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Résumé : Parmi les représentations autorisées de la
supersymétrie étendue en six dimensions, il existe des
multiplets chiraux “exotiques” contenant des tenseurs
mixtes de spin deux au lieu d’un graviton convention-
nel. En particulier, le multiplet N = (4, 0) contient un
graviton exotique à quatre indices, et il a été conjec-
turé qu’une théorie en interaction basée sur ce multi-
plet apparaît dans la limite à couplage fort de la théo-
rie M compactifiée sur T 6. La première partie originale
de cette thèse présente une étude algébrique de ces
multiplets et leur plongement possible dans le cadre
de la “théorie des champs exceptionnelle” ; un résul-
tat important est que les impulsions six-dimensionnelles
ne correspondent pas à une section conventionnelle de
l’espace-temps. Compactifiés sur un cercle, ces multi-
plets donnent lieu aux mêmes degrés de liberté que
ceux de la supergravité en cinq dimensions avec le
même nombre de supersymétries. Cependant, en consi-
dérant les anomalies et la génération de couplages de
Chern-Simons, nous avons des raisons de douter que
leur dynamique reproduit celle des supergravités en

cinq dimensions. Nous proposons une réalisation dif-
férente, similaire à celle de la théorie F : les espaces-
temps fibrés par un tore T 3 de volume fixe y jouent
un rôle important et suggèrent que la dynamique de
la supergravité n’émergerait qu’en compactifiant vers
trois dimensions. Ces multiplets exotiques contiennent
aussi des champs de tenseurs-spineurs antisymétriques
de rang deux. Dans la dernière partie de cette thèse, la
quantification de champs de tenseurs-spineurs antisy-
métriques ψα

µ1...µp
généraux, de rang et en dimension

arbitraires, est effectuée en utilisant le formalisme des
antichamps de Batalin et Vilkovisky. Comme dans le
cas du gravitino (p = 1), un fantôme dynamique de
Nielsen-Kallosh apparaît dans les jauges Gaussiennes
contenant un opérateur différentiel. L’apparition de ce
“troisième fantôme” est décrite dans le formalisme BV
pour une théorie de jauge réductible arbitraire. Finale-
ment, le spectre de fantômes est utilisé en conjonction
avec le théorème de l’indice d’Atiyah et Singer pour
calculer les anomalies gravitationnelles de ces champs.
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Anomalies

Abstract : Among the allowed representations of ex-
tended supersymmetry in six dimensions there are exo-
tic chiral multiplets that, instead of a graviton, contain
mixed-symmetry spin-2 tensor fields. Notably, the N =
(4, 0) multiplet has a four index exotic graviton and it
was conjectured that an interacting theory based on
this multiplet could arise as a strong coupling limit of
M theory compactified on T 6. We present an algebraic
study of these multiplets and their possible embedding
into the framework of exceptional field theory, finding
in particular that the six-dimensional momenta do not
correspond to a conventional spacetime section. When
compactified on a circle, the six-dimensional multi-
plets give rise to the same degrees of freedom as five-
dimensional supergravity theories with the same num-
ber of supersymmetries. However, by considering ano-
malies and the generation of Chern-Simons couplings,
we find reason to doubt that their dynamics will agree

with the five-dimensional gravity theories. We propose
an alternative picture, similar to F-theory, in which par-
ticular fixed-volume T 3-fibered spacetimes play a cen-
tral role, suggesting that only on compactification to
three-dimensions will one make contact with the dyna-
mics of supergravity. In these exotic multiplets, there
are also rank two antisymmetric tensor-spinors. In the
last part of the thesis, we perform the quantisation
of general antisymmetric tensor-spinors ψα

µ1...µp
using

the Batalin-Vilkovisky field-antifield formalism for any
p and in arbitrary dimensions. Just as for the gravitino
(p = 1), an extra propagating Nielsen-Kallosh ghost
appears in quadratic gauges containing a differential
operator. The appearance of this “third ghost” is des-
cribed within the BV formalism for arbitrary reducible
gauge theories. We then use the resulting spectrum of
ghosts and the Atiyah-Singer index theorem to com-
pute gravitational anomalies.



To my beloved parents, for their unconditional love, support and encouragement.

iii





Acknowledgements

First of all, I would like to express my deepest gratitude to my thesis supervisor, Ruben Minasian.
The whole journey of my PhD has not been easy, and there are ups and downs. During all the
time, Ruben was always on my side and always tried to guide me. Whenever I was in trouble, his
advice and comfort was the best antidote. Our pleasant conversations are not limited to scientific
research but also involve all aspects of life. Without him, the goal of my PhD would not have been
realized.

I am particularly thankful for the consistent support and help from my parents. As someone
who dropped out of medicine and switched to theoretical physics, I never heard a single word of
complaint from them about my choices. They always chose to believe in me, encourage me and
support me. This has been invaluable to me.

I am also in debt to my two other collaborators, Charles Strickland-Constable and Victor Lekeu.
Both gave me tremendous amount of help in carrying out the research projects. I have my special
thanks to Victor, who helped me a lot while I was writing my dissertation and also read through
it meticulously.

During my stay in Paris, I am grateful to those who have also given me academic advice and
who have been willing to listen to me, they are Costas Bachas, Iosif Bena and Guillaume Bossard.
I am also grateful to the directors and secretary of Institut de Physique Théorique (IPhT) and
other colleagues who make the heavy administrative work went smoothly, which allows me to focus
better on my research.

I would like to thank Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) at
Golm, Potsdam for its hospitality. I wish all the best for the friends there. I owe special thanks
to Franz Ciceri, André Coimbra, Anamaria Font, Jorjadze, George, Hadi Godazgar, Axel Klein-
schmidt, Nikita Misuna, Hermann Nicolai and Stefan Theisen.

I would like to acknowledge Federico Bonetti, Leron Borsten, Marc Henneaux, Chris Hull and
Daniel Waldram for useful discussions throughout my doctoral research.

Finally, I would like to thank all the friends that I have spent time with in Paris, Potsdam and
Berlin, including Jing Cao, Lilian Chabrol, Yifan Chen, Peng Cheng, Senwen Deng, Zhihao Duan,
Xiao Fan, Gwenaël Ferrando, Hao Fu, Dongsheng Ge, Mengzi Huang, Zihao Huang, Grégoire
Josse, Meng Kou, Songyuan Li, An Qu, Jiaxin Qiao, Yichen Qin, Keyu Wang, Heng Li, Junkang
Li, Xiyuan Liu, Xuan Liu, Daheng Min, Yi Pan, Jian Qian, Zicheng Qian, Steven Schulz, Ran Sun,
Yijun Wan, Qun Wang, Yiqiao Wang, Shengquan Xiang, Tianshuo Xu, Fan Yang, Kang Yang,
Chao Zhang, Haowen Zhang, Zhiyuan Zhang, Zeyu Zhao, Zechuan Zheng, Jihong Zhu, Tunan Zhu
and Deliang Zhong . . ., the list can be endless and I have no way of naming them all. It is them
who made my entire PhD less tedious and more enriching, and our interactions have become some
of the best memories of my life.





Contents

Acknowledgements v

Abstract ix

Résumé xi

Introduction 1

Synthèse en français 9

I Exotic supermultiplets in six dimensions 17

1 The exotic multiplets and exotic tensor fields 19
1.1 The massless multiplets of the six dimensional maximal supersymmetry . . . . . . 19
1.2 The exotic tensor fields and dualities . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1 Some gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 The dual formulations of linearised gravity . . . . . . . . . . . . . . . . . . 27

II On dynamics of the exotic multiplet 29

2 The algebraic approach 31
2.1 An almost universal construction of the maximal supersymmetry algebras . . . . . 32
2.2 Spin embeddings into higher dimensional Clifford algebras . . . . . . . . . . . . . . 33

2.2.1 Different embeddings of Spin(s+ 1, t) into Cliff(s+N, t) . . . . . . . . . . 33
2.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Irreducible decomposition of charges . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Dimensional splits, hidden symmetries and the 6d space . . . . . . . . . . . . . . . 36
2.4 Charges in E8(8) and the triplet of SO(3) . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Interpretation of SL(3,R)× E6(6) inside E8(8) . . . . . . . . . . . . . . . . . . . . . 42
2.6 Exotic gravity with less supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 N = (2, 0) supersymmetry and SO(8, 8 + n) . . . . . . . . . . . . . . . . . . 45
2.6.2 N = (1, 0) supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Chern-Simons couplings and anomalies 49
3.1 Anomalies of exotic multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Consistent anomaly and descent equations . . . . . . . . . . . . . . . . . . . 49
3.1.2 Anomalies in standard supergravity fields . . . . . . . . . . . . . . . . . . . 51
3.1.3 Anomalies for product multiplets . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Index densities of exotic Dirac operators . . . . . . . . . . . . . . . . . . . 54
3.1.5 Anomalies of the exotic multiplets with different supersymmetries . . . . . 58
3.1.6 The Lagrangian for the exotic gravitino anomaly computation . . . . . . . . 59

3.2 Five-dimensional Chern-Simons interactions . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 Testing the (4,0) multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



3.2.2 Testing the (3,1) multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Evidence for h-theories 65
4.1 SD Weyl field on R3 × T 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 The SL(3,R)/SO(3) sigma-model and the SD Weyl field . . . . . . . . . . . . . . . 67

III On quantisations and anomalies of fermionic p-forms 71

5 Introduction to the Batalin-Vilkovisky (BV) formalism 73
5.1 Gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 The Field-Antifield formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 The Antifields and the Antibracket . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 The Proper Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The gauge-fixing fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Gauge-fixing for irreducible theories and the Nielsen-Kallosh ghost . . . . . . . . . 80
5.5 Gauge-fixing for first-stage reducible theories and the “third ghost” . . . . . . . . . 82
5.6 Higher stage reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Free fermionic p-form fields 89
6.1 Review: the BV quantisation of the Rarita-Schwinger Lagrangian . . . . . . . . . . 89
6.2 Quantisation of the fermionic 2-form . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Quantisation of fermionic p-forms (a general case) . . . . . . . . . . . . . . . . . . 95
6.4 Gravitational anomalies of antisymmetric tensor-spinors . . . . . . . . . . . . . . . 99

Conclusion 105

Appendices 107

A Conventions for the exotic multiplets and tensor fields 107
A.1 6d spinors and gamma matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Constructions of the chiral multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2.1 N = (1, 0) multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2.2 N = (2, 0) multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.2.3 N = (4, 0) multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.3 Young diagrams and Young tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B Conventions and useful formulae 113
B.1 More on Cliff(10, 1;R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2 Conventions for anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.3 Decomposition of the (anti-)self-dual field strength . . . . . . . . . . . . . . . . . . 116
B.4 Computational details for section 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.5 Independent components of SD Weyl field strength . . . . . . . . . . . . . . . . . . 118
B.6 A explicit example for the computation of the trace formulas . . . . . . . . . . . . 119

Bibliography 121



Abstract

Among the allowed representations of extended supersymmetry in six dimensions there are exotic
chiral multiplets that, instead of a graviton, contain mixed-symmetry spin-2 tensor fields. Notably,
the N = (4, 0) multiplet has a four index exotic graviton and it was conjectured that an interacting
theory based on this multiplet could arise as a strong coupling limit of M theory compactified on
T 6. We present an algebraic study of these multiplets and their possible embedding into the
framework of exceptional field theory, finding in particular that the six-dimensional momenta
do not correspond to a conventional spacetime section. When compactified on a circle, the six-
dimensional multiplets give rise to the same degrees of freedom as five-dimensional supergravity
theories with the same number of supersymmetries. However, by considering anomalies and the
generation of Chern-Simons couplings, we find reason to doubt that their dynamics will agree with
the five-dimensional gravity theories. We propose an alternative picture, similar to F-theory, in
which particular fixed-volume T 3-fibered spacetimes play a central role, suggesting that only on
compactification to three-dimensions will one make contact with the dynamics of supergravity. In
these exotic multiplets, there are also rank two antisymmetric tensor-spinors. In the last part
of the thesis, we perform the quantisation of general antisymmetric tensor-spinors ψαµ1...µp using
the Batalin-Vilkovisky field-antifield formalism for any p and in arbitrary dimensions. Just as for
the gravitino (p = 1), an extra propagating Nielsen-Kallosh ghost appears in quadratic gauges
containing a differential operator. The appearance of this “third ghost” described within the BV
formalism for arbitrary reducible gauge theories. We then use the resulting spectrum of ghosts
and the Atiyah-Singer index theorem to compute gravitational anomalies.





Résumé

Parmi les représentations autorisées de la supersymétrie étendue en six dimensions, il existe des
multiplets chiraux “exotiques” contenant des tenseurs mixtes de spin deux au lieu d’un graviton con-
ventionnel. En particulier, le multiplet N = (4, 0) contient un graviton exotique à quatre indices, et
il a été conjecturé qu’une théorie en interaction basée sur ce multiplet apparaît dans la limite à cou-
plage fort de la théorie M compactifiée sur T 6. La première partie originale de cette thèse présente
une étude algébrique de ces multiplets et leur plongement possible dans le cadre de la “théorie
des champs exceptionnelle”; un résultat important est que les impulsions six-dimensionnelles ne
correspondent pas à une section conventionnelle de l’espace-temps. Compactifiés sur un cercle,
ces multiplets donnent lieu aux mêmes degrés de liberté que ceux de la supergravité en cinq di-
mensions avec le même nombre de supersymétries. Cependant, en considérant les anomalies et la
génération de couplages de Chern-Simons, nous avons des raisons de douter que leur dynamique
reproduit celle des supergravités en cinq dimensions. Nous proposons une réalisation différente,
similaire à celle de la théorie F: les espaces-temps fibrés par un tore T 3 de volume fixe y jouent un
rôle important et suggèrent que la dynamique de la supergravité n’émergerait qu’en compactifiant
vers trois dimensions. Ces multiplets exotiques contiennent aussi des champs de tenseurs-spineurs
antisymétriques de rang deux. Dans la dernière partie de cette thèse, la quantification de champs
de tenseurs-spineurs antisymétriques ψαµ1...µp généraux, de rang et en dimension arbitraires, est ef-
fectuée en utilisant le formalisme des antichamps de Batalin et Vilkovisky. Comme dans le cas du
gravitino (p = 1), un fantôme dynamique de Nielsen-Kallosh apparaît dans les jauges Gaussiennes
contenant un opérateur différentiel. L’apparition de ce “troisième fantôme” est décrite dans le
formalisme BV pour une théorie de jauge réductible arbitraire. Finalement, le spectre de fantômes
est utilisé en conjonction avec le théorème de l’indice d’Atiyah et Singer pour calculer les anomalies
gravitationnelles de ces champs.





Introduction

It has been proposed that a strong coupling limit of five-dimensional quantum N = 8 supergravity
in which the Planck length becomes infinite could give a six-dimensional superconformal phase
of M-theory [1–3]. Moreover, for the free theory this limit has been argued to be given by a
six-dimensional theory with maximal N = (4, 0) supersymmetry. This theory is conformal and
hence has no length scales. When put on a circle, the compactification scale R becomes the
five-dimensional Planck scale. Clearly, understanding such a limit would require radically new
ideas and these would be important for our overall understanding of the gravitational physics
of M-theory. In recent years, there has been a revival of interest in this area, producing many
interesting developments and new approaches [4–19].

However, regardless of the implications for M theory, at the level of supermultiplets, the (free)
multiplet with N = (4, 0) supersymmetry certainly exists [20] and has 32 supersymmetries and 32
conformal supersymmetries. Its dimensional reduction has the same degrees of freedom and the
same field content as the maximal supergravity in five dimensions. The latter theory has E6(6)

global symmetry, and in addition to the graviton has 27 vector and 42 scalar fields, as well as
eight gravitini and 48 spin 1/2 fermions. It has been suggested that the former has the same
E6(6) symmetry, such that the fields appear in similar representations. Instead of gravity (rank
two symmetric field) it has a rank four tensor gauge field with the symmetries of the Riemann
tensor. Due to self-duality constraints on its double field strength this field has five degrees of
freedom (just like the five-dimensional graviton) and its dimensional reduction gives conventional
linearised gravity in five dimensions [1]. Similarly, instead of 27 five-dimensional vectors, the (4, 0)
multiplet has 27 self-dual tensors.1 In either case there are 27 × 3 degrees of freedom. The 48
spin 1/2 fermions simply become chiral fermions in six dimensions. Finally, the eight gravitini
(vector-spinor fields) are replaced by eight2 “exotic gravitini” ψµν , spinor-valued two-forms with
self-duality constraint on their field strength.3

In fact, the (4, 0) multiplet is not the only exotic six-dimensional theory. There exists also a
(3, 1) multiplet, where the self-duality constraints are partial, and from examining the scalar degrees
of freedom one might guess that the symmetry governing the theory is F4(4). The multiplet has a
rank 3 self-dual tensor field, and 28 scalars which could lie in the tangent space to the symmetric
space F4(4)/Sp(2)×Sp(6). However, the 14 vector fields and 12 self-dual tensors only form the 26
representation of F4(4) when combined together. This suggests that in fact only the R-symmetry
group Sp(2) × Sp(6) (and not the full F4(4)) would be a true symmetry. This could make one
suspicious as to whether E6(6) would be a true symmetry of the N = (4, 0) theory, and we will
see some indications that it may indeed not be. As these symmetries do not follow directly from
the supermultiplets, but appear only in the construction of the associated theories, the absence of
a complete construction of the (4, 0) theory means that one cannot be sure. However, a simple
argument in favour of the E6(6) symmetry is that the scalars of the 5d maximal supergravity are
all lifted to scalars in 6d. Thus naively one would expect the 5d transformations of them also to
lift to 6d. The fermionic fields of the (3, 1) multiplet comprise two exotic gravitini, six standard
gravitini of negative chirality, 28 spin 1/2 fermions of positive chirality and 14 spin 1/2 fermions of

1In our conventions, the six-dimensional (2, 0) gravity multiplet has five anti-self-dual tensor fields, while the
(2, 0) tensor multiplets have self-dual tensors.

2We count the four quaternionic fields as eight complex fields and will use similar counting throughout.
3Like in much of the literature, the fields in (4, 0) and (3, 1) multiplets that do not appear in ordinary gravity or

matter multiplets, but have direct counterparts, i.e. like eight spinor-valued two forms in (4, 0) vs eight gravitini in
(2, 2), will be labeled as “exotic”. Due to its properties, for the exotic graviton in (4, 0) multiplet the self-dual Weyl
(SDW) label will also be used.



2 Introduction

negative chirality. The exotic and conventional gravitini reduce to give the eight standard gravitini
in five dimensions, while the spin 1/2 fermions of either chirality simply reduce to five dimensional
spin 1/2 fields.

Finally, the exotic fields can appear in multiplets with less supersymmetry. These can be
constructed via the usual representation-theoretic arguments. An alternative is to consider the
decomposition of the maximally supersymmetric multiplets. For example, as we shall discuss, the
(4, 0) multiplet decomposes into an exotic (2, 0) gravity multiplet as well as 4 exotic (2, 0) gravitino
multiplets and 5 (2, 0) tensor multiplets. This decomposition is very similar to the decomposition
of the maximal (2, 2) six-dimensional supergravity. This can be decomposed into (2, 0) multiplets:
one gravity, 4 gravitino and 5 tensors.4

One useful perspective on these multiplets is given by the fact that they can be seen as square
or product theories [4, 8, 10], in analogy to the linearised maximal supergravity in six dimensions,
i.e. the (2, 2) theory being the square of the six-dimensional super Yang-Mills. In the same vein,
the (4, 0) multiplet can be seen as a square of (2, 0) tensor multiplets, while the (3, 1) theory - as a
product of a (2, 0) multiplet with a (1, 1) vector one. Similar product structures appear in the exotic
theories with less supersymmetry. While much of the interest in double copy constructions comes
from the computation of amplitudes in perturbation theory [21–23] (see [24] for a review) there have
also been developments in off-shell field theoretical realisations [5–8,25–27] and the construction of
classical solutions [28–32]. Unfortunately in our case of interest, the strongly coupled theory has
no perturbative expansion and there may also be no classical limit with interactions, limiting the
direct usefulness of these constructions.

Algebraic aspects

Two main questions that preoccupy us in this thesis concern the algebraic symmetry-based
reasons behind the existence of the the exotic multiplets and the possibility of probing the existence
of interacting forms of these exotic theories (as well as their existence on non-flat spaces). Some
of the arguments here can be made for both (4, 0) and (3, 1) multiplets, and some are specific only
to (4, 0).

Much of the algebraic discussion in chapter 2 takes place in the context of the U-duality groups
and their relation to the corresponding superalgebras. In particular, we will use the language of
generalised geometry [33–35] and exceptional field theory [36–38], discussing the charges appearing
in the supersymmetry algebra as generalised vectors in a generalised tangent space which transforms
as a linear representation under the relevant U-duality group. In order to avoid encountering infinite
dimensional duality algebras, we will work with dimensional splits of the theories considering three
external dimensions separately from the rest.

As we will discuss in section 2.1, all supersymmetry algebras with 32 supercharges arise from
a particular superalgebra A (with bosonic subalgebra sl(32,R) n R528) by restricting sl(32,R) to
different spin(d−1, 1) subalgebras. For example, one can obtain the superalgebras of 11d, type IIA
and type IIB supergravities from this prescription. On performing a dimensional split, decomposing
say spin(9, 1)→ spin(3, 1)×spin(6) in type IIA or IIB, one can see how the resulting spin(6) group
would act on the charges appearing in the generalised tangent space of the supergravity theory on
the internal Euclidean signature part. In this way, merely requiring the chiralities of the fermions
present in type IIA and type IIB implies that one requires Ed(d)-inequivalent “sections” (in the
language of exceptional field theory) of the generalised tangent space to correspond to the physical
momenta in spacetime for the two theories. For the particular case of type IIA vs type IIB,
these inequivalent sections (or inequivalent embeddings of the general linear group into the U-
duality group) have been discussed extensively in the literature [33,35,36,39]. A similar discussion
of sections for half-maximal supersymmetry can be found in [40], where it was concluded that
inequivalent sections gave the N = (1, 1) and N = (2, 0) supergravities in six dimensions (the
former section extending to type I in ten dimensions).

Similarly, one can explore what happens if one instead requiresN = (4, 0) supersymmetry in six-
dimensions from the decomposition. We examine the intersection of the relevant Spin(5, 1) group
with the generalised spin group Spin(2, 1) × SO(16). Under the common subgroup Spin(2, 1) ×

4It is not hard to verify that even if individual multiplets are chiral the whole combination is not - for every
chiral fermion or self-dual field there is another with the opposite chirality or anti-self-duality.
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Spin(3) we observe how the charges in the generalised tangent space are grouped into irreducible
representations of the Spin(3) factor and of the SL(3,R) ⊂ SL(9,R) ⊂ E8(8) which contains it. This
reveals a very different behaviour to the normal situation in generalised geometry or exceptional
field theory.

The root of this difference lies partly in the fact that in E8(8), the charges appearing in the
supersymmetry algebra do not span the full 248 representation in which the generalised vector
transforms, but rather only the 120 part under its SO(16) subgroup. Under the direct embed-
ding into the 248, the momentum charges do not satisfy the section condition, even in standard
supergravity.

The Spin(3) triplet of momentum charges of the (4, 0) supersymmetry algebra thus embed into
the generalised vector as a triplet of SO(3), which consists of two of the momenta that would
be present in the conventional reduction of five-dimensional supergravity to three dimensions,
plus part of the dual graviton charge, much as expected from [1]. However, under the SL(3,R)
subgroup containing this SO(3), these three charges are combined with five others to form an
octuplet. Ordinarily, in supergravity one would expect them rather to be contained in a subspace
of the sum of two triplets, a space in which one could identify an SL(3,R) triplet solving the section
condition. Here, this is not the case, and there is no such section. Further, this SL(3,R) subgroup
is related to that of N = (2, 2) supergravity by a transformation in SL(9,R) ⊂ E8(8), so any such
section would be equivalent to the standard one anyway.

Nonetheless, we go on to examine the decomposition of the generalised vector and the adjoint
of E8(8) under SL(3,R) × E6(6), noting that if we had enhanced SL(3,R) to GL(3,R) as one
would usually in standard supergravity, this would break the E6(6) commutant to SO(5, 5). We
then look at these decompositions and attempt to apply the naive algebraic prescription (usually
imagined only in the context of supergravity – see e.g. [35] for a discussion) to extract the field
content of a parent six-dimensional theory. We find that, with suitable identifications, this matches
exactly what one would expect from the N = (4, 0) multiplet, though questions remain over
whether one must decompose under SO(3) ⊂ SL(3,R) and Sp(8) ⊂ E6(6) in order to make these
identifications. Indeed, the algebraic construction of the generalised Lie derivative in flat space
appears to reproduce a formula for the gauge transformation of the exotic graviton, which reassures
us that our identification of the spacetime directions inside the generalised tangent space, together
with the fields and charges, is somewhat correct.

h-theories

Of course, one can wonder if there is more to these multiplets than simply their algebraic
properties. They stand out as multiplets with highest-spin ≤ 2 which do not appear in stan-
dard supergravity theories, their decompositions under sub-superalgebras and compactifications
or their matter multiplets. We shall present arguments that the fact that the conjectured (4, 0)
symmetry group E6(6) has an SL(3,R) commutant inside the three-dimensional symmetry group
E8(8) serves not only as a helpful technical tool, but is closely connected to the very existence
of the six-dimensional theory with E6(6) symmetry. Correspondingly, the symmetry groups for
exotic (2, 0) and (1, 0) symmetry groups have SL(3,R) commutants inside the symmetry groups of
three-dimensional theories with 16 and 8 supercharges respectively.

In general, the exceptional Ed(d) groups have GL(n,R) commutants inside bigger Ed+n(d+n)

groups. This is essentially by construction: the lower dimensional theories with maximal super-
symmetry are obtainable from the higher dimensional ones after a torus Tn compactification.
Finding other decompositions of Ed+n(d+n) might be useful as a technical tool, but is of very
little consequence as far as higher-dimensional theories are concerned. For other decomposi-
tions Gd × Hn ⊆ Ed+n(d+n), there is no (known) maximally supersymmetric theory (or multi-
plet) in D = 11 − d dimensions with symmetry Hn. For example the existence of the subgroup
SL(2,R) × E7(7) ⊆ E8(8) has no implications for five-dimensional physics, as there is no maximal
five-dimensional theory with symmetry group E7(7).

In this sense, assuming that the N = (4, 0) theory really has E6(6) symmetry, we see that E6(6),
SL(3,R) and E8(8) form a unique triple for maximally supersymmetric theories. As mentioned,
less-supersymmetric counterparts of this triple exist with SL(3,R) always playing a central role.
For concreteness we shall be concentrating on the maximally supersymmetric case. Given that the
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SL(3,R)/SO(3) coset is the moduli space of flat metrics on T 3 of fixed volume, this suggests a way
of thinking about the (4, 0) multiplet analogous to F-theory [41]. A solution of three-dimensional
supergravity with five non-constant scalars parametrising the coset, can be thought of as a solution
of a six-dimensional theory with the left-over E6(6) symmetry, i.e. the (4, 0) theory on a T 3-fibered
manifold satisfying certain conditions. Moreover, using results from earlier work on “U-fold” torus
fibrations [42], it can be shown that the geometrical information can be repackaged and presented
in a form of a self-dual Weyl (SDW) tensor field, and differential conditions on the six-dimensional
space upon linearisation can be reduced to the equations of motion for the SDW field. The details
of this constructions which we call h-theory can be found in section 4. A novel feature of this
construction is that both the geometry and the SDW field on it are constructed out of the physical
scalar degrees of freedom in three-dimensions. Our analysis also has no propagating fields along
the directions of the torus, similarly to the situation in F-theory where there are no momenta in
the auxiliary T 2 directions. This intriguing picture would thus suggest that the (4, 0) theory is not
really six-dimensional, as the physical states are not charged under the additional momenta.

It has been observed in [2] that due to the four-dimensional symmetry group E7(7)(Z) not having
an E6(6)(Z) × SL(2,Z) subgroup, the SL(2,Z) duality expected from six-dimensional description
would act non-trivially on the graviton leading possibly to a modification of supergravity. Our
picture suggests a more conservative possibility, inspired by the relations between F-theory, 11-
dimensional supergravity and type IIB. We should not think of recovering the four-dimensional
supergravities from T 2 reduction of the exotic (4, 0) theory any more than we expect a direct
reduction of F-theory on a circle to yield the 11-dimensional supergravity, or of M-theory being
simply reduced to IIB. Instead, when M-theory is put on a two-torus one can take the so called
F-theory limit that decompactifies to ten-dimensions while while retaining the SL(2,Z), i.e. yields
the type IIB theory. The limit holds also from M-theory on an elliptically fibered manifold, in
which case the decompactification yields type IIB on the base of the elliptic fibration. So the idea
is to consider the three-dimensional maximal supergravity, i.e. the (4, 0) theory on a fixed volume
T 3 in decompactification limits. Denoting the radii of circles in T 3 by r1, r2, r3 and setting the
Vol(T 3) = 1, up to numerical factors one has r1 = 1/r2r3. One can take r2, r3 → ∞ and hence
r1 → 0, i.e. decompactify two dimensions. The path

E8(8) ⊇ SL(3,R)×E6(6) ⊇ SL(2,R)×R+×E6(6) ↪−−→ GL(2,R)×E6(6)
r2,r3→∞−−−−−−→ E6(6) in D=5

results in a five-dimensional theory with E6(6) symmetry, i.e. the ordinary five-dimensional super-
gravity. Another option is r2, r3 → 0 and hence r1 → ∞, i.e. decompactify a single dimension.
The path now is

E8(8) ⊇ SL(3,R)× E6(6) ⊇ SL(2,R)× R+ × E6(6) ↪−−→ SL(2,R)× E7(7)
r1→∞−−−−→ E7(7) in D=4.

This explains the appearance of both five-dimensional E6(6) and four-dimensional E7(7) in the
decompactification limits of three-dimensional maximal supergravity. As everything else relating
to the embedding of SL(3,Z) in three-dimensional duality group, these chains continue to hold
for theories with 16 and eight supercharges. Calling the symmetry group G, we first note that
Gexotic
D=6 = GD=5 and that SL(3,R) × Gexotic

D=6 ⊆ GD=3 as well as SL(2,R) × GD=4 ⊆ GD=3. The
decompactifications to ordinary supergravities in four and five dimensions now work as in the
maximally supersymmetric case.

Another observation which suggests that we do not think of the theory as truly six-dimensional
comes from consideration of higher rank dualities. Considering the conjectured Kac-Moody sym-
metries E8+n(8+n) for n = 1, 2, 3, we might expect to find that the SL(3,R) commutant of E6(6) is
extended to SL(3+n,R). However, this is not the case. In particular, the SL(3,R)×SL(3,R)×E6(6)

that we consider in our dimensional split (into three external dimensions, three internal dimen-
sions and an internal E6(6) symmetry) does not extend to an SL(6,R)×E6(6) subgroup inside E11.5
However, there is a Spin(1, 5) subalgebra of KE11 corresponding to the decomposition of the 32
component spinor representation into 4 spinors of the same chirality in six dimensions, so that
E11 does appear to accommodate the multiplet at the level of the superalgebra. The fact that the

5We thank Guillaume Bossard for explaining these features of E11 to us.
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relevant SL(6,R) subgroup fails to exist indicates (unsurprisingly) that there is no six-dimensional
gravity for this multiplet and potentially that the theory is not truly six-dimensional.6

Chern-Simons couplings and anomalies

To provide further support to this picture, we include other arguments suggesting that the
naive reduction of the (4, 0) theory on S1 or T 2 might not produce the dynamics of supergravity
in five or four dimensions. We will also find similar statements for the (3, 1) theory.

Firstly, we consider the generation of the topological Chern-Simons interactions present in
five-dimensional maximal supergravity [43]

SCS =

∫
kΛΣ∆ AΛ ∧ FΣ ∧ F∆ (1)

where kΛΣ∆ is the cubic E6(6)-invariant and the Λ,Σ,∆ are E6(6) indices running from 1 to 27.
This interaction does not involve the metric and does not admit linearisation. By supersymmetry,
failure to generate it would indicate that the equations derived from the rank three and four tensor
fields will not agree with those of gravity beyond linearised level. Similar calculations have been
carried out, notably in the context of theories with eight supercharges, where is was shown how
triangle diagrams with massive KK modes coming from the chiral six-dimensional fields in the loop
generate five-dimensional Chern-Simons terms [44–47]. An important point here is that while KK
modes of six-dimensional fields are involved, the calculation itself is carried out in five dimensions.
As we show in section 3.2, under reasonable assumptions, only the reduction of the six-dimensional
supergravity generates (1) consistent with the E6(6) cubic invariant.

Since the KK modes considered here come from chiral six-dimensional fields, the above calcula-
tion is closely related to six-dimensional anomalies and index theorems. Since the exotic multiplets
feature chiral fields, questions about anomalies arise naturally. One may object that these are for-
mulated in the flat space, and only upon reduction does (linearised) five-dimensional gravity and
diffeomorphism symmetry appear. The five degrees of freedom carried by the SDW field are to be
thought of as excitations of a five-dimensional metric, so that one does not expect six-dimensional
diffeomorphism symmetry, but rather exotic symmetries that give rise to five-dimensional diffeo-
morphisms.

In general, diffeomorphism invariance is a critical property for quantum supergravity theories.
It corresponds to the conservation of the energy momentum tensor at the quantum level and can
be checked via one-loop computations with the external states being gravitons. At the same time,
anomalies corresponding breakdown of diffeomorphisms can also be interpreted as the anomalous
transformation of the path integral measure of chiral fields under diffeomorphism transformations of
the space-time. Diffeomorphism anomalies are equivalent to anomalies for local Lorentz symmetry
up to local, non-polynomial counterterms (see e.g. [48]). Thus, regardless of considerations of
diffeomorphism symmetry, it makes sense to ask whether the non-gravitational (4, 0) theory is
invariant under local Lorentz transformations on arbitrary background six-dimensional manifolds.
This question can be answered by computing the gravitational anomalies in the conventional sense.

We find that the exotic fields of the (4, 0) theory lie inside the domains of certain Dirac operators,
in much the same way that self-dual p-forms are found inside the signature complex (see e.g. [49]).
This fact is intimately related to the exotic multiplets arising as products of matter multiplets, and
is very similar to the treatment of self-dual p-forms as part of a bispinor field. As we shall see, for
the exotic fields we simply have to take higher powers of the spinor representations. The explicit
calculations can be found in section 3.1, with further details in appendix B.2. The conclusion is
that both (4, 0) and (3, 1) multiplets have non-vanishing anomalies. In a way, the decomposition
of the maximally supersymmetric multiplets mentioned above gives a heuristic explanation to this.
The ordinary (2, 0) multiplets - gravity (GM) , gravitino (GoM) and tensor (TM) - while all chiral,
have fields of different chirality appearing in them, so that a particular combination of them even
becomes a non-chiral theory.7 On the contrary, the exotic multiplets have maximally aligned
chiralities so that a cancellation naively appears much less likely, and indeed does not happen.

6One slight difference between our picture and that of F-theory is that while there is no SL(12,R) inside E11,
there is also no twelve-dimensional spin group or momentum charge.

7In fact all three multiplets have proportional anomaly polynomials: ITM = 1
4
IGoM = − 1

21
IGM .
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Quantisation and anomalies of antisymmetric tensor-spinors

Apart from the bosonic exotic fields, fermionic two-forms appear in the exotic N = (4, 0) and
N = (3, 1) maximally supersymmetric multiplets in six dimensions [20].

The study of fermionic two-forms in six dimensions can be brought to a more general set up,
namely, fermionic p-forms in arbitrary dimensionD. Consider fermionic fields of the form ψαµ1µ2...µp ,
where α is a spinor index and the µi are spacetime indices, which are totally antisymmetric in their
spacetime indices:

ψαµ1µ2...µp = ψα[µ1µ2...µp] . (2)

The free action for such a field in flat spacetime is a direct generalisation of the Rarita-Schwinger
action for a fermionic one-form ψαµ and reads [50,51]

S0[ψ] = −(−1)
p(p−1)

2

∫
dDx ψ̄µ1µ2...µp γ

µ1µ2...µpνρ1ρ2...ρp ∂νψρ1ρ2...ρp . (3)

This action is invariant under some reducible gauge symmetries, i.e. with “gauge-for-gauge” trans-
formations. They are

δψ = dΛ(p−1) , δΛ(p−1) = dΛ(p−2) , . . . , δΛ(1) = dΛ(0) (4)

in differential form notation (with a spectator spinor index). Here, each parameter Λ(k) is an
antisymmetric tensor-spinor of rank k. This reducibility introduces well-known subtleties upon
quantisation, which we will tackle using the powerful Batalin-Vilkovisky (BV) field-antifield for-
malism [52,53].

Gravitational anomalies for these exotic multiplets are computed in chapter 3 (the results were
published in [15]), but some assumptions were required since the precise ghost structure for the
fermionic two-form was unknown at the time. One of the goals of this part is to fill that gap.
Another, more remote motivation for looking at these types of fields comes from considerations of
dual gravity [1,3,54,55], where (in the linearised regime) the graviton is dualised to a [D−3, 1]-type
mixed-symmetry tensor. A supersymmetric, manifestly covariant model in which this field finds
a partner is still lacking, however, and a fermionic p-form field would be the natural candidate
(see [56] for an early attempt at dualising fermionic fields, and [57, 58] for related considerations
in the prepotential formalism).

In the quantisation procedure of irreducible gauge theories (i.e., when there are no “gauge-
for-gauge” transformations), quadratic gauges containing a differential operator give rise to a
third propagating ghost. This was discovered firstly in supergravity in the quantisation of Rarita-
Schwinger field, and the propagating third ghost is known as the Nielsen-Kallosh ghost [59, 60].
Later, the third ghost was derived again within the BV formalism [52] in a manifestly local way
by Batalin and Kallosh in [61].

The “third ghost” for quadratic gauges appears also in the reducible case, as we prove in
chapter 5. It should be emphasised that this statement is valid beyond the simple action and gauge
symmetries for the fermionic p-form described above: we allow for non-abelian gauge algebras, on-
shell closure, etc. These subtleties are all packaged in the explicit form of the ‘minimal BV action’
for the model at hand, which always exists and which we keep arbitrary.

The quantisation of free fermionic p-form fields, using the general results mentioned above,
(in the words of [53]) is “like cracking nuts with a sledgehammer”. Since fermionic fields satisfy
first-order equations of motion and the action (3) is already in Hamiltonian form, the Hamiltonian
quantisation methods of [62–64] would have been more economical. The third ghost has also been
discussed in that formalism in reference [65]. However, the approach we use here has the advantage
of preserving manifest covariance. This is done both in the usual delta-function gauge-fixing and
in the Gaussian gauge-fixing where a generalised Nielsen-Kallosh ghost appears; propagators and
BRST transformations are also discussed in both schemes. Explicit details are given only in the
two-form case, but the generalisation to higher form degree poses no difficulty. We maintain
manifest locality and covariance throughout.

We compute the gravitational anomaly of a chiral fermionic p-form in dimensions D = 4m+ 2.
This is done using the ghost spectrum found in the quantisation and applying the Atiyah-Singer
index theorem [66,67], following the methods developed in the classic papers [68–71]. We describe
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the general procedure in detail and display the results in dimensions D = 2, 6 and 10 in tables 6.3,
6.4 and 6.5. An intriguing result is that in dimensions D ≥ 6, the anomaly of a chiral fermionic
p-form matches that of a (D− p− 1)-form; it would be very interesting to use this fact to attempt
to build new anomaly-free models.

We should mention an important caveat related to the computation of the gravitational anomaly:
to the best of our knowledge, there is currently no model that couples consistently a fermionic p-
form to dynamical gravity. It can be hoped that this difficulty will be resolved in the future,
perhaps by including (an infinite number of) other fields.8 However, since the anomaly compu-
tations of section 6.4 are solely based on the ghost spectrum and not on the specific form of the
action, we are confident that these results will survive such future developments.

Structure

The thesis is divided into three parts and it is organised as follows. The first part is an intro-
ductory chapter, we review the construction and structure of the exotic six-dimensional multiplets.
This part also covers the discussion of the free exotic tensor fields appearing in these exotic mul-
tiplets.

The second part is based on the paper [15]. In chapter 2 we discuss how to relate the N = (4, 0)
superalgebra to that of eleven-dimensional supergravity and how to interpret its charges in terms
of E8(8) objects, within the framework of exceptional geometry. Chapter 3 section 3.1 contains
the anomaly polynomials for the local Lorentz symmetry of exotic multiplets, which are found to
be non-factorisable. We go on to show that there is no conventional mechanism to generate the
Chern-Simons couplings of five-dimensional maximal supergravity from the circle compactification
of the N = (4, 0) fields also in this chapter. In chapter 4 we present our construction of “h-theories”
on T 3-fibered geometries, whose solutions are seen to match the linearised equations of motion of
the exotic graviton.

Finally, in the third part, mainly based on [72], we focus on the antisymmetric tensor-spinors.
In chapter 5, we firstly give a short review of the BV formalism, where the appearance of the “third
ghost” is explained in irreducible theories. Then we show that the “third ghost” also appears in
reducible theories. The last chapter turns to the application of BV quantisation to free fermionic p-
form fields. With the ghost spectrum obtained from the BV formalism, the complete computation
of gravitational anomalies is presented.

8Something even more exotic should happen in the D = 6, N = (4, 0) or (3, 1) theories, if they exist, since they
contain no metric at all. As discussed above, one should probably take the vanishing of the gravitational anomaly as
a criterion selecting on which background manifolds these theories can be formulated consistently in certain regimes.





Synthèse en français

Il a été proposé qu’une limite de couplage fort de la supergravité quantique en cinq dimensions
N = 8 dans laquelle la longueur de Planck devient infinie pourrait donner une phase superconforme
de la M-théorie en six dimensions. [1–3]. De plus, pour la théorie libre, cette limite est donnée
par une théorie en six dimensions avec une supersymétrie maximale N = (4, 0). Cette théorie est
conforme et n’a donc pas d’échelles de longueur. Lorsqu’elle est placée sur un cercle, l’échelle de
compactification R devient l’échelle de Planck en cinq dimensions. Il est clair que la compréhension
d’une telle limite nécessiterait des idées radicalement nouvelles et celles-ci seraient importantes pour
notre compréhension globale de la physique gravitationnelle de la M-théorie. Ces dernières années,
on a assisté à un regain d’intérêt pour ce domaine, qui a donné lieu à de nombreux développements
intéressants et à de nouvelles approches [4–19].

Cependant, indépendamment des implications pour la théorie M, au niveau des supermulti-
plets, le multiplet (libre) avec supersymétrie N = (4, 0) existe certainement [20] et possède 32
supersymétries et 32 supersymétries conformes. Sa réduction dimensionnelle possède les mêmes
degrés de liberté et le même contenu de champ que la supergravité maximale en cinq dimensions.
Cette dernière théorie possède une symétrie globale E6(6) et, en plus du graviton, possède 27 champs
vectoriels et 42 scalaires, ainsi que huit gravitini et 48 fermions de spin 1/2. Il a été suggéré que le
premier possède la même symétrie E6(6), de sorte que les champs apparaissent dans des représen-
tations similaires. Au lieu de la gravité (champ tensoriel symétrique de rang deux), elle possède
un champ de jauge tensoriel de rang quatre avec les symétries du tenseur de Riemann. En raison
des contraintes d’auto-dualité sur sa courbure, ce champ a cinq degrés de liberté (tout comme
le graviton en cinq dimensions) et sa réduction dimensionnelle donne une gravité conventionnelle
linéarisée en cinq dimensions [1]. De même, au lieu de 27 vecteurs en cinq dimensions, le multiplet
(4, 0) possède 27 tenseurs auto-duaux.9 Dans les deux cas, il y a 27 × 3 degrés de liberté. Les
48 fermions de spin 1/2 deviennent simplement des fermions chiraux dans six dimensions. Enfin
les huit gravitini (champs vecteurs-spineurs) sont remplacés par huit10 “gravitini exotiques” ψµν ,
deux-formes spineurs avec une contrainte d’auto-dualité sur leurs courbures.11

En fait, le multiplet (4, 0) n’est pas la seule théorie exotique en six dimensions. Il existe
également un multiplet (3, 1), où les contraintes d’auto-dualité sont partielles, et en examinant les
degrés de liberté scalaires, on peut deviner que la symétrie qui régit la théorie est F4(4). Le multiplet
possède un champ tenseur auto-dual de rang 3, et 28 scalaires qui pourraient se trouver dans l’espace
tangent à l’espace symétrique F4(4)/Sp(2)× Sp(6). Cependant, les 14 champs vectoriels et les 12
tenseurs auto-duaux ne forment que la représentation 26 de F4(4) lorsqu’ils sont combinés ensemble.
Cela suggère qu’en fait, seul le groupe de R-symétrie Sp(2) × Sp(6) (et non la représentation
complète F4(4)) serait une vraie symétrie. Cela peut rendre suspicieux le fait que E6(6) soit une
vraie symétrie de la théorie N = (4, 0), et nous verrons quelques indications que ce n’est peut-
être pas le cas. Comme ces symétries ne découlent pas directement des supermultiplets, mais
apparaissent seulement dans la construction des théories associées, l’absence d’une construction

9Dans nos conventions, le multiplet de gravité (2, 0) en six dimensions possède cinq champs tenseurs anti-auto-
duaux, tandis que les multiplets tensoriels (2, 0) ont des tenseurs auto-duaux.

10Nous comptons les quatre champs quaternioniques comme huit champs complexes et nous utiliserons un comp-
tage similaire tout au long de l’ouvrage.

11Comme dans une grande partie de la littérature, les champs dans les multiplets (4, 0) et (3, 1) qui n’apparaissent
pas dans les multiplets ordinaires de gravité ou de matière, mais qui ont des contreparties directes, c’est-à-dire
comme huit deux-formes spineurs dans (4, 0) contre huit gravitini dans (2, 2), seront étiquetés comme “exotiques”.
En raison de ses propriétés, pour le graviton exotique dans le multiplet (4, 0), on utilisera également l’étiquette
“self-dual-Weyl” (SDW).
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complète de la théorie (4, 0) signifie qu’on ne peut pas être sûr. Cependant, un argument simple
en faveur de la symétrie E6(6) est que les scalaires de la supergravité maximale de 5d sont tous
élevés en scalaires dans 6d. Ainsi, naïvement, on pourrait s’attendre à ce que les transformations
de 5d de ces scalaires soient également élevées à 6d. Les champs fermioniques du multiplet (3, 1)
comprennent deux gravitini exotiques, six gravitini standard de chiralité négative, 28 fermions de
spin 1/2 de chiralité positive et 14 fermions de spin 1/2 de chiralité négative. Les gravitini exotiques
et conventionnelles se réduisent pour donner les huit gravitini standard en cinq dimensions, tandis
que les fermions de spin 1/2 de chiralité quelconque se réduisent simplement à des champs de spin
1/2 en cinq dimensions.

Enfin, les champs exotiques peuvent apparaître dans des multiplets avec moins de super-
symétrie. Ceux-ci peuvent être construits via les arguments habituelles de la théorie des représen-
tations. Une alternative est de considérer la décomposition des multiplets maximalement super-
symétriques. Par exemple, comme nous le verrons, le multiplet (4, 0) se décompose en un multiplet
exotique de gravité (2, 0) ainsi qu’en 4 multiplets exotiques de gravitino (2, 0) et 5 multiplets
tenseurs (2, 0). Cette décomposition est très similaire à la décomposition de la supergravité max-
imale (2, 2) en six dimensions. Celle-ci peut être décomposée en multiplets (2, 0) : une gravité, 4
gravitino et 5 tenseurs.12

Une perspective utile sur ces multiplets est donnée par le fait qu’ils peuvent être vus comme
des théories carrées ou produits [4, 8, 10], en analogie avec la supergravité maximale linéarisée en
six dimensions, c’est-à-dire que la théorie (2, 2) est le carré du super Yang-Mills en six dimensions.
Dans la même veine, le multiplet (4, 0) peut être vu comme un carré de multiplets tenseurs (2, 0),
tandis que la théorie (3, 1) - comme un produit d’un multiplet (2, 0) avec un multiplet vectoriel
(1, 1). Des structures de produit similaires apparaissent dans les théories exotiques avec moins
de supersymétrie. Alors qu’une grande partie de l’intérêt pour les constructions en “double copy”
provient du calcul des amplitudes dans la théorie des perturbations [21–23] (voir [24] pour une
revue), il y a également eu des développements dans les réalisations théoriques de champs off-
shell [5–8,25–27] et dans la construction de solutions classiques [28–32]. Malheureusement, dans le
cas qui nous intéresse, la théorie fortement couplée n’a pas d’expansion perturbative et il se peut
également qu’il n’y ait pas de limite classique avec les interactions, ce qui limite l’utilité directe de
ces constructions.

Aspects algébriques

Deux questions principales qui nous préoccupent dans cette thèse concernent les raisons basées
sur la symétrie algébrique derrière l’existence des multiplets exotiques et la possibilité de sonder
l’existence de formes d’interactions de ces théories exotiques (ainsi que leur existence sur des espaces
courbes). Certains des arguments présentés ici peuvent être avancés à la fois pour les multiplets
(4, 0) et (3, 1), et d’autres ne sont spécifiques qu’à (4, 0).

Une grande partie de la discussion algébrique du chapitre 2 se déroule dans le contexte des
groupes de U-dualité et de leur relation avec les superalgèbres correspondantes. En particulier,
nous utiliserons le langue de la géométrie généralisée [33–35] et de la théorie des champs excep-
tionnelle [36–38], en discutant les charges apparaissant dans l’algèbre de supersymétrie comme des
vecteurs généralisés dans un espace tangent généralisé qui se transforme en une représentation
linéaire sous le groupe de U-dualité correspondant. Afin d’éviter de rencontrer des algèbres de du-
alité de dimension infinie, nous travaillerons avec des décompositions dimensionnelles des théories
considérant trois dimensions externes séparément du reste.

Comme nous le verrons dans la section 2.1, toutes les algèbres de supersymétrie avec 32 super-
charges proviennent d’une superalgèbre particulière A (avec une sous-algèbre bosonique sl(32,R)n
R528) en restreignant sl(32,R) à différentes sous-algèbres spin(d − 1, 1). Par exemple, on peut
obtenir les superalgèbres de 11d, les supergravités de type IIA et de type IIB à partir de cette pre-
scription. En effectuant une décomposition dimensionnelle, en décomposant disons spin(9, 1) →
spin(3, 1)×spin(6) en type IIA ou IIB, on peut voir comment le groupe spin(6) résultant agirait sur
les charges apparaissant dans l’espace tangent généralisé de la théorie de supergravité sur la partie

12Il n’est pas difficile de vérifier que même si les multiplets individuelles sont chiraux, la combinaison entière
ne l’est pas - pour chaque fermion chiral ou champ auto-dual, il en existe un autre avec la chiralité opposée ou
l’anti-auto-dualité.
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signature euclidienne interne. Ainsi, le simple fait d’exiger les chiralités des fermions présents dans
le type IIA et le type IIB implique que l’on exige des “sections” (dans le cadre de la théorie des
champs exceptionnelle) Ed(d)-inequivalentes de l’espace tangent généralisé pour correspondre aux
impulsions physiques dans l’espace-temps pour les deux théories. Pour le cas particulier du type IIA
vs type IIB, ces sections inéquivalentes (ou plongements inéquivalents du groupe linéaire général
dans le groupe de U-dualité) ont été largement discutées dans la littérature [33,35,36,39]. Une dis-
cussion similaire des sections pour la supersymétrie demi-maximale peut être trouvée dans [40], où
il a été conclu que des sections inéquivalentes donnaient les supergravités N = (1, 1) et N = (2, 0)
en six dimensions (la première section s’étendant au type I en dix dimensions).

De même, on peut explorer ce qui se passe si l’on exige une supersymétrie de

N = (4, 0)

en six dimensions à partir de la décomposition. Nous examinons l’intersection du groupe perti-
nent Spin(5, 1) avec le groupe de spin généralisé Spin(2, 1)× SO(16).Sous le sous-groupe commun
Spin(2, 1) × Spin(3), nous observons comment les charges dans l’espace tangent généralisé sont
regroupées en représentations irréductibles du facteur Spin(3) et du SL(3,R) ⊂ SL(9,R) ⊂ E8(8)

qui le contient. Ceci révèle un comportement très différent de la situation normale en géométrie
généralisée ou en théorie des champs exceptionnelle.

L’origine de cette différence réside en partie dans le fait que dans E8(8), les charges apparaissant
dans l’algèbre de supersymétrie ne engendrent pas la représentation 248 complète dans laquelle le
vecteur généralisé se transforme, mais seulement la partie 120 sous son sous-groupe SO(16). Sous
le plongement direct dans la 248, les charges de impulsion ne satisfont pas la condition de section,
même en supergravité standard.

Le triplet Spin(3) de charges de impulsion de l’algèbre de supersymétrie (4, 0) se plonge donc
dans le vecteur généralisé comme un triplet de SO(3), qui consiste en deux des impulsions qui
seraient présentes dans la réduction conventionnelle de la supergravité cinq-dimensionnelle à trois
dimensions, plus une partie de la charge du graviton dual, comme prévu par [1]. Cependant, sous
le sous-groupe SL(3,R) contenant ce SO(3), ces trois charges sont combinées avec cinq autres
pour former un octuplet. Normalement, en supergravité, on s’attendrait plutôt à ce qu’elles soient
contenues dans un sous-espace de la somme de deux triplets, un espace dans lequel on pourrait
identifier un triplet SL(3,R) résolvant la condition de section. Ici, ce n’est pas le cas, et il n’y a
pas de telle section. De plus, ce sous-groupe SL(3,R) est lié à celui de la supergravité N = (2, 2)
par une transformation dans le SL(9,R) ⊂ E8(8), de sorte que toute section de ce type serait de
toute façon équivalente à la section standard.

Néanmoins, nous continuons à examiner la décomposition du vecteur généralisé et de l’adjoint
de E8(8) sous SL(3,R)×E6(6), en notant que si nous avions renforcé SL(3,R) en GL(3,R) comme on
le ferait habituellement en supergravité standard, cela changerait la commutante E6(6) en SO(5, 5).
Nous examinons ensuite ces décompositions et tentons d’appliquer la prescription algébrique naïve
(généralement imaginée uniquement dans le contexte de la supergravité – voir par exemple [35]
pour une discussion) pour extraire le contenu du champ d’une théorie parente en six dimensions.
Nous trouvons que, avec des identifications appropriées, cela correspond exactement à ce que l’on
pourrait attendre du multiplet N = (4, 0), bien que des questions subsistent quant à savoir si l’on
doit décomposer sous SO(3) ⊂ SL(3,R) et Sp(8) ⊂ E6(6) afin de faire ces identifications. En effet,
la construction algébrique de la dérivée de Lie généralisée dans l’espace plat semble reproduire
une formule pour la transformation de jauge du graviton exotique, ce qui nous rassure sur le fait
que notre identification des directions de l’espace-temps à l’intérieur de l’espace tangent généralisé,
ainsi que des champs et des charges, est plutôt correcte.

h-théories

Bien sûr, on peut se demander si ces multiplets n’ont pas d’autres caractéristiques que leurs
simples propriétés algébriques. Ils se distinguent en tant que multiplets avec le plus haut spin ≤ 2
qui n’apparaissent pas dans les théories de supergravité standard, leurs décompositions sous les
sous-superalgèbres et les compactifications ou leurs multiplets de matière. Nous présenterons des
arguments selon lesquels le fait que le groupe de symétrie conjecturé de (4, 0), E6(6) possède un
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commutant SL(3,R) dans le groupe de symétrie tridimensionnel E8(8) ne sert pas seulement d’outil
technique utile, mais est étroitement lié à l’existence même de la théorie en six dimensions avec la
symétrie E6(6). De manière correspondante, les groupes de symétrie des exotiques (2, 0) et (1, 0)
ont des SL(3,R) commutants à l’intérieur des groupes de symétrie des théories tridimensionnelles
avec 16 et 8 supercharges respectivement.

En général, les groupes exceptionnels Ed(d) ont des commutants GL(n,R) à l’intérieur de
groupes plus grands Ed+n(d+n). Ceci est essentiellement par construction : les théories de di-
mension inférieure avec supersymétrie maximale peuvent être obtenues à partir des théories de
dimension supérieure après une compactification sur le tore Tn. Trouver d’autres décomposi-
tions de Ed+n(d+n) peut être utile en tant qu’outil technique, mais n’a que très peu de con-
séquences en ce qui concerne les théories de dimension supérieure. Pour les autres décompositions
Gd × Hn ⊆ Ed+n(d+n), il n’existe pas de théorie (ou multiplet) maximalement supersymétrique
(connue) en D = 11−d dimensions avec une symétrie Hn. Par exemple, l’existence du sous-groupe
SL(2,R)×E7(7) ⊆ E8(8) n’a aucune implication pour la physique en cinq dimensions, car il n’existe
aucune théorie maximale en cinq dimensions avec le groupe de symétrie E7(7).

Dans ce sens, en supposant que la théorieN = (4, 0) possède réellement une symétrie E6(6), nous
voyons que E6(6), SL(3,R) et E8(8) forment un triple unique pour les théories maximalement super-
symétriques. Comme nous l’avons mentionné, il existe des contreparties moins supersymétriques
de ce triple avec SL(3,R) jouant toujours un rôle central. Pour être plus concret, nous nous con-
centrerons sur le cas maximalement supersymétrique. Étant donné que le coset SL(3,R)/SO(3)
est l’espace modulaire des métriques plates sur T 3 de volume fixe, cela suggère une façon de penser
au multiplet (4, 0) analogue à la F-théorie [41]. Une solution de supergravité tridimensionnelle
avec cinq scalaires non constants paramétrant le coset, peut être considérée comme une solution
d’une théorie six-dimensionnelle avec la symétrie restante E6(6), c’est-à-dire la théorie (4, 0) sur une
variété fibrée de T 3 satisfaisant certaines conditions. De plus, en utilisant les résultats de travaux
antérieurs sur les fibrations de torus “U-fold” [42], on peut montrer que l’information géométrique
peut être reconditionnée et présentée sous la forme d’un champ tenseur auto-dual de Weyl (SDW),
et les conditions différentielles sur l’espace six-dimensionnel après linéarisation peuvent être ré-
duites aux équations du mouvement pour le champ SDW. Les détails de cette construction que
nous appelons h-théorie peuvent être trouvés dans la section 4. Une nouvelle caractéristique de
cette construction est que la géométrie et le champ SDW sont tous deux construits à partir des
degrés de liberté scalaires physiques en trois dimensions. Notre analyse n’a pas non plus de champs
de propagation le long des directions du tore, de manière similaire à la situation en F-théorie où
il n’y a pas des impulsions dans les directions auxiliaires T 2. Cette image intrigante suggérerait
donc que la théorie (4, 0) n’est pas vraiment six-dimensionnelle, car les états physiques ne sont pas
chargés sous l’effet des impulsions supplémentaires.

Il a été observé dans [2] qu’en raison du fait que le groupe de symétrie quadridimensionnel
E7(7)(Z) n’a pas de sous-groupe E6(6)(Z)× SL(2,Z), la dualité SL(2,Z) attendue de la description
six-dimensionnelle agirait de manière non triviale sur le graviton, ce qui pourrait conduire à une
modification de la supergravité. Notre image suggère une possibilité plus conservatrice, inspirée par
les relations entre la F-théorie, la supergravité 11-dimensionnelle et le type IIB. Nous ne devrions
pas penser retrouver les supergravités quadridimensionnelles à partir d’une réduction de T 2 de la
théorie exotique (4, 0), pas plus que nous ne nous attendons à ce qu’une réduction directe de la F-
théorie sur un cercle donne la supergravité 11-dimensionnelle, ou que la M-théorie soit simplement
réduite à IIB. Au lieu de cela, lorsque la M-théorie est placée sur un 2-tore, on peut prendre la limite
dite de la F-théorie qui décompactifie à dix dimensions tout en conservant la SL(2,Z), c’est-à-dire
qu’elle donne la théorie de type IIB. La limite est également valable à partir de la M-théorie sur une
variété elliptiquement fibrée, auquel cas la décompactification donne le type IIB sur la base de la
fibration elliptique. L’idée est donc de considérer la supergravité maximale tridimensionnelle, c’est-
à-dire la théorie (4, 0) sur un volume fixe T 3 dans les limites de décompactification. En dénotant les
rayons des cercles dans T 3 par r1, r2, r3 et en fixant le Vol(T 3) = 1, jusqu’aux facteurs numériques
on a r1 = 1/r2r3. On peut prendre r2, r3 → ∞ et donc r1 → 0, c’est-à-dire décompactifier deux
dimensions.
Le chemin

E8(8) ⊇ SL(3,R)×E6(6) ⊇ SL(2,R)×R+×E6(6) ↪−−→ GL(2,R)×E6(6)
r2,r3→∞−−−−−−→ E6(6) en D=5
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donne une théorie cinq-dimensionnelle avec une symétrie E6(6), c’est-à-dire la supergravité ordinaire
en cinq dimensions. Une autre possibilité est r2, r3 → 0 et donc r1 →∞, c’est-à-dire décompactifier
une seule dimension. Le chemin maintenemt est

E8(8) ⊇ SL(3,R)× E6(6) ⊇ SL(2,R)× R+ × E6(6) ↪−−→ SL(2,R)× E7(7)
r1→∞−−−−→ E7(7) en D=4.

Cela explique l’apparition de E6(6) cinq-dimensionnels et de E7(7) quatre-dimensionnels dans les
limites de décompactification de la supergravité maximale tridimensionnelle. Comme tout ce qui
concerne le plongement de SL(3,Z) dans le groupe de dualité tridimensionnel, ces chaînes continu-
ent à tenir pour les théories à 16 et huit supercharges. En appelant le groupe de symétrie G, nous
notons d’abord que Gexotic

D=6 = GD=5 et que SL(3,R)×Gexotic
D=6 ⊆ GD=3 ainsi que SL(2,R)×GD=4 ⊆

GD=3. Les décompacités vers les supergravités ordinaires en quatre et cinq dimensions fonctionnent
maintenant comme dans le cas maximalement supersymétrique.

Une autre observation qui suggère que nous ne considérons pas la théorie comme étant véritable-
ment six-dimensionnelle provient de la considération des dualités de rang supérieur. En considérant
les symétries de Kac-Moody conjecturées E8+n(8+n) pour n = 1, 2, 3, nous pourrions nous attendre
à trouver que la commutante SL(3,R) de E6(6) est étendue à SL(3 + n,R). Or, ce n’est pas le
cas. En particulier, la SL(3,R)× SL(3,R)×E6(6) que nous considérons dans notre décomposition
dimensionnelle (en trois dimensions externes, trois dimensions internes et une symétrie interne
E6(6)) ne s’étend pas à un sous-groupe SL(6,R) × E6(6) dans E11.13 Cependant, il existe une
sous-algèbre Spin(1, 5) de KE11 correspondant à la décomposition de la représentation de spineur
à 32 composants en 4 spineurs de la même chiralité en six dimensions, de sorte que E11 semble ac-
commoder le multiplet au niveau de la superalgèbre. Le fait que le sous-groupe pertinent SL(6,R)
n’existe pas indique (sans surprise) qu’il n’y a pas de gravité six-dimensionnelle pour ce multiplet
et potentiellement que la théorie n’est pas vraiment six-dimensionnelle.14

Couplages de Chern-Simons et anomalies

Pour étayer davantage cette image, nous incluons d’autres arguments suggérant que la réduction
naïve de la théorie (4, 0) sur S1 ou T 2 pourrait ne pas produire la dynamique de la supergravité en
cinq ou quatre dimensions. Nous trouverons également des déclarations similaires pour la théorie
(3, 1).

Tout d’abord, nous considérons la génération des interactions topologiques de Chern-Simons
présentes dans la supergravité maximale en cinq dimensions [43]

SCS =

∫
kΛΣ∆ AΛ ∧ FΣ ∧ F∆ (5)

où kΛΣ∆ est l’invariant cubique de E6(6) et les Λ,Σ,∆ sont des indices de E6(6) allant de 1 à 27.
Cette interaction n’implique pas la métrique et n’admet pas de linéarisation. Par supersymétrie,
l’incapacité à la générer indiquerait que les équations dérivées des champs tenseurs de rang trois
et quatre ne concorderont pas avec celles de la gravité au-delà du niveau linéarisé. Des calculs
similaires ont été effectués, notamment dans le contexte des théories à huit supercharges, où il
a été montré comment les diagrammes triangulaires avec des modes KK massifs provenant des
champs chiraux six-dimensionnels dans la boucle génèrent des termes de Chern-Simons en cinq
dimensions [44–47]. Un point important ici est que, bien que les modes KK des champs six-
dimensionnels soient impliqués, le calcul lui-même est effectué en cinq dimensions. Comme nous le
montrons dans la section 3.2, sous des hypothèses raisonnables, seule la réduction de la supergravité
six-dimensionnelle génère des (5) compatibles avec l’invariant cubique E6(6).

Comme les modes KK considérés ici proviennent de champs chiraux à six dimensions, le calcul
ci-dessus est étroitement lié aux anomalies six-dimensionnelles et aux théorèmes d’indice. Puisque
les multiplets exotiques comportent des champs chiraux, les questions relatives aux anomalies
se posent naturellement. On peut objecter que celles-ci sont formulées dans l’espace plat, et
que ce n’est qu’après réduction que la gravité cinq-dimensionnelle (linéarisée) et la symétrie du

13Nous remercions Guillaume Bossard de nous avoir expliqué ces caractéristiques de E11.
14Une légère différence entre notre image et celle de la F-théorie est que, bien qu’il n’y ait pas de SL(12,R) à

l’intérieur de E11, il n’y a pas non plus de groupe de spin douz-dimensionnel ou de charge d’impulsion.
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difféomorphisme apparaissent. Les cinq degrés de liberté portés par le champ SDW doivent être
considérés comme des excitations d’une métrique en cinq dimensions, de sorte que l’on ne s’attend
pas à une symétrie de difféomorphisme six-dimensionnelle, mais plutôt à des symétries exotiques
qui donnent lieu à des difféomorphismes en cinq dimensions.

En général, l’invariance des difféomorphismes est une propriété critique pour les théories de
supergravité quantique. Elle correspond à la conservation du tenseur énergie-impulsion au niveau
quantique et peut être vérifiée par des calculs à une boucle, les états externes étant des gravitons.
En même temps, les anomalies correspondant à la rupture des difféomorphismes peuvent aussi être
interprétées comme la transformation anormale de la mesure de l’intégrale de chemin des champs
chiraux sous les transformations de difféomorphisme de l’espace-temps. Les anomalies de difféo-
morphisme sont équivalentes aux anomalies de symétrie locale de Lorentz jusqu’aux contre-termes
locaux non polynomiaux (voir par exemple [48]). Ainsi, indépendamment des considérations sur
la symétrie des difféomorphismes, il est logique de se demander si la théorie non gravitationnelle
(4, 0) est invariante sous les transformations locales de Lorentz sur des variétés de fond arbitraires
en six dimensions. On peut répondre à cette question en calculant les anomalies gravitationnelles
au sens conventionnel.

Nous constatons que les champs exotiques de la théorie (4, 0) se trouvent à l’intérieur des
domaines de certains opérateurs de Dirac, de la même manière que les p-formes auto-duelles se
trouvent à l’intérieur du complexe de signature (voir par exemple [49]). Ce fait est intimement
lié aux multiplets exotiques qui apparaissent comme des produits de multiplets de matière, et
est très similaire au traitement des p-formes auto-duelles comme partie d’un champ bispineur.
Comme nous le verrons, pour les champs exotiques, nous devons simplement prendre des puissances
supérieures des représentations du spineur. Les calculs explicites se trouvent dans la section 3.1,
avec plus de détails dans l’appendice B.2. La conclusion est que les multiplets (4, 0) et (3, 1) ont des
anomalies non-vanentes. D’une certaine manière, la décomposition des multiplets maximalement
supersymétriques mentionnée ci-dessus donne une explication heuristique à cela. Les multiplets
ordinaires (2, 0) - gravité (GM), gravitino (GoM) et tenseur (TM) - bien que tous chiraux, ont des
champs de chiralité différente qui apparaissent en eux, de sorte que une combinaison particulière
d’entre eux devient même une théorie non chirale.15 Au contraire, les multiplets exotiques ont des
chiralités maximalement alignées de sorte qu’une annulation semble naïvement beaucoup moins
probable, et ne se produit effectivement pas.

Quantification et anomalies des tenseurs-spineurs antisymétriques

Outre les champs exotiques bosoniques, des deux-formes fermioniques apparaissent dans les
multiplets exotiques N= (4,0) et N= (3,1) maximalement supersymétriques en six dimensions [20].

L’étude des deux-formes fermioniques en six dimensions peut être ramenée à un ensemble plus
général, à savoir les p-formes fermioniques en dimension arbitraire D. Considérons des champs
fermioniques de la forme ψαµ1µ2...µp , où α est un indice de spineur et les µi sont des indices de
l’espace-temps, qui sont totalement antisymétriques dans leurs indices de l’espace-temps :

ψαµ1µ2...µp = ψα[µ1µ2...µp] . (6)

L’action libre pour un tel champ dans un espace-temps plat est une généralisation directe de l’action
de Rarita-Schwinger pour une 1-forme fermionique ψαµ et se lit [50, 51]

S0[ψ] = −(−1)
p(p−1)

2

∫
dDx ψ̄µ1µ2...µp γ

µ1µ2...µpνρ1ρ2...ρp ∂νψρ1ρ2...ρp . (7)

Cette action est invariante sous certaines symétries de jauge réductibles, c’est-à-dire avec des
transformations “jauge pour jauge”. Ces symétries sont

δψ = dΛ(p−1) , δΛ(p−1) = dΛ(p−2) , . . . , δΛ(1) = dΛ(0) (8)

en notation de forme différentielle (avec un indice de spineur spectateur). Ici, chaque paramètre
Λ(k) est un tenseur-spineur antisymétrique de rang k. Cette réductibilité introduit des subtilités

15En fait, les trois multiplets ont des polynômes d’anomalie proportionnels : ITM = 1
4
IGoM = − 1

21
IGM .
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bien connues sur la quantification, que nous aborderons à l’aide du puissant formalisme champs-
antichamps de Batalin-Vilkovisky (BV) [52,53].

Les anomalies gravitationnelles pour ces multiplets exotiques sont calculées dans le chapitre 3
(les résultats ont été publiés dans [15]), mais certaines hypothèses étaient nécessaires puisque la
structure fantôme précise pour la deux-forme fermionique était inconnue à l’époque. L’un des
objectifs de cette partie est de combler cette lacune. Une autre motivation, plus lointaine, pour
examiner ces types de champs provient de considérations sur la gravité duale [1,3,54,55], où (dans
le régime linéarisé) le graviton est dualisé à un tenseur de symétrie mixte de type [D − 3, 1].
Cependant, il n’existe toujours pas de modèle supersymétrique, manifestement covariant, dans
lequel ce champ trouve un partenaire, et un champ fermionique de p-forme serait le candidat
naturel (voir [56] pour une première tentative de dualisation des champs fermioniques, et [57, 58]
pour des considérations connexes dans le formalisme du prépotentiel).

Dans la procédure de quantification des théories de jauge irréductibles (c’est-à-dire lorsqu’il
n’y a pas de transformations “jauge pour jauge”), les jauges quadratiques contenant un opérateur
différentiel donnent lieu à un troisième fantôme qui se propage. Ceci a été découvert pour la
première fois en supergravité dans la quantification du champ de Rarita-Schwinger, et le troisième
fantôme propageant est connu sous le nom de fantôme de Nielsen-Kallosh [59, 60]. Plus tard, le
troisième fantôme a été dérivé à nouveau dans le formalisme BV [52] d’une manière manifestement
locale par Batalin et Kallosh dans [61].

Le “troisième fantôme” pour les jauges quadratiques apparaît également dans le cas réductible,
comme nous le prouvons dans le chapitre 5. Il faut souligner que cette affirmation est valable
au-delà de l’action simple et des symétries de jauge pour la p-forme fermionique décrite ci-dessus :
nous autorisons les algèbres de jauge non-abéliennes, la fermeture on-shell, etc. Ces subtilités sont
toutes regroupées dans la forme explicite de l’action BV minimale pour le modèle en question, qui
existe toujours et que nous gardons arbitraire.

La quantification des champs fermioniques libres de p-forme, à l’aide des résultats généraux
mentionnés ci-dessus, (selon les termes de [53]) est “comme casser des noix avec un marteau de
forgeron”. Comme les champs fermioniques satisfont des équations de mouvement du premier ordre
et que l’action (7) est déjà sous forme hamiltonienne, les méthodes de quantification hamiltonienne
de [62–64] auraient été plus économiques. Le troisième fantôme a également été discuté dans ce
formalisme dans la référence [65]. Cependant, l’approche que nous utilisons ici a l’avantage de
préserver la covariance manifeste. Ceci est fait à la fois dans la fixation de jauge habituelle à
fonction delta et dans la fixation de jauge Gaussienne où un fantôme de Nielsen-Kallosh généralisé
apparaît; les propagateurs et les transformations BRST sont également discutés dans les deux
schémas. Les détails explicites ne sont donnés que dans le cas à deux-forme, mais la généralisation
au degré de forme supérieur ne pose aucune difficulté. Nous maintenons la localité manifeste et la
covariance tout au long de l’étude.

Nous calculons l’anomalie gravitationnelle d’une p-forme chirale fermionique en dimensions
D = 4m+2. Nous utilisons pour cela le spectre fantôme trouvé dans la quantification et appliquons
le théorème de l’indice d’Atiyah-Singer [66, 67], en suivant les méthodes développées dans les
articles classiques [68–71]. Nous décrivons en détail la procédure générale et affichons les résultats
en dimensions D = 2, 6 et 10 dans les tableaux 6.3, 6.4 et 6.5. Un résultat intriguant est que
dans les dimensions D ≥ 6, l’anomalie d’une p-forme chirale fermionique correspond à celle d’une
(D− p− 1)-forme; il serait très intéressant d’utiliser ce fait pour tenter de construire de nouveaux
modèles sans anomalies.

Nous devons mentionner une mise en garde importante liée au calcul de l’anomalie gravitation-
nelle : à notre connaissance, il n’existe actuellement aucun modèle qui couple de manière cohérente
une p-forme fermionique à la gravité dynamique. On peut espérer que cette difficulté sera résolue à
l’avenir, peut-être en incluant (un nombre infini) d’autres champs.16 Cependant, puisque les calculs
de l’anomalie de la section 6.4 sont uniquement basés sur le spectre fantôme et non sur la forme
spécifique de l’action, nous sommes confiants que ces résultats survivront à de tels développements
futurs.

16Quelque chose d’encore plus exotique devrait se produire dans les théories D = 6, N = (4, 0) ou (3, 1), si elles
existent, puisqu’elles ne contiennent aucune métrique. Comme discuté ci-dessus, on devrait probablement prendre
la disparition de l’anomalie gravitationnelle comme un critère sélectionnant sur quelles variétés d’arrière-plan ces
théories peuvent être formulées de manière cohérente dans certains régimes.
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Structure

La thèse est divisée en trois parties et elle est organisée comme suit. La première partie est un
chapitre introductif, nous passons en revue la construction et la structure des multiplets exotiques
en six dimensions. Cette partie couvre également la discussion des champs tenseurs exotiques libres
apparaissant dans ces multiplets exotiques.

La deuxième partie est basée sur l’article [15]. Dans le chapitre 2 nous discutons comment relier
la superalgèbre N = (4, 0) à celle de la supergravité onze-dimensionnelle et comment interpréter
ses charges en termes d’objets E8(8), dans le cadre de la géométrie exceptionnelle. Le chapitre 3
section 3.1 contient les polynômes d’anomalie pour la symétrie de Lorentz locale des multiplets
exotiques, qui s’avèrent non factorisables. Nous montrons également dans ce chapitre qu’il n’existe
pas de mécanisme conventionnel pour générer les couplages de Chern-Simons de la supergravité
maximale en cinq dimensions à partir de la compactification circulaire des champs N = (4, 0).
Dans le chapitre 4, nous présentons notre construction de “h-theories” sur des géométries fibrées
T 3, dont les solutions correspondent aux équations de mouvement linéarisées du graviton exotique.

Enfin, dans la troisième partie, principalement basée sur [72], nous nous concentrons sur les
tenseurs-spineurs antisymétriques. Dans le chapitre 5, nous donnons d’abord un bref aperçu du
formalisme BV, où l’apparition du “troisième fantôme” est expliquée dans les théories irréductibles.
Ensuite, nous montrons que le “troisième fantôme” apparaît également dans les théories réductibles.
Le dernier chapitre est consacré à l’application de la quantification BV aux champs fermioniques
libres de p-forme. Avec le spectre fantôme obtenu à partir du formalisme BV, le calcul complet
des anomalies gravitationnelles est présenté.
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Chapter 1

The exotic multiplets and exotic
tensor fields

In this chapter we provide some background discussion of the six-dimensional supermultiplets,
whose highest spin field is a spin-2 boson which is not a graviton. The supermultiplets of extended
Poincaré supersymmetry which correspond to possible local field theories were classified in [20].
Curiously, the list provided includes the multiplet which forms the basis for the N = (4, 0) theory
of [1], as well as a similar multiplet with N = (3, 1) supersymmetry. However, similar multiplets
with less supersymmetry were omitted, one can find a list of them in [73]. As these will form part
of our discussion later, we will review the detailed construction of such multiplets with N = (1, 0),
N = (2, 0) and N = (4, 0) supersymmetry in the appendix A, and our conventions can also be
found in there.

These multiplets are exotic in the sense that they are not based on a dynamical metric tensor,
their field theories have not been constructed beyond the linear level. The free fields can be
represented by tensor with mixed Young symmetry. For example, the two column Young diagrams

and can be used to represent the bosonic exotic gravitons in these multiplets in six

dimensions. The reduction of to five dimensions give rise to fields corresponding to Young

diagrams of type , , and ; while the reduction of yields and . As we will
see, these fields provide equivalent formulations of linearised gravity in five dimensions. The dual
graviton is first studied in [74] and then together with the double dual graviton they are
considered a while ago by Hull [1–3] in the context of gravitational dualities. More recently, there
are various further investigations on the dynamics of these free tensor fields [14, 75–79]. We will
briefly go through the gauge theories of these exotic free fields and mention their connections with
the chiral exotic fields in the N = (4, 0) and N = (3, 1) multiplets.

1.1 The massless multiplets of the six dimensional maximal
supersymmetry

In six dimensions the Lorentz group is SO(5, 1). It admits symplectic-Majorana-Weyl spinor rep-
resentations, with such chiral spinors represented as pairs of four-component complex vectors ζA
for A = 1, . . . , 2n satisfying the reality condition (ζA)∗ = ΩABBζB (see appendix A for conven-
tions). For the case of maximal supersymmetry, which will be our main focus here, one has 32
real supercharges Q which are made up of four such symplectic-Majorana-Weyl spinors. Up to
interchange of chirality, the possible combinations of chiralities are N = (4, 0), (3, 1) or (2, 2).
The corresponding R-symmetry groups of these superalgebras are GR(p,q) = Sp(2p) × Sp(2q)1 for
N = (p, q) supersymmetry.

1In this article, we denote by Sp(2n) the compact symplectic group of rank n.
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For instance, for the (4,0) chiral superalgebra, the anti-commutator of the supercharges is given
by

{QAα , QBβ } = ΩABPµγ
µ

[αβ] + Ż
[AB]
[αβ] + Z

(AB)
(αβ) (1.1)

where Pµ is the momentum and the quantities denoted with a Z are central charges (with Ż[αβ]A
A =

0).
To study the multiplets, we need to look at the representations of the superalgebras. The

massless physical states form representations of the little group Glittle = SU (2)× SU (2)×GR(p,q),
which is the subgroup of Spin(5, 1)×GR(p,q) preserving a null-momentum vector. Representations of
Glittle will be denoted as e.g. (3,3; 1,1), where we use a semicolon to separate the representations
of the spacetime part and the R-symmetry part of the little group. The representations of these
superalgebras with only states of helicity at most 2 were classified in [20], and are presented in
Table 1.1.

D = 6, (p, q) = (4, 0) 28 = (5,1; 1) + (3,1; 27) + (1,1; 42)
SU(2)× SU(2)× Sp(8) +(4,1; 8) + (2,1; 48)
Q belongs to (2, 1; 8)

D = 6, (p, q) = (3, 1) 28 = (4,2; 1,1) + (2,2; 14,1) + (3,1; 6,2)
SU(2)× SU(2)× Sp(6)× Sp(2) +(1,1; 14′,2) + (4,1; 1,2)
Q belongs to (2, 1; 6, 1) + (1, 2; 1, 2) +(3,2; 6,1)

+(2,1; 14,2) + (1,2; 14′,1)
D = 6, (p, q) = (2, 2) 28 = (3,3; 1,1) + (1,3; 5,1) + (2,3; 4,1)
SU(2)× SU(2)× Sp(4)× Sp(4) +(3,1; 1,5) + (1,1; 5,5) + (2,1; 4,5)
Q belongs to (2, 1; 4, 1) + (1, 2; 1, 4) +(3,2; 1,4) + (1,2; 5,4) + (2,2; 4,4)

Graviton in the (3,3; 1,1)

Table 1.1: Six-dimensional multiplets with 32 supercharges

We can see that in dimension six, the chiral superalgebra N = (4, 0) has only one massless
multiplet

28 = (5,1; 1) + (3,1; 27) + (1,1; 42) + (4,1; 8) + (2,1; 48) . (1.2)

The representations (3,1; 27), (1,1; 42) and (2,1; 48) are immediately identified with self-dual
2-forms B+

ij , scalars φ and chiral fermions λ.
The field in the (5,1; 1) representation of the little group SU(2) × SU(2) × Sp(8) has been

labeled the exotic graviton [1] and is represented as a four-index object Cijkl with i, j, k, l being
the little group SO(4) vector indices. It has the following properties

Cijkl = Cklij = C[ij]kl = Cij[kl] , C[ijk]l = 0

Cijik = 0
(1.3)

Cijkl =
1

2
εijmnC

mn
kl =

1

2
Cij

mnεmnkl . (1.4)

We see that this little group representation corresponding to the exotic four-index field has the
symmetries of a self-dual Weyl tensor in four-dimensional Euclidean space. For this reason, this
field and the supermultiplets for which it is the top component are often described as “self-dual
Weyl” (see e.g. [6]), and we will use this terminology interchangeably with the label “exotic”. The
covariant self-dual Weyl field is represented by Cµνρσ with the same index symmetries as the
Riemann tensor

Cµνρσ = Cρσµν = C[µν]ρσ = Cµν[ρσ] , (1.5)

C[µνρ]σ = 0 . (1.6)

The field strength (in flat spacetime) is defined as2

Gµνρστκ = ∂[µCνρ][στ,κ] (1.7)
2The comma in the subscript denotes a partial derivative.
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so that
Gµνρστκ = G[µνρ]στκ = Gµνρ[στκ] = Gστκµνρ , (1.8)

and
G[µνρσ]τκ = 0 . (1.9)

The field strength defined in such way is invariant under the transformation

δCµνρσ = 2∂[µην]ρσ + 2∂[ρησ]µν − 4∂[µηνρσ] (1.10)

with the parameter ηµνρ = ηµ[νρ].
It satisfies the self-duality on both the first three and the last three indices G = ?G = G? where

we use ? to denote the Hodge-star operation and it is defined in the 6d Minkowski spacetime as

Gµνρστκ = (?G)µνρστκ ≡
1

3!
εµνραβγG

αβγ
στκ

= (G?)µνρστκ ≡
1

3!
Gµνρ

αβγεαβγστκ .

(1.11)

This it the equation of motion for the covariant field strength G. We see that in our convention
with the 6d Minkowski metric, the Hodge-star ? squares to identity (?)2 = 1.

The (4,1; 8) part of the multiplet corresponds to a covariant chiral fermionic 2-form-spinor
field ψAµν , which we refer to as the exotic gravitino. We omit the Sp(8) index A. This spinor field
is anti-symmetric and its field strength is self-dual and gauge invariant

ψµν = −ψνµ
χµνρ ≡ 3∂[µψνρ] , χ = ? χ invariant under δψµν = 2∂[µεν]

(1.12)

where εν is an arbitrary vector-spinor. However, unlike the bosonic fields, these properties (1.12)
are not strong enough to ensure that ψij transforms in (4,1; 8) of the little group after some gauge
fixing. An extra constraint must be included, and it is

γdabcχabc = 0 (1.13)

where a, b, c, d are spatial indices. In [11], it was proved that this constraint together with the
self-duality in (1.12) is equivalent to the Rarita-Schwinger type equation

γαβµνρχµνρ = 0 , (1.14)

which is the covariant field equation leading to (4,1; 8). Equivalently, it can be taken as

γµχµνρ = 0 . (1.15)

We will come back to this discussion in chapter 3.
As shown in [1–3], due to the double self-duality relations (1.11), the dimensional reduction of

Cµνρσ to five dimensions gives a single linearised graviton. This can happen because the various
components of Cµνρσ which appear in the reduction become the dual graviton and the double-dual
graviton. We will review this process in next section.

This mechanism is essentially a “squared” version of the mechanism by which a self-dual two-
form in six dimensions restricts to a single vector field in five. Similarly, the exotic gravitino
reduces to a single gravitino in five dimensions, and in total the massless degrees of freedom of the
(4, 0) multiplet reduce to exactly the fields of five-dimensional N = 8 supergravity. In addition,
the Kaluza-Klein tower of massive modes arising from the massless (4, 0) states on circle match
perfectly the 1

2 -BPS-states of the five-dimensional maximal supergravity [1, 3]. The scalars of the
(4, 0) multiplet transform in the correct Sp(8) representation to form a non-linear sigma model
based on the coset

E6(6)/Sp(8) (1.16)

which is the same as that parametrised by the scalars of five-dimensional maximal supergravity [43].
However, as discussed in the introduction, it is not clear that the E6(6) symmetry uplifts to the
six-dimensional theory.
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We also see that in addition to the (4, 0) and (2, 2) maximal SUSY multiplets, there is the
(3, 1) multiplet [1,2,20]. The highest spin field corresponds to the (4,2; 1,1) representation of the
little group SU(2)× SU(2)× Sp(6)× Sp(2) and is a three-index object whose covariant field is a
three-index tensor Dµνρ which satisfies

Dµνρ = D[µν]ρ, D[µνρ] = 0 . (1.17)

Its field strength is defined as
Sµνρσκ = ∂[µDνρ][σ,κ] (1.18)

which is invariant under

δDµνρ = 2∂[µαν]ρ − 2∂[µανρ] + ∂ρβµν − ∂[ρβµν] (1.19)

with the parameters αµν , βµν = β[µν]. It is constrained to satisfy the one-side self-duality constraint

Sµνρσκ = (?S)µνρσκ =
1

3!
εµνραβγS

αβγ
σκ . (1.20)

It can be shown that upon a circle reduction the (3, 1) multiplet also yields the linearised five-
dimensional N = 8 supergravity multiplet. The scalars of this multiplet naively appear to have a
coset structure [1]

F4

Sp(6)× Sp(2)
. (1.21)

but the vector and two-form fields appear only to transform in a representation of F4(4) when
combined [12], making it unclear that this is a symmetry of the theory.

All three of these maximal six-dimensional supermultiplets can be thought of as products
of smaller supermultiplets. The idea that maximal supergravity can be viewed as the square
of maximal super Yang-Mills theory has proved to be extremely powerful for the computation
of perturbative scattering amplitudes [13, 21–24]. However, this view is also useful for simply
understanding the multiplet structures purely at the level of the representation theory. In fact, one
can also obtain the supergravity multiplets with various amounts of supersymmetry by considering
products of tensor multiplets with supercharges of opposite chirality [6, 10]

[(2, 0)tensor]⊗ [(0, 2)tensor] = [(2, 2)sugra]

[(2, 0)tensor]⊗ [(0, 1)tensor] = [(2, 1)sugra]

[(1, 0)tensor]⊗ [(0, 1)tensor] = [(1, 1)sugra]

(1.22)

By contrast, the exotic multiplets arise when the tensor multiplets in the product have supercharges
of aligned chirality:

[(2, 0)tensor]⊗ [(2, 0)tensor] = [(4, 0)SD-Weyl]

[(2, 0)tensor]⊗ [(1, 0)tensor] = [(3, 0)SD-Weyl]

[(1, 0)tensor]⊗ [(1, 0)tensor] = [(2, 0)SD-Weyl] + [(2, 0)tensor] ,

(1.23)

Note that there exists also a [(1, 0)SD-Weyl] which can be constructed using the standard methods
[20]. The (2, 0)SD-Weyl case is similar to the squaring of the (1, 0) vector multiplet, for which the
product gives [(2, 0)sugra] + [(2, 0)tensor].

For the non-maximally supersymmetric case, notably (2, 0) and (1, 0) the SD-Weyl multiplets
exist in parallel to the standard supergravity multiplets [73], and have the same numbers of degrees
of freedom as the latter, but have fields living in the different representations of the symmetry
groups, as summarised in the Table 1.2. Their field contents upon the circle reduction match, and
correspond to the five-dimensional supergravity multiplets with 16 and 8 supercharges respectively.

A detailed construction and a complete list of (1, 0), (2, 0) and (4, 0) multiplets with low spins
can be found in Appendix A.2.

Similar considerations apply to the last maximally supersymmetric multiplet, which receives
much less attention in this thesis. The (3, 1) multiplet can be seen as a product of tensor and
vector multiplets [6]

[(2, 0)tensor]× [(1, 1)vector] = [(3, 1)]exotic . (1.24)
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Exotic (or SD-Weyl) Gravity
D = 6, (p, q) = (2, 0) (3,1; 1)× 24 (1,3; 1)× 24

SU(2)× SU(2)× Sp(4) = (5,1; 1) + (3,1; 5) + (1,1; 1) = (3,3; 1) + (1,3; 5) + (2,3; 4)
Q 1

2
in (2, 1; 4) +(4,1; 4) + (2,1; 4) + (3,1; 1)

D = 6, (p, q) = (1, 0) (4,1; 1)× 22 (2,3; 1)× 22

SU(2)× SU(2)× Sp(2) = (5,1; 1) + (3,1; 1) + (4,1; 2) = (3,3; 1) + (1,3; 1) + (2,3; 2)
Q 1

2
in (2, 1; 2)

Table 1.2: Six-dimensional SD-Weyl vs. gravity multiplets

1.2 The exotic tensor fields and dualities
In the previous section, we considered the six dimensional chiral superalgebra and there are three
exotic objects in their massless representations. They are realised by the covariant fields Cµνρσ,
Dµνρ and ψµν as representation of SO(5, 1), and they satisfy some symmetry properties and self-
dualities. In the bosonic case, it also follows that their field equations are just the self-duality
condition in each case. These self-dualities are very important to determine the little group ir-
reducible representation, however one can also relax the self-duality constraints and have some
“weaker” field equations for more general exotic Lorentz tensor fields in arbitrary dimensions. We
introduce these exotic tensor fields and study their properties as well as their duality relations.

For simplicity, we only consider bosonic tensor fields. Our discussions are also restricted at
the level of field equations. There are also intriguing results and analysis in terms of Lagrangian
formalism and action principle for these fields, see e.g. [9, 11, 12, 74, 76–78, 80]. We start with d-
dimensional Minkowskian spacetime and it is useful to describe the irreducible GL(d,R)-tensors
in terms of Young diagrams and Young tableaux (see appendix A.3). For our interests, we will
mainly deal with two-column Young diagrams. This is called the “Bi-form gauge theory” in [76]
and we mostly follow the conventions there.

1.2.1 Some gauge theories
The linearised graviton (Pauli-Fierz field). The linearised graviton (or Pauli-Fierz field)
hµν is represented by the Young tableaux of type [1, 1] = . The linearised Riemann curvature
tensor (field strength of h) is

Rµνρσ = ∂[µhν][ρ,σ] (1.25)

and graphically we can represent it by the Young tableaux

R = or R[h] =
∂ ∂

. (1.26)

In the Young tableaux where we filled the boxes with the partial derivatives “∂” is to indicate that
we take two derivatives of h and impose the the Young tableaux symmetry on the corresponding
index. The gauge transformation is

δhµν = 2∂[µξν] = ∂ with ξ = (1.27)

where the parameter ξν transforms in the fundamental representation of GL(d,R). This leaves
the field strength invariant by the Young tableaux symmetry and the commutativity of the partial
derivatives:

δR = ∂
∂ ∂

= 0 . (1.28)

The symmetry properties of R is manifest in the representation of Young tableaux

Rµνρσ = Rρσµν = R[µν]ρσ = Rµν[ρσ] , (1.29)

R[µνρ]σ = 0 . (1.30)
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The differential Bianchi identity is obvious if we look at the second graphic representation (1.26)

∂[λRµν]ρσ = ∂ ∂
∂

= 0 . (1.31)

here we used again the commutative property of the partial derivatives. This also impliesRµν[ρσ,λ] =
0 because of the symmetry of R (1.29). The field equation is exactly the linearised Einstein equa-
tion, which states that the single trace of the Riemann curvature tensor vanishes

Rνσ ≡ ηµρRµνρσ = 0 . (1.32)

For d > 4, this field equation does not imply Rµνρσ = 0. Thus, it is non trivial, and on-shell the
Pauli-Fierz field reduces to a traceless symmetry tensor hij of the little group SO(d− 2). But for
d = 3, it is well-known that the vanishing of the Ricci tensor Rµν implies the vanishing of the
Riemann tensor, in this case, in order to get a non-topological theory, we should replace the single
trace field equation by R ≡ ηνσRνσ = 0 and the theory propagates one physical degree of freedom
in three dimensions.

The dual graviton. The Young tableaux for the dual graviton (the name “dual graviton” will
be justified below) Dµ1µ2...µd−3ν is the “hook” of the type [d− 3, 1]

...

with
Dµ1µ2...µd−3ν = D[µ1µ2...µd−3]ν and D[µ1µ2...µd−3ν] = 0 . (1.33)

The field strength is defined similarly as in (1.18)

Sµ1µ2...µd−2ν1ν2 = ∂[µ1
Dµ2...µd−2][ν1,ν2] (1.34)

and represented by [d− 2, 2]

S[D] =

∂...

∂

. (1.35)

One of the advantage to use Young tableaux is that we easily find that in this case there are two
parameters needed to describe the gauge freedom of D, and they are α and β of the type [d− 4, 1]
and [d− 3]. The gauge transformation is given by

δDµ1µ2...µd−3ν = ∂[µ1
αµ2...µd−3]ν + ∂[µ1

βµ2...µd−3]ν + (−1)d∂νβµ1...µd−3
(1.36)

and

δ ... = ...
∂

+

∂

... . (1.37)

The symmetries are

Sµ1µ2...µd−2ν1ν2 = S[µ1µ2...µd−2]ν1ν2 = Sµ1µ2...µd−2[ν1ν2] (1.38)

the algebraic Bianchi identity
S[µ1µ2...µd−2ν1]ν2 = 0 (1.39)

and the differential Bianchi identities

∂[ρSµ1µ2...µd−2]ν1ν2 = 0 , Sµ1µ2...µd−2[ν1ν2,ρ] = 0 . (1.40)

The field equation for D is again the traceless of its field strength

ηµ1ν1Sµ1µ2...µd−2ν1ν2 = 0 . (1.41)



1.2. The exotic tensor fields and dualities 25

The double dual graviton. The double dual graviton (again, the name of this field will be
explained later) Cµ1µ2...µd−3ν1ν2...νd−3

has the symmetry of a [d− 3, d− 3] Young Tableaux

...
...

it means

Cµ1µ2...µd−3ν1ν2...νd−3
= C[µ1µ2...µd−3]ν1ν2...νd−3

= Cµ1µ2...µd−3[ν1ν2...νd−3] , (1.42)

Cµ1µ2...µd−3ν1ν2...νd−3
= Cν1ν2...νd−3µ1µ2...µd−3

, (1.43)

C[µ1µ2...µd−3ν1]ν2...νd−3
= 0 . (1.44)

The field strength is [d− 2, d− 2]

Gµ1µ2...µd−2ν1ν2...νd−2
= ∂[µ1

Cµ2...µd−2][ν1ν2...νd−3,νd−2] (1.45)

G[C] =
...
...

∂ ∂

. (1.46)

Now we need only one parameter with the symmetry [d− 3, d− 4] for the gauge transformation

δCµ1µ2...µd−3ν1ν2...νd−3
= ην1ν2...νd−3[µ1µ2...µd−4,µd−3] + ηµ1µ2...µd−3[ν1ν2...νd−4,νd−3] (1.47)

and

δ ...
... = ...

...
∂

. (1.48)

Analogously, the field strength G satisfies the symmetries

Gµ1µ2...µd−2ν1ν2...νd−2
= G[µ1µ2...µd−2]ν1ν2...νd−2

= Gµ1µ2...µd−2[ν1ν2...νd−2] , (1.49)

Gµ1µ2...µd−2ν1ν2...νd−2
= Gν1ν2...νd−2µ1µ2...µd−2

, (1.50)

the algebraic Bianchi identities

G[µ1µ2...µd−2ν1]ν2...νd−2
= 0 = Gµ1µ2...[µd−2ν1ν2...νd−2] (1.51)

and the differential Bianchi identities

∂[ρGµ1µ2...µd−2]ν1ν2...νd−2
= 0 = Gµ1µ2...µd−2[ν1ν2...νd−2,ρ] . (1.52)

The new feature here that the single trace equation of motion

ηµ1ν1Gµ1µ2...µd−2ν1ν2...νd−2
= 0 (1.53)

is problematic, it may imply the vanishing of G in certain spacetime dimensions. Because in these
dimensions the tensor G is completely determined by its trace part, see e.g. [14, 76, 81], and we
should take the vanishing of higher trace of G as the equation of motion.

For example, in spacetime dimension five, the Levi-Civita symbol εµ1...µ5
has five indices and

it is invariant under SO(4, 1). Then we have for G[C] = the following identity

Gµ1µ2µ3ν1ν2ν3 =

Å
1

2!

1

3!
εµ1µ2µ3αβε

ρ1ρ2ρ3αβ

ã
Gρ1ρ2ρ3σ1σ2σ3

Å
1

2!

1

3!
εν1ν2ν3κτ ε

σ1σ2σ3κτ

ã
. (1.54)
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We see that this holds because of the ε identity (note that the minus sign is due to the Minkowski
signature)

εµ1µ2µ3αβε
ρ1ρ2ρ3αβ = −3! 2! δ[ρ1

µ1
δρ2µ2

δρ3]
µ3

(1.55)

and alternatively, we can fuse one ε from the first bracket with another one of the second bracket

ερ1ρ2ρ3αβεσ1σ2σ3κτ = −5! η[ρ1|σ1|ηρ2|σ2| . . . ηβ]τ (1.56)

where we only antisymmetrise the indices which are not separated by “ | |”. We see that because
there are only 5 η’s in the expression (1.56), when we contract it with Gρ1ρ2ρ3σ1σ2σ3

, only traces
of G will appear. The single trace determines also higher traces, hence the traceless part of G
vanishes and G is completely fixed by Gµνρµστ .

This generalises automatically for a tensor gauge field A with [p, q] (p > q) Young tableaux
symmetry and field strength F [A] of the type [p+1, q+1] in arbitrary dimensions: the single trace
equation of motion

ηµ1ν1Fµ1µ2...µp+1ν1ν2...νq+1 = 0 (1.57)

is non-trivial in dimension d > p + q + 2. Furthermore [76], the n-th trace of F vanishing is a
non-trivial field equation in dimension d = p+q+3−n. If we apply this result for our [d−3, d−3]
double dual graviton in d dimensions then (1.53) is non-trivial only for d = 4, and the vanishing
of the (d− 3)-th trace of G yields a natural and non-trivial field equation for d > 4

Gµ1µ2...µd−3ρ
µ1µ2...µd−3

σ
= 0 . (1.58)

Specifically, the self-dual Weyl field written as Cµνρσ is a [p, q] = [2, 2] gauge field in six
dimensions. The self-duality constraint on its field strength G (1.11) and the algebraic Bianchi
identity of G together imply that G satisfies the single trace field equation

ηµσGµνρστκ = 0 . (1.59)

Degrees of freedom. All the three two column gauge fields are represented by the Young
tableaux, and allowing gauge transformations with appropriate parameters. One imposes the
nature non-trivial field equations (1.32), (1.41) and (1.58). On-shell, for d > p+q+2, the linearised
graviton and the dual graviton transform in the representations of the little group SO(d− 2) with
the same Young tableaux and in addition, they are traceless. In the sense that if we pick one
index from the left column and contract with another one from the right column via the SO(d−2)
invariant tensor δij , the result vanishes.

The number of independent components of the ‘[p, q] little group Young tableaux is (we use the
same notation as in [76], and “ ̂ ” means traceless)

dim(d−2)
‘[p, q] = dim(d−2)[p, q]− dim(d−2)[p− 1, q − 1] (1.60)

where dimd[p, q] denotes the number of independent components of the traceful [p, q] Young
tableaux in the Lorentz group SO(d− 1, 1) (or in the orthogonal group SO(d))

dimd[p, q] =

Ç
d

p

åÇ
d+ 1

q

åÅ
1− q

p+ 1

ã
. (1.61)

We can then insert the three cases that we are interested in and read off their physical degrees of
freedom

dim(d−2)
‘[1, 1] = dim(d−2)

ÿ�[d− 3, 1] =
d(d− 3)

2
(1.62)

for d > 4. The evaluation of dim(d−2)
¤�[d− 3, d− 3] through the equation (1.60) gives a negative

number. Because the non-trivial field equation (1.58) for the [d− 2, d− 2] field strength will lead
to a ‘[1, 1] Young tableaux for the [d− 3, d− 3] double dual graviton in the little group. Thus, the
double dual graviton propagates on-shell the same amount of degrees of freedom as the linearised
graviton and the dual graviton.
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Note that in general, the Young tableaux with traceless condition are not sufficient to determine
irreducible representations of the Lorentz or orthogonal groups. For example, the free [2, 2] tensor
C with single trace field equation have in six dimensions dim(6−2)

‘[2, 2] = 10 degrees of freedom.
The self-dual constraint (1.11) implies the SO(4) little group self-dualities (1.4). Thus, it halves
the degrees of freedom and finally gives a irreducible representation of SO(4), and we see that
imposing the self-duality is a necessary step to determine irreducible representations for the Lorentz
(orthogonal) groups in some dimensions.

1.2.2 The dual formulations of linearised gravity
The Maxwell theory is formulated by using an abelian vector field Aµ transforming in the fun-
damental representation of GL(d,R). The dual-formulation is based on the antisymmetric

tensor gauge field Ãµ1µ2...µd−3
represented by ... with d − 3 boxes in one single column. Their

field strengths are related by the Hodge star operator F̃ [Ã] = ?F [A]. The Bianchi identities and
equation of motions get exchanged by this duality transformation. In the region where the electric
source coupled to Aµ vanishes, one has the equation of motion

d ? F = 0 ⇒ dF̃ = 0 , (1.63)

so F̃ can be solved by a gauge field Ã up to gauge transformations. The relation between A and
Ã is non-local.

We had introduced the field strengths in terms of their gauge potentials in the previous para-
graphs. Conversely, given the tensor fields with the Young Tableaux symmetries [2, 2] , [d − 2, 2]
and [d − 2, d − 2], if they also fulfill the differential Bianchi identities, there are the generalised
Poincaré lemmata [75,82,83] ensure that they can be solved by the gauge potentials of type [1, 1],
[d−3, 1] and [d−3, d−3] up to gauge transformations. Hence, they admit similar duality relations
to the electromagnetic duality.

We can start with the Pauli-Fierz field hµν with its field strength R, then define the [d− 2, 2]
tensor S and the [d− 2, d− 2] tensor G by

S = ?R

G = ?R? ,
(1.64)

the ? acting from the left is to dualise the two indices on the first column of R (1.26) while the
? coming from the right side is to take the dualisation on the second column. This following
picture [84] shows the triality relations between these tensors. The double edged arrow between R
and G means the double Hodge dualisation and note that we also have G = S?.

R[h]

S[D] G[C]

(1.65)

The algebraic Bianchi identities of R (1.30) implies that S satisfies the field equation (1.41) and
G satisfies the algebraic Bianchi identities (1.51). The field equation of R implies the algebraic
Bianchi identity (1.39) of S and the non-trivial field equation (1.58) for G. Furthermore, it can
be derived that both S and G satisfy the differential Bianchi identities (1.40) and (1.52). This is
the requirements one needs to apply the generalised Poincaré lemma, so S and G can be solved
with the gauge potential D and C of the type [d − 3, 1] and [d − 3, d − 3]. Moreover, we can see
from the discussion on counting degrees of freedom (1.62) that the [1, 1], [d− 3, 1] and [d− 3, d− 3]
gauge potential describe the same physical degrees of freedom in the light-cone gauge. One can
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conclude that there are at least three equivalent formulations for linearised gravity via the gauge
field with mix Young Tableaux symmetry. However, it was noticed in [55], only two independent
sources which couple naturally to the three gauge potentials.

In the above duality transformations, the algebraic Bianchi identities and field equations get
interchanged between R and S as well as between S and G. But between R and G Bianchi identities
go to Bianchi identities and the field equation is mapped to the other field equation. Base on this
fact, it is argued in [14] that the relation between the linearised graviton field h and its double-dual
C is algebraic. It means one can introduce C by a algebraic combination of h together with some
gauge transformations. There are recent studies on these exotic duals of differential forms and
more general tensor fields, see e.g. [79, 84].

The “critical” dimension and the reduction of chiral exotic tensors. We want to apply
the aforementioned duality to exotic gauge of type [2, 1] and [2, 2], so the spacetime dimension is
d = 2 + 3 = 5. Five dimensions is also “critical” for the [2, 2] gauge field as we showed that the
trace-free part of its field strength G vanishes identically, so G is completely determined by its
single trace, and as we discussed, the non-trivial field equation in five dimensions for G is

Gµνσµνρ = 0 . (1.66)

This equation describes 5 degrees of freedom in 5d and it belongs to one of the three equivalent
formulations h, D, C for the linearised gravity in five dimensions. As discussed in [2], one would
naively expect that if one identifies the three 5d fields with components of a free [2, 2] field C from
six dimensions by circle reduction

hµν = Cµ5ν5 Dµνρ = Cµνρ5 C5d
µνρσ = Cµνρσ , (1.67)

then the single trace free field equation (1.59) in 6d could give three 5d nature non-trivial field
equations. However, this is not the case, a straightforward counting tells us that a free [2, 2] field
describe 10 degrees of freedoms in 6d and the three gauge fields in 5d have 15 degrees of freedom.
The subtlety is explained in [2], upon reduction, the 6d field equation (1.59) fixes the trace of G[C]
in 5d

Gµνρστ
ρ ∝ Rµνστ , (1.68)

and the linearised Riemann tensor determines G completely

Gµνρ
αβγ ∝ R[µν

[αβδρ]
γ] . (1.69)

In [14], in the example on the algebraic relation between h and C, a same formula to (1.69) in five
dimensions is derived. If one starts with R[h] and define G by (1.64) in five dimensions then one
can fuse the two ε’s and use Rµν = 0 to eliminate the traces of R

Gµνρ
αβγ =

Å
1

2!

ã2

εµνρστR
στ
κλε

αβγκλ

= −
Å

1

2!

ã2

5! δ
[α
[µ δ

β
ν . . . δ

λ]
τ ]R

στ
κλ

= −9R[µν
[αβδρ]

γ] .

(1.70)

This equation holds just by using the definition of G, some ε algebra and the field equation Rµν = 0
without knowing the 6d reductions.

It is straightforward to substitute the gauge potentials back in (1.69) and by the generalised
Poincaré lemma, one finds that C can be expressed in terms of algebraic combination of h up to
gauge transformations [14]. In the context of the dimensional reduction (1.67), C5d

µνρσ and hµν are
not independent. Thus, one gets back to the 10 degrees of freedom carried by the 6d free [2, 2]
tensor field.

If we are starting with the self-dual Weyl tensor, then the equation (1.11) is even stronger and
it relates R[h], S[D] and G[C] exactly via the dualities (1.64), so the self-dual Weyl tensor gives one
independent graviton in five dimensions. In a similar way to the SD-Weyl tensor, the three-index
object in the (3, 1) multiplet gives a graviton and a vector field upon reduction to five dimensions.
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Chapter 2

The algebraic approach

The theory of eleven-dimensional supergravity can be formulated with eleven-dimensional Lorentz
symmetry non-manifest, but broken to a subgroup SO(1, 10 − d) × SO(d), as one would have in
dimensional reductions of the theory. Remarkably, when this is done, one finds that this group
can be enhanced [85] to a local symmetry SO(1, 10 − d) × H̃d , where H̃d is the (double cover
of) the maximal compact subgroup of the exceptional group Ed(d) which would appear in the
corresponding torus compactification [86]. As one increases d, this exceptional group becomes
infinite dimensional, as does the corresponding H̃d , and grand proposals as to how these infinite
dimensional symmetries are realised in M theory have been put forward [54,87].

Dimensions = 11− d Ed(d) H̃d

9 E2(2) ' SL(2,R)× R Spin(2)
8 E3(3) ' SL(3,R)× SL(2,R) Spin(3)× Spin(2)
7 E4(4) ' SL(5,R) Spin(5)
6 E5(5) ' Spin(5, 5) Spin(5)× Spin(5)
5 E6(6) Sp(8)
4 E7(7) SU (8)
3 E8(8) Spin(16)

Table 2.1: SUGRA U-duality groups (split real forms) and double cover of their maximal compact
subgroups in (11− d) dimensions [86,88].

Recently, work has been done constructing the exceptional field theories. For d ≤ 7, these
exceptional symmetries give rise to exceptional generalised geometries [88, 89] which can be used
to describe the internal sector of the theory [33,34]. The full theory can then be written with these
symmetries manifest and the internal sector given by the generalised geometry formulation [36,37].
Further, one finds that the formulation of exceptional geometry can describe also type IIA and
IIB supergravity via the exact same equations. The only change is the choice of subgroup which
corresponds to the action of spacetime diffeomorphisms on tensors (i.e. the choice of “gravity line”
in the language of [90]). There are two inequivalent embeddings of GL(d − 1,R) into Ed(d)×R+,
giving different decompositions of the exceptional theory into ordinary tensor fields [33, 36, 39].
One of these embeddings gives type IIA and the other type IIB. In the language of [36], this is
phrased as the choice of “section” of a higher dimensional space. Such sections are subspaces V of
(the dual of) the generalised tangent space such that V ⊗ V is null in particular Ed(d) covariant
projections of the tensor product space. In generalised geometry discussions, the subspace V is
simply the cotangent bundle of the underlying manifold.

In this chapter, we explore the possibility that a third choice of spacetime subgroup could
give the N = (4, 0) theory of [1]. In the half maximal setting, it was established that both the
ten-dimensional type I theory and the six-dimensional N = (2, 0) theory could be seen in this
way [40]. However, the N = (4, 0) theory is not a standard type of gravitational theory, so we
expect that the picture will be different. We will see here that some hints of its known features,
at least at the linearised level, can be seen from this angle of investigation, but these will amount
more to curiosities than conclusive evidence. An important realisation, though, is that there
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is no spacetime section inside the exceptional multiplet of charges, in the way that there is for
standard supergravity, but only the embedding of the momentum charge, which does not solve
the section condition and carries no natural action of a special linear group. We will also examine
the corresponding pictures for exotic multiplets with N = (2, 0) and N = (1, 0) supersymmetry,
finding the same pattern of behaviour.

We begin by studying the embedding of the spin groups into Cliff(10, 1;R) and the relation of
this to the higher dimensional enhanced symmetries H̃d . We then comment on the interpretation of
these embeddings in terms of charges and how this could correspond to different spacetime groups
inside the duality group E8(8).

2.1 An almost universal construction of the maximal super-
symmetry algebras

The maximal supersymmetry algebras can all be seen as subalgebras of a Lie superalgebra A,
which we briefly describe. The generators of A consist of 32 fermionic generators Qα, transforming
as the 32 representation of SL(32,R).1 The anti-commutators of these give 528 bosonic generators
Xαβ

{Qα, Qβ} = Xαβ = X(αβ)

[Xαβ , Qγ ] = 0
(2.1)

which have vanishing brackets with the Q’s. Finally, we add the generatorsMα
β of sl(32,R) which

act on the Q’s and X’s via the adjoint action.
We can recover a maximal supersymmetry algebra fromA by truncating the sl(32,R) generators

to a subalgebra of the form spin(D − 1, 1) ⊕ k, where k is the maximal compact commutant of
spin(D− 1, 1) inside sl(32,R) (k is the R-symmetry automorphism algebra). Decomposing Qα and
Xαβ under spin(D − 1, 1) ⊕ k, we recover the supersymmetry algebra. It is easy to see why this
prescription works: the generators Qα and Xαβ of the algebra A are simply the supertranslational
part, without specifying how they transform under the Lorentz symmetry and R symmetry. This
is then fixed by choosing the subalgebra spin(D − 1, 1)⊕ k ⊂ sl(32,R)

Q→ QAα̃ (2.2)

with A being the R-symmetry index and α̃ is the spin(D − 1, 1) spinor index.
We now want to view the algebra sl(32,R) as the irreducible matrix representation of the

Clifford algebra Cliff(10, 1;R), see appendix B.1 for more details. Choosing the natural spin(10, 1)
subalgebra (which has no compact commutant in sl(32,R)), the 32 representation is irreducible,
while the 528 decomposes into 11 + 55 + 462, so that X becomes the momentum Pµ, a 2-
form Zµν and a 5-form Zµ1...µ5

. We thus recover the standard eleven-dimensional supersymmetry
algebra. Furthermore, the maximal automorphism group for the eleven-dimensional superalgebra
is SL(32,R) and one can work out how the SL(32,R) generators rotate the momentum and the
central charges [92].

The standard (non-chiral) maximal supersymmetry algebras in lower dimensions are then ob-
tained by taking spin(D − 1, 1) subalgebras of this spin(10, 1) and then examining their com-
pact commutants in sl(32,R) to find the R-symmetry (though again there are exceptions to this
rule – see footnote 1). We can decompose the eleven-dimensional Lorentz indices into indices
µ, ν = 0, 1, . . . D− 1 for the “external spacetime” spin(D− 1, 1) Lorentz group and m,n = 1, . . . , d
the orthogonal group indices for the “internal space”.

We see that the parts of Xαβ which form the momentum charge in D-dimensions are completely
contained in the eleven-dimensional momentum charge Pµ, and that the d-dimensional Lorentz
group is contained in the eleven-dimensional Lorentz group by construction. In the corresponding
supergravity theories, this can be interpreted as saying that the lower-dimensional spacetime is a
subspace of the higher dimensional spacetime.

1Finite dimensional unfaithful representations of K̃(E11) exist, on which the ideal I acting trivially and for Dirac
fermions the finite dimensional quotient is K̃(E11)/I ∼= SL(32,R) [91].
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However, in some dimensions D there are alternative embeddings of spin(D−1, 1) into sl(32,R),
such that the resulting supercharges Q have different chiralities to those in the simple embeddings
above. For example, a different embedding of spin(9, 1) to that above gives the N = (2, 0) super-
symmetry algebra of type IIB supergravity in ten dimensions. A relatively clean way to see this
is to construct the embedding explicitly in terms of the Cliff(10, 1;R) gamma-matrices, so this is
what we do next.

2.2 Spin embeddings into higher dimensional Clifford alge-
bras

We start by giving a general picture of some different ways that one can embed the Lie algebra of
Spin(s + 1, t) into Cliff(s + N, t). The construction is very explicit, using gamma matrices and a
multitude of different indices. Readers who do not wish to indulge these details could skip straight
to the examples.

2.2.1 Different embeddings of Spin(s + 1, t) into Cliff(s + N, t)

Let i, j be indices for the vector representation of SO(s, t) taking values in {−t, . . . ,−1} for the
timelike directions and {1, . . . , s} for the spacelike directions. Let ΓM be the gamma matrices
generating Cliff(s + N, t), with the index M similarly taking values in {−t, . . . ,−1, 1, . . . , s, s +
1, . . . , s+N}. Introducing a further set of indices I, J taking values in {−t, . . . ,−1, 1, . . . , s, s+1},
consider the generators

{
γ̂IJ
}

=

ß
Γij , I = i, J = j
Γi s+1 s+2 ... s+n I = i, J = s+ 1

(2.3)

in which s+ 1, . . . , s+ n label n spacelike directions in the space of signature (s+N, t) which are
invariant under SO(s, t). One can check that these generate Spin(s+ 1, t) or Spin(s, t+ 1), where
the signature of the extra direction is determined by the value of n as

n 0 1 2 3 4 5 6 7 8 . . .
± − + + − − + + − − . . .

(2.4)

In what follows, we will take n ∈ {1, 2, 5, 6, . . . } so that the extra direction is spacelike (+ in the
table).

If we have that s+t+1 is even, we can calculate the chirality matrix2 γ̂(s+t+1) for the embedded
Cliff(s + 1, t)even. This tells us how the (s + N, t) spinor decomposes into (s + 1, t) spinors. In
particular, we note that if n = N then this is

γ̂(s+t+1) = Γ−t −t+1 . . .Γs−2 s−1Γs s+1 ... s+N = Γ−t . . .Γ−1Γ1 . . .Γs+N = Γ(s+t+N) (2.5)

which is the product of the gamma matrices in signature (s+N, t) (i.e. ±1 or ±i1 if s+t+N is odd,
or the chirality matrix if s+ t+N is even). Thus, if in Cliff(s+N, t) we have Γ(s+t+N) = +1 then
all spinors will decompose to have the same (positive) chirality. This will appear in our examples
in the next section.

2.2.2 Examples
Example 1 : Type II into eleven dimensions

We start by looking at the nine-dimensional spin group Spin(8, 1), generated by Γij , for i, j =
0, 1, . . . , 8, inside Cliff(10, 1). We then consider how we could add generators to these to enhance
the group to give a Spin(9, 1) inside Cliff(10, 1). We see two inequivalent ways to do this, leading
to decompositions of the eleven-dimensional spinor into two spinors of different chirality or into

2In our notation for this chapter, if a Clifford algebra is generated by gamma matrices γi, with the index i
running over d values, then γ(d) =

∏
i γ
i is the product of the d distinct gamma matrices.
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two spinors of the same chirality under the Spin(9, 1) subgroups. These correspond to type IIA
(non-chiral) and type IIB (chiral) respectively.

For type IIA we simply add the spin generators corresponding to including one more direction
of the eleven-dimensional space, so that our Spin(9, 1) group is generated by{

γ̂IJ
}

=
{

Γij ,Γ i 9
}

(2.6)

which gives (recall that the Γ-matrices are the Cliff(10, 1) gamma matrices and we take Γ(11) =
Γ0Γ1Γ2 . . .Γ10 = +1)

γ̂(10) = Γ01Γ23 . . .Γ78Γ89 = Γ(11)Γ10 = Γ10 =

Å
1 0
0 −1

ã
(in an appropriate basis) (2.7)

so we see that the eleven-dimensional spinor decomposes into one positive and one negative chirality
ten-dimensional spinors.

The commutant of the type IIA spin(9, 1) subalgebra inside sl(32,R) is generated by {Γ10}.
This generates an R+ subgroup of SL(32,R), and so there is no non-trivial compact commutant.
This matches the R-symmetry of type IIA.

For type IIB, we instead take {
γ̂IJ
}

=
{

Γij ,Γi 9 10
}

(2.8)

leading to
γ̂(10) = Γ01Γ23 . . .Γ8 9 10 = Γ(11) = 1 (2.9)

Thus, the 32 component spinor decomposes into only positive chirality spinors for this Spin(9, 1)
subgroup, as all spinors have eigenvalue +1 under γ̂(10).

The commutant of the type IIB spin(9, 1) subalgebra inside sl(32,R) is generated by {Γ9 10}.
This generates an SO(2) subgroup, which matches the R-symmetry of type IIB.

Example 2 : Six-dimensional N = (4, 0) into eleven dimensions

We start with the Spin(4, 1) generators Γij , for i, j = 0, 1, . . . , 4, inside Cliff(10, 1) and look to
extend this to an embedding of Spin(5, 1). Taking the additional generators Γi5 would result in
the spin(5, 1) subalgebra for standard N = (2, 2) supergravity in six-dimensions. If instead we take{

γ̂IJ
}

=
{

Γij ,Γi56789 10
}

(2.10)

then, similarly to the situation for type IIB above, we obtain

γ̂(6) = Γ01Γ23 . . .Γ456789 10 = Γ(11) = +1 (2.11)

so that again the 32 component spinor decomposes into only positive chirality spinors for this
Spin(5, 1) subgroup.

The commutant of this spin(5, 1) subalgebra inside sl(32,R) is generated by {Γm,Γm1m2 , . . . ,
Γm1...m6} for m,n = 5, 6, . . . , 10. Of these, only the generators {Γm1m2 ,Γm1m2m3 ,Γm1...m6} square
to −1 and hence are compact. The compact commutant group these generate is Sp(8), which
matches the R-symmetry of the N = (4, 0) multiplet.

2.2.3 Irreducible decomposition of charges
In the examples of section 2.2.2 we gave the embedding of two inequivalent Spin(9, 1) groups and
two inequivalent Spin(5, 1) groups into Cliff(10, 1;R). In terms of Spin(10, 1) objects the charges
(Xαβ above) can be written as an eleven-dimensional vector, two-form and five-form via

{Qα, Qβ} = PM (C̃ΓM )αβ + 1
2ZMN (C̃ΓMN )αβ + 1

5!ZM1...M5
(C̃ΓM1...M5)αβ (2.12)

where we have explicitly included the transpose intertwiner C̃ as defined in appendix B.1. We can
then calculate explicitly the action of our other Spin groups on the charges (P,Z(2), Z(5)), written
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in terms of a decomposition under the common subgroup with Spin(10, 1). We provide a sketch
of these calculations here, noting that our Spin groups are acting as subgroups of GL(32,R). This
means that the action of a matrix M is given by

M · (C̃Γ...) = −MT (C̃Γ...)− (C̃Γ...)M

= −C̃
(

(C̃−1MT C̃)Γ... + Γ...M
)
.

(2.13)

Example 1 : Type II into eleven dimensions

For type IIA the generators of the relevant Spin(9, 1) were found above to be Mµν = Γµν and
Mµ9 = Γµ9, for µ, ν = 0, 1, . . . , 8 the vector indices of Spin(8, 1). Clearly, these simply generate a
Spin(9, 1) subgroup of Spin(10, 1) preserving the tenth spatial direction. As such it is clear that
the Spin(9, 1) irreducible combinations of charges will be

(Pµ, P 9) (Zµν , Zµ9) (Zµ1...µ5
, Zµ1...µ49)

(P 10) (Zµ10, Z9 10) (Zµ1...µ410, Zµ1...µ39 10)
(2.14)

We can check this explicitly, noting that

Mµ9 · (C̃Γ...) = C̃[Mµ9,Γ...] (2.15)

From this, we can see that as e.g. [Mµ9,Γ10] = 0 we have that P 10 is invariant under our Spin(9, 1).
Similarly, we see that [Mµ9,Γν10] = 2δµνΓ9

10 and [Mµ9,Γ9 10] = −2Γµ10 so that (Zµ10, Z9 10)
forms a vector of Spin(9, 1).

For type IIB, the situation is more complicated as the generators of the relevant Spin(9, 1) are
now Mµν = Γµν and Mµ9 = Γµ9 10. We then have

Mµ9 · (C̃Γ...) = −C̃{Mµ9,Γ...} (2.16)

We must then calculate the anti-commutators to see which charges are rotated into each other by
Mµ9. For example, {Mµ9,Γν} = 2gµνΓ9 10 and {Mµ9,Γ9 10} = −2Γµ, so that (Pµ, Z9 10) now
forms a vector of this Spin(9, 1). Continuing in this way, one finds that the Spin(9, 1) irreducible
combinations are

(Pµ, Z9 10) (Zµν , Zµνλ9 10) (Zµ1...µ5)

(Zµi, P
i) (Zµ1...µ4i)

(2.17)

where i = 9, 10. In ten dimensions, these are a vector, a three-form, a self-dual five-form and
doublets of vectors and self-dual five forms, which are precisely the charges appearing on the right
hand side of the supersymmetry algebra for type IIB.

Example 2 : Six-dimensional N = (4, 0) into eleven dimensions

Let us now perform the same calculations for the N = (4, 0) embedding of Spin(5, 1) in (2.10).
Letting µ, ν = 0, 1, . . . , 4, we have the generators Mµν = Γµν and Mµ5 = Γµ56789 10, leading to

Mµ5 · (C̃Γ...) = −C̃{Mµ5,Γ...} (2.18)

Calculating the relevant anti-commutators, using indices m,n = 5, 6, . . . , 10, organises the charges
into 1 + 6 + 6 + 15 vectors of Spin(5, 1)

(Pµ, Zµ1...µ5) (Zµ1...µ4m, P
m) (Zµm, Zm1...m5) (Zµp1...p4 , Zmn) (2.19)

together with 1 + 15 + 20 self-dual three-forms

(Zµν) (Zµ1µ2µ3mn) (Zµνm1m2m3) (2.20)

Of course, these charges precisely agree with the representations expected on the right hand side
of the supersymmetry algebra (1.1), and one can check that they combine into representations of
Sp(8) as generated by {Γmn,Γmnp,Γm1...m6}.
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2.3 Dimensional splits, hidden symmetries and the 6d space
Consider the formulation of eleven-dimensional supergravity on a product space, as considered
in [33, 34, 36, 85]. Letting µ, ν = 0, 1, . . . 10 − d be spacetime indices for the external space, and
m,n = 1, . . . , d be those for the internal space, we have that the hidden symmetry group H̃d can
be realised inside Cliff(10, 1;R) with the generators

hd ∼ {Γm1m2 ,Γm1m2m3 ,Γm1...m6 ,ΓmΓm1...m8} (2.21)

for d ≤ 8, where for d < 8 we truncate the generators which are automatically zero by antisymmetry.
The first generator Γm1m2 is simply the generator of Spin(d), while the remaining terms correspond
to the fields of the theory: the three-form A3, its magnetic dual Ã6 and the conjectured dual
graviton [54,93] h̃1,8.

To relate the spin embeddings of the previous section to this formalism, we need to look at
the parts of the spin group which are in common in the two descriptions. For example, consider
a dimensional split with seven external dimensions. The (continuous) U-duality group is E4(4) '
SL(5,R) and we write our theory in terms of objects transforming under GL(7,R)×SL(5,R)×R+.
To describe eleven-dimensional supergravity in the relevant generalised geometry formalism, the
generalised tangent space on the internal four-dimensional part of the space is (for the expressions
of the generalised tangent space of Ed(d)×R+ and its decomposition under the group GL(d,R) see
e.g. table 2 in [88])

E ' T4 ⊕ Λ2T ∗4 (2.22)

where T4 transforms under the natural GL(4,R) group of the frame bundle in four dimensions. E
itself transforms as a ten-dimensional representation of SL(5,R)×R+. We view this simply as the
vector space of charges of the objects living only in these four dimensions, here the four-dimensional
momentum and the M2-branes wrapping directions in the four-dimensional space. The analogue
of the spin group then becomes Spin(6, 1)×Spin(5), which is generated by the eleven-dimensional
Γ-matrices (µ, ν = 0, 1, . . . , 6 and m,n = 7, 8, 9, 10)

{Γµν ,Γm1m2 ,Γm1m2m3} (2.23)

The first two sets of generators in the list generate part of the usual spacetime spin group
Spin(6, 1) × Spin(4) ⊂ Spin(10, 1), while the Γm1m2m3 enhance the Spin(4) factor to the Spin(5)
hidden symmetries which are not manifest in the standard formulation with manifest eleven-
dimensional covariance. The intersection of the Spin(9, 1) groups relevant to type IIA and type
IIB with this are then each isomorphic to Spin(6, 1)× Spin(3).

With this dimensional split in place, the above discussion of extending the Spin(8, 1) in nine
dimensions to Spin(9, 1) for type IIA or type IIB becomes a discussion of how to extend the
Spin(6, 1)× Spin(2) generated by (µ, ν = 0, 1, . . . , 6 and m,n = 7, 8)

{Γµν ,Γm1m2} (2.24)

to Spin(6, 1)× Spin(3).
In type IIA, the relevant Spin(6, 1)× Spin(3) is generated by{

Γµν ,Γm1m2 ,Γm9
}

(2.25)

and this simply corresponds to including one more of the spatial directions rotated into each other
by the eleven-dimensional spin group. To see this more explicitly, we decompose the generalised
tangent space (2.22) under the GL(2,R) containing the Spin(2) factor in our Spin(6, 1)× Spin(2),
giving

E ' (T2 ⊕ R9 ⊕ R10)⊕ (Λ2T ∗2 ⊕ T ∗2 ⊕ T ∗2 ⊕ R9,10) (2.26)

We then consider which parts of this are combined into irreducible representations of the Spin(3)
factor in (2.25), which is the compact subgroup of an SL(3,R) with generators (T2 ⊗ T ∗2 )⊕ (T2 ⊗
R∗9)⊕ (R9⊗T ∗2 ). We see that this Spin(3) rotates T2 into R9, forming T3 = T2⊕R9. This SL(3,R)
can be extended to a GL(3,R) inside SL(5,R) × R+ containing our Spin(3) and T3 becomes its
vector representation. We then have

E ' (T3 ⊕ R10)⊕ (Λ2T ∗3 ⊕ T ∗3 ) (2.27)
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with the internal momentum charges spanning the T3 factor, as this is the vector representation
of the corresponding general linear group. Thus, our ten-dimensional spacetime for type IIA
then has directions corresponding to the seven external dimensions and the three directions in
T3. These are simply ten of the original eleven directions we started with in the first place. The
passage from (2.26) to (2.27) exactly mirrors the discussion of the charges in the supersymmetry
algebra (2.14), which when restricted to the singlets of Spin(6, 1), reduces to the combinations

(Pm, P 9) (P 10) (Zmn, Zm9) (Zm10, Z9 10) (2.28)

For our type IIB embedding of Spin(9, 1) in Cliff(10, 1), the intersection with Spin(6, 1) ×
Spin(5) is instead the Spin(6, 1)× Spin(3) generated by{

Γµν ,Γm1m2 ,Γm9 10
}

(2.29)

We again look at which directions in (2.26) are rotated into each other by this Spin(3) group. In
this case, the Spin(3) is contained in an SL(3,R) with generators (T2 ⊗ T ∗2 ) ⊕ (T2 ⊗ R9 ⊗ R10) ⊕
(T ∗2 ⊗ R∗9 ⊗ R∗10) which rotates T2 into R9,10 and these are combined into T ′3. This is again the
fundamental representation of a GL(3,R) ⊂ SL(5,R) × R+ containing our Spin(3) and the full
generalised tangent space then becomes

E ' T ′3 ⊕ T ′∗3 ⊕ T ′∗3 ⊕ Λ3T ′∗3 (2.30)

In the type IIB case, the momentum direction we have added to T2 corresponds to the charge of the
M2-brane wrapping the 9 and 10 directions in the eleven-dimensional picture, as in the well-known
duality between type IIB on S1 and M theory on T 2 [94–96]. Again, the combinations of charges
which become representations of GL(3,R) perfectly match those found in (2.17) restricted to the
singlets of Spin(6, 1):

(Pm, Z9 10) (Zmi, P
i) (Zmn) (2.31)

This discussion of type IIA and type IIB is usually presented in the exceptional geometry
literature in terms of these inequivalent embeddings of the general linear groups into the exceptional
groups [33, 35, 39] (different “gravity lines”) or different solutions to a section condition [36, 97].
However, we wanted to start instead from the details of the corresponding spin groups and central
charges, as in our main case of interest in this article that is the most accessible information.

Let us now consider the embedding of Spin(5, 1) into Cliff(10, 1) given in (2.10). By naive
comparison with (2.29) and its interpretation, one could expect that the sixth direction in this
case could correspond to the charge of some six-brane in the eleven-dimensional picture. However,
M-theory does not contain such an object (see [93] for a full discussion of this point). We will
see that in fact, the new generator can be embedded into the last generator listed in (2.21),
corresponding to the dual graviton. This exists only for dimensional splits with three external
dimensions or fewer. As the only case with a finite-dimensional duality group is that of three
external dimensions, for convenience we choose to examine the situation in that framework.

Thus we consider a (3 + 8)-dimensional split of eleven-dimensional supergravity. The corre-
sponding generalised geometry description would feature objects transforming under GL(3,R) ×
E8(8)×R+ and the analogue of the spin group inside this would be Spin(2, 1)×SO(16). In fact, for
our purposes it will suffice to truncate E8(8)×R+ to the SL(9,R)×R+ sector which contains only
the graviton and dual-graviton fields [35]. In this subsector, the charges on the eight-dimensional
part of the space transform in the rank two antisymmetric bivector representation of SL(9,R),
which has the GL(8,R) decomposition

E ' T8 ⊕ (T ∗8 ⊗ Λ7T ∗8 )⊕ (Λ8T ∗8 ⊗ Λ8T ∗8 ⊗ T ∗8 ) (2.32)

while the decomposition of the adjoint of SL(9,R) is

adSL(9,R) ' (T8 ⊗ T ∗8 )⊕ (Λ8T8 ⊗ T8)⊕ (Λ8T ∗8 ⊗ T ∗8 ) (2.33)

The corresponding spin group is Spin(2, 1) × Spin(9) generated by (µ, ν = 0, 1, 2 and m̂, n̂ =
3, 4, . . . , 9, 10) ¶

Γµν ,Γm̂n̂,Γm̂Γ(8)
©

where Γ(8) = Γ3Γ4 . . .Γ9Γ10 (2.34)
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The intersection of the Spin(4, 1) group from section 2.2.2 with the Spin(2, 1)×Spin(9) considered
here is then Spin(2, 1)× Spin(2), which is generated by{

Γµν ,Γab
}

(2.35)

Here we define the index ranges µ, ν = 0, 1, 2 and a, b = 3, 4, while m,n = 5, 6, 7, 8, 9, 10 and
m,n = 6, 7, 8, 9, 10 so that m̂ = (a,m) = (a, 5,m). We seek to enhance this to the Spin(2, 1) ×
Spin(3) groups which are the intersections of the Spin(5, 1) groups described in section 2.2.2 with
Spin(2, 1)×Spin(9). The Spin(2, 1)×Spin(3) of standard N = (2, 2) supergravity in six dimensions
is generated by {

Γµν ,Γab,Γa5
}

(2.36)

which corresponds simply to including one more of the standard eleven-dimensional momenta to
give a total of six spacetime momenta out of the eleven.

However, the Spin(5, 1) group which corresponds to the N = (4, 0) decomposition gives rise to
a Spin(2, 1)× Spin(3) group generated by¶

Γµν ,Γab,ΓaΓ(8)
©

(2.37)

which are clearly contained in the generators of Spin(2, 1)× Spin(9) in (2.34).
To see how to interpret this in terms of charges, we note that this Spin(9) is contained inside

the SL(9,R) group generated by (2.33). Decomposing

T8 = A3 ⊕B5 = C2 ⊕ R5 ⊕B5 (2.38)

(according to m̂ = (a,m) = (a, 5,m)) we see that the Spin(9) generators featuring in (2.37) are
inside the SL(3,R) subgroup generated by

(C2 ⊗ C∗2 )⊕ (Λ2C2 ⊗ Λ5B5 ⊗ C2)⊕ (Λ2C∗2 ⊗ Λ5B∗5 ⊗ C∗2 ) ⊂ adSL(9,R) (2.39)

The five-dimensional dual graviton field (for the five-dimensional spacetime consisting of the exter-
nal directions together with the momenta in C2) corresponds to the term C∗ ⊗ Λ2C∗, and we see
that this is the term appearing in (2.39). We then look at the decomposition of the charges (2.32)

E ' C ⊕ R⊕B
⊕ (C∗ ⊗ C∗ ⊗ Λ5B∗)⊕ (C∗ ⊗ Λ2C∗ ⊗ Λ5B∗)⊕ (C∗ ⊗ Λ5B∗)⊕ (Λ2C∗ ⊗ Λ5B∗)

⊕ (B∗ ⊗ C∗ ⊗ Λ5B∗)⊕ (B∗ ⊗ Λ2C∗ ⊗ Λ5B∗)

⊕ (C∗ ⊗ Λ2C∗ ⊗ Λ4B∗)⊕ (Λ2C∗ ⊗ Λ4B∗)⊕ (Λ2C∗ ⊗B∗ ⊗ Λ4B∗)

⊕
[
(Λ2C∗ ⊗ Λ5B∗)2

]
⊕
[
(Λ2C∗ ⊗ Λ5B∗)2 ⊗ C∗

]
⊕
[
(Λ2C∗ ⊗ Λ5B∗)2 ⊗B∗

]
(2.40)

and see which parts are combined into representations of this SL(3,R). Here we find a very different
result to the N = (2, 2) case. The terms which combine with C to form an SL(3,R) representation
make up not a triplet but an octuplet of SL(3,R):

C ⊕
(
C∗ ⊗ C∗ ⊗ Λ5B∗

)
⊕
[
(Λ2C∗ ⊗ Λ5B∗)2 ⊗ C∗

]
(2.41)

This subspace does not satisfy the section condition of E8(8) exceptional field theory3, and thus
it seems difficult to interpret it as the coordinate directions of a higher-dimensional spacetime.
Clearly, it also does not match the naive expectation of (2.19), which would suggest that the two
five-dimensional momenta P a in C would simply be joined by one additional charge Zµ1µ2µ3ab to
form a triplet. We will examine this further in section 2.4. The decompositions (2.41) and (2.39)
are essentially the same as (2.32) and (2.33) and are the charges and adjoint relevant for five-
dimensional pure gravity reduced to three dimensions, with the SL(3,R) simply interpreted as the

3The E8(8) section condition determines whether a subspace V ⊂ E has V ⊗V null in the projection 248×248→
1 + 248 + 3875. This tensor product contains terms contracting T8 into the Λ7T ∗8 factor of T ∗8 ⊗ Λ7T ∗8 and into
both factors of T ∗8 ⊗ Λ7T ∗8 . It is the non-vanishing of these contractions which demonstrate that several subspaces
we consider in this article do not satisfy this condition.
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Ehlers symmetry.
We note also that the SL(3,R) subgroup (2.39) is conjugate to the standard one by an SL(9,R) ⊂
E8(8) transformation. To see this explicitly, it is convenient to think about the action of our two
SL(3,R) subgroups instead on the vector representation of SL(9,R)× R+

V ' T8 ⊕ Λ8T ∗8 ' C2 ⊕ R5 ⊕B5 ⊕ (Λ2C∗ ⊗ Λ5B∗) (2.42)

The N = (2, 2) SL(3,R) subgroup has C2⊕R5 as the triplet part of the decomposition of V , while
the N = (4, 0) SL(3,R) has C2 ⊕ (Λ2C∗ ⊗ Λ5B∗). The difference is simply the interchange of the
R5 and (Λ2C∗ ⊗ Λ5B∗) directions in V , i.e. interchange of the Λ8T ∗8 direction in (2.42) with one
of the directions in T8, which can be implemented via a rotation operation inside SO(9). Thus,
these two SL(3,R) subgroups are conjugate via this rotation inside SL(9,R). It follows that the
decompositions of the charges E are also related by this swapping of directions. As such, any
triplet of this SL(3,R) that we could have found would be equivalent to the standard triplet of
momenta for standard N = (2, 2) supergravity by a U-duality.

At this point, let us also make some brief remarks about the commutant groups of our Spin(2, 1)
×Spin(3) groups inside Spin(2, 1) × SO(16), as this reveals some subtle points for consideration.
The chains of embeddings of the spin groups we have considered so far can be summarised in the
following diagram:

SL(32,R)

Spin(5, 1)(2,2) × Sp(4)2

Spin(2, 1)× Spin(3)× SO(16)

Spin(5, 1)(4,0) × Sp(8)

Spin(2, 1)× Spin(3)× Sp(4)2 Spin(2, 1)× Spin(3)× Sp(8)

(2.43)
The group at the bottom right of this diagram has the generators4¶

Γµν ,Γab,ΓaΓ(8),Γm1m2 ,Γm1m2m3 ,Γm1...m6

©
(2.44)

while the group at the bottom left has the generators{
Γµν ,Γab,Γa5,Γm1m2 ,Γm1m2m3

}
(2.45)

The first three terms of each generate their respective Spin(2, 1)×Spin(3) factors, and are related by
exchanging Γ5 and Γ(8) as one would expect from the discussion of the SL(9,R) rotation operation
above. However, one can perform this exchange on the remaining generators in (2.44) to obtain
generators for a Spin(2, 1)× Spin(3)× Sp(8) group containing (2.45):¶

Γµν ,Γab,Γa5,Γm1m2 ,Γm1m2m3 ,ΓmΓ(8),Γm1m2Γ(8),Γm1...m5Γ(8)
©

(2.46)

Very naively, one might then wonder why the group Spin(5, 1)(2,2) × Sp(4)2 in (2.43) is not
Spin(5, 1)(2,2) × Sp(8). The reason is because the generators added to those in (2.45) do not
commute with the generators Γi5 which are present in Spin(5, 1)(2,2), but which are not part of its
Spin(2, 1)× Spin(3) subgroup.

This shows that one should be careful about making conclusions when imposing dimensional
splits in the way that we have done in this section. Indeed, there is an apparent paradox in
our work here. The embeddings of Spin(5, 1) into SL(32,R) really are inequivalent as they give

4Recall that we defined the index ranges µ, ν = 0, 1, 2 and a, b = 3, 4, while m,n = 5, 6, 7, 8, 9, 10 and m,n =
6, 7, 8, 9, 10 so that m̂ = (a,m) = (a, 5,m).
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different decompositions of the 32 representation into irreducible parts. However, on imposing
the dimensional split that we have done, the corresponding Spin(2, 1) × Spin(3) subgroups have
been found to be conjugate by an SO(9) transformation. Thus, this inequivalence is not apparent
from the point of view of our dimensional split. Similarly, the corresponding SL(3,R) subgroups
inside SL(9,R) ⊂ E8(8) also appear to be equivalent, unlike in the case of the type IIA vs type IIB
embeddings. From our analysis it thus remains unclear exactly how the inequivalent decompositions
of the spinor can be seen within the framework of exceptional groups. To learn more, one would
need to include the full external Spin(5, 1) group as well as the dual graviton charges, which
would be contained only in a full E11 analysis. The details go beyond the scope of our current
investigation, though the resolution appears to be that there simply does not exist an sl(6,R)
subalgebra containing our spin(5, 1)(4,0) whose possible equivalence one can ask about [98].

Let us now turn to a comparison of what we have found with the construction of [1]. In that
picture, one examines the five-dimensional maximal supersymmetry algebra

{QαA, QβB} = ΩABPµγ
µ

[αβ] +KΩABCαβ + Ż[AB]Cαβ + Żµ[AB]γ
µ

[αβ] + Z[µν](AB)γ
µν
(αβ) (2.47)

The central charge K is singled out as it is a singlet of the bosonic subalgebra spin(4, 1) × sp(8),
and it is remarked that it is not the charge of any of the five-dimensional vector fields, but becomes
the magnetic charge of the gravi-photon on reduction to four dimensions. To identify the higher-
dimensional physical object carrying the charge K, it is useful to consider that, in terms of the
eleven-dimensional charges, it is the five-form charge Z(5) carried by the M5-brane but with all in-
dices in the five-dimensional external space. (This was shown to be paired with the five-dimensional
momentum to form a vector of Spin(5, 1)(4,0) in (2.19).) Possibly the simplest picture of this arises
from the type IIA decomposition. We think of the fifth direction of the five-dimensional external
space as the M theory circle and note that the charge K can then be seen as a D6-brane with legs
along the six internal directions.

In terms of the decomposition (2.40), the D6-brane is part of the M-theory dual graviton, but
to see this, we need to decompose further. Thus we go back to (2.38), and this time give explicit
labels to three one dimensional subspaces spanning A3

A3 = R3 ⊕ R4 ⊕ R5 (2.48)

where our previous C2 = R3 ⊕ R4. We then imagine R4 to correspond to the M theory circle
direction. In terms of these labels, the internal D6-charge corresponds to the dual graviton charge
R∗4⊗ (R∗4⊗R∗5⊗Λ5B∗) ⊂ T ∗⊗Λ7T ∗. The momentum charge around the M theory circle becomes
the D0-brane charge in the IIA picture and corresponds to R4 ⊂ T8. Thus, naively it appears5
that the charges

R3 ⊕ R4 ⊕
[
R∗4 ⊗ (R∗4 ⊗ R∗5 ⊗ Λ5B∗)

]
⊂ E (2.49)

are thought of as the three momenta which, in conjunction with the three momenta in the external
space, make up the momenta in the six-dimensional spacetime of [1].

While the smaller subspaces R3⊕R4 or R3⊕
[
R∗4⊗(R∗4⊗R∗5⊗Λ5B∗)

]
solve the section constraint

of E8(8) exceptional field theory, the three charges (2.49) together do not. This is because the charge
R4 has a non-zero contraction with the charge R∗4⊗(R∗4⊗R∗5⊗Λ5B∗) in the relevant tensor product.
Thus, these charges fail to satisfy the usual requirements to be a spacetime section.

Further, in [2], the conjectured six-dimensional theory is compactified on T 2 to give a maximally
supersymmetric four-dimensional theory with an SL(2,R) internal symmetry. It was noted there
that this SL(2,R) symmetry must be outside of the usual E7(7) symmetry of four-dimensional
maximal supergravity.6 However, if we view the two momenta on T 2 as the D0 and D6 charges
R4 ⊕

[
R∗4 ⊗ (R∗4 ⊗ R∗5 ⊗ Λ5B∗)

]
, then we see that in fact there is also no SL(2,R) subgroup

of E8(8) which rotates these charges into each other, as this would have to contain a generator
R∗4⊗R∗4⊗ (R∗4⊗R∗5⊗Λ5B∗). Thus, the SL(2,R) symmetry of [2] also appears to lie outside of the
E8(8) duality group.

A strongly related fact is that there is also no SL(3,R) subgroup of the E8(8) duality group
for which the charges (2.49) form a triplet representation. As we found above, these can only be

5See section 2.4 for a more complete discussion.
6The lack of this SL(2,R) is related to the absence [99,100] of uplifts of the deformed SO(8) gauged supergravities

of [101]. It is also related to the missing U(1) factor of footnote 1.
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combined into an octuplet of SL(3,R). The D0 and D6 charges then sit inside this octuplet in such
a way that there is no SL(2,R) subgroup under which they form a doublet.

One then wonders if there is a different triplet of charges for our SL(3,R) group (2.39), which
could form the six-dimensional space of the N = (4, 0) theory. One quickly see that there is
precisely such a set: writing C = R3 ⊕ R4 as before, we have the triplet

R5 ⊕
(
C∗ ⊗ Λ2C∗ ⊗ Λ5B∗

)
(2.50)

comprising one of the spatial momenta in M theory together with the six-dimensional dual gravitons
with no leg along that direction. This set of charges thus solves the section condition of E8(8)

exceptional geometry. However, as noted above, the same SO(9) transformation which related the
SL(3,R) subgroup (2.39) to the standard one relates this section to the standard one spanned by
R3 ⊕ R4 ⊕ R5. As such, the charges (2.50) are simply U-dual to the three momentum charges
along R3, R4 and R5. This would indicate that something has gone wrong, as the corresponding
theories are supposed to be very different, as are the relevant spinor decompositions. Further still,
by considering the orbits of the charges in the supersymmetry algebra under Spin(5, 1)(4,0) and
how these are mapped into the 248 representation of E8(8) we can see that (2.50) does not match
the momenta of the six-dimensional space. We will do this explicitly in the next section.

2.4 Charges in E8(8) and the triplet of SO(3)

In this section we will see that our identification of charges in (2.49) is not quite right. Unlike the
lower rank exceptional groups, in E8(8) the internal charges appearing in the anti-commutator of
supersymmetries do not map onto the 248 representation. Rather, they span only the subspace
forming the 120 representation of the maximal compact subgroup SO(16). As such, the momentum
charge P m̂ of eleven-dimensional supergravity in the eight internal directions, embeds into not just
the obvious vector T8 in (2.32), but it also has a component along T ∗8 ⊗(Λ8T ∗8 )2. The interpretation
of this is that the supersymmetry algebra closes not just onto local translations, but a combination
of these with higher gauge transformations of the dual gravitons. We also note that the subspace
of the charges into which the momentum directly embeds does not solve the section condition.

For standard supergravities, one could identify the spacetime section from the momentum
charge coming from the supersymmetry algebra in the following way. The embedded momentum
charge in fact lives in a subspace of the sum of two isomorphic vector representations of the
orthogonal group inside E. For the momentum Pm̂ above, these two become the T8 and T ∗8 ⊗
(Λ8T ∗8 )2 representations of the GL(8,R) subgroup of E8(8) containing SO(8). One can project
onto these two subspaces in a GL(8,R) covariant way. More generally, there are SO(8) covariant
projectors onto any linear combination of them. The property that picks out the subspace T8 (or
T ∗8 ⊗ (Λ8T ∗8 )2 which is the same up to an automorphism of SL(9,R)) is that it solves the section
condition (while any linear combination does not). Thus, even though the momentum charge
does not directly live in the directions T8 of the spacetime section, it is fairly simple to identify the
spacetime section and project onto it. Indeed, the generalised Lie derivative of exceptional geometry
effectively implements such a projection, as it receives no contribution from the T ∗8 ⊗(Λ8T ∗8 )2 piece.

Let us contrast this with the situation for the momentum charge of the N = (4, 0) theory.
There, the result (2.19) tells us that two of the five-dimensional momenta are combined with
the charge labelled K above into a triplet, which makes up the three internal momenta of the
six-dimensional spacetime. This triplet is invariant under the Sp(8) R-symmetry, which uniquely
identifies it inside the 248 of E8(8) as the generators of SO(3)(4,0) (see (2.60) later). In terms of the
charges in (2.40) this triplet consists of Λ2C∗⊗Λ5B∗ together with a two-dimensional subspace of
C ⊕ (C∗ ⊗ Λ2C∗ ⊗ Λ5B∗). We would then like to project this onto a triplet of an SL(3,R) group
containing SO(3)(4,0), as we did for the standard supergravity case. Naively it would even seem
reasonable that the projected subspace could be similar to the charges (2.49). However, here there
is no such projection. The SL(3,R) group containing SO(3)(4,0) makes the triplet of SO(3)(4,0)

into an octuplet. It is not a subspace of the sum of two triplets.
What we have learned here is that there is no spacetime section for the N = (4, 0) theory in the

standard sense. Rather, the momentum charge is the triplet of SO(3)(4,0) which is invariant under
Sp(8), and like the embedded momentum charge in other cases, this does not solve the section
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condition. Moreover, the identification of this subspace appears to require the decomposition
under SO(3)(4,0) × Sp(8), which requires knowledge of the physical fields. Thus, very differently
to the case of standard supergravity, it appears that the momentum charge, or even a relevant
subspace of the correct dimension, can only be identified once a field configuration is specified.
This picture also resonates with the earlier mentioned observation that the Spin(5, 1)(4,0) × Sp(8)
group is present inside KE11, but there appears to be no SL(6,R)×E6(6) subgroup which contains
it, suggesting that a description of the N = (4, 0) theory in the E11 formalism must make explicit
use of the Lorentz symmetry.

2.5 Interpretation of SL(3,R)× E6(6) inside E8(8)

In the previous section, we argued that the role of SO(3)(4,0) ⊂ SL(3,R) is very different for the
N = (4, 0) theory compared with the role of the Lorentz and general linear groups in standard
supergravity. In particular, there is no three-dimensional spacetime section satisfying the section
condition, but only the analogue of the embedding of the momentum charge in the 248 of E8(8).
Noting that any SL(3,R) subgroup of E8(8) with commutant E6(6) will be conjugate as SL(3,R)×
E6(6) ⊂ E8(8) is a maximal subgroup, we now examine the decompositions of the generalised
tangent space and the adjoint of E8(8) under SL(3,R) × E6(6). Remarkably, despite all that has
been said in the previous sections, some aspects of the N = (4, 0) theory do fit into this picture as
we now discuss.

We start from the GL(8,R) decomposition of the E8(8) × R+ multiplet of charges related to
eleven-dimensional supergravity on an eight-dimensional internal space [35]

E ' 248+1 ' T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ (T ∗ ⊗ Λ7T ∗)

⊕ (Λ8T ∗ ⊗ Λ3T ∗)⊕ (Λ8T ∗ ⊗ Λ6T ∗)⊕ ((Λ8T ∗)2 ⊗ T ∗)
(2.51)

This corresponds to the decomposition of the adjoint representation of E8(8)

2480 ' (T ⊗ T ∗)⊕ Λ3T ⊕ Λ3T ∗ ⊕ Λ6T ⊕ Λ6T ∗ ⊕ (Λ8T ⊗ T )⊕ (Λ8T ∗ ⊗ T ∗) (2.52)

together with the embedding of GL(8,R) into E8(8) × R+ such that 1+1 = (Λ8T ∗). These expres-
sions do not provide a generalised geometry in the usual way due to problems with diffeomorphism
covariance associated to the dual graviton field (see [35] for a discussion) but one can argue that
using additional section conditions to constrain certain compensator fields in the tensor hierarchy
it is possible to write an exceptional field theory construction based on them [38].

We now wish to study further splits of the dimensions. In particular, we choose three of the
eight dimensions to join the three external dimensions, leaving 5 remaining internal dimensions (in
the eleven-dimensional picture). This mirrors our study of the spin groups in section 2.3.

As such, let us decompose under GL(3,R)×GL(5,R) ⊂ GL(8,R) so that

T8 = A3 ⊕B5. (2.53)

as before. We reiterate that the straightforward SL(3,R) subgroup of the GL(3,R) factor is appro-
priate for our purposes here, as the choice which seems most naturally related to the six-dimensional
N = (4, 0) theory is equivalent to this one (as shown explicitly in section 2.3). Indeed, whichever
SL(3,R) subgroup we chose, we would wish to write our eventual decompositions in terms of its
triplet representation and tensor products thereof. As SL(3,R)×E6(6) is a maximal subgroup, the
result of doing this will be the same whichever SL(3,R) we chose initially.

The GL(5,R) factor can be seen to be a subgroup of a Spin(5, 5)×R+ group inside E8(8)×R+

which commutes with our GL(3,R). Identifying the Spin(5, 5)× R+ representations as is familiar
from five-dimensional exceptional generalised geometry via

(B ⊗B∗)⊕ Λ3B ⊕ Λ3B∗ ' spin(5, 5)

Λ5B∗ ' 1+4

B ⊕ Λ2B∗ ⊕ Λ5B∗ ' 16+1

B∗ ⊕ Λ4B∗ ' 10+2

(2.54)
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we find the GL(3,R)× Spin(5, 5)× R+ decompositions

2480 ' gl(3,R)⊕ spin(5, 5)

⊕ (A⊗ 16−−1)⊕ (A∗ ⊗ 16+
+1)

⊕ (Λ2A⊗ 10−2)⊕ (Λ2A∗ ⊗ 10+2)

⊕ (Λ3A⊗ 16+
−3)⊕ (Λ3A∗ ⊗ 16−+3)

⊕ (Λ3A⊗A⊗ 1−4)⊕ (Λ3A∗ ⊗A∗ ⊗ 1+4)

(2.55)

and

E ' 248+1 ' A⊕ 16+
+1 ⊕ (A∗ ⊗ 10+2)

⊕ (Λ2A∗ ⊗ 16−+3)⊕ (Λ3A∗ ⊗ 45+4)⊕ (Λ2A∗ ⊗A∗ ⊗ 1+4)

⊕ (Λ3A∗ ⊗A∗ ⊗ 16+
+5)

⊕ (Λ3A∗ ⊗ Λ2A∗ ⊗ 10+6)

⊕ ((Λ3A∗)2 ⊗ 16−+7)

⊕ ((Λ3A∗)2 ⊗A∗ ⊗ 1+8)

(2.56)

From this, we see explicitly that the commutant of GL(3,R) inside E8(8)×R+ cannot be enhanced
further than Spin(5, 5)× R+, as (2.55) contains no trivial GL(3,R) singlets beyond the spin(5, 5)
summand. This agrees with the standard picture in supergravity, where we expect six-dimensional
N = (2, 2) supergravity to have global symmetry Spin(5, 5).

However, we expect the six-dimensional N = (4, 0) theory to have global symmetry E6(6), and
thus it would be desirable if we could see a way to make E6(6) the commutant of our spacetime
subgroup inside E8(8). To match this to the above, we decompose the above under SL(3,R) ×
Spin(5, 5) × R+ ⊂ GL(3,R) × Spin(5, 5) × R+. Under SL(3,R) we have additional identifications
Λ3A ' Λ3A∗ ' 1 and Λ2A ' A∗ and thus we have the decompositions

2480 ' sl(3,R)⊕
(
R⊕ spin(5, 5)⊕ 16+

−3 ⊕ 16−+3

)
⊕ Λ2A∗ ⊗

(
1−4⊕10+2 ⊕ 16−−1

)
⊕ Λ2A⊗

(
1+4 ⊕ 10−2 ⊕ 16+

+1

) (2.57)

E ' 248+1 ' 1+4 ⊗
[(

R⊕ spin(5, 5)⊕ 16+
−3 ⊕ 16−+3

)
⊕A∗ ⊗

(
1+4 ⊕ 10−2 ⊕ 16+

+1

)
⊕ Λ2A∗ ⊗

(
1−4 ⊕ 10+2 ⊕ 16−−1

)
⊕ (Λ2A∗ ⊗A∗)0

] (2.58)

where (Λ2A∗⊗A∗)0 denotes the irreducible part of (Λ2A∗⊗A∗) whose totally anti-symmetric part
is zero. The summands R ⊕ spin(5, 5) ⊕ 16+

−3 ⊕ 16−+3 form an e6(6) subalgebra of e8(8) and we
recognise the decompositions

e6(6) → R⊕ spin(5, 5)⊕ 16+
−3 ⊕ 16−+3

27→ 1−4 ⊕ 10+2 ⊕ 16−−1

27′ → 1+4 ⊕ 10−2 ⊕ 16+
+1

(2.59)

Ignoring the overall R+ weight (as there is no non-trivial homomorphism SL(3,R)×E6(6) → R+)
and choosing to use the isomorphisms Λ3A ' Λ3A∗ ' R and Λ2A ' A∗ to write the result in a
suggestive way, we find the standard decompositions

2480 → sl(3,R)⊕ e6(6) ⊕ (Λ2A∗ ⊗ 27)⊕ (Λ2A⊗ 27′) (2.60)

E ' 248+1 → (A∗ ⊗ 27′)⊕ (Λ2A∗ ⊗A∗)0 ⊕ (Λ2A∗ ⊗ Λ3A∗ ⊗ 27)⊕ (Λ3A∗ ⊗ 78) (2.61)

We could have written these down at the outset. The reason for presenting this chain of decompo-
sitions and recombinations at this level of detail is to keep track of all of how the different charges
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combine into the E6(6) representations, and to show very explicitly that all that is needed to realise
E6(6) is to break GL(3,R) to SL(3,R).

Naively applying the usual assignment of forms in the adjoint to physical fields and scalars to
a sigma model, one would suspect that the six-dimensional parent theory would have two-forms in
the 27 of E6(6) and scalars in the coset E6(6)/Sp(8), exactly as one would hope for the N = (4, 0)
theory.

However, this is also problematic, as one would also like to interpret the forms in the generalised
vector as their charges. The one-forms in E are in the wrong E6(6) representation to be the charges
of the two-forms in the adjoint. This is because in the adjoint the Λ2A and Λ2A∗ terms also live
in different representations. In the usual Kac-Moody prescription we would want to interpret the
corresponding charges in E as being dual in some higher sense. However, a possible resolution is
that under the maximal compact subgroup Sp(8), these become equal. This suggests that really the
symmetry of any theory underlying these observations is Sp(8) rather than E6(6) (c.f. the situation
for F4(4) in the N = (3, 1) multiplet as discussed in the introduction). An alternative resolution
would be to decompose under SO(3) ⊂ SL(3,R), which allows the identification of vectors and
two-forms, so that the third term in (2.61) could be viewed as the charges of the two-forms.

Further signs in this direction come from comparison of (2.61) with the charges in the superal-
gebra (1.1). We expect to find vector charges in the 1⊕ 27 of Sp(8) together with (anti-self-dual)
three forms in the 36. These objects are present inside (2.61), but to see them we must decompose
under SO(3)×Sp(8), as we noted in the previous section. In order to see E6(6) we have to combine
the magnetic charges of the scalars with the three-form central charges, while the singlet vector
momentum charge becomes part of a non-vector representation of SL(3,R). This again shows that
moving from Lorentz to special linear group is be problematic in this context, and that to identify
a subspace for the momentum of the correct dimension we must decompose under SO(3).

However, there are also encouraging signs in this, in that the non-vector representation of
SL(3,R) which absorbs the singlet vector central charge has the correct index structure to be a
charge for the exotic graviton Cµνρσ from section 1, as a charge Λm[np] can give a gauge transfor-
mation δCmnpq ∼ ∂[mΛn][pq] + ∂[pΛq][mn] − 2∂[mΛnpq], where the last term vanishes identically in
a three-dimensional restriction.

Indeed, one can see that this does in fact appear in the following way. If we consider R3 with
standard Euclidean metric (and now take m,n = 1, 2, 3) and define

∂mn = εmn
p∂p Λmn = 1

2ε
mpqΛn[pq] (2.62)

we can then compute the part of the projection of ∂Λ into the sl(3,R) part of the adjoint in (2.60):

[∂,Λ]mn = ∂qΛn
qm − 3δm[n∂

pΛqpq] (2.63)

If we then define a dualised variable

Λ̃m,pq = 1
2εm

rsεpq
tΛt[rs] (2.64)

and restrict to considering Λ̃ in the 5 representation of SO(3) (so that the 8 of SL(3,R) splits into
the momentum charge and the gauge parameter) then we find

[∂,Λ]mn = −εmpqεnrs
(
∂[pΛ̃q]rs + ∂[rΛ̃s]pq

)
(2.65)

Considering a variation of the exotic graviton C[mn][pq] to transform in the adjoint of SL(3,R) via
defining

δCmn = εmpqεn
rsδC[mn][pq] (2.66)

we find
δC[mn][pq] = −

(
∂[pΛ̃q]rs + ∂[rΛ̃s]pq

)
(2.67)

The projection of ∂Λ we have calculated would naively become part of the action of the generalised
Lie derivative or exceptional Dorfman derivative as introduced in [33]. Recall that this object has
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the general form7

LV = ∂V − (∂ ×ad V )· (2.68)

where V ∈ E is a generalised vector. The first term is a straightforward derivative, while the second
term term gives the action of the appropriate derivatives of the gauge parameter. What we have
discovered here is that, with the definitions made above, we seem to be able to recover the gauge
transformation of the exotic graviton as part of this object. In particular, the derivative (2.65)
which would be the only place where Λ̃ would appear in (2.68), appears to give the correct gauge
transformation (2.67). This gives us some confidence in our interpretation of the momentum charge
and that our assertion of the necessity of working under the Lorentz group SO(3) is justified.

Overall, it seems that there is some hope of identifying the terms in (2.60) and (2.61) in the
usual way. In (2.60), the sl(3,R), e6(6) and Λ2A∗ terms correspond to the exotic graviton, scalar
sigma model and two-forms respectively, while in (2.61) the terms match the charges of the two-
forms, the exotic graviton, higher duals of the two-forms, the three-form charges in (A.10) and
the magnetic duals of the scalars in that order. However, as discussed, it is really only under
SO(3) ⊂ SL(3,R) that we can identify the triplet A with spacetime, which makes these apparent
matches at least slightly surprising.

All of these comments should be taken as suggestive but in no way conclusive. However, they
are in harmony with other proposals made in this thesis concerning the importance of a fixed
volume T 3 fibred manifold, leaving only an action of SL(3,R) ⊂ GL(3,R) and the absence of a
six-dimensional “section”. The observation that one needs to work under SO(3) to identify the
six-dimensional momentum charge is also curious, as it suggests that knowledge of the exotic
graviton field configuration is needed to identify the six-dimensional space. They also fit a pattern
of behaviour shared by multiplets with less supersymmetry, as we explore next.

2.6 Exotic gravity with less supersymmetry

In this section, we examine the versions of the decompositions (2.60) and (2.61) relevant to the cases
of theories with less than maximal supersymmetry. In all cases we see that a special role is played
by the five-dimensional Ehlers symmetry sl(3,R), which becomes the terms relevant to the exotic
graviton in our decompositions. In a sense, the decompositions for these theories are built by adding
additional terms to this sl(3,R) base in a similar sense to the way that conventional generalised
geometries are built as extensions of ordinary geometry with frame bundle group GL(d,R).

2.6.1 N = (2, 0) supersymmetry and SO(8, 8 + n)

If, instead of looking at eleven-dimensional supergravity, we look at type I supergravity (which
has half-maximal supersymmetry in ten-dimensions) the analogous group to E8(8) appearing in
reductions to three dimensions (with Abelian gauge symmetry) is SO(8, 8 + n), where n is the
number of vector multiplets in ten dimensions.

We can then ask if the same procedure outlined above for the charges and adjoint representation
of E8(8) will go through to match the field content of half-maximal exotic gravity. In this section
we will show that it does.

Rather than examining first the decompositions under a standard spacetime GL(7,R) group
(corresponding to the spatial directions on the seven-torus in a type I compactification), let us
assume that exotic gravity will correspond to an SL(3,R) subgroup as in the previous section
and simply decompose under the product of SL(3,R) with a suitable commutant inside SO(8, 8 +
n) × R+. As such, consider the maximal subgroup SO(3, 3) × SO(5, 5 + n) × R+, noting that
Spin(3, 3) ' SL(4,R). We then decompose the adjoint under the SL(3,R) × SO(5, 5 + n) × R+

7In fact, for E8(8) it has been argued that one must add additional terms to this formula, including a second
constrained gauge parameter, in order to correctly account for the tensor hierarchy and address issues with closure
of the gauge algebra and covariance [38]. Here we consider only a local patch of flat space and ignore these issues,
as we are merely looking for signs of agreement in the core part of the object.
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subgroup and give the two presentations of the result corresponding to (2.60) and (2.60)

spin(8, 8 + n) ' sl(3,R)⊕ R⊕ spin(5, 5 + n)

⊕
[
Λ2A∗ ⊗

(
1+2 ⊕ −1

)]
⊕
[
Λ2A⊗

(
1−2 ⊕ +1

)] (2.69)

E '
[
A∗ ⊗

(
1−2 ⊕ +1

)]
⊕ (Λ2A∗ ⊗A∗)0

⊕
[(
R⊕

)
⊗ Λ3A∗

]
⊕
[
Λ2A∗ ⊗ Λ3A∗ ⊗

(
1+2 ⊕ −1

)] (2.70)

This would correspond to having two-forms transforming in the
(
1+2 ⊕ −1

)
representation of

SO(5, 5 + n) together with scalars in the coset SO(5, 5 + n)× R+/SO(5)× SO(5 + n). Together
with the exotic graviton, this would precisely match the bosonic field content of one N = (2, 0)
exotic graviton multiplet together with (5 + n) N = (2, 0) tensor multiplets. However, again we
see that the representation of the A∗ charges in (2.70) does not quite match that of the fields Λ2A∗

in (2.69) as the R+ weights do not match. Thus again we see a sign that the full SO(5, 5+n)×R+

may not be a symmetry of any corresponding theory, or that we may not be able to move from
SO(3) to SL(3,R) in the usual way.

2.6.2 N = (1, 0) supersymmetry
We can also consider what happens for various theories with eight supercharges which (on reduction
to three dimensions) have scalars living in symmetric spaces as for the maximal and half-maximal
theories considered above. A list of such theories and their corresponding coset manifolds can be
found in [102].

For example, let us first consider pure five-dimensional supergravity. On reduction to three
dimensions, we obtain scalars living in the coset space G2(2)/SU (2)×SU (2), thus the analogue of
the group E8(8) from the maximal case here is G2(2). This has an SL(3,R) subgroup, under which
the decomposition of the adjoint representation is

g2(2) ' sl(3,R)⊕ Λ2A∗ ⊕ Λ2A (2.71)

which would match a theory in six-dimensions with an exotic graviton and a single self-dual two-
form. Thus, as expected, this matches the field content of the N = (1, 0) exotic graviton multiplet.

Next, consider pure N = (1, 0) supergravity in six-dimensions, which upon reduction to three-
dimensions has scalar manifold SO(4, 3)/SO(4)×SO(3). The group SO(4, 3) again has an SL(3,R)
decomposition of the relevant type:

so(4, 3) ' sl(3,R)⊕ R

⊕
[
Λ2A∗ ⊗ (1+2 ⊕ 1−1)

]
⊕
[
Λ2A⊗ (1−2 ⊕ 1+1)

] (2.72)

This matches a theory with an exotic graviton, two self-dual two-forms and one scalar, which is
the bosonic field content of an exotic graviton multiplet together with one tensor multiplet.

This pattern continues for the other theories outlined in [102]. A more involved example is
six-dimensional minimal supergravity coupled to two vector multiplets and two tensor multiplets.
On reduction to three dimensions, one obtains the scalar manifold F4(4)/Sp(6)× Sp(2). One then
looks at the decomposition

f4(4) ' sl(3,R)⊕ sl(3,R)

⊕
[
Λ2A∗ ⊗ 6

]
⊕
[
Λ2A⊗ 6′

] (2.73)

Thus we hypothesise an exotic graviton, self-dual two-forms in the 6 representation of SL(3,R) and
five scalars in the coset manifold SL(3,R)/SO(3). This field content matches an exotic graviton
multiplet together with five tensor multiplets, and we expect a global symmetry group SL(3,R),
modulo the same problems with charges and fields living in different representations.

Table 2.2 summarises the corresponding results for this collection of theories. In all cases, the
SL(3,R) subgroup gives a decomposition which exactly matches a combination of an exotic graviton
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multiplet and some number of tensor multiplets, identifying the conjectured global symmetry group
as its commutant. This global symmetry and its coset are precisely those of the corresponding
six-dimensional conventional supergravity theory on S1. If one assumes that the reduction of these
theories on S1 should give the same five-dimensional theory as reducing the standard N = (1, 0)
supergravity then this is inevitable, since the five-dimensional scalars must come only from the
six-dimensional scalars of the exotic theory. Below we explain why other features of this table
inevitably must work out.

We also note that in all cases but the first row, the charges of the two-forms do not match
the representation for the two-forms, as we found in the cases considered in sections 2.5 and 2.6.1.
Thus, we again see that the numerator group of the scalar coset may not be a true symmetry of
the corresponding theory, or that really one must work under SO(3) to make these match.

Finally, we explain why the decomposition of the the duality group in 3d inevitably has the
form

g = sl(3,R)⊕ k⊕ (3⊗ r)⊕ (3′ ⊗ r′) (2.74)

if the three-dimensional theory can be written as a torus reduction of a five-dimensional supergrav-
ity theory. The existence of the sl(3,R) is the usual Ehlers symmetry appearing in the reduction
of 5d gravity to three dimensions. Under GL(2,R) this has the form

sl(3,R) = (C ⊗ C∗)⊕ (Λ2C∗ ⊗ C∗)⊕ (Λ2C ⊗ C) (2.75)

If the three-dimensional theory comes from the reduction of a five-dimensional supergravity theory,
then the only other degrees of freedom are standard scalars and p-form fields. Thus the adjoint can
only contain GL(2,R) representations of the form ΛpC∗ ⊕ΛpC∗ together with scalars and sl(3,R)
as above. The only options for p are p = 0, 1, 2, 3. Any SL(3,R) representation in (2.74) other than
1, 3 or 3′ would give other types of GL(2,R) representations and thus is not allowed. Thus the
decomposition (2.74) is universal. Further, once it is known that the degrees of freedom of pure
five-dimensional supergravity lift to N = (1, 0) exotic gravity and both vector and tensor multiplets
lift to N = (1, 0) tensor multiplets, it is clear that this decomposition will match the decomposition
of an N = (1, 0) exotic gravity. Thus the matching of the degrees of freedom between the SL(3,R)
decompositions and the exotic gravity theories is inevitable once one assumes that they reduce to
those of standard gravitational theories in three dimensions.
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3d coset 6d Supergravity 6d Exotic gravity
nV nT 6d coset nT B−µν rep 6d coset

G2(2)

SU (2)× SU (2)
5d sugra - 0 1 -

SO(4, 3)

SO(4)× SO(3)
0 0 - 1 1+2 ⊕ 1−1 R+

SO(4, 4 + n)

SO(4)× SO(4 + n)
n 1 R+ n+2 1+2 ⊕ n+2−1

SO(1, n+ 1)

SO(n+ 1)
× R+

F4(4)

Sp(6)× Sp(2)
2 2

SO(2, 1)

SO(2)
5 6

SL(3,R)

SO(3)

E6(2)

SU (6)× SU (2)
4 3

SO(3, 1)

SO(3)
8 [3⊗ 3̄]R

SL(3,C)

SU (3)

E7(−5)

SO(12)× SU (2)
8 5

SO(5, 1)

SO(5)
14 15

SU ∗(6)

Sp(6)

E8(−24)

E7 × SU (2)
16 9

SO(9, 1)

SO(9)
26 27

E6(−26)

F4

Table 2.2: N = (1, 0) supergravity and exotic supergravity theories and their duality groups
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Chapter 3

Chern-Simons couplings and
anomalies

3.1 Anomalies of exotic multiplets
Since the exotic multiplets contain chiral fields, they may suffer from anomalies. This section is
aimed at extending the results known for chiral spin 1

2 , spin
3
2 and self-dual fields to the SD Weyl

field and the exotic gravitino.
We start by a brief review of the classical results on anomalies. Then we consider a Dirac

operator coupled to a vector bundle V , and briefly go through the relation between the index
theory and anomalies. Some choices of V are well-understood and relate to the standard anomalies
for fields that appear in supergravity multiplets [68–71]. These cases, i.e. the chiral spin 1/2 and
3/2 fermions, and self-dual tensor fields, will be reviewed in subsection 3.1.2, mostly following the
conventions of a recent review [48]. As we shall show, the curvatures of all relevant exotic fields,
i.e. the SD Weyl field of (4, 0) multiplet, its counterpart in the (3, 1) multiplet as well as the exotic
gravitino can be found in the domain of the Dirac operators for appropriate choices of V . The index
calculation for the fields in the (4, 0) multiplet will be presented in subsection 3.1.4. The anomaly
polynomials for other six-dimensional exotic multiplets with different number of supercharges will
be given in subsection 3.1.5.

3.1.1 Consistent anomaly and descent equations
In spacetime dimension D = 2n, we denote by Φ the collection of quantum fields sensitive to
anomalies and A is the “external” gauge field to which the fields in Φ are coupled. In the case
of gravitational anomalies, A can be taken as the spin connection for local Lorentz symmetry or
the Christoffel connection for diffeomorphisms. The partition function Z[A] is a functional of A
defined as the functional integral

Z[A] = e−Γ[A] =

∫
DΦ e−S[Φ,A] (3.1)

where S[Φ, A] is action and we only integrate over the fields in Φ which explains the notion
“external” for A. Note that, in the above integral we are already in the Euclidean signature.1 The
action is then assumed to be invariant under some gauge transformation with parameter ε = ε(x)

Φ→ Φ′ = Φ + δεΦ

A→ A′ = A+ δεA

S[Φ′, A′] = S[Φ, A] .

(3.2)

In general, the path integral DΦ measure is not necessarily invariant under such transformations
and we write

DΦ→ DΦ′ = DΦ [det (J)]c = DΦe
∫
ε(x)·A(x) dDx (3.3)

1See appendix B.2 for the definitions and conventions.
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where J is the Jacobian for the transformation and c = 1 for the transformation of a commuting
field while c = −1 for a pair of anti-commuting fields.

For A′ we have

e−Γ[A′] =

∫
DΦ e−S[Φ,A′]

=

∫
DΦ′ e−S[Φ′,A′]

=

∫
DΦ e−S[Φ,A]+

∫
ε(x)A(x) dDx

= e−Γ[A]+
∫
ε(x)·A(x) dDx

(3.4)

and it follows
δεΓ[A] ≡ Γ[A′]− Γ[A] =

∫
−ε(x) · A(x) dDx . (3.5)

Here, we only used the gauge invariance of the action and renamed the dummy index of integration
in the second step of (3.4). The integrand in (3.5) is a local function and it is the anomaly2 which
we are looking for. We will write it as I1

2n(ε, A) or just simply as I1
2n omitting the variables

δΓ =

∫
M2n

I1
2n (3.6)

where the superscript means the ghost number when formulated in the BRST scheme, and it is 1
for I1

2n(ε, A) because we replace the gauge parameter ε by a ghost gauge function v [69]. Clearly,
the anomaly I1

2n is defined in this way up to a exact term dG2n−1 (and also up to an “s”-exact piece
that we are going to explain below). This local function I1

2n(ε, A) is called the consistent anomaly,
due to the fact that it is a solution of the Wess-Zumino consistency condition (see e.g. [48] for a
proof)

δε1δε2Γ− δε2δε1Γ = δ[ε1,ε2]Γ , (3.7)

when writing with I1
D(ε, A) this condition is

δε1

∫
I1
2n(ε2, A)− δε2

∫
I1
2n(ε1, A) =

∫
I1
2n([ε1, ε2], A) . (3.8)

This consistency condition indicates that the gauge variation of the effective action Γ reflects the
gauge algebra structure of the theory. If one starts from the equation (3.8) and wants to compute
the anomalies, it is to look for a non-trivial solution (not a gauge variation of a local functional in
the gauge fields, in that case one can introduce a local counterterm in the Lagrangian to remove
the anomaly) of the Wess-Zumino consistency condition.

We will not give much details about how to solve the equation and there is a very comprehensive
approach in [69] and most of our conventions also follow this paper. The key ingredient of the
solution to (3.8) is the descent equations (formulated in the BRST language)

I2n+2 = dI2n+1

s I2n+1 = dI1
2n

sI1
2n = dI2

2n−1

...

sI2n+1
0 = 0

where s is the BRST-operator and the result is that
∫
I1
2n(v,A) is a representative of the BRST

cohomology at ghost number one and the whole integral is defined up to a BRST-exact term. The
integrand I1

2n(v,A) is not only determined up to a d-exact term but also an s-exact term

I1
2n(v,A) ' I1

2n(v,A) + dG1
2n−1 + sF2n . (3.9)

2In the literature, also the whole integral which is a functional is sometimes called the anomaly.
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In practice, it is much easier to manipulate and compare the top term I2n+2, it is also what we
refer to as anomaly polynomial. Fortunately, this term is related to the index density Ind(D) of a
Dirac operator D in 2n+ 2 dimensions [69,70]

I2n+2 = [Ind(D)]2n+2 (3.10)

where the index density Ind(D) is expressed in characteristic classes and it is a polyform of different
degrees. The subscript “2n+ 2” means to restrict to the (2n+ 2)-form part.

3.1.2 Anomalies in standard supergravity fields
In last section we discussed the consistent anomalies and its relation to the index of some Dirac
operators. Now we move to a concrete scenario, i.e. supergravities and talk about gravitational
anomalies.

Pure gravitational anomalies only arise in spacetime dimension D = 2n = 4k + 2 [68], and the
anomalies in 4k+2 dimensional theories are encoded by characteristic classes in 4k+4 dimensions,
which can be computed using the index theorems for the Dirac operators.

Suppose our space-time manifold with Euclidean signature has a spin structure and let S be
the spinor bundle. Then the Dirac operator on the smooth section of the spinor bundle C∞(S) is
defined as the composition

D = cl ◦ ∇S : C∞(S)
∇S−−→ C∞(T ∗M ⊗ S)

cl−→ C∞(S), (3.11)

where ∇S is the spin connection and cl is the Clifford multiplication. In local coordinates, this is
the Dirac trace of the covariant derivative in some representations of the gamma matrices3

D = cl(eµ)∇Seµ = γµ∇Sµ . (3.12)

In space-time dimension 4k+2, the spinor bundle decomposes into subbundles of definite chiralities
with respect to the Euclidean chirality operator Γ = i2k+1γ0γ1 · · · γ4k+1, i.e. S = S+ ⊕ S−.
Consequently, D takes an off-diagonal form:

D =

Å
0 D−

D+ 0

ã
(3.13)

and the relevant positively projected Dirac operator flips the chirality of the spinor field

D+ : C∞(S+) −→ C∞(S−). (3.14)

Since the full Dirac operator D is self-adjoint, it has always vanishing index. It is D+, whose
adjoint is D− : C∞(S−) −→ C∞(S+), that has a non-trivial index. For the rest of the paper we
shall omit the superscript + and use D to denote the appropriate Dirac operator.

The Dirac operator can be twisted by some vector bundle V (i.e. act on spinors coupled to
some vector gauge field) .

D : C∞(S+ ⊗ V ) −→ C∞(S− ⊗ V ) (3.15)

Applying the index theorem [103], its index density is given by4

Ind(D) = Â(M)ch(V ) , (3.16)

where Â(M) is the roof genus and ch(V ) is the Chern character, see appendix B.2 for their defini-
tions.

Furthermore, one can also generalise the definition of the Dirac operator to the Clifford module
E, a vector bundle whose fiber admits a Clifford action. In the definition (3.11) we just replace

3In section 3.1 we use indices µ, ν for the 4k + 2 dimensional spacetime.
4In the literature, this formula is also written as Ind(D) = Â(M) ch(R) ch(F ), the first two factor refer to pure

gravitational anomalies and R stands for the curvature 2-form in some tensor bundle of the Lorentz group. The
third factor is responsible for gauge anomalies and F is the curvature of the gauge bundle, and it is absent if the
fermions do not couple to any gauge fields.



52 Chapter 3. Chern-Simons couplings and anomalies

the Clifford multiplication cl by the Clifford action and replace the spin connection ∇S by the
connection ∇E on E.

To talk about the index theory of the generalised Dirac operator we would like to put it in
the twisted form (3.15). If our even-dimensional base manifold is spin and oriented, then every E
Clifford module has a product structure E = S ⊗ V , where V is a vector bundle determined by E,
S and the Clifford action on E [104]. By making use of the chiral decomposition of S we define
E± := S± ⊗ V and thus

DE : C∞(E+) −→ C∞(E−) . (3.17)

A pertinent example of Clifford module is given by the bundle of differential forms Λ•T ∗M ,
which is a tensor product of spinor bundles Λ•T ∗M = S ⊗ S. The sections of S are spinors
transforming in the spinor representation of SO(4k + 2). One could further restrict to the chiral
S+ and anti-chiral S− subrepresentations and obtain

S± ⊗ S± = Λ1T ∗M ⊕ Λ3T ∗M ⊕ . . .⊕ Λ2k+1
± T ∗M (3.18)

and
S+ ⊗ S− = Λ0T ∗M ⊕ Λ2T ∗M ⊕ . . .⊕ Λ2kT ∗M (3.19)

where Λ2k+1
± T ∗M are the self-dual (anti-self-dual) forms. In Euclidean signature a n-form Fµ1...µn

is self-dual if it obeys Fµ1...µn = i
n!εµ1...µ2n

Fµn+1...µ2n .
The Hirzebruch signature operator is given by

τ : C∞(S+ ⊗ (S+ ⊕ S−)) −→ C∞(S− ⊗ (S+ ⊕ S−)) (3.20)

with V = S+ ⊗ S− (cf (3.16)), and its index is given by the Hirzebruch L-polynomial. From
other side, the complexifications of self-dual even forms and anti-self-dual odd forms are given by
S+ ⊗ S− and S− ⊗ S− respectively, and we are interested in the index of

DA : C∞(S+ ⊗ S−) −→ C∞(S− ⊗ S−) (3.21)

with V = S−. It can be shown that the result for the index is equal to half of the Hirzebruch
L-polynomial with an additional − sign due to Bose rather than Fermi statistics, and is given by

IA2n+2 =

Å
−1

2

ãÅ
1

4

ã
[Â(M) ch(R̃)]2n+2 =

Å
−1

2

ãÅ
1

4

ã
[L(M)]2n+2 (3.22)

where R̃ = 1
2Rµνγ

µν with R being the Riemann tensor of M and γµν the generator in the spinor
representation. The pre-factor factorizes 1

4 = 1
2 × 1

2 , where the first 1
2 due is to the chirality

projector of the second spinor and the second 1
2 comes from the constraint that we consider F as

a real field when analytically continuing to Lorentzian signature.
For the gravitino field, the relevant Rarita-Schwinger complex is given by

C∞(S+ ⊗ T ∗M) −→ C∞(S− ⊗ T ∗M) (3.23)

The gravitino anomalies are actually given by the map:

D : C∞(S+ ⊗ (T ∗M − 1)) −→ C∞(S− ⊗ (T ∗M − 1)) . (3.24)

The origin of this formal shift is explained in [68] and we shall come back to it in the next subsection.
The tensor product S+⊗T ∗M contains an anti-chiral spinor S− that needs to be projected out. In
addition a vector potential in D dimensions has D−2 physical degrees of freedom. These together
lead to the −Â(M) in the expression for the index:

I
spin 3

2
2n+2 = [Â(M) ch(R)− 2Â(M) + Â(M)]2n+2 = [Â(M)(ch(R)− 1)]2n+2 , (3.25)

where R is the curvature two-form in the vector representation of SO(4k + 2).
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3.1.3 Anomalies for product multiplets

Many supergravity theories can be seen as products of Yang-Mills multiplets with less supersym-
metry. In cases when the resulting supergravity is chiral, the anomalous part of the spectrum can
be analysed like in the previous subsection. All the fields are in the domain of a Dirac operator
with choices of V being given by the tangent bundle or (products of) spin bundles. As a result all
standard supermultiplets have anomalies of very constrained form.

Type IIB supergravity is a prime example of such a product theory, and can be obtained as a
double copy two (1, 0) Yang-Mills multiplets. The anomalous part (a couple of left gravitini, two
right dilatini and a tensor field with a self-dual five-form field strength) is given by

λL ◦Aµ +Aµ ◦ λL + λL ◦ λL

Hereafter we shall use ◦ to denote the products of fields. As already mentioned λL ◦ Aµ projects
into the left gravitino and a right spin 1/2 field. Note that both are in the IIB spectrum, and
one only needs to worry about the subtraction of 2 vectorial degrees of freedom. The whole IIB
anomalous complex can the be thought of as

C∞(S+ ⊗ (2× (T ∗M − 2)⊕ S+)) −→ C∞(S− ⊗ (2× (T ∗M − 2)⊕ S+)) . (3.26)

with the resulting anomaly given by the 12-form

IIIB = −
[
Â(M)

Å
ch(R)− 2− 1

8
ch(R̃)

ã]
12

(3.27)

that vanishes [68].
The reduction of IIB on a K3 surface yields a six-dimensional (2, 0) theory that contains a

supergravity multiplet and 21 tensor multiplets and is also anomaly free. One can also see that
the non-chiral and obviously non-anomalous maximal (2, 2) supergravity can be decomposed into
(2, 0) multiplets and contains a (2, 0) gravity multiplet, together with four gravitino multiplets and
five tensor multiplets. Hence the three standard (2, 0) multiplets have anomaly polynomials that
are proportional

− 1

21
Igravity =

1

4
Igravitino = Itensor := X8 =

1

48

Å
p2

1

4
− p2

ã
. (3.28)

Because of the M5-brane anomalies and inflow, the X8 polynomial appears in the M-theory action
via gravitational Chern-Simons couplings. The contraction structure in X8 is given by the t8 tensor
that appears naturally in the string amplitudes.

Working directly with six-dimensional multiplets, we note that the product of two N = (1, 0)
vector multiplets is a sum of N = (2, 0) gravity and tensor multiplets:

Table 3.1: 6d N = (1, 0) Yang-Mills squared

N = (1, 0) Aµ vector (2,2; 1) λL chiral fermion (1,2; 2)

Aµ vector (2,2; 1)

gµν (3,3; 1) ψLµ (2,3; 2)

Bµν
− (3,1; 1) λR (2,1; 2)

Bµν
+ (1,3; 1)

φ (1,1; 1)

λL chiral fermion (1,2; 2)
ψLµ (2,3; 2) φ (1,1; 4)

λR (2,1; 2) Bµν
+ (1,3; 4)

The anomalous part of the product is given by

(Aµ + 2× λL) ◦ (Aµ + 2× λL)⇒ 2λL ◦Aµ + 2Aµ ◦ λL + 4λL ◦ λL, (3.29)

and like in the ten-dimensional case, λL ◦Aµ and Aµ ◦λL contains the left-moving gravitini and the
right-moving tensorini, which are in the spectrum with a net contribution to the anomaly given by
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− 1
2 Â(TM)[ch(R)− 2]. The product of the two chiral spinors λL results in a self-dual 2-form. The

total anomaly of is

− 2 · 2 · 1

2

î
Â(TM)[ch(R)− 2]

ó
8
− 4IA

=− 1

5760

(
536p1

2 − 1952p2

)
− 4 · 1

5760

(
16p1

2 − 112p2

)
= −20X8

(3.30)

Another six-dimensional example dimensions is the studied in [8], where the tensor product of
super Yang-Mills multiplets with N = (1, 0) and N = (1, 1) supersymmetries is shown to yield the
gravity multiplet in N = (2, 1). The details of the tensor product are summarised in the following
table:

Table 3.2: 6d N = (1, 0) Yang-Mills tensor with N = (1, 1) Yang-Mills

N = (1, 1)
Aµ (2,2; 1,1) λR (2,1; 1,2) λL (1,2; 2,1) φ (1,1; 2,2)

N = (1, 0) gµν (3,3; 1,1)
ψRµ (3,2; 1,2) ψLµ (2,3; 2,1)

Aµ (2,2; 2,2)
Aµ (2,2; 1)

Bµν
− (3,1; 1,1)

Bµν
+ (1,3; 1,1)

λL (1,2; 1,2) λR (2,1; 2,1)
φ (1,1; 1,1)

λL (1,2; 1)
ψLµ (2,3; 2,1)

Aµ (2,2; 2,2)
φ (1,1; 4,1)

λL (1,2; 4,2)
λR (2,1; 2,1) Bµν

+ (1,3; 4,1)

The resulting N = (2, 1) supergravity multiplet [20] contains one graviton gµν , 4 left-handed
gravitini ψLµ , 2 right-handed gravitini ψRµ , 8 vectors Aµ, one anti-self-dual 2-form Bµν

−, 5 self-dual
2-form Bµν

+, 4 right-handed fermions λR, 10 left-handed fermions λL and 5 scalars φ. We may
once more consider the anomaly as the sum of the anomalies from individual terms in the product

(Aµ + 2× λL) ◦ (Aµ + 2× λR + 2× λL + 4× φ)

⇒ 2Aµ ◦ λR + 2Aµ ◦ λL + 2λL ◦Aµ + 4λL ◦ λR + 4λL ◦ λL + 8λL ◦ φ
= 2λL ◦Aµ + 4λL ◦ λL + 8λL ◦ φ ,

(3.31)

where only the anomalous terms are kept. The total anomaly is given by

Iproduct = −2 · 1

2

î
Â(TM)[ch(R)− 2]

ó
8
− 4IA − 8 · 1

2
Ispin 1

2

= − 1

5760

(
268p1

2 − 976p2

)
− 4 · 1

5760

(
16p1

2 − 112p2

)
− 4 · 1

5760

(
7p1

2 − 4p2

)
= − 360

5760
(p2

1 − 4p2)

(3.32)

and agrees with the direct calculation

Igravity
N=(2,1) =

1

2
· (−4 + 2)Ispin 3

2 + (1− 5)IA +
1

2
(4− 10)Ispin 1

2

= −Ispin 3
2 − 4IA − 3Ispin 1

2 = −12X8 .

(3.33)

3.1.4 Index densities of exotic Dirac operators

The indices of the exotic fields (and multiplets) can be computed using (3.16). The only essential
difference from the calculations reviewed above is that V is now given by a product of bundles. In
the N = (4, 0) multiplet (1.2) there are two exotic anomalous objects, namely the exotic gravitino
ψµν in (4,1; 8) and the exotic graviton Cµνρσ in (5,1; 1). We treat each in turn.
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3.1.4.1 Exotic gravitino

We start with the fermion ψµν . The field strength χ is anti-self-dual with respect to SO(6):5

χ = −i ?E χ⇐⇒ χµνρ = − i

3!
εµνραβγχ

αβγ (3.34)

where the Hodge-star ?E is taken in the Euclidean convention.
The advantage of working directly with χ is that we do not need to worry about the ghost

contribution, and the calculation follows the treatment of the self-dual forms [68] (see also [71]).
See chapter 6 section 6.2 for a clear overlook about the ghost spectrum and the computation for
anomalies in that context. In [68], a generic potential A and its field strength F are viewed as
independent variables in the path-integral formalism, and one integrates over both of them by using
a first order action. In the path-integral measure, the self-dual F+ part and anti-self-dual part F−
both appear, the contribution to the anomalies from them cancel each other. But one can extract
anomaly for the (anti-)self-dual part alone as the Jacobian generated by it under transformations
of the Lorentz group in the corresponding (anti-)self-dual representation. Since there is no gauge
freedom in F+ or F−, there is no need to subtract ghost contributions. Back to our case with ψ
and χ, a first order Lagrangian formalism in which χ is algebraic is yet unknown, but we assume
its existence and compute in the spirit of [68].

To compute the anomaly via the field strength χµνρ, we need to determine in which represen-
tation of the Lorentz group (orthogonal group) it transforms.

Recall that the Dynkin label of the negative chiral spinor representation of su∗(4) is [0, 0, 1].6
The field strength χµνρ is fermionic and it transforms as a part in the tensor product of the
anti-self-dual 3 form [0, 0, 2] with the anti-chiral spinor [0, 0, 1]:

[0, 0, 2]⊗ [0, 0, 1] = [0, 0, 3]⊕ [0, 1, 1] , (3.35)

and the duality constraint (3.34) alone does not imply that χµνρ transforms as the irreducible piece
[0, 0, 3]. We mentioned this fact in chapter 1 section 1.1 (see [11] for more details), the duality
condition is weaker than the field equation (1.14)

γαβµνρχµνρ = 0 (3.36)

which is equivalent to (see appendix B.3)

γµχµνρ = 0 . (3.37)

The condition (3.37) together with the chirality imply that χµνρ transforms in the irreducible
representation [0, 0, 3] of su∗(4). This can be seen as follows, if we decompose the field strength as

χµνρ = χ̂µνρ + γ[µσνρ] + γ[µνερ] + γµνρη (3.38)

where γµχ̂µνρ = 0 = γνσνρ = γρερ. The equation (3.37) would set the variables {σνρ, ερ, η} to
zero, it is the gamma-traceless part χ̂µνρ that corresponds to [0, 0, 3]. Since the field equation
(1.14) leads to the little group representation (4,1; 8), we will refer to the anomaly computation
for [0, 0, 3] as the “on-shell” anomaly computation, i.e. we used the field equation to navigate to
the correct representation.

On the other hand, the duality constraint (3.34) alone will kill the components σνρ and η (the
computational details can be find in appendix B.3), so

χµνρ = χ̂µνρ + γ[µνερ] . (3.39)

This just match the decomposition of the tensor product (3.35) and ερ ' [0, 1, 1], it is a gamma-
traceless 1-form spinor. We will refer to the anomaly computation for χµνρ = χ̂µνρ + γ[µνερ] as
the “off-shell” anomaly computation, because in this case the we introduce χµνρ as an independent

5Note that in the Euclidean space-time it is anti-self-dual and it is self-dual in the Minkowskian cases. Similarly,
left-handed spinors have negative chirality in the Euclidean space-time, while they are right-handed with positive
chirality in Minkowskian as explained in appendix B.2.

6Our conventions for the Dynkin labels are outlined in appendix B.2.
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variable in the path integral and only require χµνρ to be anti-self-dual. We are integrating over
both χ̂µνρ and ερ. The difference between the on- and off-shell computations is just the index
density contribution from [0, 1, 1].

From now on we focus on the index theory anomaly computation for the irreducible piece
[0, 0, 3]. It is convenient to have it in the tri-spinor product (S−)⊗3.

[0, 0, 1]⊗ [0, 0, 1]⊗ [0, 0, 1] = [0, 0, 3]⊕ [0, 1, 1]⊕ [0, 1, 1]⊕ [1, 0, 0]

We can recast the result for representations of su∗(4) in terms of the sections of the corresponding
bundles:

Dχ : C∞(S+ ⊗ S− ⊗ S−)− C∞(S+ ⊗ T ∗M)− C∞(S+ ⊗ T ∗M) + C∞(S−)

−→ C∞(S− ⊗ S− ⊗ S−)− C∞(S− ⊗ T ∗M)− C∞(S− ⊗ T ∗M) + C∞(S+)

leading to the definition of the complex for the exotic gravitino

⇒ Dχ : C∞(S+ ⊗ [S− ⊗ S− − T ∗M⊕2 − 1]) −→ C∞(S− ⊗ [S− ⊗ S− − T ∗M⊕2 − 1]). (3.40)

The formal manipulation above is allowed in K-theory [103], and effectively we have the index
theorem for the index density of Dχ

Ind(Dχ) = Â(M)[ch((S−)⊗2)− ch(T ∗M⊕2)− 1]

= Â(M)[ch(S−)2 − 2ch(T ∗M)− 1]
(3.41)

According to the famous results [103], we have

ch(S+ ⊕ S−) =

n∏
j=1

2 cosh
xj
2

and ch(S+ − S−) =

n∏
j=1

2 sinh
xj
2

(3.42)

for the space-time manifold in 2n dimensions. It follows that

ch(S+) =
1

2

Ñ
n∏
j=1

2 cosh
xj
2

+

n∏
j=1

2 sinh
xj
2

é
(3.43)

ch(S−) =
1

2

Ñ
n∏
j=1

2 cosh
xj
2
−

n∏
j=1

2 sinh
xj
2

é
(3.44)

Inserting this into (3.41) and using the relation (B.25), we arrive at

[Ind(Dχ)]8 =
1

5760
(501p2

1 + 3828p2) . (3.45)

The contribution to the gravitational anomaly from χ is obtained from the above result by mul-
tiplying it by (−1)2 1

2 . The first −1 comes from the fact that χ is fermionic and the second −1 is
because the map in (3.40) is actually in the opposite direction [71]. The division by 2 is due to the
fact that self-dual tensor in Lorentz signature satisfies the reality condition.

Iχ = (−1)2 1

2
[Ind(Dχ)]8 =

1

5760
(
501

2
p2

1 + 1914p2). (3.46)

3.1.4.2 SD Weyl field

We now turn to the index density of the field strength of the exotic graviton defined in (1.7),
Gµνρστκ = ∂[µCνρ][στ,κ]. The computation is also under the assumption of the existence of an
action with G as an independent variable. A remarkable fact for the bosonic case is that the
self-duality condition (1.11) is stronger than the single trace field equation (1.59), it halves the
degrees of freedom determined by the single trace field equation. Importantly, the symmetry,
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single traceless condition and the self-duality condition together, imply that Gµνρστκ transforms
in an irreducible representation of su∗(4) [81].

We conclude that G transforms in the [0, 0, 4] of su∗(4), and in order to obtain it from a tensor
product, one can take a pair of the field strengths F−3 of self-dual 2-forms:

[0, 0, 2]⊗ [0, 0, 2] = [0, 0, 4]⊕ [0, 1, 2]⊕ [0, 2, 0]. (3.47)

For the [0, 1, 2] part,

[0, 1, 0]⊗ [0, 0, 2] = [0, 1, 2]⊕ [1, 0, 1]. (3.48)

The representations [0, 2, 0] and [1, 0, 1] are immediately recognised as the metric g(µν) and the two-
form B[µν] respectively. The individual [0, 0, 2] appears also as an irreducible part in the tensor
product of 2 negative chirality spinors:

[0, 0, 1]⊗ [0, 0, 1] = [0, 1, 0]⊕ [0, 0, 2]. (3.49)

We can consider a product of four chiral spinors [0, 0, 1] and, applying the tensor product decom-
position, obtain

[0, 0, 1]⊗4 = ([0, 1, 0]⊕ [0, 0, 2])⊗ ([0, 1, 0]⊕ [0, 0, 2])

= ([0, 1, 0]⊗ [0, 1, 0])⊕ ([0, 1, 0]⊗ [0, 0, 2])⊕ ([0, 0, 2]⊗ [0, 1, 0])

⊕ [0, 0, 4]⊕ [0, 1, 2]⊕ [0, 2, 0],

(3.50)

where (3.47) is used to get the last three terms.
The [0, 0, 4] can now be extracted, and the result can be recast in terms of sections of corre-

sponding bundles. The details of this calculation can be found in Appendix B.4. The resulting
complex for DG operator is given by

DG : C∞
(
S+ ⊗ [S− ⊗ S− ⊗ S− − (S− ⊗ T ∗M)⊕3 + (S+)⊕2]

)
+B + g

−→ C∞
(
S− ⊗ [S− ⊗ S− ⊗ S− − (S− ⊗ T ∗M)⊕3 + (S+)⊕2]

)
+B + g.

(3.51)

At this stage, we can state that the sections to which B and g belong do not contribute to the
index density. Simply said, the metric and a generic two-form field are anomaly free. It follows
the relevant complex is

DG : C∞
(
S+ ⊗ [S− ⊗ S− ⊗ S− − (S− ⊗ T ∗M)⊕3 + (S+)⊕2]

)
−→ C∞

(
S− ⊗ [S− ⊗ S− ⊗ S− − (S− ⊗ T ∗M)⊕3 + (S+)⊕2]

)
,

(3.52)

and is again in the form (3.15). The index density for DG is then

Ind(DG) = Â(M)
(
ch((S−)3)− 3ch(S−)ch(T ∗M) + 2ch(S+)

)
(3.53)

Every individual factor is known and one can show that

[Ind(DG)]8 =
1

3
(2p2

1 + 10p2) =
1

5760
(3840p2

1 + 19200p2). (3.54)

Since G is bosonic and the reality condition is imposed on it in order to move to the Minkowski
signature, the anomaly for the field strength is

IG = (−1)(
1

2
)Ind(DG) =

1

5760
(−1920p2

1 − 9600p2) . (3.55)
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3.1.4.3 Exotic graviton in the (3, 1) multiplet

The field strength of the three-index exotic graviton D in the (3, 1) multiplet Sµνρσκ = ∂[µDνρ][σ,κ]

is also subject to self-duality condition, and hence the field is expected to have a non-vanishing
index. The discussion follows closely the previous section and we focus on the field strength S
which is in the [1, 0, 3] representation. Due to the absence of residual gauge symmetry, one can
avoid the discussion of ghosts and quantisation.

The relevant Dirac operator for S is given by (details of the computation can be found in the
Appendix B.4):

DS : C∞
(
S+ ⊗ [S− ⊗ S− ⊗ S+ − (S+ ⊗ T ∗M)⊕2 − (S−)⊕2]

)
−→ C∞

(
S− ⊗ [S− ⊗ S− ⊗ S+ − (S+ ⊗ T ∗M)⊕2 − (S−)⊕2]

)
.

(3.56)

It follows that

Ind(DS) = Â(M)
(
(ch(S−))2ch(S+)− 2ch(S+)ch(T ∗M)− 2ch(S−)

)
, (3.57)

and the anomaly polynomial can be computed as

IS = (−1)(
1

2
) [Ind(DS)]8 =

1

5760
(−3808p2

1 − 7904p2). (3.58)

3.1.5 Anomalies of the exotic multiplets with different supersymmetries

Now we are able to collect everything together and present the anomaly formulae for different
multiplets.

The anomalous objects among the 6d N = (4, 0) multiplet are the exotic graviton (5,1; 1), the
self-dual 2-forms (3,1; 27), the exotic gravitini (4,1; 8) and the chiral fermions (2,1; 48). Taking
into account signs due to chirality the total anomaly is given by

I(4,0) = IG + 27IA + 8Iχ +
1

2
× 48I 1

2
=

1

5760
(684p2

1 + 2592p2) 6= 0 (3.59)

Since this multiplet is a product [6, 10], we could obtain the same result by following the section
3.1.3. A concrete product construction is described in Table 12 of [6], here we just give the
construction of exotic graviton in the light-cone

(3,1)⊗ (3,1) = (5,1)⊕ (3,1)⊕ (1,1). (3.60)

It follows that if we view the exotic graviton field strength as product of field strengths of a pair of
chiral 2 forms and apply the same product construction to other fields, we end up with the same
equation (3.59) for the total anomaly.

The anomaly contributions in the (3, 1) multiplet are given by

I(3,1) = IS + 12IA + 2Iχ +
1

2
× 6I 3

2
+

1

2
× (28− 14)I 1

2
=

1

5760

(
−2241p2

1 − 8388p2

)
. (3.61)

The (2, 0) SD Weyl multiplet consists of Cµνρσ; 6B−µν ;φ; 4ψRµν ; 4ψR. Its anomaly is given by

I(2,0) exotic = IG + 6IA + 4Iχ +
1

2
× 4I 1

2
=

1

5760
(−808p2

1 − 2624p2) (3.62)

Finally, the (1, 0) SD Weyl multiplet comprises Cµνρσ;B−µν ;φ; 2ψRµν and has an anomaly poly-
nomial

I(1,0) exotic = IG + IA + 2Iχ =
1

5760
(−1403p2

1 − 5884p2) (3.63)
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3.1.6 The Lagrangian for the exotic gravitino anomaly computation

So far we have performed the index-theoretical computation of the exotic field anomalies. While a
universal feature is that all fields that appear in these supermultiplets are in the domain of a Dirac
operator for some choice of vector bundle V , for the exotic fields V is given by a product of spin
bundles. Hence, much like for the self-dual tensor fields (and unlike the gravitino) the computation
involves the field strengths rather than potentials. This comes with a certain advantage - since
there is no gauge freedom of the field strength, there is no need to manually add any ghost field
contributions to the anomaly as one would do for the gravitino.

One can ask the question about computing anomalies with the potential itself. An example
of such computation is the ordinary gravitino anomaly [68, 69, 71]. According to [68], this type of
computation generalizes to the cases where a chiral gravitino ψA transforms in a tensor represen-
tation of SO(6) (or of SO(5, 1)) with the tensor index A. Contributions from unwanted parts that
appear in the tensor product and the ghost contributions are yet to be subtracted.

For our interests, we take the chiral fermions in the rank 2 antisymmetric representation. We
will give a complete quantisation scheme for the free classical field ψµν in the next part of the thesis.
Before moving to it, we can still carry out a study on the classical Lagrangian of the antisymmetric
rank 2 tensor-spinor and the (anti-)self-duality constraint.

• The (anti-)self-duality
A generic tensor field by itself has no contribution to the gravitational anomaly. It is the
self-dual or anti-self-dual part that are individually anomalous, and their anomalies cancel
when they are combined to an unconstrained tensor field. At first glance, it seems to be
necessary for us to impose the (anti-)self-dual constraint.
There is a generalized Rarita-Schwinger action of the fermionic two-form proposed in [50,51]

S =

∫
d6x ψ̄µνΓµνρστ∂ρψστ (3.64)

we will also use this action in the quantisation later. The equation of motion derived from
this action is

Γαβµνρ∂µψνρ = 0 , (3.65)

which is, as we mentioned, shown [11] to be equivalent to the anti-self-dual condition (1.12)
and a constraint (1.13).
This way the (anti-)self-duality constraint on the field strength of ψµν is automatically satis-
fied, provided it is on-shell. One can thus use this Lagrangian for the anomaly computation
for the exotic gravitino.

• Representation The above consideration becomes clearer when one looks a the represen-
tations. An antisymmetric two-form of SO(5, 1) corresponds to the su∗(4) highest weight
[1, 0, 1]. We take the product of it with a chiral spinor

[1, 0, 1]⊗ [1, 0, 0] = [2, 0, 1]⊕ [0, 1, 1]⊕ [1, 0, 0]. (3.66)

The exotic gravitino is in the [2, 0, 1] and [0, 1, 1] is describing an ordinary gravitino (to be
unambiguous, it is a gamma-traceless spinorial one-form) with opposite chirality.
We can also check this using the little group SO(4) ≡ SU(2)× SU(2). The physical degrees
of freedom of a two-form Bµν are given by Bij with i, j = 1, 2, 3, 4 running over the SO(4)
indices. Then, if we take the self-dual and anti-self-dual part together

[(3,1) + (1,3)]⊗ (2,1) = (4,1)⊕ (2,3)⊕ (2,1), (3.67)

which is nothing but the decomposition (3.66) translated in the little group. For the anti-
self-dual part of B alone

(3,1)⊗ (2,1) = (4,1)⊕ (2,1) . (3.68)
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3.2 Five-dimensional Chern-Simons interactions

The non-triviality of the index bundle discussed without any obvious anomaly cancellation mecha-
nism in view (at least for the maximally supersymmetric (4, 0) and (3, 1) cases) might be just one
of the signs of trouble with the multiplets involving the SD Weyl field C or its three-index coun-
terpart D. Given the lack of general covariance, this might appear to be neither too surprising nor
lethal if mechanisms for reproducing the non-linear dynamics of lower dimensional gravitational
theories can be established.

As prior mentioned, when compactified on a circle the degrees of freedom of these multiplets
can be arranged into the fields of the five-dimensional supergravity [1]. The SD Weyl field C can
in five dimensions be represented in terms of a symmetric field hµν , while D reduces to hµν plus a
vector.7 The six-dimensional (linearised) equations of motion are consistent with the interpretation
of h as the linearised excitation around the flat metric. A direct study of the dynamics of C or D
fields beyond linearisation, and hence the comparison with the non-linear five dimensional gravity,
is very difficult and this is the key problem in establishing whether interacting (4, 0) and (3, 1)
theories exist.

From other side, the maximal five-dimensional supergravity is unique, and contains interactions
that do not involve the metric [43]. As we mentioned in the introduction there is the topological
Chern-Simons term (1)

SCS =

∫
kΛΣ∆ AΛ ∧ FΣ ∧ F∆ , (3.69)

and it does not admit linearisation. Hence probing its origin could be the first step towards
understanding the interaction in six-dimensional (4, 0) and (3, 1) theories, while avoiding the com-
plications associated with the C and D fields (the D field yields a vector in five dimensions, we
will see that its test is slightly different).

All vectors of the five-dimensional maximal supergravity are in the 27 representation of E6(6).
The interaction (3.69) is possible due to the fact that there is a E6(6) singlet in the cubic tensor
product of the fundamentals 27 ⊗ 27 ⊗ 27 = 1 ⊕ · · · . There is a more refined structure: under
E6(6) −→ SL(6,R) × SL(2,R), we have 27 → (15,1) + (6,2) and the only allowed trilinear
couplings involve either three fields in 15 of SL(6,R) that are SL(2,R) singlets or a single vector
field in 15 and a doublet of SL(2,R) in 6 of SL(6,R). This structure is perfectly consistent with
eleven-dimensional origin of the Chern-Simons interactions, and arises in the reduction of the six-
dimensional (2, 2) supergravity on a circle. The 15 − 15 − 15 interaction can be seen directly
from the T 6 reduction of eleven-dimensional Chern-Simons terms. The doublet of 6 corresponds
to the metric and the three-form field having one leg along the torus. Note that even if the
Chern-Simons interactions do not involve five-dimensional gravitons, 6 of the 27 vector fields have
eleven-dimensional gravitational origin.

In theories with 16 and 8 supercharges, the intimate connections between the six-dimensional
anomalies and five-dimensional Chern-Simons couplings has been studied, and it is expected that
only the anomaly-free theories yield gauge invariant Chern-Simons interactions upon circle reduc-
tion [105, 106]. In the maximally supersymmetric case, the refined structure of the Chern-Simons
couplings makes their compatibility with a non-vanishing gravitational index in the (4, 0) or (3, 1)
multiplets very unlikely.

It is instructive to review the five-dimensional Chern-Simons terms in theories with 8 super-
charges [44, 45, 47, 107] and their six-dimensional N = (1, 0) origin (the case with 16 supercharges
and six-dimensional N = (2, 0) is very similar). There are two ways of generating these upon the
circle reduction. The first involves either simple dimensional reduction of existing six-dimensional
Chern-Simons terms, or field redefinitions involving the gravi-photon field A0 coming form the
six-dimensional metric

ds2
6 = ds2

5 + g55(dx5 +A0
µdx

µ)2 (3.70)

where µ = 0, 1, ..., 4. In the reduction of the eleven-dimensional supergravity to five dimensions,
the entire (3.69) can be generated in this fashion. The second mechanism involves integrating out

7In this section we will use five-dimensional indices µ, ν and six-dimensional indices M,N . The gamma matrix
in 5d is written as γµ while the 6d gammas are ΓM .
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at one loop the massive spin 1/2, 3/2 and two-form, i.e. potentially anomalous, fields coupled to
A0 or six-dimensional vector fields.

A generic six-dimensional (1, 0) theory has nT tensor multiplets with an anti-self-dual three-
form in each, and a self-dual three-form in the gravity multiplet, leading to an O(1, nT ) symmetry,
and gauge multiplets with a gauge group of dimension nV . The six-dimensional interactions lead
via reduction to the following triple interactions

A0 ∧ Fα ∧ F βηαβ + kαijA
α ∧ F i ∧ F j (3.71)

with α, β being O(1, nT ) index and i running over the Cartan subalgebra of the six-dimensional
gauge group.

The O(1, nT ) symmetry does not allow generation of any terms cubic in Aα [107], but couplings

k0A
0 ∧ F 0 ∧ F 0 + k0ijA

0 ∧ F i ∧ F j + kijkA
i ∧ F j ∧ F k (3.72)

are allowed, and are in fact a part of the five-dimensional low energy effective action arising after
integrating out the massive fields. For example, the first term in (3.72), can be traced to a triangle
diagram with three external legs being gravi-photons with some massive fields running in the loop.

By taking the ansatz (3.70), all six-dimensional fields that are coupled minimally to graviton will
provide massive fields in five dimensions that couple minimally to the gravi-photon with charges
given by the corresponding Kaluza-Klein level. We list the minimal five-dimensional coupling
between the U(1) vector fields and massive spin 1/2 and spin 3/2 fermions and complex two-forms:

iqψ̄γµAµψ

iqψ̄ργ
ρµνAµψν

± 1

4
iqεµνρστ B̄µνAρBστ ,

(3.73)

where the sign in the last line is correlated with the six-dimensional chirality of the B-field. We
have followed the conventions of [44, 45]. A lengthy one-loop computation indeed leads to the
appearance of the cubic interactions of the form (3.72).

The five-dimensional theory also has non-minimal couplings

1

2
iq̃1/2F

µνψ̄γµνψ

1

2
iq̃3/2F

µνψ̄ργ
µνρσψσ +

1

2
iq̃′3/2F

µνψ̄µψν

q̃BB̄µνF
νρBρ

µ + q̃′BB̄µνF
νρBρσF

σµ.

(3.74)

However, as shown in [44] these can be used to cancel divergences in relevant diagrams and do not
affect the Chern-Simons couplings.

The five-dimensional Chern-Simons interactions (3.71) and (3.72) do not contain any scalars
and are gauge invariant by virtue of six-dimensional anomaly cancellation [105,106]. We shall not
establish any direct relation between the non-vanishing index for the (4, 0) and (3, 1) multiplets
and the impossibility of recovering the gauge invariant Chern-Simons couplings of the maximal
five-dimensional supergravity. Instead we shall show that there are no diffeomorphism invariant
couplings compatible with the structure of these multiplets that can be reduced on the circle
or give rise to interactions like (3.73) that are needed in order to generate the five-dimensional
Chern-Simons terms.

3.2.1 Testing the (4,0) multiplet
We should recall that the six-dimensional multiplets do not contain gravity, and while the five-
dimensional Planck length is given by the radius of the compactification circle, the reduction
procedure is by no means the conventional Kaluza-Klein. The most notable difference is the
absence of the “gravi-photon”, i.e. the KK vector that usually arises from the reduction of the
metric. Further more, we still assume the six-dimensional Lorentz invariance and the locality of
interactions.
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The 27 chiral two forms BαMN in the (4, 0) multiplet are in the 27 of Sp(8) ⊂ E6(6) [1]. Due
to self-duality each six-dimensional BMN yields a five-dimensional vector Aµ and there are no
KK vectors arising in the reduction of other fields in the (4, 0) multiplet. In other words the 27
five-dimensional vectors AΛ

µ in five-dimensional N = 8 supergravity all originate form the six-
dimensional tensor fields.

In order to explore the possibility of the coupling (3.69) governed by the E6(6) cubic invariant
being generated via loop integration of the massive states with three external five-dimensional
vector fields, the E6(6) invariant three-vertices involving six-dimensional BMN -fields have to be
examined.

The first immediate observation is that these tests do not involve the SD Weyl field. Indeed,
in order to get a contribution from the exotic graviton CMNPQ running in the loop, 1 ⊗ 27 ⊗ 1
needs to contain an E6(6) (or Sp(8)) singlet, which is clearly not possible.

Turning to the fermions we start from the chiral spin 1/2 fields in the 48 of Sp(8). The minimal
five-dimensional coupling is of the form

iqcΛijψ̄
iγµAΛ

µψ
j , (3.75)

where Λ is in 27, i, j are 48 indices and cΛij is a constant. Such a tri-vertex is allowed since there
is a singlet contained in 48⊗ 27⊗ 48. However, in order to lift this coupling to six dimensions we
must complete the term

iqcΛijψ̄
iγµBΛ

µ5ψ
j (3.76)

to a Lorentz scalar. The easiest way is to put a derivative on B and thus yielding8

iqcΛijψ̄
iΓM∂NBΛ

MNψ
j . (3.77)

However ∂NBΛ
MN = 0 serves like the Lorenz gauge just as in the case for Abelian vector field, and

(3.77) vanishes. Another option is to increase the rank of the gamma matrix sandwiched by the
fermions

iqcαijψ̄
iΓMNBΛ

MNψ
j . (3.78)

This could give rise to the wanted minimal coupling when the index N = 5, but a chiral fermion
bilinear in six dimensions with two fermions of the same chirality does not contain any two forms.
Hence, the above expression is identically zero. Further possible six-dimensional couplings dimen-
sions lead to non-minimal couplings in five dimensions, which as already explained do not give
quantum contributions to the one-loop Chern-Simons terms.

The exotic gravitino ψaMN is in the 8 of Sp(8), and the trilinear coupling with the vector
8⊗ 27⊗ 8 contains a singlet. The gravitino-vector coupling as listed in (3.73)

iqk̃′Λabψ̄
a
ργ

ρµνAΛ
µψ

b
ν (3.79)

is lifted to
iqk̃′Λabψ̄

a
ρ5ΓρµνBΛ

µ5ψ
b
ν5 (3.80)

There are three six-dimensional candidates that do not have any derivatives acting on BMN or
ψMN

iqk̃′Λabψ̄
a
MQΓMNPQRSψbNRB

Λ
PS , iqk̃′Λabψ̄

a
MRΓMNPQψbN

R
BΛ
PQ,

iqk̃′Λabψ̄
a
MRΓMNPQψbNPB

Λ
Q
R.

(3.81)

The first one is allowed by SO(5, 1) representation, but to achieve (3.79) we would have to set
Q = R = S = 5 so the gamma matrix vanishes by antisymmetry. The other two vanish due to the
tensor product decomposition of the exotic gravitini.

The trilinear coupling of vectors with the massive two-forms B also need to be considered. Such
couplings for the reduction of (1, 0) theory in (3.73) contain the gravi-photon and originate from

8Note that we raise and lower six-dimensional indices with the flat metric ηMN in this section, as it is assumed
to be non-dynamical in the six-dimensional theory.
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self-duality of the six-dimensional tensor fields [46]. This is no longer the case, and one should be
looking for a six dimensional cubic invariant built solely from the bare potentials BαMN

kΛ∆Γ BΛ ∧B∆ ∧BΓ =⇒ kΛ∆Γε
MNPQRS BΛ

MNB
∆
PQB

Γ
RS , (3.82)

the reduction of which would contain a minimal term proportional to

+iqkΛ∆Γε
µνρστ B̄Λ

µνA
∆
ρ B

Γ
στ . (3.83)

This product contains an E6(6) singlet and hence is allowed. As discussed, under E6(6) −→
SL(6,R)× SL(2,R), 27→ (15,1) + (6,2) and the trilinear couplings are either between three 15
or between one 15 and two different 6. This means that any possible contribution to (3.69) from
(3.83) should have a massive two form in 15 in the loop. From other side as shown in [108], the
only two-forms allowed to enter the five-dimensional action are in one of the 6 representations.
Hence contributions from the massive two-forms to (3.69) seem to be ruled out by supersymmetry.
At any rate it would be very hard to imagine a gauge invariant completion of (3.82).9

This seems to exhaust the possibilities for generating the five-dimensional Chern-Simons cou-
plings using the five-dimensional massive modes coupled to the fields of the five-dimensional max-
imal supergravity in a way that can be lifted to six-dimensional Lorentz and gauge invariant
interactions.

Finally, one may entertain the possibility of a coupling like

SCSE =

∫
kΛ∆Γ BΛ

MN ∧H∆
PQV ∧HΓ

RSW η
VW εMNPQRS . (3.84)

and its direct reduction to five-dimensions. Clearly this coupling is not gauge invariant in six
dimensions. But that is not the only problem - upon reduction only the part involving η55 gives
a sensible and gauge invariant five dimensional coupling. On the other hand, five-dimensional
interactions cannot contain ηµν . Hence constraints need to be imposed on (3.84) in order to
eliminate the unwanted parts. This would come at the expense of the Lorentz invariance, and we
do not consider the possibility of breaking this here (even in a “specific and limited way”). Running
slightly ahead, we remark that the possibility of even such - however dubious - cures is not available
for the (3, 1) multiplet.

3.2.2 Testing the (3,1) multiplet
The (3,1) multiplet, written in the representation of su(2)× su(2)× sp(6)× sp(2) is

(4,2; 1,1) + (2,2; 14,1) + (3,1; 6,2) + (1,1; 14′,2)

+(4,1; 1,2) + (3,2; 6,1) + (2,1; 14,2) + (1,2; 14′,1).
(3.85)

It follows [1] that, the (4,2; 1,1) field DMNP gives a linearised metric hµν and a vector A0
µ = Dµ55,

which we denote with a superscript 0 to distinguish from other vectors.
There are also five-dimensional vectors Aiµ given by (2,2; 14,1) and those Aαµ from the chiral

two-form (3,1; 6,2). With respect to the chain of groups

Sp(6)× Sp(2) ⊂ F4(4) ⊂ E6(6), (3.86)

the 27 of E6(6) has a decomposition under Sp(6)× Sp(2)

27 = (1,1) + (14,1) + (6,2). (3.87)

To build a six-dimensional vertex with (3, 1) field content, a Sp(6) × Sp(2) singlet needs to be
constructed. Recalling the structure of the E6(6) cubic invariant (3.69), it is not hard to see that

(α, β, i) (α, β, 0)

(0, 0, 0) (0, 0, i) (0, i, j) (i, j, k)
(3.88)

9Note that in [44, 45] the five-dimensional couplings generated using the vertex with a massive two-form in the
loop and an external vector field involve the gravi-photon. As mentioned, in the reduction of the (4, 0) theory this
field does not even arise.
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trilinear couplings need to be generated. Note that this structure is rather different from that of
the trilinear couplings arising in the reduction of (1, 0) theory which has e.g. (α, i, j) couplings
obtainable by direct reduction, and does not have (α, β, i) couplings. It can be shown, using
arguments from the previous subsection, that it is not possible either to directly lift this structure
to Lorentz and gauge invariant couplings of (3, 1) multiplet, or to generate them by integrating
out massive modes in the loop.



Chapter 4

Evidence for h-theories

In this chapter we shall discuss how trying to solve the equations of motion for the SD Weyl
field CMNPQ may suggest an alternative way of thinking about some of the six-dimensional exotic
multiplets. The basic construction works for theories with 32, 16 or 8 supercharges, but for the
latter two a number of (2, 0) tensor and (1, 0) vector multiplets respectively need to be added.
Bellow, we shall mostly discuss the maximally supersymmetric case of (4, 0) exotic multiplet.

The SD Weyl field has 5 physical degrees of freedom. While this is the same number of degrees
of freedom as that of five-dimensional metric, we argued (however indirectly) that the dynamics of
this field when reduced on a circle is unlikely to be the same as that of gravity. From other side, this
number also matches the number of the parameters of the SL(3,R)/SO(3) coset, i.e. a three-torus
of of fixed volume. Moreover, as discussed in section 2.5 this coset is closely related to the SD
Weyl field, both in terms of the degrees of freedom of the field itself and its gauge transformation
parameters. So one may wonder if the system of five scalars parametrising the coset coupled to
thee-dimensional gravity, which carries no dynamical degrees of freedom, may be related to the
solutions of the equations of motion for the SD Weyl field. This system is familiar, and it has been
shown in [42] that its solutions can be summarised by a Ricci-flatness condition of a semi-classical
metric on a six-dimensional space X obtained as a T 3 fibration over the three-dimensional base.1

As we shall review shortly, the Ricci-flatness condition is equivalent to a real two-form k on
X, constructed from the coset element of SL(3,R)/SO(3), being covariantly constant. One can
think of k as the Kähler form on X, but in the context of supersymmetric theories, one cannot
establish a duality between any six-dimensional supergravity (with 32, 16 or 8 supercharges) on X
and solutions of the above three-dimensional system, preserving a quarter of supersymmetry. On
the contrary, the latter are consistent with the (4, 0) and exotic (2, 0) and (1, 0) supersymmetry
respectively, and k can be squared to a SD Weyl field satisfying its flatness condition. It can be
shown that at the linearised level, the differential conditions on k reduce to the equations of motion
for the SD Weyl field.

In order to see this we just need to examine the duality groups of these theories. Let us
start from the 32 supercharge case. The three-dimensional theory has E8(8) symmetry and it’s
scalar manifold is the coset space E8(8)/SO(16). All but five of these scalars are set to zero in
the solution, leaving the E6(6) symmetry, which is stabilised by SL(3,R) inside E8(8) intact. So
when geometrising the SL(3,R) symmetry and thinking of the solutions of the three-dimensional
system of gravity and five scalars in terms of solutions of some six-dimensional theory on X, one
expects the latter to have manifest E6(6) symmetry. This is not the case for the maximal six-
dimensional supergravity, but it is for the (4, 0) SD Weyl multiplet. As it is clear from the details
of the construction in subsection 4.2, on three-dimensional bases one can construct at most T 3

and hence geometrise only SL(3,R) this way. In many ways the construction is reminiscent of
geometrisation of SL(2,R) in type IIB and F-theory. Moreover since the construction involves
two groups of intersecting co-dimension two defects, the SL(3,R) arises as the group generated
by two SL(2,R) subgroups. This is reminiscent of the two pairs of charges in (2.49) which have
accompanying SL(2,R) actions, even though the full triplet (2.49) has no SL(3,R), as discussed
in sub-section 2.3. However, to make closer comparison with that discussion, it may be better to

1We shall work with a Euclideanised version of the three-dimensional theory.
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consider the points made in section 2.4 and look at the two SO(2) groups generating an SO(3)
under which the momenta transform as a triplet.

Similarly in the case with 16 supercharges, embedding SL(3,R) in the duality group SO(8, 8+n)
leaves invariant a SO(5, 5 + n) × R+ suggesting that this is the symmetry on the resulting six-
dimensional theory. While all (2, 0) multiplets have the same R-symmetry, this symmetry is a bit
bigger than that admitted by the (2, 0) gravity plus n + 5 tensor multiplets, and the R+ factor
accounts for the extra scalar in the (2, 0) SD Weyl multiplet.

Theories with 8 supercharges are a bit harder to analyse, notably because there are many
options for the scalar manifolds available. Yet the most “typical” quaternionic coset is given by
SO(4, 4 + n)/SO(4) ⊗ SO(4 + n). Under SL(3,R) embedding one gets a coset space SO(1, 1 +
n)/SO(1 + n) which can describe the moduli space of nT = 1 + n six-dimensional (1, 0) tensor
multiplets coupled either to (1, 0) gravity multiplet or to (1, 0) SD Weyl multiplet. Note however
that the latter case has fewer degrees of freedom (a (1, 0) gravity multiplet is “worth” a (1, 0) SD
Weyl multiplet + a tensor multiplet).

In this section, we will discuss the equations of motion of the SD Weyl field and their T 3

reduction, looking to capture the solutions of three-dimensional gravity with varying scalars in
terms of a six-dimensional geometric construction involving the SD Weyl field. In particular, we
will construct a T 3 fibered manifold together with a tensor field CMNPQ using five scalar fields
with dependence only on the three-dimensional base. On imposing that the five scalars solve the
supersymmetry conditions of three-dimensional supergravity, this field will solve an equation

GQNPQRS = 0. GMNPQRS = ∇[MCNP ][QR;S] (4.1)

However, the field CMN,PQ cannot directly be interpreted as the SD Weyl field on the curved
space. To identify the SD Weyl field of [1] we should linearise the system by thinking of the three-
dimensional scalar fields underlying the construction as small fluctuations. The corresponding
geometry will then be seen as a small fluctuation of a flat manifold R3 × T 3, with the five scalars
determining the metric on the fibres. As we shall see shortly, in the expansion of C in the powers
of the scalar fields

CMNPQ = C(0)
MNPQ + CMNPQ + . . . (4.2)

the linear fluctuations of the SD Weyl field of [1] will be identified with the the first order term,
denoted CMNPQ. To the first order in fluctuations, (4.1) reduces to the standard equation for the
SD Weyl field of [1]

GQNPQRS = 0. GMNPQRS = ∂[MCNP ][QR,S] (4.3)

provided that CMNPQ is taken to have no dependence on the T 3 directions of the geometry.
Note that geometric fluctuations around the flat geometry R3 × T 3 would only affect the non-

linear parts in the expansion of (4.1) without spoiling the agreement of it with the linearised
equation (4.3). Thus one could view equation (4.1) as a non-linear extension of the SD Weyl field
equation of motion. Here we only check that the two agree at the linearised level. Another feature
of this construction which mirrors comments made in section 2.5 is that the T 3 fibered geometry
uses the physical degrees of freedom in its definition, and thus the six-dimensional space requires
the physical fields for its definition.

This reformulation of three-dimensional theories in terms of the (diffeomorphism non-invariant)
six-dimensional one on (non-compact) manifolds with certain geometric properties, suggests the
interpretation of the latter as lower-dimensional cousins of F-theory.

4.1 SD Weyl field on R3 × T 3

Since to the linear order in scalar fields, the equation of motion for the SD Weyl field CMNPQ

is not sensitive to the metric fluctuations, in this section we will examine the reduction of the
equations on a flat R3 × T 3.

Following [1, 2], we define the SD Weyl field strength in flat space as

GMNPQRS = ∂[MCNP ][QR,S] (4.4)
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subject to self-duality constraint (we are working in Euclidean signature, hence the factor of i):

GMNPQRS =
i

3!
εMNPTUVG

TUV
QRS =

i

3!
εQRSTUVGMNP

TUV (4.5)

with M,N,P... = 1, ..., 6. The equation of motion for C in 6 dimensions is then given by

GQNPQRS = 0. (4.6)

We shall now assume that the SD Weyl field C depends only on three of the coordinates. We
can separate the the coordinates into the R3 part xα with α = 1, 2, 3 and T 3 part ξi with i = 1, 2, 3,
and allow the dependence only on the xα-coordinates of R3, i.e. take

∂iCABCD = 0, (4.7)

This, together with the self-dual condition of the field strength of C eliminates the some of the
components

GijkMNP = ∂[iCjk][MN ;P ] = 0

GαβγMNP = εαβγijkG
ijk

MNP = 0
(4.8)

The non-vanishing components field strength of C in the product ansatz are of the type

GαijMNP or GαβiMNP , (4.9)

where because of the exchanging symmetry CMNPQ = CPQMN we only need to focus on the first
3 indices of the field strength G. Since these two types of components are related again by the
self-duality of G

GαijMNP =
i

3!
εαijβγkGβγkMNP or GβγkMNP =

i

3!
εβγkαijGαijMNP . (4.10)

it is sufficient to consider the components Gαβiγδj arising from the potentials Cµiνj . In each pair
of indices on C there is one R3 coordinate index and one T 3 coordinate index. The equation of
motion for C in 6 dimensions (4.6) reduces to

δγδ∂[γCαi][βj,δ] = 0 (4.11)

This is a set of (linear) three-dimensional equations for five degrees of freedom contained in the
SD Weyl field. As already mentioned the SL(3,R)/SO(3) coset has the same number of degrees
of freedom. In what follows, we will construct a T 3 fibred geometry together with a tensor field
CMNPQ satisfying similar equations to those for CMNPQ above (but on the curved geometry), such
that the linearisation of the total system reduces to (4.11). The fact that the geometry is given by
R3 × T 3 only at zeroth order in fluctuations does not affect the linearised equation (4.11).

4.2 The SL(3,R)/SO(3) sigma-model and the SD Weyl field

The symmetric space SL(3,R)/SO(3) has dimension five. Thus, we need 5 real scalars to parametrise
the non-linear sigma-model with target SL(3,R)/SO(3). Its vielbein Vai in Borel gauge can be
written as follows

V = eΦ1/
√

3

Ñ
1 a b

0 e−(
√

3Φ1−Φ2)/2 ce−(
√

3Φ1−Φ2)/2

0 0 e−(
√

3Φ1+Φ2)/2

é
, (4.12)

where a is a SO(3) index, while i is a SL(3,R) index. The two dilatonic scalars Φ1 and Φ2

correspond to the two Cartan generators of sl(3,R) and the three other scalars a, b and c are
nilpotent generators which complete the coset.
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The Mauer-Cartan form dV V −1 can be split into the part symmetric in SO(3) indices, P ab =
P (ab), and the anti-symmetric part Qab = Q[ab]

(∂αV V
−1)ab = P abα +Qabα . (4.13)

Here the partial derivative ∂α is taken with respect to the 3 dimensional space on which we put the
SL(3,R)/SO(3) sigma-model. (We think of this as the base space in what follows.) The involution
σ under which the so(3) subalgebra is invariant corresponds to taking minus the matrix transpose,
and thus (4.13) splits ∂αV V −1 into its σ-eigenvector parts. The symmetric part Pα transforms
covariantly under the action of base-coordinates dependent SO(3) elements while Qα transforms
like a connection.

The action of this sigma-model coupled to three-dimensional gravity is given by

S =

∫
d3x

1

2κ2

√−g(R− gαβ TrPαPβ), (4.14)

with the field equations

DαPα = gαβ(∇αPβ + [Qα, Pβ ])

Rαβ = TrPαPβ .
(4.15)

In terms of the scalar fields (4.12), the Lagrangian can be brought into a simple form

L =
1

2κ2

√−g(R− 1

2
(∂Φ1)2 − 1

2
(∂Φ2)2−

− 1

2
e
√

3Φ1−Φ2(∂a)2 − 1

2
e2Φ2(∂c)2 − 1

2
e
√

3Φ1+Φ2(∂b− c∂a)2).

(4.16)

The Lagrangian (4.16) can be embedded into three-dimensional supersymmetric theories with the
varying amounts of the supersymmetry. The relevant part of the supersymmetry transformations
for the spin 3/2 and 1/2 fermions2 is given by

δψα = Dαε = (∇α +
1

4
Qabα T

ab)ε

δχa = −1

2
P abα T bε

(4.17)

where T ab and T a are the SO(3) generators in the adjoint and spin representation respectively.
Solutions with varying moduli consistent with SL(3,Z) were constructed in [42]. The solution

takes the form of overlapping codimension two objects. One can start by solving for each such
object, which will be picking a specific SO(2) inside the SO(3) automorphism group. A 1

2 -BPS
projector for a brane with transverse xā1 − xā2 plane can be written as3

P =
1

2

(
1 + γā1ā2Λa1aΛa2bT

ab
)

(4.18)

where Λab(x) is an SO(3) rotation matrix. Solving the BPS conditions for a single codimension-
two object yields a solution very much like the standard seven-branes in ten dimensions. On a
three-dimensional base there is room for two groups of intersecting objects with a net quarter
of supersymmetry preserved.4 Two groups of such overlapping objects will now fill out the entire
SO(3), and the solution geometrically realises a T 3 fibration over the three-dimensional base space.

Using the SL(3,R)-invariant form of metric on T 3 one can summarise the solution using a
six-dimensional metric of the form

ds2
6 = ds2

base + (V TV )ij(x)dξidξj (4.19)
2Note that the spin 1/2 fields transform under the maximal compact subgroup of the symmetry group. Here we

restricted to the relevant SO(3) subgroup.
3The barred indices āi = 1, 2, 3 refer to tangent space
4It is not hard to verify that there are only two independent projectors of the type (4.18) on a three-dimensional

space.
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with the metric on the three-dimensional base space taken as

ds2
base = e2φ1(x)dx2

1 + e2φ2(x)dx2
2 + e2φ3(x)dx2

3. (4.20)

As shown in [42], solution of the killing spinor equations is equivalent to the following two-form
on the six-dimensional space

kMN =

Å
0 −e−φαδαaVai

eφβV Tib δ
β
b 0

ã
(4.21)

being covariantly constant
∇MkNP = 0. (4.22)

One could think of k as the fundamental form on the resulting six-dimensional manifold. How-
ever, as mentioned the solution to (4.16) cannot be lifted to a solution of six-dimensional super-
gravity on any six-manifold since its symmetry group is SO(5, 5) and not the E6(6) group that is
stabilised by SL(3,R) inside E8(8) for the case of maximal supersymmetry. The group stabilised by
SL(3,R) inside the three-dimensional duality group is compatible with the six-dimensional (4, 0)
theory or less supersymmetric exotic theories.

In order to describe the six-dimensional lift in terms of the exotic graviton, one can build a
four-index object with the properties of Riemann tensor:

CMNPQ = kMNkPQ − k[MNkPQ], (4.23)

which has the non-trivial components Cαiβj . The algebraic symmetries of C are manifestly the
same as in (1.5). By virtue of (4.22) C satisfies

∇γCαiβj;γ = 0. (4.24)

Notice that the three-dimensional covariant derivatives are used here. Consistently (4.24) and with
the self-duality properties the field strength of C, Cijkl components can be taken to zero.

In order to compare with (4.11), we need to consider the linearisation of (4.24). Using

kMN = k
(0)
MN + k

(1)
MN + ... =

Å
0 −δαi
δαi 0

ã
+ k

(1)
MN + ... (4.25)

one can expand C in a similar fashion, with C(0)
MNPQ = k

(0)
MNk

(0)
PQ− k

(0)
[MNk

(0)
PQ] having only constant

components. It is the linear term in the expansion of C that is taken to be equal to the SD Weyl
field CMNPQ

CMNPQ = C(0)
MNPQ + CMNPQ + ... (4.26)

It can be checked then, that the linearised equations of motion for the five three-dimensional scalar
fields (4.16) imply ∂[αCβi][γj,α] = 0.

In other words the three-dimensional gravity coupled to scalars in SL(3,R)/SO(3) coset is
solved at linearised level by (4, 0) SD Weyl supersymmetry on a T 3 fibered Ricci-flat manifold M .
Note that on M , the covariantly constant tensor C is globally defined. This is not the case for the
SD Weyl field C which is obtained by picking the part linear in scalar fields in the expansion of C.

From other side the conspiracy between SL(3,Z) and the duality groups in three and six dimen-
sions makes this construction unique. One could construct a T 2 fibered four-manifold in a similar
fashion, but the group E7(7) group that is stabilised by SL(2,R) inside E8(8) is too big for any five-
dimensional theory. This has a well-known realisation in terms of codimension-two objects with
a deficit angle. The T 3 fibered construction corresponds to two sets of intersecting codimension-
two objects, each realising an SO(2) within SO(3). As mentioned, on a three-dimensional base
there are only two independent such groups each preserving half supersymmetry (any other half-
supersymmetric projector can be built out of the above two). In agreement with this, no other
SL(n,R) group (for n > 3) inside E8(8) stabilises any known duality group for an (n+3)-dimensional
theory (since the stabiliser is E9−n(9−n) as can easily be seen from the extended Dynkin diagram).

Here we have concentrated on the maximally supersymmetric theory in three dimensions and
its lift to the six-dimensional (4, 0). From other side, there is very little dependence on the details of
the multiplet or amount of supersymmetry, and as discussed above similar relation exists between
three-dimensional theories with 16 and 8 supercharges, and (2, 0) and (1, 0) SD-Weyl multiplets
completed by matter multiplets.





Part III

On quantisations and anomalies of
fermionic p-forms





73

Chapter 5

Introduction to the
Batalin-Vilkovisky (BV) formalism

In this chapter, we introduce the Batalin–Vilkovisky (BV) field-antifield formalism [52, 53]. This
formalism provides a systematic way of quantising gauge systems which is in general very involved.
The antibracket, antifields and the master equation are introduced, they play important role in
analysing gauge transformations and the associated gauge structure. Due to our interests and
purpose, we will focus on procedures of gauge-fixing, and the notation and conventions mostly
follow the comprehensive reviews [109,110].

5.1 Gauge transformations

We start from a classical action S0[ϕi] depending on fields ϕi with i = 1, 2, . . . , n. The action is
assumed to be invariant under some gauge transformations δϕi = RiαΛα with generators Riα and
parameters Λα. We use DeWitt’s condensed notation, where a contracted index includes spacetime
integration. For example, in the gauge transformations

δϕi(y) =
∑
α

∫
Riα(x, y)Λα(y) . (5.1)

The range of the index α indicates the total number of gauge transformations. The classical
equation of motion is

δRS0

δϕi(x)
= 0 , (5.2)

where the superscript “R” means that the functional derivative δR

δϕi is acting from the right.1 The
vanishing of gauge variations of S0[ϕi] yields the Noether identities

0 = δΛS0 =
δRS0

δϕi
δϕi =

δRS0

δϕi
RiαΛα

=⇒ δRS0

δϕi
Riα = 0 . (5.3)

The fields and gauge parameters are allowed to be bosonic or fermionic, their Grassmann parities
are written as ε(ϕi) ≡ εi and ε(Λα) ≡ εα. We see that in this convention, the indices of an
expression reveal the Grassmann parity, e.g. ε(Riα) = εi+ εα mod 2. The parity gives a Z2 grading
to the set of fields, we will omit the “mod 2” for convenience.

1We also define the left derivative δL

δϕi
to acting from the left. For any function or functional X of the field φ we

have the variation δX(φ) = δφ δ
LX
δφ

= δRX
δφ

δφ.
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The complete set of gauge transformations. We assume that any solution δϕi to the Noether
identities (5.3) can be expressed as

δϕi = RiαΛα +
δRS0

δϕj
M ij , (5.4)

where M ij is some arbitrary function with the graded index symmetry M ji = −(−1)εiεjM ij .
The second term δRS0

δϕj M
ij alone is a gauge transformation due to the symmetry of M ij and it

vanishes on-shell. Gauge transformations of this type are called trivial gauge transformations and
the commutator of two trivial gauge transformations is another trivial gauge transformation. So
the set of all trivial gauge transformations form an ideal of the gauge algebra and we can quotient
out them in practice. On-shell, the set {Riα} gives a complete description of the gauge freedoms of
the equation of motion. Consider the commutator of two gauge transformations from the complete
set and use the assumption (5.4) again, we find

δRRiα
δϕj

Rjβ − (−1)εαεβ
δRRiβ
δϕj

Rjα = RiγT
γ
αβ −

δRS0

δϕj
M ji
αβ , (5.5)

where we omitted the gauge parameters and the new variables T γαβ ,M
ij
αβ have the graded symmetry

T γαβ = −(−1)εαεβT βα

M ij
αβ = −(−1)εαεβM ij

βα = −(−1)εiεjM ji
αβ .

(5.6)

If M ji
αβ = 0, the gauge algebra is called a “closed” algebra. It is a Lie algebra if the structure

constants T γαβ are field independent and the commutators of elements from the complete set also
satisfy the Jacobi identity. The gauge algebra is said to be “open” if M ji

αβ 6= 0, and in this case it
is also referred to as the gauge algebra “close only on-shell”, since it is multiplied by the equation
of motion δRS0

δϕj in the relation defining this gauge algebra. The situation for open gauge algebra
occurs for instance, in supergravity theories and it is the case that Faddeev-Popov quantisation
can not be implemented.

It is convenient to introduce the ghost fields to describe the gauge algebra. We simply replace
the parameters Λα by the ghosts Cα with opposite Grassmann parity ε(Cα) = εα + 1. Writing the
equations (5.3) and (5.5) with the ghosts

δRS0

δϕi
RiαC

α = 0 , (5.7)Å
2
δRRiα
δϕj

Rjβ −RiγT
γ
αβ +

δRS0

δϕj
M ji
αβ

ã
(−1)εαCβCα = 0 , (5.8)

we get the very first two equations that characterise the gauge structure of the theory.2 Obviously,
with only these two conditions one does not conclude that the gauge algebra is a “Lie” algebra. A
further step is to study the Jacobi identity

[δ1, [δ2, δ3]] + [δ2, [δ3, δ1]] + [δ3, [δ1, δ2]] = 0 , (5.9)

and it leads to extra constraints (involving cubic terms of the ghosts) on the generators and
constants, see e.g. [110] for details.

Reducibility of gauge transformations. In the last paragraph, we only assumed that the
set {Riα} exhausts the solutions to Noether identity. In general, we get rid of the trivial gauge
transformations by restricting to the solution space S of the equation of motion, and on-shell, these
gauge generators of Riα can still be linearly dependent. Gauge theories with linearly dependent
generators are phrased as reducible theories, otherwise they are called irreducible.

Following [52,111], we adopt the notations for generators and ghosts with extra numbers: Riα0

and Cα0
0 with α0 = 1, 2, . . . ,m0.

2One needs to pay attention to the extra factor (−1)εα in (5.8), this is necessary because of the graded symmetry
for the ghosts CαCβ = (−1)(εα+1)(εβ+1)CβCα.
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• Irreducible gauge theories

By definition, the gauge generators are all independent

rank Riα0

∣∣
S = m0 , (5.10)

and we have the completeness assumption for the Hessian matrix

rank
δLδRS0

δϕiϕj

∣∣∣∣
S

= n−m0 . (5.11)

This completeness assumption is seminal, it states that the non-existence of the propagator
or degeneracy of the Hessian is completely due to the gauge invariance.

• First-stage reducible theories

When the gauge generators are linearly dependent, the rank condition (5.10) no longer holds.
The gauge theory is then reducible. Let us start with the simplest case. Suppose there are
m0 −m1 independent generators

rank Riα0

∣∣
S = m0 −m1 , (5.12)

then on-shell there are m1 null vectors Zα0
1α1

of Riα0
and they are labelled by α1

Riα0
Zα0

1α1

∣∣
S = 0 , (5.13)

rank Zα0
1α1

∣∣
S = m1 , (5.14)

with the parity ε(Zα0
1α1

) = εα0 + εα1 . The condition (5.14) is the linear independence of the
null vectors. There are “gauge transformations” for the ghosts Cα0

0

δCα0
0 = Zα0

1α1
Cα1

1 , (5.15)

these transformations are parametrised by the next generator ghost fields Cα1
1 , a.k.a. ghosts

for ghosts. For them, the parities are ε(Cα1
1 ) = (εα1

+ 1) + 1.

The assumption on the Hessian matrix changes to

rank
δLδRS0

δϕiϕj

∣∣∣∣
S

= n−m0 +m1 . (5.16)

• L-th-stage reducible

Similarly, we can postulate the existence of m2 null vectors of Zα0
1α1

and modify the rank
conditions for all gauge generators and the Hessian matrix accordingly. This process can be
extended to any finite stage of reducibility. For the L-th-stage the extra generators (gauge
transformation for ghosts, for ghosts for ghosts and etc.) are

Zαs−1
sαs , αs = 1, . . . ,ms , s = 1, . . . , L , (5.17)

ε(Zαs−1
sαs ) = εαs−1

+ εαs , (5.18)

Z
αs−2

s−1αs−1
Zαs−1
sαs

∣∣∣
S

= 0 , s = 2, . . . , L . (5.19)

Just like in the first two cases, we also introduce here the ghosts Cαss corresponding to further
gauge transformations. The parity formula for them is

ε(Cαss ) = (εαs + s) + 1 , s = 0, . . . , L . (5.20)

We will have ghosts from different stages, to distinguish between them, we introduce the
ghost numbers denoted as gh(X) for a field X. For our classical fields, gh(ϕi) = 0 whereas
for the ghosts they are just the stage number plus one: gh(Cαss ) = s+ 1.
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The rank conditions read

rank Riα0

∣∣
S =

L∑
s=0

(−1)sms , (5.21)

rank Zαs−1
sαs

∣∣
S =

L∑
t=s

(−1)t−sms , s = 1, . . . , L , (5.22)

rank
δLδRS0

δϕiϕj

∣∣∣∣
S

= n−
L∑
s=0

(−1)sms . (5.23)

Note that for reducible gauge theories the gauge algebra structure can be much more compli-
cated than those of irreducible theories. However, the Noether identities (5.7) and the commutation
relations of the original gauge generator (5.8) remain the same.

5.2 The Field-Antifield formalism

5.2.1 The Antifields and the Antibracket
To describe the gauge structure, we introduced the ghosts as gauge transformations parameters so
far. In the field-antifield formalism of Batalin and Vilkovisky [52,53,111], the space of variables is
extended to include the antifields ϕ∗i and C∗sαs . We will denote the set of all fields collectively by
ΦI , and the antifields by Φ∗I , where I = 1, 2, . . . , N . The ghost number assignments and Grassmann
parities of the antifields are related to their ordinary counterparts

gh(Φ∗I) = − gh(ΦI)− 1 , ε(Φ∗I) = ε(ΦI) + 1 . (5.24)

The set {ϕi, Csαs} and {ϕ∗i , C∗sαs} are called the minimal sets of fields and antifields.
The action S0[ϕi] is then extended to a functional of all the fields and antifields S[Φ,Φ∗]. At

the moment, we will only require that it reduces to the classical action when all the antifields are
set to zero:

S0[ϕi] = S[Φ,Φ∗ = 0] . (5.25)

To get a concrete expression of S[Φ,Φ∗] in terms of the fields and antifields we need to introduce
the following device.

The Antibracket. For functions (or functionals) X and Y defined on the phase space spanned
by {Φ,Φ∗}, we define an operation ( · , · ) which is called the antibracket :

(X,Y ) =
δRX

δΦI
δLY

δΦ∗I
− δRX

δΦ∗I

δLY

δΦI
. (5.26)

This bracket is very similar to the Poisson bracket in classical mechanics and we see immediately
that the antifields Φ∗ can be thought of as the conjugate momenta3 to the normal fields Φ

(ΦI ,Φ∗J) = δIJ . (5.27)

The antibracket carries ghost number +1 and it has odd Grassmann parity

gh[(X,Y )] = gh[X] + gh[Y ] + 1 , ε[(X,Y )] = εX + εY + 1 . (5.28)

The symmetric of the antibracket is

(X,Y ) = −(−1)(εX+1)(εY +1)(Y,X) , (5.29)

and it also satisfies a graded Jacobi identity (see [110] for a proof)

((X,Y ), Z) + (−1)(εX+1)(εY +εZ)((Y, Z), X) + (−1)(εZ+1)(εX+εY )((Z,X), Y ) = 0 . (5.30)
3There are canonical transformations which map {ΦI ,Φ∗I} to new pairs of variables that are functions of the old

ones and the antibracket is preserved at the same time [109, 110], we will see examples of these transformations in
our applications.
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5.2.2 The Proper Solution
Let S be a ghost number zero, even functional of the collective variable za = {Φ,Φ∗}, a =
1, 2, . . . , 2N . We call the equation

(S, S) = 0 (5.31)

the classical master equation.
By introducing the matrix

ζab =

Å
0 δIJ
−δIJ 0

ã
, (5.32)

the antibracket can be brought into the form

(X,Y ) =
δRX

δza
ζab

δLY

δzb
. (5.33)

The master equation for S becomes

(S, S) =
δRS

δza
ζab

δLS

δzb
= 0 . (5.34)

We compute the second derivative of S and define the matrix

Rac ≡ ζab
δLδRS

δzbδzc
. (5.35)

Then, for any solutions to the master equation (5.34) the following condition holds by taking a
further derivative

δRS

δza
Rab = 0 , (5.36)

which is an extended version of the Noether identities. It follows that the solution S admits gauge
transformations generated by Rab .

At the stationary point z0 of S (where the “extended equation of motion” holds: δRS
δz

∣∣∣
z=z0

= 0),
we have the equations

RabR
b
c

∣∣∣
z0

= 0 . (5.37)

Thus, the matrix R is a nilpotent matrix at the stationary points and have maximally rank N .
The Hessian matrix of S is obtained by ζ−1R, where ζ−1 is the inverse of the invertible matrix ζ
and it preserves the rank. Thus,

rank
δLδRS

δzbδzc

∣∣∣∣
z0

≤ N , (5.38)

and when the rank of the Hessian equals N , we call this solution S a proper solution of the master
equation. One of the reasons to have the proper solution is that we need N independent gauge
conditions, it is an indication that under this circumstance the N antifields can be removed.

From now on, we only focus on the proper solutions of the master equation. In order to make
contact with the classical action S0, we required the boundary condition (5.25). Being a proper
solution with the the boundary condition (5.25) imply that S satisfies further conditions

δLδRS

δϕ∗i δC
α0
0

∣∣∣∣
Φ∗=0

= Riα0
,

δLδRS

δC∗s−1αs−1
δCαss

∣∣∣∣∣
Φ∗=0

= Zαs−1
sαs , s = 1, . . . , L ,

(5.39)

where these conditions ensure that S contains information of the gauge algebra given by S0. The
existence of these conditions is shown in [112]. The proper solution satisfying (5.25) and based
only on the minimal sector is called the minimal proper solution SM . Its general form reads

SM[Φ,Φ∗] = S0[ϕ] + ϕ∗iR
i
α0
Cα0

0 +

L∑
s=1

C∗s−1αs−1
Zαs−1
sαs Cαss + . . . , (5.40)
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where the omitted terms contain cubic interactions, higher power of the antifields and etc. For
example, we can consider the Yang-Mills theory and it has a closed irreducible gauge algebra.
The enlarged set of fields contains the gauge field Aaµ, the ghost Ca for gauge transformation
parameters their antifields, i.e. Φ = {Aaµ, Ca} and Φ∗ = {A∗aµ, C∗a}. The proper solution is

S =

∫
ddx

Å
−1

4
F aµνF

µν
a +A∗aµD

µa
bC

b +
1

2
C∗c fab

cCbCa
ã
, (5.41)

where Dµa
b is the covariant derivative and fab

c is the properly normalised structure constant
for the gauge group. One can easily check that fabc is to be identified with the gauge structure
constant T γαβ in (5.8). In Maxwell theory the gauge group is abelian and fabc (or T γαβ) vanishes,
so there are only the first two terms of (5.41) appearing in the minimal proper solution. We see in
this example that the cubic term carries the explicit information about the gauge algebra. More
structures of the gauge symmetry (such as the on-shell closure) are also encoded in the proper
solution depending on the case that one examines.

The BRST-Symmetry of the proper solution. The BRST-symmetry appears in the quanti-
sation of gauge theories under the Faddeev-Popov method. In that procedure, one fixes the gauge
and breaks gauge invariance of the action, but a graded, nilpotent symmetry with ghost number
+1 arises for the gauge-fixed action and it is the BRST-symmetry. The original fields and ghosts
transform both under the BRST-symmetry.

This symmetry comes very naturally out of the field-antifield formalism; it appears already
in the proper solution before we proceed to the gauge-fixing procedure. We define the classical
BRST-transformation s for any functional X as its antibracket with the proper solution

sX ≡ (X,S) , (5.42)

as consequence of the classical master equation this is a symmetry of the proper solution sS =
(S, S) = 0. The graded property reads

s(XY ) = XsY + (−1)εY (sX)Y , (5.43)

note that on the product s acts from the right due to our definition. We write the Jacobi identity
(5.30)

((X,S), S) + ((S, S), X) + (−1)εX ((S,X), S) = 0 , (5.44)

where we used ε[S]=0. Because of (S, S) = 0, the Jacobi identity becomes

((X,S), S) + (−1)εX ((S,X), S) = 0

=⇒ [1 + (−1)εX (−1)(−1)εX+1]((X,S), S) = 2((X,S), S) = 0

=⇒ s2X = ((X,S), S) = 0 ,

(5.45)

where we used the graded symmetry (5.29) of the antibracket and s is a nilpotent symmetry. The
BRST transformations on the fields and antifields is easy to compute, by definition of s they are
given by the functional derivatives of the action S with respect to the corresponding antifields and
fields

sΦI =
δLS

δΦ∗I
, sΦ∗I = (−1)εI+1 δ

RS

δΦ∗I
. (5.46)

For instance, we have
sΦI = Riα0

Cα0 + . . . , (5.47)

and by looking at (5.40), one comes to the idea that antifields can be interpreted as the sources
for the BRST-transformations, although we did not write the terms in the . . . and this is not
completely recognisable for the moment. This interpretation will be clear after we gauge-fix the
action and introduce the gauge-fixed BRST-symmetry.
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5.3 The gauge-fixing fermion

In this section we turn to the question of gauge-fixing and we reach the key point of covariant
path integral quantisations. To eliminate the antifields, we consider the surfaces in the phase space
given by the following condition4

Σ =

ß
{Φ,Φ∗}|Φ∗A =

δΨ(Φ)

δΦA

™
, (5.48)

where Ψ is a Grassmann odd functional with ghost number −1, i.e.

ε(Ψ) = 1 , gh(Ψ) = −1 . (5.49)

When a functional X restricted on the surface Σ, we mean to replace the dependence of X on the
antifields Φ∗A simply by δΨ(Φ)

δΦA
.

The independence of gauge-fixing. Passing to the quantisation, we need to have a well-
defined path integral and some quantum actions which appear in the integrand. Let us start with
introducing the operator

∆ ≡ (−1)εA+1 δR

δΦA
δR

δΦ∗A
. (5.50)

Let bosonic functional W = W [Φ,Φ∗] be assumed to satisfy the equation

∆ exp

Å
i

~
W

ã
= 0 , (5.51)

which is equivalent to
1

2
(W,W ) = i~∆W . (5.52)

The equation (5.52) is called the quantum master equation and ~ is the reduced Planck’s constant.
The functional W plays the role of a extended quantum action. We want the path integral

IΨ[Φ,Φ∗] =

∫
D[Φ]D[Φ∗]δ

Å
Φ∗A −

δΨ

δΦA

ã
exp

Å
i

~
W [Φ,Φ∗]

ã
=

∫
D[Φ] exp

Å
i

~
W [Φ,Φ∗ =

δΨ

δΦ
]

ã
.

(5.53)

to be well-defined, meaning, at stationary points propagators exist. The form of the path integral
also indicates that the elimination of antifields is realised by the delta-function. If the quantum
master equation (5.52) is satisfied, we have a path integral which is independent of the choice of
the gauge-fixing fermions. Let the gauge-fixing fermion have a infinitesimal change Ψ→ Ψ + δΨ,
the change of the path integral is5

IΨ+δΨ − IΨ =

∫
D[Φ]

Å
exp

Å
i

~
W [Φ,

δ(Ψ + δΨ)

δΦ
]

ã
− exp

Å
i

~
W [Φ,

δΨ

δΦ
]

ãã
=

∫
D[Φ]

δR
(
exp

(
i
~W [Φ,Φ∗]

))
δΦ∗A

∣∣∣∣∣
Σ

δL(δΨ)

δΦA
+O

(
(δΨ)2

)
=

∫
D[Φ]∆ exp

Å
i

~
W

ã
δΨ +O

(
(δΨ)2

)
= O

(
(δΨ)2

)
(5.54)

4There is no need to distinguish between left or right derivatives of Ψ with respect to the fields δΨ(Φ)

δΦA
≡ δLΨ(Φ)

δΦA
=

(−1)εA(ε(ψ)+1) δ
RΨ(Φ)

δΦA
=

δRΨ(Φ)

δΦA
.

5We used the integration by part in the second last step:
∫
Dφ δRX

δφ
Y = (−1)ε(φ)+1

∫
DφX δLY

δφ
.
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If the solution to the quantum master equation (5.52) is expanded in power series of ~ we will
write

W = S +

∞∑
p=1

~pMp , (5.55)

and the equation (5.52) becomes

p = 0 : (S, S) = 0 ,

p = 1 : (M1, S) = i∆S ,

p ≥ 2 : (Mp, S) = i∆Mp−1 −
1

2

p−1∑
q=1

(Mp,Mp−q) .

(5.56)

In the classical limit ~ −→ 0, W reduces to S and we identify it with the classical action. The
requirement that W satisfies the quantum master equation implies S is a solution of the classical
master equation.

In the above discussions, the assumption of the well-definedness of the path integral (5.53) is
crucial, and it is the only restriction that one needs when constructing an appropriate gauge-fixing
fermion. The reducibility of gauge structure plays a central role in determining this restriction
and for reducible theories of different stages the restriction conditions on the gauge-fixing fermion
need to be formulated similarly but in a tedious way. The gauge-fixing fermion appears in our
applications will be given explicitly and they are the admissible ones that we are going to explain.
For general cases, we refer to [109,110] for pedagogical reviews.

Trivial pairs and auxiliary fields. We want to use the condition Φ∗A = δΨ(Φ)
δΦA

to eliminate all
the antifields. But the gauge-fixing fermion has ghost number −1 and the variables required for the
minimal proper solution have all non-negative ghost numbers. Thus, by ghost number conservation,
we need to introduce new fields and their corresponding antifields to make the elimination possible.
This can be done by adding so called “trivial pairs”. For example, we add to our minimal sector
the a pair of fields and their antifields {X,Y , X∗, Y ∗}, such that

gh[Y ] = gh[X] + 1 , ε(Y ) = ε(X) + 1 . (5.57)

Then we have gh[X∗] = − gh[X]− 1 = − gh[X] and ε(X∗) = ε(X) + 1 = ε(Y ), so we can add

Strivial =

∫
X∗Y (5.58)

to the action SM to get the non-minimal solution SMN to the master equation.6

5.4 Gauge-fixing for irreducible theories and the Nielsen-Kallosh
ghost

We begin with the irreducible case and start from an action S0[ϕi] depending on fields ϕi, invariant
under some gauge invariances δϕi = RiαΛα. To avoid cumbersome notations, we just write cα for
the ghost corresponding to the gauge parameter Λα, and the minimal sector includes the antifields
ϕ∗i and c∗α. The gauge-fixing condition will be written χα(ϕ) = 0; the function χα(ϕ) has the same
index structure and Grassmann parity as the gauge parameter Λα. Ghost number assignments
and Grassmann parities are collected in table 5.1.

The minimal solution to the classical master equation is

SM[ϕi, cα;ϕ∗i , c
∗
α] = S0[ϕ] + ϕ∗iR

i
αc
α + . . . , (5.59)

again we omitted the terms in higher power of the antifields (cf. (5.40)).
6This is based on the fact that the proper solution of the classical master equation is unique up to addition of

trivial pairs and canonical transformations [110].
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ϕi cα c′α bα S0, SM, SNM Ψ χα

gh 0 1 −1 0 0 −1 0

ε εi εα + 1 εα + 1 εα 0 1 εα

Table 5.1: Ghost numbers and Grassmann parities of the various objects appearing in the irre-
ducible case.

To gauge-fix the theory, one further extends the space of fields by adding a trivial pair (c′α, bα)
of ghost numbers −1 and 0 respectively, along with their antifields.7 The minimal action SM is
then extended to the non-minimal

SNM = SM[ϕi, cα;ϕ∗i , c
∗
α] + c′∗α b

α , (5.60)

which still satisfies the master equation. As planned, we eliminated the antifields according to the
formula

Φ∗I =
δΨ

δΦI
. (5.61)

If the gauge-fixing fermion Ψ is well-chosen, the resulting action is properly gauge-fixed and pos-
sesses well-defined propagators.

Delta-function gauge-fixing. The simplest example is the delta-function gauge-fixing : here,
one can simply take the gauge-fixing fermion as

Ψδ = c′αχ
α(ϕ) . (5.62)

It has the requisite ghost number −1 and statistical parity.
This gives the gauge-fixed action

Sδ[ϕ
i, cα, c′α, bα] ≡ SNM

ï
ΦI ,Φ∗I =

δΨδ

δΦI

ò
(5.63)

= SM
ï
ϕi, cα;ϕ∗i = c′α

δRχα

δϕi
, c∗α = 0

ò
+ χα(ϕ)bα . (5.64)

The field bα is auxiliary and enforces the gauge-fixing constraint χα(ϕ) = 0. Integration over the
field bα leads to the insertion of δ (χα(ϕ) = 0). The fields cα and c′α are the usual Faddeev-Popov
ghost-antighost pairs. Note however that formula (5.64) is also correct for e.g. theories with open
algebras where the usual Faddeev-Popov procedure cannot be applied; these subtleties only appear
in the explicit form of SM.

Gaussian gauge-fixing. It can also be convenient to use the Gaussian gauge-fixing, which will
bring a gauge-breaking term in the action of the form χα(ϕ)Mαβχβ(ϕ) with some non-degenerate
matrix M . This can be obtained by including terms linear in the auxiliary fields in ΨG:

ΨG = c′αχ
α(ϕ) +

1

2
c′α(M−1)αβbβ , (5.65)

giving

S[ϕi, cα, c′α, bα] = SM
ï
ϕi, cα;ϕ∗i = c′α

δRχα

δϕi
, c∗α = 0

ò
+ χα(ϕ)bα +

1

2
(M−1)αβbβbα . (5.66)

Here, bα is a simple auxiliary field appearing quadratically in the action. Eliminating it using its
own equation of motion yields the looked-after gauge-breaking term χαM

αβχβ . However, in some
applications one would like this term to contain a differential operator, M = D. Then, the above
procedure is problematic since the non-local object D−1 appears in the gauge-fixing fermion (5.65)
and the action (5.66).

7In some cases, it can be more convenient to take fields with down indices instead, and we will sometimes do
this in the following. Note also that c′ is often written c̄; however, since we will be dealing with fermionic theories
in the applications, this could be confused with the Dirac conjugate and we will stick with the prime notation in
this part of the thesis.
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The Nielsen-Kallosh ghost. It is well-known that gauge-breaking terms of the above men-
tioned form lead to a third propagating ghost, the Nielsen-Kallosh ghost (the first two ghosts
being the usual Faddeev-Popov ghosts cα and antighosts c′α) [59, 60]. The third ghost is nothing
but the bα field, which stops being auxiliary and propagates with kinetic operator D. This was
first described within this formalism, while maintaining manifest locality throughout, by Batalin
and Kallosh in reference [61] as we review shortly now.

The trick is to use the freedom to do a canonical transformation, which preserves the antibracket
and maps solutions of the master equation to solutions, and only after that replace the antifields
using a gauge-fixing fermion. In the simple case where the gauge condition χα only depends on
the original fields ϕi, the canonical transformation reads

bα → b̃α = bα − χα(ϕ) (5.67)

ϕ∗i → ϕ̃∗i = ϕ∗i + b∗α
δRχα

δϕi
. (5.68)

(the gauge condition χα is also allowed to depend on the ghost fields cα, c′α or bα, in which case
the canonical transformation is more complicated; see [61]), with other variables unchanged.

To check that this transformation is canonical, compute

ϕ̃∗i dϕ̃
i + b̃∗αdb̃

α =

Å
ϕ∗i + b∗α

δRχα

δϕi

ã
dϕi + b∗αd(bα − χα(ϕ)) = ϕ∗i dϕ

i + b∗αdb
α ,

which is the field-antifield analogue of the condition p′idq′i = pidq
i in classical mechanics. Another

way is to notice that this transformation is generated by F = b∗αχ
α(ϕ) via the antibracket, i.e. takes

the form
ΦI → ΦI + (F,ΦI) , Φ∗I → Φ∗I + (F,Φ∗I) , F = b∗αχ

α(ϕ) .

This maps the non-minimal action (5.60) to

S̃NM = SM
ï
ϕi, cα, ϕ∗i + b∗α

δRχα

δϕi
, c∗α

ò
+ c′∗α (bα − χα(ϕ)) , (5.69)

which still satisfies the master equation since the transformation is canonical. Using the gauge-
fixing fermion

ΨG =
1

2
c′αDαβ(ϕ)

(
χβ(ϕ) + bβ

)
. (5.70)

now gives

SG[ϕi, cα, c′α, bα] ≡ S̃NM
ï
ΦI ,Φ∗I =

δΨG

δΦI

ò
(5.71)

= SM

ñ
ϕi, cα; c′αDαβ

δRχβ

δϕi
+

1

2
c′α

δRDαβ
δϕi

(
χβ + bβ

)
(−1)εiεβ , 0

ô
− 1

2
Dαβ χβ(ϕ)χα(ϕ) +

1

2
Dαβbβbα . (5.72)

This action contains the desired gauge-breaking term Dαβ χβ(ϕ)χα(ϕ), along with a quadratic
term in bα. This construction is most relevant when the operator Dαβ is field dependent: then, bα
is coupled to the other fields (including the ghosts cα and c′α) and cannot be ignored in Feynman
diagram computations.

5.5 Gauge-fixing for first-stage reducible theories and the
“third ghost”

In the rest part of this chapter, we will show that the “third ghost” will appear in the Gaussian
gauge-fixing procedure in reducible theories. We consider now a first-stage reducible theory with
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ϕi

Cα

ca

C ′
α

ηa c′
a

bα

πaπ′a

Figure 5.1: The pyramid of ghosts fields in the first-stage reducible case [111]. The fields linked
by a thick line constitute the minimal BV sector; an arrow a→ b indicates that the field b (along
with its partner in a trivial pair) is introduced to fix the gauge freedom of a. The second pyramid
shows the partners of the non-minimal fields of the first pyramid. Ghost numbers of the fields have
alternating increasing and decreasing patterns for both pyramids, see figure 5.2 for an explicit
assignment.

ϕi Cα C ′α ca c′a ηa bα πa π′a

gh 0 1 −1 2 −2 0 0 −1 1

ε εi εα + 1 εα + 1 εa εa εa εα εa + 1 εa + 1

Table 5.2: Ghost numbers and Grassmann parities of the various fields in the first-stage reducible
case.

an action S0[ϕi] invariant under m gauge transformations δϕi = RiαΛα, which themselves are
invariant under n reducibility (“gauge-for-gauge”) transformations δΛα = Zαa λ

a,

δRS0

δϕi
Riα = 0 , RiαZ

α
a = 0 . (5.73)

We assume that there are no further reducibilities. The number of independent gauge redun-
dancies in the fields ϕi is therefore m−n. Accordingly, the gauge-fixing condition χα(ϕ) = 0 must
only contain m− n independent conditions. We will take it to satisfy n constraints:

Xaα χ
α(ϕ) = 0 (5.74)

with Xaα of maximal rank.
In the minimal BV sector, we therefore have the original fields ϕi, the ghost Cα corresponding

to the gauge parameter Λα, and the ghost-for-ghost ca corresponding to the reducibility parameter
λa, along with their antifields. The proper solution SM to the master equation starts as

SM[ϕi, Cα, ca;ϕ∗i , C
∗
α, c
∗
a] = S0[ϕ] + ϕ∗iR

i
αC

α + C∗αZ
α
a c

a + . . . . (5.75)

To build the non-minimal action, one introduces three extra trivial pairs: {C ′α, bα} to fix the gauge
freedom of ϕi, but also two more, {ηa, π′a} and {c′a, πa}, to fix the gauge freedom of the ghosts
C ′α and Cα, as in figure 5.1. Their ghost numbers and Grassmann parities can be found in table
5.2.

The non-minimal action is then

SNM = SM + C ′∗α b
α + c′∗a π

a + η∗aπ
′a . (5.76)

Delta function gauge-fixing. This case is well-known [53]: simply take the gauge-fixing fermion

Ψδ = C ′αχ
α(ϕ) + c′aωaαC

α + ηaσαaC
′
α , (5.77)



84 Chapter 5. Introduction to the Batalin-Vilkovisky (BV) formalism

0

1

2

3

4

−1

0

−1

0

−2

−31

2 −4−2

0

−1

−2

−3

1

0

1

2

3−1

Figure 5.2: The example of ghost numbers assignments in the third-stage reducible case, this
generalises to higher reducibility cases.

where ω and σ are of maximal rank and we take the pair (C ′α, bα) to have indices down for this
paragraph only. The gauge-fixed action then reads

Sδ ≡ SNM
ï
ΦI ,Φ∗I =

δΨδ

δΦI

ò
(5.78)

= SM
ï
ϕi, Cα, ca;ϕ∗i = C ′α

δRχα

δϕi
, C∗α = c′aωaα, c

∗
a = 0

ò
+ (χα(ϕ) + ηaσαa ) bα + ωaαC

απa + σαaC
′
απ
′a . (5.79)

In this action, the ghosts Cα and C ′α are both gauge fields. Their gauge invariances are fixed by
the 2m gauge conditions ωaαCα = 0 and σαaC ′α = 0 imposed by the auxiliary fields πa and π′a.
The field bα is also auxiliary and imposes the equation

χα(ϕ) + ηaσαa = 0 . (5.80)

Among thesem conditions,m−n fix the gauge invariance of the original fields ϕi, and the remaining
n set the extra ghost η to zero.

Gaussian gauge-fixing. Now, we would like to achieve the gauge-fixing term Dαβχβχα. As
before, the field bα will become propagating if D is a differential operator. However, an important
difference with the irreducible case is that bα is a constrained field, satisfying the same constraint
(5.74) as the gauge condition.

One starts with the same canonical transformation as in the irreducible case:

bα → b̃α = bα − χα(ϕ) (5.81)

ϕ∗i → ϕ̃∗i = ϕ∗i + b∗α
δRχα

δϕi
(5.82)

with other fields unchanged. We take the gauge-fixing fermion

ΨG =
1

2
C ′αDαβ(ϕ)

(
χβ(ϕ) + bβ

)
+ c′aωaαC

α + ηaσaαC
′α , (5.83)
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which is of the same form as Ψδ, with only the first term modified. Eliminating the antifields using
ΨG then gives

SG ≡ S̃NM
ï
ΦI ,Φ∗I =

δΨG

δΦI

ò
(5.84)

= SM

ñ
ϕi, Cα, ca;C ′αDαβ

δRχβ

δϕi
+

1

2
C ′α

δRDαβ
δϕi

(
χβ + bβ

)
(−1)εiεβ , c′aωαa, 0

ô
− 1

2
Dαβχβχα +

1

2
Dαβbβbα (5.85)

+ ηaσaα(bα − χα) + πaωaαC
α + π′aσaαC

′α .

Because of the constraint (5.74) satisfied by χα(ϕ), there is a privileged choice for the matrix σaα:
simply take σ = X. This gets rid of the unwanted term ηaσaαχ

α in the last line, and one remains
with

SG = SM

ñ
ϕi, Cα, ca;C ′αDαβ

δRχβ

δϕi
+

1

2
C ′α

δRDαβ
δϕi

(
χβ + bβ

)
(−1)εiεβ , c′aωαa, 0

ô
− 1

2
Dαβχβχα +

1

2
Dαβbβbα + πaωaαC

α + π′aXaαC
′α + ηaXaαb

α , (5.86)

featuring the desired gauge-breaking term Dαβχβχα.

The extra propagating field. Just as in the irreducible case, the field bα is propagating when-
ever D contains derivatives, and couples to the other fields and ghosts if D is field-dependent. This
generalises a result of [61] about the “third ghost” to the reducible case.

In the action (5.86), the auxiliary fields πa and π′a impose the gauge conditions

ωaαC
α = 0 , XaαC

′α = 0 (5.87)

on the ghost fields Cα and C ′α, as in the delta-function gauge-fixing case. On the other hand, ηa
plays here a very different role as it did in (5.79): it is now a Lagrange multiplier for the constraint

Xaα b
α = 0 (5.88)

on the field bα. Notice how both C ′α and bα satisfy the same constraint as χα(ϕ) in this gauge-fixing
scheme.

Strictly speaking, this Gaussian gauge-fixing procedure is only “partially” Gaussian in the sense
that there is only the gauge-breaking term for ϕi but not for the gauge fields Cα, C ′α and bα.
They are delta-function gauge-fixed.

5.6 Higher stage reducibility
This procedure generalises straightforwardly to theories with higher degree of reducibility. For
concreteness, we write out the second-stage reducible case here. So, we consider an action S0[ϕi]
with second-stage reducible gauge symmetries:

δϕi = Riα0
Λα0 , δΛα0 = Zα0

α1
λα1 , δλα1 = zα1

α2
εα2 (5.89)

with α0 = 1, . . . ,m, α1 = 1, . . . , n and α2 = 1, . . . , r. Invariance under these transformations is
equivalent to the relations

δRS0

δϕi
Riα0

= 0 , Riα0
Zα0

α1
= 0 , Zα0

α1
zα1

α2
= 0 , (5.90)

and we assume that there are no further reducibilities. The gauge condition χα0(ϕ) = 0 must fix
the m− n+ r independent gauge transformations: we take it to satisfy constraints Xα1α0χ

α0 = 0
as in the previous case, but here with a degenerate matrix X of rank n− r.
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ϕi

Cα0
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Cα1
1

Cα2
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C ′0
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C ′1
α1

C ′2
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π1
α1

πα2
2

π′1
α1

βα2 π′2
α2

Figure 5.3: The pyramids of ghost fields in the second-stage reducible case [61]. This should be
read in the same way as figure 5.1.

In the minimal BV sector, there are now three generations of ghosts: Cα0
0 , Cα1

1 and Cα2
2 . The

first few terms in the minimal action are simply

SM [ϕi, Cα0
0 , Cα1

1 , Cα2
2 ; ϕ∗i , C

∗
0α0

, C∗1α1
, C∗2α2

] (5.91)

= S0[ϕi] + ϕ∗iR
i
α0
Cα0

0 + C∗0α0
Zα0

α1
Cα1

1 + C∗1α1
zα1

α2
Cα2

2 + . . . .

For gauge fixing, we add the usual extra pairs, as in figure 5.3.
The Non-minimal action reads

SNM = SM [ϕi, Cα0
0 , Cα1

1 , Cα2
2 ; ϕ∗i , C

∗
0α0

, C∗1α1
, C∗2α2

] (5.92)

+ C ′0
∗
α0
bα0

+ C ′1
∗
α1
πα1

1 + η∗α1
π′1
α1

+ C ′2
∗
α2
π2
α2 + ζ∗α2

π′2
α2 + ζ ′

∗
α2
βα2 .

Delta-function gauge-fixing. We use the following gauge-fixing fermion

Ψδ = C ′0
α0χα0(ϕ) + C ′1

α1(ω1)α1α0C0
α0 + C ′2

α2(ω2)α2α1C1
α1 (5.93)

+ ηα1(σ1)α1α0
C ′0

α0 + ζα2(σ2)α2α1
C ′1

α1 + ζ ′α2(σ′2)α2α1
ηα1 . (5.94)

This gives the gauge-fixed action

Sδ = SM
[
ϕi, Cα0

0 , Cα1
1 , Cα2

2 ; C ′0
α0 δ

Rχα0
(ϕ)

δϕi
, C ′1

α1(ω1)α1α0
, C ′2

α2(ω2)α2α1
, 0
]

(5.95)

+ (χα0(ϕ) + ηα1(σ1)α1α0)bα0

+ ((ω1)α1α0
C0

α0 + ζα2(σ2)α2α1
)πα1

1 + ((σ1)α1α0
C ′0

α0 + ζ ′α2(σ′2)α2α1
)π′1

α1

+ (ω2)α2α1
C1

α1πα2
2 + (σ2)α2α1

C ′1
α1π′2

α2 + (σ′2)α2α1
ηα1βα2 .

The propagating fields are ϕi and the Faddeev-Popov ghost-antighost pairs {Cα0
0 , C ′0

α0}, {Cα1
1 ,

C ′1
α1} and {Cα2

2 , C ′2
α2}.

Gaussian gauge-fixing. The non-minimal action, after the canonical transformation (5.81),
then reads

S̃NM = SM
[
ϕi, Cα0

0 , Cα1
1 , Cα2

2 ; ϕ∗i + b∗α0

δRχα0

δϕi
, C∗0α0

, C∗1α1
, C∗2α2

]
(5.96)

+ C ′0
∗
α0

(bα0 − χα0(ϕ)) + C ′1
∗
α1
πα1

1 + η∗α1
π′1
α1

+ C ′2
∗
α2
π2
α2 + ζ∗α2

π′2
α2 + ζ ′

∗
α2
βα2 .

We use the gauge-fixing fermion

ΨG =
1

2
C ′0

α0Dα0β0(ϕ)(χβ0(ϕ) + bβ0) + C ′1
α1(ω1)α1α0C0

α0 + C ′2
α2(ω2)α2α1C1

α1

+ ηα1Xα1α0
C ′0

α0 + ζα2(σ2)α2α1
C ′1

α1 + ζ ′α2(σ′2)α2α1
ηα1 , (5.97)
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where ω1 and X are of rank n−r and ω2, σ2 and σ′2 are of maximal rank r. The gauge-fixed action
is then

SG = SM
[
ϕi, Cα0

0 , Cα1
1 , Cα2

2 ;

C ′0
α0Dα0β0

δRχβ0

δϕi
+

1

2
C ′0

α0 δ
RDα0β0

δϕi
(
χβ0 + bβ0

)
(−1)εiεβ0 ,

C ′1
α1(ω1)α1α0 , C

′
2
α2(ω2)α2α1 , 0

]
− 1

2
Dα0β0

χβ0χα0 +
1

2
Dα0β0

bβ0bα0 + ηα1(Xα1α0
bα0 + (σ′2)α2α1

βα2)

+ ((ω1)α1α0C0
α0 + ζα2(σ2)α2α1)πα1

1 + (Xα1α0C
′
0
α0 + ζ ′α2(σ′2)α2α1)π′1

α1

+ (ω2)α2α1
C1

α1πα2
2 + (σ2)α2α1

C ′1
α1π′2

α2 , (5.98)

with the same structure as (5.86) and where we already used the constraint Xα1α0χ
α0 = 0. The

auxiliary fields ηα1 , πα1
1 and π′1

α1 impose the constraints

Xα1α0b
α0 + (σ′2)α2α1β

α2 = 0 (5.99)
(ω1)α1α0C0

α0 + (σ2)α2α1ζ
α2 = 0 (5.100)

Xα1α0
C ′0

α0 + (σ′2)α2α1
ζ ′α2 = 0 (5.101)

which give n − r constraints on bα0 , C0
α0 , C ′0

α0 and imply the vanishing of the extra ghosts,
βα2 = ζα2 = ζ ′α2 = 0. The fields πα2

2 and π′2
α2 impose the gauge-fixing conditions

(ω2)α2α1
C1

α1 = 0 , (σ2)α2α1
C ′1

α1 = 0 . (5.102)

This Gaussian gauge-fixing procedure for the second-stage theories, is analogous to the one we
had for the first-stage: we perform the canonical transformation and produce a term proportional
to Dα0β0

χβ0χα0 in the gauge-fixed action with help of the gauge-fixing fermion. As a consequence,
the fields ϕi have non-degenerate kinetic term in (5.98), and the top sitting auxiliary fields bα0

becomes propagating if Dα0β0
contains derivatives; whereas the zero-stage ghost pair C0

α0 and
C ′0

α0 can have higher derivative kinetic terms depending on the exact form of the operator Dα0β0

(this we will see explicitly in the applications in the next chapter).
For theories that have higher levels of reducibility, both the delta-function gauge-fixing and

the Gaussian gauge-fixing obviously work. However, it is a non-trivial task to also produce non-
degenerate kinetic terms for all the ghost pairs by some “well-chosen” canonical transformations
and modifications of gauge-fixing fermions. In general, there are cross terms between different fields
and the diagonalisation of these cross terms can be very involved. Since this is neither necessary
for the well-definedness of the path integral nor important for our interests on quantisation of the
antisymmetric tensor-spinors, we will not move to any further discussions on this issue.
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Chapter 6

Free fermionic p-form fields

This chapter turns to the quantisation of free fermionic p-form fields, using the general results of
the previous chapter. After the quantisation, we move to the gravitational anomaly of a chiral
fermionic p-form in dimensions D = 4m+ 2 in section 6.4.

6.1 Review: the BV quantisation of the Rarita-Schwinger
Lagrangian

As an example, we apply in this section the field-antifield method described in chapter 5 to the
quantisation of the free spin 3/2 field ψαµ (µ is a spacetime index and α a spinor index). We will
use Dirac spinors to avoid dimension-dependent discussions of chirality and/or reality conditions,
but these can be included without difficulty. Our spinor conventions are as in the textbook [113].

The Rarita-Schwinger action and gauge invariances are

S0[ψ] = −
∫
dDx ψ̄µγ

µνρ∂νψρ , δψαµ = ∂µΛα , (6.1)

where the bar denotes the usual Dirac conjugate, ψ̄µ ≡ i(ψµ)†γ0. We will impose the gauge
condition

χ(ψ) ≡ γµψµ = 0 . (6.2)

In the minimal sector, there are the field ψαµ , the ghost cα, and their antifields ψ∗µα , c∗α. Notice
that the antifields carry naturally an index down, so they transform as conjugate spinors under
Lorentz transformations. The minimal BV action is

SM =

∫
dDx

Å
−1

2
ψ̄µγ

µνρ∂νψρ + ψ∗µα ∂µc
α + c.c.

ã
(6.3)

=

∫
dDx

(
−ψ̄µγµνρ∂νψρ + ψ∗µ∂µc+ (∂µc̄)ψ̄

∗µ) , (6.4)

where in the second line we suppressed the spinor indices and introduced the notation

ψ̄∗µ ≡ iγ0(ψ∗µ)† (6.5)

for the “Dirac conjugate” of a conjugate (index-down) spinor. With this notation, we have ¯̄χ = +χ
for any spinor or conjugate spinor χ, and the property (ab)† = +b̄ā for any conjugate spinor a and
spinor b.

For the non-minimal sector, one adds one pair of spinors {c′α, bα} and their antifields. The
ghost numbers are given in table 6.1. Grassmann parity is ghost number plus one modulo two, since
we have a fermionic theory and take the convention where degrees add up when determining signs.
In particular, c and c′ are bosonic (commuting) spinors, while b has the correct spin-statistics. The
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ψαµ cα c′α bα ψ∗µα c∗α c′∗α b∗α

gh 0 1 -1 0 -1 -2 0 -1

Grassmann parity 1 0 0 1 0 1 1 0

Table 6.1: The ghost numbers and parities of the fields and antifields appearing in the quantisation
of the Rarita-Schwinger Lagrangian.

non-minimal action, adding the trivial pair, is simply

SNM = SM +

∫
dDx (c′∗α b

α + c.c.) (6.6)

=

∫
dDx

(
−ψ̄µγµνρ∂νψρ + ψ∗µ∂µc+ (∂µc̄)ψ̄

∗µ + c′∗b+ b̄c̄′∗
)
. (6.7)

Delta-function gauge-fixing. For δ-function gauge-fixing, one takes the gauge-fixing fermion

Ψδ =

∫
dDx (c̄′χ(ψ) + c.c.) =

∫
dDx

(
c̄′γµψµ − ψ̄µγµc′

)
, (6.8)

which gives the gauge-fixed action

Sδ[Φ
I ] = SNM

ï
ΦI ,Φ∗I =

δΨδ

δΦI

ò
(6.9)

=

∫
dDx

Å
−1

2
ψ̄µγ

µνρ∂νψρ + c̄′ γµ∂µc+ b̄γµψµ + c.c.
ã

(6.10)

=

∫
dDx

(
−ψ̄µγµνρ∂νψρ + c̄′ γµ∂µc+ c̄ γµ∂µc

′ + b̄γµψµ − ψ̄µγµb
)
. (6.11)

The auxiliary field b enforces the gauge-fixing condition γµψµ = 0. Using this condition, the kinetic
term for ψµ reduces to −ψ̄µ/∂ψµ.

Gaussian gauge-fixing. We now want to produce the Gaussian gauge-breaking term

ξ χ̄(ψ) /∂ χ(ψ) = −ξ ψ̄µγµγνγρ∂νψρ (6.12)

with an arbitrary parameter ξ 6= 0. As indicated above, this is done by the canonical transformation

b→ b− χ(ψ) , ψ∗µ → ψ∗µ + b∗
δχ

δψµ
= ψ∗µ + b∗γµ (6.13)

(and similarly for the Dirac conjugates), which gives the non-minimal action

S̃NM =

∫
dDx

Å
−1

2
ψ̄µγ

µνρ∂νψρ + (ψ∗µ + b∗γµ)∂µc+ c′∗(b− χ) + c.c.
ã
. (6.14)

Eliminating the antifields by means of the gauge-fixing fermion

ΨG = −ξ
2

∫
dDx c̄′ /∂ (χ(ψ) + b) + c.c. (6.15)

then produces

SG =

∫
dDx

(
−ψ̄µγµνρ∂νψρ + ξ χ̄/∂χ− ξ (c̄′�c+ c̄�c′)− ξ b̄/∂b

)
. (6.16)

The field b is now a propagating spin 1/2 field. Note that the ghosts c, c′ count for four, since they
come with the second-order � = /∂/∂ as kinetic operator.

This can be “undoubled” with a well-known trick (cf. for example the textbook [114], exercise
VIA4.2). Introduce a Lagrange multiplier λ, of ghost number −1, to impose the equation /∂c = f
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with f a new spinor of ghost number 1. This gives the equivalence c̄′�c ∼ c̄′/∂f + λ̄(/∂c − f).
This is diagonalised by the non-local triangular change of variables c → c + /∂

−1
f , with final

result c̄′�c ∼ c̄′/∂f + λ̄/∂c featuring four fields with a first-order Lagrangian instead of two with a
second-order one.

The field b, being of ghost number zero, has the correct spin-statistics. This gives indeed the
requisite number of ghosts: 3 = 4− 1.

In the action (6.16), the Nielsen-Kallosh ghost b is decoupled. However, in supergravity the
operator /∂ appearing in the gauge-breaking term is covariantised and contains the vielbein and
the spin-connection. Then, the field b couples to the other fields and ghosts of the theory [59–61].

6.2 Quantisation of the fermionic 2-form
In this section, we carry out the quantisation of the fermionic 2-form explicitly along the lines
explained in section 5.6, both in delta-function gauge-fixing and in the Gaussian gauge-fixing
where an extra Nielsen-Kallosh ghost appears.

The action, gauge transformations and reducibilities read

S0[ψ] =

∫
dDx ψ̄µνγ

µνρστ∂ρψστ , δψαµν = 2 ∂[µΛαν] , δΛαµ = ∂µλ
α . (6.17)

The gauge parameter Λ has n = Ds components and λ has m = s components, for a total of
n − m = s(D − 1) independent gauge transformations, where s is the dimension of the spinor
representation at hand. (In this section as in section 6.1, we consider Dirac spinors so s = 2[D/2],
but this counting is of course also valid with when reality and/or chirality conditions are imposed
on the fields.) This action was used in the papers [11,12] as part of a complete free action principle
for the exotic N = (4, 0) and N = (3, 1) multiplets in D = 6.

Accordingly, the minimal spectrum in the Batalin-Vilkovisky formalism consists of the fields
and antifields

{ψαµν , Cαµ , cα , ψ∗µνα , C∗µα , c∗α} , (6.18)

where Cαµ is the ghost associated to the Λαµ gauge parameter and cα is the ghost-for-ghost associated
to the reducibility parameter λα. The minimal BV master action reads

SM =

∫
dDx

Å
1

2
ψ̄µνγ

µνρστ∂ρψστ + 2ψ∗µν∂µCν + C∗µ∂µc+ c.c.
ã
. (6.19)

Note that antifields transform naturally as a conjugate spinor. The non-minimal action, with the
usual trivial pairs, is

SNM = SM +

∫
dDx (C ′∗µbµ + c′∗π + η∗π′ + c.c.) , (6.20)

where gh[C ′µ, bµ] = [−1, 0], gh[c′, π] = [−2,−1] and gh[η, π′] = [0, 1].
Both the minimal and non-minimal action are ghost number zero functionals satisfying the

master equation
(SM, SM) = 0 = (SNM, SNM) . (6.21)

We will use the redundant gauge condition

χµ(ψ) ≡ γνψµν −
1

D − 2
γµνρψ

νρ

= 0 , (6.22)

which satisfies the constraint
γµχµ(ψ) = 0 (6.23)

identically and hence gives the correct number n −m = s(D − 1) of gauge conditions to fix the
independent gauge transformations. To understand this gauge condition better, it is useful to write
the different trace components of ψµν explicitly,

ψµν = ψ̂µν + (γµσν − γνσµ) + γµνρ (6.24)
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where ψ̂µν and σµ are gamma-traceless, γνψ̂µν = 0 = γµσµ. A short computation then shows that
the condition χµ(ψ) = 0 is equivalent to σµ = 0, i.e. setting the spin 3/2 component σµ to zero
but not the spin 1/2 part ρ, indeed removing s(D − 1) components of ψµν .

Delta-function gauge-fixing. The gauge-fixing fermion is taken as

Ψδ =

∫
dDx

(
C̄ ′µ χ

µ(ψ) + c̄′γµCµ + η̄γµC ′µ + c.c.
)
, (6.25)

leading to

Sδ =

∫
dDx

(1

2
ψ̄µνγ

µνρστ∂ρψστ + 2 C̄ ′σ
δχσ
δψµν

∂µCν + c̄′/∂c

+ b̄µ (χµ(ψ)− γµη) + π̄γµCµ + π̄′γµC ′µ + c.c.
)

(6.26)

where
δχσ
δψµν

= δ[µ
σ γ

ν] − 1

D − 2
γσ
µν . (6.27)

The auxiliary fields enforce the gauge conditions

χµ(ψ)− γµη = 0 , γµCµ = 0 , γµC ′µ = 0 . (6.28)

Contracting the first condition with γµ gives η = 0 owing to the constraint satisfied by χµ(ψ), and
then it also implies the gauge condition χµ(ψ) = 0.

Using this gauge condition, the kinetic term for ψ can then be simplified using the decomposition
(6.24) with σµ = 0, which gives

1

2
ψ̄µνγ

µνρστ∂ρψστ = − ¯̂
ψµν/∂ψ̂µν −

1

2
(D − 1)(D − 2)(D − 3)(D − 4) ρ̄/∂ρ . (6.29)

The gamma-tracelessness conditions on Cµ and C ′µ can also be used to reduce their kinetic term
to

2 C̄ ′σ
δχσ
δψµν

∂µCν = − 2D

D − 2
C̄ ′µ/∂Cµ . (6.30)

Rescaling the fields and using an auxiliary field dµ to impose the gamma-tracelessness of ψ̂µν , the
final result can then be written as

Sδ =

∫
dDx

(
− ¯̂
ψµν/∂ψ̂µν − ρ̄/∂ρ+ C̄ ′µ/∂Cµ + c̄′/∂c

+ d̄µγνψ̂µν + π̄γµCµ + π̄′γµC ′µ + c.c.
)
. (6.31)

Notice that, although, as we expect, there is no extra auxiliary field propagating, we shall not
ignore the fact that the double gamma trace ρ of ψµν survives and have a kinetic term in the
gauge-fixed action. This would be crucial to the computation of anomalies.

Gaussian gauge-fixing. We now would like to achieve a gauge-breaking term of the form
χ̄µDµνχν , where Dµν is some first-order differential operator. Using only gamma matrices, the
flat metric ηµν and one spacetime derivative, we find using the gamma-tracelessness of χµ that the
only independent possibility for Dµν is the very simple

Dµν = ηµν/∂ . (6.32)

As indicated in section 5.5, we start with the canonical transformation

bµ → bµ − χµ(ψ) , ψ∗µν → ψ∗µν + b∗σ
δχσ
δψµν

, (6.33)
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which gives the new non-minimal action

S̃NM =

∫
dDx

(1

2
ψ̄µνγ

µνρστ∂ρψστ + 2

Å
ψ∗µν + b∗σ

δχσ
δψµν

ã
∂µCν + C∗µ∂µc

+ C ′∗µ(bµ − χµ) + c′∗π + η∗π′ + c.c.
)
, (6.34)

and we use the gauge-fixing fermion

ΨG =

∫
dDx

Å
−ξ

2
C̄ ′σ/∂ (bσ + χσ) + c̄′γµCµ + η̄γµC ′µ + c.c.

ã
, (6.35)

where ξ 6= 0 is an arbitrary parameter. This gives the gauge-fixed action

SG =

∫
dDx

(1

2
ψ̄µνγ

µνρστ∂ρψστ − 2ξ C̄ ′σ /∂
δχσ
δψµν

∂µCν + c̄′/∂c− ξ

2
b̄µ /∂ b

µ

+
ξ

2
χ̄µ /∂ χ

µ + η̄γµ(bµ + χµ) + π̄γµCµ + π̄′γµC ′µ + c.c.
)
. (6.36)

The term η̄γµχµ(ψ) in this action identically vanishes thanks to the constraint satisfied by χµ.
The auxiliary fields η, π and π′ impose the gamma-tracelessness of Cµ, C ′µ and bµ.

Using the gamma-tracelessness conditions on the ghosts Cµ and C ′µ, their kinetic term can be
simplified as

−2ξ C̄ ′σ /∂
δχσ
δψµν

∂µCν =
2ξD

D − 2
C̄ ′µ�C

µ (6.37)

The final result is then, after rescaling some of the fields,

SG =

∫
dDx

ï
ψ̄µνγ

µνρστ∂ρψστ + ξ χ̄µ(ψ) /∂ χµ(ψ) (6.38)

+ (C̄ ′µ�C
µ + C̄µ�C

′µ)− b̄µ /∂ b
µ + (c̄′/∂c+ c̄/∂c′)

+ (η̄γµbµ − b̄µγµη) + (π̄γµCµ − C̄µγµπ) + (π̄′γµC ′µ − C̄ ′µγµπ′)
ò

with the desired gauge-breaking term. The field bµ has a kinetic term and is a propagating spin
3/2 field: it is the Nielsen-Kallosh ghost for the fermionic two-form. As in the Rarita-Schwinger
case, the ghosts Cµ and C ′µ have a second-order kinetic term and hence count for four. The field
bµ has the correct spin-statistics and there are effectively three spin 3/2 ghosts.

BRST transformations. The gauge-fixed actions above are invariant under a nilpotent BRST
transformation s̄ of ghost number +1, and the extra terms in the action (gauge-breaking terms
and ghosts terms) are BRST-exact. As we had already seen in chapter 5 section 5.2.2, even
before gauge-fixing, this comes very naturally out of the field-antifield formalism. Now, the BRST
symmetry we will discuss, is present after the process of gauge-fixing, they are thus called the
gauge-fixed classical BRST symmetry. Our interests here restrict to the fermionic two-form case,
see [109,110] for a general discussion.

In the delta-function gauge-fixing case, the action of the BRST differential s̄ on a functional A
depending on the fields ΦI of the non-minimal sector (but not on the antifields Φ∗I) is given by

s̄A = (A,SNM)
∣∣∣
Φ∗=

δΨδ
δΦ

=
δRA

δΦI
δLSNM

δΦ∗I

∣∣∣∣
Φ∗=

δΨδ
δΦ

, (6.39)

where the non-minimal action is in eq. (6.20). Notice, however, that (6.20) is linear in the anti-
fields1: therefore, δ

LSNM

δΦ∗I
is antifield-independent and the definition of s̄ is in fact independent of

the gauge-fixing fermion. On the fields, s̄ explicitly reads

s̄ψµν = 2∂[µCν] , s̄Cµ = ∂µc , s̄C ′µ = bµ , s̄c′ = π , s̄η = π′ , s̄(other) = 0 . (6.40)
1We discussed in the last chapter that terms of higher order in antifields would be expected in a putative

interacting theory with a more involved gauge structure, e.g. if the gauge algebra were open.
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The nilpotency
s̄ 2 = 0 (6.41)

is immediate and holds off-shell. On ψµν (and Cµ due to the reducibility), s̄ takes of course the
familiar form ‘gauge transformations with parameter replaced by ghost’. The gauge-fixed action
(6.26) can then be written as

Sδ = S0 + s̄Ψδ , (6.42)

with S0 the original action (6.17) and Ψδ the gauge-fixing fermion (6.25). Indeed, since SNM is
linear in antifields, we have SNM = S0 + Φ∗I

δLSNM

δΦ∗I
. Therefore,

Sδ = SNM
ï
ΦI ,Φ∗I =

δΨδ

δΦI

ò
= S0 +

δΨδ

δΦI
δLSNM

δΦ∗I
= S0 + s̄Ψδ . (6.43)

(This can also be checked explicitly using formulas (6.40).) BRST invariance

s̄ Sδ = 0 (6.44)

of the gauge-fixed action then follows from the gauge-invariance of S0 (indeed, s̄S0 = 0 is equivalent
to its gauge invariance since it only depends on ψµν) and s̄2 = 0.

We now do the same for the Gaussian gauge-fixing case. Even though (6.39) doesn’t depend
on the choice of gauge-fixing fermion, in the Gaussian case the non-minimal action from which we
started is different. The BRST transformation in this case is then defined as

s̃A = (A, S̃NM)
∣∣∣
Φ∗=

δΨG
δΦ

=
δRA

δΦI
δLS̃NM

δΦ∗I

∣∣∣∣∣
Φ∗=

δΨG
δΦ

, (6.45)

with S̃NM given in (6.34) (which is also linear in antifields, so no antifields appear on the right-
hand-side of (6.45) and this definition is again independent of the choice of gauge-fixing fermion).
It takes the explicit form

s̃ ψµν = 2 ∂[µCν] , s̃ Cµ = ∂µc , s̃ C ′µ = bµ − χµ

s̃ bµ = 2
δχµ
δψρσ

∂ρCσ , s̃ c′ = π , s̃ η = π′ , s̃ (other) = 0 . (6.46)

Notice that s̃ bµ = s̃ χµ. The properties

s̃ 2 = 0 , SG = S0 + s̃ΨG , s̃ SG = 0 (6.47)

then follow straightforwardly. By comparing the gauge-fixed BRST transformations (6.40) and
(6.46) with the non-miminal actions (6.20) and (6.34) we confirmed that the antifields can be
thought as sources for the gauge transformation of their corresponding fields (cf. (5.47)).

Propagators. We finish this section by exhibiting the propagators for ψµν in both gauge-fixing
schemes. The propagator Sµνστ (p) is obtained by solving

Kρκ
µν(p)Sµνστ (p) = δρ[σδ

κ
τ ] (6.48)

where Kρκ
µν is the kinetic operator of ψµν in momentum space.

In the delta-function gauge-fixing case, the kinetic part of the action for the gamma-traceless
component ψ̂µν of ψµν is simply −/∂. The propagator for that component is therefore simply given
by (including Feynman’s iε prescription)

Sµνστ (p) = −Pµνκλ
/p

p2 − iε P
κλ
στ , (6.49)

where P is the projector onto the gamma-traceless subspace

Pµνρσ = δµνρσ +
2

D − 2
γ[µδ

ν]
[ργσ] −

1

(D − 1)(D − 2)
γµνγρσ . (6.50)
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It is antisymmetric in both pairs of indices, satisfies γµPµνρσ = 0 = Pµνρσγρ and PµνκλPκλρσ =
Pµνρσ. The other component of ψµν is ρ, which is simply a Dirac field with the usual propagator
−/p/(p2 − iε).

In the Gaussian gauge-fixing case, the kinetic operator appearing in (6.38) reads, in momentum
space,

Kρκ
µν(p) = γρκλµνpλ − ξ

Å
δ

[ρ
λ γ

κ] +
1

D − 2
γλ
ρκ

ã
/p

Å
δλ[µγν] −

1

D − 2
γλµν

ã
. (6.51)

We find the result

Sµνστ (p) =
1

p2 − iε
1

(D − 4)

[
− 1

2
(D − 4)δµνστ /p− 2

Ä
p[µδ

ν]
[σγτ ] + γ[µδ

ν]
[σpτ ]

ä
+ γ[µδ

ν]
[σ/pγτ ]

+
2

D − 2

Ä
p[µγν]γστ + γµνγ[σpτ ]

ä
+

1

2(D − 3)
γµν/pγστ

+
4

(D − 2)

Å
1 +

(D − 4)[(D − 2)2 + 4]

D2ξ

ã
p[µγν] /p

p2
γ[σpτ ]

+ 4

Å
1 +

(D − 4)(D − 2)2

D2ξ

ã
p[µδ

ν]
[σpτ ]

/p

p2

]
. (6.52)

6.3 Quantisation of fermionic p-forms (a general case)

Action and gauge symmetries. The action for a fermionic p-form field, that is, a tensor-
spinor ψαµ1µ2...µp totally antisymmetric in its spacetime indices, is a direct generalisation of the
Rarita-Schwinger action for a fermionic one-form ψαµ and reads [50,51]

S0[ψ] = −(−1)
p(p−1)

2

∫
dDx ψ̄µ1µ2...µp γ

µ1µ2...µpνρ1ρ2...ρp ∂µψρ1ρ2...ρp . (6.53)

Due to the rank 2p + 1 antisymmetric gamma matrix, it is manifestly invariant under the gauge
transformations

δψαµ1µ2...µp = p ∂[µ1
Λ(p−1)α

µ2...µp] , (6.54)

where the gauge parameter Λ(p−1) is an arbitrary antisymmetric tensor-spinor of rank p− 1. This
system is (p− 1)-stage reducible: (6.54) comes with the chain of gauge-for-gauge transformations

δΛ(p−1)α
µ2...µp = (p− 1) ∂[µ2

Λ(p−2)α
µ3...µp] (6.55)

δΛ(p−2)α
µ3...µp = (p− 2) ∂[µ3

Λ(p−3)α
µ4...µp] (6.56)

...

δΛ(1)α
µ = ∂µΛ(0)α , (6.57)

where each parameter Λ(k) is a rank-k antisymmetric tensor-spinor. In form notation (with a
spectator spinor index), this is

δψ = dΛ(p−1) , δΛ(p−1) = dΛ(p−2) , . . . , δΛ(1) = dΛ(0) . (6.58)

The equations of motion coming from the action (6.53) read

γµ1...µpν1...νp+1 Hν1...νp+1 = 0 , Hµ1...µp+1 ≡ (p+ 1)∂[µ1
ψµ2...µp+1] , (6.59)

where H = dψ is the gauge-invariant field strength of the field ψ (we denote by H instead of χ
to avoid confusions with the gauge-fixing conditions). Equivalently, they can be written as the
single-gamma-trace equation

γµ1Hµ1µ2...µp+1
= 0 . (6.60)
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These equations propagate the correct representation of the massless little group: the rank p
antisymmetric tensor-spinor of SO(D − 2) satisfying a gamma-traceless condition.

Such a tensor-spinor identically vanishes for p ≥ D/2. This is consistent with the covariant
action (6.53): it identically vanishes when 2p+1 > D because of the antisymmetric gamma matrix
and, for 2p + 1 = D, the equations of motion are equivalent to H[ψ] = 0 which implies that ψ
is pure gauge. So, the theory described by (6.53) has propagating degrees of freedom only for
2p < D, and we will see it explicitly in the counting (6.61) below. We will assume this inequality
for the remainder of this section.

Let qp denote the number of components of the rank p antisymmetric tensor-spinor in the little
group SO(D − 2), while q̂p equals the number of components of the little group gamma-traceless
rank p antisymmetric tensor-spinor. The physical degrees of freedom of a fermionic p-form given
by the action (6.53) is q̂p. We also need the number of components of the Dirac spinor of the little
group, denoted by s, and s = 2[D−2

2 ], where [x] is the largest integer less than or equal to x. We
have the identity for p < D−1

2

q̂p = qp − qp−1 = s

Å
(D − 2)!

p!(D − 2− p)! −
(D − 2)!

(p− 1)!(D − 1− p)!

ã
=

(D − 2)!(D − 2p− 1)

p!(D − p− 1)!
2[D−2

2 ] .

(6.61)

One can check, for example, for p = 0 we get q̂0 = 2[D−2
2 ] and for p = 1, q̂1 = (D − 3)2[D−2

2 ] agree
with the physical degrees of freedom for Dirac fermion and gravitino. When p = 2 and D = 6 we
have q̂2 = 8, if we take the spinor to be chiral this number reduces to 4. This is the known result
for the exotic gravitino (cf. (1.14)).

Gauge conditions. We now turn to the gauge condition that we will impose on the field
ψαµ1µ2...µp . It is given by an equation of the form

χαµ1...µp−1
(ψ) = 0 , (6.62)

with the same index structure as the gauge parameter, that must only contain as many independent
conditions as there are independent gauge transformations. That number is

Qp−1 −Qp−2 +Qp−3 −Qp−4 + · · · ±Q0 (6.63)

where Qk is the number of components of an antisymmetric tensor-spinor of rank k in the spacetime
Lorentz group SO(D−1, 1) (we also denote by Q̂k the number of components of such a tensor-spinor
which is in addition gamma-traceless) and where the final sign depends on the parity of p. One
way to realise this is to take a gauge condition χαµ1...µp−1

(ψ) that satisfies Qp−2−Qp−3 +Qp−4−· · ·
independent constraints; this can work if the operatorX in the constraint equationsXα

µ1...µp−2
(χ) =

0 (cf. section 5.6) itself satisfies Qp−3 − Qp−4 + · · · independent constraints, etc. This reasoning
shows that it is sufficient to define operators T (k) mapping fermionic k-forms to (k−1)-forms such
that the nilpotency condition

T (k) ◦ T (k+1) = 0 (6.64)

holds and exhausts the constraints satisfied by T (k+1) (extra constraints would of course upset the
counting above). Then, the gauge condition

χ(ψ) ≡ T (p)(ψ) = 0 (6.65)

satisfies T (p−1)(χ) = 0 and gives the correct number of independent conditions. From the analysis
of the Rarita-Schwinger case (p = 1), eq. (6.2), we take

T (1)(ψ) = γµψµ (6.66)
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as a suitable starting point. The next operators can then be determined recursively using the
nilpotency condition: the first few read explicitly

T (2)(ψ)µ = γνψµν −
1

D
γµγ

νρψνρ (6.67)

T (3)(ψ)µν = γρψµνρ +
2

D − 2
γ[µγ

ρσψν]ρσ (6.68)

T (4)(ψ)µνρ = γσψµνρσ −
3

D − 4
γ[µγ

στψνρ]στ −
2

D(D − 2)(D − 4)
γµνργ

στκλψστκλ (6.69)

T (5)(ψ)µνρσ = γτψµνρστ +
4

D − 6
γ[µγ

τκψνρσ]τκ +
8

(D − 2)(D − 4)(D − 6)
γ[µνργ

τκλζψσ]τκλζ

(6.70)

. . . .

We point out that T (2)(ψ)µ = D−2
D χµ(ψ) where χµ(ψ) is the redundant gauge condition (6.22) for

the fermionic two-form.

Gauge-fixing. The generalisation of the gauge-fixing processes described in the last two sections
to higher form degrees is direct: the non-minimal sector in both gauge-fixing procedures for the p-
forms ψµ1µ2...µp is represented by two pyramids as in figure 5.3, where we extend the first pyramid
to have p+1 levels. At level k, the ghosts are (k−1)-form tensor-spinors. As for the auxiliary fields
pyramid, it has p levels and starts from a (p−1)-form tensor-spinor from the top. The arrows that
indicating the gauge-fixing directions, the ghost number assignments and the Grassmann parities
are just the same as usual.

An arrow ap → bp−1 indicates that the variable bp−1 along with its trivial pair partner fix the
gauge freedom of ap by imposing the the gauge condition T (p). This means we have such terms

Ψ =

∫
dDx

Ä
. . .+ b̄µ1µ2...µp−1T (p)(a)µ1µ2...µp−1

+ c.c. + . . .
ä

(6.71)

in the gauge-fixing fermion. For the delta-function gauge-fixing, Ψδ consists only this kind of terms;
and for the Gaussian gauge-fixing, the trick of canonical transformations (5.81) is still valid, one
can reach a gauge-breaking term of the form

T (p)(ψ)
µ1µ2...µp

/∂ T (p)(ψ)µ1µ2...µp
. (6.72)

The price we payed for achieving this term is that the top sitting (p−1)-form-spinor auxiliary field
becomes a propagating field in the dynamics, this is the “extra ghost” in the general case.

The same process we presented in the last section for the two-form-spinor can thus be extended
naturally to p-form-spinors, we are not going to give the explicit gauge-fixed action, this can be
worked out on a case-by-case basis.

Counting degrees of freedom. A good cross-check to the quantisation is to count the degrees of
freedom. In the delta-function gauge-fixing case, the dynamical variables are the p-form-spinor ψp
(p stands for form degree in the following discussion) and pairs of Faddeev-Popov ghost-antighost
{C ′k, Ck} for k = 0, 1, . . . , p − 1. The aforementioned gauge condition T (k)(C) = 0 will eliminate
the (k − 1)-th gamma-trace, the (k − 3)-th gamma-trace... and etc. With all the k − (2l + 1)-th
gamma-trace removed, the resulting components for such a Ck is (same for C ′k)

Q̂k + Q̂k−2 + Q̂k−4 + · · · =
[ k2 ]∑
l=0

Q̂k−2l , (6.73)
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and we also take into account that {C ′k, Ck} comes with the Grassmann parity εk = 1 + (−1)p−k.
Put these ingredients together, we have for the resulting net components of fields

Ncomponents = Q̂p + Q̂p−2 + Q̂p−4 + Q̂p−6 + Q̂p−8 + . . .

− 2
Ä
Q̂p−1 + Q̂p−3 + Q̂p−5 + Q̂p−7 + . . .

ä
+ 2

Ä
Q̂p−2 + Q̂p−4 + Q̂p−6 + Q̂p−8 + . . .

ä
. . .

= Q̂p − 2Q̂p−1 + 3Q̂p−2 − 4Q̂p−3 + 5Q̂p−4 − . . .
= (Qp −Qp−1)− 2(Qp−1 −Qp−2) + 3(Qp−2 −Qp−3)− 4(Qp−3 −Qp−4) + . . .

=Qp − 3Qp−1 + 5Qp−2 − 7Qp−3 + 9Qp−4 − . . .

=

p∑
k=0

(−1)k(2k + 1)Qp−k

= 2[D2 ]

p∑
k=0

(−1)k(2k + 1)
D!

(p− k!)(D − p+ k)!

=
(D − 2)!(D − 2p− 1)

p!(D − p− 1)!
2[D2 ] ,

(6.74)

where we used Q̂k = Qk − Qk−1. Because we have a fermionic theory, the physical degrees of
freedom is a half of the net components [109,113]

Nphysical =
1

2
Ncomponents =

(D − 2)!(D − 2p− 1)

p!(D − p− 1)!
2[D−1

2 ] = q̂p . (6.75)

This matches our previous counting in the little group (6.61). In the computation, we also see that
the pattern Qp − 3Qp−1 + 5Qp−2 − 7Qp−3 + 9Qp−4 − . . . appears. This is somehow a evidence
of the statement made in [115] that in fermionic theory one has successive fields in numbers of
1, 3, 5, 7 . . . as ghost structures in the quantisation, whereas in the bosonic case the known result
is 1, 2, 3, 4 . . . .

Now we turn to the Gaussian gauge-fixing process. Here, to the p-form spinor kinetic term, a
gauge breaking term (6.72) is added and when we count, all the gamma-traces of ψp contribute.
However, the {C ′p−1, Cp−1} get a second order kinetic term and their components are doubled.
At the same time, because of the canonical transformation, the auxiliary field bp−1 have a kinetic
term in the action. This field is the trivial pair partner of C ′p−1 and have the opposite Grassmann
parity. Effectively, at the (p − 1)-form level we have 3 ghosts with even Grassmann parity (cf.
(6.37) and the discussion below it). The treatment to the all other ghosts remain the same.
We compute again the number of components

Ñcomponents = Qp+

− 3
Ä
Q̂p−1 + Q̂p−3 + Q̂p−5 + Q̂p−7 + . . .

ä
+ 2

Ä
Q̂p−2 + Q̂p−4 + Q̂p−6 + Q̂p−8 + . . .

ä
. . .

=Qp − 3Q̂p−1 + 2Q̂p−2 − 5Q̂p−3 + 4Q̂p−4 − 7Q̂p−5 + 6Q̂p−6 . . .

= (Qp −Qp−1)− 2(Qp−1 −Qp−2) + 3(Qp−2 −Qp−3)− 4(Qp−3 −Qp−4) + . . .

=Qp − 3Qp−1 + 5Qp−2 − 7Qp−3 + 9Qp−4 − . . .

=

p∑
k=0

(−1)k(2k + 1)Qp−k

=Ncomponents = 2q̂p ,

(6.76)

where the same pattern 1, 3, 5, 7 . . . of gamma-traceful fields appears, and we arrive at the same
result.



6.4. Gravitational anomalies of antisymmetric tensor-spinors 99

ψµν ψ̂µν ρ Cµ C ′µ c c′ bµ η dµ π π′

Sδ chirality + + + + + + + + + + + +

SG chirality + + − + + − − + −
Grassmann parity 1 1 1 0 0 1 1 1 1 1 0 0

Table 6.2: The chirality of the various fields appearing in the gauge-fixed actions (6.31) and
(6.38) for the chiral fermionic two-form. Notice that the chirality can depend on the gauge-fixing
scheme. Grassmann parity is also included; even fields have abnormal spin-statistics.

6.4 Gravitational anomalies of antisymmetric tensor-spinors
In this section, we compute the gravitational anomalies for chiral fermionic p-forms in D = 4m+ 2
dimensions using the Atiyah-Singer index theorem [66–71]. The computations of this section only
rely on the spectrum of ghosts and they therefore apply to any theory with the same structure
(6.58) of gauge transformations and reducibilities, whether or not it has a kinetic term of the form
(6.53). For this reason, we will also consider in this section fermionic p-forms with 2p ≥ D, which
carry no degrees of freedom. For such fields, the action (6.53) vanishes identically, but one could
nevertheless imagine the existence of topological models in which they are coupled to other fields
while still having the same structure of gauge transformations and reducibilities; our computations
would then be applicable to such models. The prime example of this case is the gravitino in D = 2,
which doesn’t have a Rarita-Schwinger kinetic term and carries no degree of freedom, but for which
we nevertheless reproduce the classic result of [68].
As the first step, we would like to exam the chirality structure of the quantisation of the chiral
fermionic two-form ψµν in D = 4k + 2 dimensions. The chirality condition imposed is

γ∗ψµν = +ψµν , (6.77)

where γ∗ is the usual chirality matrix.
The chiralities of the ghosts depend on the gauge-fixing procedure, for example, for the 2-form-

spinor we have the expression C̄ ′µ χ
µ(ψ) in the delta-function gauge-fixing fermion (6.25), while

the corresponding term is C̄ ′µ /∂ χµ(ψ) in the Gaussian gauge-fixing case (6.35). The ghost field C ′
have thus opposite chiralities in the two gauge-fixing schemes. Notice that the Grassmann parity
of the variables plays an important role, it determines the signs of contributions from each field
(cf. (3.3)). Some formal manipulations and careful handling of signs are required to reach the
standard form (3.15). Let us show how they work explicitly in the chiral two-form-spinor case
and the chiralities and spin-statistics of each fields are listed in the table 6.2. The computation is
slightly different in the two gauge-fixing schemes of this thesis, but the result is of course the same.

The gravitational anomalies for the chiral 2-form-spinor field.

• Computation in the delta-function gauge-fixing
In this case, the dynamic variables are {ψ̂µν , ρ, Ĉ ′µ, Ĉµ, c′, c} (cf. (6.31)). The relevant
path integral measure is∫ [

Dψ̂µνDψ̂µν
] [
DĈ ′µDĈ ′µ

] [
DĈµDĈµ

] [
Dc′Dc̄′

]
[DcDc̄] [DρDρ̄] , (6.78)

where a ‘hat’ denotes a gamma-traceless field.
Since the gamma-trace has the opposite chirality as the field itself, the field ψ̂µν for example
is an element of the formal difference

C∞(S+ ⊗ Λ2T ∗M − S− ⊗ T ∗M) , (6.79)

i.e. a positive chirality fermionic two-form without the negative chirality one-form component.
This is not in the standard form (3.15) for D2 (the subscript 2 stands for the fermionic 2-
form, and later for fermionic p-forms we use Dp) to act upon; however, a fermion of negative
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chirality gives the opposite contribution to the index density as a fermion of positive chirality.
We can then replace S− by S+ in (6.79) and change the sign: ψ̂µν therefore contributes as

C∞(S+ ⊗ [Λ2T ∗M + T ∗M ]) , (6.80)

which is now in the form (3.15). Another rule is that fields with the wrong spin-statistics,
in our case Ĉµ and Ĉ ′µ, also contribute with a minus sign. Combining these two rules, the
(wrong spin-statistics, positive chirality, gamma-traceless) field Ĉµ for example contributes
as

−C∞(S+ ⊗ T ∗M − S−) = C∞(S+ ⊗ [−T ∗M − 1]) . (6.81)

One must sum the contributions of all fields appearing in the measure (6.78), using these two
rules and the chirality and spin-statistics of table 6.2. The complex C∞(S+ ⊗ Vδ) on which
the Dirac operator acts in this case is then

C∞(S+ ⊗ Vδ) = C∞(S+ ⊗ Λ2T ∗M − S− ⊗ T ∗M)− C∞(S+ ⊗ T ∗M − S−)

− C∞(S+ ⊗ T ∗M − S−) + C∞(S+) + C∞(S+) + C∞(S+)

=C∞(S+ ⊗ [Λ2T ∗M − T ∗M + 1])

(6.82)

and we have

Vδ =Λ2T ∗M − T ∗M + 1

D2 : C∞(S+ ⊗ Vδ) −→ C∞(S− ⊗ Vδ) .
(6.83)

• Computation in the Gaussian gauge-fixing

After the Gaussian gauge-fixing, the generalised Nielsen-Kallosh ghost bµ enters the dynamics
and we have the measure∫ [

DψµνDψµν
] [
DĈ ′µDĈ ′µ

] [
DĈµDĈµ

] î
Db̂µD¯̂

bµ
ó [
Dc′Dc̄′

]
[DcDc̄] (6.84)

after integrating out the auxiliary fields. Here as before, a hat indicates a gamma-traceless
field. Notice that in this case we integrate over unconstrained ψµν . The ghosts Ĉµ and Ĉ ′µ
have opposite chiralities but otherwise identical properties and their contributions to the
index density cancel out. The total complex on which D2 acts in this case is then

C∞(S+ ⊗ VG) = C∞(S+ ⊗ Λ2T ∗M)− C∞(S− ⊗ T ∗M − S+)

− C∞(S+ ⊗ T ∗M − S−) + C∞(S− ⊗ T ∗M − S+)

+ C∞(S+) + C∞(S+)

= C∞(S+ ⊗ [Λ2T ∗M − T ∗M + 1]) .

(6.85)

Therefore,
Vδ = VG ≡ V2 (6.86)

as expected; both gauge-fixing procedures will give the same result for the anomaly.

Anomaly for fermionic p-forms. For p ≥ 3, the ghost spectrum extended similarly and we
prefer to perform the above discussion only in the δ-function gauge-fixing scheme to avoid the
dynamics of the Nielsen-Kallosh ghosts. The p-form gauge theory is (p − 1)-stage reducible. The
chirality of ψp is +1, so all the Faddeev-Popov ghost-antighost pairs {C ′k, Ck} for k = 0, 1, . . . , p−1,
have the same chirality +1. The vital point is that when we remove the gamma traces, different
chiralities appear. We use the superscript + or − to indicate the positive or negative chiralities. For
example, consider a positive chiral fermionic 3-form ghost C+

3 in the gamma trace decomposition

C+
3 = Ĉ+

3 + γ(1)Ĵ−2 + γ(2)Ê+
1 + γ(3)F̂−0 , (6.87)
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where Ĉ+
3 , Ĵ

−
2 , Ê

+
1 , F̂

−
0 are all gamma-traceless, and they come with alternating chiralities. We

denote by Î+
k the index density contribution from a positive chiral gamma-traceless k-form-spinor

and denote by I+
k the index density contribution from the gamma-traceful ones. Clearly, for the

negative chirality we have
Î−k = −Î+

k , I−k = −I+
k , (6.88)

and similar to the number of components we have the identity

Î+
k = I+

k − I−k−1 (6.89)

for the index density contribution but with the chiralities get flipped. The total contribution is

I+
p−form = Î+

p + Î+
p−2 + Î+

p−4 + Î+
p−6 + Î+

p−8 + . . .

− 2
Ä
Î+
p−1 + Î+

p−3 + Î+
p−5 + Î+

p−7 + . . .
ä

+ 2
Ä
Î+
p−2 + Î+

p−4 + Î+
p−6 + Î+

p−8 + . . .
ä

. . .

= Î+
p − 2Î+

p−1 + 3Î+
p−2 − 4Î+

p−3 + 5Î+
p−4 − . . .

= (I+
p − I−p−1)− 2(I+

p−1 − I−p−2) + 3(I+
p−2 − I−p−3)− 4(I+

p−3 − I−p−4) + . . .

= I+
p − I+

p−1 + I+
p−2 − I+

p−3 + I+
p−4 − . . . ,

(6.90)

where the third equality is the deciding step. Without the chirality flipping between gamma traces,
the pattern would be identical as in the degrees of freedom counting (6.74).

From this index density contribution we can find the complex C∞(S+⊗Vp), on which the Dirac
operator Dp acts and we get

Vp = ΛpT ∗M − Λp−1T ∗M + Λp−2T ∗M − Λp−3T ∗M + · · · ± 1 ,

=

p∑
k=0

(−1)k Λp−k T ∗M .
(6.91)

Dp : C∞(S+ ⊗ Vp) −→ C∞(S− ⊗ Vp) . (6.92)

For p = 0, D0 acts on C∞(S+), whereas for p = 1, D1 acts on C∞(S+ ⊗ [T ∗M − 1]) and we
recovered the known results for chiral fermion and chiral gravitino.

The next step is to apply the index theorem to get the index density and it will give the anomaly
polynomial I(p)

D+2, we need to pick out the (D + 2)-form part

I
(p)
D+2 = [Ind(Dp)]D+2 =

[
Â(M)

(
p∑
k=0

(−1)k ch (Λp−kT ∗M)

)]
D+2

. (6.93)

Chern characters and traces. In the expression (6.93), Chern characters for higher exterior
powers of the cotangent bundle T ∗M arise. The generator in the fundamental representation of
SO(D) is (tab)cd = δac δ

b
d−δadδbc, then the generator of the rank k antisymmetric tensor representation

of SO(D) can be expressed as

(T ab[k])
i1...ik

j1...jk = k!

k∑
l=1

δ
[i1
j1
δi2j2 · · · (t

ab)il jl · · · δ
ik]
jk
. (6.94)

Now let R[k] be the curvature 2-form in these tensor bundles, it is given as

R[k] ≡
1

2
RabT

ab
[k] , (6.95)

where Rab is the curvature 2-form on the tangent bundle. A non-trivial problem is to write the
traces of powers of R[k] in terms of traces of powers of R in the fundamental representation. This
can be done using the explicit formula (6.94).
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For example, for k = 2

(T ab[2] )
cd
ef = 2

Ä
(tab)c [eδ

d
f ] + (tab)d[fδ

c
e]

ä
, (6.96)

(
R[2]

)
cd,ef

= (Rceδdf +Rdfδce −Rcfδde −Rdeδcf ) . (6.97)

Since R[2] is an antisymmetric matrix, itself and its odd powers are traceless. The first non-
vanishing contributions to the Chern character are

trR2
[2] =

1

2

∑
a,b

(R[2])
2
ab,ab = (D − 2) trR2, (6.98)

where the factor of 1
2 accounts for the fact that we are summing over independent pairs of indices

a, b instead of taking them as anti-symmetric double indices, and

trR4
[2] = (D − 8) trR4 + 3(trR2)2. (6.99)

Details of the computation can be found in Appendix B.6. We see that this direct computation
becomes very cumbersome for higher rank of the tensors and for higher powers.

Fortunately, there is the generating formula [116]:

∞∑
k=0

xk ch(R[k]) = det
Ä
1 + x e

iR
2π

ä
= exp tr log

Ä
1 + x e

iR
2π

ä
(6.100)

with x a formal variable. So, ch(R[k]) can be found by expanding the right-hand-side and selecting
the k-th power of x. For example, for the second-rank antisymmetric one finds

ch(R[2]) =
1

2

Ä
tr e

iR
2π

ä2
− 1

2
tr e

i2R
2π . (6.101)

This formula contains all tr(Rn[2]) in terms of the fundamental traces: for example, four-form
component of this equation gives (6.98), the eight-form component recovers (6.99), and so on.
Likewise, all traces of the form tr(Rn[k]) can be found by expanding equation (6.100) to order xk
and to form degree 2n.

Putting everything together, the anomaly polynomial for the chiral fermionic p-forms is given
by

I
(p)
D+2 =

[
Â(M)

p∑
k=0

(−1)p−k ch(R[k])

]
D+2

. (6.102)

This can be computed for any desired D and p using the ingredients detailed above. We display
explicitly the results in terms of Pontryagin classes in dimensions D = 2, 6 and 10 in tables 6.3,
6.4 and 6.5. Of course, for spin 1/2 and 3/2 fields (p = 0 and p = 1 respectively), these tables
reproduce the classic results of [68]. The anomaly polynomial for the chiral bosons (i.e. the self-dual
scalar, 2-form and 4-form) in those dimensions are also listed for convenience [68].

Interestingly, in dimensions D ≥ 6 we find2 that the anomaly of a chiral fermionic p-form
matches that of a (D − p− 1)-form,

I
(p)
D+2 = I

(D−p−1)
D+2 . (6.103)

For example, the anomaly of a chiral fermionic 2-form in D = 6 could be cancelled by a 3-form
of the opposite chirality. Similarly, one could imagine canceling the anomaly of a bosonic, self-
dual 4-form in D = 10 (such as the one appearing in type IIB supergravity) using topological
fermionic 8- and 9-forms of opposite chirality. This is of course subject to the caveats mentioned
in the introduction, namely, the current lack of explicit Lagrangians coupling fermionic p-forms to
dynamical gravity. Nevertheless, it would be very interesting to see whether these possibilities can
be realised in physically relevant models.

2To be more precise: this is apparent in D = 6 and 10 from tables 6.4 and 6.5, and has been checked explicitly
in D = 14 and 18; however, we have no general proof for arbitrary D.



6.4. Gravitational anomalies of antisymmetric tensor-spinors 103

p I
(p)
4

0 − 1
24 p1

1 23
24 p1

2 −p1

IA4 − 1
24 p1

Table 6.3: The anomaly polynomials for chiral fermionic p-forms in D = 2.

p I
(p)
8

0 1
5 760

(
7 p2

1 − 4 p2

)
1 1

5 760

(
275 p2

1 − 980 p2

)
2 1

5 760

(
790 p2

1 + 2 840 p2

)
3 1

5 760

(
790 p2

1 + 2 840 p2

)
4 1

5 760

(
275 p2

1 − 980 p2

)
5 1

5 760

(
7 p2

1 − 4 p2

)
6 0

IA8
1

5 760

(
16 p2

1 − 112 p2

)
Table 6.4: The anomaly polynomials for chiral fermionic p-forms in D = 6.

p I
(p)
12

0 1
967 680

(
−31 p3

1 + 44 p1p2 − 16 p3

)
1 1

967 680

(
225 p3

1 − 1 620 p1p2 + 7 920 p3

)
2 1

967 680

(
2 412 p3

1 + 27 792 p1p2 − 186 048 p3

)
3 1

967 680

(
7 980 p3

1 + 162 960 p1p2 − 73 920 p3

)
4 1

967 680

(
13 734 p3

1 + 338 184 p1p2 + 764 064 p3

)
5 1

967 680

(
13 734 p3

1 + 338 184 p1p2 + 764 064 p3

)
6 1

967 680

(
7 980 p3

1 + 162 960 p1p2 − 73 920 p3

)
7 1

967 680

(
2 412 p3

1 + 27 792 p1p2 − 186 048 p3

)
8 1

967 680

(
225 p3

1 − 1 620 p1p2 + 7 920 p3

)
9 1

967 680

(
−31 p3

1 + 44 p1p2 − 16 p3

)
10 0

IA12
1

967 680

(
−256 p3

1 + 1 664 p1p2 − 7 936 p3

)
Table 6.5: The anomaly polynomials for chiral fermionic p-forms in D = 10.
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The 6d exotic gravitino anomaly revisited. We are at the stage to compare this result with
the one we computed via field strength of exotic gravitino in chapter 3, section 3.1.4. Recall that
in six dimensions, we use the A3 Dynkin label, and now consider [1, 0, 0] as the Weyl spinor with
positive chirality, then we have the decomposition for self-dual χµνρ (now we use χµνρ for the field
strength as in chapter 3)

[2, 0, 0]⊗ [1, 0, 0] = [3, 0, 0]⊕ [1, 1, 0] . (6.104)

With respect to this tensor product decomposition, we have two interpretations: the “on-shell”
computation is associated to a chiral three-form spinor χµνρ satisfying γαβµνρχµνρ = 0 and it picks
out only the [3, 0, 0] piece; while the “off-shell” computation is for self-dual χµνρ which contains
both [3, 0, 0] and [1, 1, 0], as we explained in the section 3.1.4, the self-duality constraint is weaker.

In D = 6, the index density contribution of the “on-shell” chiral three-form spinor is given by
(3.45) as

[Ind(Dχ)]8 =
1

5760
(501p2

1 + 3828p2) . (6.105)

From table 6.4 we read

I
(2)
8 = [Ind(D2)]8 =

1

5760
(790p2

1 + 2840p2) . (6.106)

[Ind(D2)]8 − [Ind(Dχ)]8 =
1

5760
(289p2

1 − 988p2) = I 3
2

+ 2I 1
2
. (6.107)

The difference is exactly the same as the index density contribution from a gamma-traceless chiral
one-form spinor:

I 3
2

+ 2I 1
2
' [1, 1, 0] . (6.108)

Indeed,

[1, 1, 0] ' C∞(S+ ⊗ T ∗M − S−)

= C∞(S+ ⊗ [T ∗M − 1]) + 2C∞(S+) .
(6.109)

We see that it is the “off-shell” computation via the field strength that matches the result through
BV quantisation.



Conclusion

We conclude by briefly mentioning some of the many aspects of the exotic supersymmetric multi-
plets that we have not addressed.

The algebraic structure of the exotic six-dimensional multiplets and the embedding into the
exceptional geometry framework appears to be an interesting story, which we have only scratched
the surface of here. It is clear that the six-dimensional momenta and spin group can be described
in the algebraic framework, such that they agree with the supersymmetry algebra, but there is no
spacetime section in the usual sense. This should not be a great surprise as these are not standard
gravitational multiplets. However, the wider interpretation of the matching of momentum charges
and section condition is subtle issue for the higher-rank exceptional groups which perhaps deserves
further study in its own right. One could wonder whether the presence of the additional 248
constrained fields needed to accommodate the gauge algebra and tensor hierarchy in [38] could
play a role in this. Naively, one would expect some modification to the usual generalised Lie
derivative picture would be needed in order for the gauge algebra to close in the absence of a
spacetime solving the section condition.

One could also wonder whether there is a similar story for theD[µν]λ exotic graviton of (1.17). In
the case of the N = (3, 1) theory, the decomposition of the adjoint of E8(8) under SL(3,R)×F4(4) ⊂
G2(2) × F4(4) is

248→
(
sl(3,R)⊕ (3,1)⊕ (3′,1)

)
⊕ f4(4) ⊕ (3,26)⊕ (3′,26)⊕ (1,26) (6.110)

where the three terms in the bracket make up g2(2). Decomposing under SO(3)×Sp(6)×Sp(2) one
can see that the non-compact generators of g2(2) match the 5⊕ 3 of SO(3) for the relevant exotic
graviton, while the f4(4) term corresponds to the scalar coset. There is also a (3′,14,1) for the
vectors and (3,6,2) for the self-dual two-forms. The final term is slightly harder to interpret, but
the 14 non-compact generators could be matched to the three-form magnetic duals of the vectors.

More generally, it appears that the special role played by SL(3,R) for the exotic graviton for
the N = (4, 0) multiplet could become G2(2) for the exotic graviton of the N = (3, 1) theory. For
example, there is an N = (1, 0) supermultiplet (with V = (3,2,1) in the notation of appendix A.2)
with field content

(2,2,1) ⊕ (3,2,2) ⊕ (4,2,1)

Aµ ψRµ D[µν]λ

(6.111)

This multiplet appears to match the decomposition of the group SO(4, 3) by

so(4, 3)→ g2(2) ⊕ 7→
(
sl(3,R)⊕ (3,1)⊕ (3′,1)

)
⊕ 3⊕ 3′ ⊕ 1 (6.112)

Again, the three terms in the bracket correspond to the field D[µν]λ while the 3 ⊕ 3′ of SL(3,R)
correspond to a vector field. Finally, the remaining non-compact singlet generator is the magnetic
dual three-form to this vector. This pattern is repeated across other examples, with g2(2) playing
the role for D[µν]λ. It could thus be worth considering how the rest of our analysis would work out
for these cases.3

The existence of the exotic six-dimensional multiplets could have been dismissed as a mere
curiosity if not for the possible far reaching implications for gaining insights into strongly coupled

3Many of the considerations of this paper could also be applied to exotic two-dimensional theories with fields
built as product involving chiral bosons. We have not studied two-dimensional theories in this thesis.
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gravitational theories [1–3]. Just like the gravity multiplet can be thought of the product of two
YM multiplets, the (4, 0) multiplet is a product of two (2, 0) tensor multiplets [4, 10]. From other
side while the circle reduction of a (2, 0) theory yields five-dimensional YM, it appears to be
impossible to reconcile the nonlinear couplings of the five-dimensional maximal supergravity with
the symmetries of the six dimensional (4, 0) and (3, 1) multiplet consistently with six-dimensional
gauge or Lorentz invariance. We have not studied the possibility of couplings which manifestly
break these properties in any detail.

Our results on anomalies in exotic six-dimensional multiplets are perhaps not too surprising
– after all they do not display full covariance. One should have in mind formal properties of
elliptic operators on a six-manifold M , rather that anomalous box diagrams. While we express
the result in terms of local curvatures on M , there can be no cancellation mechanism short of
full automatic cancellation. Such cancellations are not happening for any of the exotic multiplets.
In the (2, 0) case the SD Weyl multiplet is the only multiplet that does not have an anomaly
polynomial proportional to X8 (3.28). Both for (2, 0) and for (1, 0) SD Weyl multiplets, trying to
find a combination of matter that would lead to cancellation of the irreducible part of the anomaly
is not useful, in spite of abundance of 2-form tensor fields. Due to absence of gravitons, one could
not possibly compute counterterms that could lead to anomaly cancellation. On the other hand,
for the (2, 0) and (1, 0) SD Weyl multiplets one could contemplate coupling to respectively (2, 0)
and (1, 0) gravity multiplets, together with appropriate matter, in order to cancel the irreducible
part of the anomaly. We have neither studied if this can be done supersymmetrically or thought
about any other aspects of such “exotic bi-gravity” theories.

Finally, we discussed the quantisation of the exotic spinor fields in detail. Our starting point
is the rank two antisymmetric tensor-spinor and its quantisation in the BV formalism generalises
to fermionic p-forms provided that they possess non-trivial Rarita-Schwinger type Lagrangians.
An extra propagating ghost appear in every case when the quadratic gauges contain differential
operators in Gaussian gauge-fixings. The spectrum of dynamical fields effectively corresponds to 1,
3, 5, 7, ... gamma-traceful fields. With the apparent ghost spectrum, the gravitational anomalies
are computed by using the Atiyah-Singer index theorem. We recover the classic results [68] for
spin- 1

2 and spin-3
2 fermions and a new matching (6.103) between anomalies given by chiral fermionic

p- and (D − p− 1)-forms is discovered.



Appendix A

Conventions for the exotic multiplets
and tensor fields

A.1 6d spinors and gamma matrices
In this appendix, we give our conventions for the six-dimensional gamma matrices. For more de-
tails one can find, for example in [11,113,117].

The flat metric ηµν is with the “mostly plus” signature, i.e. η = diag(−+ + + ++).
By Cliff(p, q,R), Spin(p, q) and SO(p, q), as well as their associated Lie-algebras, we mean to

use the metric η = diag(− · · · − + + · · ·+) with p positive entries, and q negative entries. One
should pay attention that we have exactly the reverse of the conventional notation, unless stated
otherwise.

The Clifford algebra Cliff(5, 1) is generated by the gamma matrices defined by

γµγν + γνγµ = 2ηµν , (A.1)

and the higher rank gamma matrices are defined by the total antisymmetrisation of the product
of single gammas

γµ1µ2...µr = γ[µ1γµ2 . . . γµr]. (A.2)

The chirality matrix is given by γ7 = γ0γ1γ2γ3γ4γ5, it anti-commutes with all the gamma matrices
{γ7, γ

µ} = 0. We define the Dirac conjugate by ψ̄ = iψ†γ0.
The chirality projector is defined by

P± =
1

2
(1± γ7) . (A.3)

With our convention, all the spatial gamma matrices are hermitian and γ0† = −γ0. The important
symmetry property of the gamma matrix is given by the unitary transpose intertwiner C (charge
conjugation matrix)

(γµ)T = −CγµC−1 CT = C. (A.4)

We use the transpose intertwiner to lower and raise the spinor index

ψα = Cαβψβ (γµ)αβ = (γµ)α
ρ Cρβ = (γµC

−1)αβ , (A.5)

here Cαβ are the components of CT while Cαβ are the components of C−1.
The symmetry property and the (anti-)hermitian property together also fix the complex con-

jugation property of the gammas. To see this, we define the unitary matrix

B = −iCγ0, (A.6)

which gives
(γµ)∗ = BγµB−1 and B∗B = −I. (A.7)

107



108 Appendix A. Conventions for the exotic multiplets and tensor fields

This definition ensures that for a generic spinor ψ, the expression Bψ transforms in the same way as
ψ∗ under the Lorentz transformation. However, because of the minus sign in the second equation
of (A.7) we can not identify the complex conjutage spinor ψ∗ with Bψ.

Instead, for pairs of spinors ζA for A = 1, . . . , 2n, we can impose the symplectic-realilty condi-
tion

(ζA)∗ = ΩABBζB , (A.8)

where the ΩAB is the Sp(2n) symplectic form and its inverse is denoted by ΩAB . They are
numerically the same, but we can use them to lower and raise the Sp(2n) index, if we denote (ζA)∗

by putting down the Sp(2n) index: ζ∗A.
Spinors satisfy the condition (A.8) are called symplectic-Majorana spinors. Sometimes, the

symplectic-realilty condition is written with the Dirac conjugate

ζ̄A = ΩAB(ζB)TC or ζ̄Aα = ΩABCαβζBβ (A.9)

Furthermore, we can impose the Weyl condtion γ7ζ
A = ±ζA on the spinors and this is compatible

with the reality condition (A.8) because of (γ7)∗ = Bγ7B−1. In this way, we define the symplectic-
Majorana-Weyl spinor in six dimensions.

A.2 Constructions of the chiral multiplets
We briefly review the construction of massless multiplets of the chiral supersymmetry algebras in six
dimensions. For the construction of these multiplets, let us first look at the chiral supersymmetric
algebra N = (N, 0) without central charges

{QAα , QBβ } = ΩAB
(
P+γ

µC−1
)

[αβ]
Pµ (A.10)

where the C is the transpose intertwiner (charge conjugation matrix) and P+ is the positive chiral
projector. The index α = 1, . . . , 4 is the SU ∗(4) ' Spin(1, 5) spinor index and the R-symmetry
Sp(2N) index A runs from 1 to 2N . The supercharges QαA thus live in the (4,2N) representation
of Spin(1, 5)× Sp(2N). where ΩAB is the Sp(2N) symplectic form, Pµ is the momentum.

As usual, to analyse the spin content of massless multiplets, we decompose under Spin(1, 1)×
Spin(4) ⊂ Spin(1, 5), writing the Cliff(1, 5;R) gamma matrices as the tensor products

γ0 = iσ2 ⊗ 1 γ1 = σ1 ⊗ 1 γm = σ3 ⊗ γm (A.11)

where σi are the Pauli matrices and γm are the generators of Cliff(4;R). The transpose intertwiners
C1,5 for Cliff(1, 5) and C4 for Cliff(4), which we use to raise and lower spinor indices, are then
related by C1,5 = σ1 ⊗ C4. Taking zero central charges and momentum (Pµ) = (k, k, 0, . . . , 0) for
a massless representation, we see that[

(P+γ
µC−1)[αβ]Pµ

]
= 2k

Å
1 0
0 0

ã
⊗ C4 (A.12)

The supercharges with non-trivial algebra are thus those with positive chirality under the Spin(1, 1).1
As (4)Spin(5,1) → ((2,1)+ + (1,2)−)SU (2)1×SU (2)2×Spin(1,1) we have that these transform in the
(2,1,2N) representation of SU (2)1 × SU (2)2 × Sp(2N). Decomposing under U(1)1 ⊂ SU (2)1 we
have 2→ 1+ + 1−. Denote now by Q± the supercharges with U(1)1 charge ±1. In an appropriate
complex basis we have that these satisfy the usual Clifford algebra of raising and lowering operators

{Q+A, Q+B} = 0 {Q+A, Q
−B} = δA

B {Q−A, Q−B} = 0 (A.13)

We can then build a multiplet by acting on a vacuum state |0〉 with the raising operators Q+A.
The basic multiplet thus has the form

|0〉 Q+A|0〉 Q+AQ+B |0〉 Q+AQ+BQ+C |0〉 . . . (A.14)

With each term having one unit more U(1)1 charge than the previous. These various terms can
then be combined into SU (2)1 representations.

1The negative chirality supercharges are nilpotent and generate physically irrelevant zero-norm states, so we
discard them at this point.
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A.2.1 N = (1, 0) multiplets

We list massless multiplets of the chiral supersymmetry algebras in the non-maximal cases six
dimensions. Here, the R-symmetry is Sp(2) and the basic multiplet, in which the vacuum has only
a U(1)1 charge of −1, has the structure

|0〉 Q+A|0〉 Q+AQ+B |0〉
U(1)1 charge −1 0 +1
Sp(2) irreps 1 2 1

(A.15)

This is the hyper-multiplet and by combining the U(1)1 charges into SU (2)1 representations we
can read-off its field content as

Spin 0 1
2

SU (2)1 × SU (2)2 × Sp(2) rep (1,1,2) (2,1,1)
(A.16)

The other multiplets are then formed by taking tensor products of this multiplet with some
representation V of Glittle = SU (2)1 × SU (2)2 × Sp(2). We have:

V = (1,1,1) (Hyper)
Field φ λR

Glittle rep (1,1,2) (2,1,1)

V = (1,2,1) (Vector)
Field λL Aµ

Glittle rep (1,2,2) (2,2,1)

V = (2,1,1) (Tensor)
Field φ λR B−µν

Glittle rep (1,1,1) (2,1,2) (3,1,1)

(A.17)

V = (1,3,1) (GravitinoL)
Field B+

µν ψLµ
Glittle rep (1,3,2) (2,3,1)

V = (2,2,1) (GravitinoR)
Field λL Aµ ψRµ

Glittle rep (1,2,1) (2,2,2) (3,2,1)

V = (2,3,1) (Gravity)
Field B+

µν ψLµ gµν
Glittle rep (1,3,1) (2,3,2) (3,3,1)

V = (3,1,1) (Exotic Gravitino)
Field λR B−µν ψRµν

Glittle rep (2,1,1) (3,1,2) (4,1,1)

V = (4,1,1) (Exotic Gravity)
Field B−µν ψRµν C[µν][λκ]

Glittle rep (3,1,1) (4,1,2) (5,1,1)

(A.18)
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A.2.2 N = (2, 0) multiplets

Here, the R-symmetry is Sp(4) and the basic multiplet, in which the vacuum has only a U(1)1

charge of −2, has the structure

|0〉 Q+A|0〉 Q+AQ+B |0〉 Q+AQ+BQ+C |0〉 Q+AQ+BQ+CQ+D|0〉
U(1)1 charge −2 −1 0 +1 +2
Sp(4) irreps 1 4 1 + 5 4 1

(A.19)
This gives the tensor multiplet, whose field content is

Field φ λR B−µν
Glittle rep (1,1,5) (2,1,4) (3,1,1)

(A.20)

The other multiplets are then formed by taking tensor products of this multiplet with some repre-
sentation V of Glittle = SU (2)1 × SU (2)2 × Sp(4). We have:

V = (1,1,1) (Tensor)
Field φ λ+ B−µν

Glittle rep (1,1,5) (2,1,4) (3,1,1)

V = (1,2,1) (Gravitino+)
Field λ− Aµ ψ+

µ

Glittle rep (1,2,5) (2,2,4) (3,2,1)

V = (1,3,1) (Gravity)
Field B+

µν ψ−µ gµν
Glittle rep (1,3,5) (2,3,4) (3,3,1)

V = (2,1,1) (Exotic Gravitino)
Field φ λ+ B−µν ψ+

µν

Glittle rep (1,1,4) (2,1,5 + 1) (3,1,4) (4,1,1)

V = (3,1,1) (Exotic Gravity)
Field φ λ+ B−µν ψ+

µν C[µν][λκ]

Glittle rep (1,1,1) (2,1,4) (3,1,5 + 1) (4,1,4) (5,1,1)

(A.21)
Note that there is no GravitinoL multiplet. This is consistent with the absence of a gravity mulitplet
when N = (3, 0) or N = (4, 0).

We can also decompose these multiplets into multiplets of the N = (1, 0) algebra. The resulting
N = (2, 0)→ N = (1, 0) decompositions are given below.

Tensor → Tensor + 2×Hyper
GravitinoR → GravitinoR + 2×Vector

Gravity → Gravity + 2×GravitinoL
Exotic Gravitino → Exotic Gravitino + 2× Tensor + 2×Hyper
Exotic Gravity → Exotic Gravity + 2× Exotic Gravitino + Tensor

(A.22)
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A.2.3 N = (4, 0) multiplet
Here, the R-symmetry is Sp(8) and the basic multiplet, in which the vacuum has only a U(1)1

charge of −4, is the exotic gravity multiplet and has the structure

U(1)1 charge −4 −3 −2 −1
Sp(4) irreps 1 8 1 + 27 8 + 48

0
1 + 27 + 42

+1 +2 +3 +4
8 + 48 1 + 27 8 1

(A.23)

Thus the field content is

Field φ λR B−µν ψRµν C[µν][λκ]

Glittle rep (1,1,42) (2,1,48) (3,1,27) (4,1,8) (5,1,1)
(A.24)

and we have the N = (4, 0)→ N = (2, 0) decomposition:

Exotic Gravity → Exotic Gravity + 4× Exotic Gravitino + 5× Tensor (A.25)

A.3 Young diagrams and Young tableaux
A Young diagram consists of n boxes set in k rows of non-increasing length: l1 ≥ l2 ≥ · · · ≥
lk,
∑
i li = n. In the following example n = 8, with l1 = 4, l2 = 2, l3 = 2

and we write a Young diagram either with (l1, l2, . . . , lk) by the number of boxes of each row or
with [f1, f2, . . . , fn] indicating the number of boxes of each column. The above example is then
(4, 2, 2) or [3, 3, 1, 1].

We can fill the Young diagram with different integers ranging between 1 and n, thus making
a Young tableau. A standard way to do this is to keep integers increasing in each row from left
to right, and in each column from top to bottom. Young tableaux obtained in such sense is called
standard Young tableaux. For example we can fill the [2, 1] Young diagram as

a c

b
or

a b

c
(A.26)

the first Young tableau can represent a GL(d,R) tensor Tabc = T[ab]c while the tensor T̃abc repre-
sented by the second one is antisymmetric in the index a and c. We can see that there is a nature
symmetric group Sm action on the GL(d,R) indices via permutations. According to the represen-
tation theory of the symmetric group Sm there is a bijection between irreducible representations
and Young diagrams with n boxes. The dimension of that representation is given by the number
of standard tableaux. In our conventions, a tensor is said to be of (symmetry) type [f1, f2, . . . , fn]
if it transforms by Sm under that representation. The symmetry is explicitly given as: the tensors
are totally antisymmetric in the indices corresponding to a column of the Young tableau; and any
antisymmetrization over all the indices of a column, plus one index belonging to another column
to its right, vanishes. There are further discussions involving e.g. computing the numbers of the
standard Young tableaux, Young projectors, hook length and etc. we refer to [81,117].





Appendix B

Conventions and useful formulae

B.1 More on Cliff(10, 1;R)

We follow the conventions as in [34,118], consider the Clifford algebra Cliff(10, 1;R) and define the
highest gamma matrix as

Γ(11) = Γ0Γ1 . . .Γ9Γ10 (B.1)

and we have for the signature (10, 1) we have
(
Γ(11)

)2
= 1. We choose Γ(11) = Γ0Γ1 . . .Γ9Γ10 =

−1 = −Γ0Γ1 . . .Γ9Γ10 and define the eleven dimensional Levi-Civita symbol as ε01...10 = 1. With
this choice we have the duality relation between the rank p and rank (11− p) gamma matrices

Γµ1µ2...µp = (−1)
(p+1)(p−2)

2
1

(11− p)!ε
µ1µ2...µp

µp+1µp+2...µ11Γµp+1µp+2...µ11 . (B.2)

It follows that {1,Γµ1 ,Γµ1µ2 ,Γµ1µ2µ3 ,Γµ1µ2µ3µ4 ,Γµ1µ2µ3µ4µ5} is a basis of Cliff(10, 1;R) ' gl(32,R).
If we take out the generator 1, we would realise an sl(32,R) algebra.

The above representation of Cliff(10, 1;R) is Majorana and it acts on the eleven dimensional
spinor Q via the standard Majorana spinor representation.

We define the intertwiner as C̃ΓµC̃−1 = −(Γµ)T and C̃T = −C̃, and C̃Γµ1...µr is symmetric
for r = 1, 2 and antisymmetric for r = 0, 3.

B.2 Conventions for anomalies
Dynkin labels. We start with a brief account of our conventions for the representations of
the space-time Lorentz group SO(5, 1) and the orthogonal group SO(6). Their Lie algebras are
different real forms of the complex Lie algebras of type A3 ∼ D3 in the Cartan classification, with
so(6) ∼= su(4) and so(5, 1) ∼= su∗(4). There are then two common conventions for the ordering of the
Dynkin labels, and we use both in places. In the “D-type” conventions, the vector representation
is [1, 0, 0], the spinor with positive chirality is [0, 1, 0] while the spinor with negative chirality is
represented by [0, 0, 1]. We then have, for instance,

[1, 0, 0]⊗ [0, 1, 0] = [1, 1, 0]⊕ [0, 0, 1], (B.3)

which recovers the discussion below (3.24). In the “A-type” conventions, we write the vector
representation as [0, 1, 0] and the spinor with positive chirality as [1, 0, 0], while the spinor with
negative chirality is represented by [0, 0, 1]. We use “A-type” conventions whenever referring to the
Lie algebra as su(4) or su∗(4).

Minkowskian and Euclidean signatures. Here there is a subtlety on the signature of the
metric, we need to clarify it in order to apply the family’s index theorem to obtain the anomaly
polynomials. Following [119], in spacetime dimension D = 2n with the metric have a Minkowskian
signature (−+ · · ·+ +) we define

ε01...D−1 =
√−g ⇐⇒ ε01...D−1 =

−1√−g (B.4)

113
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where g is the determinant of the metric. The canonical volume form is

dV =
1

D!
εµ1µ2...µDdxµ1 ∧ dxµ2 ∧ · · · ∧ dxµD

= ε01...D−1dx0 ∧ dx1 ∧ · · · ∧ dxD−1

=
√−g dDx .

(B.5)

A differential p-form ω is given by

ω =
1

D!
ωµ1µ2...µpdxµ1 ∧ · · · ∧ dxµp . (B.6)

The Hodge dual of ω is a (D − p)-form

?ω =
1

p!(D − p)!ωµ1µ2...µpε
µ1µ2...µp

ν1...ν(D−p)dx
ν1 ∧ · · · ∧ dxν(D−p) (B.7)

and it follows ?(?ω) = (−1)p(D−p)+1. Moreover, we define the components of the exterior derivative
of ω as

(dω)µ1µ2...µp+1
= (p+ 1)∂[µ1

ωµ2µ3...µp+1] (B.8)

and there is also the identity

?ω ∧ ω =
1

p!
ωµ1µ2...µpω

µ1µ2...µp
√−g dDx . (B.9)

The integration of a D-form η is defined as∫
η =

∫
1

D!
ηµ1µ2...µDdxµ1 ∧ · · · ∧ dxµD =

∫
η01...(D−1)dx

0dx1 . . . dxD−1 . (B.10)

In the functional integral written in the Minkowskian signature, one has the factor eiS with the
action S. The continuation to the Euclidean case gives factor e−SE , where we need S = iSE and
x0 = −ix0

E . We still count the Euclidean coordinates xµ from 0 to D − 1 in order to have the
correct orientation [119] for writing down integrals. The continuation have a direct change on the
definition of gamma matrices. Now we have in the Euclidean signature γ0

E = iγ0, where γµ is
the Minkowskian gamma matrices and we use the subscript “E” to emphasize the difference. A
convenient definition of the chirality matrix for computing anomalies is given in [69] as

γ∗ = ξ

D−1∏
µ=0

γµ (B.11)

where ξ is in for Euclidean and in−1 for Minkowskian signature. One can compute

γE∗ = in
D−1∏
µ=0

γµE = in i

D−1∏
µ=0

γµ = −in−1
D−1∏
µ=0

γµ = −γ∗ . (B.12)

Thus, the Weyl fermions of positive chirality in Minkowskian signature are negative chiral in the
Euclidean signature and vice versa. To talk about Hodge dual, we now need to define the Euclidean
εE and it is

εE01... D−1 =
»
|g| ⇐⇒ ε01... D−1

E =
1√
|g|

. (B.13)

We have the Hodge ?E defined similarly as in (B.7), we just replace ε by εE and

(?E)2 = (−1)p(D−p) (B.14)

on p-forms. In the case that are relevant for gravitational anomalies D = 2n = 4k + 2, a n-form
Fµ1µ2...µn is said to satisfy the self-dual constraint in the Minkowskian case if

F = ?F ⇐⇒ Fµ1µ2...µn =
1

n!
εµ1µ2...µnν1ν2...νnF

ν1ν2...νn (B.15)
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while in the Euclidean signature we need to insert a i to describe the self-duality

F = i ?E F ⇐⇒ Fµ1µ2...µn = i
1

n!
εEµ1µ2...µnν1ν2...νnF

ν1ν2...νn (B.16)

this is consistent because of (B.14). Moreover, we can obtain the Euclidean self-dual 2k+ 1-forms
F+
E by spinor bilinears with positive Euclidean chirality

F+
E ∈ C∞(S+

E ⊗ S+
E ) (B.17)

where S+
E is the bundle for Euclidean positive chiral spinors and C∞ means the section of bundles.

As discussed, this means that the spinor bundle S+
E corresponds to S−, the bundle of negative

Minkowskian chiral spinors. If we take tensor product of those we find the anti-self dual 2k + 1-
forms in the Minkowskian signature

F− ∈ C∞(S− ⊗ S−) . (B.18)

We arrive at the conclusion that the when a 2k + 1 form is self-dual in the Euclidean spacetime,
then it is anti-self-dual in the Minkowskian cases and vice versa.

Useful characteristic classes. The roof-genus and the Chern character are defined as [68]:

Â(M2n) = 1− 1

24
p1(TM) +

1

5760
(7p2

1(TM)− 4p2(TM)) + ... , (B.19)

ch(V ) ≡ tr

Å
exp

Å
i

2π
F

ãã
= rk(V ) +

i

2π
trV F + ...+

ik

k!(2π)k
trV F

k + ... , (B.20)

where F is the curvature two-form of a connection on the vector bundle. Sometimes we just write
ch(F ) instead of ch(V ) to stress with which curvature that we are computing the Chern character
explicitly.

The expressions pi(TM) are the Pontryagin classes of the tangent bundle which in conventions
we use are given in terms of the curvature two-form as:

det

Å
1− R

2π

ã
= 1 + p1 + p2 + p3 + p4 + ... (B.21)

The first three Pontryagin classes are sufficient for our purposes

p1 =
1

(2π)2

Å
−1

2
trR2

ã
p2 =

1

(2π)4

Å
−1

4
trR4 +

1

8
(trR2)2

ã
p3 =

1

(2π)6

Å
−1

6
trR6 +

1

8
trR2 trR4 − 1

48
(trR2)3

ã
.

(B.22)

The spin 3/2 fermion anomaly is computed using

Â(M2n) (ch(R)− 1) = Â(M2n)
Ä
tr(e

i
2πR)− 1

ä
= Â(M2n)

Ä
tr(e

i
2πR − 1) + dim(T )− 1

ä (B.23)

where dim(T ) is the dimension of the tensor representation of SO(2n) and R is the curvature
2-form Rab with the orthogonal frame indices a, b contracted with the generator T ab of SO(2n).
Since Rab is anti-symmetric in a and b, the matrix 1

2πR can be brought in the skew-symmetric
form 

x1

−x1

x2

−x2

..
..

xn
−xn


(B.24)
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where each xj is a 2-form and the first three Pontryagin classes can also be expressed in power of
xj ’s

p1 =

n∑
j=1

x2
j

p2 =

n∑
i<j

x2
ix

2
j

p3 =

n∑
i<j<k

x2
ix

2
jx

2
k .

(B.25)

We also make use of the representation independent quantity

Â(M2n) tr(e
i

2πR − 1) =
1

22
(4p1) +

1

24
(
2

3
p2

1 −
8

3
p2) + . . . (B.26)

and the Hirzebruch L-polynomial, expressed in terms of Pontryagin classes as

L(M2n) = 1 +
1

3
p1 + (− 1

45
p2

1 +
7

45
p2) + . . . . (B.27)

As an example, the anomaly formulas for six-dimensional fields are given by [68]

Ispin 1
2 =

1

5760

(
7p1

2 − 4p2

)
Ispin 3

2 =
1

5760

(
275p1

2 − 980p2

)
IA =

1

5760

(
16p1

2 − 112p2

)
.

(B.28)

The invariant polynomials in (B.28) correspond to anomalies for local Lorentz transformations.

B.3 Decomposition of the (anti-)self-dual field strength
For simplicity, the computations are perform in Minkowskian signature. We have the 6d gamma
matrix duality

γµ1µ2...µpγ7 = − 1

(6− p)!εµpµp−1...µ1ν1ν2...ν6−pγ
ν1ν2...ν6−p (B.29)

and in particular, for p = 6 it is
γµνραβγγ7 = εµνραβγ . (B.30)

The following identity allows us to split the higher rank gamma matrices into lower rank ones

γµ1µ2...µpα = γµ1µ2...µpγα − p γ[µ1µ2...µp−1ηµp]α . (B.31)

For a generic chiral 3-form spinor χµνρ, we can always do the decomposition

χµνρ = χ̂µνρ + γ[µσνρ] + γ[µνερ] + γµνρη (B.32)

where γµχ̂µνρ = 0 = γνσνρ = γρερ. The gamma traces are defined as

χ′νρ ≡ γµχµνρ =
2

3
σνρ + 2γ[νερ] + 4γνρη

χ′′ρ ≡ γνγµχµνρ = 4ερ + 20γρη

χ′′′ ≡ γργνγµχµνρ = 120η .

(B.33)

• First we show the equivalence

γαβµνρχµνρ = 0 ⇐⇒ γµχµνρ = 0 . (B.34)
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One computes
0 = γαβµνρχ

µνρ = −γαβχ′′′ + 6γ[αχ
′′
β] − 6χ′αβ , (B.35)

and then uses the traces (B.33) to arrive

4σαβ − 12γ[αεβ] + 24γαβη = 0 . (B.36)

The contraction with γα yields
εβ = 5γβη (B.37)

and a further contraction with γβ kills η. This also eliminates σαβ by looking back at the
relation (B.36). The field equation γαβµνρχµνρ = 0 just tells us that χµνρ is completely
gamma-traceless which is equivalent to γµχµνρ = 0.

• Recall that the self-duality reads

χµνρ =
1

3!
εµνραβγχ

αβγ (B.38)

and γ7χµνρ = +χµνρ.

Insert (B.30) back in (B.38) and use the chirality condition for χµνρ

χµνρ = − 1

3!
γµνργβαχ

αβγ (B.39)

We also use the definition of traces (B.33), then (B.39) becomes

γµνρχ
′′′ − 9γ[µνχ

′′
ρ] + 18γ[µχ

′
νρ] = 0 . (B.40)

Now we put back the decomposition (B.32) we find a simpler equation

γµνρη = γ[µσνρ] . (B.41)

Contract both sides with γνγµ, we finally arrive at

20γρη =
2

3
γνσνρ = 0 =⇒ η = 0 =⇒ σνρ = 0 . (B.42)

B.4 Computational details for section 3.1

The Dirac operator for SD Weyl field:
In order to compute the relevant Dirac operator for the SD Weyl field one needs to extract the
[0, 0, 4] piece of the su∗(4) representation in (3.47):

R ∈ C∞(S− ⊗ S− ⊗ S− ⊗ S−)− C∞(T ∗M ⊗ T ∗M)− C∞(T ∗M ⊗ F−3 )− C∞(F−3 ⊗ T ∗M)

−
(
C∞(T ∗M ⊗ F−3 )−B

)
− g

= C∞(S− ⊗ S− ⊗ S− ⊗ S−)− C∞(T ∗M ⊗ T ∗M)− C∞(T ∗M ⊗ (S− ⊗ S− − T ∗M))

− C∞((S− ⊗ S− − T ∗M)⊗ T ∗M)− C∞(T ∗M ⊗ (S− ⊗ S− − T ∗M)) +B − g
= C∞(S− ⊗ S− ⊗ S− ⊗ S−)− C∞(T ∗M ⊗ T ∗M)− C∞(T ∗M ⊗ S− ⊗ S−)

+ C∞(T ∗M ⊗ T ∗M)− C∞(S− ⊗ S− ⊗ T ∗M) + C∞(T ∗M ⊗ T ∗M))

− C∞(T ∗M ⊗ S− ⊗ S−) + C∞(T ∗M ⊗ T ∗M)) +B − g
= C∞(S− ⊗ S− ⊗ S− ⊗ S−)− C∞(T ∗M ⊗ S− ⊗ S−)

− C∞(S− ⊗ S− ⊗ T ∗M)− C∞(T ∗M ⊗ S− ⊗ S−)

+ C∞(T ∗M ⊗ T ∗M)) + C∞(T ∗M ⊗ T ∗M) +B − g
(B.43)
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= C∞(S− ⊗ S− ⊗ S− ⊗ S−)− C∞(T ∗M ⊗ S− ⊗ S−)

− C∞(S− ⊗ S− ⊗ T ∗M)− C∞(T ∗M ⊗ S− ⊗ S−)

+ C∞(T ∗M ⊗ T ∗M) + C∞(T ∗M ⊗ T ∗M) +B − g
= C∞(S− ⊗ S− ⊗ S− ⊗ S−)− C∞(T ∗M ⊗ S− ⊗ S−)

− C∞(S− ⊗ S− ⊗ T ∗M)− C∞(T ∗M ⊗ S− ⊗ S−)

+ C∞(S− ⊗ S+ + g) + C∞(S− ⊗ S+ + g) +B − g
= C∞(S− ⊗ S− ⊗ S− ⊗ S−)− C∞(T ∗M ⊗ S− ⊗ S−)

− C∞(S− ⊗ S− ⊗ T ∗M)− C∞(T ∗M ⊗ S− ⊗ S−)

+ C∞(S− ⊗ S+) + C∞(S− ⊗ S+) +B + g

= C∞
(
S− ⊗ [S− ⊗ S− ⊗ S− − (S− ⊗ T ∗M)⊕3 + (S+)⊕2]

)
+B + g

The Dirac operator for exotic graviton in (3, 1) multiplet:
For the D field in the (3, 1) multiplet, we focus on its field strength S in the [1, 0, 3] of su∗(4).
From

[1, 0, 1]⊗ [0, 0, 2] = [1, 0, 3]⊕ [1, 1, 1]⊕ [0, 0, 2]⊕ [0, 1, 0] (B.44)

and
[1, 0, 1]⊗ [0, 1, 0] = [1, 1, 1]⊕ [0, 0, 2]⊕ [0, 1, 0]⊕ [2, 0, 0] (B.45)

we get
[1, 0, 3] = [1, 0, 1]⊗ [0, 0, 2]	 ([1, 0, 1]⊗ [0, 1, 0]	 [2, 0, 0]) (B.46)

Thus

S ∈ C∞(B ⊗ F−3 )− C∞(B ⊗ T ∗M) + C∞(F+
3 )

= C∞
(
[S+ ⊗ S− − φ]⊗ [S− ⊗ S− − φ]

)
− C∞

(
[S+ ⊗ S− − φ]⊗ T ∗M

)
+ C∞(S+ ⊗ S+ − φ)

= C∞
(
S+ ⊗ S− ⊗ S− ⊗ S−

)
− C∞

(
S− ⊗ S+ ⊗ T ∗M

)
− C∞

(
S− ⊗ S− ⊗ φ

)
+ C∞ (T ∗M ⊗ φ)

− C∞
(
S− ⊗ S+ ⊗ T ∗M

)
+ C∞ (T ∗M ⊗ φ) + C∞

(
S+ ⊗ S+

)
− C∞ (T ∗M)

= C∞
(
S− ⊗ [S− ⊗ S− ⊗ S+ − (S+ ⊗ T ∗M)⊕2 − (S−)⊕2]

)
.

(B.47)

B.5 Independent components of SD Weyl field strength

Deducing which components of the field strength GMNP,QRS of the SD Weyl field on T 3 are
independent is a cumbersome task due to the double self-duality of the field strength. Here we
present a brief group-theoretical account which enables us to be sure that we have not missed parts
of the equations of motion in equation (4.11).

The components of the SD Weyl field form a representation of SO(6), whose Lie algebra co-
incides with that of SU (4). Using Dynkin label conventions in which the six-dimensional vector
representation is [1, 0, 0], while the positive chirality spinor representation is [0, 1, 0], the SD Weyl
field strength GMNP,QRS transforms in the reducible representation [0, 4, 0] + [2, 0, 0]. Under the
relevant SO(3)× SO(3) subgroup we have the decompositions

[1, 0, 0] −→ [2, 0] + [0, 2]

[0, 1, 0] −→ [1, 1]

[0, 4, 0] −→ [0, 0] + [2, 2] + [4, 4]

[2, 0, 0] −→ [0, 0] + [2, 2] + [4, 0] + [0, 4]

(B.48)

Splitting the index M = (α, i) as in section 4.1, the corresponding parts of the field G can be iden-
tified as follows (the symbol ∼ here is taken to mean “represents the same independent components
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of G”):
Gijk,i′j′k′ ∼ Gijk,αβγ ∼ Gαβγ,ijk ∼ Gαβγ,α′β′γ′ ∼ [0, 0]

Gijαijα ∼ Giαβiαβ ∼ [0, 0]

Giαβ,ijk ∼ Gαβi,αβγ ∼ [2, 2]

Gijα,ijβ ∼ Gαij,αβγ ∼ [2, 2]

αβ-traceless part of Gijα,ijβ ∼ [4, 0]

ij-traceless part of Gαβi,αβj ∼ [0, 4]

ij- and αβ-traceless parts of Gkαi,kβj ∼ Gγαi,γβj ∼ [4, 4]

(B.49)

Imposing that ∂iCMNPQ = 0 as in section 4.1, we see that the first [0, 0] parts and the first [2,2]
parts in this list vanish. All of the remaining components are then related to Gγαi,γβj and its traces.
Thus we conclude that the equation of motion GMNP,MRS = 0 indeed reduces to Gγαi,γβj = 0.

B.6 A explicit example for the computation of the trace for-
mulas

The SO(6) generator in the rank 2-tensor representation:
In order to find the index of the exotic gravitino (see section 6.4),

tr e
i

2πR[2] =
D(D − 1)

2
− 1

2(2π)2
trR2

[2] +
1

4!(2π)4
trR4

[2] + . . . (B.50)

for the D(D−1)
2 × D(D−1)

2 matrix R[2] given by(
R[2]

)
cd,ef

= (Rceδdf +Rdfδce −Rcfδde −Rdeδcf ) (B.51)

has to be computed. trR2
[2] and trR4

[2] are evaluated as follows.Ä
R2

[2]

ä
ab,ef

=
1

2

(
R[2]

)
ab,cd

(
R[2]

)
cd,ef

=
1

2
(Racδbd +Rbdδac −Radδbc −Rbcδad) (Rceδdf +Rdfδce −Rcfδde −Rdeδcf )

= R2
aeδbf +R2

bfδae −R2
afδbe −R2

beδaf + 2RaeRbf − 2RafRbe

⇒ tr
(
R[2]

)2
=

1

2

∑
a,b

Ä(
R[2]

)2ä
ab,ab

=
1

2

∑
a,b

(R2
aaδbb +R2

bbδaa −R2
abδba −R2

baδab + 2RaaRbb − 2RabRba)

=
1

2
(D trR2 +D trR2 − trR2 − trR2 + 0− 2 trR2)

= (D − 2) trR2

(B.52)

Ä(
R[2]

)4ä
ab,ef

=
1

2
(
(
R[2]

)2
)ab,cd(

(
R[2]

)2
)cd,ef

= R4
aeδbf + 6R2

aeR
2
bf − 6R2

beR
2
af −R4

beδaf + 4R3
aeRbf − 4R3

beRaf

+R4
bfδae −R4

afδbe + 4R3
bfRae − 4R3

afRbe

⇒ tr
(
R[2]

)4
=

1

2

∑
a,b

Ä(
R[2]

)4ä
ab,ab

=
1

2

∑
a,b

(R4
aaδbb + 6R2

aaR
2
bb − 6R2

baR
2
ab −R4

baδab + 4R3
aaRbb

− 4R3
baRab +R4

bbδaa −R4
abδba + 4R3

bbRaa − 4R3
abRba)

= (D − 8) trR4 + 3(trR2)2

(B.53)
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