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ABSTRACT OF DISSERTATION

TOPICS IN QUANTUM QUENCH AND ENTANGLEMENT

The dissertation includes two parts.
In Part I, we study non-equilibrium phenomena in various models associated with

global quantum quench. It is known that local quantities, when subjected to global
quantum quench across or approaching critical points, exhibit a variety of univer-
sal scaling behaviors at various quench rates. To investigate if similar scaling holds
for non-local quantities, we consider the scaling behavior of circuit complexity under
quantum quench across the critical massless point in Majorana fermion �eld theory
of the one-dimensional integrable transverse �eld Ising model and �nd it obeys such
scaling. To investigate if similar scaling holds for non-relativistic theories, we test
various solvable critical quantum quench protocols in a theory of fermions in a har-
monic oscillator potential and �nd local quantities as well as entanglement entropy
obeys di�erent scaling behaviors at di�erent quench rates. We study quantum quench
in the c = 1 matrix model which is holographically dual to two-dimensional string
theory. Unlike higher dimensional holographic setups where quantum quench leads to
black holes, the emergent spacetime in this model generically develops cosmological
singularities at late times.

In Part II, we expand the proposal that target space entanglement provides a pre-
cise notion of entanglement in the bulk gravitational duals of Dp brane theories, which
was shown in a gauge �xed formalism. We developed a gauge invariant description
of target space entanglement in these theories and derived path integral expressions
for the entanglement entropy which can be used in numerical calculations.

KEYWORDS: Quantum Quench, Entanglement Entropy, Matrix Model, Circuit Com-
plexity, Holography
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Chapter 1
Introduction

Theoretical physicists have a long history in studying equilibrium1 systems and have
developed systematic methods to understand equilibrium phenomena. However, equi-
librium is only an ideal situation. There are many natural phenomena which are
far from equilibrium. One class of such phenomena involve systems in excited states
which then relaxes to equilibrium: transport properties are examples of process which
probe such out-of-equilibrium phenomena. Another class involve systems whose pa-
rameters vary in time. Our current understanding of non-equilibrium phenomena in
the quantum regime is rather rudimentary. However recent progress in cold atom ex-
periments has triggered a lot of interest in this �eld. A major part of this dissertation
deals with studies of some aspects of quantum non-equilibrium behavior.

In many-body systems and quantum �eld theories, quantum quench describes a
process during which a system, initially in equilibrium, is driven out of equilibrium
by some external time-dependent coupling. Quantum quench is therefore a useful
theoretical and experimental tool to study non-equilibrium phenomena. The �rst
three papers on which this dissertation is based deals with aspects of quantum quench
dynamics.

One important problem which is studied utilizing quantum quench is thermal-
ization. Here thermalization means local correlators (as well as nonlocal quantities
such as entanglement entropy of a subregion of the system) starting from a pure
state, asymptotically approach their expectation values in grand canonical ensem-
ble. While this is expected to happen in generic interacting systems, the process of
how this happens is still not well understood. Also, there are some systems which
do not thermalize such as integrable many-body systems and systems which exhibit
many-body localization[1�3].

Another important problem which can be studied using quantum quench relates
to critical dynamics. Here one starts with a gapped phase and then a time dependent
parameter later takes it across a quantum critical point (gapless phase) or makes it
approach a critical point. Such quench protocols are called critical quenches. In equi-
librium, a critical point is characterized by universality. Near a critical point, various
physical quantities scale as powers of the di�erence of the parameter from its critical
value with exponents which are the same for a large class of microscopically di�erent
systems. The underlying mechanism for such universality is well understood. The
exponents can be evaluated utilizing renormalization group. While one might expect
that a similar universality should hold in critical quench, there is no general theoret-
ical framework like the renormalization group which holds for such non-equilibrium
situations. Over the past several decades theoretical research in this area has con-
centrated on studying a variety of models which can be investigated analytically or

1In this dissertation, equilibrium (system) means (a system) in a steady state unless otherwise
stated explicitly.
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numerically, and using simplifying (and sometimes drastic) assumptions to draw more
general conclusions [4].

The earliest investigation on critical quench was done by T. Kibble in 1970s when
studying defect formation in cosmology [5], and was later extended by W. Zurek
in 1980s to condensed matter systems [6]. They considered systems driven through
a critical point by a time-dependent source whose rate of change is slow compared
to the initial energy gap. Initially the system evloves adiabatically. As the system
approaches the critical point, the adiabatic approximation fails to describe the time
evolution of the physical quantities. By making some perhaps drastic assumptions,
Kibble and Zurek showed that certain universal properties hold. For example quan-
tities like one- or two-point functions scales with the quench rate with exponents
determined in terms of the equilibrium critical exponents of the critical point. This
is called Kibble-Zurek scaling. Even though these conclusions were derived using
rather drastic simplifying assumptions, the scaling behavior turns out hold in both
analytic and numerical calculations in theoretical models where the quench process
is studied without these assumptions. There are also indications that they hold in
some recent experiments. This has motivated a lot of recent work aimed at a better
understanding of the origin of this scaling.

It turns out that universal scaling, with di�erent exponents, also hold when the
quench rate is fast, as shown in [7�10]. In their investigation they proved that in
a general relativistic �eld theory, the quantum quench with a rate fast compared
to the initial energy gap but slow compared to the UV scale (e.g. lattice spacing),
results in the renormalized quantities scaling with the quench rate with the exponents
again determined by equilibrium critical exponents (di�erent from slow quench ones).
The mechanism of this scaling behavior is understood by utilizing the properties of
relativistic theories, and the general results have been explicitly veri�ed in many
theoretical models where the exact quench dynamics can be studied.

Though these scaling behaviors are quite generic, explicit investigations have been
mainly launched in solvable models subject to solvable quench protocols. Moreover,
the physical quantities that have been most extensively investigated are local quan-
tities such as one- or two-point functions. In comparison, much less is known about
the scaling behaviors of non-local quantities such as entanglement entropy of a sub-
region or complexity of a quantum state (a measure of how di�cult to prepare a
quantum state). However, these non-local quantities actually characterize properties
of a quantum state that are not easily captured by correlation functions. Therefore
it is important to study if scaling holds for such quantities. Earlier studies by other
authors have found evidence for scaling properties of entanglement entropy in both
slow and fast quench regimes [11]. In this dissertation, we investigate whether the
complexity of a quantum state produced by quantum quench also show similar be-
havior: We considered the simplest model of a quantum critical phase transition �
the one-dimensional transverse �eld Ising model, and found that universality holds
in both slow and fast quench regime. This is based on the paper [12].

Many interesting systems which are studied in condensed matter physics or cold
atom physics are non-relativistic. In these theories, Kibble-Zurek scaling is expected
to hold. However, the status of fast quench scaling in these theories is unclear, though
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in speci�c models similar scaling behavior to relativistic systems is found due to the
existence of an e�ective �nite velocity of signal propagation. In this dissertation
we study such a non-relativistic system which has direct relevance to experiments:
one-dimensional non-relativistic fermionic �eld theory in external harmonic oscillator
potential with time-dependent frequency. This part of the dissertation is based on
[13]. Here we found quench protocols which are exactly solvable and showed that there
is scaling behavior both for slow and fast quenches. For slow quenches, the result is
consistent with Kibble-Zurek scaling. And the fast quench scaling is consistent with
perturbation theory.

When quantum quench happens in a quantum �eld theory holographically dual
to some gravitational theory, thermalization has an interesting dual interpretation.
In such theories, the dynamics of the �eld theory is equivalently described by a
gravitational theory living in one higher dimension. The additional dimension is
�emergent�. As a result, quantum quench in the quantum �eld theory also leads to a
time-dependent geometry in the dual gravitational theory.

The most well-known example of holographic duality is the AdS/CFT corre-
spondence [14]. It conjectures that a certain gravitational theory living on (d + 1)-
dimensional asymptotically anti-de Sitter spacetime is dual to some deformed con-
formal �eld theory (which does not contain gravity) on its d-dimensional boundary,
where the additional dimension is identi�ed with an energy scale in the �eld the-
ory. Therefore the quench, acting on the conformal �eld theory, behaves as a time-
dependent boundary condition in the AdS bulk. Usually, the resulting time-dependent
geometry describes the formation of a black hole [15]. The black hole emits Hawking
radiation, and simultaneously absorbs the Hawking radiation bounced back by the
boundary, as well as the later gravitational radiation due to the quench. Eventually
quantum quench leads to a steady black hole state in equilibrium2 with the ther-
mal environment outside the horizon. From the view of CFT side, this process is a
thermalization.

However, in other well studied examples of holography this is not expected to
happen. One example is the correspondence between the singlet sector of (0 + 1)-
dimensional gauged quantum mechanics of a single N ×N Hermitian matrix model,
called c = 1 matrix model, and the (1 + 1)-dimensional critical string theory [16]� It
is generally believed that the singlet sector in fact does not have a black hole. One
evidence for this belief is that an incoming tachyon pulse does not produce a black
hole [17]. However, quantum quench should lead to a time-dependent geometry. In
a case like this, it is important to understand the nature of this emergent spacetime.
To approach this goal, the nature of the time-dependent geometries produced by a
quantum quench in matrix quantum mechanics is investigated in this dissertation
(based on [18]). We found quench protocols for which the quantum dynamics can be
studied exactly and the results could be used to determine the emergent spacetime.
We found that unless the quench protocol is �nely tuned, the spacetime has spacelike
regions of large coupling in the gravity description at late times. A dual interpretation
in terms of a smooth geometry however holds only when the bulk coupling is weak.

2The equilibrium here means thermal equilibrium.
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Therefore in this region smooth spacetime interpretation fails, even though the time
evolution of the underlying matrix quantum mechanics is well de�ned. This kind
of scenario could have implications for higher dimensional models of holographic
cosmologies.

The �nal part of this dissertation deals with a di�erent subject: the role of entan-
glement in holography. It is widely believed that classical spacetime is an emergent
description of some underlying microscopic quantum mechanical theory [19]. In par-
ticular, a smooth spacetime is rather an e�ective description (in the approximate
semiclassical notion) of the entanglement structure between quantum degrees of free-
dom. A great amount of evidence has been found in the most widely known example
of holography, AdS/CFT correspondence, to support this idea. The idea is that states
which highly entangle in di�erent spatial regions of the boundary �eld theory have
dual description in terms of a smooth higher dimensional space-time.

However, there are examples of the holographic correspondence where the dual
theory has no space at all. The earliest example of holography which predates the
AdS/CFT correspondence of this type: this is the duality of the c = 1 matrix model
mentioned above with string theory in two dimensions which contain gravity. Another
example is the BFSS matrix model. It is natural to conjecture that in these examples,
the emergence of a smooth dual space-time is related to entanglement in target space
of the quantum mechanical system. More generally, even when the dual theory is a
�eld theory, target space entanglement should play a key role.

This necessitates a precise understanding of entanglement in target space. Some
formal properties of target space entanglement have been studied in [20].

Recently, [21] proposed a precise formalism to de�ne and study target space en-
tanglement in a class of holographic models arising in string theory. They argued that
the target space entanglement in the gauge �eld theory on the boundary provides a
precise and exact notion which reduces to the notion of entanglement between spatial
regions of the gravitational dual in the semiclassical regime. This work, however,
developed the notion of target space entanglement in a speci�c gauge of the gauge
theory. In this dissertation, based on [22], I provide a completely gauge invariant de�-
nition of target space entanglement and study some of its properties. The connection
of this to emergence of smooth space-time is under current study.

In the rest of this chapter we introduce relevant concepts. The outlines and a summary
of this dissertation is in section 1.4.

1.1 Overview of Quantum Quench

Quench means rapid cooling, a heat treating process to obtain certain properties of
materials. In quantum physics, a quantum quench is used to describe a process,
during which a system is driven from equilibrium by a time-dependent coupling. To
be concrete, one can consider a quantum �eld theory initially at ground state, with
Hamiltonian containing a time-dependent parameter λ(t). λ(t) varies during a time
scale δt and approaches some constant values, λ0 and λ1 ≡ λ0 + δλ, at early and
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late times, respectively, resulting in time-independent initial and �nal Hamiltonians.
This is called a global quench.

Figure 1.1: A typical global quantum quench protocol, described by time-dependent
parameter λ(t).

Quantum quench has attracted recent attention because it provides a possible way
to study problems related to non-equilibrium phenomena � The ground state of initial
Hamiltonian �nally becomes an excited state of the new Hamiltonian at late times.
Usually after a long time, the system thermalizes and we would like to understand
the way this happens. The study of thermalization by means of quantum quench can
be also experimentally studied � One may refer to the experiments with cold atom
systems as examples.3

1.1.1 Scaling Behaviors at Critical Point with various Quench Rates

Apart from its use to understand thermalization, the study on quench-relevant prob-
lems is also motivated by e�orts to understand critical dynamics, i.e. the universal
scaling behaviors at critical points.4 When the time-dependent coupling brings the
system close to the critical point, e.g.

S = Scritical −
∫

dt

∫
dd−1x λ(t)O∆(~x, t) (1.1)

λ(t) = λ0 + δλ · F (t/δt) (1.2)

where λ(t) → 0 at some time and the theory becomes critical, the evolution of the
system, as a response, is expected to follow the universal scaling laws. These universal
scaling behaviors have been obeserved in expectation values of coupled observables
〈O∆〉, correlation functions, and entanglement entropy.

Di�erent universal scaling are known to hold in di�erent regimes characterized by
the quench rate.

3Several experimental references could be found in [23�25].
4A review can be found in [26]
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� Slow quench δt� λ
−1/(d−∆)
0

In slow quench regime, the change rate of the energy gap is slow compared to
the initial gap. Therefore the time evolution of the system should be adiabatic
at early times. However, as the time-dependent parameter approaches critical
point, the instantaneous energy gap Egap(t) becomes small. As a result the
Landau criterion for adiabaticity

1

Egap(t)2

dEgap(t)

dt

∣∣∣∣
t=tKZ

� 1 (1.3)

is no longer satis�ed and the adiabatic approximation is no longer a good one.
It was assumed by Kibble and Zurek that soon after the time when the LHS
of (1.3) is at the order 1, which is called Kibble-Zurek time tKZ , the system
becomes diabatic � all physical quantities remain unchanged since t = tKZ .

5

Furthermore, they assumed that when the system is in diabatic regime, the
instantaneous correlation length at Kibble-Zurek time, ξKZ , is the only length
scale6 in the problem. Then the universal scaling behaviors are entirely deter-
mined by powers of ξKZ . Here the power can be easily found via dimensional
analysis. For example, after entering diabatic regime (t > tKZ), one-point
function 〈O∆〉 scales as

〈O∆〉 ∼ ξ−∆
KZ (1.4)

where ∆ is the conformal dimension of operator O∆.

It is remarkable that though Kibble and Zurek's assumptions are crude, the
scaling behaviors predicted appear to be correct.

� Abrupt/instantaneous quench7 δt = 0

In the instantaneous quench regime, we consider the scaling behaviors of a sys-
tem that will be relevant to this dissertation � the 1 + 1-dimensional time-
dependent system with Hamiltonian of the system abruptly switch from a
gapped one, H0, to a critical one H ≡ HCFT . The Heisenberg picture state
which is the ground state of the initial gapped Hamiltonian, |ψ0〉 could be ap-
proximated, for long distance properties, by the form [27�29]

|ψ0〉 ∝ e−τ0H |B〉 (1.5)

where |B〉 is a conformally invariant state in the (1 + 1)-dimensional conformal
�eld theory HCFT called a "boundary state" (i.e. the state obtained by per-
forming an euclidean path integral on a half plane with conformally invariant
boundary condition on the boundary), and τ0 is proportional to the correlation

5All physical quantities remain unchanged from t = tKZ till a future time when the Landau
Criterion is satis�ed again.

6The correlation length ξKZ satis�es tKZ ∼ ξzKZ , where z is the dynamical critical exponent.
7Here "abrupt" or "instantaneous" means the quench rate is fast compared to all scales in the

problem including the UV scale.
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length (or inverse mass gap) of the initial state λ
−1/(d−∆)
0 . Then the univer-

sal scaling laws of one-point and higher point functions are given by boundary
conformal theory. For example, when x, t � τ0 the one-point function and
two-point function of local primary scalar operators are

〈O∆(t)〉 ∼ exp

(
−π∆

2τ0

t

)
(1.6)

〈O∆(x, t)O∆(0, 0)〉 ∼ exp

(
−π∆

2τ0

×min{t, x/2}
)

(1.7)

respectively.8

� Fast quench Λ−1
UV � δt� λ

−1/(d−∆)
0

Universal scaling law has also been found in intermediate quench regime when
the �eld theory is relativistic [7�10]. Here "intermediate" means that the quench

rate is fast compared to inverse physical mass scale λ
−1/(d−∆)
0 while slow com-

pared to UV cuto� Λ−1
UV . In such a regime the expectation value of observable,

O∆(~x, t), can be computed via perturbation theory, i.e.

〈O∆(~x, t)〉 = 〈O∆(~x, t)〉λ0−δλ
∫ t

−∞
dt′F (t/δt)

∫
dd−1x′GR,λ0(~x, t; ~x′, t′)

+O(δλ2) + ...

(1.8)

where the Green's function is given by

GR,λ0(~x, t; ~x′, t′) = iΘ(t− t′)〈
[
O∆(~x, t),O∆(~x′, t′)

]
〉λ0 (1.9)

Now we turn on the quench at t = 0 and consider the late-time response at t = δt
such that |t− t′| < δt. Because 1) in the relativistic theories, Green's function

should satisfy causality (|~x− ~x′| ≤ |t− t′|), and 2) in the limit λ
1/(d−∆)
0 · δt� 1,

Green's function of the �eld theory is indistinguishable from that of a UV
conformal �eld theory, we have

GR,λ0(~x, t; ~x′, t′) ≈ GR,CFT (~x, t; ~x′, t′) ∼
∣∣∣(t− t′)2 − (~x− ~x′)2

∣∣∣−∆

∼ δt−2∆

(1.10)
Thus, the universal scaling behavior in fast quench regime is controlled by
combinations of the scale of quench coupling δλ and the quench rate δt, which
could be �gured out by dimensional analysis.

8For two-point function we assume that 〈O∆〉 6= 0 s.t. the boundary scaling dimension of the
leading boundary operator to which O∆ couples, ∆b, vanishes. This is in order to make it more
clear that the scaling behavior of two-point function is related to the light-cone. The general scaling

behavior when t < x/2 is ∼ exp
(
−π∆t

τ0

)
exp

(
π∆b

2τ0
(2t− x)

)
. One can refer to [27, 28] for details.
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1.1.2 Quantum Quench in Holographic Setup

The study of quantum quench problems in gauge theories also sheds light on gravi-
tational theories via gauge/gravity duality. Gauge/gravity duality is a strong/weak
correspondence motivated by string theory, which conjectures an equivalence between
gauge theories and gravitational theories.9 A typical example of gauge/gravity duality
is AdS/CFT correspondence [14].

AdS/CFT correspondence is based on holographic principle. In particular, it is
conjectured that a certain gravitational theory on (d+1)-dimensional AdS spacetime
is dual to some conformal �eld theory on its d-dimensional boundary. If one adds a
source φ0(x) = φ0(~x, t) for some gauge invariant operator with conformal dimension
∆ to the CFT action at the boundary, i.e.

S ′CFT = SCFT −
∫

ddxφ0(x)O∆(x) (1.11)

then in the regime where the bulk theory is weakly coupled while the boundary theory
is strongly coupled, the AdS/CFT correspondence has the mathematical statement
that [31] 〈

exp

∫
ddxφ0(x)O(x)

〉
CFT

= e−SSUGRA[φ] (1.12)

which relates the generating function of CFT to classical supergravity (or string
theory) action. Note that the source is related to the boundary value of scalar �eld φ
which has mass m2 = ∆(d−∆) in AdS spacetime. To be concrete, one can consider
the AdS spacetime near the boundary

ds2 =
1

z2

(
dz2 + gij(x, z)dx

idxj
)

(1.13)

where x = (~x, t), z is the radial coordinate of AdS spacetime, and the boundary of
AdS is at z = 0. Then near the boundary the scalar �eld φ takes the form

φ(~x, t, z) ∼ zd−∆
[
A(~x, t) +O(z2)

]
+ z∆

[
B(~x, t) +O(z2)

]
(1.14)

The AdS/CFT correspondence claims that A(~x, t) is identical to the source φ0(~x, t).
Also, B(~x, t) is claimed to satisfy

〈O∆〉CFT = B(~x, t) + ... (1.15)

where "..." depends on the theory we consider. Since for each primary operator in
CFT there is a �eld in (d + 1)-dimensional bulk whose restriction to boundary is a
source coupled to the operator, there are analogous asymptotic behaviors of vector
current, metric, etc (with di�erent exponents of z).

Now if we compared (1.11) with (1.1), one �nds that the quench coupling λ(t)
can be regarded as a space-translation invariant source of the CFT on boundary (the
critical action is chosen to be CFT now). Therefore, when the �eld theory has a

9For reviews one can see [30].
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gravity dual, quantum quench becomes a time-dependent boundary condition in the
bulk. When a quench in gauge boundary is turned on, it actually creates gravitational
radiation that propagates from the boundary into the gravitational bulk. If the
bulk is �nite, the radiation usually results in the formation of a black hole horizon,
which absorbs later radiations and increases the size of itself. However, the black
hole, once formed, radiates. This e�ect is called Hawking radiation and leads to
the evaporation of the black hole. Since AdS spacetime acts as a spatial box the
two opposing processes will eventually leads to a balance and results in a static
black hole.10 In the boundary theory, this corresponds to a new equilibrium11 after
thermalization, i.e. the thermalization in the �eld theories usually corresponds to a
black hole formation in their gravitational duals.12

The correspondence implies that di�cult issues in the gravitational theories may
be addressed by studying quantum quenches in the dual �eld theories or vice versa.

1.2 A bit of Quantum Entanglement

Quantum entanglement is a fundamental phenomenon in quantum systems. For a
quantum system divided into two parts, the entanglement entropy of each subsystem
gives a measure of entanglement between them.13 In quantum mechanics, all infor-
mation of the state is encoded in density matrix ρ, which is a semipositive-de�nite
Hermitian operator with trace 1, such that the expectation value of an observable O
is

〈O〉ρ = Tr(Oρ) (1.16)

If one is only interested in a subsystem A (not its complement Ā), similar statement
is still true for the density matrix ρA that encodes information of the state in the
subsystem. ρA is called reduced density matrix, and it satis�es

〈OA〉ρA = Tr(OAρA) = Tr (OAρ) (1.17)

where OA is observable local to the subsystem A. Thus the reduced density matrix
ρA is given by the partial trace of Ā

ρA ≡ TrĀ ρ (1.18)

Then the quantum entanglement can be quanti�ed by von Neumann entropy of ρA,
i.e.

SA = −Tr ρA log ρA (1.19)

10The Hawking radiation power is inverse proportional to the square of the mass of the black hole.
This means that smaller black hole evaporates faster. Thus if the black hole formed by gravitational
radiation is not large enough, the Hawking radiation will always dominate. In this case there will
be no black hole eventually. In AdS the thermalization in the boundary theory usually leads to a
stable black hole.

11The equilibrium here means thermal equilibrium.
12Examples can be found in [15, 32�45].
13For reviews, one can see [46].
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Von Neumann entropy is a special case of Renyi entropies, which is a one-parameter
entropy de�ned as

Sn ≡
1

1− n
log Tr ρnA (1.20)

The n → 1 limit is von Neumann entropy. Therefore Renyi entropies are sometimes
treated as an intermediate step to obtain von Neumann entropy. The calculation of
Renyi entropies can be performed by a replica trick and therefore by Euclidean path
integral. In particular, the element of reduced density matrix ρA can be represented by
a Euclidean path integral with proper boundary conditions (path ends in subregion
A). Then the ingredient needed to compute n-th order Renyi entropy, Tr ρnA, is n
copies of the path integral with the endpoint of each copy identi�ed with the starting
point of the next copy and integrated over subregion A. Thus, Tr ρnA corresponds to
a closed cyclic path integral with some constraints.

1.2.1 Many-Body Entanglement and Biparticle Fluctuations

For any reduced density matrix ρA, one can de�ne modular Hamiltonian HA

ρA ≡
1

Z
e−HA (1.21)

where Z is the partition function of the Gibbs state Z = Tr e−HA . In quantum many-
body system where Wick's theorem is satis�ed, the correlation matrix CA, which is
the matrix of correlation functions in the subsystem A, also contains all information
of the state ρA. Therefore one can represent von Neumann entropy, as well as Renyi
entropies by correlation matrix CA.

On the other hand, all the number distribution cumulants of particles, e.g. 〈NA〉,
〈(NA − 〈NA〉)2〉, etc., are derivatives of a generating function

χ(λ) = Tr ρAe
iλNA (1.22)

where NA is the number operator in subsystem A. χ(λ) also encodes all information
of the state, and can be expressed in terns of the correlation matrix CA.

Thus, correlation matrix builds a bridge between entanglement entropies and num-
ber distribution cumulants

V
(m)
A ≡ (−i)m∂mλ logχ(λ)

∣∣
λ=0

(1.23)

In particular, for fermionic theory, one have von Neumann entropy [47, 48]

SA =
∞∑
k=1

(2π)2k|B2k|
(2k)!

V
(2k)
A (1.24)

where Bm are Bernoulli numbers. The leading order contribution is

SA =
π2

3

(
〈N2

A〉 − 〈NA〉2
)

(1.25)
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Figure 1.2: (1.2a) Penrose diagram of two-sided AdS black hole. The black dotted
line is the Cauchy slice we consider. The thermal state lives on subregion A. (1.2b)
The Einstein-Rosen bridge that connects the A and Ā. The red dotted circle is the
bifurcate horizon, which is the minimal surface between A and Ā. The �gures are
based on �gure 10 in [46].

1.2.2 Holographic Entanglement Entropy

Quantum entanglement in a quantum �eld theory may be quanti�ed by extremal
surfaces in the gravitational dual. In particular, for a conformal �eld theory, if one
considers a Cauchy slice in its AdS bulk dual, it is conjectured that the von Neumann
entropy of a subregion A in the boundary theory of the Cauchy slice is holographically
determined by minimal codimension two surface with the same boundary in its bulk
dual

SA =
Area(γA)

4GN

(1.26)

where γA is the minimal surface in the bulk Cauchy slice with boundary ∂A, and GN

is Newton constant.
The holographic entanglement entropy formula (1.26) is known as Ryu-Takayanagi

formula [49].14 It is motivated by Bekenstein-Hawking entropy

SBH =
Area(mhorizon)

4GN

(1.27)

which relates the thermal entropy of a black hole to the area of black hole horizon.
Though Bekenstein-Hawking entropy is a thermal entropy, it could be understood
as an "entanglement" entropy. In particular, a static AdS black hole spacetime is
holographically dual to a thermal state on boundary conformal �eld theory. The
thermal state is a mixed state. However, one can always construct a pure state called
thermo�eld double state via puri�cation. Thermo�eld double state lives on a larger

14The Ryu-Takayanagi formula has an extension called HRT formula [50]. We will not discuss
the latter here.
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system that consists of two copies of Hilbert space on which the thermal state lives.
As a result, the thermal state can be regarded as a state on the subsystem, and the
(thermal) density matrix of the thermal state is understood as the reduced density
matrix of the subsystem now. The thermo�eld double state is holographically dual to
a two-sided extended black hole (See �gure 1.2). The two copies of the original AdS
black hole spacetime now become the two exterior regions. They are connected by
a spatial section of the geometry at a special moment in time, called Einstein-Rosen
bridge. The minimal surface in such a structure is the bifurcate horizon, which is the
horizon of the original black hole spacetime. Thus the Bekenstein-Hawking entropy
can be understood as a special case of Ryu-Takayanagi formula.

1.2.3 Target Space Entanglement

The partition of system considered above happens in the base space where the �eld
lives. For example, it could happen in the spatial dimension of a (1 + 1)-dimensional
quantum �eld theory. However, because (1 + 1)-dimensional quantum �eld theory is
the second quantization of a (0 + 1)-dimensional quantum mechanics, one may ask
what the corresponding partition and measure of entanglement are in this quantum
mechanical system. Obviously the partition should not happen in base space because
there is no spatial dimension for the theory to live on. Instead, it is a partition in
target space where the �eld takes values in [20].

One can factorize the target (Hilbert) space by de�ning the subsystem A to be
the sub-algebra A the operators OA belong to. Then the reduced density matrix is
determined via (1.17). According to Artin-Wedderburn theorem, the target (Hilbert)
space and therefore the operators OA can be decomposited into direct sums (called
sectors) of tensor products of two parts, A and its complement Ā, i.e.

H =
⊕
k

HA,k ⊗HĀ,k (1.28)

OA =
⊕
k

OA,k ⊗ IĀ,k (1.29)

Thus, a practical strategy to obtain reduced density matrix ρA is to �nd the projector
of each sector �rst. The projector Pk belongs to the set of operators on A that
commute with all operators in A. It gives the density matrix of each sector

ρ =
⊕
k

ρk, ρk = PkρPk (1.30)

Then one can partially trace over the subsystem Ā, and ρA will be the direct sum of
the partial trace of each sector

ρA =
⊕
k

TrĀ,k PkρPk (1.31)

There is a physics interpretation of sectors. Again take 1-particle quantum me-
chanics as an example. In this case the target space is actually the permitted position

12



of the particle. Thus, the possible two sectors are that particle is in A and that par-
ticle is in Ā, respectively. This could be easily generalized to N -particle quantum
mechanics and furtermore matrix models.

1.2.4 Quantum entanglement is not enough

Quantum entanglement is one quantity that captures global properties of a quantum
state. There is another important property of a quantum state called complexity. For
a (discrete) quantum system of size K (K qubits), a state |ψ〉 can be obtain from a
simple state called reference state, e.g. |000...0〉, via a unitary transformation. The
unitary transformation can be produced by a sequence of one- or two-qubit operators
(gates). Then the complexity of |ψ〉 is the minimal number of gates that gives the
unitary transformation. The motivation of introducing quantum complexity is that
the estimated time for a quantum system of size K to reach its maximal complexity
is eK , which is much longer compared to thermalization, which takes some power of
K. Note that complexity depends on the choice of the reference state.

It has been recently conjectured that when the quantum system has a gravitational
holographic dual, complexity captures properties of the dual geometry which are not
captured by e.g. Ryu-Takayanagi surfaces. This has motivated several authors to
seek de�nitions of complexity in quantum �eld theories. One such de�nition involves
circuit complexity [51]. Circuit complexity is de�ned to be the minimal geodesic
between di�erent states or operators on the manifold of unitary operators with metric
determined by cost functional. The framework have been largely used for Gaussian-
like state and therefore Gaussian unitary transformation.

1.3 Two Matrix Models

In this section we introduce two matrix models. They are examples of gauge/gravity
duality.

1.3.1 c = 1 Matrix Model and 2D string theory

The partition function of 2-dimensional quantum gravity coupled to a scalar �eld
can be described by a sum over random sufaces of all topologies, where the contribu-
tion from each random surface is given by a path integral of an action of a massless
scalar �eld X that lives on 2-dimensional geometry described by metric gab. This
action is indeed the worldsheet action of 1-dimensional noncritical string theory and
is equivalent to 2-dimensional critical string theory. This is because one can choose
a new gauge where ĝab = eφĝab. The �eld φ is called the Liouville mode. It has been
shown that φ can be regarded as an extra target space spacelike dimension. In this
description we have two scalar �eld X and φ that live on a �xed two-dimensional
spacetime with a �xed metric ĝab. As a result, one obtain a string theory embed-
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ded in 2-dimensional target space (X,φ) that is Weyl-invariant (critical) under Weyl
transformations of ĝ.15

To carefully de�ne the continuum limit, the random surfaces are discretized by
triangulation. Since the metric on the two dimensions is dynamical we have a dy-
namical triangulation. Such a dynamial triangulation is Hodge dual to a Feymann
diagram of the quantum mechanics of a single N×N matrixM(t), where the double-
line Feymann diagram is used to show the orientation of random surface. Thus one
can build a correspondence between 2-dimensional string theory and the c = 1 matrix
model with action

SMM = β

∫
dtTr

[
1

2
(∂tM)2 − U(M)

]
, (1.32)

U(M) = −1

2
M2 +

1

3!
M3 (1.33)

where β = N/g is a ratio of N and 't Hooft coupling g. In the continuum llimit, N
is large and g is �xed.16

Indeed the duality between matrix model and 2-dimensional string theory can
be seen in a more transparent way [16]. In the singlet sector, the matrix model is
represented in terms of the eigenvalues of matrix M . The change of variables from
the matrices to the eigenvalues leads to a Jacobian which is the square of the van
der Monde determinant. Then by rescaling the wavefunction with van der Monde
determinant, the theory becomes a theory of N fermions in one dimension (which is
the space of eigenvalues) in the potential U(λ), i.e.

Ĥev =
∑
i

[
− 1

2β

∂2

∂λ2
i

+ βU(λi)

]
(1.34)

The second quantized discription involves a fermion �eld χ(λ, t) with a Hamiltonian

H =

∫
dλ

[
1

2β
|∂λχ|2 + βU(λ)|χ|2 + βµF |χ|2

]
(1.35)

where in the last term we have introduced a Lagrangian multiplier that enforces
the condition that the number of fermions is N (from canonical ensemble to grand
cannonical ensemble). In the double scaling limit

β →∞, µF → 0, g−1
s ≡ 2βµF is �xed (1.36)

if we rescale λ = (βgs)
−1/2x, χ = (βgs)

1/4ψ, we can see that only quadratic term in
the potential U(λ) survives, which leaves us a theory of N non-relativistic fermions
moving in an inverted harmonic oscillator potential [55�59]

HF =

∫
dx

[
gs
2
|∂xψ|2 −

1

2gs
x2|ψ|2 +

1

2gs
|ψ|2

]
(1.37)

15The procedure can be carried out for multiple scalar �elds that de�ne the worldsheet theory of
noncritical strings in higher dimensions. For 25 scalar �elds one gets the standard 26 dimensional
bosonic string (the Liouville mode φ is regarded as a timelike dimension). For review, see [52].

16For reviews, see [53, 54].
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Furthermore, one can consider the density of the eigenvalues of the matrix [16]

∂xζ(x, t) ≡ Tr δ(M − xI) = ψ†ψ(x, t) (1.38)

This is a bosonic �eld called collective �eld, since the excitation of fermions is always
in terms of productions of particle-hole pairs. Then by rewriting the theory one has
completed a bosonization of the theory [60]. The classical action is

SB =
1

g2
s

∫
dtdx

[
1

2

(∂tζ)2

∂xζ
− π2

6
(∂xζ)3 +

1

2

(
x2 − 1

)
(∂xζ)

]
(1.39)

In the classical limit where gs is small, one can expand around the saddle point
solution (solution to equation of motion)

∂xζ0 =
1

π

√
x2 − 1 (1.40)

and �uctuations η(x, t) around the saddle point. In particular, the �uctuation �eld
that satis�es

ζ(x, t) = ζ0(x) +
gs
π
η(x, t) (1.41)

is subject to the action

S
(2)
B =

1

2π

∫
dxdt

[
(∂tη)2

∂xζ0

− 2
∂tζ0

(∂xζ0)2
(∂tη)(∂xη) +

(
(∂tζ0)2

∂xζ0)3
− π2∂xζ0

)
(∂xη)2

]
(1.42)

The �uctuation action S
(2)
B describes a relativistic massless scalar in (1+1)-dimensional

conformally �at spacetime if one transform the space coordinate x into

q ≡ 1

π

∫ x dx′

∂x′ζ0

(1.43)

Now one have obtained an example of holography � the quantum mechanical de-
scription of N fermions in inverted harmonic oscillator potential which is dual to a
�eld theory of (1 + 1)-dimensional relativistic massless scalar �eld. The latter indeed
describes the c = 1 "tachyon", the only propagating mode in 2-dimensional string
theory.17 This is the earliest example of holography. Recently more evidences have
been found to show the duality.

Unlike the generic cases where black holes are formed due to quench in the bound-
ary, tachyonic matter seems not to form a black hole in singlet sector via collapsing
pulse � the radiation bounces o� before the black hole is about to form [17]. Actually it
is widely believed that black holes that live in 2-dimensional gravity or 2-dimensional
string theory are not contained in the singlet sector of this c = 1 matrix model [61].

17Tachyon has imaginary mass, therefore we use a quotation mark here. Indeed in 2d string
theory, there is no transverse dimension. Thus one could �nd that the only dynamical mode is the
motion of center of mass of the string, which is the massless scalar �eld called "tachyon". This
means that though 2d string theory is called "string theory", it is not a real string theory since the
oscillation of a string should have in�nite modes.
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1.3.2 D0-Brane Theory

A Dp-brane is a (p+1)-dimensional object in spacetime where open strings can end.18

When the system has low energy, one only need to consider the open bosonic strings
(as well as fermionic strings) in their lowest excited states, which can be reprensented
by (9 + 1)-dimensional vector �eld operator. Among the 10 components of the vector
�eld, (p + 1) of them parallel to Dp-brane are interpreted as U(1) gauge �eld; the
rest of them are the �uctuation of Dp brane in transverse directions, which become
9− p scalars on the Dp-brane worldvolume. The action is (supersymmetrized) Dirac-
Born-Infeld action (with a Chern-Simons term). The induced metric of Dp-brane
worldvolume is determined by (9 − p) scalar �elds. Then in the low-energy limit,
the DBI action turns into the (p + 1)-dimensional U(1) supersymmetric Yang-Mills
theory, and the exponential of the expectation value of the dilaton is absorbed by
Yang-Mills coupling gYM .

ForN parallel Dp-branes in low-energy system that dual to U(1)N supersymmetric
Yang-Mills theory, the open bosonic strings that end on them have lowest energy
proportional to the stretching length of the string. When the N Dp-branes are close,
the stretching length and therefore the lowest energy of strings that end on di�erent
Dp-branes approach zero. This makes all open strings correspond to massless vector
�elds. Thus, it is robust to believe that a U(N) symmetry should be restored from
U(1) symmetry in each Dp brane � the supersymmetric string theory of N Dp-branes
is dual to U(N) supersymmetric Yang-Mills theory [64].

An example of the gauge/gravity duality happens when p = 0, in which all the
N D-branes are points in the space. The action of dual supersymmetric Yang-Mills
theory is given by

S =
N

2(gsN)ls
Tr

∫
dt

[
9∑
I=1

(DtX
I)2 − 1

l4s

9∑
I 6=J=1

[XI , XJ ]2

]
+ fermions (1.44)

In the action, gs and ls are the string coupling and string length, respectively. XI(t)
where I = 1, 2, ..., 9 are nine N × N Hermitian matrices. The element of matrix
XI
ij(t) represents the I-th transverse component of the string that ends on i-th and

j-th D0-branes. Dt stands for the covariant derivative

DtX
I = ∂tX

I + i[At, X
I ] (1.45)

where At is the gauge �eld.

1.4 Outlines and Summary of the Dissertation

The dissertation includes two parts.

In Part I (Chapter 2, 3, and 4), we study non-equilibrium phenomena in various
models associated with global quantum quench.

18For reviews see [62, 63].
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It is known that quantities like one and two point correlation functions, as well
as entanglement entropies, exhibit a variety of univeral scaling in global quantum
quench across or approaching critical points (see section 1.1.1). It would be interest-
ing to see if similar scaling holds for other quantum information theoretical quantities
such as circuit complexity. In Chapter 2, we consider the scaling behavior of circuit
complexity under quantum quench in free relativistic fermion �eld theory on a one
dimensional spatial lattice with a time-dependent mass. This is equivalent to trans-
verse �eld Ising chain with a time dependent transverse �eld. We �nd an exactly
solvable quench protocol which asymptotes to massive phases at early and late times
and crosses a critical point in between. We �nd a variety of scaling behavior as a
function of the quench rate, starting with a saturation for quenches at the lattice
scale, a "fast quench scaling" at intermediate rate and a Kibble Zurek scaling at slow
rates. This chapter is based on [12].

To investigate fast scaling in non-relativistic theories, in Chapter 3 we investigate
a class of exactly solvable quantum quench protocols with a �nite quench rate in
systems of one dimensional non-relativistic fermions in external harmonic oscillator
or inverted harmonic oscillator potentials, with time dependent masses and frequen-
cies. These hamiltonians arise, respectively, in harmonic traps, and the c = 1 Matrix
Model description of two dimensional string theory with time dependent string cou-
pling. We show how the dynamics is determined by a single function of time which
satis�es a generalized Ermakov-Pinney equation. The quench protocols we consider
asymptote to constant masses and frequencies at early times, and cross or approach
a gapless potential. In a right side up harmonic oscillator potential we determine
the scaling behavior of the one point function and the entanglement entropy of a
subregion by obtaining analytic approximations to the exact answers. The results
are consistent with Kibble-Zurek scaling for slow quenches and with perturbation
calculations for fast quenches. For cis-critical quench protocols19 the entanglement
entropy oscillates at late times around its initial value. For end-critical protocols the
entanglement entropy monotonically goes to zero inversely with time, re�ecting the
spread of fermions over the entire line. For the inverted harmonic oscillator potential,
the dual collective �eld description is a scalar �eld in a time dependent metric and
dilaton background. The chapter is based on a paper with Sumit R Das and Shaun
Hampton [13].

A quantum quench in a boundary theory typically leads to black hole formation in
the bulk in usual holographic correspondence like AdS/CFT [15] (see section 1.1.2).
However, when it comes to c = 1 matrix model/2D string theory duality, it is be-
lieved that the singlet sector of c = 1 matrix model does not contain the black hole
of 2D string theory[17] (see section 1.3.1). It is therefore interesting to ask what is

19The de�nitions of di�erent classes of quench protocols are given in Chapter 3. The three quench
protocols referred to in this dissertation are: Trans-critical protocol (TCP) � the system begins in a
gapped phase and the coupling varies monotonically across a critical value, and approaches a �nal
value which also corresponds to a gapped phase. Cis-critical protocol (CCP) � the system starts
from a gapped phase, approaches a critical point and reverts back to a constant value which also
corresponds to a gapped phase. End-critical protocol (ECP) � the system begins in a gapped phase
and monotonically approaches a critical point at in�nitely late time.
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the emergent bulk geometry produced by such a quench. In Chapter 4 we consider
quantum quench in large-N singlet sector quantum mechanics of a single hermitian
matrix in the double scaling limit. The time dependent parameter is the self-coupling
of the matrix. We �nd exact classical solutions of the collective �eld theory of the
eigenvalue density with abrupt and smooth quench pro�les which asymptote to con-
stant couplings at early and late times, and with the system initially in its ground
state. With adiabatic initial conditions we �nd that adiabaticity is always broken
regardless of the quench speed. In a class of quench pro�les the saddle point solution
for the collective �eld diverges at a �nite time, and a further time evolution becomes
ambiguous. However the underlying matrix model expressed in terms of fermions pre-
dict a smooth time evolution across this point. By studying �uctuations around the
saddle point solution we interpret the emergent space-times. They generically have
spacelike boundaries where the couplings of the �uctuations diverge and the semi-
classical description fails. Only for very �nely tuned quench pro�les, the space-time
is normal. The chapter is based on a paper with Sumit R Das and Shaun Hampton
[18].

Part II (Chapter 5) is motivated by following question: Quantum entanglement plays
a key role in gauge-gravity duality. There is some indication that if gauge-gravity
duality is true, the properties of quantum entanglement of a quantum �eld theory is
profoundly ingrained in the structure of gravity. For example, in AdS/CFT correspon-
dence, theoretical physicists have learnt a lot about how to determine the entangle-
ment entropy of boundary theory from its holographic dual utilizing Ryu-Takayanagi
formula and its extensions [49, 50] (see section 1.2.2). However, to determine the
entanglement in the bulk and its interpretation in its boundary dual is tricky since
the bulk theory is gravitational.

It has been suggested in https://arxiv.org/abs/2004.00613 [21] that in Dp-brane
holography, entanglement in the target space of the D-brane Yang-Mills theory pro-
vides a precise notion of bulk entanglement in the gravity dual. However this con-
struction was done in a gauge-�xed description. In Chapter 5, we expand on this
discussion by providing a gauge invariant characterization of operator sub-algebras
corresponding to such entanglement. This is achieved by �nding a projection oper-
ator which imposes a constraint characterizing the target space region of interest.
By considering probe branes in the Coloumb branch we provide motivation for why
the operator sub-algebras we consider are appropriate for describing a class of mea-
surements carried out with low-energy probes in the corresponding bulk region of
interest. We derive expressions for the corresponding Renyi entropies in terms of
path integrals which can be directly used in numerical calculations. This chapter is
based on a paper with Sumit R. Das, Anurag Kaushal, Gautam Mandal and Sandip
P. Trivedi [22].

Technical details can be found in appendices.

Copyright© Sinong Liu, 2021.
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Chapter 2
Complexity and scaling in quantum quench in 1 + 1 dimensional
fermionic �eld theories

2.1 Introduction

Quantum quench at �nite quench rates which involve critical points are known to
display universal scaling behavior in various regimes. For quench rates which are
slow compared to physical mass scales local quantities in many systems obey Kibble
Zurek scaling [5, 6, 65]. 1 In systems which have relativistic continuum limits there
is a di�erent scaling behavior for quench rates which are fast compared to physical
mass scales, but slow compared to the UV scale [7�10, 71�74]. Finally at quench
rates at the scale of a UV cuto� one expects that the response saturates as a function
of the rate. These scaling behaviors are characteristic of early time response, i.e. for
measurements made in the middle of the quench or soon after the quench is over.

While the scalings themselves are quite generic, explicit investigations typically
involve solvable models and a lot has been learnt from exactly solvable quench proto-
cols in these models. They have also been studied for models which have holographic
descriptions via the AdS/CFT correspondence [26, 75�79]. In fact fast quench scaling
was �rst discovered in holographic studies in [77�79]. They have been most exten-
sively studied for local quantities like one point functions and correlation functions.
For one dimensional harmonic chain scaling has also been found for the entanglement
entropy [11, 80] and recently for circuit complexity [81].

Complexity in a �eld theory quanti�es the di�culty in preparing a quantum state
starting from some reference state. Study of such measures is motivated by ideas of
holographic complexity [82�89]. Since this is a quantity which characterizes proper-
ties of a quantum state which are not easily captured by correlation functions, it is
interesting to study its behavior in non-equilibrium situations. There are several pro-
posals for quantifying complexity in �eld theories. The proposal we consider in this
paper is "circuit complexity" which relates the length of the optimal circuit of unitary
operations relating the reference state and a target state to a geometric quantity in
the space of states parametrized in a suitable fashion [51, 90�98]. Clearly, because
of the dependence on the reference state as well as the unitary gates used, this is
not uniquely de�ned. Nevertheless such a de�nition is expected to capture the true
complexity of a state and seems to agree with holographic expectations. For other
approaches to �eld theoretic complexity, see [99�106].

In this paper we study scaling of circuit complexity in quantum quench for 1 + 1
dimensional majorana fermions on a spatial lattice with a time (and momentum)
dependent mass function - this is the fermionic description of a one dimensional
transverse �eld Ising model with a time dependent transverse �eld. Following [71]
we consider a time dependence for which the dynamics can be solved exactly - this
corresponds to a transverse �eld which asymptotes to constant values at early and late

1For example, see the following reviews [66�70].
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times and passes through the critical point at some intermediate time which we choose
to be t = 0. The Heisenberg picture state of the system is chosen to be the "in" state,
which approaches the ground state of the system at early times. This latter state is
also chosen as the reference state. The Heisenberg picture state is then a Bogoliubov
transformation of the reference state with time dependent Bogoliubov coe�cients.
As shown in [92] for such a free fermion theory, circuit complexity (as de�ned in that
paper) can be expressed entirely in terms of these Bogoliubov coe�cients. Using the
exact expression for this quantity we study the complexity analytically in various
regimes.

In the slow regime we use the standard adiabatic-diabatic sceneario underlying
Kibble Zurek scaling to evaluate the complexity in the middle of the quench. We
�nd a scaling behavior ∼ constant + (δt)−1/2 where δt denotes the time scale of the
quench. We compare this result with a numerical evaluation of the integral involved
in the exact result and �nd excellent agreement. Interestingly this comes mostly from
contribution of modes which remain adiabatic. This is in contrast to what happens for
the bosonic theory studied in [81] where the zero momentum modes in fact dominate
the result.

In the fast regime, we can perform an expansion of the exact answer in a power
series in Jbδt where J denotes the mass scale of the theory and b is the quench
amplitude. In this expansion, the complexity at t = 0 is proportional to δt for
arbitrarily small δt. This agrees nicely with a numerical evaluation of the exact
answer. The complexity at a slightly later time t � δt shows a slightly di�erent
behavior : for δt smaller than a t-dependent threshold value the complexity saturates
as a function of δt, while for δt larger than this threshold, the above mentioned linear
behavior holds.

The content of the paper is as follows: In section 2.2, we summarize the de�nition
of circuit complexity. In section 2.3, we introduce 1D Majorana fermion �eld theory
and the derivation of complexity of its quench by considering Bogoliubov transfor-
mation. In section 2.4, we study the scaling of complexity with respect to quench
rate. In section 2.5, we discuss the similarity and de�erence between 1D Majorana
fermionic �eld theory and bosonic �eld theory in [81], then we show some numerical
results of the late-time behaviors of complexity.

2.2 Complexity in Free fermionic theory

We follow the de�niton of complexity in [51] and [92] which we summarize below:
complexity is the minimal number of elementary unitary gates needed to prepare a
certain target state |ψT 〉 from a reference state |ψR〉

|ψT 〉 = U |ψR〉, U =
N∏
i=1

Vi. (2.1)
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In continuum limit, U takes a form of path-ordered exponential of the sum of products
of control function Y I(s) and a basis of elementary gates OI

U(s) =
←−
P exp

[
−i
∫ s

0

ds
∑
I

Y I(s)OI

]
, U = U(s = 1) (2.2)

And the complexity is de�ned to be the circuit that minimizes a cost

D(U(t)) =

∫ 1

0

dsF
(
U(s);Y I(s)

)
. (2.3)

Notice that Y I(s) can be intepreted as the I th component of the tangent vector
of trajectory U(s). The functional F is a measurement of �distance� from reference
state at U(0) to target state at U(1): for example, if all classes of gates have equal
cost, F can have a general form Fκ(U ;Y I) =

∑
I |Y I |κ. Then minimizing the cost

is equivalent to looking for the shortest geodesic on the manifold formed by tangent
vector ~Y (s).

When both the target state |ψT 〉 and the reference state |ψR〉 are gaussian, there
exist two pairs of sets of creation and annihiliation operators {aT}, {a†T} and {aR}, {a

†
R}

s.t. aT |ψT 〉 = 0 and aR|ψR〉 = 0. Then the transformation between the two states
can be described by the transformation between the two pairs of creation and anni-
hiliation operators. Most of time the transformation is a Bogoliubov transformation
2. Below we give a rudimentary argument about fermions:

For a pair of fermions, the unitary operation U from reference state |ψR〉 to target
state |ψT 〉 is of the form

ã = αa− βb†,
b̃† = α∗b† + β∗a,

(2.4)

where operators a, b and a†, b† are annihilation and creation operators of reference
state, i.e. a|ψR〉 = b|ψR〉 = 0; Similarly, ã, b̃ and ã†, b̃† are annihilation and creation
operators of target state, i.e. ã|ψT 〉 = b̃|ψT 〉 = 0. To preserve the anti-commutation
relations, α and β satisfy

|α|2 + |β|2 = 1. (2.5)

The equation (2.5) implies that all of the possible target states form a unit sphere
with the north pole the reference state. This is made explicit by writing α and β by
two angles θ and φ, i.e.

α = cosθ, β = eiφsinθ. (2.6)

2A single-fermion excited state |k〉 = a†k|vac〉 with fermion momentum k can be expressed in
the form �fp|k〉 = 0,∀p� as well, i.e. one can �nd sets of creation and annihilation operators,
{fp} and {f†p}, to represent |k〉 as their vacuum state. This is because vacuum state |vac〉 satis�es
�ap|vac〉 = 0,∀p�, and as a result one can always de�ne fk ≡ a†k (while for other p, fp ≡ ap).
This implies that single-fermion excited state is gaussian. However, if we choose single-fermion
excited state as the target state and vacuum state as the reference state, there is no Bogoliubov
transformation between these two gaussian states.
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Then a de�nition of the circuit complexity is the length of the geodesic from north
pole to the position of the target state, i.e. |θ| gives the minimal cost. This can be
generalized to N-pairs of free fermions. Since the Bogoliubov transformation does not
mix operators with di�erent momenta, it still takes the form in (2.4) and therefore

(2.6) for each pair of fermion with momentum ~k,−~k. On the other hand, to prepare
the target state |ψT 〉 from the reference state |ψR〉, one need to Bogoliubov transform
all the independent (momentum) modes. As a result, the circuit complexity is the

sum of geodesics |θ|(~k) of all momenta, i.e.

C(n) =
∑
~k

|θ|n(~k)→ V

∫
ddk

(2π)d
|θ|n(~k), (2.7)

where

|θ| (~k) = tan−1 |β~k|
|α~k|

=
1

2
tan−1 2|α~k||β~k|∣∣|α~k|2 − |β~k|2∣∣ . (2.8)

2.3 The model and quench dynamics

The model considered in this paper is Majorana fermion �eld theory of the one
dimensional transverse �eld Ising model with a time dependent transverse �eld (The
model is discussed in details in [71]). The Hamiltonian is given by

H =

∫
dk

2π
χ†(k, t) [−m(k, t)σ3 +G(k)σ1]χ(k, t). (2.9)

where σ1,3 are 2D Gamma matries and χ denotes the two component spinor �eld, i.e.

χ =

(
χ1(k)
χ2(k)

)
.

The Heisenberg equation of motion for χ(k, t) is a superposition of two indepen-
dent solutions U(k, t) and V (k, t),

i∂t (U(k, t), V (−k, t)) = [−m(k, t)σ3 +G(k)σ1] (U(k, t), V (−k, t)) (2.10)

and
χ(k, t) = a(k)U(k, t) + a†(−k)V (−k, t). (2.11)

because of Majorana condition χ2(k) = χ†1(−k). The operators a(k) and a†(k) satisfy
the usual anti-commutation relations

{a(k), a†(k′)} = δ(k − k′)
{a(k), a(k′)} = {a†(k), a†(k′)} = 0 (2.12)

We can relate the spinor to a scalar �eld φ(k, t) by letting

U(k, t) =

(
−i∂t +m(k, t)
−G(k)

)
φ(k, t),

V (−k, t) =

(
G(k)

i∂t +m(k, t)

)
φ∗(k, t),

(2.13)
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where φ(k, t) satis�es

∂2
t φ+ i∂tm · φ+ (m2 +G2)φ = 0. (2.14)

according to (2.10), and

|∂tφ|2 + (m2 +G2) |φ|2 − 2m · Im (φ∂tφ
∗) = 1 (2.15)

to preserve anti-commutation relations and the orthonormality of U(k, t) and V (k, t).
An exactly solvable quench dynamics has been found in [71] which we use

m(k, t) = A(k) +Btanh(t/δt), (2.16)

and the rest of the parameters are

A(k) = 2J(a− cosk), B = 2Jb,G(k) = 2Jsink, (2.17)

where J is the interaction strength between the nearest-neighbor spins in Ising model.
It has dimension of energy. a is the lattice spacing of Ising model. b determines the
mass gap.

In the rest of the paper we mainly consider the case a = 1, which describes a
cross-critical-point (CCP) type-like potential at k = 0; another interesting case is
when a = 1− b, which corresponds an end-critical-point (ECP) type-like potential at
k = 0.

The Heisenberg picture state we use is the "in" state. This means that the spinors
U(k, t) should asymptote to the positive frequency solution of the equation in the
in�nite past. This "in" solution is given by (2.14) and (2.15) is

φin(k, t) =
1

|G(k)|

√
ωin +min

2ωin
exp[−iω+(k)t− iω−(k)δtlog(2cosh(t/δt))]

2F1[1 + iω−(k)δt+ iBδt, iω−(k)δt− iBδt; 1− iωin(k)δt;
1

2
(1 + tanh(t/δt))],

(2.18)

where the frequencies ωin,out,± are de�ned to be

ωout,in =
√
G(k)2 + (A(k)±B)2, ω± =

1

2
(ωout ± ωin). (2.19)

and min = m(t→ −∞) = A(k)−B.
For the reference state we will choose the ground state of the system in in�nite

past, while the target state is the Heisenberg picture state. For some momentum k
the former is annihilated by a set of fermionic oscillators a−∞(k) and a†−∞(k) de�ned
by

χ(k, t) = a−∞(k)U−∞(k, t) + a†−∞(−k)V−∞(−k, t) (2.20)

where U−∞(k, t) and V−∞(k, t) are given by the expressions (2.13) using the asymp-
totic form φ−∞(k, t)

φ−∞(k, t) =
1√

2ωin(ωin −min)
e−iωint (2.21)
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The relationship between a−∞(k), a†−∞(k) and a(k), a†(k) then becomes a set of Bo-
goliubov transformations of the form (2.4)

a−∞(k, t) = α(k, t)a(k)− β(k, t)a†(−k),

a†−∞(−k, t) = β∗(k, t)a(k) + α∗(k, t)a†(−k),
(2.22)

where α(k, t) = α(−k, t) and β(k, t) = −β(−k, t); anti-commutation relation requires
|α(k, t)|2 +|β(k, t)|2 = 1. Then α(k, t) and β(k, t) can be expressed by U(k, t), V (k, t):

α(k, t) = U †−∞(k, t)U(k, t) = V †(−k, t)V−∞(−k, t),
β(k, t) = −U †−∞(k, t)V (−k, t) = U †(k, t)V−∞(−k, t),

(2.23)

and therefore φ(k, t):

α(k, t) = φ∗−∞(k, t)
{
G2(k) + (−ωin +min) [−i∂t +m(k, t)]

}
φ(k, t)

β(k, t) = φ∗−∞(k, t)G(k) {[i∂t +m(k, t)]− (−ωin +min)}φ∗(k, t).
(2.24)

In this paper we consider the measurement closest to the original de�nition of com-
plexity in the discrete case, i.e. F (U, ~Y ) =

∑
I

∣∣Y I
∣∣, therefore the circuit complexity

of the model is

C(1) = V

∫
dk

2π
|θ|(k, t), (2.25)

where the integrand θ(k, t) is given by

|θ| (k, t) ≡tan−1 |β(k, t)|
|α(k, t)|

= tan−1

∣∣∣∣ φ−∞(k, t)G(k) {[−i∂t +m(k, t)]− (−ωin +min)}φ(k, t)

φ∗−∞(k, t) {G2(k) + (−ωin +min) [−i∂t +m(k, t)]}φ(k, t)

∣∣∣∣ (2.26)

For practical reason, we ignore factor V
2π
.

2.4 Scaling of Complexity

Now we want to see how circuit complexity scales with respect to quench rate. The
behavior of C(1)(t) as a function of δt is shown in Fig. 2.1 and Fig. 2.2. There are
three regimes of the quench rate: slow quench, fast quench and instantaneous quench.

2.4.1 Slow quench

In slow quench region, Jδt� 1/b, the asymptotic behavior of circuit complexity with
respect to the quench rate is C(1) ∼ P ′ + Q′δt−1/2, where P ′, Q′ are constants (Fig.
2.1). This behavior is consistent with Kibble-Zurek scaling. In particular, the system
evolves adiabatically at the beginning because the rate of change of time-dependent
coupling (m(k, t) in this system) is much smaller than the square of the initial energy
gap. However, the adiabaticity breaks down as one approaches the critical point
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Figure 2.1: Exact C(1)(0)-δt relations in log-log scale. Red and blue dots correpond
to b = 0.01 and b = 0.1 respectively. The orange, blue, and yellow �tting curve are
y = cxd, y = P + Q log x, and y = P ′ + Q′x−1/2, respectively. The linear �tting
coe�cient d = 0.985146 for b = 0.1 and d = 0.984975 for b = 0.01, which implies the
linear relation between C(1)(0) and δt in fast quench regime.

Figure 2.2: Exact C(1)(t)-δt relations in log-log scale. Red and blue lines correpond
to b = 0.01 and b = 0.1 respectively. From solid to dashed, the curves correspond to
t = 0.002, 0.001 and 0.0005, respectively. We can see the circuit complexity saturates
around δt ∼ t (gridlines), and the saturation value is approximately 8Jbt (in yellow
dotted lines). As reference, C(1)(0)-δt relations are in dotted lines.
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(a) (b)

Figure 2.3: 2.3a Relation between single-mode contribution |θ|(k, 0) and momentum
k: Red line shows the exact mode contribution to complexity θ(k, 0); green and blue
dashed lines are approximated complexity with KZ mass and critical mass, respec-
tively. b = 0.1. 2.3b Relation between |θ|(k, 0) and Jδt: From dark blue to red,
k = 1.5, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01; the grey solid horizontal lines are adiabatic
approximations (2.30) when Jδt > b csc2 k. b = 0.01.

at a time called Kibble-Zurek time tKZ , because of critical slowing down. Since
the instantaneous energy gap scales with time-dependent coupling m(k, t) with the
correlation length exponent ν as Eg ∼ |m(k, t) − mc|ν . tKZ can be found by using
the Landau criterion

1

E2
g (t)

dEg(t)

dt

∣∣∣∣
−tKZ

∼ 1, (2.27)

where Eg is the instantaneous energy gap, and in the model we study,

Eg =
√
m(k, t)2 +G(k)2. (2.28)

Adiabaticity holds when the quantity is much smaller than 1.
Clearly the Kibble-Zurek time depends on the momentum of the mode according

to (2.27) and (2.28). In CCP type-like potential case, one can �nd that adiabaticity
breaks down at −tKZ and reappears at tKZ . On the other hand, in ECP type-like
potential case, adiabaticity breaks down at tKZ .

To make it clear, the circuit complexity is plotted mode by mode at t = 0 (See
Fig. 2.3a). We �nd that the momentum-dependence of circuit complexity can be
divded into two regions by Landau criterion. In particular, a critical momentum kc
exists, where

sinkc =
4

√
1

27

√
b

Jδt
. (2.29)

For k < kc the adiabatic approximation breaks down, and the system is frozen after
−tKZ . This implies that circuit complexity can be evaluated approximately by that
at a �xed mass mKZ = m(−tKZ), which can be treated as an e�ective mass of the
frozen system. For k > kc, adiabatic approximation is valid, and circuit complexity
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can be evaluated by using the instantaneous mass at t = 0. Then in general, the
approximation is

|θ| ≈ 1

2
tan−1

∣∣∣∣ (min −m)G

min ·m+G2

∣∣∣∣ , m =

{
mKZ , k < kc

m(t = 0), k > kc
. (2.30)

Therefore, by summing over all momenta (k ∈ [0, π]), an approximation of circuit
complexity is

C(1)(0) ≈1

2

∫ π

0

dktan−1

∣∣∣∣ [min −m(t = 0)]G

min ·m(t = 0) +G2

∣∣∣∣
− 1

2

∫ kc

0

dktan−1

∣∣∣∣ [min −m(t = 0)]G

min ·m(t = 0) +G2

∣∣∣∣+
1

2

∫ kc

0

dktan−1

∣∣∣∣ [min −mKZ]G

min ·mKZ +G2

∣∣∣∣ ,
(2.31)

where the 1st and the 2nd terms are the adiabatic approximation of |θ| for k > kc,
and the 3rd term is the response of the system at a constant mass equal to the Kibble-
Zurek mass mKZ when adiabaticity breaks down. Under the condition Jδt � 1/b,
we can simplify the complexity and determine the leading and subleading term of it:

C(1)(0) ∼
∫ π/2

0

dxtan−1

(
b

2− b
cotx

)
+O

(√
b

Jδt

)
. (2.32)

Numerically we can �nd that leading term is 0.207762 when b = 0.1, which is close
to the curve �tting result of exact C(1)(0), P ′ = 0.207605 (yellow �tting in Fig. 2.1).
Therefore, in the slow quench regime, circuit complexity follows the expectation of
KZ.

2.4.2 Instantaneous quench

In the instantaneous quench regime, i.e. Jδt� 1, we �nd that circuit complexity at
time t shows linearity when δt � t and saturation when δt � t; In both cases the
circuit complexity is proportional to the gap of mass Jb (Fig. 2.2). One can see these
features more clearly from the asymptotic behaviors of φ and β when t, δt� 1.

Notice that when δt � t, tanh(t/δt) → t/δt. Therefore we can expand solution
φin(k, t) in (2.18) and �nd

φin(~k, t) ≈ 1

|G(k)|

√
ωin +min

2ωin
e−iω+t

×
{

2−iω−δt
ω+ +B

ωout
[1− iδt(ω− −B)log(

1

2
(1 +

t

δt
))]

+2iω+δt(1− t

δt
)−iωoutδt

ω− −B
ωout

[1 + iδt(ω+ +B)log(
1

2
(1 +

t

δt
))]

}
− 1

|G(k)|

√
ωin +min

2ωin
e−iω+t × tδt(ω+ +B)(ω− −B)log2

+ (higher order contributions).

(2.33)
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Then the leading term of β∗(k, t) (2.24) is now approximately

β∗(k, t) ≈ 1

G

ωin +min

2ωin
e−iω+t−iωint {i2δt(ω+ +B)(ω− −B)log2} . (2.34)

Since Jδt� 1, circuit complexity |θ(k, 0)| ≈ |β| and as a result, we can plug G(k) in
and estimate the complexity to be

C(1)(0) ∼ bJδt · 4log2 ≈ 2.77bJδt. (2.35)

when b� 1. This is close to the linear �tting of exact circuit complexity in Fig. 2.1,
where the slopes are c ≈ 0.261913 when b = 0.1 and c ≈ 0.0261736 when b = 0.01.

When δt� t, tanh(t/δt)→ 1− e−2t/δt. Again one can expand solutions and �nd

φin(~k, t) ≈ 1

|G(k)|

√
ωin +min

2ωin
exp[−iω−δte−2t/δt]

×
{
e−iωoutt

ω+ +B

ωout

(
1 + iδt(ω− −B)e−2t/δt

)
+ eiωoutt

ω− −B
ωout

(
1− iδt(ω+ +B)e−2t/δt

)}
.

(2.36)

Therefore β(k, t)∗ is approximately

β∗(k, t) ≈− iexp[−iω−δte−2t/δt]
G(mout −min)

ωinωout
e−iωintsinωoutt

+
1

G

min + ωin
2ωin

e−iωintexp[−iω−δte−2t/δt]4(ω− −B)e−2t/δteiωoutt,

(2.37)

and then the leading term and subleading term of the circuit complexity is

C(1)(t) ∼ 8bJt+O(te−2t/δt). (2.38)

Thus the leading term is δt-independent, and linearly increase as t increases, which
corresponds to the saturation when δt� t in Fig. 2.2.

Behavior of circuit complexity in instantaneous quench regime is consistent with
the behavior when quench occurs instantaneously (δt → 0). In the latter case the
time-dependent mass in (2.16) can be described by

m(k, t) = A(k) +B (Θ(t/δt)− 1/2) (2.39)

where Θ(x) is the Heaviside step function. The circuit complexity can be exactly
�gured out. The exact �in� solution is

φ(t) =
1

|G|

√
min + ωin

2ωin
×
{

e−iωint, t < 0
ω++B
ωout

e−iωoutt + ω−−B
ωout

eiωoutt. t ≥ 0
(2.40)

and thus the circuit complexity

C(1)(t) =

∫ π

0

dk
2bsink√

sin2k + (1− cosk − b)2
· 2Jt ≈ 8bJt√

1− b
≈ 8bJt (2.41)

when b� 1.
One can see that at t = 0 the circuit complexity C(1)(0) does not saturate. This

is di�erent from 〈χ̄χ〉, which saturates when Jδt < |b| ([71]).
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2.4.3 Fast quench

Between slow quench Jδt � 1 and instantaneous quench Jδt � 1/b, we �nd a
logarithmic dependence, i.e. C(1)(0) ∼ P + Q log(Jδt), where P,Q roughly linearly
rely on b.

One can easily generalize the other de�nition of complexity in (2.8) to the time-
dependent case, s.t.

|θ| (k, t) ≡ 1

2
tan−1 2|α(k, t)||β(k, t)|∣∣|α(k, t)|2 − |β(k, t)|2

∣∣ (2.42)

Combined with ((2.13) and (2.23)), we can rewrite the denominator
∣∣|α(k, t)|2 −

|β(k, t)|2
∣∣ in terms of the c-number V̄ V ≡ V (−k, t)†σ3V (−k, t):

|α(k, t)|2 − |β(k, t)|2 =
min

ωin
V̄ V +

G

ωin
cos γ

√
1− (V̄ V )2 (2.43)

where γ is the angular part of −2G(k)φ∗(−i∂t +m(k, t))φ.
On the other hand, the quench Hamiltonian (2.9) can be rewriten into the form

H =

∫
dk

2π
χ†(k, t) [−minσ3 +G(k)σ1]χ(k, t)−

∫
dk

2π
δm(t)χ̄(k, t)χ(k, t)

≡HCFT − δλ
∫

dxF (t/δt)O∆,

(2.44)

where δλ = 2B, F (t/δt) = (1 + tanh(t/δt))/2, and O∆ = χ̄(x.t)χ(x, t) is an operator
with comformal dimension ∆. Therefore one can use the Kubo formula to �nd the
leading terms of 〈O∆(t)〉 ≡ 〈0|O∆(t)|0〉 when t � δt, where state |0〉 is the �in�
vacuum that satis�es a(k)|0〉 = 0 for all momentum k:

〈O∆(x, t)〉 = 〈O∆(x, t)〉min − δλ
∫ t

−δt
dt′F (t′/δt)

∫
dx′GR,min(x, t;x′, t′) + ... (2.45)

where GR,min(x, t;x′, t′) is the retarded Green's function

GR,min(x, t;x′, t′) = iΘ(t)〈[O∆(x, t),O∆(x′, t′)]〉min (2.46)

The argument in [26] 3 implies that one can use the Green's function in CFT as

an approximation to the exact one when δt � (δλ)−
1

d−∆ , (min)−
1

d−∆ , where d is the
spacetime dimension. This is based on two facts: One is that the Green's function
should satisfy causality. As a result the bound of integral over x is actually (−t +
t′, t− t′). The other is that when space and time scales are both much smaller than

the correlation length (min)−
1

d−∆ , the commutator in CFT is a good approximation
to the Green's function. The argument leads to the conclusion that the integrals in
the Kubo formula scale with δt only, i.e.

〈O∆(x, t)〉 − 〈O∆(x, t)〉min ∼ δλ(δt)d−2∆ (2.47)

3[26] considered a general continuous �eld theory instead of a lattice one. Here we follow the
logic and argue in continuous case as well.
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A more concrete calculation in [71] shows

〈χ̄(x, t)χ(x, t)〉−〈χ̄(x.t)χ(x, t)〉min = lim
η→0

2πδλ log(δt/η)+ ..., δt� 1

δλ
,

1

min

(2.48)

Now, notice that V̄ (−k.t)V (−k, t) is related to χ̄n(t)χn(t) by a Fourier transform

〈0|χ̄nχn|0〉(t) =

∫ π

−π

dk

2π
e−in(k−k′)〈0|χ̄(k, t)χ(k′, t)|0〉 =

∫ π

−π

dk

2π
〈0|V̄ (−k, t)V (−k, t)|0〉,

(2.49)

on the Ising model we consider. Momentum k ∈ (−π, π] is independent from the
scale δλ and δt. Thus the order of δλ and δt in the leading term and subleading term
should not change. Figure out the leading term by plugging the φ−∞ in, and we �nd

V̄ V = 〈0|V̄ (−k, t)V (−k, t)|0〉 ≈ min

ωin
+O(b log(δt/η)) (2.50)

and leading term of cos γ is 1.
Therefore, (2.42) turns into

|θ|(k, t) ≈ 1

2
tan−1 O(b log δt/η)

1− 1
2

[O(b log δt/η)]2
∼ b log(δt/η) (2.51)

Circuit complexity is therefore of the form P +Q log(Jδt) as Fig. 2.1 shows.
Here we need to make a comment on the higher order terms of cos γ. In the

fast quench regime, it can be ignored because b log(δt) is the second lowest order.
However, in instantaneous regime, subleading term of cos γ is at the order O(δt),
which can be found by expanding the Hypergeometric function. This might explain
why C(1)(t)-δt relation is not quadratic, though

V̄ V ≈ min

ωin
+O((Jδt)2) (2.52)

when Jδt� 1 ([71]).

2.5 Discussions

In many ways the circuit complexity C(1)(0) of relativistic fermionic Ising theory scales
in a way similar to free bosonic oscillators [81]. In particular, like circuit complexity of
free bosonic oscillators when ω0δt� 1, circuit complexity of free fermionic oscillators
also shows linear behavior at t = 0 in instantaneous quench regime (Jδt� 1). This is
because the contribution from each single (momentum) mode, |θ|(k, 0), scales linearly
as δt varies (2.34). To explain the behavior of circuit complexity C(0) in bosonic
theory when slow quenched, [81] analyzed the contributions from single modes Ck

and found that Ck scales logarithmically when δt < ω0

4
csc2(k

2
) and saturates when

δt ≥ ω0

4
csc2(k

2
). Here we can draw a similar conclusion from (2.29) that single nonzero
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mode contribution |θ|(k 6= 0, 0) saturates when Jδt� b csc2 k (See Fig. 2.3b). To be
concrete, k � kc is the condition for |θ|(k, 0) to be adiabatic. Then by plugging in
(2.29) one can �nd the inequality between k and δt

sin k � sin kc =
4

√
1

27

√
b

Jδt
=⇒ Jδt�

√
1

27
b csc2 k ∼ b csc2 k. (2.53)

Given that adiabatic result (2.30) is independent of Jδt due to m(t = 0) = A(k),
when the inequality is satis�ed, |θ|(k, 0) is independent of δt. 4

However, the zero mode contribution Ck=0 in free bosonic theory is very di�erent
from |θ|(k = 0, 0) in free fermionic theory. In the free bosonic case, the contribution
from zero-mode Ck=0 ∼ log δt in KZ regime due to the fact that the saturation
happens when δt ≥ ω0

4
csc2(k

2
)→∞. In the free fermionic case the contribution from

zero-mode |θ|(k = 0, 0) is subtle. From (2.23) one may �nd that it is because when
k = 0, U−∞(k, t) and V−∞(−k, t′) are both zero vectors. A more profound reason
might come from (2.22). When k = 0, (2.22) turns into

a−∞(0, t) = α(0, t)a(0)− β(0, t)a†(0),

a†−∞(0, t) = β∗(0, t)a(0) + α∗(0, t)a†(0).
(2.54)

Then anticommutator a(0)2 = (a†(0))2 = a−∞(0)2 = (a†−∞(0))2 = 0 implies that

α(0, t)β(0, t) ≡ 0 (2.55)

Combined with (2.5), we �nd that (|α(0, t)|, |β(0, t)|) = (1, 0) or (0, 1). Therefore the
contribution from the zero-mode |θ|(0, t) = 0, π/2 [92]. However, given that in the
latter case (2.54) turns into

a−∞(0, t) = −eiϕ(t)a†(0),

a†−∞(0, t) = e−iϕ(t)a(0).

}
=⇒ β(0, t) ≡ eiϕ = 0, (2.56)

i.e. the zero-mode contribution |θ|(k = 0, t) has to be zero in our case. The Bo-
goliubov transformation of the zero-mode is trivial, since Majorana fermions have an
unpaired zero-mode.

As for nonzero-modes, Fig. 2.3a shows that single-mode contribution has a peak at
some nonzero mode and it moves close to zero mode as quench becomes slower. Most
of the contribution to complexity C(1)(0) comes from modes that remain adiabatic,
i.e. |θ|(k > kc, 0). According to (2.29), when Jδt increases, kc decreases, so that
adiabaticity is moving toward k = 0. On the other hand, when t = 0, adiabatic
contribution

|θ|adia(k, t = 0) ≡ 1

2
tan−1

∣∣∣∣ (min −m(t = 0))G

min ·m(t = 0) +G2

∣∣∣∣ (2.57)

4Here we cannot give a stronger condition such as Jδt ≥
√

1
27b csc2 k because according to Fig.

2.3a, adiabatic result does not match exact one when Jδt is slightly larger than
√

1
27b csc2 k.
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monotonically decreases (as k increases). However, |θ|(k, t)→ 0 when k → 0 (2.23).
Thus there exists a peak somewhere around kc. As Jδt increases, the peak moves
toward k = 0; more concretely, the peak of the exact |θ| moves along the curve of
|θ|adia.

Now since kc → 0 when Jδt → ∞, all of the contributions from non-zero modes
are adiabatic, i.e. |θ|(k, 0) = |θ|adia(k, 0) for all k 6= 0. This implies that circuit
complexity C(1)(0) saturates to a constant value∫ π

0

dk|θ|adia(k, 0)

given that |θ|adia(k, 0) is δt-independent. For a large δt that satis�es Jδt� 1/b, the
di�erence

C(1)(0)|δt − C(1)(0)|δt→∞ =

∫ kc

0

dk [|θ|(k, 0)− |θ|adia(k, 0)]

≤ [|θ|(k, 0)− |θ|adia(k, 0)] |k→0 × kc = −|θ|adia(k → 0, 0)× kc
(2.58)

since |θ|adia(k, 0) is monotonically decreases and |θ|(k, 0) is non-negative. |θ|adia(k →
0, 0) is δt-independent, and one can �gure out that

|θ|adia(k → 0, 0)→ π/2.

On the other hand, according to (2.29), when δt is large, kc ∼ sin kc ∼ δt−1/2.
Therefore, we can see

C(1)(0)|δt =

∫ π

0

dk|θ|adia(k, 0) +O(δt−1/2) (2.59)

This might explain why in slow quench regime (Jδt� 1/b), C(1)(0) in the fermionic
theory saturates with the rate δt−1/2. A more rigid argument is given in section 2.4.1.

The theory with ECP-type-like potential is slightly di�erent when slow quenched
(Fig. 2.5), complexity saturates much more quickly because the single-mode contri-
bution saturates at large Jδt (Fig. 2.4a).

Finally, we numerically compare the late-time behaviors of circuit complexity
([107, 108] have studied circuit complexity at late time in the bosonic free �eld with
smooth quench and fermionic free �eld with instantaneous quench, respectively) in
ECP-type-like potential (a = 1 − b) and CCP-type-like one (a = 1), and the results
are shown in Fig. 2.6. It shows that circuit complexity of ECP-type saturates without
oscillation, unlike CCP-type potential. This is consistent to quantities such as 〈χ̄χ〉
([71]).

In conclusion, in this paper we have studied the scaling of circuit complexity
in Majorana fermion �eld theory of 1D transverse �eld Ising model under quantum
quench. It provides another evidence for the fact that just as correlation functions
(e.g. 〈χ̄χ〉) and entanglement entropy, complexity is a good quantity to see universal
scaling in critical quench.
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(a) ECP-type-like (b) CCP-type-like

Figure 2.4: Single-mode contribution to complexity at t = 0, |θ|(k, 0) in ECP and
CCP-like potentials when b = 0.01. Purple, red, yellow, green and blue solid lines are
Jδt = 0.01, 0.1, 1, 10, 100, respectively.

Figure 2.5: Exact C(1)(t)-Jδt relations in log-log scale when b = 0.01. Red and
yellow lines correpond to ECP and CCP-type-like potential respectively. From solid
to dashed, the curves correspond to t = 0.002, 0.001 and 0.0005, respectively. The
plots di�er at large Jδt (Red plots saturate more quickly).
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(a) ECP-type-like: from solid to dotted lines
Jδt = 200, 100, 10, 1, 0.1, 0.01, respectively

(b) CCP-type-like: from solid to dotted lines
Jδt = 100, 1, 0.01, respectively

(c) ECP-type-like: from solid to dashed lines
Jδt = 150, 100, respectively

(d) CCP-type-like: from solid to dashed lines
Jδt = 150, 100, respectively

Figure 2.6: 2.6a&2.6b:Time evolution of complexity C(1)(t) in ECP and CCP-like
potentials; 2.6c&2.6d:Time evolution of 〈χ̄χ〉 in ECP and CCP-like potentials. From
thick solid lines to dotted lines Jδt decrease. Choose b = 0.01.

Copyright© Sinong Liu, 2021.

34



Chapter 3
Quantum Quench in Non-relativistic Fermionic Field Theory: Harmonic
traps and 2d String Theory

3.1 Introduction

A common way to study non-equilibrium properties of quantum �eld theories is to
subject them to a quantum quench, i.e. introduce an explicit time dependence to
parameters which appear in the lagrangian. Among other things, this is interesting for
several reasons. One motivation is to study equilibration and possible thermalization
of these systems. Suppose the time dependent parameters approach constant values
in the far past and future, and the system is initially in the ground state. The quench
then excites the system. At late times, when the parameter again becomes a constant
(which is generally di�erent from the initial value), one would like to know the nature
of the excited state, and if it is approximately described by a thermal state in some
appropriate sense.

A second motivation - which is one of our main interests - is to study dynamics
in critical phase transitions [66�70]. Suppose the initial hamiltonian is gapped, while
the quench protocol crosses or approaches a critical point where the gap vanishes. On
general grounds one expects that various observables would obey universal behavior.

An early example of such a universal behavior is Kibble Zurek scaling for global
quenches [5, 6, 65] (where the parameters depend only on time). This holds in many
systems when the time scale of the quench δt is large compared to the inverse of the
initial energy gap Eg. In this case, the initial time evolution is adiabatic. However
since the instantaneous gap is descreasing with time, adiabaticity breaks down at
some time called the Kibble Zurek time tKZ . This is typically determined by the
Landau criterion,

1

Egap(t)2

dEgap(t)

dt
|t=tKZ ∼ 1 (3.1)

where Egap(t) is the instantaneous energy gap. This equation then determines tKZ
in terms of δt. According to the assumptions of Kibble and Zurek, the system soon
enters a diabatic regime, and the instantaneous correlation length at the Kibble Zurek
time is the only length scale in the problem.

In the following we will follow standard nomenclature to distinguish several classes
of quench protocols. The �rst protocol is called a trans-critical protocol (TCP). Here
the system begins in a gapped phase and the coupling varies monotonically across a
critical value, and approaches a �nal value which also corresponds to a gapped phase.
The second is called a cis-critical protocol (CCP) where the time dependence is not
monotonic. Here the system starts from a gapped phase, approaches a critical point
and reverts back to a constant value which also corresponds to a gapped phase. The
third protocol is called a end-critical protocol (ECP). Here the system begins in a
gapped phase and monotonically approaches a critical point at in�nitely late time.
In TCP or CCP, the response at early times then scales as appropriate power of the
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correlation length, leading to a scaling as some universal power of the quench time
scale. For example the one point function of an operator O will scale as

〈O〉 ∼ ξ−∆
KZ (3.2)

where ∆ is the dimension ofO. For ECP, the appropriate scaling variable is the energy
scale at the Kibble Zurek time. At any given time the response will be adiabatic for
su�ciently large δt, while for a small enough δt there will be a Kibble Zurek regime
[11, 109�112].

Even though these assumptions appear to be drastic, such a scaling - together with
an accompanying mechanism for defect formation in symmetry breaking transitions -
appears to hold for many systems. Kibble Zurek scaling has been studied in a variety
of solvable models and in holographic setups [75, 76, 113�116]. The latter provide
some insight into the origins of universality. The best known results involve one point
functions (e.g. defect density) and correlation functions. However similar scaling
holds for the entanglement entropy of a subregion in some model 1 + 1 dimensional
systems.

At the other extreme is instantaneous quench where a sudden change of a param-
eter causes the system to go from a gapped phase to a critical point abruptly. In
this case, universal results are known for correlators and entanglement entropies of
1 + 1 dimensional systems [27�29]. Of particular interest is the spread of entangle-
ment with time [27, 28] - this kind of spread has been conjectured to hold for higher
dimensional systems [117�120] and there has been evidence for this in holographic
calculations [117, 121�125] as well as in free �eld theories.

More recently it has been found that in a relativistic theory there is an inter-
mediate regime where a di�erent universal scaling holds [7�9]- a result which was
�rst found in holographic calculations [77�79] and later found to hold quite gener-
ally. Consider a relativistic quantum �eld theory in d dimensional space-time which
is obtained by the RG �ow from a UV �xed point. The action can be then written
as

S = SCFT −
∫
dt

∫
dd−1x λ(t)O∆(~x, t) (3.3)

Here SCFT stands for the conformal �eld theory action at the UV �xed point and
∆ denotes the conformal dimension of the operator O∆(~x, t) in this CFT. The time
dependent coupling λ(t) goes from a constant value λ0 in the in�nite past some other
value λ1 in the distant future, and the time dependence is in some time interval of
size δt. Then this regime is de�ned by

Λ−1
UV � δt� (δλ)−

1
d−∆ , (λ0,±)−

1
d−∆ (3.4)

where λ± denote the largest and smallest value of the coupling and δλ is the excursion
of the coupling during the quench process. In this regime the one point function soon
after the quench is over scales as

〈O∆〉 ∼ (δt)d−2∆ (3.5)
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This is a result in any relativistic �eld theory, and follows from two basic properties [7�
9]. The �rst is causality. The second property is that the causal Green's functions of
a massive theory become those of the UV conformal theory for space-time separations
which are small compared to the inverse mass gap. Once these properties hold, it turns
out that the dimensionless parameter which controls time dependent perturbation
theory is the combination of the coupling with an appropriate power of δt, and all
other scales go away. This combination is small in the fast quench limit and the
result (3.5) follows from the lowest order perturbation theory. This regime of scaling
has been investigated explicitly in free �eld theories with time dependent masses
and in conformal �eld theories with relevant and marginal deformations [72�74]. In
continuum free theories there appears to be a smooth transition between Kibble-
Zurek and Fast scaling regimes [10], while in lattice theories this connects to the
abrupt quench regime at quench rates at the scale of the lattice spacing [71]. Apart
from one point functions, the whole range of scaling behavior is visible in quantities
like the entanglement entropy [11] as well as circuit complexity [12, 81] 1.

In many situations, particularly in experimental setups, one is interested in non-
relativistic systems. Our ultimate goal is to investigate whether there are universal
scaling laws which hold in non-relativistic systems. While Kibble Zurek scaling is
expected to hold, the status of fast quench scaling is unclear. In speci�c models where
non-relativistic Lifshitz type dispersion relations appear, e.g. the anisotropic critical
points of the Kitaev model one indeed �nds fast quench scaling with appropriate
scaling dimensions [71]. More generally, Lieb Robinson bounds [127] for lattice non-
relativistic systems may provide the necessary ingredient. Indeed in recent work in
lattice models with dynamical exponent z 6= 1 it has been found that the spread of
entanglement following a sudden quench indeed has an e�ective �nite velocity [128].
However, such a �nite speed has been also observed in non-relativistic systems which
do not obey Lieb-Robinson bound [129, 130].

In this work we study the issue of scaling in a speci�c solvable system : a system
of N mutually non-interacting non-relativistic fermions in a harmonic or inverted
harmonic potential with a time dependent frequency and a time dependent mass.
Using the results of [131�133] will show how the problem of quantum quench with
some smooth quench pro�le in such systems can be solved analytically once one can
solve a nonlinear equation (Ermakov-Pinney (EP) equation). The solutions of this
equation can be in turn determined in terms of the solutions of the classical equation
of motion of a single particle in the same harmonic potential.

Indeed harmonic traps are of considerable interest in experimental cold atom
physics : quantum quench experiments often involve release of particles from har-
monic traps.

Our interest in the inverted harmonic oscillator potential on the other hand stems
from its connection to two dimensional string theory [52, 53, 134, 135]. As is well
known, the double scaled limit of the singlet sector of the quantum mechanics of a
single hermitian matrix reduces to a set of fermions in an inverted harmonic oscil-

1Other aspects of time dependence of complexity following a quench have been studied earlier
in [107, 126].
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lator potential. The string coupling appears as the mass of the fermion. Thus two
dimensional string theory with a time dependent coupling reduces to the problem of
fermions with time dependent mass in such a potential 2. String theory with time
dependent string couplings have been studied extensively in the context of AdS/CFT
to investigate thermalization via black hole formation [15, 37]. In a di�erent con-
text these have been used as models of AdS cosmology [139�150], but the outcome
has been rather inconclusive. Here we hope to obtain exact results in a simpli�ed
situation.

In this paper we will set up the formalism necessary to solve both the harmonic and
inverted harmonic potential problems. We present detailed results for the problem in
harmonic trap : the problem of two dimensional string theory will appear in a future
publication [18].

We will solve the quantum mechanical time evolution of such a system for inter-
esting time dependent frequencies of the CCP and ECP type and calculate the early
time response of one point functions as well as entanglement entropies for a sub-region
for arbitary quench rates to �nd the scaling behavior in various regimes. We will also
explore the late time behavior of the entanglement entropy. We �nd Kibble-Zurek
scaling for slow quenches, while for fast quenches we show that the result scales in
a way which is consistent with time dependent perturbation theory. At late times
the entanglement entropy in a CCP oscillates with an amplitude which appears to
remain constant in time. This re�ects the lack of thermalization of the system. For
the ECP the entanglement entropy monotonically goes to zero as a power law in time,
re�ecting the fact that the particles can now spread all over space.

Such solvable systems have played a major role in providing insight into scaling
properties of quantum quench in continuum relativistic theories and in spin systems
which can be reduced to lattice versions of relativistic fermions [7�10, 71]. As we will
see, our example may not be the appropriate setup to explore a possible universal
scaling at fast rates. Neverthless, we hope that these exact solutions will provide
some insight into the general problem.

Abrupt quantum quench in a system of free non-relativistic fermions which arise
from Matrix Quantum Mechanics with various potentials has been investigated in
several papers [151�161]. In particular [151, 152] has extensively studied the problem
in terms of the dynamics of the Wigner phase space density, investigated approach to
a generalized Gibbs ensemble and discovered interesting dynamical phase transitions.
The papers [153�158, 160, 161] deal with the fermion problem directly in the presence
of various kinds of abrupt quenches. Other aspects of the dynamics in such fermion
systems (e.g. shock wave formation) have been studied in [162, 163].

The paper [159] considers the dynamics of the Wigner phase space density as well
as a system of bosons and fermions using methods similar to us, in particular the EP
equation. The paper [164] considers slow smooth quenches for bosons also using the

2Fermions in harmonic oscillator potentials also appear in the description of special states in
the AdS/CFT correspondence [136�138]. Introducing a time dependent mass for such fermions
naively corresponds to a time dependent coupling of the Yang-Mills theory. However this breaks
supersymmetries : the truncation of matrix models and therefore fermions do not hold any more.
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EP equation. The EP equation has also been used to study entanglement dynamics
following an abrupt quench in a harmonic chain in [165].

Our work is complementary to these papers. We are interested in studying scaling
of various quantities as functions of the quench rate. We have been able to �nd exact
analytic solutions to several smooth quench protocols which we use for this purpose.

In section 3.2 we set up the second quantized fermion �eld theory and show
how this can be solved exactly for ±x2 potentials in terms of a function ρ(t) which
satis�es generalized Ermakov-Pinney equation and show how to obtain its solutions.
In section 3.3 we quantize these theories in the Heinsenberg picture "in" state and
show how observables can be expressed entirely in terms of ρ(t). In section 3.4 we
provide exact solutions for some CCP and ECP quench protocols for the harmonic
problem. Sections 3.5 - 3.7 contain our results for the one point function of the
quenched operator and the entanglement entropy for these protocols and their scaling
as functions of the quench rate. Section 3.8 deals with comments about the behavior
of the phase space density.

3.2 Fermion �eld theory

Consider a system of N non-relativistic fermions in 1 + 1 dimensions with a hamilto-
nian given by

H =

∫
dx ψ†(x)

[
− ~

2m(t)

∂2

∂x2
± 1

2~
m(t)ν2(t)x2

]
ψ(x) (3.6)

where m(t), ν(t) are real smooth functions. The Schrodinger picture fermion �eld
operators above satisfy the usual anti-commutation relations

{ψ(x), ψ†(x′)} = δ(x− x′)
{ψ(x), ψ(x′)} = {ψ†(x), ψ†(x′)} = 0 (3.7)

The condition that the total number of fermions is N then leads to the constraint∫ ∞
−∞

dx ψ†(x, t)ψ(x, t) = N (3.8)

The plus sign in (3.6) is the hamiltonian of particles with a time dependent mass in
a harmonic trap with a time dependent frequency. The minus sign with ν = 1 is the
hamitonian of the singlet sector of the double scaled single hermitian matrix quantum
mechanics which is dual to two dimensional string theory with a time dependent string
coupling gs(t) = m(t). The Heisenberg picture equation of motion is the Schrodinger
equation

i
∂ψ(x, t)

∂t
=

[
− ~

2m(t)

∂2

∂x2
± 1

2~
m(t)ν2(t)x2

]
ψ(x, t) (3.9)

In the following we will set ~ = 1.
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3.2.1 The general solution

In terms of a new time variable τ

dτ =
dt

m(t)
(3.10)

we can transfer the time dependence of the mass to the frequency term and (3.9)
becomes

i
∂ψ(x, τ)

∂τ
=

[
−1

2

∂2

∂x2
± 1

2
ω2(τ)x2

]
ψ(x, τ) (3.11)

where
ω(τ) = m(t)ν(t) (3.12)

A solution to the equation (3.11) can be obtained in terms of the solution of the
Schrodinger equation with a constant mass and a constant frequency as follows [131�
133]. First de�ne a new �eld Φ(x, τ) by

ψ(x, τ) = exp[−α(τ)x2 − β(τ)] Φ(x, τ) (3.13)

Secondly, make a change of variables

τ → T =

∫ τ dτ ′

ρ(τ ′)2

x→ y =
x

ρ(τ)
(3.14)

Then Φ(y, T ) satis�es

i
∂Φ(y, T )

∂T
=

[
−1

2

∂2

∂y2
± 1

2
y2

]
Φ(y, T ) (3.15)

provided
β(τ) = log[ρ(τ)]1/2 α(τ) = −i∂τβ(τ) (3.16)

and the function ρ(τ) satis�es a generalization of the Ermakov-Pinney equation [166,
167]

∂2
τρ(τ)± ω(τ)2ρ(τ) = ± 1

ρ(τ)3
(3.17)

Here the positive sign refers to the right-side up harmonic oscillator while the negative
sign refers to the inverted harmonic oscillator of relevance to the hermitian matrix
model. The latter case will be discussed in detail in [18].

In the adiabatic approximation the function ρ(τ) is simply 1√
ω(τ)

. A departure

from this value denotes a departure from adiabaticity and describes the exact re-
sponse.

Furthermore the most general solution of (3.17) is given by

ρ(τ)2 = Af(τ)2 + 2Bf(τ)g(τ) + Cg(τ)2 (3.18)
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where A,B,C are constants and f(τ), g(τ) are two linearly independent solutions of
the classical equation of motion of a single particle moving in a harmonic (inverted
harmonic) potential with the same time dependent frequency ω(τ)

∂2
τX ± ω(τ)2X = 0 (3.19)

Furthermore A,B,C must satisfy

AC −B2 = ± 1

Wr(f, g)2
(3.20)

whereWr(f, g) = f∂τg−g∂τf is the wronskian of the two solutions. By the equations
of motion this is a constant in time and can be therefore evaluated at any time.

The problem of fermions with a time dependent mass in a harmonic (or inverted
harmonic) potential with a time dependent frequency can be therefore reduced to
a problem with a constant mass and a constant frequency. The only equation one
needs to solve is the classical equation (3.19). As we will see below, many quantities
of physical interest can be expressed entirely in terms of the function ρ(t) = ρ(τ).

A general solution of the equation (3.15) has the form

Φn(y, T ) = Nn e
−iλ(n)Tφn(y) (3.21)

where φn denote a complete orthonormal set of eigenfunctions of the hamiltonian
given by the right hand side of (3.15) with eigenvalue f(n). Then the above discussion
implies that a general solution of the equation (3.11) may be written as

ψn(x, τ) =
1√
ρ(τ)

exp

[
i

2

∂τρ(τ)

ρ(τ)
x2

]
Φn

(
x

ρ(τ)
, T

)
(3.22)

The orthonormality conditions for the eigenfunctions φn(y) then imply the orthonor-
mality conditions for the solution (3.22).

The form of the solution (3.22) reveals another physical meaning for the function
ρ(τ). In the wavefunctions of a harmonic oscillator at �xed frequency ω, one can
rescale out the frequency by x →

√
ωx and τ → ωτ . The normalization of the

wavefunction also involves ω1/4, as would be required by the rescaling of x. In our
problem ρ(τ) almost plays the role of such a time dependent rescaling. The term which
spoils this is the phase factor which involves ∂τρ(τ). This is of course consistent with
the fact that in lowest order of adiabatic approximation ρ(τ) = 1√

ω(τ)
.

The function ρ(τ) is given by (3.18). The independent solutions f(τ), g(τ) and
the constants A,B,C have to be chosen so that the solutions (3.22) satisfy the correct
initial condition.

3.2.2 Solution in terms of Phase Space Density

It will be useful to think in terms of the Wigner phase space density operator

u(q, p, t) =

∫
dxeipx/~ψ†(q − x/2)ψ(q + x/2) (3.23)
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The condition (3.7) then becomes

u(q, p, t) ? u(q, p, t) = u(q, p, t) (3.24)

while (3.8) becomes ∫
dqdp

2π~
u(q, p, t) = N (3.25)

where ? denotes the Moyal star product. As shown in [168�170] the fermion �eld
theory can be expressed as a path integral in terms of these variables with a co-adjoint
orbit action. Formulating the theory in terms of u(p, q, t) is particularly useful in the
classical limit ~ → 0, N → ∞ with N~ held �xed. In this limit the Moyal product
reduces to an ordinary product.

In this limit the operator u(p, q, t) satis�es the equation

[∂τ + p∂q ∓ ω2(τ)q∂p]u(p, q, τ) = 0 (3.26)

If we make the change of variables

τ → T =

∫ τ

dτ ′
1

ρ(τ ′)2

q → Q =
q

ρ(τ)

p→ P = pρ(τ)− q∂τρ(τ) (3.27)

the function
U(P,Q, T ) = u(p, q, t) (3.28)

satis�es
[∂T + P∂Q ∓Q∂P ]U(P,Q, T ) = 0 (3.29)

provided (3.18) holds.
This transformation is in fact a canonical transformation. Therefore the condition

(3.25) that u(p, q, t) describes N fermions transforms into the condition∫
dPdQ u(P,Q, T ) = N (3.30)

The equation (3.29) is the equation satis�ed by the phase space density operator for a
system of fermions which is in an external harmonic (or inverted harmonic) potential
with unit mass and unit frequency. Therefore once we know the solution for this
latter case, we can �nd a solution of the time dependent case in terms of a solution
of the equation (3.17).

3.3 Quantization and the "in" state

The quantization of the fermionic �eld theory proceeds in a standard fashion. Given a
complete set of modes {ψn(x, τ)} which solve the equations of motion the Heisenberg
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picture �eld operators may be expressed as

ψ(x, τ) =
∞∑
n=0

an ψn(x, τ)

ψ†(x, τ) =
∞∑
n=0

a†n ψ
∗
n(x, τ) (3.31)

where the oscillators satisfy the standard anti-commutation relations

{am, a†n} = δmn {an, am} = {a†m, a†n} = 0 (3.32)

Di�erent choices of modes determine di�erent inequivalent quantizations related by
Bogoliubov transformations.

We will be interested in pro�les of m(t), ν(t) such that they approach constant
valuesmin and νin as t→ −∞, and their time derivatives approach zero. Furthermore
we will have choices of m(t) such that when t → −∞, one also has τ → −∞. In
particular our choices of m(t) are such that as t→ −∞, we have m(t)→ min so that
τ → 1

min
t. The equation (3.17) means that ρ(t) = ρ(τ) has the initial condition

limτ→−∞ρ(τ) = ρin =
1

√
minνin

=
1
√
ωin

(3.33)

The corresponding solution ψn in (3.31) must then have the property that this is
positive frequency in the far past,

limτ→∞ψn(x, τ) ∼ e−iατ α > 0 (3.34)

We will consider the Heisenberg picture state which is the "in" ground state,

an|in〉 = 0 n ≥ N

a†n|in〉 = 0 0 ≤ n ≤ N − 1 (3.35)

3.3.1 Observables

The observables we will be interested in are the expectation value of the quenched
operator and the entanglement entropy. We will now show that both these quantities
can be expressed in terms of the corresponding quantities in the time independent
problem and the function ρ(τ).

In the following we will consider the expectation value of the operator

O(τ) =

∫ ∞
−∞

dx x2ψ†(x, τ)ψ(x, τ) (3.36)

This is the operator which comes multiplied by the time dependent coupling ω2(τ)
once the theory is expressed in the time variable τ . In the spirit of response theory, the
expectation value then measures the response of the system to the external driving.
〈O(τ)〉 of our problem can be expressed simply in terms of the expectation value
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of the quenched operator in an auxiliary problem of a harmonic oscillator with unit
mass and frequency, using (3.22)

〈in|O(τ)|in〉 =
N−1∑
n=0

∫ ∞
−∞

dx x2 ψ∗n(x, τ)ψn(x, τ) (3.37)

Using (3.21) and (3.22) this becomes, after a change of variables,

〈in|O(τ)|in〉 = ρ2(τ)
N−1∑
n=0

∫ ∞
−∞

dY Y 2φ∗n(Y )φn(Y ) = ρ(τ)2

N−1∑
n=0

(n+ 1/2) =
N2

2
ρ(τ)2

(3.38)
where we have used the fact that the integral on the right hand side is the expectation
value of the potential energy of a single harmonic oscillator with unit frequency in
the state with quantum number n, and used the standard result.

For fermionic systems, the entanglement entropy of a subregion A has an expan-
sion in terms of cumulants of the particle number distribution [47, 48, 171�174]. In
the leading order of large N the dominant term is the variance of the expectation
value of the particle number in A,

SA(τ) =
π2

3
[〈NA(τ)2〉 − 〈NA(τ)〉2] (3.39)

where the operator NA is given by

NA(τ) =

∫
A

dxψ†(x, τ)ψ(x, τ) (3.40)

where the integral is over the region A.
This simpli�es for the "in" state. Using the mode expansion (3.31) and the state

de�ned in (3.35) it may be easily shown that

SA(τ) = 〈in|NA(τ)|in〉 −
∫
A

dx

∫
A

dy|C(x, y, τ)|2 (3.41)

where
C(x, y, τ) = 〈in|ψ†(x, τ)ψ(y, τ)|in〉 (3.42)

This quantity can be also expressed entirely in terms of the expectation value of the
phase density operator as follows

SA =
1

2π

∫ ∞
−∞

dp

∫
A

dx 〈in|u(p, x, τ)|in〉

− 1

(2π)2

∫ ∞
−∞

dp1dp2

∫
A

dxdy e−i(p2−p1)(x−y) 〈in|u(p1, (x+ y)/2, τ)|in〉

× 〈in|u(p2, (x+ y)/2, τ)|in〉

(3.43)
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Expressing the above expectation values in terms of the mode functions one has

〈in|NA(τ)|in〉 =

∫
A

dx
N−1∑
n=0

ψ∗n(x, τ)ψn(x, τ)

C(x, y, τ) =
N−1∑
n=0

ψ∗n(x, τ)ψn(y, τ) (3.44)

Using (3.22) it then follows that the entanglement entropy can be expressed in terms
of the entanglement entropy of a rescaled region in the ground state of the theory
with a constant mass and frequency. If the subregion A is de�ned by a ≤ x ≤ b then
the rescaled subegion is de�ned by

SA[ω(τ)] = SAP [ω = 1] AP :
a

ρ(τ)
≤ x ≤ b

ρ(τ)
(3.45)

3.4 Results for fermions in Harmonic Oscillator Potential

For the right side up harmonic oscillator, the two independent solutions of the equa-
tion (3.19) may be therefore chosen to be such that

limτ→−∞f(τ) =
1√
2ωin

e−iωinτ g(τ) = [f(τ)]∗ (3.46)

To ensure that ρ(τ) is real we then need to choose

A = C = 0 B = 1 (3.47)

Therefore for this solution we have

ρ(τ) =
√

2 |f(τ)| (3.48)

This yields the �nal form of the solution

ψn(x, τ) =
1√
2nn!

[
1

πρ(τ)2

]1/4

exp

[
−i(n+ 1/2)

∫ τ dt′

ρ(τ)2

]
exp

[
i

2

(
∂τ log ρ(τ) +

i

ρ(τ)2

)
x2

]
Hn(x/ρ(τ))

(3.49)

where Hn(x) denotes the n-th order Hermite polynomial. This solution approaches
the normalized solutions of the Schrodinger equation with a frequency ωin as τ →
−∞. The oscillators in (3.31) with these modes are in the "in" oscillators.

We now provide exactly solvable quench protocols for fermions with a �xed mass
m in a harmonic oscillator potential with time dependent frequencies. The two times
t and τ are then related by τ = t/m.
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3.4.1 Cis-Critical Protocol

The �rst protocol is a cis-critical-protocol (CCP). As described in the introduction
in such a protocol the system starts from a gapped phase, approaches a critical point
and then turns back to another constant value. In this work we choose a protocol
where the initial and the �nal values are the same. More speci�cally we choose

ω(τ)2 = ω2
0 tanh2(τ/δt) (3.50)

This corresponds to a trap which is smoothly removed for a �nite interval of time
and then re-introduced.

The solution to the equation (3.19) which behaves as e−iω0τ is then given by

fCCP (τ) =
1√
2ω0

2iω0δtcosh2α(τ/δt)

E1/2Ẽ
′
3/2 − E ′1/2Ẽ3/2

×{
Ẽ ′3/2 2F1(a, b;

1

2
;−sinh2 τ

δt
) + E ′1/2sinh

τ

δt
2F1(a+

1

2
, b+

1

2
;
3

2
;−sinh2 τ

δt
)

}
(3.51)

where we de�ned

α =
1

4
[1 +

√
1− 4ω2

0δt
2]

a = α− i

2
ω0δt, b = α +

i

2
ω0δt

E1/2 =
Γ(1/2)Γ(b− a)

Γ(b)Γ(1/2− a)
, Ẽ3/2 =

Γ(3/2)Γ(b− a)

Γ(b+ 1/2)Γ(1− a)

E ′c = Ec(a↔ b)

(3.52)

The key function ρ(τ) is then given by (3.48) with f(τ) given by (3.51).

3.4.2 End Critical Protocol (ECP)

Another solvable quench protocol is the end critical protocol where the initial theory
is a harmonic oscillator with a frequency ω0 which monotonically descreases smoothly
to a vanishing frequency at in�nitely late times. This corresponds to a smooth release
from a harmonic trap.

Consider the slightly more general protocol

ω2(τ) = ω2
0

(
a+ b tanh

τ

δt

)
(3.53)

with the real constants a, b chosen such that a > b to ensure reality of ω(τ). Then
the "in" solution of the equation (3.19) is given by

fECP =
1√
2ωin

exp[−iω+τ − iω−δtlog(2cosh(τ/δt))]

2F1[1 + iω−δt, iω−δt; 1− iωinδt;
1

2
(1 + tanh(τ/δt))]

(3.54)
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where we de�ned

ωin = ω0

√
a− b,

ωout = ω0

√
a+ b,

ω± =
1

2
(ωout ± ωin)

(3.55)

The end critical protocol we consider has a = −b = 1
2
. The function ρ(τ) which

determines the time dependence of the observables considered above is shown in
Figure 3.1 for both these types of protocol.

At early times ρ(−∞) = 1√
2ωin

. For ECP ρ(τ) monotonically increases and be-

haves as ρ(τ) ∼ τ at large τ . For CCP ρ(τ) initially increases and then starts
oscillating. At late times these oscillations are around a mean value which is roughly
the initial value 1√

2ω
with an amplitude which remains constant in time and with a

frequency approximately given by ω0.

3.5 The response and scaling : CCP

In this section we present the results of the expectation value of the quenched operator
O =

∫
dxx2ψ†ψ at early times for CCP (equation (3.50)) and investigate their scaling

behavior in various regimes. The details of the analytic approximations which lead
to these results are given in Appendix A.

3.5.1 Slow Quench Regime

In the slow quench regime ω0δt � 1 we can use the asymptotic form of gamma
functions

Γ(z) ∼
√

2πe−z+(z− 1
2

) log z, z →∞ (3.56)

to obtain ρ(τ = 0). The leading expression for the one point function 〈O〉 at τ = 0
is, using (3.38),

〈O(0)〉 ∼
√
π

2
N2

√
δt

ω0

(3.57)

This result is consistent with Kibble-Zurek scaling. The Landau criterion with the
instantaneous frequency given by (3.50) leads to

1

ω0δt
cosech2(τKZ/δt) = 1 (3.58)

which de�nes the Kibble-Zurek time τKZ . We expect a scaling behavior only when
τKZ � δt. In this regime (3.58) leads to

τKZ =

√
δt

ω0

(3.59)

The condition τKZ � δt then becomes consistent with the slow quench condition
ω0δt� 1. This leads to the instantaneous frequency at the Kibble-Zurek time,

ω2
KZ =

ω0

δt
(3.60)
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(a) ω0δt = 1(CCP) (b) ω0δt = 1(ECP)

(c) ω0δt = 100(CCP) (d) ω0δt = 100(ECP)

(e) ω0δt = 0.01(CCP) (f) ω0δt = 0.01(ECP)

Figure 3.1: relation between ρ(τ) and τ in various ω0δt cases.
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According to the Kibble-Zurek argument ρ(τ) in the middle of the quench (which is
τ = 0) is roughly equal to its value at τ = τKZ . Since the system is approximately
adiabatic at τ = τKZ this is in turn roughly equal to ρadia(τKZ), the value of ρ for
the fermions in a harmonic oscillator potential with a constant frequency ωKZ . From
(3.17) this is simply

ρ(τKZ) ∼ ρadia(τKZ) =
1

√
ωKZ

(3.61)

leading to

〈O〉 ∼ N2

2

√
δt

ω0

(3.62)

which is in agreement with the result from the exact solution (3.57) upto a numerical
factor.

3.5.2 Fast Quench Regime

We now consider the regime ω0δt � 1. While we have the exact answer anyway,
we are able to approximate the answer by suitable expansions and obtain analytic
expressions when we have in addition ω0τ � 1 . The latter are useful to make a
comparison with perturbation calculations.

First consider the response at a time τ which is in the range

ω0τ � ω0δt� 1 (3.63)

In this case, for the CCP (equation (3.50) we get an expression (see Appendix A.1,
equations (A.8)-(A.18),

〈O(τ)〉 ≈ N2

2ω0

{
1 + 2log2 · ω2

0δt
2 + 2ω2

0δt · τ +O(ω4
0δt

4,
τ 2

δt2
)

}
(3.64)

This is the response at early times. At late times, (see equations (A.19) to (A.28))

ω0δt� ω0τ � 1 (3.65)

one gets instead

〈O〉 ∼ N2

2ω0

(
1 + 2ω0δtsin2ω0τ +O(ω2

0δt
2)
)

(3.66)

These results should also follow from usual time dependent perturbation theory.
Let us discuss this for a general perturbation δω(τ)2 from the initial value. The
leading term in the perturbation expansion is

〈O(τ)〉
=〈O(−∞)〉

+
1

2

∫ τ

−∞
dτ ′
∫
dx

∫
dx′(xx′)2δω(τ ′)2〈0|[ψ†(x, τ)ψ(x, τ), ψ†(x′, τ ′)ψ(x′, τ ′)]|0〉ω0

(3.67)
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where 〈〉ω0 denotes the expectation value in the ground state of the theory at τ → −∞
which is the harmonic oscillator with a constant frequency ω0 and

δω(τ)2 = ω(τ)2 − ω2
0 (3.68)

The Green's function which appears in the linear response can be calculated. The
result is

G(τ, τ ′) = θ(τ − τ ′)
∫
dx

∫
dx′ x2 (x′)2 〈0|[ψ†(x, τ)ψ(x, τ), ψ†(x′, τ ′)ψ(x′, τ ′)]|0〉ω0

= −θ(τ − τ ′)N
2

ω2
0

sin[2ω0(τ − τ ′)] (3.69)

Now consider evaluating the response at a time which is of the order of τ ∼ +δt. In
the fast quench regime ω0δt� 1. The limits of the integral in (3.69) can be replaced
by (−δt, δt). Suppose the form of δω(τ)2 is δω(τ)2 = δω2

0f(τ/δt) where δt is the time
scale of the quench and f(x) some smooth function. Using the above form of the
Green's function the linear response becomes in the fast quench regime

〈O(τ)〉 − 〈O(−∞)〉 ∼ δω2
0

N2

2ω2
0

∫ δt

−δt
dτ ′ f(τ ′/δt) sin[2ω0(τ − τ ′)]

∼ δω2
0

N2

2ω2
0

ω0δt
2 (3.70)

In the protocol we are using δω2
0 = ω2

0 and f(τ/δt) = sech2(τ/dt). We therefore
reproduce the scaling in (3.64).

3.5.3 The exact response

The exact response for CCP is shown in Figure 3.2. This shows that the analytic
approximatations in the fast and slow regime agree very well with the exact answer,
and the transition between the two regimes is rather sharp.

3.6 The response and scaling : ECP

The investigation of the scaling behavior for the ECP case (3.53) follows along lines
similar to CCP.

3.6.1 Slow Quench Regime

In the slow quench regime (ω0δt � 1) one expects a Kibble Zurek scaling. For the
protocol (3.53) the Landau criterion determining the Kibble-Zurek time tKZ becomes

1

cosh2(τKZ/δt)(1− tanh(τKZ/δt))3/2
∼ ω0δt (3.71)

For ω0δt� 1 the solution can appear only at late times. This yields

τKZ ∼ δt log(ω0δt) (3.72)
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Figure 3.2: (Colour online) The response ρ2/(2δt) = 〈O〉/(N2δt) as a function of
ω0δt for CCP when τ = 0. The black dashed curve is the exact result obtained by
using (3.51). The blue curve is the leading Kibble Zurek result for ω0δt� 1, i.e. Eq.
(3.62). The red curve is the leading behavior when ω0δt � 1, i.e. Eq. (3.64). The
green curve is the perturbation expansion result i.e. Eq. (3.70).

In this case the instantaneous gap vanishes in the in�nite future. This means that
in the slow quench regime adiabaticity will fail at late times. The frequency at this
time is

ωKZ = ω0

√
1− tanh(τKZ/δt)

2
∼ 1

δt
(3.73)

Therefore the standard Kibble Zurek argument would predict that the response at
late times is given by

〈O〉 ∼ 1

2
N2ρ(τKZ)2 =

N2

2ωKZ
∼ 1

2
N2δt (3.74)

At a time earlier than the Kibble Zurek time i.e. when

τ < δt log(ω0δt), (3.75)

the adiabatic approximation is valid. Therefore if one measures the response at some
�xed value of τ/δt = ζ we should have

〈O〉 ∼ N2

2ω0

√
1−tanh(τ/δt)

2

∼ N2

√
2ω0

√
1− tanh ζ

(3.76)

This expectation needs re�nement. Using the exact solution we can perform an
expansion for ω0δt � 1 and for τ � δt logω0δt. We �nd that the leading term of
ρ2(τ) is

ρ2(τ) ∼ δt

[
2

π

(
− logω0δt+ log 2− γE +

τ

δt

)2

+
π

2

]
∼ O(1) (3.77)
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The additional logarithmic dependence is not easily visible from the naive Kibble-
Zurek argument.

3.6.2 Fast Quench Regime

In the fast quench regime one can get an analytic expression

ρ2(τ) ∼ω0δt
2

(
−ζ(3)

4
ω2

0δt
2 +

τ

δt

)2

+
1

ω0

=
1

ω0

+ ω0τ
2 − ζ(3)

2
(ω0δt)

3τ. (3.78)

at late times, i.e. ω0δt � ω0τ � 1. Details of calculation which leads to (3.78) are
summarized in Appendix A.2.

The limit δt → 0 is smooth. In this limit the expression (3.78) reduces to the
result which is obtained in an abrupt quench where the frequency suddenly changes
from ω0 to zero,

ρ2
abrupt(τ) =

1

ω0

[1 + (ω0τ)2] (3.79)

In relativistic theories this limit is non-trivial because of UV divergences, as discussed
in [7�9].

Once again the answer should be obtainable by a perturbation expansion in ω0δt.
Again let δω(τ)2 = ω2

0f(τ/δt), where

f(x) =


0, x < −1;

1+x
2
, −1 ≤ x ≤ 1;

1, x > 1.
(3.80)

Then at late times,

〈O(τ)〉 − 〈O(−∞)〉 ∼ ω2
0

N2

2ω2
0

∫ τ

−δt
dτ ′ f(τ ′/δt) sin[2ω0(τ − τ ′)]

∼ N2

2ω0

sin2 ω0τ. (3.81)

Thus ω0τ � 1 the perturbation expansion gives a good approximation.

3.6.3 The exact response

The above discussion shows that for the ECP it is useful to look at the response for
a �xed value of τ/δt = ζ. Our analytic approximations then predict

2〈O〉
N2δt

=


1

ω0δt
+ (ω0δt)ζ

2 : ω0δt� 1

constant : 1� ω0δt� eζ√
2

(ω0δt)
√

1−tanh(ζ)
: ω0δt� eζ

Figure 3.3 shows how the exact result compares with the above expectations.
Here we plot the quantity ρ2/δt = 2〈O〉/(N2δt) as a function of ω0δt for di�erent
values of ζ. For very small ω0δt one reproduces the abrupt quench result. For slightly
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Figure 3.3: (Colour online) The response ρ2(τ)/δt as a function of ω0δt for ECP. The
dots are the exact results obtained by using (3.54) for �xed values of ζ = τ/δt =
0, 2, 4, 6, 8, 10, 12 which are colored from red to blue respectively. The grey dot on
each curve corresponds to ω0δt = eζ for that particular ζ. Thus all points in the
yellow shaded region are in the adiabatic regime. The points which lie in the blue
shaded region have 1 < ω0δt < eζ . For larger values of ζ there is a small window in
this regime where ρ2(τ)/δt is roughly constant which is the expectation from Kibble
Zurek scaling. The slight increase is consistent with the logarithmic term in (3.77).
The dark red and dark blue solid lines are the linear �tting (log y = P log x + Q)
results of red (τ/δt = 0) and blue dots (τ/δt = 12) when ω0δt � eτ/δt (yellow
region), respectively. Both the slopes P are approximately −1. The orange, blizzard
blue and light blue solid curves in the fast quench regime (ω0δt� 1) are the sudden
quench result (3.79) for τ/δt = 2, 6, 10, respectively. For ω0δt < 1 the data points lie
on these solid lines. For ω0δt > 1 they continue to lie on the solid lines for a while
and then depart from them, re�ecting the O(ω3

0δt
3) terms in (3.78).

larger ω0δt we can see the fast quench correction predicted in (3.78). To investigate
the behavior in the fast quench regime, it is useful to subtract the abrupt quench
response. The quantity |ρ2(τ)− ρ2

abrupt(τ)|/δt is plotted in Figure 3.4. This quantity
is close to zero (and slightly negative) for su�ciently small ω0δt. For larger ω0δt
this becomes positive and in a reasonable range of ω0δt this is consistent with the
(ω0δt)

3 term in the fast quench response, equation (3.78) which are shown by solid
lines. Note that the cusps in the data appear because the quantity ρ2(τ)− ρ2

abrupt(τ)
changes sign and we are plotting the absolute value - there is nothing singular here.

For su�ciently large values of ω0δt this quantity is proportional to 1/(ω0δt) with a
proportionality constant which depends on ζ, as expected from an adiabatic response.
There is a small window in the intermediate regime where ρ2(τ)/δt is roughly constant
upto a logarithmic dependence as in (3.77).
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Figure 3.4: (Colour online) The response
|ρ2(τ)−ρ2

abrupt(τ)|
δt

as a function of ω0δt for
ECP. The dots are the exact results obtained by using (3.54) for �xed values of
ζ = τ/δt = 0, 2, 4, 6, 8, 10, 12 which are colored from red to blue respectively. The
vertical gridline ω0δt = 1 is the threshold between fast quench and slow quench. The
dashed lines are a set of cubic functions y = ax3, where a = 10, 45, 80, 115 from the
lowest one to the highest one, respectively to compare with the leading term in (3.78).
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3.7 Entanglement Entropy

In this section we present the results for the entanglement entropy of a subregion,
its scaling at early times and the time dependence at late times. As argued above,
the entanglement entropy in a given subregion for a time dependent frequency can
be expressed entirely in terms of the entanglement entropy of a scaled subregion for
the system at �xed unit frequency, with the scaling factor given by ρ(τ) (eqn (3.45)).
In the following we will examine the behavior of the entanglement entropy for a
subregion −a ≤ x ≤ a. We will also be interested in the limit N � 1 so that we can
use the expression (3.41).

We will be interested in the entanglement entropy for a subregion size

a

ρ(τ)
�
√
N (3.82)

For ECP the function ρ(τ) monotonically increases with time, so this condition is
equivalent to the condition

√
ω0a � 1 since ρ(−∞) = 1√

ω0
- the monotonicity then

implies that once we impose (3.82) at the initial time, this will continue to hold
for all times. For CCP the function ρ(τ) oscillates roughly around ρ(−∞) with an
amplitude which is roughly constant in time : once we pick a value of a such that this
condition is satis�ed at some su�ciently large time, this will continue to be satis�ed
for all times.

The expression for entanglement entropy at large N can be written down us-
ing (3.41, 3.42) and (3.45) by using the Christo�el-Darboux formula for orthogonal
polynomials

n∑
k=0

Hk(x)Hk(y)

k!2k
=

1

n!2n+1

Hn(y)Hn+1(x)−Hn(x)Hn+1(y)

x− y
. (3.83)

This leads to

〈NA〉 =
1

Γ(N)2N
√
π

∫
AP

dξe−ξ
2

[HN−1(ξ)H ′N(ξ)−H ′N−1(ξ)HN(ξ)] (3.84)∫
AP×AP

dxdy|C(x, y)|2

= − 1

π22N(Γ(N))2

∫
AP×AP

dξdηe−(ξ2+η2)

(
HN−1(η)HN(ξ)−HN−1(ξ)HN(η)

ξ − η

)2

(3.85)

where the notation AP × AP means that the integrals go over the range de�ned by
AP . These expressions simplify in two regimes. First consider the regime

1√
N
� a

ρ(τ)
�
√
N (3.86)

Then one gets, using (3.41)

SA ∝
1

π2

{
1 + γE + log

[
4
√

2N
a

ρ(τ)

]}
(3.87)
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where γE is Euler's constant. The derivation (3.87) is given in Appendix B.
The logarithmic dependence on the subsystem size is characterisic of 1 + 1 dimen-

sional systems. For relativistic systems the scale is provided by a UV cuto�. For
free non-relativistic fermions on a line the entanglement entropy is �nite with the UV
cuto� replaced by N [175, 176]. A similar result holds for fermions in an invererted
harmonic oscillator potential [175�177]. For fermions in a harmonic oscillator poten-
tial with a constant frequency this logarithmic dependence has been shown in the so
called "bulk limit" in [178].

For CCP protocols, ρ(τ) oscillates and the condition (3.86) continues to hold once
it is imposed at early times. However for the ECP ρ(τ) monotonically increases
so that at very late times the condition 1√

N
� a

ρ(τ)
will be violated. It turns out,

however, that for the regime
a

ρ(τ)
� 1√

N
(3.88)

one can use a di�erent approximation which yields

SA ∝
√
N

π

a

ρ(τ)
(3.89)

Note that the entanglement entropy is now proportional to a. However the propor-
tionality constant decreases steadily as 1

τ
since the function ρ(τ) ∼ τ at late times.

The derivation of (3.89) is given in Appendix B.
Plots of the time dependence of the entanglement entropy in various cases are

shown in Figure 3.5. For the cis-critical protocol, the function ρ(τ) oscillates after
an initial increase, so that the e�ective size of the interval in the equivalent constant
frequency problem also oscillates. This would lead to oscillations in the entanglement
entropy as well.

For ECP, however, ρ(τ) decreases continuously. This means that for a given a
the e�ective value of the interval in the equivalent constant frequency problem keeps
decreasing with time. This should also mean that the entanglement entropy keeps
desceasing with time. This is basically because as the fermions are released from the
trap they simply spread out : both 〈NA〉 and 〈(∆NA)2〉 keep decreasing leading to
a loss of entanglement. It follows from (3.89) that at late times the entanglement
entropy goes to zero as a power law ∼ 1

τ
.

3.8 Phase Space Density for Harmonic Oscillator Potential

In this section we present the time evolution of the Wigner Distribution function, also
called the phase space density, u(x, p, τ), under CCP and ECP quench protocols in
a right side up harmonic oscillator potential. In the classical limit, which is given by
~→ 0, N →∞ with N~ = �xed, u(x, p, τ) can only take values of 0, 1 since no two
fermions can occupy the same position and momentum. A value of 1 corresponds to
the presence of one fermion within a phase space volume between q and q + dq and
p and p+ dp.
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(a) ω0δt = 0.1(CCP) (b) ω0δt = 0.1(ECP)

(c) ω0δt = 1(CCP) (d) ω0δt = 1(ECP)

(e) ω0δt = 10(CCP) (f) ω0δt = 10(ECP)

Figure 3.5: Time evolution of Entanglement Entropy SA(τ) in various cases. Red
dots are exact large N result from (3.85). Blue solid lines are results (3.87) in the
regime (3.86). N = 50, a = 1.
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Using the canonical transformations in (3.27), we can write the time evolved phase
space density as a function of the original coordinates as

u

(
q

ρ
, pρ− qρ̇, τ

)
= θ

(
2Ef −

(
(
q

ρ
)2 + (pρ− qρ̇)2

))
(3.90)

Here Ef is the fermi level and de�nes the boundary of the phase space density, i.e.
the fermi surface. θ is the Heaviside step function which satis�es the relations

θ(x) =

{
1, x ≥ 0
0, x < 0

(3.91)

Equation (3.90) takes a value of 1 for q, p which satisfy the relation 2Ef ≥ ( q
ρ
)2 +

(pρ− qρ̇)2. This will produce what we call a phase space `droplet'. As time evolves,
the shape of this `droplet' will evolve according to the chosen quench protocol. We
present the results for the ECP and CCP cases.

3.8.1 ECP case

Here we discuss the time evolution of (3.90) for the ECP case that has a ρ which is
given in (3.48) and (3.54).

In Figure 3.6 we see that the phase space `droplet' spreads out in the upper right
and lower left quadrants. This corresponds to motion along both directions of the
in�nite line. Since we are quenching to zero potential, we are `freeing' the fermions
from the harmonic trap and they begin to spread over the real line. The rate at which
the `droplet' spreads is related to δt, the timescale of the quench protocol.

3.8.2 CCP case

Here we discuss the time evolution of (3.90) for the CCP case that has a ρ which is
given in (3.48) and (3.51).

In Figure 3.7 we see that the phase space `droplet' initially spreads out and then
begins to rotate in a clockwise fashion. This rotation comes from the oscillatory
nature of ρ in the CCP case for τ > 0. We can understand the physical origin of
this rotation. We are quenching from a potential of frequency ω0, to 0, back to ω0

over a timescale of δt. The fermions initially just spread along the real line as the
potential barrier goes to zero just as in the ECP case. However, when the barrier is
restored to its original value, the fermions hit the edge of the restored barrier and
then re�ect back. This re�ection is indicated by the rotation of the stretched droplet
in a clockwise fashion. As time evolves the stretched droplet will continue to rotate
inde�nitely as the electrons keep re�ecting o� the walls of the potential barrier.

3.8.3 Time evolution of perturbations along fermi surface

In the previous subsection, we demonstrated the time evolution of a phase space
`droplet' under the in�uence of a right side up harmonic oscillator potential with a
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(a) τ = −2 (b) τ = 0

(c) τ = 2 (d) τ = 4

Figure 3.6: Time evolution of a contour plot of the Wigner Distribution function in
the classical limit for the ECP case. The black region corresponds to u = 1 and the
white region corresponds to u = 0. We have taken δt = 1 , ω0 = 1. The radius
of the initial droplet is

√
2Ef = 2

√
2 and the area, which is conserved in time, is

N~ = 2πEf .
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(a) τ = −2 (b) τ = 0

(c) τ = 2 (d) τ = 4

Figure 3.7: Time evolution of the Wigner Distribution function in the classical limit
for the CCP case. We have taken δt = 1 , ω0 = 1. The radius of the initial droplet is√

2Ef = 2
√

2 and the area, which is conserved in time, is N~ = 2πEf .
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(a) τ = 0 (b) τ = 2π
3

(c) τ = 4π
3 (d) τ = 2π

Figure 3.8: Time evolution of a perturbation of the fermi surface for a time indepen-
dent harmonic oscillator potential. We have taken ω0 = 1.

time dependent frequency. In this subsection we consider the time evolution of a
perturbation of the fermi surface of this `droplet'. We would like to know how this
perturbation evolves in time. To gain a better understanding of what happens in this
case, let us �rst consider the time evolution under a harmonic oscillator potential
with a time independent frequency. In �gure 3.8 we plot this evolution. As expected,
we �nd that the perturbation maintains its shape throughout all of time. This is
a consequence of the harmonic oscillator frequency being time independent. As a
result, all points of an initial perturbation of the fermi surface will move at the same
angular frequency for all subsequent times leaving its shape unaltered.

Now consider the case where an initial perturbation of the fermi surface of a
phase space `droplet' evolves under the in�uence of a right side up harmonic oscillator
potential with a time dependent frequency. In particular, we consider the ECP quench
protocol. We plot this evolution in Figure's 3.9, 3.10. In this case we �nd something
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(a) τ = −5 (b) τ = −3

(c) τ = 0 (d) τ = 3

(e) τ = 4 (f) τ = 5

Figure 3.9: Time evolution of a perturbation of the fermi surface for the ECP case.
We have taken δt = 1 , ω0 = 1.
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(a) τ = 3 (b) τ = 4

(c) τ = 5

Figure 3.10: We zoom in to the region of the perturbation of the fermi surface to
clearly see a `fold' forming as time evolves.
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quite interesting. We see that the perturbation develops what we call a `fold'. This
is a phenomenon in which a phase space point which is further from the fermi surface
moves faster than a phase space point which is closer to the fermi surface. As a
result, at some time later than the initial time, the outer most phase space points
begin `folding' over towards the fermi surface.

The feature of an initial perturbation developing a fold is characteristic of a system
evolving under the in�uence of a harmonic oscillator potential with any arbitrary time
dependent frequency. One can rewrite the phase space coordinates q, p in terms of
polar coordinates r, θ. One can then show that dθ

dτ
∝ f(θ, ω(τ), ω̇(τ)) and is therefore

not constant in time. On the contrary, if dθ
dτ

= const, then all the phase space points
rotate with the same angular frequency. This is exactly the case for the harmonic
oscillator potential with a time independent frequency.

3.9 Discussion

In this paper we considered quantum quench in a nonrelativistic �eld theory of
fermions in an external harmonic oscillator or an invererted harmonic oscillator po-
tential with time dependent mass and frequency. While the strategy we outlined to
obtain exact solutions hold for both these potentials, we gave results for the right
side harmonic potential in this paper. Explicit solutions for the inverted oscillator
potential, which corresponds to quantum quench in the Matrix Model description of
two dimensional string theory, will be presented in a future publication [18].

We examined scaling behavior of observables in the slow and fast quench regime.
We found that the slow quench scaling is consistent with Kibble Zurek, and the fast
quench scaling is a result of perturbation theory. This system is, however, not suitable
to explore if there is a universal fast quench scaling. For the latter we would need
to examine a translationally invariant system with an upper bound on the energy
spectrum (for example a lattice system) so that a Lieb Robinson bound is possible.
We are currently investigating the quench problem in situations like this.

Copyright© Sinong Liu, 2021.
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Chapter 4
Quantum Quench in c = 1 Matrix Model and Emergent Space-times

4.1 Introduction

In the usual AdS/CFT correspondence, quantum quench 1 in a non-gravitational
�eld theory is described as a time dependent boundary condition in the gravitational
dual. When the system is initially in a nice state (e.g. the ground state) and the time
dependence causes an energy injection over a �nite time period, the usual outcome
is black hole formation in the bulk [15, 32�45]. This manifests as thermalization in
the �eld theory. Such quantum quenches have been accordingly used extensively to
investigate thermalization in strongly coupled theories. In other situations where the
quench takes the system across, or approaches a critical point this holographic connec-
tion has been used to understand universal scaling and dynamical phase transitions
[75�79, 113�116, 179].

There are, however, other examples where holographic quenches lead to time
dependent bulk backgrounds which resemble cosmologies [139�142, 144�150, 180�
186] 2. When the coupling of the boundary theory goes through a small value, the
bulk develops a space-like or null region of high curvature, physically resembling
a cosmological singularity. In this region the classical gravity approximation fails
and it is interesting to ask if the dual �eld theory can provide an unambigious time
evolution. While there are indications that some of these examples may indeed involve
smooth time evolutions (especially for a null time dependence or a su�ciently slow
time dependence), the nature of the �nal state is not clear : this possibly contains a
black hole. Neverthless these examples have been useful in understanding boundary
signatures of bulk singularities.

In this paper we will investigate quantum quench in the earliest example of holog-
raphy which predates the AdS/CFT correspondence : duality of double scaled Matrix
Quantum Mechanics and two dimensional non-critical string theory.3 This is a model
of holography where both sides of the duality are understood quantitatively : as such
this could have lessons for the general question discussed above. The singlet sector of
this model can be written exactly in terms of a theory of non-relativistic fermions in an
inverted hamonic oscillator potential [55�59] and at large N it is more useful to write
the model as a collective �eld theory of the density of eigenvalues [187]. The space on
which these fermions live is the space of eigenvalues of the matrix. The �uctuations
of the collective �eld around the large N saddle point solution is a massless scalar
which is related to the single dynamical degree of freedom of two dimensional string
theory [16]. The saddle point itself is related to a classical tachyon background of the

1In this paper we will use "quantum quench" to describe a time dependent coupling, typically
with a �nite rate of change

2In these examples the time dependence turns o� in the ini�nite past but in an exponential
fashion, rather than at some �nite past time

3For reviews see [52, 53, 134, 135].
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string theory [188]. In fact a precise relationship involves a spatial transformation
whose kernel is nonlocal at the string scale [189]. There is no propagating graviton,
and the emergent space and gravitational e�ects are �gured out by examining the
propagation and scattering of collective �eld �uctuations. Recent work has made the
relationship between two dimensional string theory in worldsheet formalism and the
matrix model results even more precise [190�193]. The way holography works in this
case is somewhat di�erent from the usual AdS/CFT correspondence, even though the
origins come from the physics of D-branes in either case [194, 195]. In particular this
not really a "bulk-boundary correspondence". Nevertheless the description in terms
of the collective �eld in 1 + 1 dimension is a "bulk" description, while the description
in terms of N2 matrix degrees of freedom is the analog of the boundary description.

In two dimensional string theory, gravity and the higher string modes are not
propagating degrees of freedom. Nevertheless there can be distinct backgrounds with
di�erent metrics and other �elds. Indeed, the low energy description in terms of
dilaton gravity has a well known black hole background and there is worldsheet theory
in this background [196�199] - this led to signi�cant insights in the issue of black hole
evaporation. 4 Despite many decades of e�ort, this black hole background is not
understood in the matrix model description. It is generally believed that the singlet
sector in fact does not have a black hole. One evidence for this belief is that an
incoming tachyon pulse does not produce a black hole [17]. The non-formation of
black holes is related to the presence of an in�nite number of W∞ charges in the
theory. It has been speculated that the non-singlet sector does contain a black hole
[61]- however the status of this speculation is not clear at the moment. This naturally
raises the question : what happens when we subject the matrix model (restricted to
the singlet sector) to a quantum quench ?

We perform quantum quench in this model by introducing a time dependent self-
coupling of the matrix which interpolates between constant values at early and late
times. As we will show, in the singlet sector and in the double scaling limit, this model
maps to a system of N fermions in an inverted harmonic oscillator potential with a
time dependent coe�cient of the potential (We will call this coe�cient �frequency"
below). Using standard methods, the collective �eld description can be written down.

We show that the action of the collective �eld theory with time dependent fre-
quency can be mapped to one with a constant frequency plus a boundary term by a
transformation involving a single function of time ρ(t) which satis�es a generalization
of nonlinear Ermakov-Pinney (EP) equation [167, 203]. Thus, in the classical limit,
the response of the collective theory can be obtained once we know the solution of
the EP equation with appropriate initial conditions. Actually what determines the
solution is ρ2(τ) and this quantity can be both positive and negative. The EP equa-
tion can be solved in terms of the independent solutions of the classical equations
of motion of a single particle moving in the inverted harmonic potential with a time
dependent frequency f(t). Our method is adapted from known methods of solving
the single particle Schrodinger equation in the presence of a harmonic potential with
a time dependent frequency[132, 133, 204]. This technique has been used to under-

4For reviews and references to the original papers see [200�202].
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stand aspects of the quantum quench problem for N non-relativistic fermions in such
a potential [13, 159, 164] as well for quench in a harmonic chain in [165].

We discuss exact solutions for several quench protocols. These include abrupt
quenches with piecewise constant frequencies, where the frequency increases or de-
creases in a single step, and a "pulse" or "dip" where the frequency rises or dips down
for a �nite period of time, and becomes a constant after that. For smooth quenches,
our solvable examples include those which monotonically interpolate between con-
stant values at early and late times with a time scale δt, as well as cases where the
frequency starts with some constant value and ends up at the same constant value
after dipping down for some time. The quench starts o� with the system in a ground
state at large negative times where the energy levels on both sides of the inverted
harmonic potential are occupied upto some fermi energy.

The initial conditions are such that the collective �eld and its time derivative
match the adiabatic solution in the far past. The initial time evolution is then adia-
batic. The collective �eld has a cut (i.e. it vanishes inside a �nite interval in eigenvalue
space) which changes with time. However, in contrast to the right side up harmonic
oscillator, we �nd that with these initial conditions adiabaticity is always broken at
some �nite time, regardless of the speed of the quench. This can be qualitatively
understood by casting the generalized EP equation in terms of a potential problem :
this analog potential is unstable which renders an adiabatic expansion invalid. As a
result, the qualitative aspects of the solution are well approximated by similar pro�les
with abrupt changes.

We show that generically at late times the function ρ2(τ) becomes in�nitely large
positive or negative. However, there are �nely tuned pulse or dip protocols for which
ρ(τ)2 approaches a constant value.

For the case where ρ2 goes to negative in�nity, it crosses zero at a �nite time
τ = τ0 : at this time the saddle point solution for the collective �eld diverges, and the
equations cannot predict a further time evolution unambigously. This is therefore a
situation where the �bulk� equations of motion fail. However, the underlying fermion
description remains well-de�ned even at the classical level and predicts a smooth
time evolution across this time. For τ > τ0 the fermions in the initial fermi sea cross
over to the other side of the potential. Using the fermion picture one can now de�ne
a di�erent collective �eld (which is no longer the fermion density), but nevertheless
obeys the same equations of motion. At in�nite matrix model time, this new collective
�eld vanishes everywhere.

We then seek a space-time interpretation of the model by considering �uctuations
around the saddle point solution. The �uctuation action is that of a massless scalar
�eld in a relativistic two dimensional space-time with couplings which are space and
time dependent. Since the scalar is massless, we can read o� the metric from the
quadratic action only upto a conformal factor. However, this can be used to derive
the Penrose diagram showing the global properties of the emergent spacetime. We
do this in detail for abrupt quenches.

For a single step quench where the frequency increases, this semi-classical space-
time terminates on a spacelike boundary. At this boundary the cubic couplings of
the �uctuations of the collective �eld diverge : this is like a space-like singularity. Of
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course what this means is that the semiclassical collective theory used to obtain the
space-time interpretation fails as we approach this time. The matrix model time at
this point is τ = ∞. To determine if the matrix model time evolution is smooth at
these late times, one would need to use an exact non-perturbative treatment of the
fermionic theory, perhaps along the lines of [205]. In view of the above discussion
this would be the general feature of any smooth quench which leads to an increasing
ρ(τ)2.

An interesting feature of this emergent relativistic space-time is that the space of
eigenvalues, x, does not remain a space-like coordinate for all times. Constant x lines
are timelike before the quench, but can become null or space-like after the quench.
The signature of the emergent metric does not change.

For a single step quench where the frequency decreases, the time τ = τ0 discussed
above becomes a null I±. Normally this would be the boundary of space-time. How-
ever, the matrix model provides a smooth time evolution beyond this : we therefore
need to append another piece of space-time. The in�nite future in matrix model
time τ =∞ corresponds to a space-like line in this additional piece where the cubic
couplings of the �uctuations diverge. Once again all constant x lines do not remain
time-like.

It is only in the very �ne tuned situation where ρ(τ) asymptotes to a constant in
the far future that the emergent space-time is "normal".

Time dependent solutions of the matrix model with constant couplings have been
studied earlier as models of matrix cosmology [206�210]. These solutions are gener-
ated by the underlying W∞ algebra. It turns out that for pro�les of the �rst class
where the frequency changes suddenly from one value to another, the solutions are
identical to one class of such solutions [211, 212]. We do not understand why a quench
produces precisely these kinds of states.

Quantum quench in unitary and hermitian matrix models was �rst investigated in
[151], and followed up in a related recent paper [152]. These papers deal with abrupt
quenches and address questions of relaxation to a Generalized Gibbs Ensemble and
dynamical phase transitions, with several novel results. Our interest is complementary
: we concentrate on the question of emergent space-time.

In section 4.2 we describe the model and set up the notation. Section 4.3 deals
with the method of solving the dynamics following a general quench. Section 4.4
deals will explicit solutions of the collective �eld with various quench pro�les. In
section 4.5 we discuss the nature of the solutions in the fermion picture. Section 4.6
discusses the nature of the emergent space-time. Section 4.7 contains conclusions.
The appendices provide details of some of the pertinent results.

4.2 The c = 1 Matrix Model with a time dependent coupling

The action of our model is

S = β0

∫
dt f(t) Tr [

1

2
Ṁ2 − U(M)] (4.1)
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where M stands for a N × N hermitian matrix, and f(t) is a speci�ed function of
time which goes to constant values at early and late times. U(M) is a potential which
has a maximum at M = 0, e.g.

U(M) = −1

2
M2 +

1

4
M4 + · · · (4.2)

If we write β0 = N
g
, g is the 't Hooft coupling. We now de�ne a new time variable τ

by

dτ =
dt

f(t)
(4.3)

so that the action becomes

S = β0

∫
dτTr [

1

2
(∂τM)2 − f(τ)2 U(M)] (4.4)

where f(τ) = f(t). We will consider f(τ) which remains positive for all times.
Therefore τ is a monotonically increasing function of t.

We will consider a gauged version of the model where the U(N) symmetry of (4.1)
is gauged. Since there is no dynamics of a gauge �eld in 0+1 dimension this essentially
means a restriction to the singlet sector. In this sector one can replace the N2 degrees
of freedom with the N eigenvalues λi(t). The jacobian of the change of variables to
λi is a van der Monde determinant. One can then rede�ne the wavefunction by
absorbing a factor of the square root of this determinant - the new wavefunction is
then a Slater determinant, so that we have a theory of N fermions moving in the
space of eigenvalues in the presence of an external potential. The second quantized
hamiltonian of the fermion �eld χ(λ, t) is given by

H =

∫
dλ

[
1

2β0

|∂λχ|2 + β0f(τ)2U(λ)|χ|2 + β0µF |χ|2
]
− β0µFN (4.5)

where we have used a Lagrange multiplier µF to impose the constraint which sets the
total number of fermions to N , ∫

dλ|χ|2 = N (4.6)

The double scaling limit of this model is then de�ned by

β0 →∞ µF → 0 gs =
1

2β0µF
= �xed (4.7)

In this limit the model simpli�es considerably. This is seen by rescaling

λ = (β0gs)
−1/2x χ = (β0gs)

1/4ψ (4.8)

and retaining the O(1) terms. The �nal double-scaled hamiltonian is

H =

∫
dx

[
gs
2
|∂xψ|2 −

f(τ)2

2gs
x2|ψ|2 +

1

2gs
|ψ|2

]
(4.9)
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where we have ignored a constant additive term. The�Planck constant" of the problem
is gs.

If we think of this arising from e.g. a potential as in (4.2), the quartic terms

become O(1) when x ∼ µ
−1/2
F . Since gs is held �xed this corresponds to x ∼

√
N .

Because of this, a regulated version of this model can be written down with a hard
wall at |x| ∼

√
N .

Alternatively the singlet sector of the matrix model can be expressed in terms of
a collective �eld ρ(x, τ) which is the density of eigenvalues, or the fermion density in
eigenvalue space

ρ(x, τ) = ∂xζ(x, τ) = Trδ(M(τ)− xI) = ψ†ψ(x, τ) (4.10)

The dynamics of ζ(x, τ) can be derived using the method of [16, 187]. For small gs
one can alternatively use the classical bosonization relations of [60]. The action is

S =
1

g2
s

∫
dxdτ

[
1

2

(∂τζ)2

∂xζ
− π2

6
(∂xζ)3 +

1

2
[f(τ)2x2 − 1](∂xζ)

]
(4.11)

In the time independent situation, f(τ) = ω0, the ground state classical solution is
given by

∂xζ0(x) =
ω0

π

[
x2 − 1

ω0

]1/2

|x| ≤ 1 (4.12)

and zero in the interval − 1√
ω0
≤ x ≤ 1√

ω0
. Fluctuations of the collective �eld becomes

related to the�massless tachyon" of two dimensional string theory. The coordinate x
which arose out of the space of eigenvalues plays the role of space.

4.3 Response to a Quantum Quench

We aim to �nd solutions of the equations of motion with appropriate initial conditions
for a given quench pro�le f(τ). This is facilitated by a remarkable property of the
theory. Consider a transformation of (x, τ)→ (y, T )

y =
x

ρ(τ)
T =

∫ τ dτ ′

ρ(τ ′)2
(4.13)

where ρ(τ) is some function, under which ζ transforms as a scalar,

∂τζ =
1

ρ2
∂T ζ − y

∂τρ

ρ
∂yζ (4.14)

If the function satis�es the nonlinear equation

d2ρ

dτ 2
− f 2(τ)ρ = − 1

ρ3
(4.15)
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the action in (4.11) then becomes

S =
1

g2
s

∫
dydT

[
1

2

(∂T ζ)2

∂yζ
− π2

6
(∂yζ)3 +

1

2
(y2 − 1)(∂xζ)

]
+

1

g2
s

∫
dydT

[
∂y

(
− 1

2
y2ζ +

1

2
f(τ)2y2ρ4ζ +

1

2
y2ρ2(∂τρ)2ζ

)
− ∂T

(
yρ∂τρζ

)]
(4.16)

This means the equations of motion map to those with a constant frequency f = 1,
so that a solution of the equations of motion of the action with a constant frequency
can be lifted to a solution of the equations of motion with a time dependent frequency
using a solution of (4.15). The equation (4.15) is a generalization of Ermakov-Pinney
equation [167, 203]. The latter has a plus sign in front of f 2 and 1/ρ3.

As we will see soon, the function which appears in our discussion is actually ρ2(τ),
and this can be a both positive and negative real quantity. It is therefore useful to
consider the equation for this quantity,

∂2
τρ

2 − 1

2ρ2
(∂τρ

2)2 − 2ω(τ)2ρ2 = − 2

ρ2
(4.17)

In fact we will �nd that it is necessary to have negative values of ρ2. It is therefore
useful to de�ne the quantity

ρ̃(τ) ≡ +
√
|ρ(τ)2| (4.18)

The rescaling involved is then really

y =
x

ρ̃(τ)
(4.19)

To get an intuition about the solutions, it is useful to rewrite the generalized EP
equation (4.15) as the equation of motion of a particle in a potential,

d2ρ

dτ 2
= −∂V (ρ, τ)

∂ρ
(4.20)

where the potential is

V (ρ, τ) = −1

2

[
f(τ)2ρ2 +

1

ρ2

]
(4.21)

When f(τ) = ω0 for all τ the ground state solution is given by (4.12). This means
that in this case we need to choose a constant solution of the generalized EP equation
(4.15), ρ2 = 1

ω0
.

The quench pro�le we are interested in asymptotes to a constant value ω0 at
t → −∞. Therefore if we start out the system in its ground state we need to
solve the equation (4.15) such that it asymptotes to a constant value at early times.
We will in fact use pro�les which are either piecewise constant or become constant
exponentially at early and late times. Thus the time evolution near τ = −η for large
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enough positive η should be adiabatic. This means we need to �nd solutions of (4.15)
which match on to the adiabatic solution

ρad(τ)2 =
1

f(τ)
(4.22)

at some very early time. These conditions are, for a large negative T

ρ2(T ) =
1

f(T )
∂τρ

2(τ) = −∂τf(τ)

f(τ)2
|τ=T (4.23)

Given such a solution, the time dependent classical solution for the original action
can be easily written down using (4.13)

∂xζ0(x, τ) =
1

πρ(τ)2

[
x2 − ρ(τ)2

]1/2
(4.24)

∂τζ0(x, τ) = −∂τρ(τ)2

2ρ(τ)2
x∂xζ(x, τ) (4.25)

It can be easily checked that these satisfy the consistency condition

∂x∂τζ0(x, τ) = ∂τ∂xζ0(x, τ) (4.26)

There is a well known way to �nd solutions of the EP equation which we adapt to
the generalized equation [132, 133, 204]. The most general solution of (4.15) is given
by

ρ(τ)2 = Au(τ)2 + 2Bu(τ)v(τ) + Cv(τ)2 (4.27)

where A,B,C are constants and u(τ), v(τ) are two linearly independent solutions of
the classical equation of motion of a single particle moving in an inverted harmonic
potential with the same time dependent frequency f(τ)

∂2
τX − f(τ)2X = 0 (4.28)

Furthermore A,B,C must satisfy

AC −B2 = − 1

Wr(u, v)2
(4.29)

whereWr(u, v) = u∂τv−v∂τu is the wronskian of the two solutions. By the equations
of motion this is a constant in time and can be therefore evaluated at any time.

Given a classical solution of the action (4.11), ζ0(x, t), the next step is to obtain
the action for small �uctuations by expanding

ζ(x, t) = ζ0(x, t) +
gs√
π
η(x, t) (4.30)

The action for the �uctuations will clearly be nonpolynomial in η. The quadratic
part of the �uctuation action is

S(2) =
1

2π

∫
dxdτ

[
(∂τη)2

∂xζ0

− 2
(∂τζ0)

(∂xζ0)2
(∂τη)(∂xη) +

(
(∂τζ0)2

(∂xζ0)3
− π2∂xζ0

)
(∂xη)2

]
(4.31)
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while the cubic interaction part is

S(3) =

− 1

π3/2
×∫

dxdτ

[
1

2

1

(∂xζ0)2
(∂τη)2(∂xη)− ∂τζ0

(∂xζ0)3
(∂τη)(∂xη)2 +

(
(∂τζ0)2

(∂xζ0)4
+
π2

6

)
(∂xη)3

]
(4.32)

The quadratic action shows that the �uctuation �eld is a relativistic massless �eld
which is propagating on a 1 + 1 dimensional space-time with a metric which is con-
formal to

ds2 = −dτ 2 +
(dx+ ∂τ ζ0

∂xζ0
dτ)2

(π∂xζ0)2
(4.33)

Since we are dealing with a massless �eld in 1 + 1 dimensions the quadratic action is
insensitive to a conformal transformation of the metric. Note that the signature of
the metric (4.33) remains negative at all times since det(g) = − 1

π2(∂xζ)2 .

4.4 Solutions for some quench pro�les

In this section we �nd solutions of the generalized EP equation for physically inter-
esting quench pro�les.

4.4.1 Abrupt Quenches

Consider �rst abrupt quenches. The �rst case we consider is a single step quench,
where the function f(τ) appearing in e.g. (4.11) is given by

f(τ) =

{
ω0 : τ < 0
ω1 : τ > 0

(4.34)

In this case the two linearly independent solutions to the classical equations of
motion (4.28) may be chosen to be

u(τ) = θ(−τ)eω0τ + θ(τ)
1

2

[
(1 +

ω0

ω1

)eω1τ + (1− ω0

ω1

)e−ω1τ

]
v(τ) = θ(−τ)e−ω0τ + θ(τ)

1

2

[
(1− ω0

ω1

)eω1τ + (1 +
ω0

ω1

)e−ω1τ

]
(4.35)

Using (4.27) and (4.29) we need to �nd a solution for ρ2 which is 1
ω0

for τ < 0. This

clearly requires a choice A = C = 0 in (4.27). Then (4.29) requires B = 1
ω0
. This

leads to the solution for ρ2(τ)

ρ2(τ) =
1

ω0

[
θ(−τ) + θ(τ) cosh2 ω1τ

(
1− ω2

0

ω2
1

tanh2 ω1τ

)]
(4.36)
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The function ρ2(τ) is shown in Figure 4.1. This monotonically increases for ω0 < ω1,
while for ω0 > ω1 this montonically decreases, crossing a zero at a �nite time τ0 given
by

tanhω1τ0 =
ω1

ω0

(4.37)

At this point the saddle point solution ∂xζ0 (4.25) diverges. Note that ∂τρ
2 is �nite

here - this implies that the ratio (∂τζ0)/(∂xζ0) diverges as well.

Figure 4.1: ρ2(τ) for abrupt quench. We have chosen ω0 = 1. The green line has
ω1 =

√
2 while the blue line has ω1 = 1/

√
2

The behavior of ρ(τ) can be understood from the analog potential V (ρ) (4.21)
which appears in the generalized EP equation. In Figure 4.2 the red curve is the
potential for τ < 0, the green curve is the potential for τ > 0 in the case ω0 < ω1. For
τ < 0 our initial conditions mean that the analog particle starts o� at the maximum
of the red potential, ρ = 1√

ω0
. Thus the initial position is to the right of the maximum

of the new potential and therefore the particle rolls down to large ρ, reaching ρ =∞
at τ =∞.

In Figure 4.3 the red curve is the potential for τ < 0, the blue curve is the potential
for τ > 0 in the case ω0 > ω1. Now the initial position is to the left of the maximum
of the new potential and therefore the particle rolls down towards ρ = 0. It may be
easily checked that it reaches ρ = 0 at a �nite time τ = τ0. This analog problem
does not tell us what to do after this time. However, as explained above, the relevant
quantity is not ρ(τ) itself, but ρ(τ)2. The solution (4.36) continues to hold for τ > τ0

and satis�es all the continuity requirements for the equation (4.17).
For quench pro�les which are not monotonic, the late time behavior can be more

interesting. Consider a series of abrupt quenches given by

f(τ) =


ω0 : −∞ < τ < −T/2
ω2 : −T/2 < τ < T/2
ω1 : T/2 < τ <∞
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Figure 4.2: The potential in the Ermakov-Pinney analog potential problem for abrupt
quench for ω0 < ω1 . The red curve is the potential for τ < 0, while the green curve is
the potential for τ > 0. The black dot is the position of the analog particle at τ = 0.

Figure 4.3: The potential in the Ermakov-Pinney analog potential problem for abrupt
quench for ω0 > ω1. The red curve is the potential for τ < 0, while the green curve is
the potential for τ > 0. The black dot is the position of the analog particle at τ = 0.

Here ω0, ω1, ω2 are positive and nonzero. When ω0 > ω2 we will call this a "dip",
while the ω0 < ω2 will be called a "pulse".

The details of the solution for ρ2(τ) are given in appendix C. The solution to ρ2(τ)
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is given by

ρ2 =



1
ω0
, τ ≤ −T

2

1
ω0

(
AA′e2ω2τ +BB′e−2ω2τ + AB′ + A′B

)
, −T

2
≤ τ ≤ T

2

1
ω0

(
CC ′e2ω1τ +DD′e−2ω1τ + CD′ + C ′D

)
, τ ≥ T

2

(4.38)

whereA,A′, B,B′, C, C ′, D,D′ are integration constants which are functions of ω0, ω1, ω2

which are given explcitly in Appendix C.
In this case, ρ(τ)2 can be non-monotonic, and generically diverges as τ → ∞,

approaching either +∞ or −∞. An example of a non-monotonic solution is given in
Figure 4.4.

-1.5 -1.0 -0.5 0.5 1.0 1.5 2.0
τ

1

2

3

4

ρ2

Figure 4.4: A non-monotonic ρ2(τ) for an abrupt dip pro�le with ω0 = 1, ω2 = 1/2
and ω1 = 2 with T = 1/2. The dashed line is the pro�le of f(τ)2.

However there are �nely tuned pro�les for which ρ2(τ) approaches a constant at
late times. The generalized EP equation of course determines this constant to be
1
ω1
. To explore the late time behavior we need to look at the solution in the region

T/2 ≤ τ <∞. This is given by the last equation of (4.38). For the discussion below
we need the explicit forms of C,C ′ given below

C =
e−

T
2

(2ω2+ω1+ω0)

4ω1ω2

[
(ω2 − ω0)(ω1 − ω2) + e2Tω2(ω2 + ω1)(ω2 + ω0)

]
(4.39)

C ′ =
e−

T
2

(2ω2+ω1−ω0)

4ω1ω2

[
(ω2 + ω0)(ω1 − ω2) + e2Tω2(ω2 + ω1)(ω2 − ω0)

]
(4.40)

If ρ(τ)2 approaches a constant (which must be 1
ω1

) at late times either C or C ′ must

vanish. It is straightforward to see that C cannot vanish since e2ω2T > 1, while one
can �nd a nonzero �nite value of T when C ′ = 0 both for a pulse ω2 > ω0 > ω1, as
well for a dip ω1 > ω0 > ω2. The corresponding ρ(τ)2 are shown in Figures 4.5 and
4.6.
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Figure 4.5: ρ(τ)2 for a �ne-tuned pulse quench with ω0 = 1, ω2 = 51/50, ω1 = 1/2.
The blue part of the curve corresponds to τ < −T/2, the green part for −T/2 < τ <
T/2 and the red part is τ > T/2. The quench pro�le is shown by dashed lines.
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Figure 4.6: ρ(τ)2 for a �ne-tuned dip quench with ω0 = 1, ω2 = 1/2, ω1 = 2. The blue
part of the curve corresponds to τ < −T/2, the green part for −T/2 < τ < T/2 and
the red part is τ > T/2. The quench pro�le is shown by dashed lines.

4.4.2 Smooth Quenches

Consider now a smooth quench pro�le given by

f(τ)2 =
ω2

1 + ω2
0e
− τ
δt

1 + e−
τ
δt

(4.41)

The quench pro�les are shown in Figure 4.7.
In this case the equation (4.28) admits analytic solutions in terms of hypergeo-

metric functions. When ω0δt is not a half integer, a choice of the two independent
solutions is

u(τ) = eω0τ
2F1[δt(ω0 − ω1), δt(ω0 + ω1), 1 + 2δtω0,−e

τ
δt ]

v(τ) = e−ω0τ
2F1[−δt(ω0 + ω1), δt(−ω0 + ω1), 1− 2δtω0,−e

τ
δt ] (4.42)

Since the frequency approaches a constant exponentially at early times, the intial
time evolution is adiabatic. We need to �nd linear combinations of u(τ) and v(τ) in
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Figure 4.7: The function f(τ). The red curve has ω0 > ω1 and the blue curve has
ω0 < ω1

(4.42) such that the function ρ(τ) constructed out of these solutions satisfy adiabatic
initial conditions at an early time. The adiabatic solutions are given by

vad(τ) =
Cv√
f(τ)

exp

[
−
∫ τ

f(τ ′)dτ ′
]

uad(τ) =
Cu√
f(τ)

exp

[∫ τ

f(τ ′)dτ ′
]

(4.43)

where the constants of integration Cu, Cv are chosen such that as τ → −∞ these
solutions behave as

vad(τ) ∼ 1
√
ω0

exp [−ω0τ ]

uad(τ) ∼ 1
√
ω0

exp [ω0τ ] (4.44)

Adiabatic initial conditions mean that at time t = T where T is very large and
negative, [

u(T ), ∂τu(T )

v(T ), ∂τv(T )

]
→

[
uad(T ), ∂τuad(T )

vad(T ), ∂τvad(T )

]
(4.45)

The speci�c linear combinations which satisfy this are given in the Appendix D.
The function ρ(τ) is then constructed by choosing A = C = 0 and B = 1

2
in

(4.27),
ρ(τ)2 = u(τ)v(τ) (4.46)

At early times, this leads to the correct adiabatic initial conditions (4.23) .
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An important aspect of the subsequent time evolution is that regardless of the
value of δt, adiabaticity is always broken. This fact can be again understood from
the feature of the potential of the analog problem.

Again, we regard Ermakov-Pinney equation as the equation of motion of an analog
particle on potential (4.21). At a very early time, the analog particle is the maximum
of the initial potential, ρ = 1√

ω0
. Then, at an early stage of a smooth quench,

a slight variation of f(τ) causes a perturbation on the analog particle from this
(unstable) equilibrium point, in a way similar to what is shown in �gures 4.2 and 4.3.
Although the equilibrium point is unstable, the particle can still move back to the
new equilibrium point if the initial velocity ∂τρ is �nely tuned, otherwise it will either
pass the new equilibrium point (when ∂τρ is too large), or be bounced back (when
∂τρ is too small). In both cases the analog particle moves away from equilibrium
point.

Another way to see the failure of adiabaticity is to go back to the independent
solutions in (4.42). The solutions u(τ), v(τ) describe the motion of classical particles
in inverted harmonic oscillator potential −1

2
f(τ)2x(τ)2. When particles move in such

a potential with a cuto� xb as boundaries, particles with negative energy E = −ν
move between the boundary and the potential. Then we can �gure out the adiabatic
invariant of the system at τ → −∞

I =
1

2π

∮
pdx =

1

2π

∮ √
−2ν + ω2

0x
2dx (4.47)

and therefore the period of the particle is

T = 2π
∂I

∂E
=

1

ω0

[
− log 2ν + 2 log

(
ω0xb +

√
ω2

0x
2
b − 2ν

)]
(4.48)

The adiabatic approximation holds when

T
df(τ)

dτ
� f(τ) (4.49)

The solutions u(τ) and v(τ) however represent trajectories which have zero energy
at in�nite past, and these have in�nitely large T , which violate the condition (4.49).
Thus, the adiabatic approximation fails for u(τ), v(τ) and therefore for ρ(τ).

There is of course a solution which is �ne-tuned by specifying initial and �nal
conditions for u(τ), v(τ) which lead to ρ→ 1√

ω0
in the in�nite past and ρ→ 1√

ω1
in the

in�nite future 5. The initial value of ∂τρ at some τ = −η will be di�erent from (4.23).

5We found the �nely-tuned solutions

vfinely−tuned =

(
Γ(1 + 2ω1δt)Γ(2ω0δt)

δt(ω0 + ω1)Γ(δt(ω0 + ω1))2

)−1

× 1
√
ω0
e−ω1τ

2F1(−δt(ω0 − ω1), δt(ω0 + ω1); 1 + 2δtω1;−e−τ/δt),

ufinely−tuned =
1
√
ω0
eω0τ

2F1([ω0 − ω1]δt, [ω0 + ω1]δt, 1 + 2ω0δt,−eτ/δt)

(4.50)
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Only when δt � η → ∞, ∂2
τρ → 0 will the adiabatic approximation become the

exact �nely-tuned solution given that dω/dτ ∝ δt−1. Now, because the generalized
Ermakov-Pinney equation describes a Lyapunov unstable system, according to the
de�nition of Lyapunov stability, there exists a value ε, for all exact solutions with
initial adiabatic condition at τ = −η that satisfy |ρfinely−tuned(−η) − ρad(−η)| < δ,
where δ is a function of ε and time τ , we can �nd there exists some τ > −η where
|ρfinely−tuned(τ)− ρad(τ)| > ε; i.e. at some late time, �nely-tuned solution and exact
solution with adiabatic initial condition are no longer close no matter how large η
is. This explains why we cannot �nd an exact adiabatic solution or even an exact
�nely-tuned solution with adiabatic initial conditions at τ = −η (4.23).

Figure 4.8 shows the exact and adiabatic solutions to the EP equation for the
pro�le (4.41), both for ω1 < ω0 and ω1 > ω0 together with the adiabatic solution (the
dashed lines). The explicit solution for this case is given in Appendix D. Clearly the
nature of the solutions are quite similar to those which result from abrupt quenches.
In the following we will use the abrupt quench solutions to map out the emergent
space-times

-8 -7 -6 -5 -4 τ
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Figure 4.8: The solution for ρ2(τ) for the smooth pro�le of the form (4.41). These
have δt = 1.1 and the adiabatic condition is imposed at T = −8.8. The grey lines are
for ω0 = 1, ω1 = 0.5 while the blue lines are for ω0 = 1, ω1 = 1.5. The dashed lines
are the adiabatic solutions, while the solid lines are the exact solutions.

Another example of a solvable quench pro�le is give by a smooth dip or pulse,

f(τ)2 = ω2
1 + (ω2

0 − ω2
1) tanh2 τ

δt
(4.51)

The results for this pro�le are presented in appendix E.

4.4.3 Collective Field Saddles

At t→ −∞ the collective �eld in (4.25) vanishes in the interval − 1√
ω0
< x < 1√

ω0
and

monotonically increases with |x|. Given a solution ρ(τ)2 we can now substitute this
in (4.25) to obtain a classical solution of the collective �eld. We saw that generically
there can be three kinds of late time behavior for ρ(τ)2.
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First, ρ(τ)2 can approach +∞ at late times. In this case, the interval of x in which
the collective �eld vanishes increases monotonically to arbitrarily large values, while
the value of ∂xζ0 keeps decreasing till it vanishes for any �nite |x|. This behavior
is strictly for the inverted oscillator potential. For any �nite but large β (or �nite
N) this potential needs to be regulated by some kind of wall at x ∼

√
βgs. The

modi�cation which comes from this will be clear when we discuss the solutions in the
fermion language.

Secondly, ρ(τ)2 can approach −∞, crossing a zero value at a �nite time τ = τ0.
At this time the collective �eld diverges. The collective �eld equations cannot be
used to unambigously predict a future time evolution. As we will see, one needs to go
back to the fundamental fermion description to �gure out if there is anything singular
going on here. In fact we will see that the fermion description provides a smooth time
evolution and also provide us with a continuation of the collective �eld. Again, the
divergence of the collective �eld is a feature of the strict double scaled limit. For
�nite large β this becomes at most of order

√
β - see below. In any case this region

is beyond the regime where we expect the classical collective description to be good.
Finally, there can be �nely tuned pro�les where ρ(τ)2 approaches a constant value.

In this case, the collective �eld obtained from (4.25) is �nite and well de�ned at all
times and nothing special happens.

In the matrix model - 2d string theory duality the collective �eld description
is the bulk description - what we are �nding is that this bulk description becomes
problematic except in a very �nely tuned situation.

Remarkably the solutions for the single step abrupt quenches for τ > 0 are exactly
those which appeared earlier as time dependent solutions of the matrix model with a
time-independent potential [211, 212]. The quench solutions for other quench pro�les
do not correspond to such solutions in a time independent potential.

4.5 The fermionic description

The fundamental description of the theory is given in terms of fermions. In the
semiclassical limit of small gs the fermionic theory can be understood in terms of the
dynamics of the �lled fermi sea in the single particle phase space. In this regime the
density in phase space u(x, p, τ) is either 1 or zero, and satis�es the Euler equation[

∂τ + p∂x + f(τ)2x∂p
]
u(x, p, τ) = 0 (4.52)

There is a canonical transformation in the phase space

y =
x

ρ(τ)
T =

∫ τ dτ ′

ρ(τ ′)2
P = ρ(τ)p− (∂τρ)x (4.53)

which transforms this equation to the one for a constant unit frequency

[∂T + P∂y + y∂P ]u(y, P, T ) = 0 (4.54)

This may be used to write down the expression for the boundary of the �lled fermi
sea which corresponds to our solution for the collective �eld

x2 −
(
ρ(τ)2p− x

2
∂τρ

2
)2

= ρ(τ)2 (4.55)
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We have expressed this entirely in terms of ρ2 since this is the quantity which appears
in the solutions. There are two fermi seas corresponding to the two sides of the
potential. The upper and lower edges of the fermi sea for a given value of x are then
given by

p±(x, τ) =
1

ρ(τ)2

[x
2
∂τρ

2 ±
√
x2 − ρ(τ)2

]
(4.56)

In the following we will denote the points on the left branch by p<± and the right
branch by p>±.

The quantities p±(x, τ) are related to the collective �elds by the classical bosoniza-
tion relations [60]

∂xζ
>,<(x, τ) =

1

2π

[
p>,<+ (x, τ)− p>,<− (x, τ)

]
(4.57)

∂τζ
>,<(x, τ) = −1

2
∂xζ

>,<
[
p>,<+ (x, τ) + p>,<− (x, τ)

]
(4.58)

These equations hold separately for each side of the potential, so that there are
actually two collective �elds.

We now determine the time evolution of the fermi surfaces using (4.56) for the
various quench pro�les. Since the qualitative behavior of the solution is similar to
abrupt quenches,we will use the latter expressions.

Figure 4.9 shows the pro�le of the fermi surfaces for the quench pro�le (4.34) for
ω0 < ω1. The solid curves are the functions p>,<− for di�erent values of the time τ
while the dashed curves are the functions p>,<+ . These two curves meet at x = ρ(τ).
The red curves are for τ = 0, and the blue and green curves are for later times. As
time progresses the fermi surfaces fold onto themselves and receed from the potential
on both sides.

Figure 4.9: The fermi surface pro�les for ω0 < ω1
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Figure 4.10 shows the pro�le of the fermi surfaces for the quench pro�le (4.34)
with ω0 > ω1. The solid curves are the functions p>,<− for di�erent values of the time
τ while the dashed curves are the functions p>,<+ . These two curves meet at x = ρ(τ).
The red curves are for τ = 0, and the blue, black and green curves are for later times.
In particular the black curves correspond to τ ∼ τ0 while the green curves are for
τ > τ0. It is clear that the fermi surfaces evolve smoothly across τ = τ0, the time
at which the collective description becomes problematic. As we approach τ = τ0

the meeting place of these curves is pushed o� to in�nity. For τ > τ0 the fermions
are pushed to the other side, and only p<− and p>+ are visible. As τ → ∞ two fermi
surfaces p<− and p>+ come close to each other, and it appears that the whole phase
space is �lled.

p

Figure 4.10: The fermi surface pro�les for ω0 > ω1

The smooth time evolution of the fermion theory now provides a meaning for the
continuation of the saddle point collective �eld for τ > τ0. We now have a single
collective �eld which is de�ned by

∂xζ0 =
1

2π

[
p>+(x, τ)− p<−(x, τ)

]
(4.59)

= − 1

ρ̃(τ)2

√
x2 + ρ̃(τ)2 (4.60)

where ρ̃ is de�ned in (4.18).
These pro�les are for the double scaled potential. For �nite β (recall that β ∼ N)

the fermi surfaces are closed in phase space and the fermions cannot have arbitrarily
large momenta and the entire phase space cannot be �lled. In fact, for ω0 > ω1, the
fermions which have large values of momenta as we approach τ = τ0 come from the
region of the original fermi sea which now lie above the ground state fermi level of the
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new potential. Consider e.g. a fermion which has x = x0 and p = p0 at τ = 0, with
ω2

0x
2
0 − p2

0 > ω2
0. If ω2

1x
2
0 − p2

0 < ω2
1 these fermions are above the ground state fermi

surface of the new potential. At τ = τ0 = 1
ω1

tanh−1(ω1

ω0
) the location and momentum

of this fermion is

x(τ0) =
ω0x0 + p0√
ω2

0 − ω2
1

p(τ0) =
ω2

1x0 + ω0p0√
ω2

0 − ω2
1

(4.61)

Now consider a fermion which had a large negative x0 and large positive p0 at the
time of the quench. Then p0 ≈ −ω0x0, and (4.61) yields x(τ0) ≈ 0 and p(τ0) ≈
−x0

√
ω2

0 − ω2
1, which becomes arbitrarily large when x0 becomes large. However,

when β is �nite one needs to modify the inverted harmonic potential at large values
of x by e.g. imposing a hard wall at |x| ∼

√
β. This means that the maximum

momenta are also of the order
√
β.

The fermi surface pro�les for a potential with a cuto� are shown in �gure 4.12
and �gure 4.11 for various times. Here the �lled regions of the phase space are shown
in black. At an early time after abrupt quench, each fermi surface pro�le includes
two parts: part of the fermi surface pro�le for potential without cuto� (shown in
�gure 4.9 and 4.10), and its re�ection after hitting the cuto�. In �gure 4.9, particles
�ow out of the imaginary cuto� while no particles �ow in, thus the re�ection fermi
surface pro�le should make up the loss to keep the fermion number (the area of black
region in �gure 4.11) invariant. However, in �gure 4.10, more particles with positive
energy �ow in than �ow out, thus the �lled fermi surface in the presence of a cuto�
excludes these fermions. We explain the details of these two di�erent cases and give
the expression of the phase space density u(x, p, τ) in appendix F.

4.6 The emergent space-time

The nature of the emergent space-time is deduced from the �uctuation action. In
particular the quadratic action for �uctuations (4.31) represents a massless scalar
�eld in a 1 + 1 dimensional space-time. Since a massless scalar �eld is insensitive to a
conformal factor, we can only determine the conformal class of the metric. Equation
(4.33) is one member of this class. The non-trivial features of the emergent space-time
are its global aspects - this is what we need to determine.

For this purpose it is useful, as always, to �nd coordinates such that the metric
becomes conformal to standard Minkowskian metric, which is always possible in 1+1
dimensions. For an arbitrary quench pro�le, the Minkowskian coordinates (q, T ) are
given by,

x = ±ρ̃(τ) cosh(q) T =

∫ τ dτ ′

ρ(τ)2
(4.62)

This is adequate for the single step abrupt quench with ω0 < ω1. In this case, we can
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(a) τ = 0 (b) τ = 1
8

(c) τ = 1
4 (d) τ = 1

2

Figure 4.11: Time evolution of phase space density u(x, p, τ) for the potential with a
cuto� at x = ±l/2 after abrupt quench. Choose ω0 = 1

2
, ω1 = 1, l/2 = 5.

explicitly obtain, for τ > 0

x = ± 1
√
ω0

[
cosh2 ω1τ −

ω2
0

ω2
1

sinh2 ω1τ

]1/2

cosh q (4.63)

T = tanh−1

[
ω0

ω1

tanh(ω1τ)

]
(4.64)

Note that the forbidden values of x increase with time. As 0 < τ < ∞ we have
0 < T < tanh−1 ω0

ω1
. The space-time appears to be geodesically incomplete, and

normally one would have extended the time T further to∞. However the underlying
matrix model tells us that this extension does not make any sense, since the matrix
model time τ ends at this point. In fact, on the space-like line T = tanh−1 ω0

ω1
,

the cubic couplings of the �uctuation �eld diverge - in this sense this is a space-
like singularity. As mentioned in the introduction this means that the semi-classical
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(a) τ = 0 (b) τ = 1
2 log 3− 0.0001

(c) τ = log 3− 0.001 (d) τ = 3
2 log 3− 0.0001

Figure 4.12: Time evolution of phase space density u(x, p, τ) for the potential with a
cuto� at x = ±l/2 after abrupt quench. Choose ω0 = 2ω1 = 1, l/2 = 5.

collective theory as well as the fermi �uid description are not valid anymore and strong
coupling e�ects become important. The situation is similar to such singularities in
GR which signal the breakdown of Einstein's equations.

An interesting feature of this space-time is that the x = constant lines do not
remain time-like for all times. The Penrose diagram for the emergent space-time is
shown in �gure 4.13. In this �gure the thick red solid line and the thick red dashed line
seperate two di�erent pieces of the space-time which are perceived by the �uctuations
of the left and right fermi surfaces. The red dashed lines are constant x lines, while
the blue dotted lines are constant τ lines. Clearly the constant τ lines are always
spacelike. This can be seen from the form of the metric (4.33) since ds2 > 0 for
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Figure 4.13: Penrose diagram for emergent space-time when ω0 = 1√
2
ω1 = 1. Blue

dotted lines are constant τ lines; Specially, τ = 0 when the abrupt quench occurs are
plotted in blue dashed line; τ → ∞ i.e. in�nite future is plotted in blue solid line.

Red dashed lines are constant x lines. Special values of x, x = ±
√

1
ω0

and x = ±ρ(τ),

is plotted in thick red solid line and thick red dashed line, respectively. The two sides
of these lines are di�erent disconnected space-times where the �uctuations of the left
and right fermi surface propagate. The orange solid lines demarcate the regions in
which constant x lines are spacelike from those where they are time-like.

dτ = 0. However constant x lines are timelike only when

(∂τζ0)2

π2(∂xζ0)4
≤ 1 (4.65)

They are null when the equality is satis�ed and space-like otherwise.
For an abrupt quench with ω0 > ω1, the coordinates (T, q) de�ned in (4.64) cover

only the region τ < τ0, and the line τ = τ0 has T = ∞, and is null. The red solid
line is the line x = ± 1√

ω0
. For τ ≤ 0 this is q = 0 which separates the two sides of

the potential. For τ > 0 excitations can propagate in the region |x| < 1√
ω0
, so this

region is included in the Penrose diagram. The orange line demarcates the regions
where constant x surfaces (denoted by red dashed lines) are space-like and time-like.
Finally these constant x lines become null as they approach the τ = τ0 lines. The
part of the Penrose diagram for τ < τ0 actually consists of two disconnected pieces
(corresponding to the �uctuations of the left and right fermi surfaces) separated by
the red solid line for τ < 0 and the red dashed line for τ > 0.

Normally T =∞ or τ = τ0 would be the future null boundary of two dimensional
Minkowski space and there is no reason for continuing the space-time beyond this.
However the matrix model predicts a smooth time evolution beyond τ = τ0 - we
therefore need to attach another piece of space-time. The Minkowskian coordinates
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Figure 4.14: Penrose diagram for emergent space-time when ω0 =
√

2ω1 = 1. The
black dot-dashed lines and dashed lines represent τ = τ0 where τ0 is de�ned in (4.37)
and should be glued respectively. Blue dotted lines are constant τ lines; Specially,
τ = 0 when the abrupt quench occurs are plotted in the blue dashed line; τ → ∞
i.e. in�nite future is plotted in blue solid line. Red dashed lines are constant x lines.

The special value of x, x = ±
√

1
ω0
, is plotted in thick red solid lines; it splits into

two lines at τ = 0. x = ±ρ(τ), is plotted in thick red dashed line. These separate
two disconnected space-times corresponding to the �uctuations of the left and right
fermi surfaces. These two pieces connect at τ = τ0. x = 0 is plotted in the thick red
dot-dashed line - this, however does not separate disconnected pieces. The orange
solid lines demarcate the regions in which constant x lines are spacelike from those
where they are time-like.
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are now de�ned by

x = ρ̃(τ) sinh(q) T = − coth−1

[
ω0

ω1

tanh(ω1τ)

]
(4.66)

In the Penrose diagram this piece is given by the upper triangle. Note that the
two disconnected pieces for τ < τ0 have joined into a single connected space-time.
Equation (4.66) shows that as τ ranges from τ0 to∞ the time T ranges from −∞ to a

�nite value coth−1
(
ω0

ω1

)
. The matrix model tells us to end the space-time here. The

cubic couplings diverge here - so this is like a space-like singularity. Again this means
that our semi-classical treatment, together with the space-time interpretation of the
model, breaks down here. The matrix model time evolution is possibly smooth, but
this requires an exact treatment which we have not pursued.

Once again, the constant x lines are not always timelike. The resulting Penrose
diagram is shown in �gure 4.14.

For the �nely tuned case, the space-time is geodesically complete : at late times
ρ2 saturates so that as τ →∞ one also has T →∞.

4.7 Conclusions

In this work we explored the nature of emergent space-times in the c = 1 matrix
model with a time dependent coupling. Our main �nding is that generically such a
quantum quench naturally leads to geodesically incomplete space-times with space-
like boundaries where the coupling of the "bulk" theory diverges. Only for very �nely
tuned quenches, the emergent space-time is normal.

It will be interesting to understand the time dependence of the entanglement
entropy of a region of the emergent space-time. In [13] it was shown that in a system
of free fermions in an external potential, the entanglement entropy SA of a region of
the eigenvalue space A in the "in" state |in〉 (i.e. the Heisenberg picture state which
is the ground state of the initial hamiltonian) can be expressed entirely in terms of
the phase space density u(x, p, τ),

SA =
1

2π

∫ ∞
−∞

dp

∫
A

dx 〈in|u(p, x, τ)|in〉−

1

(2π)2

∫ ∞
−∞

dp1dp2

∫
A

dxdy

× e−i(p2−p1)(x−y) 〈in|u(p1, (x+ y)/2, τ)|in〉〈in|u(p2, (x+ y)/2, τ)|in〉
(4.67)

The solutions for the phase space density for the various quench pro�les studied in
this paper can be then used to compute this quantity. For constant frequencies this
bulk entanglement entropy has been investigated in [175�177] : one key result of this
investigation is that this quantity is �nite, with the string coupling replacing the
usual UV cuto�. However the meaning of this quantity for our time dependent bulk
space-time is unclear at the moment, since constant x lines do not remain time-like
for all times. We are currently investigating this issue.
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From the point of view of holography, the most interesting question is the relation
of these to solutions to those of two dimensional string theory in the worldsheet
or string �eld theory formulations. For the standard time independent case, this
relationship involves a transformation whose kernel is non-local at the string scale,
and obtained by a comparison on the S matrices obtained from the matrix model and
worldsheet string theory. This is a manifestation of the "leg-pole" factors. One may be
able to obtain a worldsheet description using the connection of the feynman diagrams
of the matrix model with dynamical triangulations of the worldsheet. Naively this
would lead to a time dependent dilaton and a time dependent worldsheet cosmological
constant. However a precise relationship could be subtle and is under investigation.
A precise connection to a worldsheet S-matrix can be then established. Assuming,
however, that the non-locality continues to remain at the string scale, the space-time
diagrams discussed above need to be smeared at this scale. As mentioned above, the
single step abrupt quench results are identical to the time dependent solutions of the
constant coupling matrix model considered in [211, 212] : this work contains some
discussions of this issue.

Copyright© Sinong Liu, 2021.
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Chapter 5
Gauge Invariant Target Space Entanglement in D-Brane Holography

5.1 Introduction

In quantum �eld theory on a �xed space-time background, entanglement between two
regions of space has a well de�ned meaning in the presence of a UV cuto� and the
corresponding entanglement entropy provides valuable information about the nature
of the quantum state. In quantum gravity this is a tricky issue since space-time is
dynamical. This becomes even more tricky in String Theory where the fundamental
degrees of freedom are extended objects. Nevertheless, in a weakly coupled semi-
classical regime there is an approximate notion which comes from thinking of gravity
as a �eld theory of gravitons in a background. It is therefore interesting to ask if there
is a precise notion of entanglement in a complete theory of gravity which reduces to
the above approximate notion in the appropriate regime.

In [21] four of us proposed that in gravitational theories which have holographic
duals, such as the ones which arise in String Theory, such a precise notion indeed
exists. The proposal is that in Dp brane holography for p < 3 this notion is provided
by entanglement in the target space of the Yang-Mills theory on the brane. The idea
is that a suitable target space constraint can be associated with a co-dimension one
spatial region in the bulk dual. In the Yang-Mills theory the target space constraint
then leads to a sub-algebra of operators. The expectation values of operators in this
sub-algebra can be obtained correctly using a reduced density matrix lying in the
sub-algebra itself. The von-Neumann entropy for this reduced density matrix is the
precise notion, sought above, of a geometric entropy of the bulk sub-region. When the
entire system is in a pure state this entropy is entirely due to quantum entanglement.
When the system is in a mixed state, this contains a classical piece.

We conjectured that when the state is the N brane bound state or its slightly
heated up version, this von Neumann entropy is given by the Bekenstein formula
A/4G where A is the area of the entangling surface in the dual black brane geometry
1 . In a complete theory of gravity one would expect that in any de�nition of geometric
entanglement entropy the UV cuto� is automatic. Our conjecture therefore implies
that the UV cuto� is provided by Netwon's constant, and not by e.g. the string
length. Indeed, for simple entangling surfaces for p < 3 our conjecture yields answers
which scale as N2 and are expressible purely in terms of the appropriate dimensionless
quantities of the Yang-Mills theory - as one would expect.

The bulk entanglement we are considering is across any codimension two surface.
This is distinct from the corrections to holographic entanglement entropy [49, 50] due
to entanglement across extremal surfaces [214�217] or what would become a quantum
extremal surface [218]. Note that the proposal discussed above, for Dp branes with

1For mixed states a spatial Bekenstein bound is not generally valid. In such situations one may
need to consider the �ne grained entropy of the degrees of freedom of a light sheet associated with
a boundary of area A [213]
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p > 0, considers the same target space constraint holding at all points on the Dp
brane. The boundary of the corresponding codimension one spatial surface in the
bulk then includes the entire spatial boundary of space-time. For p > 0 it is also
possible to discuss a more general notion of entanglement which arises for a sub
algebra of observables tied to a target space constraint that applies only to a part of
the base space along which the Dp branes extend.

The fact that Newton's constant is the natural cuto� is consistent with the idea
that the Bekenstein formula for black hole entropy involves a renormalized Newton
constant [219�221]. Furthermore it has been argued in [222, 223] that this nat-
urally happens in theories of induced gravity. In the past, [224�226] has argued
that Einstein's equations follow from thermodynamics, provided the cuto� in the
entanglement entropy in a theory of gravity is Newton's constant. [227] had also
conjectured that the entanglement entropy across an arbitrary surface in a theory of
gravity saturates the Bekenstein bound. The reasoning of [21] is initimately tied with
the identi�cation of bulk entanglement with target space entanglement and therefore
di�ers from these other papers in an essential way.

The appearance of Newton's constant as the UV cuto� is also consistent with the
calculation of the bulk entanglement entropy in the c=1 Matrix Model / 2d string
theory duality [175�177]. The holographic theory is now gauged quantum mechanics
of a single N × N hermitian matrix. In this case the space of eigenvalues can be
interpreted as a bulk space and the only propagating mode of the two dimensional
string is related to the density of eigenvalues or the collective �eld [16] 2 . The Matrix
Model is described exactly by N free non-relativistic fermions in an inverted harmonic
oscillator potential which can be rewritten as a second quantized �eld theory living in
the eigenvalue space [58, 59]. Entanglement of a region of the eigenvalue space can be
then de�ned in the usual way in this �eld theory. In fact, the c=1 theory provides the
simplest example of target space entanglement, since the emergent space is the target
space of the matrix model. In an approriate limit, the entanglement entropy agrees
with what one would expect from the low energy e�ective �eld theory, but with the
UV cuto� replaced by the position dependent string coupling. After incorporating
the appropriate factor of N , the UV cuto� is identi�ed with Newton's constant.

The target space entanglement explored in [21] is in a gauge �xed version of the
holographic theory. This involves the temporal gauge for the gauge �eld, and a further
gauge choice. For the c=1 model the latter is the gauge where the single matrix is
diagonal. The remaining symmetries are Weyl transformations which permute the
eigenvalues. In the Dp brane theories we have multiple matrices, and the remaining
gauge freedom in the temporal gauge can be used to diagonalize a single matrix
which needs to be chosen to express a desired target space constraint. The situation
studied in detail in [21] involves diagonalization of one of the scalar �elds. The target
space constraint is then expressed in terms of an allowed range of the eigenvalues,
e.g. requiring the eigenvalue to be larger than some number. This corresponds to

2The massless mode of two dimensional string theory is related to the density of eigenvalues by
an integral transform with a kernel whose scale is the string scale [189, 228]. Strictly speaking, the
entanglement entropy calculated here is in the eigenvalue space. However this would agree with a
bulk notion in terms of usual string theory upto an uncertainty of the order of the string scale.
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a bulk region characterized by one of the transverse coordinates being larger than
some value and a spatial co-dimension one planar entangling surface which bounds
this region. The full Hilbert space breaks up into a direct sum of superselection
sectors characterized by the number of eigenvalues which satisfy the constraint. In
each sector, the smaller Hilbert space is a direct product, which allows one to de�ne
a reduced density matrix in the usual fashion. Two possible versions of the proposal
for a corresponding reduced density matrix were studied.

While [21] speci�ed the general properties of the operators belonging to the sub-
algebra of operators associated with a given target space constraint, a procedure to
obtain such operators in terms of the operators of the matrix theory was not speci�ed.
Furthermore, in this gauge �xed formalism, it is di�cult (though not impossible) to
describe general entangling surfaces.

In this paper we address both these issues by developing a gauge invariant descrip-
tion of target space entanglement. This will be achieved by constructing a projection
operator appropriate for the desired target space constraint. Starting with a gauge
invariant operator which contains a string of matrices, the subalgebra then consists of
operators obtained by projecting each of these matrices. We show that in the gauge
used in [21] these yield the correct class of operators in each superselection sector.
Moreover, the gauge invariant construction enables us to easily formulate other target
space constraints, e.g. those which correspond to entangling surfaces in the bulk at a
given value of the radial coordinate in the transverse space of the D-branes - in this
case we also show how the target space constraint can be implemented explicitly by
developing a formalism for a polar decomposition of the matrices.

The proposed connection of a target space constraint with a bulk region is based
on several ingredients of gauge-gravity duality and closely tied to the emergence of
bulk locality. As is well known, the velocity dependent potential between two stacks of
D0 branes in supergravity follows from an e�ective action calculation in the Coulomb
branch of D0 brane quantum mechanics [229�235].3 For example, one may consider
a single D0 brane stripped o� from a stack of N D0 branes in their bound state,
corresponding to a point on the Coulomb branch of the D0 brane matrix theory. The
Higgs vev at this point is then the transverse location of this probe D0 brane. This
implies that a restriction to a region R of the bulk can be described as a restriction
in the target space of the brane theory. In the 't Hooft limit, the gravity dual of
the bound state of D0 branes is a non-trivial supergravity background [237], and the
velocity dependent potential can be obtained from a DBI-CS action for the probe
D0 brane moving in this background. It can also be calculated from the e�ective
action evaluated at the corresponding point in moduli space in the gauge theory.
Supersymmetry guarantees in fact that the leading terms in the e�ective action may
be calculated perturbatively. We argue that the potential will also agree with the
e�ective action for operators in the subalgebra, AR, which we associate with the
region R, thereby arguing that the subalgebra contains operators needed to describe
bulk measurements which can be carried out in R.

A somewhat stronger connection comes from a point on the Coulomb branch

3For a review and references to the original literature see [236].
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SU(N)→ SU(N − 2)×U(1)×U(1), which corresponds to two D branes stripped o�
from the rest. This situation has been studied in detail for D3 branes in [238�240].
In this case, when the two individual branes are excited, the lowest order terms in
the e�ective action of the two U(1)'s agree precisely with a supergravity calculation
of the potential between the two branes which follow from exchanges of supergravity
modes propagating on the AdS5×S5 produced by the remaining (N−1) branes. This
agreement is more detailed than the single D0 DBI+CS action since the supergravity
modes in this background mix non-trivially. There should be a similar agreement for
D0 branes.

Going beyond the ground state, in an excited state of the gauge theory which
corresponds to a modi�ed supergravity background, also one expects that the poten-
tial experiences by a probe brane can be obtained from the DBI+CS action, and this
potential should agree with an e�ective action calculation which can be carried out in
the gauge theory keeping operators in the subalgebra AR. Of course a perturbative
calculation will no longer su�ce to demonstrate this4. But one might hope to be
able to check this as numerical techniques improve further. In fact some progress
has already been made along these lines in obtaining the dynamics of probe branes
at �nite temperatures [242]. In these calculations some evidence was found that the
supergravity �elds couple to operators in the probe brane in a manner consistent with
the generalized AdS/CFT correspondence discussed in [243, 244].

To summarize, the dynamics on the Coulomb branch should allow one to measure
the local background, at least at the level of one point functions, for gravity and
other supergravity modes, in a region R. This dynamics we argue can be obtained
in the gauge theory by studying the e�ective action for gauge invariant operators.
If we are interested in measuring the supergravity �elds only in the region R of the
bulk, we argue that it is su�cient to only consider the operators in the subalgebra
AR associated with R. As mentioned above, this subalgebra contains gauge invariant
operators obtained after carrying out a suitable projection determined by the target
space constraint which corresponds to the bulk region R.

While the discussion above pertains to the Coulomb branch, the considerations
should be valid for a general con�guration which appears in the wavefunction of the
N D0 brane bound state. This motivates our identi�cation of bulk entanglement with
target space entanglement.

We should mention that we expect the e�ective action and the related correlation
functions of the projected operators to provide only some and not all of the detailed
information about supergravity modes and the dual boundary operators related to
them via the BDHM-HKLL construction [245�247]. In particular, the energy mo-
mentum tensor is not contained in the sub-algebra, only its projected version is. We
expect that this imposes important limitations on the extent to which we can learn
about the stress energy tensor's correlation functions from the sub-algebra. In fact, as
was importantly argued in [248, 249], if the sub-algebra would allow all information
pertaining to the stress tensor to be obtained, then for an annular region adjacent to

4unless the excited state preserves a high degree of supersymmetry[241]
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the boundary, the entanglement entropy would be exactly zero 5. In this sense the
association of a target space constraint with a bulk region is approximate.

An analytic calculation of the target space entanglement entropy requires an ex-
plicit expression for the wavefunction. Even in the simplest case of D0 branes, explicit
expressions for the bound state wavefunction is not known, though the existence of
bound states of D0 branes has been proven [250�252] 6. There are candidates for
approximate wavefunctions which can be in principle used to perform analytic com-
putations of the von Neumann entropy [255, 256]. However, there has been substantial
progress in numerical calculations of properties of D0 brane bound states at �nite tem-
perature: these calculations provide precision tests of the AdS/CFT correspondence
[257�261]. These calculations deal with thermodynamic quantities, correlation func-
tions [262, 263] and investigations of probe dynamics [242]. In this paper we derive
path integral expressions for target space Renyi entropies which can be directly used
to perform numerical calculations. Work in this direction is being developed currently
[264]: these calculations should prove or disprove our conjecture about saturation of
the Bekenstein bound.

The formalism of target space entanglement entropy has been developed in [265]
and [20]. Notions similar to target space entanglement have been used to de�ne
entanglement in string theory in the worldsheet formalism [266�270] and in various
explorations in holographic entanglement [271�274]. Another notion of entanglement
of internal degrees of freedom (also combined with spatial degrees of freedom) called
entwinement has been discussed in [275�277]. Notions of entanglement associated
with other kinds of partitions of large-N degrees of freedom have been explored in
[278, 279]. The proposal of [21] is distinct from these other works.

The paper [280] has explored general extremal surfaces in D brane geometries
(as distinct from RT surfaces) and speculated on possible meanings of their areas
with entanglement of degrees of freedom in the D0 brane quantum mechanics. In
particular, these authors have considered subsets of operators consisting of linear
combinations of traceless symmetric products of the matrices in the D0 brane theory
which would correspond to functions which have support on some region of S8 and
speculated that an entropy can be associated with such a subset. Our proposal is
quite di�erent from this: we aim to describe bulk entanglement which involves the
radial direction as well, and we associate an entropy with a closed subalgebra.

This paper is organized as follows. In section 5.2 we introduce the gauge invariant
construction of operator algebras which de�ne a target space entanglement. We show
how this construction leads to the gauge �xed version discussed in [21] and review the
proposed connection to bulk entanglement and our conjecture about the saturation
of Bekenstein bound. We also discuss how to impose radial constraints in target

5The argument is as follows: if the energy-momentum tensor at all points on the boundary is
included in the set of observables, so is the energy and the projector to the ground state. In the
vacuum, the latter is the density matrix of the whole system. This would mean that the associated
entanglement entropy must be exactly zero. In our case the energy, and therefore also the ground
state projector, is not an element of the sub-algebra.

6For bosonic BFSS models, the existence of bound states has been proved both numerically [253]
and analytically in the limit of large dimensions [254].
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space by developing a polar decomposition of matrices. In section 5.3 we discuss
the connection of target space entanglement and bulk entanglement. In section 5.4
we recapitulate the conjecture in [21] that the target space entanglement entropy
saturates the Bekenstein bound. In section 5.5 we derive path integral expressions
for target space Renyi entropies which can be directly used for numerical calculations.
Section 5.6 contains concluding remarks. The Appendix G contains some details of
the construction of projected operators. Appendix H provides details of matrix polar
decompositions for multiple matrices. Appendix I deals with the DBI+CS action
of a single D0 brane in the supergravity background produced by N other extremal
branes and its comparison with D0 brane quantum mechanics e�ective action.

5.2 Gauge Invariant Target Space Entanglement

In this section we will show how target space entanglement in a theory of multiple
matrices can be formulated in a gauge invariant fashion. A more detailed description
appears in Appendix G.

5.2.1 Review of the gauge-�xed formulation

In a previous paper [21], we considered the D0 brane theory and discussed a bulk
region speci�ed by a condition on one of the spatial bulk coordinates, say x1. The
condition took the form,

x1 > a, (5.1)

for some real number a. We proposed that this condition mapped to a target space
constraint in the quantum mechanical dual theory that lives on the boundary. And
the bulk entanglement entropy maps to the entanglement entropy associated with this
target space constraint in the boundary theory. The entanglement entropy de�ned in
this way is manifestly �nite when N is �nite.

The action of D0 brane quantum mechanics is given by

S =
N

2(gsN)ls
Tr

∫
dt

[
9∑
I=1

(DtX
I)2 − 1

l4s

9∑
I 6=J=1

[XI , XJ ]2

]
+ fermions (5.2)

where XI are N ×N hermitian matrices, and the covariant derivative is de�ned by

DtX
I ≡ ∂tX

I + i[At, X
I ] (5.3)

In the example above, the target space constraint involves the operator X1 in the
boundary theory. To specify the target space constraint, we worked in the gauge
where At = 0. The remaining gauge freedom consists of time independent SU(N)
rotations, which we �xed by requiringX1 to be diagonal. The corresponding operators
and their canonical conjuagte momenta have the form

X̂1 → diag
(
λ̂1, · · · λ̂N

)
Π̂1 → diag (π̂1 · · · π̂N) (5.4)
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This does not �x the gauge completely: we are left with Weyl transformations,

(λ̂1, λ̂2, · · · , λ̂N) 7→ (λ̂σ(1), λ̂σ(2), · · · , λ̂σ(N)), σ ∈ S(N)

X̂L 7→ σ(X̂L), σ(X̂L
ij) = X̂L

σ(i)σ(j), L = 2, · · · , 9. (5.5)

and U(1)N transformations which keep the diagonal matrix elements of all the ma-
trices invariant and multiplies the o�-diagonal elements by phases 7

X̂L
ij 7→ X̂L

ije
i(θi−θj) (5.6)

where θi are angles. The physical state is constructed by adding Weyl and U(1)N

transforms. Let us work in a basis in the Hilbert space comprised of eigenvectors of
the operators λ̂i, X̂

L
ij with eigenvalues λi, X

L
ij. As is well known the transformation to

the eigenvalues of X1 leads to a van der Monde factor in the measure of integration.
In the following we will absorb a square root of this factor in the wavefunction so that
the modi�ed wavefunction is antisymmetric under an interchange of the eigenvalues.
Then a Weyl and U(1)N symmetrized state is 8,9

|{λi}, {XL
ij}〉W =

1

N !

∫ N∏
I=1

dθi
2π

∑
σ∈SN

sgn(σ)|{λσ(i)}, {XL
σ(i)σ(j)e

i(θσ(i)−θσ(j))}〉 (5.7)

Note that this symmetrized state is not an eigenstate of the individual λ̂i, X̂
L
ij's. They

are eigenstates of gauge invariant operators which are traces of products of X̂I , Π̂I or
products of these traces.

In this gauge, it was proposed that the required target space condition, corre-
sponding to 5.1, on an eigenvalue λi, was

λi > a. (5.8)

The target space constraint can be generalized trivially to

λi ∈ A (5.9)

where A is some interval on the real line, with a corresponding change in the bulk
region 5.1.

Since there are N eigenvalues the constraint gives rise to N + 1 di�erent pos-
sibilities depending on whether 0, 1, · · · , N, of the eigenvalues meet the constraint.

7In a previous version of this paper which appeared on the arXiv, we did not consider these
U(1)N transformations. Subsequently the paper [281] appeared, where these remaining symmetries
were emphasized.

8Our conventions for normalization of states is di�erent from [21].
9Since the Weyl group elements gW and the U(1)N group elements gU do not commute, the

combined action on a given state |ψ〉 depends on the order in which the group elements act. In
5.7 we have applied gU followed by gW . It is not di�cult to see, however, the `symmetrized' state,
which involves sum over the entire set of transforms, does not depend on the order:

∑
W,U gW gUψ =∑

W,U gUgWψ.
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These di�erent possibilities actually can be thought of as giving rise to di�erent su-
perselection sectors. The Hilbert space thus becomes a direct sum of Hilbert spaces,

HN = ⊕kHk,N−k (5.10)

where Hk,N−k denotes the sector where k of the eigenvalues of X̂1 are in the region
of interest A and the rest in its complement Ā.

The reduced density matrix in the kth superselection sector, ρ̃k,N−k, can be ob-
tained by tracing out the degrees of freedom corresponding to the remaining (N − k)
eigenvalues. The corresponding target space entanglement entropy can then be ob-
tained as the von Neumann entropy for this density matrix and the full entanglement
entropy for all sectors can be obtained by adding the entropy from each sector 10.
Note that the density matrix in each individual sector is not normalized. Rather
the trace Trkρ̃k,N−k is simply the probability that k of the eigenvalues are in the re-
gion of interest. The full reduced density matrix is block diagonal, where each block
corresponds to a superselection sector

ρ =


ρ̃0,N 0 0 · · · 0
0 ρ̃1,N−1 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 0 ρ̃N,0

 (5.11)

does have unit trace, so that

S = −Tr(ρ log ρ) = −
N∑
k=0

Trk(ρ̃k,N−k log ρ̃k,N−k) (5.12)

is a legitimate von Neumann entropy.
Actually our proposal had two versions which arise when we think more precisely

about tracing out the degrees of freedom corresponding to the remaining N − k
eigenvalues. By a suitable choice of gauge the eigenvalues ofX1 meeting the constraint
can be taken to be the �rst k eigenvalues.

In the rest of the paper, the matrix indices i, j, · · · = 1 · · ·N ; the indices a, b =
1 · · · k and α, β = k+ 1 · · ·N . In the rest of this subsection, we denote X2, X3, ..., X9

by XL, L = 2, 3, ..., 9.

1. In the �rst version, one traces out the degrees of freedom corresponding to
the (N − k) eigenvalues of X1 which do not satisfy eq.(5.8), λα and the de-
grees of freedom in (N − k) × (N − k) block for the remaining spatial matri-
ces, X2

αβ, X
3
αβ, · · ·X9

αβ. In addition, one also traces out the degrees of freedom
corresponding to the o�-diagonal elements (X2)aα, (X

2)αa; and similarly for
X3, X4, · · ·X9. As a result the only degrees of freedom we retain are in the

10The sector with no eignvalues meeting the required condition is important to keep in mind.
It is taken to be one dimensional and the density matrix is then a number corresponding to the
probability of �nding no eigenvalue meeting the constraint.
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k × k block. In the basis we are using, the reduced density matrix for the k'th
sector is then given by

ρ̃
(1)
k,N−k

(
λa, X

L
ab;λ

′
a, X

′L
ab

)
=

(
N

k

)∫
[dλαdX

L
aαdX

L
αadX

L
αβ]

× ρtot
(
λa, X

L
ab, λα, X

L
aα, X

L
αa, X

L
αβ;λ′a, , X

′L
ab , λα, X

L
aαX

L
αaX

L
αβ

) (5.13)

where ρtot is the density matrix of the state of the entire system.

2. In the second version, one traces out only the degrees of freedom which lie in
the (N − k)× (N − k) blocks for all matrices and retains the remaining degrees
of freedom. So for X1 which is diagonal we retain the �rst k eigenvalues which
meet the constraint, but for X2 we retain not only the elements (X2)ab but also
the o�-diagonal elements (X2)aα, (X

2)αa and similarly for X3, · · ·X9,

ρ̃
(2)
k,N−k

(
λa, X

L
ab, dX

L
aαdX

L
αa;λ

′
a, X

′L
abdX

′L
aαdX

′L
αa

)
=

(
N

k

)∫
[dλαdX

L
αβ] ρtot

(
λa, X

L
ab, λα, X

L
aα, X

L
αa, X

L
αβ;λ′a, , X

′L
ab , λα, X

′L
aαX

′L
αaX

L
αβ

)
(5.14)

In each sector labelled by k, the corresponding density matrix evaluates expecta-
tion values of a closed subalgebra of operators which correspond to measurements on
the variables which are retained. In the �rst version, the action of such an operator
on a general Weyl and U(1)N symmetrized state of the form (5.7) has the form

Ô |{λa, XL
ab, X

L
aα, X

L
αβ, λα}〉W

=

∫
[dλ′a][dX

′L
ab ] Õ({λ′a, X ′Lab )}, {λa, XL

ab}) |{λ′aX ′Lab}; {λα, XL
aα, X

L
αβ}〉W (5.15)

Operators which satisfy this form a subalgebra: Õ({λa, XL
ab}, {λ′a, X ′Lab )}) then denote

the matrix elements of an operator in the smaller Hilbert space in this sector. The
reduced density matrix which evaluates expectation values of such operators is given
by (5.13).

Similarly for the second version the action is given by

Ô |{λa, XL
ab, X

L
aα, X

L
αβ, λα}〉W

=

∫
[dλ′a][dX

′L
ab ][dX

′L
aα][dX ′Lαa] Õ({λ′a, X ′Lab , X ′Laα, X ′Lαa)}, {λa, XL

ab, X
L
aα, X

L
αa})

|{λ′aX ′LabX ′LaαX ′Lαa}, {λαXL
αβ}〉W (5.16)

It is clear that the density matrix is again of the form (5.11).
The associated entanglement entropy for a density matrix of the form eq.(5.11)

is expressible in terms of the normalized density matrices of the subsectors, ρ̂k,N−k =
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1
pk,N−k

ρ̃k,N−k as

S = −
N∑
k=0

[pk,N−k log pk,N−k + pk,N−kTrk(ρ̂k,N−k log ρ̂k,N−k)] (5.17)

The distillable part of the entanglement is only the second term in (5.17), while
the �rst term is a classical piece which cannot be used as a quantum resource for
teleportation [282, 283].

Before closing this subsection let us note that while we have focussed on bosonic
operators above, a similar discussion also applies to fermionic operators in the theory.
Depending on which version of our proposal we consider, the appropriate adjoint color
degrees of freedom for fermonic operators are also to be retained in the sub-algebra.

5.2.2 Gauge-invariant formulation

A drawback of the discussion in the previous paper [21], and our discussion above, is
that this description of the target space constraint and the related entropy has been
given in a particular gauge, e.g., for the example above we worked in the gauge where
X1 is diagonal. Furthermore, while (5.15) and (5.16) describe the properties satis�ed
by operators belonging to the relevant subalgebra of observables, this does not tell
us what these operators are in terms of the basic operators of the theory. In this
subsection, we will address both these issues and give a gauge invariant description
of the target space constraint; this will also allow us to generalise the discussion
considerably to a much wider class of bulk regions.

In general, suppose we have a region in the bulk at time t speci�ed by one condition
among the 9 spatial coordinates,

f(xi) > 0 (5.18)

We would like to specify the target space constraint corresponding to this bulk region
in a gauge invariant manner. For this purpose, instead of starting with a wave func-
tion, constructing the density matrix by a partial trace over some degrees of freedom
and calculating its entropy, it is useful to think of the entanglement entropy as arising
because one is dealing with a suitable sub-algrebra of the set of all observables. The
sub-algebra corresponds to the operators whose expectation values can be obtained
correctly from the reduced density matrix obtained after tracing out the unwanted
degrees of freedom. Specifying the sub algebra is an equivalent way of specifying the
tracing out procedure and implementing the target space constraint.

Note that when we think in this way, starting from a sub-algebra of all observables,
the density matrix itself must lie in the sub-algebra of observables and, as mentioned,
must give the correct expectation values for all operators in the sub-algebra. In
addition the density matrix is normalised, as usual, to meet the condition, Trρ = 1.
This speci�es the density matrix uniquely and the entanglement entropy is then the
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von-Neumann entropy of this density matrix.11 When there are superselection sectors,
as in our current discussion, we found above a corresponding density matrix in each
sector. However, as we will see, and this is one of the virtues of specifying a sub-
algebra to implement the target space constraint, the sub-algebra of interest can in
fact be speci�ed once and for all in a gauge invariant manner regardless of the sector
we are working in.

Before proceeding to a gauge invariant formulation let us �rst address the question;
how do we determine the relevant subalgebra of operators even in a �xed gauge. To
illustrate the procedure it is useful to consider the simple case of gauged quantum
mechanics of a single matrix M̂ . In the gauge where the matrix is diagonal, this
reduces to a theory of N fermions on a line. The position and momentum operators
of individual fermions are the λ̂i and π̂i. Consider a typical one body operator in this
theory

Cn,m =
N∑
i=1

λ̂ni π̂
m
i (5.19)

We want to impose a target space constraint where the eigenvalues of λ̂i lie in a
certain interval on the line denotes by A. This corresponding subalegbra consists of
operators which act only on the fermions which lie in this interval. Such an operator
can be constructed as follows. De�ne a projection operator

(P̂A)i =

∫
A

dx δ(x− λ̂i) (5.20)

where A ⊂ R. By considering matrix elements between arbitrary states it is clear
that this operator indeed satis�es

(P̂A)2
i = (P̂A)i (5.21)

Now, starting from an operator (5.19) construct an operator by replacing each of the
λ̂i, π̂i by (P̂A)iλ̂i(P̂A)i and (P̂A)iπ̂i(P̂A)i to get

(Cn,m)PA =
N∑
i=1

(P̂A)iλ̂
n
i (P̂A)iπ̂i(P̂A)iπ̂i(P̂A)i · · · (P̂A)iπ̂i(P̂A)i (5.22)

where we have used (5.21) and the fact [(P̂A)i, λ̂j] = 0 to simplify the expression. It
may be now easily checked that the expectation value of (Cn,m)PA in a general many
particle state becomes a sum of terms: each term corresponds to a sector with k
particles in the interval A. The k-th term contains the contribution only from the k
particles in A. This is discussed in more detail in Appendix G.

11The uniqueness can be easily seen. Suppose there are two possible density matrices, ρ and ρ̃,
which satisfy Tr(ρO) =Tr(ρ̃O) = Tr(ρtotO) for all operators O in the sub-algebra. Hence Tr[(ρ −
ρ̃)O] = 0 for all such operators; since both ρ and ρ̃ belong to the sub-algebra, this can only happen
if ρ = ρ̃.
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It is now straightforward to construct these operators in a gauge invariant fashion.
In terms of the matrix valued operator M̂ the projector is clearly given by

(P̂A) =

∫
A

dx δ(xI− M̂) (5.23)

where I is the N × N identity operator.This procedure generalizes to the D0 brane
theory with multiple matrices as we now describe.

To obtain a sub-algebra which corresponds to the target space constraint following
from eq.(5.18) we consider its target space analogue,

f(X̂I) > 0 (5.24)

and the following projection operator which follows from this constraint

P̂1 =

∫
x>0

dxδ(xI− f(X̂I)) (5.25)

where X̂I are the operators in D0 brane quantum mechanics. Note that we have taken
the function f here to be the same as in eq. (5.18) but its argument in eq.(5.25) are
now operators 12. The integral is over positive values of x which is a c number. We
will choose the operator f(XI) to be hermitian.

In general there will be ordering ambiguities which will arise in going from the
function f in the bulk to the corresponding function f of matrix operators which
appears in eq.(5.25); we will comment on this issue further towards the end of this
subsection.

By doing a unitary transformation and going to a basis in which f(XI) is diagonal
one can easily check that P̂1 is a projection operator satisfying the condition

P̂ 2
1 = P̂1 (5.26)

Gauge invariant operators can now be obtained by conjugating with P̂1 and tak-
ing a trace. For example, starting from X̂I , I = 1, · · · 9, we construct the corre-
sponding projected operators P̂1X̂

IP̂1, I = 1, · · · 9, and then take a trace over the
color degrees to obtain gauge invariant operators from these projected operators
Tr(P̂1X̂

1), T r(P̂1X̂
2), · · ·Tr(P̂1X

9) (here we have used cyclicity of the trace and the
facts that [P̂1, X̂

I ] = 0 and P̂ 2
1 = 1 to drop one of the two P̂1 factors) .

More generally let O be any operator obtained by multiplying a string of X̂I 's
and Π̂I 's where the Π̂I 's are the momenta conjugate to the X̂I 's. Schematically we
can write O = · · · X̂I · · · Π̂J · · · to depict the string of XI 's and Π̂J 's in some order.
We can obtain a gauge invariant operator from O by taking the colour trace,

Ô = Tr(O) = Tr(· · · X̂I · · · Π̂J · · · ). (5.27)

Now to obtain elements of the desired sub-algebra we consider the projected operators,

X̂I → (X̂I)P1 = P̂1X
IP̂1 (5.28)

12More generally the target space constraint and bulk constraint could be related in a more
complicated fashion, see below for further discussion of this point.
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and
Π̂J → (Π̂J)P1 = P̂1Π̂J P̂1 (5.29)

and construct the string
· · · (X̂I)P1 · · · (Π̂J)P1 · · · (5.30)

by replacing every factor of X̂I , Π̂J in O above with the projected counterpart. Then
the projected operator corresponding to Ô is given by taking the colour trace of
eq.(5.30). We will use the notation ÔP1 for this operator below, so we have,

ÔP1 = Tr(· · · (X̂I)P1 · · · (Π̂J)P1 · · · ). (5.31)

It is important to note that the operator in eq.(5.31) is di�erent from Tr(P1OP1),
where O is given by eq.(5.27). E.g., when O above is XIXJ , Ô = Tr(X̂IX̂J) and
Tr(P1OP1) = Tr(P1X̂

IX̂JP1). However the operator ÔP1 = Tr(P1X̂
IP1X̂

J) which
is di�erent.

The full sub -algebra we consider associated with the constraint eq.(5.18) involves
all single trace operators obtained after projection in this manner and the multi trace
operators obtained from products of such single trace projected operators.

Actually the projection operator P1 above implements version 1) of the proposal,
for a constraint speci�ed by the function f(XI). To see this consider the case f(XI) =
X1− a, discussed above. Working in the gauge where X1 is diagonal, let us consider
the sector where the �rst k eigenvalues x1

i > a, i = 1, · · · k are in the region of interest.
Then it is easy to see in this sector that the operator P1 is the matrix

P1 =

(
Ik×k 0k×(N−k)

0(N−k)×k 0(N−k)×(N−k)

)
(5.32)

where Ik×k denotes the identity in the k × k block and 0 denotes a matrix where
all entries vanish. Projecting with this operator we retain for all matrix operators
their upper left hand k × k block, as shown in detail in the Appendix G. Gauge
invariant operators made out of such matrix operators are exactly the observables
whose expectation values can be calculated using the density matrix obtained from
the tracing out procedure described above for version 1) of the proposal.

More generally, for a constraint f(xI) > 0 we can go to the gauge where f(X̂I)
is diagonal and in the sector where the �rst k eigenvalues satisfy the constraint �nd
that multiplying with P1 will retain similarly the upper left hand k × k block for all
operators and thus give the correct sub-algebra associated with version 1).

Implementing the version 2) proposal in a gauge invariant manner is also similarly
doable. We �rst consider the orthogonal projector

P̃1 =

∫
x<0

dxδ(xI− f(X̂I)), (5.33)

which involves the same argument for the delta function but with the range of the
x integral now lying in the complementary region x < 0. It follows that P̃ 2

1 =
P̃1 To implement version 2) we consider the operators, X̂I and retain the elements
corresponding to X̂I − P̃1X̂

IP̃1, so that

X̂I → (X̂I)P2 = X̂I − P̃1X̂
IP̃1 (5.34)
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and similarly for the momentum operators Π̂I , I = 1, · · · 9,

Π̂I → (Π̂I)
P2 = Π̂I − P̃1Π̂IP̃1 (5.35)

Then taking the trace of a string of such operators we obtain gauge invariant operators

ÔP2 = Tr(· · · (X̂I)P2 · · · (ΠJ)P2 · · · ) (5.36)

which should be compared with eq.(5.31) obtained above for the version 1) case.
It should be emphasised that the transformation X̂I → (X̂I)P2 , Π̂J → (Π̂J)P2 also
squares to itself, since

((X̂I)P2)P2 = (X̂I)P2 − P̃1(X̂I)P2P̃1 = (X̂I)P2 (5.37)

where we used the property P̃ 2
1 = P̃1. This transformation is therefore also a projec-

tion acting on the matrix operators X̂ i, Π̂J . However, the transformation does not
act by conjugation, unlike P1 for version 1).

The notation we have adopted referring to the gauge invariant operators obtained
in both cases, as ÔP1 , ÔP2 , allows for some simpli�cation in the following discussion.
We will often refer to the operators obtained in both versions as ÔP without specifying
which of the two cases P1, P2 we have in mind; where needed we will of course provide
this clari�cation.

In the subsequent discussion we will also often denote the sub-algebra associated
with a bulk region R which is obtained after projection, in either of the two versions
as described above, as AR.

Let us end this subsection with two comments. First, in general, while passing
from the constraint in terms of bulk coordinates, f(xI), eq.(5.18), to a constraint
in terms of matrix operators, f(X̂I), which appears in the target space constraint,
we will encounter ordering ambiguities as was mentioned above. Note that in the
matrix quantum mechanics, at any instant of time, the di�erent matrix elements of
the matrix operators commute, [X̂I

ij, X̂
J
kl] = 0. However there are still matrix ordering

ambiguities which are present since as matrices [XI , XJ ] 6= 0.
As we will soon discuss, the matrix model we are dealing with is formulated in

terms of matrix operators X1, · · ·X9, which correspond to the poincare coordinates
in supergravity. For a linear constraint in the bulk involving these coordinates, where
f(xI) =

∑9
I=1 cIx

I−a, it is straightforward to obtain the operator constraint f(X̂I) to

be the corresponding function involving the matrix operators, f(X̂ i) =
∑9

I=1 cIX̂
I −

a. For some of the non-linear constraints also there is a natural way to �nd the
corresponding operator constraints, for example f(xI) =

∑9
I=1 cI(x

I)2−a, is mapped

in a straightforward manner to f(X̂I) =
∑9

I=1 cI(X̂
I)2 − a. In fact, the last example

can be extended to more general constraints which involve terms containing sums of
monomials of individual coordinates, i.e.,

f(xI) =
∑
I

cI(x
I)pI − a. (5.38)

These are mapped to

f(X̂ i) =
∑
I

cI(X̂
I)pI − a. (5.39)
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However, more general non-linear constraints involving terms with multiple coordi-
nates cannot be mapped to a matrix constraint unambiguously, e.g. take the case
when f(xI) = x1x2 − a > 0, this could be mapped to either to X̂1X̂2 − a > 0 or
X̂2X̂1−a > 0. Our discussion below will primarily focus on cases like eq.(5.38) where
the map to the target space constraint eq.(5.39) is straightforward13.

Second, it is easy to see that the operators contained in the subalgebra AR for
both versions 1) and 2) do not include the Hamiltonian of the system. Remaining in
the temporal gauge, let us rescale the matrices in (5.2) and their conjugate momenta
as

X̂I → (gsN)1/3lsX̂
I Π̂I → 1

(gsN)1/3ls
Π̂I (5.40)

the hamiltonian becomes

H =
(gsN)1/3

2ls
Tr

[
1

N

9∑
I=1

(Π̂I)
2 +N

9∑
I 6=J=1

[X̂I , X̂J ]2

]
+ fermions (5.41)

Instead AR contains the operator

HP =
(gsN)1/3

2ls
Tr

[
1

N

∑
J

[(Π̂J)P ]2 +N
∑
IJ

[(X̂I)P , (X̂J)P ]2

]
+ fermions (5.42)

which is di�erent.
In this paper we will consider gauge theories which involve matter �elds in the

adjoint representation. The main examples are gauged quantum mechanics of a sin-
gle matrix, a particular example of which is the dual description of two dimensional
strings, and Dp brane �eld theories. The D0 brane quantum mechanics is a particu-
larly important example relevant for our discussion.

5.2.3 Implementing a non-linear target space constraint

As described above, the gauge invariant formulation of target space entanglement
applies to any constraint characterized by a hermitian operator f(X̂I). In a practical
calculation, however, one would need to �x a gauge which diagonalizes this constraint.
To perform a concrete calculation, however, one needs to make a change of variables to
a set of independent variables which includes the eigenvalues. This is straightforward
for a linear constraint, but becomes complicated very soon when we consider nonlinear
constraints. In this subsection we explain how to do this for a constraint

f(X̂I) =
9∑
I=1

(X̂I)2 ≡ R̂2 (5.43)

The details of the procedure are given in the Appendix G. What we need is a "polar"
decomposition for matrices.

13It could be that such operator ordering ambiguities give rise to di�erences in entanglement
entropy which are subheading in N , we thank S. Minwalla for making this comment.
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Two matrices

Let us begin with the simplest case of two matrices X̂1 and X̂2. In the following all
the matrices are operators in the Hilbert space unless stated otherwise. We want to
write this pair in terms of one hermitian matrix R̂ and a unitary matrix Q̂, where

R̂2 = (X̂1)2 + (X̂2)2 (5.44)

De�ne the complex matrix
Ẑ = X̂1 + iX̂2 (5.45)

Then it follows that
2R̂2 = ẐẐ† + Ẑ†Ẑ (5.46)

Now consider a singular value decomposition

Ẑ = V̂ ŝŴ † (5.47)

where V̂ , Ŵ are unitary matrices and ŝ is a diagonal matrix. Using (5.46) we then
get

2(R̂2)ij = (V̂ ŝ2V̂ † + Ŵ ŝ2Ŵ †)ij

= [V̂ ? ⊗ V̂ + Ŵ ? ⊗ Ŵ ]ij,kl(ŝ
2)kl (5.48)

where
[V̂ ? ⊗ V̂ + Ŵ ? ⊗ Ŵ ]ij,kl ≡ V̂ikV̂

?
jl + ŴikŴ

?
jl (5.49)

It is shown in the Appendix H that the direct product matrix appearing in (5.48) is
invertible in the sense

[(V̂ ? ⊗ V̂ + Ŵ ? ⊗ Ŵ )−1]mn,ij[(V̂
? ⊗ V̂ + Ŵ ? ⊗ Ŵ )]ij,kl = δmkδnl (5.50)

An explicit expression for the inverse is

[(V̂ ? ⊗ V̂ + Ŵ ? ⊗ Ŵ )−1]kl,rs =
∞∑
n=0

(−1)n[V̂ †(Q̂†)n]kr[V̂
T (Q̂T )n]ls (5.51)

where we have de�ned the unitary matrix Q̂

Q̂ ≡ VW † (5.52)

We can now invert (5.48) to write

ŝ2 = 2V̂ †

[
∞∑
n=0

(−1)n(Q̂†)nR̂2Q̂n

]
V̂ (5.53)

In Appendix H we show that the matrix which appears in the square bracket in
(5.53) is positive semi-de�nite, so that we can take the square root of this equation.
Substituting this in (5.47) and using the de�nition of Q̂ in (5.52) we �nally get

Ẑ = (LQ̂R̂)Q̂ (5.54)
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where we have de�ned the hermitian matrix LV̂ M̂ ,

LV̂ M̂ ≡
√

2

[
∞∑
n=0

(−1)n(V̂ †)nM̂2V̂ n

]1/2

(5.55)

where V̂ is unitary and M̂ is hermitian. This satis�es the equation

V̂ †(LV̂ M̂)2V̂ + (LV̂ M̂)2 = 2M̂2 (5.56)

The matrices X̂1, X̂2 can be then expressed as

X̂1 =
1

2

[
(LQ̂R̂)Q̂+ Q̂†(LQ̂R̂)

]
X̂2 =

1

2i

[
(LQ̂R̂)Q̂− Q̂†(LQ̂R̂)

]
(5.57)

This is the matrix analog of a polar decomposition of cartesian coordinates in two
dimensions x1 = r cosφ, x2 = r sinφ. For matrices we have the correspondence

reiφ → (LQ̂R̂)Q̂ (5.58)

To construct the relevant subalgebra of operators we then need to use the projector
(5.25) with f(XI) = R̂2, replace X̂I , I = 1, 2 using (5.57) by their projected versions
(5.28) and express the X̂I in terms of Q̂ and R̂ using (5.57).

An appropriate gauge-�xed version can be obtained by diagonalizing the matrix
R̂,

R̂→ diag[r̂1, r̂2, · · · r̂N ] (5.59)

We can then proceed to work in a Hilbert space basis which are eigenstates of r̂i and
the Q̂ij with eigenvalues ri, Qij. The measure of integration then becomes

[dX1dX2] = J(ri, Qij)
∏
i

dri
∏
ij

[dQij] (5.60)

The jacobian J(ri, Qij) can be obtained in principle by using the explicit expressions
(5.57). However this is rather complicated, and we have not been able to obtain
compact expressions for this. To proceed further, it will be convenient to write the
unitary matrix Q in terms of a unitary matrix U and a set of angles φi

Q = UeiΦU †, Φ = diag(φ1, φ2, · · ·φN) (5.61)

De�ning
dS ≡ U †dU (5.62)

the line element then becomes

Tr(dQdQ†) =
∑
i

dφ2
i + 8

∑
i<j

sin2(
φi − φj

2
)dSijdS

?
ij (5.63)
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which leads to the expression

[dX1dX2] = J(ri, φi, Sij)
∏
i

dri
∏
i

dφi
∏
i<j

[4 sin2(
φi − φj

2
)dSijdS

?
ij] (5.64)

As in the case of simple linear constraints the projector leads to restriction of the
integration range of ri.

The above construction is inspired by the work [284, 285] where the complex
matrix Ẑ was written as Ẑ = R̃Ũ where R̃ is a hermitian matrix operator and Ũ is
a unitary operator. However in this decomposition R̃2 = (X̂1)2 + (X̂2)2 + i[X̂1, X̂2]
rather than (5.44).

Multiple Matrices

The above polar decomposition can be extended to an arbitary number of matri-
ces X̂I . To illustrate the procedure let us �rst consider the case of three matrices
X̂1, X̂2, X̂3. The idea is to mimick the procedure to obtain spherical polar coordinates
(r, θ, φ) from usual cartesian coordinates (x1, x2, x3),

x1 = r cosφ1 cosφ2, x2 = r cosφ1 sinφ2, x3 = r sinφ1 (5.65)

We want to make a change of variables from hermitian matrices X̂I , I = 1, 2, 3 to a
hermitian matrix R̂ and two unitary matrices Q̂1, Q̂2. Here the matrix Q̂1 generalizes
eiθ, while Q̂2 generalizes eiφ. From (5.58) the necessary replacements are

reiφ1 → (LQ̂1
R̂)Q̂1

r cosφ1e
iφ2 → 1

2

[
LQ̂2

(
(LQ̂1

R̂)Q̂1 + Q̂†1(LQ̂1
R̂)
)]
Q̂2 (5.66)

This leads to the �nal expressions

X̂1 =
1

4

[
LQ̂2

(
(LQ̂1

R̂)Q̂1 + Q̂†1(LQ̂1
R̂)
)]
Q̂2 +

1

4
Q†2

[
LQ̂2

(
(LQ̂1

R̂)Q̂1 + Q̂†1(LQ̂1
R̂)
)]

X̂2 =
1

4i

[
LQ̂2

(
(LQ̂1

R̂)Q̂1 + Q̂†1(LQ̂1
R̂)
)]
Q̂2 −

1

4i
Q†2

[
LQ̂2

(
(LQ̂1

R̂)Q̂1 + Q̂†1(LQ̂1
R̂)
)]

X̂3 =
1

2i

(
(LQ̂1

R̂)Q̂1 − Q̂†1(LQ̂1
R̂)
)

(5.67)

Using (5.56) repeatedly it is easy to see that

(X̂1)2 + (X̂2)2 + (X̂3)2 = R̂2 (5.68)

However the domain of the unitary matrices need to be restricted. This is because
in (5.65) one has −π/2 < φ1 < π/2 while −π < φ2 < π. To obtain the corre-
sponding restriction on the domain of the unitary matrices Q1, Q2, we resort to the
decomposition in (5.61) for each of these matrices.

QA = UAe
iΦAU †A, ΦA = diag[(φA)1, · · · (φA)N ] A = 1, 2 (5.69)
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It is shown in the Appendix H that the requirement that the eigenvalues of X1 · · ·X3

should cover R3 once is equivalent to the requirement that

−π/2 < (φ1)i < π/2 − π < (φ2)i < π (5.70)

The measure of integration is now

[dX1dX2dX3]

=J(ri, (φA)i, (SA)ij)
∏
i

dri

2∏
A=1

[∏
i

d(φA)i
∏
i<j

[4 sin2(
(φA)i − (φA)j

2
)d(SA)ijd(S?A)ij]

]
(5.71)

where we have de�ned, in analogy with (5.62)

dSA ≡ U †AdUA (5.72)

It is now clear that this construction generalizes to arbitrary number of matrices
X̂I , I = 1 · · ·D. Once again we start with the polar coordinats of RD and generalize to
matrix polar decompositions which generalize (5.66). Now we have a single hermitian
matrix R̂ and (D−1) unitary matrices QA, A = 1, · · · (D−1). Once each of the QA's
are decomposed as in (5.69) we have the domains

−π/2 < (φA)i < π/2 A = 1 · · ·D − 2

−π < (φ(D−1))i < π (5.73)

The integration measure is as in (5.71) with A = 1 · · · (D − 1).
As discussed below we would like to identify the entanglement entropy associated

with a constraint which restricts the eigenvalues ri to be in some range, e.g. ri > a
in the dual supergravity background, at least for su�ciently large values of a.

5.2.4 Dp Branes

The above considerations generalize for Dp branes for p < 3. Now the matrices are
scalar �elds XI(ξ) and gauge �elds Aµ(ξ). The target space restrictions are now on
entire functions. The projector can be written in terms of a functional integral

P̂A =

∫
Dx(ξ)

∏
ξ

δ(x(ξ)− F [X̂I(ξ)]) (5.74)

where the functional F [X̂I(ξ)] needs to be chosen appropriately. For example, for a
"planar" constraint we have F [XI(ξ)] = X̂1(ξ). Once again one can choose a gauge
which is tailored to the constraint, e.g. for the planar constraint we can pick a gauge
where X̂1(ξ) is diagonal in matrix space. The discussion above can be now repeated
and it follows that in this gauge one recovers the results of [21].
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5.3 Target Space Entanglement as Bulk Entanglement

Some further remarks are called for at this stage. The purpose of our investigation
is to try and obtain a precise version of bulk entanglement by mapping a bulk region
to the target space in the boundary theory. Such an investigation is of course closely
tied to understanding how approximate bulk locality arises in the boundary theory.
In section 5.2 we showed how a sub-algebra of observables can be associated with
the corresponding target space constraint. In this subsection we will discuss in what
sense this subalgebra can probe supergravity �elds in the region R.

Our main reasoning comes from the bulk meaning of the Coulomb branch of the
gauge theory. Let us start with the system being in the vacuum. For this case the
map we are using between the bulk and target space is in agreement with what is
well known about the system in the moduli space approximation. A single D0 brane
moving in the supergravity bulk dual to the D0 brane ground state experiences a
velocity dependent potential which depends on its bulk location.This may be calcu-
lated by considering the DBI + Chern Simons action in the non-trivial background
of a large number of D0 branes (5.80). This calculation is summarized in Appendix I.
For small velocities, the coe�cient of v2 is a constant, the next term goes like v4/r7,
where v is its velocity and r the distance from the origin. Exactly the same potential
follows from the gauge theory if the D brane location (x1, · · ·x9) is mapped to a point
in the Coulomb branch with one non-zero eigenvalue for the matrices X1, · · ·X9. For
a D0 brane displaced along the x1 direction and lying at x1

0 the matrix X1 has one
non-zero eigenvalue,

X1 =

(
0(N−1)×(N−1) 01×(N−1)

0(N−1)×1 x1
0 = r + vt

)
(5.75)

corresponding to SU(N) → SU(N − 1) × U(1). This represents stripping o� a
single D0 brane from a bunch of N − 1 D0 branes which form a bound state. Non-
renormalization theorems ensure the agreement, once this identi�cation is made be-
tween the bulk and moduli space, see e.g., [234�236] and references therein.

At next order a two loop calculation in D0 brane quantum mechanics yields a
term which behaves as v6/r14. This term can be also reproduced from the DBI+CS
action as discussed in Appendix I 14

We can think of the calculations in the gauge theory as a computation of the
e�ective action for appropriate gauge invariant operators. In the example above,
eq.(5.75) we calculate the e�ective action for the operators,

Tr(X1), T r(X1)2, · · ·Tr(X1)N−1 (5.76)
14A bulk calculation can also be done in M theory with a compact null direction where v is the rel-

ative velocity between two eleven dimensional gravitons with momenta N1/(gsls) and N2/gsls in the
M theory direction for N2 � N1. The e�ect of the graviton with momentum N1/(gsls) is to produce
an Aichelburg-Sexl metric and the other graviton is considered as a probe in this background. The
Aichelburg-Sexl metric results from an in�nite boost of a 11 dimensional Schwarzschild black hole.
We are interested in the extremal D0 brane background in 10 dimensions, which is obtainable from
11 dimensions by in�nitely boosting a 11 dimensional black string along the string direction. While
this looks like a di�erent limiting procedure, the expansion of the DBI+CS action (see Appendix I)
in the latter background is exactly identical to the particle action considered in [235].
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and then evaluate this e�ective action by setting Tr(X1)p = (x1
0)p. The resulting

value of the e�ective action as a function of x1
0 then gives the e�ective potential for

the probe D0 brane.
There is, conceptually speaking, another way to arrive at the same result in the

gauge theory. Consider a region R which includes the location of the probe brane,
i.e.,

(x1
0,~0) ∈ R (5.77)

As discussed in Section 5.2.2, given some region R we can de�ne a target space
constraint and an associated projector, leading to a sub-algebra of operatorsAR. This
algebra also consists of gauge invariant operators and we can also obtain an e�ective
action for operators in AR, i.e. obtain the Legendre transformation of the generating
function for operators in AR. In this e�ective action we now set Tr((X1)P ))m =
(x1

0)m, where the projector P = P1 or P2, depending on whether we are considering
version 1) or 2) of our proposal. The result, as a function of x1

0 will then agree with
the e�ective action for the set of operators eq.(5.76), and therefore will correctly
give the potential experienced by the probe brane in the bulk, as long as eq.(5.77) is
met. This is manifestly clear if we think of calculating the e�ective action using the
background �eld method in the gauge where X1 is diagonal with background value
given by eq.(5.75), since we will then be doing the same calculation in the two cases.

The force on the D0 brane in the bulk in the example above can be calculated
by using a DBI +CS action which is sensitive to the local values of the metric, the
10 dimensional U(1) RR gauge �eld and the dilaton. If the state is changed from
the vacuum to some other coherent state |s > which leads to a di�erent background
value of the metric and other bulk �elds, we expect that the force that the probe D0
brane experiences can continue to be obtained in this way and will be sensitive to the
local values of these bulk �elds. For concreteness consider the state |s > to contain
a gravity wave. Now, one way to obtain the local value of the gravitational �eld can
be to measure how the potential for a probe brane at the location changes due to the
presence of this gravity wave. This should yield the same result as other methods
which may not involve a probe brane.

In the gauge theory we expect that the potential for the probe brane continues to
correspond to the e�ective action computed for suitable values of operators, i.e. the
set eq.(5.76), now in the state |s > of the type we are considering, and we also expect
that this e�ective action is correctly obtained from the e�ective action for operators
in AR as in the discussion above for the vacuum state. In this way we see that one
expects to be able to obtain the one point function for the graviton, and some other
supergravity modes, from operators contained in AR.

This reasoning above is in fact at the heart of our proposal for identifying the
bulk and boundary target space regions and also identifying the algebra AR in the
manner we have done. In the sector where k branes are present in R we keep the
k×k blockMab for all matrix operators but not the complementary (N−k)×(N−k)
block which correspond to branes that are not present. In version 1) of our proposal
we also keep the o� diagonal blocks Maα,Mα,a. The resulting algebra of observables
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allows one to describe all measurements done on branes present in R and this should
then be su�cient to also detect low-energy supergravity excitations in R.

It is worth noting in this context that there is additional evidence, going beyond
the moduli space approximation, that the map between the bulk and target space we
are using continues to work. For example, one can consider two stacks of D0 branes
one at the origin and the other displaced from it and excite open strings within
branes in each set. This changes the potential between the two stacks, but one
still �nds agreement in the bulk and in the gauge theory for the resulting two-body
interactions, after appropriately identifying operators in the gauge theory with their
counterpart currents in the bulk, [236]. This suggests that the algebra AR, which
retains the appropriate operators for all the superselection sectors where di�erent
number of branes k = 0, 1, · · ·N are present in the region of interest, should su�ce
for describing the results of all measurements made with local supergravity operators
in R.

Our intuition based on the above reasoning, can be extended to a given con�g-
uration in the bound state wavefunction for N D0 branes in the gauge where the
constraint function is diagonal. Consider a con�guration where k of these eigenval-
ues are in the region of interest R. The degrees of freedom Maα,Mαa correspond
to excitations in the bulk going between R and Rc or vice versa. If the state |s >
has some supergravity modes excited with support deep inside R, by which we mean
the excitations are localised many string lengths away from the boundary of R, then
neither the Mαβ nor the Maα,Mαa degrees of freedom will be excited in |s >. The
Mαβ degrees will not be excited because the excitations in |s > are localised in R.
TheMaα,Mαa degrees will also not be excited because they would correspond to open
strings which would have to stretch across the boundary across many string lengths
and would therefore be very heavy.

As a result, one might expect that the full change in expectation values of any
single trace operator Ô made out of a string of XI ,ΠJ 's schematically depicted in
eq.(5.27) will be obtained to good approximation by the corresponding operator ob-
tained after projection, ÔP , eq.(5.31), eq.(5.36) . Notice that at this level of admit-
tedly imprecise arguments we cannot distinguish between version 1) and 2) of our
proposal. Both contain the gauge invariant degrees of freedom coming from Mab. In
version 1) there are extra degrees of freedom coming from Maα,Mαa as well but as
per the intuitive argument above they might not play an important role anyways.

However, there are reasons to believe that the sub-algebra we are considering will
not provide all details of bulk �elds as de�ned e.g. by the BDHM-HKLL map. In the
low energy regime such a bulk �eld operator φ(r, θi, t) is de�ned by

φ(r, θi, t) =
∑
li,ωn

[Ôli,ωnfli,ωn(r)Yli(θi)e
−iωnt + cc] (5.78)

where Ôli,ωn are Fourier modes with frequency ωn obtained from the time dependent

operators Ôli(t) (we are being schematic here, ωn need not be discrete). Consider
such a bulk operator with (r, θi) ∈ R. The expectation value of φ can be obtained
if we know the expectation value of Ôli(t) for all li and all times t. Now we can
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regard Ôli(t) as an operator acting on the Hilbert space of states at t = 0. Its
expectation values can therefore be obtained, in principle, if the expectation values
of all operators are known at time t = 0. In this way we see that the expectation
value of φ(r, θi, 0) in any state can be obtained once the expectation values of all
operators in the corresponding state in the boundary theory are known at t = 0 .
One such bulk operator is the metric itself, for which the corresponding gauge theory
operator is the energy momentum tensor.

Consider now a region R which is a small annular region near the boundary,

r2
B − δ < r2 < r2

B, (5.79)

where rB is the boundary value of the radial variable r2 =
∑

i(x
i)2, and δ is small.

It has been argued in [248], [249], that measurements carried out by observers in this
region will allow detailed information about the state in the bulk to be obtained. It
is crucial in these arguments that the observers close to the boundary have access to
the full Hamiltonian of the system. In fact, having access to the Hamiltonian alone
enables observers in R to reconstruct the full density matrix of the vacuum, |0 >< 0|.
As a result any algebra, which includes all operators corresponding to measurements
bulk observers in the region eq.(5.79) can make, in particular which includes the
Hamiltonian, would have a vanishing entanglement entropy for the vacuum state15.
The subalgebra we are associating with the region R are the projected versions of
the gauge theory operators, Ôliωn , which appear in (5.78). Thus, the bulk operators
de�ned in eq.(5.78), with the restriction that (r, θi) ∈ R, are not contained in this
subalgebra. In particular the Hamiltonian is not an element of this subalgebra, only
its projected version is. We expect that this imposes signi�cant restrictions on the
amount of information which can be obtained for the bulk operators. In this sense our
sub-algebra would only capture the notion of a local bulk region in an approximate
sense. A more detailed investigation of how signi�cant these restrictions are is left
for the future.

Clearly, one would like a deeper understanding of the various issues discussed
in this section. In particular, one would like a better understanding of how much
information about the bulk region of information can actually be obtained from the
sub-algebras we propose, and also whether there are re�nements to our basic proposal,
including an improved map between the constraint in the bulk eq.(5.18) and the
corresponding one in the boundary eq.(5.24), that are needed. Since the issues at
had are closely tied to how approximate bulk locality arises, as was mentioned above
at the outset, it is unlikely though that we can make much progress through analytic
methods alone . Numerical calculations hold considerable promise in this regard.
Roughly speaking one wants to show that the change in the wave function which
correspond to changes in some bulk region R, arises mainly in the target space region
associated with R and not its complement. This should also then shed light on which
operators would be needed to determine this change in the boundary theory and
whether a sub-algebra along the lines proposed here would su�ce.

15We are grateful to Suvrat Raju for explaining this point to us.
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5.4 Target Space Entanglement and Bekenstein Bound

In the 't Hooft limit the usual 't Hooft limit gs → 0, N →∞ with (gsN) held �xed,
the bound state of N Dp branes is dual to a ten dimensional geometry. Our proposal
implies that target space constraints correspond to regions in the transverse space to
these Dp branes in this geometry and the target space entanglement entropy de�ned
above provides a notion of a bulk entanglement entropy associated with this region.
In [21] it was conjectured that for Dp brane matrix �eld theories, the target space
entanglement entropy saturates the Bekenstein bound for this entangling surface. In
this section we recapitulate the result for D0 branes.

We will be mostly interested in the bound state of N D0 branes which are slightly
heated up to a temperature T . This is dual to the near-extremal black D0 brane
geometry in supergravity. The string frame metric, dilaton and 1-form gauge �elds
are

ds2
string = −H0(r)−1/2g(r)dt2 +H0(r)1/2[

dr2

g(r)
+ r2dΩ2

8]

eφ = gsH0(r)3/4 A0 = −1

2
(H−1

0 − 1) (5.80)

where

g(r) = 1−
(rH
r

)7

H0(r) =
R7

r7
, r2 = x2

1 + · · ·x2
9. (5.81)

The horizon is at r = rH . The Hawking temperature for this solution and the length
scale R are given by

T =
7

4πR

(rH
R

)5/2

R7 = 60π3l7s(gsN). (5.82)

The supergravity solution above is valid in the regime

g
1
3
s N

1/7 < r < (gsN)1/3ls T
ls

(gsN)1/3
� 1 (5.83)

In D0 brane quantum mechanics consider the simple linear constraint, e.g. f(XI) =
X1−a0. According to the proposal of [21] the bulk region of interest is simply x1 > a.
The relationship between the dimensionless a0 and the dimensionful a can be read
o� from the rescaling (5.40)

a = a0(gsN)
1
3 ls (5.84)

This re�ects the fact that in this holographic correspondence the transverse dis-
tance becomes the energy scale of the D0 brane quantum mechanics which is Λ =
(gsN)1/3/ls. Likewise the temperature appearing in (5.82) is related to a dimension-
less temperature T0 by T = T0Λ.

In [21] it was conjectured that this target space entanglement saturates the Beken-
stein bound

S(a, T ) =
Aa(T )

4GN

(5.85)
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where Aa is the Einstein Frame area of the entangling surface x1 = a in the geometry
(5.80) and GN = 8π6g2

s l
8
s is the ten dimensional Newton constant. The quantity

S(a, T ) is actually divergent, the divergence coming from the large r region. The
large r region is, however, beyond the regime of validity of supergravity: thus one
may consider using a cuto� at r = r0. However the di�erence S(a, T ) − S(a, T ′) is
�nite,

S(a, T )− S(a, T ′) = B0 N
2a
−5/2
0

[
(T0)14/5 − (T ′0)14/5

]
(5.86)

where B0 is a number whose value is given in equation (29) of [21].
Note that the expression (5.86) the dimensionless quantities which characterize

the state and the entangling region are those which are quantities which would appear
in D0 brane quantum mechanics. The only other number which appears is N : the
answer is proportional to N2. This is what one expects if our proposal is correct. In
particular all factors of gs nicely cancel. The powers of T0 and d0 which appear in
(5.86) does not follow from general considerations of target space entanglement. If a
numerical calculation yields these powers we will have a very non-trivial evidence for
our proposal.

Let us make one comment before ending this section. We have emphasised above
that the discussion in this paper can be applied for constraints taking the general
form, eq.(5.18). Instead of the linear constraint considered above suppose we take

f(x1) =
9∑
i=1

(xi)2 > r2
0 (5.87)

where r0 is some radius. In this case the Beckenstein- Hawking entropy which is given
by

S = Ω8
R7/2r

9/2
0

4GN

(5.88)

is a function of r0 but is independent of the temperature T . As per our proposal we
would like to equate this result with the entanglement entropy associated with the
target space constraint

9∑
I=1

(X̂I)2 > r2
0. (5.89)

However it does seem rather strange then that the resulting entanglement entropy
is independent of the temperature T . One reason could be that perhaps the map
between a physical region in the bulk and the corresponding target space constraint
is more complicated at �nite temperature, i.e. the RHS in eq. (5.87) and eq.(5.89)
are not equal but instead related by a temperature dependent function. This might
also help explain why when we take r0 = rH in eq.(5.87), we get the entanglement
entropy to be the full entropy in the boundary theory and not a di�erent value due
to the additional target space constraint eq.(5.89) being present. We leave a more
detailed investigation of such temperature dependent e�ects for the future.
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5.5 Path Integral Expressions for Renyi Entropies

As discussed above, numerical calculations should be able to prove or disprove our
conjecture that the target space von Neumann entropy saturates the Bekenstein
bound. Recently there has been impressive advances in numerical calculations for
D0 branes [259�261]. These calculations use euclidean path integrals to calculate
�nite temperature partition functions as well as some correlation functions. In this
section we develop euclidean path integral expressions for target space Renyi entropies
which can be used directly for numerical calculations. These expressions are in the
gauge �xed formalism, and we will develop them for planar constraints.

Consider the D0 brane theory at some �nite temperature T = 1/β. The density
operator is given by ρ̂0 = exp[−βH] where the hamiltonian H is given by (5.41). As
in the previous sections, we will �x the A0 = 0 gauge, �x the time independent gauge
transformations by diagonalizing one of the matrices X1, and impose the remaining
Weyl and U(1)N symmetries by explicitly summing over the corresponding transfor-
mations. The basis states are given by (2.40). In the following we will also ignore the
fermions.

In the absence of any symmetrization the matrix elements of ρ̂ can be written as
a path integral as follows

〈λi, XL
ij|ρ̂0|λ′i, (XL

ij)
′〉 =

∫ λi(β)=λi

λi(0)=λ′i

Dλi(τ)

∫ XL
ij(β)=XL

ij

XL
ij(0)=(XL

ij)
′
DXL

ij(τ) exp[−Sβ] (5.90)

where the action Sβ is the euclidean action

S =
(gsN)1/3N

2ls

∫ β

0

dτ Tr

[
9∑
I=1

(∂τX
I)2 +

9∑
I 6=J=1

[X̃I , X̃J ]2

]
(5.91)

Weyl and U(1)N symmetries are then imposed by explicitly summing over the trans-
formations, leading to braided boundary conditions. However, since the action is sym-
metric under these transformations, we need to sum over transforms of the boundary
conditions at one of the ends of the euclidean time interval. We therefore have

W 〈λi, XL
ij|ρ̂0|λ′i, (XL

ij)
′〉W = ρtot(λi, X

L
ij;λ

′
i, (X

L
ij)
′)

=
1

N !

∫ N∏
i=1

dθi
2π

∑
σ∈S(N)

(−)σ
∫ λi(β)=λσ(i)

λi(0)=λ′i

Dλi(τ)

∫ XL
ij(β)=(XL

ij)
W

XL
ij(0)=(XL

ij)
′
DXL

ij(τ) exp[−Sβ]

(5.92)

where we have introduced the notation

(XL
ij)

W ≡ XL
σ(i)σ(j)e

i(θσ(i)−θσ(j)) (5.93)

which we will use in the following equations as well.
The construction for N = 2 and with two matrices X1, X2 is illustrated in Figure

5.1. Note that each term in the path integral is not a product of path integrals over
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Figure 5.1: Path Integral Representation for the thermal density matrix for a model
of two 2× 2 matrices X1 and X2 in the gauge where X1 is diagonal with eigenvalues
λ1 and λ2. The blobs represent arbitrary number of interactions between the paths.

λi and X
L
ij since the interaction term in the action couple them. These interactions

are symbolically drawn as rectangular boxes to emphasize this. The �gure is meant
to illustrate the boundary conditions.

To obtain the reduced density matrix in some sector (k,N − k) one needs to
integrate over the appropriate set of boundary values. Consider some interval A on
the real line. As in the previous section we will split the matrix indices into two
sets, a, b = 1 · · · k and α, β = k + 1 · · ·N where the eigenvalues λa lie in A while the
remaining λα lie in the complement Ā. The boundary values of the matrix elements
of XL with L = 2 · · · 9 are not constrained in any fashion. Then the expressions for
the two proposals are given in (5.13) and (5.14).

In terms of the paths in the path integral this means the following. Along a given
path parametrized by 0 < τ < β, the λa(τ) must begin and end in distinct points in
the interval A. The eigenvalues λα(τ) must begin and end at the same point in the
complement Ā, and there is an integral over this point. It is important to note that
apart from these restrictions the paths are free to wander around anywhere in the λ
space at intermediate times.

In proposal (1), the boundary values of XL
αβ, X

L
aα, X

L
αa are the same at τ = 0 and

τ = β and are integrated over, while the boundary values of XL
ab are di�erent. This

leads to the following expression for the reduced density matrix:

ρ̃
(1)
k,N−k(λa, X

L
ab;λ

′
a, (X

L
ab)
′)

=
1

N !

(
N

k

)
×
∫
Ā

dλα

∫
dXL

aαdX
L
αadX

L
αγ

∫ N∏
i=1

dθi
2π

∑
σ∈S(N)

(−)σ
∫
A1

Dλi(τ)

∫
B1

DXL
ij(τ) exp[−Sβ]

(5.94)

where the boundary conditions are denoted by

A1 =

(
λa(0) = λ′a, λσ(a)(β) = λa
λα(0) = λα, λσ(α)(β) = λα

)
(5.95)
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B1 =(
XL
ab(0) = (XL

ab)
′, XL

aα(0) = XL
aα, XL

αa(0) = XL
αa, XL

αγ(0) = XL
αγ

(XL
ab)

W (β) = XL
ab, (XL

aα)W (β) = XL
aα, (XL

αa)
W (β) = XL

αa, (XL
αγ)

W (β) = XL
αγ

)
(5.96)

The Figures 5.2-5.4 show the paths for N = 2 in the various sectors for our �rst
proposal, drawn as paths on a cylinder which is cut across the region A. In each
sector there are two terms. In these �gures we have represented only the boundary
values of the eigenvalues of one of the matrices X1. The other matrix elements are
braided in the manner indicated in Figure 5.1. As in Figure 5.1 these diagrams are
illustrative of the boundary conditions: the rectangular boxes represent interactions
between the variables along the paths.

Figure 5.2: Path Integral Representation for the reduced density matrix in the (2, 0)
sector for a model of two 2×2 matrices X1 and X2 in the gauge where X1 is diagonal.
The red cut represents the region of interest A. We have shown the end-point values
only for the eigenvalues of X1.

Figure 5.3: Path Integral Representation for the reduced density matrix in the (1, 1)
sector for a model of two 2×2 matrices X1 and X2 in the gauge where X1 is diagonal.
The red cut represents the region of interest A. We have shown the end-point values
only for the eigenvalues of X1.
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Figure 5.4: Path Integral Representation for the reduced density matrix in the (0, 2)
sector for a model of two 2 × 2 matrices X1 and X2 in the gauge where X1 is
diagonal. The red cut represents the region of interest A. There are no speci�ed
boundary values.

In proposal (2), only the boundary values of XL
αβ are same and integrated over.

ρ̃
(2)
k,N−k(λa, X

L
ab, X

L
aα, X

L
αa;λ

′
a, (X

L
ab)
′, (XL

aα)′, (XL
αa)
′)

=
1

N !

(
N

k

)∫
Ā

dλα

∫
dXL

αγ

∫ N∏
i=1

dθi
2π

∑
σ∈S(N)

(−)σ
∫
A
Dλi(τ)

∫
B2

DXL
ij(τ) exp[−Sβ]

(5.97)

The boundary conditions for the λi remain the same as in (5.95) , while those for the
XL
ij are denoted by

B2 =(
XL
ab(0) = (XL

ab)
′, XL

aα(0) = (XL)′aα, (XL)αa(0) = (XL)′αa, XL
αγ(0) = XL

αγ

(XL
ab)

W (β) = XL
ab, (XL

aα)W (β) = XL
aα, (XL

αa)
W (β) = XL

αa, (XL
αγ)

W (β) = XL
αγ

)
(5.98)

The �gures for paths for the second proposal can be drawn as in the earlier �gures.
It is now straightforward to compute Trρ̃nk,N−k by taking powers of these expres-

sions and tracing. For example, Trρ̃2
k,N−k for Proposal (1) is

tr(ρ̃
(1)
k,N−k)

2

=

[
1

N !

(
N

k

)]2 ∫
A

dλadλ
′
a

∫
dXL

abd(XL
ab)
′

×
∫
Ā

dλα

∫
dXL

aαdX
L
αadX

L
αβ

∫
Ā

dλ′α

∫
d(XL

aα)′d(XL
αa)
′d(XL

αβ)′

×
∫ N∏

i=1

dθi

∫ N∏
j=1

dθ′j

∑
σ,σ′∈S(N)

(−)σ+σ′
∫
C1
Dλi(τ)

∫
C2
DXL

ij(τ) exp[−Sβ]

∫
C3
Dλi(τ)

∫
C4
DXL

ij(τ) exp[−Sβ]

(5.99)
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where the periodicity conditions are

C1 =

(
λa(0) = λ′a, λα(0) = λα
λσ(a)(β) = λa, λσ(α)(β) = λα

)
(5.100)

C2 =(
XL
ab(0) = (XL

ab)
′, XL

aα(0) = XL
aα, XL

αa(0) = XL
αa, XL

αγ(0) = XL
αγ

(XL
ab)

W (β) = XL
ab, (XL

aα)W (β) = XL
aα, (XL

αa)
W (β) = XL

αa, (XL
αγ)

W (β) = XL
αγ

)
(5.101)

C3 =

(
λa(0) = λa, λα(0) = λ′α

λσ′(a)(β) = λ′a, λσ′(α)(β) = λ′α

)
(5.102)

C4 =(
XL
ab(0) = XL

ab, XL
aα(0) = (XL

aα)′, XL
αa(0) = (XL

αa)′, XL
αγ(0) = (XL

αγ)′

(XL
ab)

W ′
(β) = (XL

ab)
′, (XL

aα)W
′
(β) = (XL

aα)′, (XL
αa)W

′
(β) = (XL

αa)′, (XL
αγ)W

′
(β) = (XL

αγ)′

)
(5.103)

where in an obvious extension of the notation of (5.93)

(XL
ij)

W ′ ≡ XL
σ′(i)σ′(j)e

i(θ′
σ′(i)−θ

′
σ′(j)) (5.104)

The expression is invariant if we exchange σ ↔ σ′, θi ↔ θ′i. The expression for
Trρ̃nk,N−k in Proposal (2) can be similarly written down. The Renyi entropies Sn can
be then computed using these expressions,

Sn =
1

n− 1
log

[
N∑
k=0

Trkρ̃
n
k,N−k

]
(5.105)

These path integral expressions can be directly used in numerical calculations. It
is di�cult to take the β → ∞ limit to recover a zero temperature answer. How-
ever it should be possible to compare the di�erence of the entropies at two di�erent
temperatures with the supergravity result.

5.6 Conclusions

In this paper we have have proposed that for near -horizon Dp brane backgrounds,
target space entanglement in the boundary theory provides a precise version of bulk
entanglement in the gravity dual. We have described how to obtain in a gauge
invariant manner a sub -algebra related to a target space constraint. A Von-Neumann
entropy can be associated with this sub-algebra in the standard manner and this then
gives the target space entanglement entropy. Our paper builds on [21] which dealt
with linear constraints in a gauge �xed formalism and we have provided here a general
gauge invariant description of the target space entanglement.
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We have also provided some arguments here, based on comparisons between the
potential experienced by probe branes moving in some region of the bulk R and the
e�ective potential in the boundary theory evaluated in the corresponding region of
moduli space, to motivate why the sub-algebra of operatorsAR that we identify is suf-
�cient to describe some local bulk measurements on gravitons and other supergravity
modes, in addition to D branes, carried out by observers in R.

We should emphasise that our arguments are not completely precise. One re�ection
of this is that there are in fact two versions of our proposal, which give rise to two
di�erent sub-algebras related to a target space constraint, and we cannot distinguish
between them at our current level of understanding.

One source of imprecision in our proposal could be that the map between the bulk
and target space constraints, eq.(5.18) and eq.(5.24), is more complicated than we
have assumed. This could happen due to operator ordering ambiguities or for excited
states, including at �nite temperature, where some or all of the supersymmetries are
broken. The target space function f(X̂ i) which appears in eq.(5.24) in such situations
could be more non-trivially related to its bulk counterpart in eq.(5.18), with coupling
constant and temperature dependent corrections, as was also discussed in section 5.4
above. By carrying out numerical calculations analogous to those in [242] one can
try to determine the e�ective potential and equating these results to the potential
obtained in the bulk for a probe brane, one can further hope to obtain the correct
target space constraint corresponding to a bulk region. Our proposal would then be
that the sub-algebra for this possibly modi�ed target space constraint is the correct
one to use for obtaining the bulk entanglement. Hopefully, further developments,
especially in numerical methods will lead to concrete checks for our ideas and will
allow them to be sharpened further. In fact, connecting with some of these recent
developments has been one of our major motivations.

Our proposal for associating a target space constraint with a bulk region is most
straightforward when the bulk region is bounded by a surface with a constant value of
one of the cartesian coordinates. This is because the �elds in the Dp brane �eld theory
as written in (5.2) directly relate to cartesian coordinates in the geometry. For many
physical questions, however, one would like to consider subregions which are bounded
by constant values of the radial coordinate. A natural guess for the corresponding
target space constraint is to require that the eigenvalues of the hermitian operator∑

(XI)2 are restricted to larger than some value. With this in mind, we have discussed
in section 5.2.3 in some detail how to implement a constraint in the radial direction
in the bulk. We have also derived path integral expressions for Renyi entropies in a
gauge �xed description which can be directly used in numerical calculations.

There are several open questions which merit further study. As we have discussed
above we expect that the sub -algebra of operators we are considering will allow
one to determine the one- point function of the metric and some other supergravity
�elds in the vacuum and in excited coherent states. But we do not expect to be
able to determine all correlators of supergravity modes in the bulk region of interest
from the sub-algebra, in general. How much information can be extracted from the
sub-algebra and how does this contrast with the measurements which bulk observers
can do using supergravity probes restricted to the region of interest, is an important
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issue which needs to be understood better. One would hope that bulk regions whose
boundary is given by an RT extremal surface should correspond to rather special
constraints in target space 16. Unfortunately we do not see any evidence for this
so far and leave it as an important question for further investigation. On a related
note, one would think that area of extremal surfaces not of the RT type, as in D0
brane geometry [280] would also have some understanding in terms of target space
entanglement entropy. Finally, for usual AdS/CFT duality there is evidence in favour
of the conjecture that there is an intimate connection between entanglement in base
space and emergence of a smooth AdS bulk with locality [286�288] . One would expect
that in models of AdS× (Sphere)/CFT there should be a similar connection between
entanglement in color space and locality in the sphere factor of the bulk. Target space
entanglement provides a concrete framework to study this connection. In particular
in D0 brane holography there is no base space of the holographic theory: target space
entanglement would entirely account for bulk locality. This deep connection is well
worth understanding further as well.

Copyright© Sinong Liu, 2021.

16We are thankful to Shiraz Minwalla for emphasising this point.
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Appendix A
Approximation of ρ(τ)2 in various limits

In this appendix we explicitly derive approximated ρ(τ)2 and therefore 〈O〉 in various
limits from the exact CCP solution (3.51) and ECP solution (3.54). In appendix A.1
we study the CCP case and in appendix A.2 we study the ECP case.

A.1 In CCP

Slow quench (ω0δt� 1) We consider the behavior at τ = 0, in which case (3.51)
can be simpli�ed into

f(τ = 0) =
1√
2ω0

2iω0δt

E1/2Ẽ
′
3/2 − E ′1/2Ẽ3/2

Ẽ ′3/2. (A.1)

Notice that in (3.52), Rea = Reb = Reα ∈ [1/4, 1/2], therefore we can utilize three
identities of the Gamma function

Γ(z)Γ(1− z) = πcscπz, 0 < Rez < 1, (A.2)

and

Γ(1 + iy)Γ(1− iy) = |Γ(1 + iy)|2 =
πy

sinhπy
,

Γ(1/2 + iy)Γ(1/2− iy) = |Γ(1/2 + iy)|2 =
π

coshπy
,

(A.3)

and simplify the denominator of (A.1) into

E1/2Ẽ
′
3/2 − E ′1/2Ẽ3/2

= Γ(1/2)Γ(3/2)|Γ(iω0δt)|2
(

1

Γ(a+ 1/2)Γ(1/2− a)Γ(b)Γ(1− b)
− (a↔ b)

)
=

1

2ω0δtsinhπω0δt
(sinπ(1/2− a)sin(πb)− sinπ(1/2− b)sin(πa))

=
1

2ω0δtsinhπω0δt
sinπ(b− a)

=
i

2ω0δt
.

(A.4)

On the other hand, according to the asymptotic behavior of the Gamma function

Γ(z) ∼
√

2πe−z+(z− 1
2

) log z, z →∞ and | arg z| < π (A.5)
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we can �nd [Γ(z)]2 ∼ Γ(z + 1/4)Γ(z − 1/4) under the condition. Therefore, the
numerator of (A.1) satis�es

|Ẽ ′3/2|2

≈π
4

π

ω0δtsinhπω0δt

∣∣∣∣∣ 1

Γ(1 + i
4

√
4ω2

0δt
2 − 1− i

2
ω0δt)Γ(1− i

4

√
4ω2

0δt
2 − 1− i

2
ω0δt)

∣∣∣∣∣
×

∣∣∣∣∣ 1

Γ(1/2 + i
4

√
4ω2

0δt
2 − 1− i

2
ω0δt)Γ(1/2− i

4

√
4ω2

0δt
2 − 1− i

2
ω0δt)

∣∣∣∣∣
=

1

4

1

ω0δtsinhπω0δt

{
sinhπ(1

2

√
4ω2

0δt
2 − 1− ω0δt)

1
2

√
4ω2

0δt
2 − 1− ω0δt

sinhπ(1
2

√
4ω2

0δt
2 − 1 + ω0δt)

1
2

√
4ω2

0δt
2 − 1 + ω0δt

}1/2

→1

2

1

ω0δt

{
π

4ω0δt

}1/2

(A.6)

As a result,

ρ2(τ = 0) = 2|f |2(τ = 0) = 2
1

2ω0

1
1

(2ω0δt)2

1

2

1

ω0δt

{
π

4ω0δt

}1/2

=
√
π

√
δt

ω0

(A.7)

and thus (3.57).

Early time in fast quench (ω0τ � ω0δt � 1) When ω0τ � ω0δt � 1, in (3.52)
a = b∗, thus the Hypergeometric functions in (3.51) are real. Therefore,

E∗c = Ec(a↔ b) = E ′c, (A.8)

and

ρ2(τ)

=
1

ω0

cosh4α(τ/δt)

|E1/2Ẽ ′3/2 − E ′1/2Ẽ3/2|2

×
{
|Ẽ ′3/2|22F1

2(a, b;
1

2
;−sinh2 τ

δt
) + |E ′1/2|2sinh2 τ

δt
2F1

2(a+
1

2
, b+

1

2
;
3

2
;−sinh2 τ

δt
)

+
(
Ẽ ′3/2E1/2 + Ẽ3/2E

′
1/2

)
sinh

τ

δt
2F1(a, b;

1

2
;−sinh2 τ

δt
)2F1(a+

1

2
, b+

1

2
;
3

2
;−sinh2 τ

δt
)

}
.

(A.9)

Similar to the calculation of (A.4), we can �nd

E1/2Ẽ
′
3/2 + E ′1/2Ẽ3/2 =

1

2ω0δtsinhπω0δt
sinπ(b+ a)→ 1

2
+O(ω4

0δt
4), (A.10)

since α ∼ 1
2
[1− ω2

0δt
2] when ω0δt� 1.
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On the other hand, notice that

Γ(z + ε) ≈ Γ(z) + Γ′(z)ε+O(ε2) = Γ(z)(1 + εψ(z)) +O(ε2), (A.11)

where ψ(z) ≡ Γ′(z)/Γ(z) is Digamma function. Moreover, the Gamma function
satis�es duplication formula

Γ(2z) =
1√
2π

22z−1/2Γ(z)Γ(z + 1/2). (A.12)

Then we can �nd

|Ẽ ′3/2|2 ≈
π

4
|Γ(iω0δt)|2

∣∣∣∣ 1

Γ(1− 1/2ω2
0δt

2 − i
2
ω0δt)Γ(1/2 + 1/2ω2

0δt
2 − i

2
ω0δt)

∣∣∣∣2
≈π

4

|Γ(iω0δt)|2

|Γ(1− i
2
ω0δt)|2|Γ(1/2− i

2
ω0δt)|2

× 1[
1− ω2

0δt
2Reψ(1− i

2
ω0δt)

] [
1 + ω2

0δt
2Reψ(1/2− i

2
ω0δt)

]
≈ 1

4ω2
0δt

2

1

1− ω2
0δt

2Reψ( i
2
ω0δt) + ω2

0δt
2Reψ(1/2 + i

2
ω0δt)

(A.13)

We can further simplify it since

ψ(2z) =
1

2
ψ(z) +

1

2
ψ(z +

1

2
) + log 2 (A.14)

and

Reψ(iy) = 1− γ − 1

1 + y2
+
∞∑
n=1

(−1)n+1[ζ(2n+ 1)− 1]y2n, (|y| < 2)

→ −γ + y2 + (ζ(3)− 1)y2 = −γ + ζ(3)y2, (|y| � 1)

(A.15)

and obtain

|Ẽ ′3/2|2 ≈
1

4ω2
0δt

2

1

1 + 2ω2
0δt

2
[
Reψ(iω0δt)− Reψ( i

2
ω0δt)− log2

]
≈ 1

4ω2
0δt

2

{
1 + 2log2 · ω2

0δt
2 +O(ω4

0δt
4)
}
.

(A.16)

Similarly, we can �nd

|E ′1/2|2 ≈
1

4

{
1− 2log2 · ω2

0δt
2 +O(ω4

0δt
4)
}
. (A.17)
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Inserting the coe�cients back into (A.9), we keep the results to order ω2
0δt

2 and
τ/δt, s.t. 2F1

2(ã, b̃; c̃;−sinh2 τ
δt

) ∼ 1 for arbitrary (a, b, c). We �nd

ρ2(τ)

=
1

ω0

cosh4α(τ/δt)×{{
1 + 2log2 · ω2

0δt
2
}

2F1
2(a, b;

1

2
;−sinh2 τ

δt
)

+ ω2
0δt

2sinh2 τ

δt
2F1

2(a+
1

2
, b+

1

2
;
3

2
;−sinh2 τ

δt
)

+2ω2
0δt

2sinh
τ

δt
2F1(a, b;

1

2
;−sinh2 τ

δt
)2F1(a+

1

2
, b+

1

2
;
3

2
;−sinh2 τ

δt
) +O(ω4

0δt
4)

}
=

1

ω0

{
1 + 2log2 · ω2

0δt
2 + 2ω2

0δt · τ +O(ω4
0δt

4,
τ 2

δt2
)

}
(A.18)

and therefore (3.64).

Late time in fast quench (ω0δt� ω0τ � 1) Rewrite (3.51) by applying identity

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1(a, 1− c+ a; 1− b+ a;

1

z
)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1(b, 1− c+ b; 1− a+ b;
1

z
).

(A.19)

to each Hypergeometric function on the RHS. When τ > 0, (−z)1/2 = sinh τ
δt
, thus

we can �nd

fCCP =
1√
2ω0

2iω0δtcosh2α(τ/δt)

E1/2Ẽ ′3/2 − E ′1/2Ẽ3/2

×{(
E1/2Ẽ

′
3/2 + E ′1/2Ẽ3/2

)
(−z)−a2F1(a, 1/2 + a; 1− b+ a;

1

z
)

+2E ′1/2Ẽ
′
3/2(−z)−b2F1(b+

1

2
, b; 1− a+ b;

1

z
)

}
,

(A.20)

where z ≡ − sinh2 τ
δt
.
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Similar calculations to (A.13) show

2E ′1/2Ẽ
′
3/2

=2
π

2
Γ(−iω0δt)

2 · 1

Γ(a)Γ(a+ 1/2)Γ(1/2− b)Γ(1− b)

=2
π

2
Γ(−iω0δt)

2

(
1√
2π

22a−1/2 1

Γ(2a)
· 1√

2π
22(1/2−b)−1/2 1

Γ(1− 2b)

)
≈1

2
· 2−i2ω0δt

Γ(−iω0δt)
2

Γ(1− iω0δt) (1− ω2
0δt

2ψ(1− iω0δt)) Γ(−iω0δt) (1 + ω2
0δt

2ψ(−iω0δt))

≈ i

2ω0δt
· 2−i2ω0δt

1

[1 + ω2
0δt

2 (ψ(−iω0δt)− ψ(1− iω0δt))]
(A.21)

We further simplify the equation by using relations

Reψ(iy) = Reψ(−iy) = Reψ(1 + iy) = Reψ(1− iy), (A.22)

and

Imψ(iy) =
1

2y
+

1

2
πcothπy, (A.23)

Imψ(1 + iy) = − 1

2y
+

1

2
πcothπy. (A.24)

Then we see that

ψ(−iω0δt)− ψ(1− iω0δt) = iImψ(−iω0δt)− iImψ(1− iω0δt) = − i

ω0δt
(A.25)

thus

2E ′1/2Ẽ
′
3/2 =

i

2ω0δt
· 2−i2ω0δt

1

1− iω0δt
(A.26)

Notice that when τ � δt, −sinh2 τ
δt
→ − e2τ/δt

4
+ 1

2
, cosh2 τ

δt
→ e2τ/δt

4
+ 1

2
, and

therefore 2F1 → 1 +O(e−2τ/δt). Thus, after inserting the coe�cients into (A.20) and
expanding the result to the order ω0δt, we obtain

f =
1√
2ω0

cosh2α(τ/δt)

{
−iω0δt2

iω0δt(−z)−a2F1(a, 1/2 + a; 1− b+ a;
1

z
)

+(1 + iω0δt)2
−iω0δt(−z)−b2F1(b+

1

2
, b; 1− a+ b;

1

z
)

}
→ 1√

2ω0

(
eτ/δt

2

)2α
{
−iω0δt2

iω0δt

(
eτ/δt

2

)−2a (
1 +O(e−2τ/δt)

)
+(1 + iω0δt)2

−iω0δt

(
eτ/δt

2

)−2b (
1 +O(e−2τ/δt)

)
+O(ω2

0δt
2)

}
=

1√
2ω0

{
e−iω0τ + 2ω0δtsinω0τ +O(ω2

0δt
2)
}
.

(A.27)
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i.e.

ρ2(τ) = 2|f |2 ≈ 1

ω0

(
1 + 2ω0δtsin2ω0τ +O(ω2

0δt
2),
)

(A.28)

and therefore (3.66).

A.2 In ECP

Late-time approximation (τ � δt, and τ � δt logω0δt) According to identity

2F1(a, b; a+ b; z)

=
Γ(a+ b)

Γ(a)Γ(b)

∞∑
n=0

(a)n(b)n
(n!)2

[2ψ(n+ 1)− ψ(a+ n)− ψ(b+ n)− log(1− z)](1− z)n,

(|1− z| < 1&| arg(1− z)| < π)

(A.29)

we can see that for large τ/δt, in which case

z ≡ 1 + tanh(τ/δt)

2
= 1− e−2τ/δt, (A.30)

(3.54) can be rewritten into

fECP →
1√
2ω0

exp

[
− i

2
ω0τ +

i

2
ω0δtlog(eτ/δt)

]
2F1

[
1− i

2
ω0δt,−

i

2
ω0δt; 1− iω0δt; 1− e−2τ/δt

]
=

1√
2ω0

Γ(1− iω0δt)

Γ(1− i
2
ω0δt)Γ(− i

2
ω0δt)

×

∞∑
n=0

(1− i
2
ω0δt)n(− i

2
ω0δt)n

(n!)2

×
[
2ψ(n+ 1)− ψ(1− i

2
ω0δt+ n)− ψ(− i

2
ω0δt+ n) + 2

τ

δt

]
(e−2τ/δt)n

(A.31)

When τ � δt logω0δt, one can keep the leading term1, then by using Digamma
function

ψ(1) = −γE (A.32)

and
ψ(1− z) = ψ(z) + π cotπz, (A.33)

we �nd

fECP →
1√
2ω0

Γ(1− iω0δt)

Γ(1− i
2
ω0δt)Γ(− i

2
ω0δt)

[
−2γE − 2Reψ

(
i

2
ω0δt

)
+ iπ coth

πω0δt

2
+ 2

τ

δt

]
+O(e−2τ/δt)

(A.34)
1τ ≥ δt logω0δt is a su�cient condition to keep (A.31) to the leading term.
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Therefore,

ρ2(τ)

∼ 1

ω0

∣∣∣∣ Γ(1− iω0δt)

Γ(1− i
2
ω0δt)Γ(− i

2
ω0δt)

∣∣∣∣2
×

[(
−2γE − 2Reψ

(
i

2
ω0δt

)
+ 2

τ

δt

)2

+

(
π coth

πω0δt

2

)2
]

=δt

(
π

2
coth

πω0δt

2

)−1(
−γE − Reψ

(
i

2
ω0δt

)
+
τ

δt

)2

+ δt

(
π

2
coth

πω0δt

2

)
.

(A.35)

One special case of ρ2(τ) is when ω0δt� 1, in which π
2

coth πω0δt
2
∼ 1

ω0δt
. Therefore,

ρ2(τ) ∼ω0δt
2

(
−ζ(3)

4
ω2

0δt
2 +

τ

δt

)2

+
1

ω0

=
1

ω0

+ ω0τ
2 +O(ω3

0δt
3). (3.78)

according to identity (A.15). Another case is when ω0δt� 1, in which coth πω0δt
2
→ 1.

Thus by using the identity

Reψ(iy) ≈ log y +
∞∑
n=1

(−1)n−1B2n

2ny2n
∼ log y +O(y−2), y →∞ (A.36)

we can �nd

ρ2(τ) ∼ δt

[
2

π

(
− logω0δt+ log 2− γE +

τ

δt

)2

+
π

2

]
(3.77)
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Appendix B
Entanglement Entropy

In this appendix we explicitly derive the approximated Entanglement Entropy (3.87)
and (3.89). In appendix B.1 we �gure out 〈NA〉 and in appendix B.2, we �gure out∫
AP×AP

dxdy|C(x, y)|2.

B.1 〈NA〉

First, we rewrite 〈NA〉 into

〈NA〉 =
1

Γ(N)2N
√
π

∫
AP×AP

dξdηδ(ξ − η)e−
ξ2+η2

2
HN−1(η)HN(ξ)−HN−1(ξ)HN(η)

ξ − η
(B.1)

s.t. 〈NA〉 has similar form to
∫
AP×AP

dxdy|C(x, y)|2 in (3.85). One can easily prove

that (B.1) and (3.85) are identical.
In the large N limit, the Hermite polynomial shows the following asymptotic

behavior

e−
x2

2 ·Hn(x) ∼ 2n√
π

Γ

(
n+ 1

2

)
cos
(
x
√

2n− nπ

2

)
(B.2)

We use this to simplify the integrand on the RHS of (3.85) or (B.1),

1

Γ(N)2N
√
π
e−

ξ2+η2

2 [HN−1(η)HN(ξ)−HN−1(ξ)HN(η)]

=
1

2π

[
−(−1)N sin

(
η
√

2N − 2 + ξ
√

2N
)
− sin

(
η
√

2N − 2− ξ
√

2N
)

+(−1)N sin
(
ξ
√

2N − 2 + η
√

2N
)

+ sin
(
ξ
√

2N − 2− η
√

2N
)]
.

(B.3)

Now, change the variables of integration by de�ning

u ≡ ξ + η√
2
, v ≡ ξ − η√

2
, (B.4)

and we obtain

〈NA〉 =
1

2π

∫
AP×AP

dudv
δ(v)

v

{
−(−1)N cos

[
(
√
N − 1 +

√
N)u

]
sin

[
v

√
N − 1 +

√
N

]
+ cos

[
− u
√
N − 1 +

√
N

]
sin
[
(
√
N − 1 +

√
N)v

]}
.

(B.5)
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Note that∫
AP×AP

dudv

=

∫ √2a
ρ

0

du

∫
|v|≤
√

2a
ρ
−u

dv +

∫ 0

−
√

2a
ρ

du

∫
|v|≤
√

2a
ρ

+u

dv = 2

∫ √2a
ρ

0

du

∫
|v|≤
√

2a
ρ
−u

dv

(B.6)

since the integrand is even for both u and v. Moreover, because of the Dirac delta
function, ∫

AP×AP
dudv → 2

∫ √2a
ρ

0

du

∫ ε

−ε
dv, (B.7)

and the integrand can be expanded around v = 0:

〈NA〉 =
1

π

∫ √2a
ρ

0

du

∫ ε

−ε
dvδ(v)

{
−(−1)N cos

[
(
√
N − 1 +

√
N)u

] 1
√
N − 1 +

√
N

+ cos

[
− u
√
N − 1 +

√
N

]
(
√
N − 1 +

√
N)

}
=

1

π

{
(−1)N−1 sin

[
(
√
N − 1 +

√
N)
√

2
a

ρ

]
1

(
√
N − 1 +

√
N)2

+ sin

[ √
2a
ρ√

N − 1 +
√
N

]
(
√
N − 1 +

√
N)2

}

→ 1

π
(
√
N − 1 +

√
N)
√

2
a

ρ
+O

(
1

N

)
(B.8)

when √
2a
ρ√

N − 1 +
√
N
� 1. (3.82)

B.2
∫
AP×AP

dxdy|C(x, y)|2

Similar to 〈NA〉 (appendix B.1),∫
AP×AP

dxdy|C(x, y)|2

≈ 2

π2

∫ √2a
ρ

0

dv

∫ √2a
ρ
−v

0

du
1

v2

{
−(−1)N cos

[
(
√
N − 1 +

√
N)u

]
sin

[
v

√
N − 1 +

√
N

]
+ cos

[
u

√
N − 1 +

√
N

]
sin
[
(
√
N − 1 +

√
N)v

]}2

.

(B.9)
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In the limit (3.82),

sin

[
v

√
N − 1 +

√
N

]
∼ v
√
N − 1 +

√
N
� 1 ∼ cos

[
u

√
N − 1 +

√
N

]
. (B.10)

This implies that we can ignore the 1st term in the integrand of (B.9) and replace the
cosine by 1. As a result,∫

AP×AP
dxdy|C(x, y)|2 → 2

π2

∫ √2a
ρ

0

dv
1

v2
sin2

[
(
√
N − 1 +

√
N)v

](√
2
a

ρ
− v
)

=− 1

π2

{
1 + γE − cos

[
(
√
N − 1 +

√
N)2
√

2
a

ρ

]
− Ci

[
(
√
N − 1 +

√
N)2
√

2
a

ρ

]
+ log

[
(
√
N − 1 +

√
N)2
√

2
a

ρ

]
−
[
(
√
N − 1 +

√
N)2
√

2
a

ρ

]
Si

[
(
√
N − 1 +

√
N)2
√

2
a

ρ

]}
(B.11)

The asymptotic behaviors of Trigonometric integrals are

Si(x) =
π

2
− cosx

x

(
1− 2!

x2
+

4!

x4
− 6!

x6
· · ·
)
− sinx

x

(
1

x
− 3!

x3
+

5!

x5
− 7!

x7
· · ·
)

Ci(x) =
sinx

x

(
1− 2!

x2
+

4!

x4
− 6!

x6
· · ·
)
− cosx

x

(
1

x
− 3!

x3
+

5!

x5
− 7!

x7
· · ·
)
(B.12)

when x→∞, and

Si(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)(2n+ 1)!
= x− x3

3! · 3
+

x5

5! · 5
− x7

7! · 7
± · · ·

Ci(x) = γE + lnx+
∞∑
n=1

(−1)nx2n

2n(2n)!
= γE + lnx− x2

2! · 2
+

x4

4! · 4
∓ · · ·

(B.13)

when x� 1. Thus (B.11) can be further simpli�ed into∫
AP×AP

dxdy|C(x, y)|2

→− 1

π2

{
1 + γE + log

[
(
√
N − 1 +

√
N)2
√

2
a

ρ

]}
+

1

π
(
√
N − 1 +

√
N)
√

2
a

ρ
,

(B.14)

when √
N − 1 +

√
N � a

ρ
�
√
N −

√
N − 1; (3.86)
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and ∫
AP×AP

dxdy|C(x, y)|2 → 0 +O
(
Na2

ρ2

)
, (B.15)

when
(
√
N − 1 +

√
N)

a

ρ
� 1. (3.88)

Inserting (B.14) and (B.15) back into (3.41) together with (B.8), one can get (3.87)
and (3.89), respectively.
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Appendix C
Abrupt Pulse and Dip protocols ω0 → ω2 → ω1

Here we compute analytic solutions for ρ(τ)2 for an abrupt pulse with ω0 → ω2 → ω1

with an f(τ)2 of

f(τ)2 =


ω2

0, τ < −T
2

ω2
2, −T

2
≤ τ < T

2

ω2
1,

T
2
≤ τ

(C.1)

We know that the solution to the Pinney equation is given by

ρ2(τ) = Au(τ)2 + 2Bu(τ)v(τ) + Cv(τ)2 (C.2)

where u(τ) and v(τ) are independent solutions which satisfy

d2u

dτ 2
− f(τ)2u = 0

d2v

dτ 2
− f(τ)2v = 0 (C.3)

We require for τ < −T
2
that ρ2 = 1

ω0
. This requires A = C = 0 and by (4.29),

2B = 1
ω0
. Therefore

ρ2 =
1

ω0

u(τ)v(τ) (C.4)

We look for solutions

d2u

dτ 2
− f(τ)2u = 0

d2v

dτ 2
− f(τ)2v = 0 (C.5)

for f(τ)2 given in (C.1). A general solution for u(τ) in the three regions is given by

u1(τ) = eω0τ

u2(τ) = Aeω2τ +Be−ω2τ

u3(τ) = Ceω1τ +De−ω1τ (C.6)

Enforcing boundary conditions at τ = −T
2
and τ = T

2
, we �nd

e−ω0
T
2 = Ae−ω2

T
2 +Beω2

T
2

ω0e
−ω0

T
2 = ω2(Ae−ω2

T
2 −Beω2

T
2 )

Aeω2
T
2 +Be−ω2

T
2 = Ceω1

T
2 +De−ω1

T
2

ω2(Aeω2
T
2 −Be−ω2

T
2 ) = ω1(Ce−ω1

T
2 −Deω1

T
2 ) (C.7)
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Solving for the coe�cients yield

A = e
1
2
T (−ω0+ω2) (ω0 + ω2)

2ω2

B = e−
1
2
T (ω0+ω2) (−ω0 + ω2)

2ω2

C = e−
T
2

(ω0+ω1+2ω2) ((ω0 − ω2)(−ω1 + ω2) + e2Tω2(ω0 + ω2)(ω1 + ω2))

4ω1ω2

D = e−
T
2

(ω0−ω1+2ω2) (e2Tω2(ω0 + ω2)(ω1 − ω2)− (ω0 − ω2)(ω1 + ω2))

4ω1ω2

(C.8)

Similarly, for the other independent solution v(τ) we have

v1(τ) = e−ω0τ

v2(τ) = A′eω2τ +B′e−ω2τ

v3(τ) = C ′eω1τ +D′e−ω1τ (C.9)

and again applying boundary conditions

eω0
T
2 = A′e−ω2

T
2 +B′eω2

T
2

−ω0e
ω0

T
2 = ω2(A′e−ω2

T
2 −B′eω2

T
2 )

A′eω2
T
2 +B′e−ω2

T
2 = C ′eω1

T
2 +D′e−ω1

T
2

ω2(A′eω2
T
2 −B′e−ω2

T
2 ) = ω1(C ′e−ω1

T
2 −D′eω1

T
2 ) (C.10)

we �nd

A′ = e
1
2
T (ω0+ω2) (−ω0 + ω2)

2ω2

B′ = e
1
2
T (ω0−ω2) (ω0 + ω2)

2ω2

C ′ = e
T
2

(ω0−ω1−2ω2) ((ω0 + ω2)(ω1 − ω2) + e2Tω2(−ω0 + ω2)(ω1 + ω2))

4ω1ω2

D′ = e
T
2

(ω0+ω1−2ω2) (e2Tω2(ω0 − ω2)(−ω1 + ω2) + (ω0 + ω2)(ω1 + ω2))

4ω1ω2

(C.11)

Therefore, inserting (C.6) and (C.9) into (C.4) with the coe�cients de�ned in (C.8)
and (C.11), ρ2(τ) becomes

ρ2(τ) =



1
ω0
, τ ≤ −T

2

1
ω0

(
AA′e2ω2τ +BB′e−2ω2τ + AB′ + A′B

)
, −T

2
≤ τ ≤ T

2

1
ω0

(
CC ′e2ω1τ +DD′e−2ω1τ + CD′ + C ′D

)
, τ ≥ T

2

(C.12)
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Appendix D
Smooth step protocols ω0 → ω1

Here we compute analytic solutions for ρ(τ)2 for a smooth step for ω0 → ω1 with an
f(τ)2 of

f(τ)2 = ω2
0 +

ω2
1 − ω2

0

1 + e−
τ
δt

=
ω2

1 + ω2
0e
− τ
δt

1 + e−
τ
δt

(D.1)

where in this case we choose

ρ2(τ) = u(τ)v(τ) (D.2)

First we look for solutions to

d2u′

dτ 2
− f(τ)2u′ = 0

d2v′

dτ 2
− f(τ)2v′ = 0 (D.3)

where in general our solution will be of the form

u(τ) = A′u′(τ) +B′v′(τ)
v(τ) = Au′(τ) +Bv′(τ) (D.4)

We �nd that the two independent solutions are given by

u′(τ) = eω0τ
2F1(δt(ω0 − ω1), δt(ω0 + ω1), 1 + 2δtω0,−e

τ
δt )

v′(τ) = e−ω0τ
2F1(−δt(ω0 + ω1), δt(−ω0 + ω1), 1− 2δtω0,−e

τ
δt ) (D.5)

The v′ solution is nonsingular for ω0δt not a half integer.

D.1 Solution for u

Now we write the following adiabatic solution for u.

uad(τ) =
1√
ω(τ)

e−C(δt,ω0,ω1)+
∫ τ f(τ ′)dτ ′

=
1√
ω(τ)

e
−C(δt,ω0,ω1)+

∫ τ (ω2
0+

ω2
1−ω

2
0

1+e
− τ ′
δt

) 1
2
dτ ′

=
1√
ω(τ)

e−C(δt,ω0,ω1)+F (τ,δt,ω0,ω1) (D.6)
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where

C(δt, ω0, ω1) = −δtω0 log(4ω2
0) + δtω1 log(ω0 + ω1)2

F (τ, δt, ω0, ω1) =(
ω0

(
τ − δt log

(
2ω0

√
eτ/δt + 1

√
ω2

1e
τ/δt + ω2

0 +
(
ω2

0 + ω2
1

)
eτ/δt + 2ω2

0

))
+ δtω1 log

(
ω1

(
2ω1e

τ/δt + 2
√
eτ/δt + 1

√
ω2

1e
τ/δt + ω2

0 + ω1

)
+ ω2

0

))
The constant C(δt, ω0, ω1) is chosen such that for τ → −∞

uad →
1
√
ω0

eω0τ (D.7)

Therefore, the coe�cient Cu in (4.43), is given by

Cu = e−C(δt,ω0,ω1) (D.8)

The derivative of uad is given by

∂τuad(τ) =

(
f(τ)− ∂τf(τ)

2f(τ)

)
uad(τ) (D.9)

Solving for the solution

u(τ) = A′u′(τ) +B′v′(τ) (D.10)

we impose the boundary conditions

u(T ) = uad(T )
∂τu(T ) = ∂τuad(T ) (D.11)
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This yields an A′ and B′ of

A′ =

1

4
e−Tω0−C(δt,ω0,ω1)+F (T,δt,ω0,ω1)

(
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

) 3
4

[(
4δtω2

0

(
− ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)
+ 4e2 Tδt δtω2

1

(
− ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)

+ e
T
δtω2

0

(
1 + 4δt

(
− ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

))
+ e

T
δtω2

1

(
− 1 + 4δt

(
− ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)))
× 2F1(δt(−ω0 + ω1),−δt(ω0 + ω1), 1− 2δtω0,−e

T
δt )

+ 4(1 + e
T
δt )δt(ω0 + ω1)(ω2

0 + e
T
δtω2

1)2F1(1− δt(ω0 + ω1), δt(−ω0 + ω1), 1− 2δtω0,−e
T
δt )

]
×

(
δt(ω2

0 + e
T
δtω2

1)2

(
(ω0 − ω1) 2F1

(
δt (ω0 − ω1) + 1, δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) ,−δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)
+ (ω0 + ω1) 2F1

(
δt (ω0 − ω1) , δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) , 1− δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)))−1

B′ =

1

4
eTω0−C(δt,ω0,ω1)+F (T,δt,ω0,ω1)

(
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

) 3
4

[(
4δtω2

0

(
ω1 −

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)
+ 4e2 Tδt δtω2

1

(
ω1 −

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)

+ e
T
δtω2

0

(
− 1 + 4δt

(
ω1 −

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

))
+ e

T
δtω2

1

(
1 + 4δt

(
ω1 −

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)))
× 2F1(δt(ω0 − ω1), δt(ω0 + ω1), 1 + 2δtω0,−e

T
δt )

+ 4(1 + e
T
δt )δt(ω0 − ω1)(ω2

0 + e
T
δtω2

1)2F1(1 + δt(ω0 − ω1), δt(ω0 + ω1), 1 + 2δtω0,−e
T
δt )

]
×

(
δt(ω2

0 + e
T
δtω2

1)2

(
(ω0 − ω1) 2F1

(
δt (ω0 − ω1) + 1, δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) ,−δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)
+ (ω0 + ω1) 2F1

(
δt (ω0 − ω1) , δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) , 1− δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)))−1

(D.12)
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D.2 Solution for v

Similarly for v we write the following adiabatic solution

vad(τ) =
1√
ω(τ)

eC(δt,ω0,ω1)−
∫ τ ω(τ ′)dτ ′

=
1√
ω(τ)

e
C(δt,ω0,ω1)−

∫ τ (ω2
0+

ω2
1−ω

2
0

1+e
− τ ′
δt

) 1
2
dτ ′

=
1√
ω(τ)

eC(δt,ω0,ω1)−F (τ,δt,ω0,ω1) (D.13)

Similarly, as τ → −∞

vad(τ)→ 1
√
ω0

e−ω0τ (D.14)

Cv =
1

Cu
= eC(δt,ω0,ω1) (D.15)

The derivative of vad(τ) is given by.

∂τvad(τ) =

(
− f(τ)− ∂τf(τ)

f(τ)

)
vad(τ) (D.16)

Solving for the solution

v(τ) = Au′(τ) +Bv′(τ) (D.17)

we impose the boundary conditions

v(T ) = vad(T )
∂τv(T ) = ∂τvad(T ) (D.18)
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for T su�ciently less than 0. This yields an A and B of

A =

1

4
e−Tω0+C(δt,ω0,ω1)−F (T,δt,ω0,ω1)

(
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

) 3
4

[
−
(

4δtω2
0

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)
+ 4e2 Tδt δtω2

1

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)

+ e
T
δtω2

0

(
− 1 + 4δt

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

))
+ e

T
δtω2

1

(
1 + 4δt

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)))
× 2F1(−δt(ω0 + ω1), δt(−ω0 + ω1), 1− 2δtω0,−e

T
δt )

+ 4(1 + e
T
δt )δt(ω0 + ω1)(ω2

0 + e
T
δtω2

1)2F1(1− δt(ω0 + ω1), δt(−ω0 + ω1), 1− 2δtω0,−e
T
δt )

]
×

(
δt(ω2

0 + e
T
δtω2

1)2

(
(ω0 − ω1) 2F1

(
δt (ω0 − ω1) + 1, δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) ,−δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)
+ (ω0 + ω1) 2F1

(
δt (ω0 − ω1) , δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) , 1− δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)))−1

B =

1

4
eTω0+C(δt,ω0,ω1)−F (T,δt,ω0,ω1)

(
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

) 3
4

[(
4δtω2

0

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)
+ 4e2 Tδt δtω2

1

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)

+ e
T
δtω2

0

(
− 1 + 4δt

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

))
+ e

T
δtω2

1

(
1 + 4δt

(
ω1 +

√
ω2

1 +
ω2

0 − ω2
1

1 + e
T
δt

)))
× 2F1(δt(ω0 − ω1), δt(ω0 + ω1), 1 + 2δtω0,−e

T
δt )

+ 4(1 + e
T
δt )δt(ω0 − ω1)(ω2

0 + e
T
δtω2

1)2F1(1 + δt(ω0 − ω1), δt(ω0 + ω1), 1 + 2δtω0,−e
T
δt )

]
×

(
δt(ω2

0 + e
T
δtω2

1)2

(
(ω0 − ω1) 2F1

(
δt (ω0 − ω1) + 1, δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) ,−δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)
+ (ω0 + ω1) 2F1

(
δt (ω0 − ω1) , δt (ω0 + ω1) ; 2δtω0 + 1;−eT/δt

)
2F1

(
δt (ω1 − ω0) , 1− δt (ω0 + ω1) ; 1− 2δtω0;−eT/δt

)))−1

(D.19)
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D.3 Solutions for ρ2

Let us check that the set of adiabatic initial conditions chosen for u(τ) and v(τ) in
(D.6), (D.9), (D.13), and (D.16) and thus ρ2(τ) in (D.2) are consistent with choosing
adiabatic initial conditions for ρ2(τ) without reference to u(τ) and v(τ). Since the
equation for ρ2(τ) is (D.2), when τ → T we have the �rst initial condition

ρ2(τ)→ uad(T )vad(T ) =
1

f(T )
= ρ2

ad(T ) (D.20)

where

ρ2
ad(τ) ≡ 1

f(τ)
(D.21)

The second initial condition uses ∂τρ
2(τ) where

∂τρ
2(τ) = v(τ)∂τu(τ) + u(τ)∂τv(τ) (D.22)

Taking τ → T yields

∂τρ
2(τ) → vad(T )∂τu(T ) + uad(T )∂τv(T )

= vad(T )∂τuad(T ) + uad(T )∂τvad(T )

=

(
f(T )− ∂τf(T )

2f(T )

)
uad(T )vad(T ) +

(
− f(T )− ∂τf(T )

2f(T )

)
uad(T )vad(T )

= −∂τf(T )

f(T )2

= ∂τρ
2
ad(T ) (D.23)

where

∂τρ
2
ad(τ) = −∂τf(τ)

f(τ)2
(D.24)

Therefore, we see that the set of initial conditions for u(τ) and v(τ) respectively are

consistent with choosing ρ2(T ) = ρ2
ad(T ) = 1

f(T )
and ∂τρ

2(T ) = ∂τρ
2
ad(T ) = −∂τf(T )

f(T )2

without referring to the functions u(τ), v(τ). Therefore the solution for ρ2(τ) is

ρ2(τ) = u(τ)v(τ) (D.25)

with u(τ) and v(τ) given in (D.10), (D.17), (D.12), (D.19) and (D.7).

Copyright© Sinong Liu, 2021.
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Appendix E
Smooth Pulse and Dip protocols ω0 → ω1 → ω0

Performing similar computations as for the smooth step protocols in the previous
section we solve for ρ2(τ) for a smooth pulse for ω0 → ω1 → ω0. f(τ)2 is given by

f(τ)2 = ω2
1 + (ω2

0 − ω2
1) tanh2 τ

δt
(E.1)

We again apply adiabatic initial conditions for u(τ) and v(τ) at some early time T
su�ciently smaller than 0. We obtain

ρ2(τ) = u(τ)v(τ) (E.2)

The solutions for u, v are given

u(τ) = A′u′(τ) +B′v′(τ)
v(τ) = Au′(τ) +Bv′(τ) (E.3)

with

u′(τ) = P µ
ν (tanh

τ

δt
)

v′(τ) = Qµ
ν (tanh

τ

δt
) (E.4)

and

µ = ω0δt

ν =
1

2
(−1 +

√
1 + 4δt2(ω2

0 − ω2
1)) (E.5)

u′(τ) and v′(τ) are solutions of

d2u′

dτ 2
− f(τ)2u′ = 0

d2v′

dτ 2
− f(τ)2v′ = 0 (E.6)

with f(τ) given in (E.1). P µ
ν (z) and Qµ

ν (z) are associated Legendre Polynomials of
the �rst and second kind respectively. The coe�cients A′, B′, A,B are given by the
expressions
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A′ =

− eF̃ (T,δt,ω0,ω1)[
−
(

1− 2δtω0 +
√

1 + 4δt2(ω2
0 − ω2

1)

)(
− ω2

0 + (ω2
0 − ω2

1)sech2

(
T

δt

))
Qµ1+ν(tanh

T

δt
)

+

(
− ω2

0

(
1 +

√
1 + 4δt2(ω2

0 − ω2
1)

)
tanh

T

δt
+ sech2 T

δt

(
− δt(ω2

0 − 2ω2
1)

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt

+ δtω2
0cosh

2T

δt

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt
+ (ω2

0 − ω2
1)
√

1 + 4δt2(ω2
0 − ω2

1)tanh
T

δt

))
Qµν (tanh

T

δt
)

]
×
[(

1− 2δtω0 +
√

1 + 4δt2(ω2
0 − ω2

1)

)(
ω2

0 + (−ω2
0 + ω2

1)sech2 T

δt

) 5
4

(
Pµ1+ν(tanh

T

δt
)Qµν (tanh

T

δt
)− Pµν (tanh

T

δt
)Qµ1+ν(tanh

T

δt
)

)]−1

B′ =

− eF̃ (T,δt,ω0,ω1)sech2 T

δt[
2

(
1− 2δtω0 +

√
1 + 4δt2(ω2

0 − ω2
1)

)(
− ω2

0 + 2ω2
1 + ω2

0 cosh

(
2T

δt

))
Pµ1+ν(tanh

T

δt
)

+

(
− ω2

0sinh
2T

δt
− (ω2

0 − 2ω2
1)

(
−
√

1 + 4δt2(ω2
0 − ω2

1) tanh
T

δt
+ 2δt

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt

)
+ ω2

0 cosh
2T

δt

(
−
√

1 + 4δt2(ω2
0 − ω2

1) tanh
T

δt
+ 2δt

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt

))
2Pµν (tanh

T

δt
)

]
×
[
4

(
1− 2δtω0 +

√
1 + 4δt2(ω2

0 − ω2
1)

)
(
Pµ1+ν(tanh

T

δt
)Qµν (tanh

T

δt
)− Pµν (tanh

T

δt
)Qµ1+ν(tanh

T

δt
)

)]−1

(E.7)
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A =

e−F̃ (T,δt,ω0,ω1)sech2 T

δt[
− 2

(
1− 2δtω0 +

√
1 + 4δt2(ω2

0 − ω2
1)

)(
− ω2

0 + 2ω2
1 + ω2

0cosh

(
2T

δt

))
Qµ1+ν(tanh

T

δt
)

+

(
− 2δt

(
ω2

0 − 4ω2
1)cosh

T

δt

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt
+ 2δtω2

0cosh
3T

δt

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt

+ 2sinh
T

δt

(
− (ω2

0 − 2ω2
1)
√

1 + 4δt2(ω2
0 − ω2

1) + ω2
0

(
1 +

(
1 +

√
1 + 4δt2(ω2

0 − ω2
1)

)
cosh

2T

δt

)))
× sech

T

δt
Qµν (tanh

T

δt
)

]
×
[
4

(
1− 2δtω0 +

√
1 + 4δt2(ω2

0 − ω2
1)

)(
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt

) 5
4

(
Pµ1+ν(tanh

T

δt
)Qµν (tanh

T

δt
)− Pµν (tanh

T

δt
)Qµ1+ν(tanh

T

δt
)

)]−1

B =

− e−F̃ (T,δt,ω0,ω1)sech2 T

δt[
− 2

(
1− 2δtω0 +

√
1 + 4δt2(ω2

0 − ω2
1)

)(
− ω2

0 + 2ω2
1 + ω2

0cosh

(
2T

δt

))
Pµ1+ν(tanh

T

δt
)

+

(
− 2δt

(
ω2

0 − 4ω2
1)cosh

T

δt

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt
+ 2δtω2

0cosh
3T

δt

√
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt

+ 2sinh
T

δt

(
− (ω2

0 − 2ω2
1)
√

1 + 4δt2(ω2
0 − ω2

1) + ω2
0

(
1 +

(
1 +

√
1 + 4δt2(ω2

0 − ω2
1)

)
cosh

2T

δt

)))
× sech

T

δt
Pµν (tanh

T

δt
)

]
×
[
4

(
1− 2δtω0 +

√
1 + 4δt2(ω2

0 − ω2
1)

)(
ω2

0 + (ω2
1 − ω2

0)sech2 T

δt

) 5
4

(
Pµ1+ν(tanh

T

δt
)Qµν (tanh

T

δt
)− Pµν (tanh

T

δt
)Qµ1+ν(tanh

T

δt
)

)]−1

(E.8)
where

F̃ (T, δt, ω0, ω1) =

δt

(
ω0sinh

−1(
ω0

ω1

sinh(
T

δt
)) +

√
ω2

1 − ω2
0tan

−1

( √
−2ω2

0 + 2ω2
1sinh

T
δt√

−ω2
0 + 2ω2

1 + ω2
0cosh(2T

δt
)

))
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Appendix F
Phase space density for a potential with a cuto�

In this part we explain in detail the fermi surface pro�les for a potential with a cuto�
at x = ±l/2. Without loss of generality, we consider coordinate (x, p) on the left and
up side of phase space.

After abrupt quench, the equi-energy trajectories become

1

2
p2 − 1

2
ω2

1x
2 = E (F.1)

which can be described by hyperbolic functions{
x =

√
2E
ω1

sinh(ω1τ + φ),

p =
√

2E cosh(ω1τ + φ),
(E > 0)&

{
x = −

√
−2E
ω1

cosh(ω1τ + φ),

p = −
√
−2E sinh(ω1τ + φ),

(E < 0)

(F.2)
Here the energy E and phase φ are two independent parameters determined by the
continuity of phase space trajectories, i.e. the continuity of (x, p) during the abrupt
quench.

Now, because the potential has cuto�s at x = ±l/2, all the classical particles
should be bounced back. This implies that the (x = ±l/2, p) and (x = ±l/2,−p)
are identical in phase space. In terms of E and φ, the re�ection of particles at the
boundary only change the phase φ, and the coordinates of the particle in phase space
after re�ection can be described by{

x = −
√

2E
ω1

sinh(ω1(τ − τl)− φl),
p = −

√
2E cosh(ω1(τ − τl)− φl)

(E > 0)

&

{
x = −

√
−2E
ω1

cosh(ω1(τ − τl)− φl),
p = −

√
−2E sinh(ω1(τ − τl)− φl),

(E < 0)

(F.3)

where τl is the time the particle needs to reach the boundary to be re�ected, and φl is
the phase of the particle at the boundary before re�ection (after re�ection the phase
becomes −φl). Thus they satisfy the relation

φl = ω1τl + φ (F.4)

Therefore, we can simplify (F.3) and �nd that the re�ection is equivalent to the
transformation on E and φ:

E → E, & φ→ φ− 2φl (F.5)

Now we can rewrite the coordinates of the particle that bounced back as{
xb = −x cosh 2φl + 1

ω1
p sinh 2φl

pb = −p cosh 2φl + ω1x sinh 2φl
(E > 0)

&

{
xb = x cosh 2φl − 1

ω1
p sinh 2φl

pb = p cosh 2φl − ω1x sinh 2φl,
(E < 0)

(F.6)
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which implies a boost

K =

(
cosh 2φl − sinh 2φl
− sinh 2φl cosh 2φl

)
(F.7)

from (x, p/ω1) to (xb, pb/ω1). For E > 0, the boost is −K; for E < 0, it is K. The
boost can be applied to the coordinates of the particles after the n-th re�ection to
obtain the coordinates after the (n+ 1)-th re�ection. The inverse boost is

K−1 =

(
cosh 2φl sinh 2φl
sinh 2φl cosh 2φl

)
(F.8)

and therefore, {
x = −xb cosh 2φl − 1

ω1
pb sinh 2φl

p = −pb cosh 2φl − ω1xb sinh 2φl
(E > 0)

&

{
x = xb cosh 2φl + 1

ω1
pb sinh 2φl

p = pb cosh 2φl + ω1xb sinh 2φl,
(E < 0)

(F.9)

We can �gure out the matrix element from x = ±l/2(
l

2

)2

=
2E

ω2
1

sinh2 φl =⇒ cosh 2φl = 1 + 2 sinh2 φl = 1 +
ω2

1l
2

4E
, (E > 0)(

l

2

)2

=
−2E

ω2
1

cosh2 φl =⇒ cosh 2φl = 2 cosh2 φl − 1 = −1− ω2
1l

2

4E
. (E < 0)

(F.10)

Notice that the Fermi surface for an unbounded potential satis�es (4.55), we can
plug (F.9) in and obtain the relation satis�ed by particle re�ected back once:(
x cosh 2φl +

1

ω1

p sinh 2φl

)2

−
[
ρ(τ)2 (p cosh 2φl + ω1x sinh 2φl)−

1

2

(
x cosh 2φl +

1

ω1

p sinh 2φl

)
∂τρ

2

]2

= ρ(τ)2

(F.11)

Here we have omitted the lower index "b" since (F.11) represents part of the Fermi
surface at τ . The complete Fermi surface after quench is a combination of (F.11) and
(4.55) and x = ±l/2.

Finally we consider two cases: ω0 > ω1 and ω0 < ω1. For ω0 > ω1, more particles
�ow in from the upper side (where E > 0) than �ow out from the lower side (where
E > 0) when there is no cuto�. This implies that when there is a cuto�, less particles
should �ow in and therefore, the Fermi surface due to re�ection should give a third
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bound for the Fermi surface. As a result, the phase space density should be

u =Θ

(
x2

ρ2
− 1

ρ2

(
pρ2 − 1

2
x∂τρ

2

)2

− 1

)

Θ

(
1

ρ2

(
x cosh 2φl +

1

ω1

p sinh 2φl

)2

− 1

ρ2

(
[p cosh 2φl + ω1x sinh 2φl] ρ

2 − 1

2

[
x cosh 2φl +

1

ω1

p sinh 2φl

]
∂τρ

2

)2

− 1

)
(F.12)

where cosh 2φl = 1 +
ω2

1 l
2

4E
, E > 0. The phase space density is shown in �gure 4.12.

For ω0 < ω1, no particles �ow in from the upper side (where E < 0) while
many particles �ow out from the lower side (where E < 0) when there is no cuto�.
Therefore, when there is a cuto�, particles re�ected should �ow in from the upper
side and occupy the empty space. As a result, the phase space density should be

u =Θ

(
x2

ρ2
− 1

ρ2

(
pρ2 − 1

2
x∂τρ

2

)2

− 1

)

+ Θ

(
1

ρ2

(
x cosh 2φl +

1

ω1

p sinh 2φl

)2

− 1

ρ2

(
[p cosh 2φl + ω1x sinh 2φl] ρ

2 − 1

2

[
x cosh 2φl +

1

ω1

p sinh 2φl

]
∂τρ

2

)2

− 1

)

−Θ

(
x2

ρ2
− 1

ρ2

(
pρ2 − 1

2
x∂τρ

2

)2

− 1

)

×Θ

(
1

ρ2

(
x cosh 2φl +

1

ω1

p sinh 2φl

)2

− 1

ρ2

(
[p cosh 2φl + ω1x sinh 2φl] ρ

2 − 1

2

[
x cosh 2φl +

1

ω1

p sinh 2φl

]
∂τρ

2

)2

− 1

)
(F.13)

where cosh 2φl = −1− ω2
1 l

2

4E
, E < 0. The phase space density is shown in �gure 4.11.
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(a) ω0 = 2ω1 = 1
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(b) ω0 = ω1/2 = 1

Figure F.1: The formation of Fermi surface (4.55). Left: the Fermi surfaces are
plotted more transparently as time evolves. Solid lines are equi-energy surfaces i.e.
the trajectories of classical particles after abrupt quench. The directions of particle
motion are labeled by arrows. Right: the original Fermi surface when τ ≤ 0 is
plotted in solid red with arrows pointing in the directions of classical particles. Blue
or black solid lines are the trajectories of classical particles after abrupt quench. The
orientations of motion are labeled by arrows. Dashed black lines are equi-energy
surfaces.

Copyright© Sinong Liu, 2021.
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Appendix G
Details of construction of sub-algebras

This appendix provides some details of the gauge invariant construction of the sub-
algebra described in Section 5.2.

G.1 Single Matrix

First consider gauged matrix quantum mechanics of a single N×N matrixM . Gauge
invariant single trace operators are of the form

Ĉ = Tr
(
M̂mΠ̂n

M

)
order

(G.1)

Here Π̂M denotes the conjugate momentum to M̂ and the notation ()
order

means

that the M̂ and Π̂M 's are sprinkled in all possible orders. However we can use the
commutation relations to bring e.g. all the M̂ 's together. The trace Tr is over matrix
indices.

We want to construct a sub-algebra of operators which can be used to make
measurements in a region A of the space of eigenvalues of M̂ . This is achieved by
de�ning the projector (5.23). Then the operator which will belong to this algebra is
of the form

ĈA = Tr
(
P̂AMP̂AM · · · P̂AMP̂AΠ̂M P̂A · · · Π̂M P̂A

)
(G.2)

In writing (G.2) we have used P̂ 2
A = P̂A and the fact that in this particular case[

P̂A, M̂
]

= 0. The operators of the form (G.2) together with the identity operator

form a sub-algebra of operators of the theory.
To see that gives us the right sub-algebra, �x a gauge where M̂ is diagonal with

its diagonal elements denoted by λ̂i, i = 1 · · ·N , while the diagonal elements of the
conjugate momenta are denoted by π̂i. As explained in Section 5.2.1, the resulting
constraint requires the states to be singlets. The remaining gauge freedom of Weyl
transformations needs to be imposed by Weyl symmetrizing the states, and absorbing
the standard van der Monde factor then makes λ̂i coordinate operators of N fermions
on a line. Let us begin by considering operators which do not contain the conjugate
momenta, i.e.

On = Tr(M̂n) (G.3)

The expectation value of the operator On in some pure state |Ψ〉 is given by

N∑
i=1

〈Ψ|λ̂ni |Ψ〉 (G.4)

This measures the position of each of the fermions, takes its n-th power and then
sums over all the particles. Similarly, the expectation value of Tr(π̂nM) would measure
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the sum of n-th power of the momenta of all the fermions. This is of course a standard
measurement in a system of many identical particles. The projected version of the
operator (G.3) is

OPn =
N∑
i=1

∫
A

[
n∏
s=1

dxs][
n∏
s=1

δ(xs − λ̂i)]λ̂ni (G.5)

We will use the basis

|λ1, λ2, · · ·λN >a=
1

N !

∑
σ∈SN

sgn(σ)|λσ(1), · · ·λσ(1)〉 (G.6)

where |〉a denotes an anti-symmetrized ket. Note that this is not an eigenstate of each
individual term in the sum in (G.5). However it is an eigenstate of the sum. This
follows from the fact that the sum is symmetric under permutations.

Consider �rst the case N = 2. The expectation value of the operator OP3 in a
state with a wavefunction Ψ(λ1, λ2) is given by

〈Ψ|OP3 |Ψ〉 =

∫
A

[dx1dx2dx3]

∫
R

dλ1dλ2 Ψ?(λ1, λ2){λ3
1 δ(x1 − λ1)δ(x2 − λ1)δ(x3 − λ1)

+ λ3
2 δ(x1 − λ2)δ(x2 − λ2)δ(x3 − λ2)}Ψ(λ1, λ2)

(G.7)

where the wavefunction is Ψ[λ1 · · ·λN ] = 〈{λi}|Ψ〉. where we have used antisymmetry
of the wavefunctions. The integrals over λ1 and λ2 are over the entire real line.
Writing each of these integrals as a sum over an integral over A and an integral over
the complement Ā, and noting that the delta functions ensure that only the integrals
over A contribute, it is straightforward to see that the result is

〈Ψ|OP3 |Ψ〉 =

∫
A

dλ1

∫
A

dλ2Ψ?(λ1, λ2)(λ3
1 + λ3

2)Ψ(λ1, λ2)

+ 2

∫
A

dλ1

∫
Ā

dλ2Ψ?(λ1, λ2)(λ3
1)Ψ(λ1, λ2) (G.8)

The �rst term is the contribution from con�gurations when both the particles are
in the region of interest, while the second term from con�gurations where one of
the particles is in the region of interest. Clearly this expectation value is equal to
the expectation value of the operator without the projection if the wavefunction is
non-vanishing only when both the particles are in the region of interest A.

This result can be easily generalized for arbitrary N . Then the expectation value
of the operator OPn becomes

〈Ψ|OPn |Ψ〉 =
N∑
k=1

(
N

k

) k∑
a=1

∫
A

k∏
a=1

dλa

∫
Ā

N∏
α=k+1

dλα (Ψ?[{λi}] λna Ψ[{λi}]) (G.9)

The expression (G.9) is a sum over sectors speci�ed by the number of the λi's in the
region of interest. The expectation value then measures the sum of the n-th power
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of the position of all particles which are in the region of interest. Equation (G.9) is
simply a re�ection of the decomposition of the Hilbert space into sectors, as in (5.10).

The action of our projected operator on a basis state is

OPn |{λi}〉a =
N∑
i=1

∫
[
n∏
s=1

dxs][
n∏
s=1

δ(xs − λi)]λni |{λi}〉a (G.10)

Suppose the state is in the (k,N − k) sector, i.e. k of the λi's lie in the region of
interest. We can choose these to be the λa, a = 1 · · · k. Consider a term in the sum in
(G.10). This contains a product of delta functions, so this will be nonzero only when
the corresponding λi lie in the region of interest A. This means that the sum over i
is truncated to the �rst k terms,

OPn |{λi}〉a =
k∑
i=1

λmi |{λi}〉a (G.11)

Thus this operator acting on a basis state in the (k,N − k) sector has a trivial action
on the eigenvalues which are in the complement Ā. This is an example of an operator
of the type (k,N − k),

Ok,N−k |{λa}, {λα}〉a =

∫ k∏
a=1

[dλ′a] Õ ({λ′a}, {λa}) |{λ′a}, {λα}〉a (G.12)

Let us de�ne a smaller Hilbert space of k particles which s spanned by

|{λa}〉a a = 1 · · · k λa ∈ A (G.13)

Then one can de�ne an operator in this smaller Hilbert space,

Õk,N−k =

∫
[
k∏
a=1

dλadλ
′
a] Õk,N−k ({λa}, {λ′a}) |{λa}〉a a〈{λ′a}| (G.14)

In the above discussion the sector (0, N) did not enter in the expression (G.9). This
simply re�ects the fact that if we measure any operator involving the position and
momenta in the region of interest A, we should get a non-zero answer only if there
are particles in A. However since the identity operator is also a member of the sub-
algebra, this sector needs to be included. In fact the identity operator is the only
operator which will receive contributions from the (0, N) sector.

Clearly the expression (G.9) can be written as a sum over traces in the smaller
Hilbert spaces,

〈Ψ|OP |Ψ〉 =
N−1∑
k=1

TrA [ρ̃k,N−kOk,N−k] (G.15)

where the density matrix ρ̃k,N−k is given by

ρ̃k,N−k =(
N

k

)∫
A

[
k∏
i=1

dλadλ
′
a]

∫
Ā

[
N∏

α=k+1

dλα] Ψ?[{λa}, {λα}] Ψ?[{λ′a}, {λα}]|{λa}〉a a〈{λ′a}|

(G.16)
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Note that this is an operator which lives in the k-particle sector of the small Hilbert
space de�ned in (G.13). This decomposition of the whole hilbert space into sectors
is exactly what appears in [21]. The projected operators therefore provide a gauge
invariant formulation of the problem.

The above constructions easily generalize to the situation when the state of the
entire system is a mixed state. Let the density matrix of the whole system be

ρtot =

∫
[
N∏
i=1

dλidλ
′
i] ρtot ({λi}, {λ′i}) |{λi}〉a a〈{λ′i}| (G.17)

Then the reduced density matrix ρ̃ which evaluates expectation values of operators
belonging to this subalgebra is obtained by tracing over Ā,

ρ̃k,N−k =

(
N

k

)∫
[
k∏
i=1

dλadλ
′
a][

N∏
α=k+1

dλα] ρtot ({λa}, {λα}; {λ′a}, {λα}) |{λa}〉a a〈{λ′a}|

(G.18)
This density matrix is not normalized. In fact the trace Trkρ̃k is the probability of k
particles to be in the region of interest. Thus the density matrix in the Hilbert space
which is a direct sum of all the sector is properly normalized.

The von Neumann entropy associated with the reduced density matrix Trρ̃k is
given by

Sk,A = −TrHk,N−k(ρ̃k,N−k log ρ̃k,N−k) (G.19)

This quanti�es the entanglement between the target space region A and its comple-
ment Ā in this sector. Following the above steps, we can easily see that a reduced
density matrix ρ

RDM
based on the gauge invariant subalgebra A, de�ned by

Tr(ρ
RDM
O) := Tr(ρtotO) ∀O ∈ A

satis�es
ρ
RDM

= ⊕Nk=0ρ̃k,N−k

The total target space entanglement entropy is then a sum over all sectors

SA =
N∑
k=0

Sk,A (G.20)

As shown in [21] this quantity satis�es the usual positivity properties and strong
subadditivity. Similar sector-wise entanglement also appears in discussions of entan-
glement entropy in gauge theories [282, 283].

We have used a �rst quantized description of the system. However there is an
equivalent second quantized description. In the latter, we have a conventional non-
relativistic �eld theory of a fermion �eld ψ(λ, t) : the space of this theory is the space
of eigenvalues. The target space entanglement we discussed above now becomes a
conventional geometric entanglement in this �eld theory.
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Momentum operators

Operators involving momenta are subtle and at a �rst sight, appear to require intro-
duction of other sectors. This can be illustrated by a calculation of the expectation
value of the projected version of an operator of the form (G.1) with m = 0 and
n = 2, with the region of interest A being the positive real line λ ≥ 0. The result of
a calculation analogous to (G.8) is, for N = 2,

〈Ψ| tr(P̂ Π̂M P̂ Π̂M P̂ )|Ψ〉

=− 1

2

∫ ∞
0

dλ1

∫ ∞
0

dλ2

×
[
Ψ∗(λ1, λ2)

(
∂2

∂λ2
1

+
∂2

∂λ2
2

)
Ψ(λ1, λ2) + Ψ(λ1, λ2)

(
∂2

∂λ2
1

+
∂2

∂λ2
2

)
Ψ∗(λ1, λ2)

]
−
∫ ∞

0

dλ1

∫ 0

−∞
dλ2

[
Ψ∗(λ1, λ2)

∂2

∂λ2
1

Ψ(λ1, λ2) + Ψ(λ1, λ2)
∂2

∂λ2
1

Ψ∗(λ1, λ2)

]
+

∫ ∞
−∞

dλ

(
∂

∂λ1

|Ψ(λ1, λ)|2
) ∣∣∣∣

λ1=0

+ 2δ(0)

∫ ∞
−∞

dλ|Ψ(0, λ)|2

(G.21)

The �rst and second lines of the RHS are analogous to what we got in G.8; the �rst
line is the contribution from the (2, 0) sector, and the second line is the contribution
from the (1, 1) sector. However, we appear to also have an extra line, the third line,
which represents a sector that has one of the particles exactly at λ = 0.

Note that since these extra terms pertain to particles at the boundary, it is tied to
the question of how one de�nes the region A precisely, e.g. as an open or a closed set,
or in terms of a target space lattice etc. We suggest below an alternative treatment
in terms of translation operators, rather than momenta, which provide a proof of
principle how these problems can be avoided.

To explain this, let us start with the case of N = 1, that is, just the case of a
single 1 × 1 matrix or equivalently the case of one particle. We now have just two
sectors (1, 0) and (0, 1), in the �rst one the particle is in region A (which we will again
de�ne as x > 0) and in the second one it is outside.

Consider the traslation operator

Oa = exp[−iaΠ̂] (G.22)

with the action
Oa|x〉 = |x+ a〉 (G.23)

Clearly such operators can take states in (1, 0) to (0, 1) (if a < 0) or vice versa (if
a > 0). In the following, we will take a > 0 to be speci�c; a similar analysis can be
carried out with a < 0. To obtain operators acting within the sector (1, 0), let us use
the projection Oa → OP

a . It is useful to represent G.22 in terms of the product of a
large number n of exponentials (as in Feynman path integrals), with a = nε. In the
limit of ε → 0, each exponential can be approximated as exp[−iεΠ̂] ≈ 1 + (−iε)Π̂
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whose projected version is P̂ (1 + (−iε)Π̂)P̂ ≈ P̂ (exp[−iεΠ̂])P̂ . In short, we have

Oa ≡
(

exp[−iεΠ̂]
)n

OP
a = lim

ε→0

(
P̂ exp[−iεΠ̂]P̂

)n
With the above expressions, it is easy to see that

〈x′|Oa|x〉 = 〈x′|x+ a〉 = δ(x′ − a− x) (G.24)

〈x′|OP
a |x〉 = lim

ε→0
〈x′|

(
P̂ exp[−iεΠ̂]P̂

)n
|x〉

= lim
ε→0

θ(x′)〈x′ − ε|θ(x′ − ε)
(
P̂ exp[−iεΠ̂]P̂

)n−1

|x〉

= lim
ε→0

θ(x′)θ(x′ − ε)θ(x′ − 2ε)...θ(x′ − a)δ(x′ − a− x) (G.25)

Note that unless x and x′ are both in A, the above matrix element vanishes. This is
because, say x is not in A while x′ is in A, then at least θ(x) = θ(x′ − a) will vanish,
making the entire product G.25 vanish.1 On the other hand, if both x and x′ are
in A, then all the theta-functions in G.25 evaluate to 1 (since the arguments of the
theta-functions are all located on a straight `Feynman' path joining x and x′ which
are both in A which is convex). This leads to the original matrix element of O G.24
which described the case with no restrictions. There are no extra terms corresponding
to particles located at x = 0.

Now, an observable corresponds to the hermitian operator is Oa = Oa + c.c., the
projected operator being OP

a = OP
a + c.c.. Their expectation values are given as

follows. For a general wavefunction Ψ(x)

〈Ψ|Oa|Ψ〉 =

∫ ∞
−∞

dx [Ψ∗(x)Ψ(x+ a) + Ψ∗(x+ a)Ψ(x)]

〈Ψ|OP
a |Ψ〉 =

∫ ∞
0

dx [Ψ∗(x)Ψ(x+ a) + Ψ∗(x+ a)Ψ(x)] (G.26)

Note that the projected operator merely restricts the range of the integral to x > 0 as
it should, and does not introduce any unwarranted boundary terms, unlike in G.21,
corresponding to particles located at x = 0.

The generalization to N > 1 can be done as follows. Consider the translation
operator Oa = exp[−iaTr Π̂] = exp[−ia

∑N
m=0 Π̂m]. This operator is obviously gauge-

invariant, since it involves Tr Π̂. In this case the above argument for N = 1 can be
straightforwardly generalized. The position space matrix elements ofOP

a again involve
a string of theta functions all located along a straight line from X = (x1, x2, ...) to
X ′ = (x1 + a, x2 + a, ...), which all evaluate to 1 if both X and X ′ are in region A,
i.e. both x1 and x1 + a are positive.

1We avoid here the possibility x = 0 by assuming that the partition demarcating the region
A does not fall on x = 0. This is equivalent to assuming a lattice structure of the real line such
that none of the sites falls exactly on 0, which is possible for any lattice separation, however small.
Presumably a similar reasoning can get rid of the boundary terms in G.21 as well.
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Now the reader may justi�ably point out that this is not the most general trans-
lation operator, since the above operator translates the point (x1, x2, ...) by the same
amount. This can be remedied by considering an operator exp[−iTr(AΠ̂)] which
evaluates to exp[−i

∑N
m=0 ammΠ̂m]. This clearly describes a most general translation.

The operator is not gauge invariant, however, since A is a �xed matrix. To make it
gauge invariant, one can sum over terms with Weyl-copies of A.2

We made these arguments in the context of a single matrix, but it is generalizable
to multiple matrices too.

The above considerations provide a proof of principle that if we replace the mo-
mentum operators by appropriately de�ned `translation' operators, then the problem
pointed out at the beginning of this subsubsection can be taken care of.

G.2 Multiple Matrices

For multiple matrices we have two possible subalgebras which correspond to a given
target space constraint.

A projector leading to the �rst sub-algebra is de�ned by (5.25), and the proce-
dure to construct operators which belong to the sub-algebra is explained in section
5.2.2.The gauge choice which makes the physics most transparent is the one where the
hermitian matrix f(X̂I) is chosen to be diagonal. In this subsection we will discuss
the simplest constraint where the function which appears in (5.25) is

F [X̂] = X1 (G.27)

As in the single matrix example, we �x a At = 0 gauge and �x the remaining time
independent gauge freedom by choosing X̂1 to be diagonal with diagonal elements are
λ̂i. The remaining symmetries are Weyl transformations which permute the eigen-
values and the matrix elements of the other matrices, and U(1)N transformations as
in (5.5) and (5.6). This symmetry is imposed by hand by adding the transforms in
the states, as in (5.7). As in the single matrix case, this is an eigenstate of the traced
operators of the form (5.31). Thus when ÔP1 acts on such a state, we can replace
the operators appearing in (5.31) by their eigenvalues which we denote by the matrix
without a hat.

Acting on a state where the λi for i = 1 · · · k are in the region A, the projected
version of the operator X̂I as de�ned in (5.28)

(XI)P1
ij =

∫
dx1δ(x1 − λi)XI

ij

∫
dx2(x2 − λj) =

{
XI
ij if i, j = 1 · · · k

0 if otherwise

Thus the projector projects each of the matrices to the k × k block, as depicted in
(5.32).

2In the previous paragraph, A = a1 which was automatically Weyl-invariant.
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Consider, for example, an operator Ô (as in (5.27) which is of the form O =
Tr(X̂IX̂JX̂K). The action of its projected version on a basis state is given by

ÔP1 |{λa}, {λα}{XL
ab}{XL

aα}{XL
αa}{XL

αβ}〉W

=
k∑

a1···a3=1

XI
a1a2

XJ
a2a3

XK
a3a1
|{λa}, {λα}{XL

ab}{XL
aα}{XL

αa}{XL
αβ}〉W (G.28)

This is an example of an operator of type (k,N − k) in the �rst proposal for a sub-
algebra in [21]. An operator belonging to this �rst sub-algebra has a non-trivial action
only on the λa, X

L
ab, L 6= 1 for a, b = 1 · · · k, as shown in (5.15). The reduced density

matrix which evaluates the expectation values of these operators is then obtained from
the density matrix ρtot of the whole system by tracing over the variables λα, X

I
aα, X

I
αβ.

This expression is given in (5.13)
A second sub-algebra was also de�ned which retains the o� diagonal matrices of

the type XL
aα. This is de�ned in equations (5.33) - (5.36) Acting on a state of the

form (5.7) where λi, i = 1 · · · k we then have

(XI)P2
ij =


XI
ij if i = 1 · · · k, j = 1 · · ·N

XI
ij if i = 1 · · ·N, j = 1 · · · k

0 otherwise

It is now straightforward to see that a projected operator has a non-trivial action
only on λa, X

I
ab, X

I
aα and XI

αa. This is an operator of type (k,N − k) in the second
subalgebra de�ned in [21], whose action is given in (5.16) The corresponding reduced
density matrix is given in (5.14)

Copyright© Sinong Liu, 2021.
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Appendix H
Polar Decomposition of Matrices

In this appendix we provide the details of the polar decomposition of multiple matri-
ces.

H.1 Two Matrices

For two matrices, the positive semi-de�nite matrix R̂ given by (5.44) is expressed in
terms of unitary matrices V̂ , Ŵ by (5.48). The inverse of the direct product matrix[
V̂ ⊗ V̂ ∗ + Ŵ ⊗ Ŵ ∗

]
in terms of a in�nite series as follows(

V̂ ∗ ⊗ V̂ + Ŵ ∗ ⊗ Ŵ
)−1

=V̂ T ⊗ V̂ †
(
I⊗ I + (Ŵ V̂ †)∗ ⊗ Ŵ V̂ †

)−1

=V̂ T ⊗ V̂ †
∞∑
n=0

(−1)n
[
(Ŵ V̂ †)∗ ⊗ Ŵ V̂ †

]n (H.1)

which proves (5.51) with the matrix Q̂ de�ned in (5.52).
Thus (ŝ2)kl can be solved by applying the relation (5.51)(

ŝ2
)
ij

=

[(
V̂ ∗ ⊗ V̂ + Ŵ ∗ ⊗ Ŵ

)−1
]
ij,kl

2
(
R̂2
)
kl

=2

[
∞∑
n=0

(−1)nV̂ T
[
(Ŵ V̂ †)∗

]n
⊗ V̂ †

[
Ŵ V̂ †

]n]
ij,kl

(
R̂2
)
kl

=2
∞∑
n=0

(−1)n
[
V̂ †
[
Ŵ V̂ †

]n]
ik

(
R̂2
)
kl

[[
(Ŵ V̂ †)†

]n
V̂
]
lj

(H.2)

which proves (5.53).
We now prove that the right hand side of (5.53) is positive semi-de�nite. Let {vi}

be the set of eigenvectors of Q̂. Because Q̂ is unitary, the eigenvalues of Q̂ take the
form

Q̂vi = eiφivi (H.3)

then we �nd the inner product

〈vi, 2

{
∞∑
n=0

(−1)n
[
Q̂†
]n
R̂2Q̂n

}
vi〉

=2
∞∑
n=0

(−1)n〈vi,
(
Q̂†
)n
R̂2Q̂nvi〉 = 2

∞∑
n=0

(−1)n〈Q̂nvi, R̂
2Q̂nvi〉

=2
∞∑
n=0

(−1)n〈vi, R̂2vi〉 = 〈vi, R̂2vi〉 > 0

(H.4)
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since R̂2 is positive semi-de�nite according to (5.44).
Since ŝ is positive semi-de�nite diagonal matrix, (ŝ2)ij = ŝ2

i δij, we can take the
square root of both sides of (5.53) to get

ŝ =
√

2V̂ †

{
∞∑
n=0

(−1)n
[
Q̂†
]n
R̂2Q̂n

}1/2

V̂ (5.53)

Plugging (5.53) back into (5.47) we obtain Ẑ,

Ẑ = V̂ ŝŴ † =
√

2

{
∞∑
n=0

(−1)n
[
Q̂†
]n
R̂2Q̂n

}1/2

V̂ Ŵ †

=
√

2

{
∞∑
n=0

(−1)n
[
Q̂†
]n
R̂2Q̂n

}1/2

Q̂

(H.5)

This proves (5.54), where the operation LV̂ is de�ned in (5.55). In terms of matrix
elements, the equation (5.54) can be written as

Ẑij =
√

2

{[(
I⊗ I + Q̂T ⊗ Q̂†

)−1
]
il,mn

(
R̂2
)
mn

}1/2

Q̂lj. (H.6)

The identity (5.56) follows from the de�nition (5.55),

V̂ †
(
LV̂ M̂

)2

V̂ +
(
LV̂ M̂

)2

=− 2
∞∑
n=1

(−1)n
(
V̂ †
)n
M̂2V̂ n + 2

∞∑
n=0

(−1)n
(
V̂ †
)n
M̂2V̂ n = 2M̂2,

(5.56)

we obtain (5.54).
We now explain the derivation of the integration measure (5.61). In the gauge

where R̂ is diagonal, as in (5.59), the expression for the complex matrix Ẑ is given by
(5.53) with R̂2 replaced by r̂2. In a Hilbert space basis where r̂i and Q̂ij are diagonal,
the measure is given by (5.60). Parametrizing Q as in (5.61) we have

dQ = U
(
deiΦ −

[
eiΦ, U †dU

])
U † (H.7)

where we have used the identity dU † = −U †dUU †. Then de�ne

dS ≡ U †dU (5.62)

We can see that dS† = −dS. Then the line element becomes

tr
(
dQdQ†

)
= tr

{
deiΦde−iΦ +

[
eiΦ, dS

] [
e−iΦ, dS

]}
=
∑
i

dφ2
i + 2

∑
ij

eiφidSije
−iφjdSji − 2

∑
ij

dSijdSji

=
∑
i

dφ2
i + 8

∑
i<j

sin2 φi − φj
2

dSijdS
∗
ij

(5.63)
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This implies that we can choose dSii = 0. Now we have metric ds2 = gABdx̄
AdxB

with dxA =
(
dφi, dSij(i<j), dS

∗
ij(i<j)

)
, where

gAB =

1 0 0

0 4 sin2 φi−φj
2

0 0 4 sin2 φi−φj
2

 (H.8)

The determinant of g is

det gAB =
∏
i<j

(
4 sin2 φi − φj

2

)2

(H.9)

Thus ∏
ij

[dQij] =
√

det gAB
∏
i

dφi
∏
i<j

dSijdS
∗
ij (H.10)

The �nal expression (5.64) follows when we use this in (5.60). To ensure that the
variables ri, φi cover the R2 formed by X1, X2 once we see that the ranges of the
angles φi are

−π < φi < π, i = 1, · · · , N (H.11)

H.2 Three Matrices

Now consider three matrices X̂1, X̂2, X̂3, with R̂ de�ned by (5.68). To obtain a polar
decomposition we �rst form a complex matrix as follows

Ŷ ≡
√

(X̂1)2 + (X̂2)2 + iX̂3 (H.12)

so that
2R̂2 = Ŷ Ŷ † + Ŷ †Ŷ (H.13)

We can now use the procedure we used for two matrices to write

Ŷ =
√

2

{
∞∑
n=0

(−1)n
(
Q̂†1

)n
R̂2Q̂n

1

}1/2

Q̂1 =
(
LQ̂1

R̂
)
Q̂1 (H.14)

where Q̂1 is a unitary matrix. Therefore, in manner analogous to (5.57) we get

√
(X̂1)2 + (X̂2)2 =

Ŷ + Ŷ †

2
=

(
LQ̂1

R̂
)
Q̂1 + Q̂†1

(
LQ̂1

R̂
)

2
(H.15)

X̂3 =
Ŷ − Ŷ †

2i
=

(
LQ̂1

R̂
)
Q̂1 − Q̂†1

(
LQ̂1

R̂
)

2i
(H.16)

The next step is to consider the X̂1, X̂2 exactly as in the two matrix example in the
previous subsection,

Ẑ ≡ X̂1 + iX̂2 (H.17)
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Then we have

(X̂1)2 + (X̂2)2 =
ẐẐ† + Ẑ†Ẑ

2
(H.18)

Since (H.15) implies

(X̂1)2 + (X̂2)2 =
1

4

[(
LQ̂1

R̂
)
Q̂1 + Q̂†1

(
LQ̂1

R̂
)]2

(H.19)

it is clear we need to introduce another unitary matrix Q̂2 to write

Ẑ =
1

2

[
LQ̂2

(
(LQ̂1

R̂)Q̂1 + Q̂†1(LQ̂1
R̂)
)]
Q̂2 (H.20)

This construction is exactly like (5.54) with the replacements

Q̂→ Q̂2 R̂→ 1

2

[
(LQ̂1

R̂)Q̂1 + Q̂†1(LQ̂1
R̂)
]

(H.21)

Finally one can express X̂1, X̂2 in terms of Ẑ and Q2 and use (H.20) to rewrite these
in terms of R̂, Q̂1, Q̂2, while X̂3 is already expressed in terms of these in (H.16). This
leads to (5.67). Finally one can check (5.68) directly,

(X̂1)2 + (X̂2)2 =
1

2

LQ̂2

(
LQ̂1

R̂
)
Q̂1 + Q̂†1

(
LQ̂1

R̂
)

2

2

+
1

2
Q̂†2

LQ̂2

(
LQ̂1

R̂
)
Q̂1 + Q̂†1

(
LQ̂1

R̂
)

2

2

Q̂2

=


(
LQ̂1

R̂
)
Q̂1 + Q̂†1

(
LQ̂1

R̂
)

2

2

(H.22)

Thus

(X̂1)2 + (X̂2)2 + (X̂3)2 =


(
LQ̂1

R̂
)
Q̂1 + Q̂†1

(
LQ̂1

R̂
)

2

2

+


(
LQ̂1

R̂
)
Q̂1 − Q̂†1

(
LQ̂1

R̂
)

2i

2

=
1

2

(
LQ̂1

R̂
)2

+
1

2
Q̂†1

(
LQ̂1

R̂
)2

Q̂2 = R̂2

(5.68)

To �nd the ranges of integration let us now work in a Hilbert space basis which
are eigenstates of r̂i and the (Q̂1)ij, (Q̂2)ij with eigenvalues ri, (Q1)ij, (Q2)ij. Unlike
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the case of two matrices we now have additional constraints on Q1. This is because√
(X1)2 + (X2)2 should be positive semi-de�nite. That is,

(LQ1R)Q1 +Q†1 (LQ1R)

2
> 0 (H.23)

Now let the set of eigenvectors of Q1 be {vi} so that Q1vi = ei(φ1)ivi. Then

0 <
1

2
〈vi,

[
(LQ1R)Q1 +Q†1 (LQ1R)

]
vi〉 =

1

2
[〈vi, (LQ1R)Q1vi〉+ 〈(LQ1R)Q1vi, vi〉]

=
1

2

[
ei(φ1)i〈vi, (LQ1R) vi〉+ e−i(φ1)i〈(LQ1R) vi, vi〉

]
= cos(φ1)i〈vi, (LQ1R) vi〉

(H.24)

since LQ1R is Hermitian. Given that LQ1R is positive semi-de�nite, i.e. 〈vi, (LQ1R) vi〉,
we have

cos(φ1)i > 0 (H.25)

for i = 1, · · · , N . This means we need to restrict the range of the (φ1)i's

−π
2
≤ (φ1)i ≤

π

2
(H.26)

On the other hand, there is no condition on the eigenvalues of Q2. These conditions
lead to (5.70), and the measure of integration is (5.71).

H.3 More Matrices

Repeating using the strategy shown in (5.54), we can transfer matrices {X̂I}I=1,··· ,D

into {R̂; Q̂A}A=1,··· ,D−1. The transformation is similar to D-spherical coordinates

xD = r sin(ϕ1)

xD−1 = r cos(ϕ1) sin(ϕ2)

xD−2 = r cos(ϕ1) cos(ϕ2) sin(ϕ3)

...

x2 = r cos(ϕ1) · · · cos(ϕD−2) sin(ϕD−1)

x1 = r cos(ϕ1) · · · cos(ϕD−2) cos(ϕD−1).

(H.27)

with

r sinϕ→

(
LQ̂R̂

)
Q̂− Q̂†

(
LQ̂R̂

)
2i

, r cosϕ→

(
LQ̂R̂

)
Q̂+ Q̂†

(
LQ̂R̂

)
2

(H.28)

In a Hilbert space basis which are eigenstates of r̂i and the (Q̂A)ij with eigenvalues
ri, (QA)ij, we still need to �nd out the constraints on {R;QA}A=1,··· ,D−1. Firstly,
according to the argument in section H.1, we can always choose R to be positive
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semi-de�nite since it appears in the form of R2. Moreover, according to (H.4), we
can always choose

LQ1R =
√

2

{
∞∑
n=0

(−1)n
(
Q†
)n
R2Qn

}1/2

> 0 (H.29)

Now we consider {QA}A=1,··· ,D−1. Notice that in (H.27) we have

ϕA ∈
{

(−π/2, π/2) A = 1, ..., D − 2
(−π, π) A = D − 1

(H.30)

to avoid counting the space repeatedly. Then in matrix case, we should have similar
conclusion that if we de�ne

RA+1 ≡
(LQARA)QA +Q†A (LQARA)

2
, A = 1, ..., D − 2, (H.31)

R1 ≡ R, (H.32)

then RA, A = 1, ..., D − 1 are all positive semi-de�nite.
We use Mathematical induction to derive the constraints on QA, A = 1, ..., D− 2:

1. R1 = R is positive semi-de�nite;

2. Assume RA is positive semi-de�nite. Then we have LQARA positive semi-
de�nite according to (H.4).

Now for RA+1, let {(vA)i} be the set of eigenvectors of QA, i.e. QA(vA)i =
qA(vA)i. Then for the complete set formed by {uA}:

0 <〈(vA)i, RA+1(vA)i〉 =
1

2
〈(vA)i, (LQARA)QA +Q†A (LQARA) (vA)i〉

=
1

2
〈(LQARA)QA(vA)i, (vA)i〉+

1

2
〈(vA)i, (LQARA)QA(vA)i〉

= Re qA〈(vA)i, (LQARA) (vA)i〉

(H.33)

Thus given that LQARA is positive semi-de�nite i.e. 〈(vA)i, (LQARA) (vA)i〉 > 0,
we have Re qA > 0 i.e. QA is positively stable. Because the eigen-basis of QA

forms a complete set, when RA+1, RA, QA are all N ×N matrices, it should be
a necessary and su�cient condition.

From 1◦ and 2◦, we can show that QA, A = 1, ..., D−2 should be positively stable.
Because QA are unitary matrices, their eigenvalues have the form

QA ≡ UAe
iΦAU †A, ΦA = diag[(φA)1, (φA)2..., (φA)N ] (H.34)

Thus "positively stable" means that

Re ei(φA)i = cos(φA)i > 0, i = 1, ..., N ;A = 1, ..., D − 2 (H.35)
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The conditions of ΦA, A = 1, ..., D − 1 are

φAi ∈
{

(−π/2, π/2) A = 1, ..., D − 2
(−π, π) A = D − 1

i = 1, ..., N (5.73)

As a result, the measure of integration is[
D∏
I

dXI

]
=J(ri, (φA)i, (SA)ij)

×
∏
i

dri

D−1∏
A=1

[∏
i

d(φA)i
∏
i<j

[4 sin2(
(φA)i − (φA)j

2
)d(SA)ijd(S?A)ij]

]
(H.36)

where
dSA ≡ U †AdUA, A = 1, ..., D − 1 (H.37)

Copyright© Sinong Liu, 2021.
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Appendix I
DBI+CS action for probe D0 brane

Consider a probe D0 brane moving in the near-horizon background (5.80) produced
by a stack of N other D0 branes. The action is given by the Dirac-Born-Infeld and
Chern-Simons action. In the static gauge this is given by

S = − 1

gsls

∫
dt
[
e−φ
√
−g00 − gIJ ẋI ẋJ + 2A0

]
(I.1)

where the metric gµν , the dilaton φ and the 1-form gauge �elds are given in (5.80).
De�ning the velocity v by

v2 ≡ δIJ∂tx
I∂tx

J (I.2)

we expand the action in powers of v. This gives

S =

∫
dt

[
1

2Rs

v2 +
15

16

N

R3
sM

9
p

v4

r7
+

225

64

N2

R5
sM

18
p

v6

r14
+ · · ·

]
− 1

Rs

∫
dt (I.3)

where we have used (5.81) and (5.82) and expressed the coe�cients in terms of M
theory quantities

Rs = gsls `p = g1/3
s ls M−9

p = (2π)3`9
p = (2π)3g3

s l
9
s (I.4)

The action (I.3) is in precise agreement with the action of a 11 dimensional graviton
with light cone momentum p− = 1/Rs in the presence of another graviton with mo-
mentum p− = N/Rs. The same action is obtained from the matrix theory calculation.
For more details of the latter calculation see [289], section 12.2.

Copyright© Sinong Liu, 2021.
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