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Core-collapse supernovae (CCSNe) are potential sources of gravitational waves (GWs) that could
be detected by current and future detectors, and their detection and analysis are of great importance
for understanding the explosion mechanism. Since matched filtering cannot be used for these
signals due to the stochastic nature of the waveforms, detection methods based on time-frequency
representation have been developed. Recently, deep learning has been applied to the analysis of
GW data and has the potential to greatly improve our ability to detect and analyze these signals.
In this study, we apply a convolutional neural network (CNN) to detect and classify GWs from
CCSNe. The model is trained on CCSNe waveforms obtained from 3D numerical simulations,
injected in real noise of O3 observation run. We also apply a class activation mapping (CAM)
technique to visualize from which part of the input the model predicted the result. The results
show that our model is able to classify 9 CCSN waveforms and noise with 96.9% accuracy at 1
kpc. The maps visualized by Grad-CAM show that the model’s predictions are based on g-mode
shapes of input spectrograms.
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1. Introduction

The first detection of GWs from binary black hole mergers in 2015 marked the beginning
of GW astronomy [1]. Subsequently, the first joint observation of GWs from binary neutron star
mergers and the related electromagnetic signals opened the door to multi-messenger astronomy [2].
With numerous binary mergers have been detected, the field is anticipating the detection of short-
duration GW bursts, with CCSN being a prominent target. Despite the detection of neutrinos from
the SN1987A event [3, 4], the details of the explosion mechanism are still an open question, and the
direct probe of its internal dynamics by neutrinos and GWs is crucial for the study of the supernova
engine. Since GW signals from CCSNe have stochasticity in nature, traditional detection techniques
such as matched filtering, which relies on specific waveform templates, are not applicable. As an
alternative, detection methods based on time-frequency representation have been developed [5].

In recent years, machine learning techniques, especially deep learning (DL), have demonstrated
remarkable success in various scientific domains. DL algorithms excel at recognizing complex
patterns and extracting meaningful features. Their ability to learn from large data sets has led to
breakthroughs in fields such as computer vision and natural language processing. In the context of
CCSNe, Astone et al. [6] first proposed to apply CNN to detect them, and they showed that CNN
is a promising approach to identify CCSN signals from background noise.

In this study, we take a similar approach as Iess et al. [7] to detect and classify CCSNe using
two-dimensional CNN model, but we add more simulated signals and consider signals from various
distances. In addition, we apply Guided Grad-CAM technique [8] to visualize the regions in the
input which affects the model’s predictions.

The remainder of this paper is organized as follows. Section 2 describes our datasets, CNN
model and Grad-CAM technique. The results and the visualization of the model are presented in
Sec. 3. We summarize and conclude the paper in Sec. 4.

2. Method

Our CNN model is trained to classify strains at three detector LIGO H1, LIGO L1 and Virgo
into 10 class: noise and 9 different CCSN waveforms. In this section, we describe the data and the
model used in this analysis, and briefly explain the CAM technique.

2.1 Data set

9 different CCSNe waveforms obtained by 3D numerical simulation [9–13] are used to train
and test our CNN model. The characteristics of each waveform are summarized in Table 1. The
directions of radiation (𝜃, 𝜙) are uniformly sampled and the plus and cross polarizations of each
GW are calculated using the formulae

ℎ+ =
1
𝐷

2𝐺
𝑐4 ( ¥𝑄 𝜃 𝜃 − ¥𝑄𝜙𝜙), (1)

ℎ× =
1
𝐷

𝐺

𝑐4
¥𝑄 𝜃 𝜙, (2)

where 𝑄 is the traceless quadrupole moment, and 𝐷 is the distance between a source and the earth.
These waveforms are resampled at a sampling rate of 4096 Hz, and a high pass filter with a cutoff
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Table 1: CCSN waveforms used in this study.

Paper
Equation of
State

Waveform
Identifier

𝑀star

[𝑀⊙]
Powell and Müller 2019 [9] LS220 s3.5_pns 3.5

s18 18
Radice et al. 2019 [10] SFHo s13 13

s25 25
Mezzacappa et al. 2020 [11] LS220 c15 15
Powell and Müller 2020 [12] LS220 s18np 18

m39 39
y20 20

Powell et al. 2021 [13] SFHo z85 85
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Figure 1: Sample spectrogram used in this study. The waveform is s18 at 1 kpc and injected in LIGO H1
detector noise.

frequency of 11 Hz and a Tukey window with 𝛼 = 0.1 are applied prior to the zero padding to make
the length of each sample to one second. Each sample is then randomly time shifted and rescaled
so that the time of core bounce is between 0 and 0.15 seconds and the distance is between 1 and
10 kpc. Sky location is also randomly selected and gravitational wave amplitude ℎ(𝑡) is computed,
taking into account the antenna pattern function and the delay in arrival time of each detector.

Noise used in this study are O3 real data of Advanced LIGO and Advanced Virgo, obtained from
Gravitational Wave Open Science Center [14]. Data from GPS time 1238265720 to 1238252308
was used for training set, 1238265720 to 1238354855 was used for validation set, and 1238404064
to 1238457121 was used for test set. After a signal is injected in noise, each sample is whitened
in frequency domain and short-time Fourier transformed with window size of 0.0625 seconds to
produce a spectrogram. We generated 200,000 samples each of training, validation and test data.
One of the training samples is shown in Fig. 1.
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2.2 Model

Our CNN model consists of two convolutional layers of kernel size 3, each followed by a
max-pooling layer of size 2. The outputs of these layers are fed into two fully connected layers,
which output a size 10 vector whose elements represent a probability of each class: noise, c15,
m39, s3.5_pns, s13, s18np, s18, s25, y20 and z85. The model is trained using cross entropy as the
loss function and Adam optimizer with a learning rate of 10−3 to update the weights. We trained
the model for 100 epochs with a mini-batch size of 2048.

2.3 Visualization

After training the model, we apply Grad-CAM to visualize the regions in the input that
influenced the model’s prediction. It is computed using the feature maps 𝐴𝑘 at the last convolutional
layer and the gradients of the predicted score of the class of interest with respect to the feature maps
as weighted parameters 𝑤𝑘

𝑐 . The ReLU function is applied to extract only features that have a
positive influence on the predictions. The resulting map of class 𝑐 is expressed as

𝑤𝑐
𝑘 =

∑︁
𝑖, 𝑗

𝜕𝑌 𝑐

𝜕𝐴𝑘
𝑖 𝑗

, 𝑀𝑐 = ReLU

(∑︁
𝑘

𝑤𝑐
𝑘𝐴

𝑘

)
. (3)

To obtain higher resolution maps, we use Guided Grad-CAM, which is a combination of
Grad-CAM and Guided Backpropagation [15]. Guided Backpropagation modifies the standard
backpropagation algorithm to only propagate positive gradients, highlighting the significant input
features that influence the model’s predictions while ignoring negative gradients.

3. Results

This section describes the results of the test set applied to the trained model and discusses the
performance of our model. We then show the class activation mapping images for interpreting the
model.

3.1 Classification result

Performance of a multi-class classification model is usually expressed by a confusion matrix,
which shows the number of samples classified into each class. In Fig. 2, confusion matrices
normalized for each class and the distribution of matched filter signal-to-noise ratio (SNR) for
signals at 1, 5 and 10 kpc are plotted. Our classification model shows 96.9% accuracy for signals
at 1 kpc and 59.3% for those at 5 kpc. We can see from the confusion matrices that as the distance
increases, the amplitude of signal becomes smaller and the number of samples misclassified as
noise increases. The accuracy for signals at 10 kpc is 30.2%, and our model cannot identify most
of those signals except for m39 waveforms, whose SNR is much higher than others.

3.2 Visualization

Figure 3 shows some of the correctly classified samples and corresponding class-activation
mapping images produced by Guided Grad-CAM. The CAM image of the noise sample show
nothing particularly significant. The CAM image of the signal samples are shaped like the g-mode
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Figure 2: Confusion matrices of the test set (left) and violin plots of network SNR of each waveform (right)
at distance 1, 5 and 10 kpc.

of the input spectrograms. Thus we can conclude that the model’s predictions are based on the
shape of the g-mode in the input spectrograms. Waveforms such as c15, s3.5_pns, s13, s18np,
s25, and z85, reported in their respective papers, have standing accretion shock instability (SASI)
induced GW mode. Despite the presence of these distinctive features in the waveforms, they are
not adequately captured in the spectrograms obtained through short-time Fourier transform. As a
result, the CNN model likely could not utilize such features for its predictions.
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Figure 3: Input spectrograms and CAM visualizations of 9 waveform samples at 1 kpc and a noise sample.

4. Conclusions

In this study, we applied a two-dimensional CNN model to detect and classify CCSN signals
immersed in noise. Our model achieved a high accuracy of 96.9% for signals at 1 kpc distance, but
the model struggled to correctly identify most of the signals at 10 kpc.

To gain insights into the decision-making process of the model, we applied Grad-CAM tech-
nique to visualize the regions in the inputs that were influencial to the predictions. The CAM images
of correctly classified signal samples revealed that the model’s predictions were heavily affected by
the shape of the g-mode oscillation appeard in the spectrograms.

Time-frequency maps used in this analysis were produced from the short-time Fourier trans-
form, but it is expected that by using methods such as the Hilbert-Huang transform, which can
produce higher resolution time-frequency maps, CNN models identify modes other than g-mode to
make predictions.
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