M−|V|2/4. The upper bound jmax
can now be sent to infinity without any divergence, allowing to define non-perturbatively the
ultraviolet limit of the theory.

The final step is to sum over the Fermionic forest. Such a forest can be partitioned into
components of cardinal bk, associated to connected blocks of size k, hence with k sub-vertices.
The number of Fermionic lines is then

∑
k bk− 1. For each component with k sub-vertices, there

are nbk ways to hook a Fermionic line. Moreover, Cayley’s theorem (without constraint on the
coordinate number) states that the number of trees with v labeled vertices is vv−2, giving in our
case a contribution n

∑
k bk−2. Finally, with the constraint

∑
k kbk = n, when the number of (sub)

vertices is fixed to n, and the easy bound, coming from Stirling formula : n(
∑
k bk)−2 ≤ (

∑
k bk)!e

n,
we find

| lnZ[J, J̄ , λ]| ≤
∑
n

1

n!

∑
{bk}∑
k kbk=n

n!∏
k bk!(k!)bk

2
∑
k bk−1k(

∑
k bk)−2

∏
k

nbk

×
∏
k

[(
128π2|λ|

9 cos2(φ/2)

)k−1√
(4k − 4)!!

(3k − 3)!

(2k − 1)!
M−k2/4

]bk
. (7.152)
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Taking into account the bound 7.148, in addition to the easy bound, coming from Stirling formula
: n(

∑
k bk)−2 ≤ (

∑
k bk)!e

n, and performing the sum over the bi, we find the final bound:

| lnZ[J, J̄ , λ]| ≤
∑
b≥0

[∑
n≥1

(
128π2|λ|

9 cos2(φ/2)

)n−1

33nnnM−n2/4

]b
. (7.153)

The power ofM ensures that, forM sufficiently large, this factor compensates the bad divergence
associated to nn. The radius of convergence is then finite, and the factor cos2(φ/2) establishes
the domain of uniform convergence as stated in Theorem 11.
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Chapter 8

Conclusion, perspectives and further
topics

This concluding chapter has two goals. The first one is to summarize the achievements of the
last four chapters. The second one is to put these conclusions in a dynamic light, and to discuss
the perspectives and current works in continuation with the matters previously considered.

8.1 The functional renormalization group

In Chapters 5 and 6 we have introduced the functional renormalization group for TGFTs with
closure constraint. Chapter 5 has detailed the method, and provided a derivation of the so-called
Wetterich equation in full generality, i.e. without restriction on the valence of the interaction
bubbles. Secondly, we have discussed a current approximation, the truncation procedure, corre-
sponding to a projection of the renormalization group flow provided by the complete Wetterich
equation in a finite dimensional subspace of the theories’ space. The procedure is well adapted to
the case of TGFTs, and the one-loop structure of the resulting equation allows to obtain the flow
equations for the selected set of couplings in an economic way. In that same chapter, following
this path, we have derived the flow equation for an Abelian model both in the UV and IR limits
for a truncation around marginal couplings with respect to the perturbative power counting. In
both cases1, we highlight the existence of a non-trivial fixed point in the area of the phase space
connected to the Gaussian fixed point i.e. above the singularity line due to the vanishing of the
denominator of η. This non-Gaussian fixed point, with one relevant and one irrelevant direction,
is very reminiscent of the well-known Wilson-Fisher fixed point, the relevant direction drawing
a critical line between a “symmetric phase”, where the RG-trajectories reach the Gaussian fixed
point, and a “broken phase”, with negative mass parameter. This is an important conclusion, be-
cause a phase transition to a “condensate phase” has been suggested in relation with space-time
emergence, and has a cosmological interpretation (see Chapter 2).

At this stage, the tensorial structure prevents two of the standard applications of the FRG:
the vacuum translation and the dimensional regularization. Indeed, we have used the simplest
approximation for the truncation, and both the qualitative dimensional argument presented in
Chapter 5 and the results of Chapter 6 seem to indicate that a better control over the neglected
terms in the action is required to make our conclusion solid. Usually, as for the Ising model

1Note that the “large sphere radius” argument advocated in Chapter 5 matches exactly with the results
obtained for a TGFT on Rd in [1].
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for instance, the field vacuum is translated into a non-zero value, depending on the cut-off k,
as V (φ) = λ(φ2 − ρk)2, and we study the running of both the coupling and the minimum ρk.
Such a parametrization is quite appropriate, because no singularities occur (at least for ρk ≥ 0).
However, because of the tensorial structure of the interaction, the minimization of the potential
is non-trivial2. The same conclusions have been found in [2, 1], and the exact solution for the
ground state of TGFTs remains an open problem in the FRG approach. Moreover, as mentioned
at the end of Chapter 5, in standard field theory, dimensional regularization and ε-expansion
allow to keep control over the distance between the Gaussian and non-Gaussian fixed points,
providing an independent confirmation. The same kind of regularization for TGFT is the subject
of a current research, in collaboration with Dario Benedetti [10], for a class of models without
closure constraint. The strategy consists in a modification of the power of the Laplacian in the
propagator, such that the λ coupling remains marginal in any dimension. More concretely, we
consider the U(1)D − T 4

d without closure constraint, and with the propagator:

C(~p) =
1∑d

i=1 |pi|2κ +m2η
, (8.1)

where κ is chosen such that [λ] = 0, leading to κ = D(d−1)/4. The aim is to built a perturbative
expansion for the beta function, which, because all the expressions are analytic functions of the
dimension of the group manifold D, can be obtained by an ε-expansion around D = 1:

β(λ) = −β(2)(d)λ2 + β(3)(d)λ3 + · · · . (8.2)

Reproducing the success of the ε-expansion then requires that all the discarded terms β(n), n > 3
are of order O(λ2

∗) and higher, with λ∗ = β(2)(d)/β(3)(d) assumed to be a decreasing function
of d. For the moment, the two-loops computations seem to match with this hypothesis. The
remaining question concerns the behavior of the generic terms in the expansions.

Finally, we can return to the main conclusion of Chapter 6. In addition to the fixed points
already found for the T 4

6 truncation, acting on the group dimension, we have built a continuous
path between a quartic model defined on the group U(1)4 and the φ6 model defined on U(1)3.
The FRG allows to track between these two limits the non-trivial fixed points occurring in the
ε-expansion, and finally, completed with a treatment of the limit case U(1)3 with φ6 truncation,
provides at the same time a new solid argument in favor of the asymptotic safety of the φ6 tensor
model, and a confirmation of the validity of the ε-expansion method. For the moment, the result
is too strongly dependent on the approximations to transform such results into a mathematically
rigorous theorem. But the arguments accumulate around this conjecture, which seems to become
stronger as time passes. Another interesting project [?] concerns an application to the FRG for
a rank-4 TGFT beyond the world of melons, inspired by a purely tensor model studied in [7].
The basic idea is to add necklace graphs to the melonic U(1) − T 4

4 , enhanced by a momentum
dependent coupling. An elementary necklace corresponds to the graph pictured on equation 8.6,
and the Ansatz action that we would like to consider, has the following form (we use a graphical
representation for this informal discussion):

Sint = λ1

4∑
`=1

` ` + λ2

3∑
`=1

 ` `

4∑
`′=1

(|p1 `′ |+ |p2 `′|)

 (8.3)

2Even if we limit our attention to the zero mode only, we recover an algebraic equation, like the familiar
Ginsburg-Landau equation. Such an approximation, corresponding to a continuation to the zero dimensional
case, seems to be bad, and remains a qualitative indication.
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with the propagator 8.1 for D = 1, d = 4, and where ~pi , i = 1, 2 are the momenta associated
to the two tensor field T involved in the necklace interaction. The power counting of this model
has been established from a multi-scale expansion [6], providing the divergent degree:

ω(G) = −2κL(G) + (F (G) +
∑
f

η(∂f)) (8.4)

where η(∂f) corresponds to the number of derivative couplings along the boundary lines of the
face f . We can tune κ such that both melonic and enhanced necklace interactions are marginal.
This occurs at κ = 3/4. Computing the canonical dimension, we find that essential and marginal
couplings have to be added. In particular, we find necklace graphs of valence six and eight,
respectively with canonical dimensions 1/2 and 0. Moreover, we have to introduce four valence
necklaces, with coupling of dimension 1, and a 2-points interaction, with linear momentum
dependent term, and coupling of dimension 1/2. For the interested readers, we recall that a
necklace graph of arbitrary valency is obtained as a sum of the elementary necklaces pictured
on equation 8.6, where a sum between two graphs consists in the contraction of a single 0-dipole
between two different vertex bubbles. Then, the crude truncation around marginal coupling takes
the form:

Γs,kin[T, T̄ ] =
∑
~p∈Z4

T̄~p(Z1(s)|~p |3/2 + Z2(s)es|~p |1/2 + e2sm2)T~p (8.5)

Γs,int[T, T̄ ] =λ1

4∑
`=1

` ` + λ2

3∑
`=1

 ` `

4∑
`′=1

(|p1 `′|+ |p2 `′|)


+ λ3e

s

3∑
`=1

` ` + λ4e
s/2

3∑
`=1 `

``
+ · · · (8.6)

The interest of this study comes from the result pointed out in [7], where the authors show that
the leading sector of the 1/N -expansion possesses both a branched polymer phase and a 2D
quantum gravity planar phase, providing a new class of leading order graphs, mixing melons
and planar maps. The enrichment of the theory with non-melonic interactions could improve the
problem of the continuum transition from the branched polymer phase of the melonic sector,
especially because it provides a positive entropy exponent. Indeed, when both the branching and
the planar phases are critical, we find a proliferation of baby-universes with entropy exponent
1/3. Even if our field theory is quite complicated because of the large number of couplings,
preliminary results seem to provide a dynamical picture for these different regimes.

Finally, I would like to briefly return to the problem of the control over the approximations we
used. Chapter 6 has pointed some limitations, or “orange-lights”, of the truncation method, as
truncation around the marginal interactions with respect to the perturbative power counting
turns out to be wrong. Moreover, particular truncations seem to sometimes introduce patholog-
ical effects as lines of fixed points, which disappear by increasing the valence of the interactions
in the truncation. These questions remain of primordial importance for the future.
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8.2 Perturbative renormalization and closed melonic equa-
tions

The closed melonic equations are for the moment a frozen research project. But it is not the
same for the perturbative renormalization. We started to investigate the case of a theory with
geometrical degrees of freedom. The common strategy to tackle this problem in LQG consists in
implementing a discrete version of the symplicity constraint, which, at the classical level, allows
to pass from the topological BF theory to the 4d-Palatini formulation of general relativity. A
representation of this discrete constraint has been considered in [4], exploiting an extended GFT
formalism. Considering a field Ψk(g), with g ∈ SO(4)4 and k ∈ SU(2), the authors introduce
the improved gauge invariance:

Ψk(hg1, hg2, hg3, hg4) = Ψh.k(g1, g2, g3, g4) , (8.7)

where h . k := h+k(h−)−1 is the vector k rotated by h. Implementing this constraint allows to
recover the path integral amplitude for a constrained BF theory of the Plebanski type. The
Immirzi parameter can be introduced to recover the Holst-Plebanski gravity. Following this
path, the question of renormalization of an SU(2) TGFT with both closure and geometrical
constraints has been addressed in [12]. We have in particular shown that power counting makes
sense, and we have studied the case of a rank-4 just-renormalizable field theory with quartic
melonic interaction, for which we have proved the finiteness of the renormalized amplitude and
the asymptotic freedom at one-loop. The next step is to extend these results to a more realistic
model in dimension on the group manifold SO(4)4. This is the subject of a current work [11].
A preliminary analysis seems to indicate that melonic graphs should be absent, and that a just-
renormalizable theory may be built for necklace interactions of valence six. But the meaning of
this construction remains an open question for the future.

8.3 Constructive field theory
In Chapter 7, we have established Borel-summability in the coupling constant for the two sim-
plest TGFT models with closuer constraint, namely an UV divergence-free model and a super-
renormalizable one with a (short) finite list of divergent graphs. We used for the first one the loop
vertex expansion, and for the second one the enhanced technique called multi-scale loop-vertex
expansion, which allows to treat the subtraction of the divergent graphs with a scale decompo-
sition. We pointed out the simplification coming from the closure constraint, which reduces the
effective degrees of freedom of the intermediate fields, from matrices to vectors.

The constructive program for TGFTs is still in its infancy, and should extend to more com-
plicated models in the coming years. The next steps, in continuation with our program, is the
proof of Borel summability for the super-renormalizable T 4

5 and the just-renormalizable T 4
6 . Due

to the gauge invariance, we recover the same simplifications as for the T 4
4 . The list of the diver-

gent graphs becomes much longer, but at least for the T 4
5 model a 2-jungle formula should again

suffice, as shown recently in a similar work for the T 4
4 without gauge invariance [5].

The case of the just-renormalizable model T 4
6 remains however a much more difficult step.

Just renormalizable models require infinitely many subtractions, and we thus need an improved
multi-scale loop vertex expansion, which remains to be developed. However the T 4

6 model can
take advantage of some key properties, in particular its UV asymptotic freedom. This leads to a
reasonable amount of optimism in the final success of this program. Indeed we can take comfort
in the full construction and Borel summability of the Gross-Neveu model [13], which is also
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asymptotically free (when the number of Fermions is strictly higher than 1). Finally, note that
the set of super and just-renormalizable models in TFGT is a big family [3], which reserves many
unexpected challenges, in particular for the treatment of models with higher order interactions,
such as the φ6 model considered in Chapter 6.
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Titre : De la renormalisation perturbative à la renormalisation non-perturbative
dans les théories de champ sur groupe à interactions tensorielles

Mots clefs : Gravité quantique, théories effectives, renormalisation, géométrie aléatoire

Résumé : Cette thèse présente quelques outils per-
mettant d’approfondir notre compréhension de la
physique sous-jacente de théories des champs ap-
pelées “Group Field Theories" (GFT) en anglais.
Ces théories trouvent leur origine dans plusieurs
voies de recherche en gravité quantique, en partic-
ulier les mousses de spins et les tenseurs aléatoires.
Elles sont interprétés comme des modèles “pré-
géométriques" d’espace-temps quantiques, dont les
amplitudes de Feynman sont indexées par des tri-
angulations.
La compréhension de passage de cette vision dis-
crétisée à notre espace-temps reste un des grands
défi de cette voie de recherche, en vue de laque-
lle la renormalisation, les théories effectives, ainsi
que la recherche de points fixes et de transitions
de phases s’avère primordiale. C’est donc dans le

but de comprendre les outils nécessaires à cette de-
scription que cette thèse a vue le jour.
Nous nous attacherons dans un premier temps à
donner une description concise de la renormalisa-
tion perturbative, en montrant dans le même temps
que l’ordre dominant de la théorie peut être entière-
ment capturé dans un système d’équations fermé.
Dans un second temps, nous détaillerons la mise
en application de méthodes non-perturbatives. Le
formalism du groupe de renormalization fonction-
nel en premier lieu, permettra de donner une de-
scription non-perturbative de ces théories, et de
voir apparaêtre certain points fixes non-triviaux.
Une approche constructive enfin, discutée sur deux
modèles, ouvre la voie vers un programme visant
à donner une définition rigoureuse des GFTs avec
interactions

Title : From perturbative to non-perturbative renormalization in Tensorial Group
Field Theories

Keywords : Quantum gravity, renormalization, effective physics, random geometry

Abstract : This thesis is presenting a few tools
allowing to go deeper into our understanding of the
physics underlying the field theories called Group
Field Theories (GFTs). These theories are com-
ing from different research areas in quantum grav-
ity, in particular the spin foams and random ten-
sors. They are an interpretation of ”pre-geometric"
quantum space-time models, with Feynman ampli-
tudes indexed by triangulations.
Understanding the transition from this discrete
version to our continuous space-time remains the
greatest challenge for these theories. For this chal-
lenge, renormalization, the building of effective the-
ories, the search of fixed points and phase transi-

tions are essential: my aim in this thesis is to un-
derstand these necessary tools.
In a first time, we will give a tight description of
perturbative renormalization and we will establish
a system of closed equations describing the leading
order of the theory. In a second time, we will de-
tail the implementation of non-perturbative meth-
ods: firstly, the functional renormalization group
will held us give a first non-perturbative description
of these theories and reveal some non-trivial fixed-
points. Then, a constructive approach, discussed in
two models, will open the way to a program offering
a rigorous definition of interacting GFTs.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

198 BIBLIOGRAPHY


	Motivations
	Gravitation and Quantum Theory
	The difficulty to quantize the gravitational field
	Organization of this thesis

	Group field theories for quantum gravity
	Formal definition and basic example
	A field theory over a group manifold
	The Boulatov model and Ponzano-Regge amplitudes

	Relation with loop quantum gravity and spin foams
	Canonical quantization of general relativity
	Covariant loop quantum gravity and spin foam models

	Relationship with random discrete geometry
	Discrete random geometry in dimension 2: Matrix models
	Higher dimensions and tensors

	Achievements and perspectives

	Colors and Tensoriality
	Colored Group Field Theories
	Formal definition and colored graphs
	Comment about diffeomorphisms in dimension three
	The tensors models
	Regularization and large N-expansion for GFTs

	Tensor invariance
	Uncoloring the colored tensor models
	Tensorial Group Field Theories


	Perturbative renormalization: The U(1)-Td4
	Definition of the model
	One-loop computations and renormalization
	Divergences of 2 and 4-point functions at one-loop
	Counter-terms and renormalization
	Running coupling constant
	Why does renormalization make sense?

	Hubbard-Stratanovic decomposition
	Power-counting and Abelian classification
	Multi-scale decomposition
	Power-counting Theorem
	Leading sector and classification
	Locality and traciality

	Systematic renormalization of T64
	Bound of the renormalized amplitudes
	The effective series

	Closed equations in the melonic sector
	Bare equations
	Renormalized equations

	Renormalization group flow
	Wilson-Polchinski equation
	Perturbative solution
	Toward non-perturbative renormalization


	Appendix Closed melonic equation for d=3
	Appendix Formal solution of RG equation
	Functional Renormalization Group
	Functional renormalization group for TGFTs
	Effective average action for TGFTs
	Canonical dimension of a tensorial bubble

	The truncation procedure for T64
	Renormalization group flow equations
	RG equations for dimensionless parameters
	Large s approximation, vicinity of the Gaussian fixed point
	Non-Gaussian fixed point at d=6
	Small-s limit

	Discussion

	Appendix Universality of the one-loop beta function
	A standard argument for one-loop universality
	Example with a different regulator

	Flowing rank-3 TGFTs in the UV
	Just-renormalizable models in dimension 3
	FRG for Quartic model with 3<D4 in the deep UV
	Truncation and -functions
	D=4: RG-flows and fixed points
	Analytic continuation in D, from 4 to 3

	RG-flows of the D=3 model
	Truncation and -functions
	RG-flows and fixed points


	Constructive methods for TGFTs
	BKAR Forest formula and Borel summability
	The ``constructive swiss knife''
	Borel summability

	Convergence and summability for T34
	Free energy
	Schwinger functions

	Multi-scale loop vertex expansion for T44
	List of divergent graphs
	Counter-terms and renormalization
	Hubbard-Stratonovic decomposition and subtraction
	Slicing the intermediate field decomposition
	Two-levels jungle expansion
	Bound of the Grassmann integrals
	Bosonic integrals
	Bound of the Bosonic integral
	Final Bound


	Conclusion, perspectives and further topics
	The functional renormalization group
	Perturbative renormalization and closed melonic equations
	Constructive field theory


