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Abstract: The simulation analogy presented in this work enhances the accessibility of abstract quan-
tum theories, specifically the stochastic hydrodynamic model (SQHM), by relating them to our daily
experiences. The SQHM incorporates the influence of fluctuating gravitational background, a form of
dark energy, into quantum equations. This model successfully addresses key aspects of objective-
collapse theories, including resolving the ‘tails’ problem through the definition of quantum potential
length of interaction in addition to the De Broglie length, beyond which coherent Schrödinger quan-
tum behavior and wavefunction tails cannot be maintained. The SQHM emphasizes that an external
environment is unnecessary, asserting that the quantum stochastic behavior leading to wavefunction
collapse can be an inherent property of physics in a spacetime with fluctuating metrics. Embedded
in relativistic quantum mechanics, the theory establishes a coherent link between the uncertainty
principle and the constancy of light speed, aligning seamlessly with finite information transmission
speed. Within quantum mechanics submitted to fluctuations, the SQHM derives the indetermi-
nacy relation between energy and time, offering insights into measurement processes impossible
within a finite time interval in a truly quantum global system. Experimental validation is found
in confirming the Lindemann constant for solid lattice melting points and the 4He transition from
fluid to superfluid states. The SQHM’s self-consistency lies in its ability to describe the dynamics
of wavefunction decay (collapse) and the measure process. Additionally, the theory resolves the
pre-existing reality problem by showing that large-scale systems naturally decay into decoherent
states stable in time. Continuing, the paper demonstrates that the physical dynamics of SQHM can
be analogized to a computer simulation employing optimization procedures for realization. This
perspective elucidates the concept of time in contemporary reality and enriches our comprehension
of free will. The overall framework introduces an irreversible process impacting the manifestation
of macroscopic reality at the present time, asserting that the multiverse exists solely in future states,
with the past comprising the formed universe after the current moment. Locally uncorrelated pro-
jective decays of wavefunction, at the present time, function as a reduction of the multiverse to a
single universe. Macroscopic reality, characterized by a foam-like consistency where microscopic
domains with quantum properties coexist, offers insights into how our consciousness perceives
dynamic reality. It also sheds light on the spontaneous emergence of gravity in discrete quantum
spacetime evolution, and the achievement of the classical general relativity limit in quantum loop
gravity and causal dynamical triangulation. The simulation analogy highlights a strategy focused on
minimizing information processing, facilitating the universal simulation in solving its predetermined
problem. From within, reality becomes the manifestation of specific physical laws emerging from
the inherent structure of the simulation devised to address its particular issue. In this context, the
reality simulation appears to employ an optimization strategy, minimizing information loss and data
management in line with the simulation’s intended purpose.
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1. Introduction

One of the most intriguing aspects of modern physics is its approach to infinitesimals
and infinities as mathematical abstractions rather than real entities. This perspective has al-
ready yielded significant results, such as quantum loop gravity [1,2] and non-commutative
string theories [3,4].

This study endeavors to showcase how adopting a discrete perspective can offer novel
insights into age-old conundrums in physics.

Building on the sound hypothesis that spacetime is not continuous but discrete, we
demonstrate the plausibility of drawing an analogy between our universe and a computer-
ized N-body simulation.

Our goal is to present a sturdy framework of reasoning, which will be subsequently
utilized to attain a more profound comprehension of our reality. This framework is founded
on the premise that anyone endeavoring to create a computer simulation resembling
our universe will inevitably confront the same challenges as the entity responsible for
constructing the universe itself.

The fundamental aim is that, by tackling these challenges, we may unearth insights
into the reasons behind the functioning of the universe. This is based on the notion that
constructing something as extensive and intricate at higher levels of efficiency might have
only one viable approach. The essence of the current undertaking is eloquently aligned
with the dictum of Feynman: ‘What I cannot create, I do not understand’. Conversely, here,
this principle is embraced in the affirmative: ‘What I can create, I can comprehend.’

One of the primary challenges in achieving this objective is the need for a physical
theory that comprehensively describes reality, capable of portraying N-body evolution
across the entire physical scale, spanning the microscopic quantum level to the macroscopic
classical realm.

Regarding this matter, established physics falls short in providing a comprehensive
and internally consistent theoretical foundation [5–10]. Numerous problematic aspects
persist to this day, including the challenge posed by the probabilistic interpretation assigned
to the wavefunction in quantum mechanics. Others persistent issues are the impossibility of
assuming a well-defined concept of pre-existing reality before measurement and ensuring
local relativistic causality.

Quantum theory, despite its well-defined mathematical apparatus, remains incomplete
with respect to its foundational postulates. Specifically, the measurement process is not
explicated within the framework of quantum mechanics. This requires acceptance of its
probabilistic foundations regardless of the validity of the principle of causality.

This conflict is famously articulated through the objection posed by the EPR paradox.
The EPR paradox, as detailed in a renowned paper [5], is rooted in the incompleteness
of quantum mechanics concerning the indeterminacy of the wavefunction collapse and
measurement outcomes. These fundamental aspects do not find a clear placement within a
comprehensive theoretical framework.
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The endeavor to formulate a theory encompassing the probabilistic nature of quantum
mechanics within a unified theoretical framework can be traced back to the research
of Nelson [6] and has persisted over time. However, Nelson’s hypotheses ultimately
fell short due to the imposition of a specific stochastic derivative with time inversion
symmetry, limiting its generality. Furthermore, the outcomes of Nelson’s theory do not fully
align with those of quantum mechanics concerning the incompatibility of contemporary
measurements of conjugated variables, as illustrated by Von Neumann’s proof [7] of
the impossibility of reproducing quantum mechanics with theories based on underlying
classical stochastic process.

Moreover, the overarching goal of incorporating the probabilistic nature of quantum
mechanics while ensuring its reversibility through ‘hidden variables’ in local classical
theories was conclusively proven to be impossible by Bell [8]. Nevertheless, Bohm’s
non-local hidden variable theory [11] has arisen with some success. He endeavors to
restore the determinism of quantum mechanics by introducing the concept of a pilot wave.
The fundamental concept posits that, in addition to the particles themselves, there exists
a ‘guidance’ or influence from the pilot wavefunction that dictates the behavior of the
particles. Although this pilot wavefunction is not directly observable, it does impact the
measurement probabilities of the particles.

Feynman’s integral path representation [12] of quantum mechanics constitutes the
conclusive and accurate model, reducible to a stochastic framework. Here, as shown
by Kleinert [13], it is established that quantum mechanics can be conceptualized as an
imaginary-time stochastic process. These imaginary time quantum fluctuations differ from
the more commonly known real-time fluctuations of the classical stochastic dynamics. They
result in the ‘reversible’ evolution of probability waves (wavefunctions) that shows the
pseudo-diffusion behavior of mass density evolution.

The distinguishing characteristic of quantum pseudo-diffusion is the inability to define
a positive–definite diffusion coefficient. This directly stems from the reversible nature of
quantum evolution, which, within a spatially distributed system, may demonstrate local
entropy reduction over specific spatial domains. However, this occurs within the framework
of an overall reversible deterministic evolution with a net entropy variation of zero [14].

This aspect is clarified by the Madelung quantum hydrodynamic model [15–17], which
is perfectly equivalent to the Schrödinger description while being a specific subset of the
Bohm theory [18]. In this model, quantum entanglement is introduced through the action
of the so-called quantum potential.

Recently, with the emergence of evidence pointing to dark energy manifested as a
gravitational background noise (GBN), whether originating from relics or the dynamics of
bodies in general relativity, the author demonstrated that quantum hydrodynamic repre-
sentation provides a means to describe self-fluctuating dynamics within a system without
necessitating the introduction of an external environment [19]. The noise produced by
ripples in spacetime curvature can be incorporated into Madelung’s quantum hydrody-
namic framework by applying fundamental principles of relativity. This allows us to
establish a mechanism through which the energy associated with spacetime curvature
ripples generates fluctuations in mass density.

The resulting stochastic quantum hydrodynamic model (SQHM) avoids introducing
divergent results that contradict established theories such as decoherence [9] and the
Copenhagen foundation of quantum mechanics; instead, it enriches and complements
our understanding of these theories. It indicates that in the presence of noise, quantum
entanglement and coherence can be maintained on a microscopic scale much smaller than
the De Broglie length and the range of action of the quantum potential. On a scale with a
characteristic length much larger than the distance over which quantum potential operates,
classical physics naturally emerges [19].
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While the Bohm theory attributes the indeterminacy of the measurement process to
the indeterminable pilot wave, the SQHM attributes its unpredictable probabilistic nature
to the fluctuating gravitational background. Furthermore, it is possible to demonstrate a
direct correspondence between the Bohm non-local hidden variable approach developed
by Santilli in IsoRedShift Mechanics [20] and the SQHM. This correspondence reveals that
the origin of the hidden variable is nothing but the perturbative effect of the fluctuating
gravitational background on quantum mechanics [21].

The stochastic quantum hydrodynamic model (SQHM), adept at describing
physics across various length scales, from the microscopic quantum to the classi-
cal macroscopic [19], offers the potential to formulate a comprehensive simulation
analogy to N-body evolution within the discrete spacetime of the universe.

The work is organized as follows:

i. Introduction to the stochastic quantum hydrodynamic model (SQHM)
ii. Quantum-to-classical transition and the emerging classical mechanics in large-

sized systems
iii. The measurement process in quantum stochastic theory: the role of the finite

range of non-local quantum potential interactions
iv. Maximum precision in measurements of mechanical variables in spacetime

with fluctuating background and finite speed of light
v. Minimum discrete length interval in 4D spacetime
vi. Dynamics of wavefunction collapse
vii. Evolution of the mass density distribution of quantum superposition of states

in spacetime with GBN
viii. EPR paradox and pre-existing reality from the standpoint of the SQHM
ix. The computer simulation analogy for the N-body problem
x. How the universe computes the next state: the unraveling of the meaning

of time
xi. Free will
xii. The universal ‘pasta maker’ and actual time in 4D spacetime
xiii. Discussion and future developments
xiv. Extending free will
xv. Best future states problem-solving emergent from the Darwinian principle of evolution
xvi. How the conscience captures the reality dynamics
xvii. The spontaneous appearance of gravity in a discrete spacetime simulation
xviii. The classical general relativity limit problem in quantum loop gravity and

causal dynamical triangulation

2. The Quantum Stochastic Hydrodynamic Model

The Madelung quantum hydrodynamic representation transforms the Schrodinger
equation [15–17] (italic indexes run from 1 to 3)

−i}∂tψ =

(
}2

2m
∂i∂i −V(q)

)
ψ (1)

for the complex wavefunction ψ = |ψ|e− iS
} into two equations of real variables: the

conservation equation for mass density |ψ|2

∂t|ψ|2 + ∂i(|ψ|2
.
qi) = 0 (2)

and the motion equation for momentum m
.
qi = pi = ∂iS(q,t),

..
qj(t)

= − 1
m

∂j

(
V(q) + Vqu(n)

)
(3)
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where S(q,t) = − }
2 ln ψ

ψ∗ and where

Vqu = − }2

2m
1
|ψ|∂i∂i|ψ|. (4)

The fluctuating energy content of gravitational background noise (GBN) leads to
local variations in mass density. As demonstrated below, this results in the quantum
potential producing a stochastic force, which extends the Madelung hydrodynamic
analogy into a quantum–stochastic problem. The fluctuations in mass density can
be understood by observing that gravitons are metric fluctuations that cause space
itself to vibrate. This vibration contracts and elongates distances, similar to what is
detected in the observation of gravitational waves at the LIGO and VIRGO labora-
tories. Consequently, when a mass element experiences elongation or shortening of
distance, its density decreases or increases accordingly. As shown in [19], the SQHM
is defined by the following assumptions:

1. The additional mass density generated by GBN is described by the wavefunction
ψgbn with density |ψgbn|2;

2. The associated energy density E of GBN is proportional to |ψgbn|2;
3. The additional mass mgbn is defined by the identity E = mgbnc2|ψgbn|2
4. The additional mass is assumed to not interact with the mass of the physical sys-

tem (since the gravitational interaction is sufficiently weak to be disregarded).

Under this assumption, the wavefunction of the overall system ψtot reads as

ψtot ∼= ψψgbn (5)

Additionally, given that the energy density of gravitational background noise
(GBN) E is quite small, mass density mgbn|ψgbn|2 is presumed to be significantly
smaller than the body mass density typically encountered in physical problems.
Hence, considering the mass mgbn to be much smaller than the mass of the system
and assuming in Equations (3) and (4) mtot = mgbn + m ∼= m, the overall quantum
potential can be expressed as follows

Vqu(ntot)
= − }2

2mtot
|ψ|−1|ψgbn|−1∂i∂i|ψ||ψgbn| =

= − }2

2m

(
|ψ|−1∂i∂i|ψ|+ |ψgbn|−1∂i∂i|ψgbn|+ 2|ψ|−1|ψgbn|−1∂i|ψgbn|∂i|ψ|

) . (6)

Through an analysis of the variation in quantum potential energy generated by
each Fourier component of mass fluctuation and utilizing the Maxwell–Boltzmann
law, we can derive the spectrum of this noise and subsequently determine its correla-
tion function G(λ).

To accomplish this, let us examine a fluctuating mass density with a wavelength λ

|ψgbn|2(λ) ∝ cos2 2π

λ
q (7)

related to the wavefunction of the mass fluctuation
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ψgbn(λ) ∝ ±cos
2π

λ
q. (8)

With this, we find that the energy fluctuations resulting from the quantum potential

δEqu =
∫
V

ntot(q,t)δVqu(q,t)dV, (9)

following the procedure described in reference [8] are expressed as:

δEqu(λ)
∼=

}2

2m

(
2π

λ

)2
(10)

that, in 3D space, read as

δEqu(λ)
∼=

}2

2m∑
i
(ki)

2 =
}2

2m
|k|2 (11)

The outcome illustrated by Equation (11) indicates that the energy stemming from
fluctuations in the mass density increases inversely with the square of its wavelength λ.
Moreover, since fluctuations in quantum potential with extremely short wavelengths for
λ→ 0 diverge, they can lead to a finite contribution even when the noise amplitudes
approach zero (i.e., T → 0). This situation raises concerns regarding the achievement of
the deterministic zero noise limit (2)–(4) that represents quantum mechanics.

This occurs because the output of the quantum potential, due to its second derivative
structure, is dependent on the correlation distance of the noise. Consequently, if we must
nullify the fluctuations in the quantum potential in order to achieve convergence to the
deterministic limit (2–4) of quantum mechanics for T → 0 , it follows that a condition of
the correlation function of the quantum potential noise for λ→ 0 arises [9]. The derivation
of the shape of the correlation of G(λ) involves tedious stochastic calculations [9], which
can be obtained by considering the probability of uncorrelated fluctuations occurring at
increasingly shorter distances.

A simpler and more straightforward approach to calculating G(λ) is through the
spectrum S(k) of the noise that reads as [8]

S(k) ∝ probability(k= 2π
λ ) = exp

[
−

δEqu(λ)

kT

]
= exp

[
−
(

kλc

2

)2
]

(12)

In Equation (12), k represents the Boltzmann constant and T signifies the temperature
(mean amplitude parameter) of mass density fluctuations. It is worth noting that Equation
(12) exhibits a non-white characteristic, with probability of wavelengths λ smaller than λc
rapidly approaching zero.

From (12), G(λ) reads as [19,22]

G(λ) ∝
+∞∫
−∞

exp[ikλ]S(k)dk ∝
+∞∫
−∞

exp[ikλ]exp

[
−
(

k
λc

2

)2
]

dk

∝
π1/2

λc
exp

[
−
(

λ

λc

)2
] . (13)

where
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λc =
√

2
}

(mkT)1/2 . (14)

At least for
√

2, λc represents the De Broglie length λDB = }
<p> , where

< p >= (mkT)1/2 is the mean momentum of mass density fluctuations, observed as
an ideal gas of particles. It is noteworthy that the De Broglie length corresponds to the
wavelength associated with the momentum of mass density fluctuations behaving as waves
(in accordance with the Lorentz transformation). Expression (12) reveals that uncorrelated
mass density fluctuations are not capable of manifesting at increasingly shorter distances
than λc. Consequently, we uncover a new role of the quantum potential in an open system:
gradually suppressing fluctuations (due to their sharply increasing energy) on a micro-
scopic scale. This elucidates the empirical observation that the micro-scale is governed by
quantum mechanics.

This probability-mediated suppression enables the proposition of conventional quan-
tum mechanics as the zero-noise ‘deterministic’ limit of the stochastic quantum hydrody-
namics model (SQHM). Furthermore, since this phenomenon applies to systems with a
physical length significantly smaller than the De Broglie length λc, the direct transposition
of quantum mechanical behavior to macroscopic large-scale scenarios is not feasible at
T > 0. This is because the De Broglie length λc, within the framework of SQHM, disrupts
scale invariance.

In the presence of GBN, which generates mass density fluctuations, the mass density
distribution (MDD) |ψ|2 becomes a stochastic function denoted as ñ, where limT→0ñ→ |ψ|2 .
Based on this assumption, we can conceptually separate ñ into two parts: ñ = n + δn,
where δn is the fluctuating part and n is the regular part.

All these variables are connected by the limiting condition limT→0ñ = limT→0n = |ψ|2.
Moreover, the features of the Madelung quantum potential, which fluctuate in the

presence of stochastic noise, can be determined by positing it as comprising a regular
component Vqu(ñ) (to be defined) along with a fluctuating component Vst, such as

Vqu(ñ) = −
}2

2m
ñ−1/2∂i∂iñ1/2 = Vqu(ñ) + Vst (15)

where the stochastic part of the quantum potential Vst results in force noise

−∂iVst = mv(q,t,T) (16)

leading to the stochastic motion equation

..
qj(t)

= − 1
m

∂j

(
V(q) + Vqu(ñ)

)
+ v(q,t,T). (17)

Moreover, the regular part Vqu(ñ) for microscopic systems ( L
λc
� 1), without loss of

generality, can be reorganized as

Vqu( n ˜) = −
}2

2m
(
ñ−1/2∂i∂iñ1/2

)
= − }2

2m
1

ρ1/2 ∂i∂iρ
1/2 + ∆V = Vqu(ρ)

+ ∆V (18)

leading to the motion equation
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..
qj(t)

= − 1
m

∂j

(
V(q) + Vqu(ρ) + ∆V

)
+ v(q,t,T) (19)

where ρ(q,t) represents the probability mass density function (PMD) associated with the
stochastic process (17) [23], which, in the deterministic limit, adheres to the condition
limT→0ρ(q,t) = limT→0ñ = limT→0n = |ψ|2.

For the sufficiently general case to be practically relevant, it can be assumed that the
correlation function of v(q,t,T) possesses zero correlation time, is isotropic in space and is
independent among different coordinates, taking the form

lim
T→0

< v(qα ,t), v(qβ+λ,t+τ) >
∼=< v(qα), v(qβ)

>(T) G(λ)δ(τ)δαβ (20)

with
lim
T→0

< v(qα), v(qβ)
>(T)= 0. (21)

Furthermore, given that for microscopic systems ( L
λc
� 1)

limT→0G(λ) ∝
1
λc

exp

[
−
(

λ

λc

)2
]
∼=

1
λc

=
1
}

√
mkT

2
(22)

it follows that

lim
T→0

< v(qα ,t), v(qβ+λ,t+τ) >≈< v(qα), v(qβ)
>(T)

1
}

√
mkT

2
δ(τ)δαβ (23)

and the motion described by Equation (17) takes the stochastic form of the
Markov process [19]

..
qj(t)

= −κ
.
qj(t)
− 1

m

∂
(

V(q) + Vqu(ρ)

)
∂qj

+ κD1/2ξ(t). (24)

where

D1/2 =

(
L
λc

)(
γD

}
2m

)1/2
=
√

γD
L
2

√
kT
2} (25)

where γD is a non-zero pure number.
In this case, ρ(q,t) is the probability mass density determined by the probability

transition function (PTF) P(q, z|t, 0) of the Markov process (24) [23] through the relation
ρ(q, t) =

∫
P(q, z|t, 0)ρ(z,0)d6Nz where P(q, z|t, 0) obeys the Smoluchowski

conservation equation [23]

P(q,q0|t+τ,t0)
=

∞∫
−∞

P(q,z|τ,t) P(z,q0|t−t0,t0)
d6Nz. (26)

So, in summary, for the complex field

ψ = ρ1/2e−
iS
} (27)

the quantum–stochastic hydrodynamic system equation reads as
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ρ(q, t) =
∫

P(q, z|t, 0)ρ(z,0)d
rz (28)

m
.
qi = pi = ∂iS(q,t), (29)

..
qj(t)

= −κ
.
qj(t)
− 1

m

∂
(

V(q) + Vqu(ρ)

)
∂qj

+ κD1/2ξ(t) (30)

Vqu = − }2

2m
1

ρ1/2 ∂i∂iρ
1/2. (31)

where
S(q,t) = −

}
2

ln
ψ

ψ∗ . (32)

In the context of (28)–(31), ψ, defined by (27) and determined by solving
Equations (28)–(31), does not denote the quantum wavefunction; rather, it represents the
probability wave defined by the stochastic generalization of quantum mechanics. With the
exception of some specific cases (see (37)), this probability wave adheres to the limit

limT→0ψ = ψ (33)

It is worth noting that the SQHA Equations (28)–(31) show that gravitational dark
energy leads to a self-fluctuating system in which noise is an intrinsic property of spacetime
dynamical geometry that does not require the presence of an environment.

The agreement between the SQHM and the well-established quantum theory outputs
can be additionally validated by applying it to mesoscale systems (L <∼ λc). In this
scenario, the SQHM reveals that by posing ψ ∼= ψ adheres to the Langevin-Schrodinger-
like equation, which, for time-independent systems, is expressed as follows

−i}∂t|ψ| =
}2

2m
∂i∂iψ−

(
V(q) + Const + κS− qmκD1/2ξ(t) + i

Q(q,t)

2|ψ|2

)
ψ (34)

that by using (32) can be readjusted as:

−i}∂t|ψ| =
(
}2

2m
∂i∂i −V(q) − κ

(
}
2

ln
ψ

ψ∗ + qmD1/2ξ(t)

)
− i

Q(q,t)

2|ψ|2

)
ψ (35)

The term Q(q,t) account for contributions from higher-order cumulants in the mass
conservation equation derived from the Smoluchowski equation using Pontryagin’s method
([19] and references therein), which holds the property limD→0Q(q,t) = 0.

Moreover, the realization of quantum mechanics is ensured by introducing the semi-
empirical parameter α close to zero noise, defined by the relation [19]

limT→0κ ∼= limT→0α
2kT
mD

= α
8}

mγDL2 , (36)

characterizing the system’s dissipation ability, satisfying the condition limT→0α = 0.
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Although in the framework of quantum hydrodynamic formalism, quantum mechan-
ics embodies the deterministic limit of the theory without dissipation, it is interesting
to examine a scenario where, nearing the zero-noise threshold, the drag term −κ

.
qj(t)

in
Equation (24) remains significant and non-zero. This occurs particularly when the parame-
ter α remains relatively high, approaching the quantum limit L C< λc, such as

lim L
λc orT→0α = α0. (37)

In this case, as shown in the appendix, Equation (24) leads to the quantum Brownian
motion equation.

The emergence of the Schrödinger–Langevin equation through the stochastic extension
of the quantum hydrodynamic model is noteworthy, showcasing a precise alignment with
traditional outcomes in literature.

2.1. Emerging Classical Mechanics on Large Size Systems

When manually nullifying the quantum potential in the equations of motion for quan-
tum hydrodynamics (2–4), the classical equation of motion emerges [17]. However, despite
the apparent validity of this claim, such an operation is not mathematically sound, as it
alters the essential characteristics of the quantum hydrodynamic equations. Specifically,
this action leads to the elimination of stationary configurations, i.e., eigenstates, as the
balancing force of the quantum potential against the Hamiltonian force [24]—which es-
tablishes their stationary mass density distribution condition—is nullified. Consequently,
even a small quantum potential cannot be disregarded in conventional quantum mechanics
as described by the zero-noise ‘deterministic’ quantum hydrodynamic model (2)–(4).

Conversely, in the stochastic generalization, it is possible to correctly neglect the
quantum potential in (3) and (24) when its force is much smaller than the force noise v
such as | 1

m ∂iVqu(ρ)| � |v(q,t,T)| that by (25) leads to condition

| 1
m

∂iVqu(ρ)| � κ

(
L
λc

)(
γD

}
2m

)1/2
= κ

(
L
√

mkT
2}

)(
γD

}
2m

)1/2
, (38)

and hence, in a coarse-grained description with elemental cell side ∆q, to

limq→∆q

∣∣∣∂iVqu(ρ)

∣∣∣� mκ

(
L
λc

)(
γD

}
2m

)1/2
= mκ

√
γD

L
2

√
kT
2} , (39)

where L is the physical length of the system.
It is worth noting that, despite the noise v(q,t,T) having a zero mean, the mean of the

fluctuations in the quantum potential, denoted as Vst(n,S)
∼= κS, is not null. This non-null

mean generates to the dissipative force−κ
.
q(t) in Equation (24). Consequently, the stochastic

sequence of noise inputs disrupts the coherent evolution of the quantum superposition
of states, causing them to decay to a stationary mass density distribution with

.
q(t) = 0.

Moreover, by observing that the stochastic noise

κ

(
L
λc

)(
γD

}
2m

)1/2
ξ(t) (40)

grows with the size of the system, for macroscopic systems (i.e., L
λc
→ ∞ ), condition (38) is

satisfied if
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lim q
λc→∞( L

λc =∞)

∣∣∣∣ 1
m

∂iVqu(n(q))

∣∣∣∣ < ∞. (41)

To attain a comprehensive portrayal devoid of quantum correlations for any large-scale
system of physical length L, a stricter criterion must be enforced, such as

lim q
λc→∞

∣∣∣∣ 1
m

∂iVqu(ρ(q))

∣∣∣∣ = lim q
λc→∞

1
m

√
∂iVqu(ρ(q))∂iVqu(ρ(q)) = 0. (42)

Therefore, acknowledging that

limq→∞Vqu(q) ∝ q2, (43)

holds for linear systems, from the standpoint of SQHM, it promptly follows that they are
incapable of engendering the macroscopic classical phase.

In general, as the Hamiltonian potential strengthens, the wavefunction localization
increases, and the quantum potential behavior at infinity becomes more prominent.

This is demonstrable by considering the MDD

|ψ|2 ∝ exp
[
−Pk

(q)

]
, (44)

where Pk
(q) is a polynomial of order k, and it becomes evident that a finite range of quantum

potential interaction is achieved for k < 3
2 .

Hence, linear systems, characterized by k = 2, exhibit an infinite range of quantum
potential action, as well as the ballistic Gaussian coherent states.

Conversely, for gas phases where particles interact via the Lennard–Jones potential,
whose long-distance wavefunction reads as [25]

limr→∞|ψ| ∝ a−1/2 1
r

, (45)

the quantum potential reads as

limr→∞Vqu(ρ)
∼= limq→∞

}2

2m
1
|ψ|∂r∂r|ψ| =

1
r2 =

}2

m
a|ψ|2 (46)

leading to the quantum force

limr→∞ − ∂rVqu(ρ) = limq→∞
}2

2m
∂r

1
|ψ|∂r∂r|ψ| =

}2

2m
∂rr∂r∂r

1
r
= −2

}2

m
1
r3 = 0, (47)

Such that satisfying conditions (38) and (42) can lead to large-scale classical behavior [19]
in a sufficiently rarefied phase.

It is noteworthy that in Equation (46), the quantum potential output aligns with
the hard sphere potential within the ‘pseudo-potential Hamiltonian model’ of the Gross–
Pitaevskij equation [26,27], where a

4π represents the boson–boson s-wave scattering length.
By observing that, to meet condition (42), it is sufficient to require that
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∞∫
0

r−1| 1
m

∂iVqu(ρ(q))|(r,θ,ϕ)dr < ∞ ∀θ, ϕ, (48)

it is possible to define the range of interaction of the quantum potential λqu as [19]

λqu = λc

∞∫
0

r−1|∂iVqu(ρ(q))|(r,θ,ϕ)dr

|∂iVqu(ρ(q))|(r=λc ,θ,ϕ)
= λc Iqu. Iqu > 1 (49)

Relation (49) provides a measure of the physical length associated with quantum
non-local interactions.

It is worth mentioning that quantum non-local interactions extend themselves up to
the distance of order of the largest length between λqu and λc. Below λc, due to noise
damping, even a feeble quantum potential emerges. Above λc but below λqu the quantum
potential is strong enough to overcome the fluctuations.

The quantum non-local effects can be extended by increasing λc, which can be accom-
plished by lowering the temperature or mass of the bodies (see (14)), or λqu, which increases
with a stronger Hamiltonian potential. In the latter case, for instance, larger values of λqu
can be obtained by extending the linear range of Hamiltonian interaction between particles
(see (43) and (44)).

2.2. The Lindemann Constant for Quantum Lattice-to-Classical Fluid Transition

For a system of Lennard–Jones interacting particles, the quantum potential range of
interaction λqu reads as

λqu ∼=
d∫

0

dq + λc
4

∞∫
d

1
q4 dq = d

(
1 +

1
3

(
λc

d

)4
)

(50)

where d = r0 + ∆ = r0(1 + ε) (with ε = ∆
r0

) represents the distance up to which the
inter-atomic force is approximately linear, and r0 denotes the atomic equilibrium distance.

Experimental validation of the physical significance of the quantum potential length
of interaction is evident during the quantum-to-classical transition in a crystalline solid at
its melting point. This transition occurs as the system shifts from a quantum lattice to a
fluid amorphous classical phase.

If we assume that, within the quantum lattice, the atomic wavefunction extends over
a distance smaller than the range of interaction of the quantum potential, and if, according
to the SQHM perspective, the classical phase of an amorphous fluid is distinguished by
molecular wavefunctions extending beyond the influence of the quantum potential (thus
preventing the tails from reconstructing quantum coherence), we can infer that the melting
point occurs when the variance of the wavefunction equals λqu − r0.

Drawing from these assumptions, the Lindemann constant LC, as defined by [28]

LC =

{
wave function variance
at transition

}
r0

, (51)

can be expressed as LC =
λqu−r0

r0
. Moreover, it can be theoretically computed as
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λqu ≈ r0

(
(1 + ε) +

1
3

(
λc

r0

)3
)

(52)

which, being typically ε ≈ 0.05÷ 0.1 and λc
r0
≈ 0.8, leads to

LC ≈ 0.217÷ 0.267. (53)

A more accurate evaluation, employing the potential well approximation for
molecular interaction [29,30], yields λqu ∼= 1.2357 r0, and provides a Lindemann con-
stant value of LC = 0.2357. This value aligns with measured values, falling within the
range of 0.2 to 0.25 [28].

2.3. The Fluid–Superfluid 4He λ−Transition

Given that the De Broglie distance λc is temperature-dependent, its impact on the fluid–
superfluid transition in monomolecular liquids at extremely low temperatures, as observed
in 4He, can be identified. The approach to this scenario is elaborated in reference [30],
where, for the 4He-4He interaction, the potential well is assumed to be

V(r) = ∞ 0 < r < σ (54)

V(r) = −0.82 U σ < r < σ + 2∆ (55)

V(r)= 0 r > σ + 2∆ (56)

In this context, U = 10.9 kB = 1.5× 10−22 J represents the Lennard–Jones potential
depth, and σ + ∆ = 3.7× 10−10 m denotes the mean 4He-4He inter-atomic distance, where
∆ = 1.54× 10−10 m.

Ideally, at the superfluid transition, the De Broglie length attains approximately the
mean 4He-4He atomic distance. However, the induction of the superfluid 4He-4He state
occurs as soon as the De Broglie length overlaps with the 4He-4He wavefunctions within the
potential depth. Therefore, we observe the gradual increase of 4He superfluid concentration
within the interval

σ < λc < σ + 2∆. (57)

For λc < σ, it follows that no superfluidity occurs, as all inter-atomic well potentials
lie beyond the damped noise distance of the De Broglie length.

Conversely, for λc >≈ σ + 2∆, 100% of molecular interactions are within the zone
of quantum coherence, resulting in all molecules of 4He being in the superfluid state.
Therefore, given that

λc =
√

2
}

(mkT)1/2 , (58)

for a 4He mass of m4He = 6.6× 10−27 kg, the superfluid ratio of 100% is reached at the
temperature

T100% ≈
2}2

mk

(
1

σ + 2∆

)2
= 0.92 ◦K (59)

consistent with the experimental data from reference [30], which gives T100% = 1.0 ◦K.
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Moreover, when the superfluid/normal 4He density ratio is 50%, it follows that the
temperature T50% is given by

T50% =
2}2

mk

(
1

σ + ∆

)2
= 1.92 ◦K. (60)

This observation is further supported by experimental data, as reported in reference [31],
confirming T50% = 1.95 ◦K.

Moreover, by employing the definition that at the λ-point of 4He, the superfluid
ratio is 38%, such as that λc = σ + 38%(2∆), the transition temperature Tλ is determined
as follows.

Furthermore, utilizing the definition that at the critical λ-point of 4He, the super-
fluid ratio is 38%, and considering λc = σ + 38%(2∆), the transition temperature Tλ is
determined as follows:

Tλ ≈
2}2

mk

(
1

σ + 0.76∆

)2
= 2.20 ◦K (61)

in good agreement with the measured superfluid transition temperature of 2.17 ◦K.
As a final remark, it is worth noting that there are two ways to establish quantum

macroscopic behavior. One approach involves lowering the temperature, effectively in-
creasing the De Broglie length. The second approach aims to increase the strength of the
Hamiltonian interaction among the particles within the system, thereby extending the
effective range of the quantum potential.

Regarding the latter, it is important to highlight that the limited strength of the Hamil-
tonian interaction over long distances is the key factor allowing classical behavior to
manifest. When analyzing systems governed by a quadratic or stronger Hamiltonian
potential, the range of interaction associated with the quantum potential becomes infinite,
or at least remains so as long as the linear Hamiltonian interaction is maintained, as can be
inferred from (43). Consequently, achieving a classical phase becomes unattainable when
the system’s physical length is smaller than the typical distance up to which the interaction
is linear.

In this particular scenario, we exclusively observe the complete manifestation of
classical behavior on a macroscopic scale within systems featuring interactions that are
sufficiently weak, weaker even than linear interactions. This condition is crucial, as empha-
sized in Sections 2.6.2 and 2.6.3, where the chaotic nature of classical motion trajectories is
essential for obtaining the Born rule, ensuring the possibility of reaching any eigenstate
forming the superposition of states.

Hence, in this scenario, where the quantum potential is incapable of exerting its
not-local influence over extensive distances, classical mechanics arises as a decoherent
manifestation of quantum mechanics on macroscopic scale, in the presence of a fluctuating
spacetime background.

2.4. Measurement Process and the Finite Range of Not-Local Quantum Potential Interactions

Throughout the course of measurement, there exists the possibility of a conventional
quantum interaction between the sensing component within the experimental setup and
the system under examination. This interaction concludes when the measuring apparatus
is relocated to a considerable distance from the system. Within the SQHM framework, this
relocation is imperative and must surpass specified distances λc and λqu.
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Following this relocation, the measuring apparatus takes charge of interpreting and
managing the ‘interaction output.’ This typically involves a classical, irreversible process
characterized by a distinct temporal progression, culminating in the determination of the
macroscopic measurement result.

Consequently, the phenomenon of decoherence assumes a pivotal role in the measure-
ment process. Decoherence facilitates the establishment of a large-scale classical framework,
ensuring authentic quantum isolation between the measuring apparatus and the system,
both pre- and post-measurement event.

This quantum-isolated state, both at the initial and final stages, holds paramount
significance in determining the temporal duration of the measurement and in amassing
statistical data through a series of independent repeated measurements.

It is crucial to underscore that, within the confines of the SQHM, merely relocating the
measured system to an infinite distance before and after the measurement, as commonly
practiced, falls short in guaranteeing the independence of the system and the measuring
apparatus if either λc = ∞ or λq = ∞ is met. Therefore, the existence of a macroscopic
classical reality remains indispensable for the execution of measurement process.

2.5. Maximum Measurement Precision in Fluctuating Spacetime

Any quantum theory aiming to elucidate the evolution of a physical system across
various scales, at any order of magnitude, must inherently address the transition from
quantum mechanical properties to the emergent classical behavior observed at larger mag-
nitudes. The fundamental disparities between the two descriptions are encapsulated by the
minimum uncertainty principle in quantum mechanics, signifying the inherent incompati-
bility of concurrently measuring conjugated variables, and the finite speed of propagation
of interactions and information in local classical relativistic mechanics violating quantum
mechanics’ principle of non-locality, which implies that interactions occur instantaneously
over distances (in the Schrodinger formulation).

If a system strictly adheres to the deterministic principles of quantum mechanics
within a distance smaller than λc, where its subparts lack individual identities, it then
follows that an independent observer seeking information about the system must main-
tain a separation distance greater than a certain distance Lq ∝ λc, both before and after
the process.

Therefore, due to the finite speed of propagation of interactions and information, in
the framework of SQHM, the process cannot be executed in a timeframe shorter than

∆τmin >
Lq

c
∝

λc

c
∝

2}
(2mc2kT)1/2 . (62)

Furthermore, considering the Gaussian noise in (24), with the diffusion coefficient
proportional to kT, the mean value of energy fluctuation is δE(T) =

kT
2 for the degree of

freedom. Moreover, if we assume the relativistic point of view, where the energy of the
particle (both kinetic and potential) is encapsulated into its mass, being mc2 >> kT, it
follows that a scalar structureless particle, with mass m, exhibits an energy variance ∆E of

∆E ≈ (< (mc2 + δE(T))
2 − (mc2)

2
>)

1/2 ∼= (< (mc2)
2
+ 2mc2δE− (mc2)

2
>)

1/2

∼= (2mc2 < δE >)
1/2 ∼= (mc2kT)1/2

(63)



Quantum Rep. 2024, 6 293

Equation (63) can be better understood by employing the mean energy E of
the Schrodinger–Langevin equation (see (A4) in the Appendix A) in the final stationary
state E = Epot + Vqu ≡ mc2 (where the superscript bars represent mean values),

along with the stochastic contribution < ψ|
(

qmκD1/2ξ(t)

)2
|ψ >= kT

2 , resulting in

E = Epot + Vqu +
kT
2 ≡ mc2 + kT

2 .
Furthermore, from (63), it follows that

∆E∆t > ∆E∆τmin ∝
(mc2kT)1/2

λc

c
) ∝
√

2}, (64)

It is noteworthy that the product ∆E∆τ remains constant, as the increase in energy
variance with the square root of T precisely offsets the corresponding decrease in the
minimum acquisition time τ. This outcome also holds true when establishing the maximum
possible precision in measuring the position and momentum of a particle with mass m in
the SQHM regime.

If we acquire information about the spatial position of a particle with precision ∆L, we
effectively exclude the space beyond this distance from the quantum non-local interaction
of the particle, and consequently

Lq < ∆L. (65)

The variance ∆p of its relativistic momentum (pµ pµ)
1/2 = mc due to the fluctuations

reads as

∆p ≈ (< (mc +
δE(T)

c )
2
− (mc)2 >)

1/2
∼= (< (mc)2 + 2mδE− (mc)2 >)

1/2

∼= (2m < δE >)1/2 ∼= (mkT)1/2

(66)

and the maximum attainable precision reads as

∆L∆p > Lq(mkT)1/2 ∝ λc(mkT)1/2) ∝
√

2} (67)

Equating (64) and (67) to the quantum uncertainty value }
2 , such as

∆L∆p > Lq(2mkT)1/2 =
}
2

(68)

and

∆E∆t > ∆E∆τmin =
(2mc2kT)1/2Lq

c
=

}
2

, (69)

it follows that Lq = λc
2
√

2
represents the physical length below which quantum en-

tanglement is fully effective, and it signifies the physical length-scale below which the
deterministic limit of the SQHM, specifically the realization of quantum mechanics, fully
takes place.

By performing the limit of (68) and (69) for T = 0( λc → ∞ ), within the non-relativistic
limit ( c→ ∞ ), it follows that

∆τmin =
λc

2c
√

2
→ ∞ (70)

∆E ∼= (mc2kT)
1/2

=
√

2
}c
λc
→ 0, (71)
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Lq =
λc

2
√

2
→ ∞ (72)

∆p ∼= (mkT)1/2 ∼=
√

2}
λc
→ 0 (73)

and therefore, for the deterministic limit of conventional quantum mechanics, it results in

∆E∆t > ∆E∆τmin =
}
2

(74)

∆L∆p > Lq(mkT)1/2 =
}
2

(75)

By associating the maximum precision of measurements with the variance of corre-
sponding observables in quantum mechanics, (75) aligns with the concept of minimum
uncertainty in quantum mechanics, which arises from the deterministic limit of the SQHM.

It is worth noting that, by (74), the SQHM extends uncertainty relations to all conjugate
variables of 4D spacetime. This extension is notable since, in conventional quantum
mechanics, the energy–time uncertainty is deemed impossible due to the lack of a defined
time operator.

Moreover, it is intriguing to observe that in the realm of quantum mechanics, the
minimum acquisition time for information is ∆τmin =

Lq
c . This minimum time, in the con-

text of the low-velocity limit of classical quantum mechanics, results in ∆τmin =
Lq
c → ∞ .

This result indicates that performing a measurement within a fully deterministic quantum
mechanical global system is not feasible, as its duration would be infinite. Moreover, it
must be noted that the Heisenberg minimum uncertainty relations refer to the quantum
variance even though the measurement is not possible and the corresponding precision
cannot be defined in a perfectly quantum universe. Since the deterministic limit of SQHM is
reached through successive steps within the open SQHM regime, the limiting measurement
precision is associated with the quantum variance of the corresponding observable.

Given that non-locality is restricted to domains with physical lengths on the order of
λc

2
√

2
, and information about a quantum system cannot be transmitted faster than the speed

of light (otherwise it would violate the uncertainty principle), local realism is established
within the coarse-grained macroscopic physics where domains of order of λc

3 reduce to
a point.

The paradox of ‘spooky action at a distance’ is confined to microscopic distances
(smaller than λc

2
√

2
), where quantum mechanics are described within the low-velocity limit,

assuming c→ ∞ and λc → ∞ . This leads to the apparently instantaneous transmission of
interaction over a distance.

It is also noteworthy that in the presence of noise, the measured precision under-

goes a relativistic correction, as expressed by ∆E ≈ (< (mc2 + kT
2 )

2 − (mc2)
2
>)

1/2
=

(mc2kT)1/2
(

1 + kT
4mc2

)
, resulting in the maximum precision in a quantum system subject to

gravitational background noise (T > 0)
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∆E∆t >
}
2

(
1 +

kT
4mc2

)1/2
(76)

and

∆L∆p >
}
2

(
1 +

kT
4mc2

)1/2
(77)

This can become significant for light particles (with m→ 0), but in quantum mechan-
ics, at T = 0, the uncertainty relations remain unchanged.

2.6. Minimum Discrete Interval of Spacetime

Within the framework of the SQHM, incorporating the maximum precision of measure
in a fluctuating quantum system and the maximum attainable velocity of the speed of light

·
x ≤ c, (78)

by (68), in a fluctuating vacuum with T > 0 possibly with classical large-scale behavior
(enabling the presence of the measuring apparatus), it follows that

∆
·
x =

∆p
m

=
}

2m∆x
≤ ·

x, (79)

leading to }
2m∆x ≤ c and, consequently, to

∆x >
}

2mc
=

Rc

2
. (80)

where Rc is the Compton length.
Identity (80) states that the highest possible concentration of a body’s mass is within

an elemental volume with a side length equal to half of its Compton wavelength.
This result holds significant implications for black hole (BH) formation. To form

a BH, all the mass must be contained within the gravitational radius Rg, giving rise to
the relationship

Rg =
2Gm

c2 >
∆x
2

= rmin =
Rc

4
, (81)

which further leads to the condition

Rc

4Rg
=

}
8mcRg

=
}c

8m2G
= π

mp
2

m2 < 1 (82)

indicating that a BH’s mass, due to quantum effects, cannot be smaller than
√

πmp =
√

}c
8m2G to ensure all its mass is confined within its gravitational radius.

The validity of the result (82) is substantiated by the gravitational effects produced
by the quantum mass distribution within spacetime. This demonstration elucidates that
when mass density is condensed into a sphere with a diameter smaller than half the
Compton wavelength, it engenders an outgoing quantum potential force that overcomes
the compressive gravitational force within a black hole [32,33].
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Considering a Planck mass black hole as the lightest configuration, with its mass
compressed within a sphere of half the Compton wavelength, it logically follows that black
holes with masses greater than mp [19] exhibit their mass as compressed into a sphere of
smaller diameter. Consequently, given the significance of elemental volume as the volume
inside which content is uniformly distributed, the consideration of the Planck length as
the smallest discrete elemental volume of spacetime is not sustainable. This would make it
impossible to compress the mass of large black holes within a sphere of a smaller diameter,
consequently preventing the achievement of gravitational equilibrium [32].

This assumption conflicts with the fact that any existing black holes compress their
mass into a nucleus smaller than the Planck length [33].

This compression is feasible if spacetime discretization allows for elemental cells of
smaller volume, thereby distinguishing between the minimum measurable distance and the
minimum discrete element of distance in the spacetime lattice. In the simulation analogy,
the maximum grid density is equivalent to the elemental cell of the spacetime.

Finally, it is worth noting that the current theory leads to the assumption that the
elemental discrete spacetime distance corresponds to the Compton length of the maximum
possible mass, which is the energy/mass of the universe. Consequently, we have a criterion
to rationalize the mass of the universe—why it is not higher than its value—being intricately
linked to the minimum length of the discrete spacetime element. If the pre-Big Bang black
hole (PBBH) was generated by a fluctuation anomaly in an elemental cell of spacetime, it
could not have a mass/energy content smaller than that which the universe possesses.

2.6.1. Dynamics of Wavefunction Collapse

The Markov process (24) can be described by the Smoluchowski equation for the
Markov probability transition function (PTF) [23]

P(q,q0|t+τ,t0)
=

∞∫
−∞

P(q,z|τ,t) P(z,q0|t−t0,t0)
drz (83)

where the PTF P(q,z|τ,t) is the probability that in time interval τ is transferred to point q.
The conservation of the PMD shows that the PTF displaces the PMD according to the

rule [23]

ρ(q, t) =
∫

P(q, z|t, 0)ρ(z,0)d
rz (84)

Generally, in the quantum case, Equation (83) cannot be reduced to a Fokker–Planck
equation (FPE). The functional dependence of Vqu(ρ)

by ρ(q,t), and the PTF P(q, z|t, 0),
produces non-Gaussian terms [19].

Nonetheless, if, at the initial time, ρ(q,t0)
is stationary (e.g., in a quantum eigenstate)

and close to the long-time final stationary distribution ρeq, it is possible to assume that the
quantum potential is constant in time as a Hamilton potential following the approximation

Vqu ∼= −(
}2

4m
)

(
∂q∂q

(
lnρeq(q)

)
+

1
2

(
∂q

(
lnρeq(q)

))2
)

(85)

Being the quantum potential independent by the mass density time evolution, the station-
ary long-time solutions ρeq(q) can be approximately described by the Fokker–Planck equation
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∂tP(q, z|t, 0) + ∂iP(q, z|t, 0) · υi = 0 (86)

where

υi =
1

mκ
∂i

(
}2

4m

(
∂j∂jlnρeq −

1
2
(
∂jlnρeq

)2
)
+ V(q)

)
− D

2
∂ilnρeq (87)

leading to the final equilibrium of the stationary quantum configuration

1
mκ

∂i

(
V(q) −

}2

4m

(
∂j∂j

(
lnρeq(q)

)
+

1
2

(
∂j

(
lnρeq(q)

))2
))

+
D
2

∂i
(
lnρeq

)
= 0 (88)

In ref. [19], the stationary states of a harmonic oscillator obeying (88) are shown. The
results show that the quantum eigenstates are stable and maintain their shape (with a small
change in their variance) when subject to fluctuations.

It is worth mentioning that in (88), ρ does not represent the fluctuating quantum mass
density |ψ|2 but is the probability mass density (PMD) of it.

2.6.2. Evolution of the PMD of Superposition of States Submitted to Stochastic Noise

The quantum evolution of not-stationary state superpositions (not considering fast
kinetics and jumps) involves the integration of Equation (24) that reads as

.
q = − 1

κm
∂q

(
V(q) −

}2

4m

(
∂q
(
∂qlnρ

)
+

1
2
(
∂qlnρ

)2
))

+ D1/2ξ(t) (89)

By utilizing the associated conservation Equation (84) for the PMD ρ, it is possible to
integrate (89) by using its second-order discrete expansion

qk+1
∼= qk −

1
mκ

∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)
∆tk −

1
mκ

d
dt

∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)∆tk
2

2
+ D1/2∆Wk (90)

where
qk = q(tk)

(91)

∆tk = tk+1 − tk (92)

∆Wk = W(tk+1)
−W(tk)

(93)

where ∆Wk has a Gaussian zero mean and unitary variance whose probability function
P(∆Wk, ∆t), for ∆tk = ∆t ∀ k, reads as

lim∆t→0P(∆Wk ,∆t) = lim∆t→0
D−1/2

(4π∆t)1/2 exp− ∆Wk
2

4∆t

= lim∆t→0
D−1/2

(4π∆t)1/2 exp− 1
4∆t

(qk+1−<qk+1>)2

D

= (4πD∆t)−1/2exp− 1
4∆t

(
qk+1−qk−<

.
qk>∆t−<

..
qk>
2 ∆t2

)2

D

(94)

where the midpoint approximation has been introduced
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qk =
qk+1 + qk

2
(95)

and where

<
.
qk >= − 1

mκ

∂
(

V(qk)
+ Vqu(ρqk

tk)

)
∂qk

(96)

and

<
..
qk >= − 1

2mκ

d
dt

∂
(

V(qk)
+ Vqu(ρ(qk)

,tk)

)
∂qk

(97)

are the solutions of the deterministic problem

< qk+1 >∼=< qk > −
1

mκ
∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)
∆tk −

1
mκ

d
dt

∂k

(
V(qk)

+ Vqu(ρqk ,tk)

)∆tk
2

2
(98)

As shown in ref. [19], the PTF P(qk ,qk−1|∆t,(k−1)∆t) can be achieved after successive steps
of approximation and reads as

P(qk ,qk−1|∆t,(k−1)∆t) = limu→∞P(u)
(qk ,qk−1|∆t,(k−1)∆t)
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and the PMD at the k-th instant reads as

ρ(∞)
(qk ,k∆t) =

∞∫
−∞

P(∞)
(qk ,qk−1|∆t,(k−1)∆t) ρ(qk−1,(k−1)∆t)dqk−1 (100)

leading to the velocity field

<
.
qk >

(∞)= − 1
mκ

∂qk

(
V(qk)

− }2

4m

(
∂q∂q

(
lnρ(∞)

)
+

1
2

(
∂q

(
lnρ(∞)

))2
))

(101)

Moreover, the continuous limit of the PTF gives

P(q,q0|t−t0,0) = lim∆t→0P(∞)
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The resolution of the recursive Expression (102) offers the advantage of being applicable
to nonlinear systems that are challenging to handle using conventional approaches [34–37].

2.6.3. General Features of Relaxation of the Quantum Superposition of States

The classical Brownian process admits the stationary long-time solution

P(q,q−∞ |t−t−∞ ,t−∞) = limt0→−∞Ne

1
D

q∫
q−∞

<
.
q>(q′(t,t0)

)dq′

= Ne

1
D

q∫
q−∞

K(q′)dq′

(103)

where K(q) = − 1
mκ

∂V(q)
∂q , leading to solution [13]

P(q, q0|t− t0, t0) =

exp

q∫
q0

1
2D

K(q′)dq′

 q∫
q0

Dqexp− 1
4D

t∫
t0

dt
( .

q2
+ K2(q) + 2D∂qK(q)

)
(104)

As far as it concerns <
.
q >

(∞)
(q,t) in quantum case (102), it cannot be expressed in a

closed form, unlike (103), because it is contingent on the particular relaxation path ρ(q,t),
which the system follows toward the steady state. This path is significantly influenced
by the initial conditions, namely the MDD |ψ|2(q,t0)

= ρ(q,t0)
as well as <

.
q >(q,t0)

, and,
consequently, by the initial time t0, at which the quantum superposition of states is subjected
to fluctuations.

In addition, from (90), we can see that qtk depends on the exact sequence of inputs
of stochastic noise, since, in classically chaotic systems, very small differences can lead to
relevant divergences of the trajectories in a short time. Therefore, in principle, different
stationary configurations ρ(q,t=∞) (analogues of quantum eigenstates) can be reached when-
ever they start from an identical superposition of states. Therefore, in classically chaotic
systems, Born’s rule can also be applied to the measurement of a single quantum state.

Even if L� λc ∪ λqu, it is worth noting that, to have finite quantum lengths λc and λqu
(necessary to have quantum stochastic dynamics) and the quantum decoupled (classical)
environment or measuring apparatus, the nonlinearity of the overall system (system–
environment) is necessary: quantum decoherence, leading to the decay of superposition
states, is significantly promoted by the widespread classical chaotic behavior observed in
real systems.

On the other hand, a perfect linear universal system would maintain quantum correla-
tions on a global scale and would never allow for quantum decoupling between the system
and the experimental apparatus performing the measure. Merely assuming the existence of
separate systems and environments subtly introduces the classical condition (λc, λqu < ∞)
into the nature of the overall supersystem.

Furthermore, given that Equation (24) (see Equations (A31) and (A38), in ref. [19])
is valid only in the leading order of approximation of

.
q (i.e., during a slow relaxation

process with small amplitude fluctuations), in instances of large fluctuations occurring on a
timescale much longer than the relaxation period of ρ(q,t), transitions may occur to ñ(q,t)
that are not captured by (102), potentially leading from a stationary eigenstate to a new
superposition of states.
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In this case, relaxation will follow again toward another stationary state. ρ(q,t) (100)
describes the relaxation process occurring in the time interval between two large fluctua-
tions rather than the system evolution toward a statistical mixture. Due to the extended
timescales associated with these jumping processes, a system comprising a significant
number of particles (or independent subsystems) undergoes a gradual relaxation towards a
statistical mixture. The statistical distribution of this mixture is dictated by the temperature-
dependent behavior of the diffusion coefficient.

2.7. EPR Paradox and Pre-Existing Reality

The SQHM highlights that conventional quantum theory, despite its well-defined
reversible deterministic theoretical framework, remains incomplete with respect to its
foundational postulates. Specifically, the SQHM underscores that the measurement process
is not explicated within the deterministic ‘Hamiltonian’ framework of standard quantum
mechanics. Instead, it manifests as a phenomenon comprehensively described within the
framework of a quantum stochastic generalized approach.

The SQHM reveals that quantum mechanics represents the deterministic (zero noise)
limit of a broader quantum–stochastic theory induced by spacetime gravitational back-
ground fluctuations.

From this standpoint, zero-noise quantum mechanics defines the deterministic evo-
lution of the ‘probabilistic wave’ of the system. Moreover, the SQHM suggests that the
term ‘probabilistic’ is inaccurately introduced, since it arises from the inherent probabilistic
nature of the measurement process outside the theory framework. Given the capacity of
the SQHM to describe both wavefunction decay and the measurement process, thereby
achieving a comprehensive quantum theory, the term ‘state wave’ is a more appropriate
substitute for the expression ‘probabilistic wave’. The SQHM theory reinstates the prin-
ciple of determinism into conventional quantum theory, emphasizing that it delineates
the deterministic evolution of the ‘state wave’ of the system. It elucidates the probabilistic
outcomes as a consequence of the fluctuating gravitational background.

Furthermore, it is noteworthy to observe that the SQHM addresses the lingering ques-
tion of pre-existing reality before measurement. In contrast, the Copenhagen interpretation
posits that only the measurement process allows the system to decay into a stable eigen-
state, establishing a persistent reality over time. Consequently, it remains indeterminate
within this framework whether a persistent reality exists prior to measurement. The SQHM
rejects the anthropocentric notion that the act of measurement induces the collapse of the
wavefunction, in line with the viewpoint of Penrose: ‘It takes place in the physics, and it is
not because somebody comes and looks at it’.

About this point, the SQHM introduces a simple and natural innovation showing that
the world is capable of self-decaying through macroscopic-scale decoherence, wherein only
the stable macroscopic stationary states (very close to eigenstates, or coherent states) persist.
These states, being stable with respect to fluctuations, establish an enduring reality that
exists prior to measurement.
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Regarding the EPR paradox, the SQHM demonstrates that, in a perfect quantum
deterministic (coherent) universe, it is not feasible to achieve the complete decoupling
between the subparts of the system, namely the measuring apparatus and the measured
system, and carry out the measurement in a finite time interval. Instead, this condition
can only be realized within a large-size classical supersystem—a quantum system in
4D spacetime with fluctuating background—where the quantum entanglement, due to
the quantum potential, extends up to a finite distance [19]. Under these circumstances,
the SQHM shows that it is possible to restore local relativistic causality with a finite
speed of transmission of interactions and information, compatible with the precision of
measurements that are confined outside quantum non-local domains with lengths smaller
than λc

2
√

2
.

If the Lennard–Jones inter-particle potential yields a sufficiently weak force, resulting
in a microscopic range of quantum non-local interaction and a large-scale classical phase,
photons, as demonstrated in reference [19], maintain their quantum behavior at the macro-
scopic level due to their infinite quantum potential range of interaction. Consequently, they
represent the optimal particles for conducting experiments aimed at demonstrating the
characteristics of quantum entanglement over a distance.

In order to clearly describe the standpoint of the SQHM on this argument, we can
analyze the output of two entangled photon experiment traveling in opposite directions in
the state

|ψ >=
1√
2
|H1, H2 > +eiϕ|V1, V2 > (105)

Vertical and horizontal polarizations are denoted as V and H respectively, while φ
represents a constant phase coefficient.

Photons ‘one’ and ‘two’ encounter polarizers Pa (Alice) and Pb (Bob), with their
polarization axes positioned at angles α and β relative to the horizontal axis, respectively.
For the sake of our analysis, we can assume φ = 0.

The likelihood of photon ‘two’ successfully traversing Bob’s polarizer is
P(α, β) = 1

2 cos2(α− β).
According to the prevailing view in quantum mechanics in the scientific community,

when photon ‘one’ traverses polarizer Pa at an angle of α relative to its axes, the state of
photon ‘two’ immediately collapses to a linearly polarized state at the same angle α, leading
to the composite state |α1, α2 >= |α1 > |α2 >.

On the other hand, within the framework of SQHM, which can elucidate the dynamics
of wavefunction collapse, the collapse process is not instantaneous. Following the Copen-
hagen interpretation of quantum mechanics, it is imperative to assert rigorously that the
state of photon ‘two’ remains undefined until its measurement at the polarizer Pb.

Hence, when photon ‘one’ traverses polarizer Pa, according to the SQHM perspective,
we must consider the composite state as |α1, S >= |α1 > |QP1, S2 >, where |QP1, S2 >
signifies the state of photon ‘two’ in interaction with the residual tail field QP1 generated
by the quantum potential of photon ‘one’ at polarizer Pa.

The spatial extension of the field |QP1, S2 >, in the case where the photons travel in
opposite direction, is the double of the one crossed by photon one before its adsorption. In
this regard, it is noteworthy that the quantum potential is not proportional to the intensity
of the tail field of photon one. Instead, it is proportional to its second derivative. Therefore,
a minimal residual tail field with a high frequency interacting with photon two can result
in a notable quantum potential interaction originating from the tail field QP1.
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When the residual part of the two entangled photons |QP1, S2 > also passes through
Bob’s polarizer, it undergoes the transition |QP1, S2 >→ |β2 > with probability
P(α, β) = 1

2 cos2(α− β). The duration of the photon two adsorption (wavefunction decay
and measurement) due to its spatial extension, and finite light speed, it is just the time
necessary to transfer the information about the measure of photon one to the place of
photon two measurement. A possible experiment is proposed in ref. [19].

Summarizing, the SQHM reveals the following key points:

i. The SQHM posits that quantum mechanics represents the deterministic limit of a
broader quantum stochastic theory.

ii. Classical reality emerges at the macroscopic level, constituting a pre-existing reality
before measurement.

iii. The measurement process is feasible in a classical macroscopic world, because we
can have really quantum decoupled and independent systems, namely the system
and the measuring apparatus.

iv. Determinism is acknowledged within standard quantum mechanics under the
condition of zero GBN.

v. Locality is achieved at the macroscopic scale, where quantum non-local domains
condense to punctual domains.

vi. Determinism is retrieved in quantum mechanics representing the zero-noise limit
of the SQHM. The probabilistic nature of quantum measurement is introduced
by GBN.

vii. The maximum light speed of the propagation of information and the local relativistic
causality align with quantum uncertainty.

viii. The SQHM addresses GBN as playing the role of the hidden variable in the Bohm
non-local hidden variable theory: the Bohm theory ascribes the indeterminacy of the
measurement process to the unpredictable pilot wave, whereas stochastic quantum
hydrodynamics attributes its probabilistic nature to the fluctuating gravitational
background. This background is challenging to determine due to its predominantly
early-generation nature during the Big Bang, characterized by the weak force of
gravity without electromagnetic interaction. In the context of Santilli’s non-local
hidden variable approach in IsoRedShift Mechanics, it is possible to demonstrate
the direct correspondence between the non-local hidden variable and GBN [21].
Furthermore, it must be noted that the consequent probabilistic nature of the wave-
function decay, and its measured output, is also compounded by the inherently
chaotic nature of the classical law of motion and the randomness of GBN, further
contributing to the indeterminacy of measurement outcomes.

2.8. The SQHM and the Objective-Collapse Theories

The SQHM well inserts itself into the so-called objective-collapse theories [37–40].
In collapse theories, the Schrödinger equation is augmented with additional nonlinear
and stochastic terms, referred to as spontaneous collapses, that serve to localize the wave-
functions in space. The resulting dynamics ensures that, for microscopic isolated systems,
the impact of these new terms is negligible, leading to the recovery of usual quantum
properties with only minute deviations.
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An inherent amplification mechanism operates to strengthen the collapse in macro-
scopic systems comprising numerous particles, overpowering the influence of quantum
dynamics. Consequently, the wavefunction for these systems is consistently well-localized
in space, behaving practically like a point in motion following Newton’s laws.

In this context, collapse models offer a comprehensive depiction of both microscopic
and macroscopic systems, circumventing the conceptual challenges linked to measurements
in quantum theory. Prominent examples of such theories include the Ghirardi–Rimini–
Weber model [38], the continuous spontaneous localization model [39] and the Diósi–
Penrose model [40,41].

While the SQHM aligns well with existing objective-collapse models, it introduces an
innovative approach that effectively addresses critical aspects within this class of theories.
One notable achievement is the resolution of the ‘tails’ problem by incorporating the
quantum potential length of interaction, in addition to the De Broglie length. Beyond
this interaction range, the quantum potential cannot maintain the coherent Schrödinger
quantum behavior of wavefunction tails.

The SQHM also highlights that there is no need for an external environment, demon-
strating that the quantum stochastic behavior responsible for wavefunction collapse can
be an intrinsic property of the system in a spacetime with fluctuating metrics due to the
gravitational background. In principle, gravitons, a manifestation of dark energy within
the gravitational field, can be thought of as external environment. However, there exists a
nuanced distinction from conventional concepts. While an external system or environment
typically exists separately from the physical system of interest, gravitational vibrations
within the reference system represent something distinct: There is no additional physical
system per se, but rather, the external system is inherently integrated into the specific type
of reference system under consideration. While the concept remains largely the same, there
are subtle, yet fundamentally important differences. Thus, rather than rejecting existing
concepts outright, it can be seen as an enhancement or refinement of them. Furthermore,
situated within the framework of relativistic quantum mechanics, which aligns seamlessly
with the finite speed of light and information transmission, the SQHM establishes a clear
connection between the uncertainty principle and the invariance of light speed.

The theory also derives, within a fluctuating quantum system, the indeterminacy
between energy and time—an aspect not expressible in conventional quantum mechanics—
providing insights into measurement processes that cannot be completed within a finite
time interval in a truly quantum global system. Notably, the theory finds support in the
confirmation of the Lindemann constant for the melting point of solid lattices and the
transition of 4He from fluid to superfluid states. Additionally, it can possibly propose a
potential explanation for the measurement of entangled photons through a Earth–Moon–
Mars experiment [19].

3. Simulation Analogy: Complexity in Achieving Future States

The discrete spacetime structure derived by (80) ∆xmin > }
2muc = }c

2Eu
(where Eu is the

total energy of the universe) that comes from the finite speed of light together with the
minimum discrete measurable distance (69) allows for the implementation of a discrete
simulation of the universe’s evolution.
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In this case, the programmer of such universal simulation has to face the follow-
ing problems:

i. One key argument revolves around the inherent challenge of any computer simula-
tion, namely the finite nature of computer resources. The capacity to represent or
store information is confined to a specific number of bits. Similarly, the availability
of floating-point operations per second is limited. Regardless of effort, achieving a
truly ‘continuous’ simulated reality in the mathematical sense becomes unattain-
able due to these constraints. In a computer-simulated universe, the existence of
infinitesimals and infinities is precluded, necessitating quantization, which involves
defining discrete cells in spacetime.

ii. The speed of light must be finite. Despite real time and simulation time being
disconnected from each other, computing the evolution of a system where inter-
actions propagate infinitely fast necessitates the simultaneous computation of all
interactions within a single timeframe. However, it is a practical impossibility for
any computer with finite computing power to execute such a task. The limitation
arises from the fact that any computer can only achieve a finite speed of propagation
in a simulation, as this is the sole feasible method of integration. Therefore, a com-
mon issue in computer-simulation arises from the inherent limitation of computing
power in terms of the speed of executing calculations. Objects within the simulation
cannot surpass a certain speed, as doing so would render the simulation unstable
and compromise its progression. Any propagating process cannot travel at an
infinite speed, as such a scenario would require an impractical amount of compu-
tational power. Therefore, in a discrete representation, the maximum velocity for
any moving object or propagating process must conform to a predefined minimum
single-operation calculation time. This simulation analogy aligns with the finite
speed of light c as a motivating factor.

iii. Discretization must be dynamic. The use of fixed-size discrete grids is clearly a
huge dispersion of computational resource in spacetime regions where there are
no bodies and there is nothing to calculate (so that we can fix there just one big
cell, saving computational resources). On the one hand, the need to increase the
size of the simulation requires lowering the resolution; on the other hand, there
is the need to achieve better resolution within smaller domains of the simulation
where mass is present. This dichotomy is already present to those creating vast
computerized cosmological simulations [42]. This problem is attacked by varying
the mass quantization grid resolution as a function of the local mass density and
other parameters, leading to the so-called automatic tree refinement (ATR). The
adaptive moving mesh method, an approach similar to ATR [43], would vary the
size of the cells of the quantized mass grid locally, as a function of kinetic energy
density while at the same time varying the size of the local discrete time-step, which
should be kept per-cell as a 4th parameter of space, in order to better distribute the
computational power where it is needed the most. By doing so, the grid would
become distorted having different local sizes. In a 4D simulation, this effect would
also involve the time being perceived as flowing differently in different parts of
the simulation: faster for regions of space where there is more local kinetic energy
density, and slower where there is less. [Additional consequences are reported and
discussed in Section 3.3].
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In principle, there are two instruments or methods for computing the future states of a
system. One involves utilizing a classical apparatus composed of conventional computer
bits. Unlike Qbits, these classical bits cannot create, maintain, or utilize the superposition
of their states, rendering them classical machines. On the other hand, quantum compu-
tation employs a quantum system of Qbits and utilizes the quantum law of evolution
for calculations.

However, the capabilities of the classical and quantum approaches to predict the future
state of a system differ. This distinction becomes evident when considering the calculation
of the evolution of many-body system. In the classical approach, computer bits must
compute the position and interactions of each element of mass at every calculation step.
This becomes increasingly challenging (and less precise) due to the chaotic nature of classi-
cal evolution. In principle, the classical N-body simulations are straightforward, as they
primarily entail integrating the 6N ordinary differential equations that describe particle
motions. However, in practice, the sheer magnitude of particles, N, is often exceptionally
large (of order of millions or tens of billions like in the Millennium simulation [43]). More-
over, the computational expense becomes prohibitive due to the four-power increase N4 in
the number of particle–particle interactions that need to be computed. Consequently, direct
integration of the differential equations requires an exponential increase of calculation and
data storage resources for large scale simulations.

On the other hand, quantum evolution does not require defining the state of each
particle at every step. It addresses the evolution of the global wave of superposition
of states for all particles. Eventually, when needed or when decoherence is induced or
spontaneously occurs, the classical state of each particle at a specific instant is obtained
through the wavefunction decay (under this standpoint, calculated is the analogous of
‘measured’ or ‘collapsed’). This represents a form of optimization: sacrificing the knowledge
of the classical state at each time step, but being satisfied with knowing the classical state of
each particle at discrete time intervals, specifically after a large number of calculation steps.
This approach allows for a quicker computation of the future state of reality with a lesser
use of resources. Moreover, since the length of quantum coherence λqu is finite, the group
of entangled particles undergoing to the common wavefunction decay, are of smaller finite
number, further simplifying the algorithm of the simulation.

The advantage of quantum calculus over classical calculus can be metaphorically
demonstrated by addressing the challenge of finding the global minimum. When us-
ing classical methods like maximum descent gradient or similar approaches, the pur-
suit of the global minimum—such as in the determination of prime numbers—results
in an exponential increase in the calculation time as the maximum value of the prime
numbers rises.

In contrast, employing the quantum method allows us to identify the global minimum
in linear or, at least, polynomial time. This can be loosely conceptualized as follows: in
the classical case, it is akin to having a ball fall into each hole to find a minimum, and
then the values of each individual minimum must be compared with all possible minima
before determining the overall minimum. The utilization of the quantum method involves
using an infinite number of balls, spanning the entire energy spectrum. Consequently, at
each barrier between two minima (thanks to quantum tunneling), some of the balls can
explore the next minimum almost simultaneously. This simultaneous exploration (quantum
computing) significantly shortens the time needed to probe the entire set of minima, then
wavefunction decay allows us to measure (or detect) the outcome of the process (measure).
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If we aim to create a simulation on a scale comparable to the vastness of the universe,
we must find a way to address the many-body problem. Currently, solving this problem
remains an open challenge in the field of computer science. Just recently in December 2023,
a new quantum algorithm for simulating coupled harmonic oscillators in polynomial time
has been uncovered [44], showing that quantum mechanics appears to be a promising
candidate for making the many-body problem manageable. This is achieved through
the utilization of the entanglement process, which encodes coherent particles and their
interaction outcomes as a wavefunction. The wavefunction evolves without explicit solving,
and, when coherence diminishes, the wavefunction collapse leads to calculate (as well as
determine) the essential classical properties of the system given by the underlying physics
at discrete time steps.

This sheds light on the reason why physical properties remain undefined until mea-
sured; from the standpoint of the simulation analogy, it is a direct consequence of the
quantum optimization algorithm, where, in each local quantum-correlate domain, the
classical state remains uniquely defined only at few discrete times, unlike the continu-
ous description given by classical evolution. In this way, the determination of reality
properties is achieved solely through the utilization of the minimal amount of computa-
tional power. In accordance with [44], quantum computing demonstrates the capability
to solve classical problems in polynomial time that would otherwise require exponen-
tial time, thereby optimizing the simulation. Moreover, the combination of the coherent
quantum evolution with the wavefunction collapse has been proven to constitute a Turing-
complete computational process, as evidenced by its application in quantum computing for
performing computations.

An even more intriguing aspect of the possibility that reality can be virtualized as
a computer simulation is the existence of an algorithm capable of solving the intractable
many-body problem, challenging classical algorithms. Consequently, the entire class of
problems characterized by a phenomenological representation, describable by quantum
physics, can be rendered tractable through the application of quantum computing. How-
ever, it is worth noting that very abstract mathematical problems, such as the ‘lattice
problem’ [45], may still remain intractable. Currently, the most well-known successful
examples of quantum computing include Shor’s algorithm [46] for prime number discovery
and Grove’s algorithm [47] for inverting ‘black box functions’.

Classical computation categorizes the determination of prime numbers as an NP
(non-polynomial) problem, whereas quantum computation classifies it as a P (polynomial)
problem with Shor’s algorithm. However, not all problems considered NP in classical
computation can be reduced to P problems by utilizing quantum computation. This implies
that quantum computing may not be universally applicable in simplifying all problems but
only a certain limited class.

The possibility of acknowledging the universe’s many-body problem as a computer
simulation requires that the NP problem of N-body is tractable [44]. In such a scenario,
it becomes theoretically feasible to utilize universe-like particle simulations for solving
NP problems by embedding the problem within specific assigned particle behavior. This
concept implies that the laws of physics are not inherently given but are rather formulated
to represent the solution of specific problems.

To clarify further: if various instances of universe-like particle simulations were
employed to tackle distinct problems, each instance would exhibit different laws of physics
governing the behavior of its particles. This perspective opens up the opportunity to
explore the purpose of the universe and inquire about the underlying problem it seeks
to solve.
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In essence, it prompts the question: What is the fundamental problem that the universe
is attempting to address?

3.1. How the universe Computes the Next State: The Unraveling of the Meaning of Time and
Free Will

At this point, to examine the universal simulation and generate evolution akin to
SQHM characteristics within a flat space (excluding gravity except for gravitational back-
ground noise contributing to quantum decoherence), let us focus on the local evolution
within a spacetime cell of a few De Broglie lengths or quantum coherence lengths λqu [19].
After a certain characteristic time, the superposition of states in a local quantum-entangled
domain, evolving following the motion Equation (24), decays into one of its eigenstates
and leads to a stable state that, surviving fluctuations, constitutes a lasting state over
time: we can define it as reality since, for its stability, it gives the same result even after
repeated measurements. Moreover, given macroscopic decoherence, the local domain in
different places are quantum disentangled from each other. Therefore, their decay to a
stable eigenstate is unlikely to happen at the same time. Due to the perceived randomness
of GBN, this process can be assumed to be stochastically distributed into the space, leading
to a foam-like classical reality in spacetime that, in this way, results in cells that are locally
quantum but globally classic.

Furthermore, after an interval of time much larger than the wavefunction decay one,
each domain is perturbed by a large fluctuation that is able to let it to jump to a quantum
superposition that re-starts evolving following the quantum law of evolution for a while,
before new wavefunctions collapse, and so on.

From the standpoint of the SQHM, the universal computation method exploits the
quantum evolution for a while and then, by decoherence, derives the classical N-body state
at certain discrete instants by the wavefunction collapse exactly like a universal quantum
computer. Then it goes to the next step by computing the evolution of the quantum
entangled wavefunction evolution, saving on classically calculating the state of the N-
bodies repeatedly, deriving it only when the quantum state decays into the classical one (as
in a measure).

Practically, the universe realizes a sort of computational optimization to speed up the
derivation of its future state by utilizing a Qbits-like quantum computation.

Free Will

Following the pigeonhole principle, which states that any computer that is a subsystem
of a larger one cannot handle the same information (and thus cannot produce a greater
power of calculation in terms of speed and precision) as the larger one, and considering the
inevitable information loss due to compression, we can infer that a human-made computer,
even utilizing a vast system of Q-bits, cannot be faster and more accurate than the universal
quantum computer.

Therefore, the temporal horizon of predicting the future states, before they happen,
is by force limited inside reality. Hence, among the many future states possible, we can
infer that we can determine or choose the future output within a certain temporal horizon
and that free will is limited. Moreover, since the decision of what reality state we want to
realize is not connected to the previous events before a certain preceding interval of time
(4D disentanglement), we can also say that such a decision is not predetermined.

Nevertheless, other than stating that the will is free but limited, from the present
analysis, there is an additional aspect of the concept of free will that needs to be analyzed.
Specifically, it pertains to whether many possible states of reality exist in future scenarios,
providing us with the genuine opportunity to choose which of them to attain.
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In this context, within the deterministic quantum evolution framework, or even
in classical scenarios, with precisely defined initial conditions in 4D spacetime, such a
possibility is effectively prohibited, since the future states are predetermined. Time in this
context does not flow but merely serves as a ‘coordinate’ of the 4D spacetime where reality
is located, losing the significance it holds in real life.

In the absence of GBN, knowing the initial condition of the universe at initial instant of
the Big Bang and the laws of physics precisely, the future of the universe remains defined.

This is because, unless you introduce noise into the simulation, the basic quantum
laws of physics are deterministic.

Actually, in the context of SQHM evolution, the random nature of GBN plays an
important role in shaping the future states of the universe. From the standpoint of the
simulation analogy, the nature of GBN presents important informational aspects.

The randomness introduced by GBN renders the simulation inherently unpredictable
to an internal observer. Even if the internal observer employs an identical algorithm to the
simulation to forecast future states, the absence of access to the same noise source results in
rapid divergence in their predictions of future states. This is due to the critical influence of
each individual fluctuation in the wavefunction decay (see Section 2.6.3). In other words,
to the internal observer, the future would be encrypted by such noise. Furthermore, if the
noise that would be used in the simulation analogy evolution were a pseudo-random noise
with enough unpredictability, only someone who is in possession of the seed would in fact
be able to predict the future or invert the arrow of time. Even if the noise is pseudo-random,
the problem of deriving the encryption key is practically intractable. Therefore, in presence
of GBN, the future outcome of the computation is ‘encrypted’ by the randomness of GBN.

Moreover, if the simulation makes use of a pseudo-random routine to generate GBN
and it appears truly random inside reality, it follows that the seed ‘encoding GBN’ is kept
outside the simulated reality and is unreachable to us. In this case, we are in front of an
instance of a ‘one-time pad’, effectively equating to deletion, which is proven unbreakable.
Therefore, in principle, the simulation could effectively conceal information about the key
used to encrypt GBN noise in a manner that remains unrecoverable.

From this perspective, the renowned Einstein quote, ‘God does not play dice with
the universe,’ is aptly interpreted. In this context, it implies that the programmer of the
universal simulation does not engage in randomness, as everything is predetermined for
him. However, from within this reality, we remain unable to ascertain the seed of the noise,
and the noise manifests itself as genuinely random. Furthermore, even if from inside this
reality, we would be able to detect the pseudo-random nature of GBN, featuring a high
level of randomness, the challenge of deciphering the key remains insurmountable [48]
and the encryption key practically irretrievable.

Thus, we would never be able to trace back to the encryption key and completely
reproduce the outcomes of the simulation, even knowing the initial state and all the laws of
physics perfectly, since simulated evolution depends on the form of each single fluctuation.

This universal behavior emphasizes the concept of ‘free will’ as a constrained capa-
bility, unable to access information beyond a specific temporal horizon. Furthermore, the
simulation analogy delves deeper into this idea, portraying free will as a faculty originating
in macroscopic classical systems characterized by foam-like dimensions in spacetime. As a
result, our consciousness lacks a perfect definition of free will; we desire something without
a full precise understanding of what it is. Nonetheless, through the exercise of our free will,
we can impact the forthcoming macroscopic state, albeit with a certain imprecision and
ambiguity in our intentions, yet not predetermined by preceding states of reality beyond a
specific interval of time.
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3.2. The Universal ‘Pasta Maker’ and the Actual Time in 4D Spacetime

Working with a discrete spacetime offers advantages that are already supported by
lattice gauge theory [49]. This theory demonstrates that in such a scenario, the path integral
becomes finite-dimensional and can be assessed using stochastic simulation techniques,
such as the Monte Carlo method.

In our scenario, the fundamental assumption is that the optimization procedure
for universal computation has the capability to generate the evolution of reality. This
hypothesis suggests that the universe evolves quantum mechanics in polynomial time,
efficiently solving the many-body problem and transitioning it from NP to P. In this context,
quantum computers, employing Q-bits with wavefunction decay that both produces and
effectively computes the result, utilize a method inherent to the physical reality itself.

From a global spacetime perspective, aside from the collapses in each local domain, it
is important to acknowledge a second fluctuation-induced effect. Larger fluctuations taking
place over extended time intervals can induce a jumping process in the wavefunction
configuration, leading to a generic superposition of states. This prompts a restart in its
evolution following quantum laws. As a result, after each local wavefunction decay, a
quantum resynchronization phenomenon occurs, propelling the progression towards the
realization of the next local classical state of the universe.

Furthermore, with quantum synchronization, at the onset of the subsequent moment,
the array of potential quantum states (in terms of superposition) encompasses multiple
classical states of realization. Consequently, in the current moment, the future states
form a quantum multiverse where each individual classical state is potentially attainable
depending on events (such as the chain of wave–function decay processes) occurring
beforehand. As the present unfolds, marked by the quantum decoherence process leading
to the attainment of a classical state, the past is generated, ultimately resulting in the
realization of the singular (foam-like) classical reality: the universe.

Moreover, if all possible configurations of the realizable universe exist in the future
(extending past our ability to determine or foresee over a finite temporal extent), the past is
comprised of fixed events (universe) that we are aware of but unable to alter.

In this context, we can metaphorically illustrate spacetime and its irreversible uni-
versal evolution as an enormous pasta maker. In this analogy, the future multiverse is
represented by a blob of unshaped flour dough, inflated because it contains all possible
states. This dough, extending up to the surface of the present, is then pressed into a
thin pasta sheet, representing the quantum superposition reduction to the classical state
realizing the universe.

The 4D surface boundary (see Figure 1) between the future multiverse and the past
universe marks the instant of present time. At this point, the irreversible process of de-
coherence occurs, entailing the computation or reduction to the present classical state.
This specific moment defines the current time of reality, a concept that cannot be precisely
located within the framework of relativistic spacetime. The SQHM aligns with the grav-
itational decoherence hypothesis [50]. It agrees with Roger Penrose’s point of view that
dispels the anthropocentric idea that the act of measurement triggers the collapse: ‘It takes
place in the physics, and it is not because somebody comes and looks at it’.
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3.3. Quantum and Gravity

Until now, we have not adequately discussed how gravity arises from the discrete
nature of the universal ‘calculation’. Nevertheless, it is interesting to provide some in-
sights into the issue because, viewed through this perspective, gravity naturally emerges
as quantized.

Considering the universe as an extensive quantum computer operating on a prede-
termined space-time grid does not yet represent the most optimized simulation. Indeed,
the optimization of the simulation has not taken into account the possibility of adjust-
ing the fixed dimensions of the elemental grid. This becomes apparent when we real-
ize that maintaining constant elemental cell dimensions leads to a significant dispersion
of computational resources in spacetime regions devoid of bodies or any need for cal-
culation. In such regions, we could simply allocate one large cell, thereby conserving
computational resources.

This perspective aligns with a numerical algorithm employed in numerical analysis
known as adaptive mesh refinement (AMR). This technique dynamically adjusts the accu-
racy of a solution within specific sensitive or turbulent regions during the calculation of a
simulation. In numerical solutions, computations often occur on predetermined, quantified
grids, such as those on the Cartesian plane, forming the computational grid or ‘mesh’.
However, many issues in numerical analysis do not demand uniform precision across
the entire computational grid as, for instance, used for graph plotting or computational
simulation. Instead, these issues would benefit from selectively refining the grid density
only in regions where enhanced precision is required.

The local adaptive mesh refinement (AMR) creates a dynamic programming environ-
ment enabling the adjustment of numerical computation precision according to the specific
requirements of a computation problem, particularly in areas of multidimensional graphs
that demand precision. This method allows for lower levels of precision and resolution
in other regions of the multidimensional graphs. The credit for this dynamic technique of
adapting computation precision to specific requirements goes to Marsha Berger, Joseph
Oliger, and Phillip Colella [42,51,52], who developed an algorithm for dynamic gridding
known as AMR. The application of AMR has subsequently proven to be widely beneficial
and has been utilized in the investigation of turbulence problems in hydrodynamics, as
well as the exploration of large-scale structures in astrophysics, exemplified by its use in
the Bolshoi Cosmological Simulation [53].
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An intriguing variation of AMR is the adaptive moving mesh method (AMMM)
proposed by Huang Weizhang and Russell Robert [43,54]. This method employs an r-
adaptive (relocation adaptive) strategy to achieve outcomes akin to those of adaptive mesh
refinement. Upon reflection, an r-adaptive strategy, grounded in local energy density as a
parameter, bears resemblance to the workings of curved space-time in our universe.

Conceivably, a more sophisticated cosmological simulation could leverage an ad-
vanced iteration of the AMMM algorithm. This iteration would involve relocating space
grid cells and adjusting the local delta time for each cell. By moving cells from regions
of lower energy density to those of higher energy density at the system’s speed of light
and scaling the local delta time accordingly, the resultant grid would appear distorted and
exhibit behavior analogous to curved space-time in general relativity.

Furthermore, as cell relocation induces a distortion in the grid mesh, updating the grid
at the speed of light, as opposed to simultaneous updating, would disperse computations
across various timeframes. In this scenario, gravity, time dilation, and gravitational waves
would spontaneously manifest within the simulated universe, mirroring their emergence
from curved space-time in our universe.

A criterion for reducing the grid step is based on providing a more detailed description
in regions with higher mass density (more particles or energy density) with a higher
amplitude of induced quantum potential fluctuations that reduces the De Broglie length of
quantum coherence.

This point of view finds an example in the Lagrangian approach, as outlined in ref. [55],
where the computational mesh dynamically moves with the matter being simulated. This
results in an increased resolution, characterized by smaller mesh cells, in regions of high
mass/energy density, while decreasing resolution in other areas. While this approach holds
significant potential, it is not without its challenges and limitations, as highlighted in the
work of Gnedin and Bertschinger [56].

The variability of the mesh introduces noticeable apparent forces, which are deemed
undesirable in the method [57] due to their tendency to violate energy conservation. Con-
sequently, countermeasures are implemented to eliminate or rectify this inconvenience.

From the standpoint of the simulation analogy, the field of force that naturally
emerges [56,57], due to grid mesh distortion caused by cell relocation methods [53,54], is
not as problematic as it might appear. The force field, resulting from this optimization
process in the calculation, may simulate gravity induced by discretization of the spacetime,
as an ‘apparent’ force arising from lattice cell distortion. On this ansatz, the 4D non-uniform
lattice network of the universal algorithm replicates reality by depicting 3D space incorpo-
rating the gravity. The universal algorithm includes rules (spacetime geometrization) for
modulating the variable density of the computational grid to simulate the gravity observed
in reality. This approach naturally results in discretized gravity that is quantum from
its inception.

From this perspective, gravity arises as an apparent force resulting from the opti-
mization process of AMMM to streamline the advancement of the reality simulation as
shown in references [54–57], and the emergence of gravity can be attributed to the al-
gorithmic optimization. The theoretical framework for transitioning from the variable
mesh of the computer simulation to the discrete 4D curved spacetime with gravity has the
potential to provide insights into the quantum gravity. The causal dynamical triangula-
tion theory [58] closely aligns with the perspective of simulating physics through discrete
computations, representing a theoretical framework. However, challenges emerge when at-
tempting to reconcile this approach with the continuum classical limits of general relativity
(see Section 3.3.1).
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From this line of reasoning, an intriguing observation emerges: dynamically enlarging
grid cells in regions where less computational power is needed inevitably results in the
creation of vast cells corresponding to empty spacetime. The constraint of limited resources
makes it impossible to achieve an infinitely large grid cell, preventing the realization of
completely flat space within any cell.

In the context of the quantum geometrization of spacetime [33], leading to a quintessence-
like interpretation of the cosmological constant that diminishes with the universe’s ex-
pansion, the finite maximum size of the simulation cell implies that the cosmological
constant can be arbitrarily small but not zero. This aligns with the implications of pure
quantum gravity, which posits that a vacuum with zero cosmological constant collapses
into a polymer-branched phase devoid of physical significance.

Moreover, assuming the discrete nature of spacetime, the cosmological constant is
also discrete, and the smallest discrete value before zero decreases as the universe expands.
This raises the question: is there a minimal critical value for the cosmological constant
(at a certain degree of universe inflation) below which the vacuum will collapse to the
polymer-branched phase prompting an envisioning of the ultimate fate of the universe?

On the opposite side, if achieving a zero-grid dimension is deemed impossible, the
inquiry into the minimum elemental size of spacetime naturally arises. In this context,
as highlighted in [19], the SQHM emphasizes the existence of a finite minimum discrete
element of distance. Consequently, spacetime can be conceptualized as a lattice composed
of elemental cells of discrete size. It is noteworthy to observe that the discreteness of
spacetime deduced by the SQHM is many orders of magnitude smaller than the minimum
geometric quantity of LQG. This minimum discrete distance renders spacetime akin to a
fabric with sparse threads, rather than a continuous plastic layer. It should not be conflated
with the minimum geometric quantity of LQG, which is due to the discrete spectrum of area
and volume operators where the ground state is linked to the Planck length and implicitly
incorporates the concept of detectability. This is because revealing this ground state would
require an energy equal to or greater than that of the Planck mass, inevitably forming a
black hole that overshadows it.

To establish the order of magnitude for the elemental size of spacetime, we can assert
that the volume of such an elemental cell must not exceed the volume within which
the matter of the pre-big-bang black hole collapses [33,59]. This condition ensures the
presence of a quantum potential repulsive force equal to the attractive gravitational force,
establishing the black hole equilibrium configuration, leading to the expression:

∆xmin =
}

2mmaxc
=

}
2muc

=
}c

2Eu
(106)

where mu is the mass equivalent to the total universe energy of the universe Eu ∼= 1053÷60j
[60], leading to

∆xmin =
}c

2Eu
≈ 6.62× 10−34 × 3× 108

2× 1053÷60 ≈ 10−(78÷85)m (107)

where, being c, }, Eu, physical constants, make also ∆xmin a physical universal constant.
Furthermore, for the time coordinate this requires that

∆tmin =
}c

2cEu
≈ 3× 10−(87÷94)s (108)
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3.3.1. The Classical Limit Problem in Quantum Loop Gravity (QLG) and Causal Dynamical
Triangulation (CDT)

Even if from the standpoint of the simulation analogy both CDT [58] and QLG [61]
take support and endorsement, also a contradictory aspect emerges in the procedure to
achieve the classical limit of the theories, namely the general relativity.

About this point, the SQHM asserts that achieving classical macroscopic reality re-
quires not only imposing the condition lim}→0, but enforcing the double conditions

limmacro ≡ limdeclim}→0 = lim}→0limdec (109)

where the subscript ‘dec’ stands for decoherence defined as

limdecψ = limdec
k=kmax

∑
k=kmin

bk|ψk|exp[
iS(k)

} ]

= bk̃|ψk̃|exp[
iS(k̃)

} ]

. (110)

where kmin < k̃ < kmax is one of the kmax − kmin eigenstates and holding.
The SQHM demonstrates that in the so-called semiclassical limit, attained by the con-

dition lim}→0, applied to the (zero-noise) quantum mechanics, the quantum entanglement
between particles persists and influences interactions even at infinite distances. Thus, rather
than a genuine classical limit, it portrays a large-scale quantum description. This approach
implicitly supports the wrong idea that the properties of the vacuum at a macroscopic
large-scale replicate those at a small scale, which is not true due to the breaking of scale
invariance symmetry in the SQHM by the De Broglie length.

This aspect can be analytically examined by exploring the least action principle [19,32],
generalized in the Madelung hydrodynamic formulation.

In the quantum hydrodynamic approach, the quantum equation of motion for the
complex wavefunction is separated into two equations involving real variables. These
equations pertain to the conservation of mass density distribution and its evolution, which
is described by a Hamilton-Jacobi-like equation. This evolution can be expressed through a
generalized hydrodynamic Lagrangian function that adheres to a generalized stationary
action condition principle [32].

By utilizing the quantum hydrodynamic Lagrangian, the variation of the quantum
hydrodynamic action for a general quantum superposition of states can be expressed as [32]
(Greek indexes run from 0 to 3)

δS = −1
c
∫ t
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where

∆SQ =
1
c

∫ y
|ψ|2∑

k

(
∂L̃(k)

∂|ψk|
− ∂µ

∂L̃(k)
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)
δ|ψk|dΩ (112)

is the variation of the action generated by quantum effects and where
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δ
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∂
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is the variation of the action generated by the mixing hat happens within the quantum
superposition of states.

The expression (113) is typical of superposition states, since the variation of the action
solely due to eigenstates is represented by:
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Moreover, given that the quantum motion equations for the k-th eigenstate [31] satisfies
the condition ∂L̃(k)

∂qµ −
d
dt

∂L̃(k)

∂
.
qµ

(k)

 = 0, (115)

the variation of the action δS for the k-th eigenstates reads as
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and therefore by (115) it follows both that

limdecδS =
(

∆SQ(k)

)
(117)

and that
limdecδ

(
∆SQmix

)
= 0. (118)

Furthermore, since in the semiclassical limit, for }→ 0 and consequently Vqu → 0 ,
we have that

∂
(

lim}→0L(k)

)
∂|ψk|

= 0, (119)

∂
(
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)
∂µ|ψk|

= 0, (120)

and finally, through the identity:



Quantum Rep. 2024, 6 315

lim}→0δ
(

∆SQ(k)

)
= 0, (121)

by utilizing (118) and (121), the classical least action condition

lim}→0limdecδS = 0. (122)

The classical least action law is recovered when the quantum hydrodynamic equations
transition into their classical form. In this context, the condition is rigorously achieved
through a coarse-grained approach, where the minimum discrete length is larger than the
range of interaction of the quantum potential. Within the minimal cell of this coarse-grained
approach (representing a macroscopic point mass), where quantum physics dominates, the
decay of the superposition of states leads to stationary configurations that are practically
identical to eigenstates. Meanwhile, the macroscopic point masses move according to
classical laws of motion since in their interaction Vqu = 0.

From this perspective, it is not possible for any quantum gravity theory to achieve the
classical limit of general relativity solely by imposing lim}→0. This limitation arises because
the classical least action, a fundamental principle of general relativity, cannot be restored
with a straightforward condition lim}→0.

This goes beyond a mere formal theoretical bottleneck; it is a genuine condition
positing that spacetime at the macroscopic level undergoes decoherence and lacks quantum
properties. This holds true, at least, in regions governed by Newtonian gravity. However,
in high-gravity areas near black holes and within them, the strong gravitational interaction
can give rise to macroscopic quantum entanglement over significant distances [58].

In this context, it is conceivable that quantum gravity approaches, such as QLG and
CDT, might face substantial challenges in achieving the classical limit of general relativity
solely by taking the limit of a null Planck constant. Although classical properties may be
recovered in coherent states, this approach is not exempt from the influence of quantum
potential (propelling quantum entanglement) on large-scale, as envisioned by Objective
Collapse Theories, which in the framework of SQHM persists within the tail interaction of
coherent states.

Furthermore, given that the quantum uncertainty and the finite speed of light rules
out the existence of a continuum limit, deeming it devoid of physical significance, CDT
could encounter difficulties in attempting to derive it.

3.3.2. The Simulation Analogy and the Holographic Principle

Even if the Holographic Principle and the Simulation Analogy support the idea that
reality is a phenomenon stemming from a computing process encoding it, some notable
differences arise. The simulation analogy portrays the real world as if it were being
orchestrated by a computational procedure subject to various optimization methods. The
macroscopic classical reality, characterized by foam-like patterns with short discrete time
intervals in microscopic quantum domains, clearly shows that scale invariance is a broken
symmetry in spacetime: The properties of the vacuum on a small scale are quite different
from those on a macroscopic scale, subjected to low gravity conditions [19], where the De
Broglie length defines the absolute scale.

Conversely, the holographic principle, based on the insightful observation that 3-D
space can be traced back to an informatively equivalent 2D formulation, that allows for the
development of a theory where gravity and quantum mechanics can be described together,
implicitly assumes that the properties of the vacuum at a macroscopic scale replicate those
at a small scale, which is not accurate. Essentially, the holographic principle takes a similar
shortcut to quantum loop gravity and causal dynamical triangulation, facing challenges in
describing macroscopic reality and general relativity.

To address this gap, the theory must integrate the decoherence process, which involves
leakage of information. A sort of condition of bounded from below information loss should
be introduced to ensure a more comprehensive understanding of classical reality and make
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the theory less abstract, potentially paving the way for experimental confirmations at
classical scale.

However, for the sake of precision, it must be noted that in scenarios of high gravity,
such as in black holes, where quantum entanglement can span significant distances [58],
the Holographic Principle can yield accurate predictions, indicating that information about
infalling mass remains encoded on the event horizon area of black holes.

4. Philosophical Breakthrough

The spacetime structure, governed by its laws of physical evolution that enable the
modeling of reality as a computer simulation, eliminates the possibility of a continuous
realization in both time and space. This applies both to quantum microscopic world and
to classical objects with their dynamic behavior, encompassing living organisms and their
information processing.

4.1. Extending Free Will

Although we cannot predict the ultimate outcome of our decisions beyond a certain
point in time, it is feasible to develop methods that enhance the likelihood of achieving our
desired results in the distant future. This forms the basis of ‘best decision-making’. It is
important to highlight that having the most accurate information about the current state
extends our ability to forecast future states. Furthermore, the farther away the realization of
our desired outcome is, the easier it becomes to adjust our actions to attain it. This concept
can be thought of as a preventive methodology. By combining information gathering and
preventive methodology, we can optimize the likelihood of achieving our objectives and,
consequently, expanding our free will.

Additionally, to streamline the evaluation process of ‘what to do’, in addition to
the rational-mathematical calculations that dynamically exactly e detailed reconstruct
the pathway to our final state, we can focus solely on the probability of a certain future
state configuration being realized, adopting a faster evaluation (a sort of Monte Carlo
approach). This allows us to potentially identify the best sequence of events to achieve our
objective. States beyond the time horizon in a realistic context can be accessed through a
multi-step tree pathway. A practical example of this approach is the widely recognized
cardiopulmonary resuscitation procedure [62,63]. In this procedure, even though the early
assurance of the patient’s rescue may not be guaranteed, it is possible to identify a sequence
of actions that maximizes the probability of saving their life.

In the final scenario, free will is the ability to make the desired choice at each step,
shaping the optimal path that enhances the probability of reaching the future desired
reality. Considering the simulated nature of the universe, it becomes evident that utilizing
powerful computers and software, such as those at the basis of artificial intelligence, for
acquiring and handling information can significantly enhance the decision-making process.
However, a comprehensive analysis and development of this argument extend beyond the
scope of the current work and are deferred to future research.

4.2. Methodological Approaches, Emergent from the Darwinian Principle of Evolution, for the Best
Future States Problem Solving

Considering intelligence as a function that, in certain circumstances, aids in finding
the most effective way to achieve desired or useful outcomes, it is conceivable that methods
beyond slow and burdensome rational calculations exist to attain results. This concept
aligns with emotional intelligence, a basic mechanism that, as demonstrated by psychology
and neuroscience, initiates subsequent purposeful rational evaluation.
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The simulation nature of reality demonstrates a form of intelligence (with both emo-
tional and rational components) that has evolved through a selection process favoring the
‘winner is the best solution’. Although this work does not delve into introducing another
important aspect, the physical law governing matter self-assembling [64] leading to the
appearance of life, it can already be asserted that two ‘methodologies of intelligence’ have
emerged. The first one is ‘capturing intelligence’, where the subject acquires resources by
overcoming and/or destroying the antagonist. The second one is ‘synergic intelligence’,
which seeks collaborative actions to share gained resources or to construct a more efficient
system or structure. The latter form of intelligence of the universal nature has played a
crucial role in shaping organized systems (living organism) and social structures and their
behaviors. However, a detailed examination of these dynamics goes beyond the scope of
this work and is left for future analysis.

4.3. Dynamical Conscience

By adhering to the quantum but macroscopically classical dynamics of the SQHM,
all objects, including living organisms, within the simulation analogy undergo fresh re-
calculations at each time step. This process propels them forward into the future within
the reality. The compilation of previous instant states, stored and processed within an
energy-information handling system, such as the brain, encapsulates the dynamics of
evolution and forms the foundation of consciousness in living organisms [65–67].

Neuroscience conceptualizes the consciousness of the biological mind as a three-level
process. Starting from the outermost level and moving inward, we have the cognitive
calculation, the orientative emotional stage, and, at the most fundamental level, the discrete
time acquisition routine. This routine captures the present state, compares it with the
anticipated state from the previous time step, and projects the future state for the next
acquisition step. The comparison between the anticipated and realized states provides input
for decision-making at higher levels. Additionally, this comparison generates awareness of
changes in reality and the speed of those changes, allowing for adjustments in the adaptive
time scan velocity. In situations where reality is rapidly evolving with the emergence of
new elements or potential dangers, the scanning time velocity is increased. This process
gives rise to the perception of time dilation, where a few moments appear as a significantly
prolonged period in the subject’s mind.

Given the natural progression of universal time, which achieves optimal performance
via quantum computation involving stepwise evolution and wavefunction decay for out-
put extraction, it is inevitable that, due to selective processes like matter self-assembly
and subsequent Darwinian evolution, living systems, optimized for efficiency, adopt
the highest-performing intelligence for a subsystem (the minds of organisms) through
replication of universal quantum computing methods. This suggests that groups of in-
terconnected neurons implement quantum computing at the microscopic level of their
structure, resulting in their output and/or overall state being the outcome of multiple local
wavefunction decays.

The macroscopic classical reality, characterized by foam-like patterns and brief dis-
crete time and microscopic space quantum domains, aligns with the Penrose–Hameroff
theory [68] proposing that a quantum mechanical approach to consciousness can account
for various aspects of human behavior, including free will. According to this theory, the
brain utilizes the inherent property of quantum physical systems to exist in multiple su-
perposed states, allowing it to explore a range of different options in the shortest possible
period of time.
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4.4. Intentionality of Conscience

Intentionality is contingent upon the fundamental function of intelligence, which em-
powers the intelligent system to respond to environmental situations. Following calculation
or emotional evaluation, when potential beneficial objectives are identified, intentionality is
activated to initiate action. However, this reliance is constrained by the underlying laws of
physics explicitly defined in the simulation. Essentially, the intelligent system is calibrated
to adhere to the physics of the simulation. In our reality, it addresses all needs essential
for development of life and organized structures, encompassing basic requirements, for
instance, such as the necessity to eat, freedom of movement, association, and protection
from cold and heat and many others.

This problem-solving disposition is, however, constrained by the physics of the envi-
ronment. When it comes to artificial machines, they cannot develop intentionality solely
through calculations because they lack integration with the world. In biological intelli-
gence, the ‘hardware’ is intricately linked with the physics of the environment. Not only it
manages energy and information, but there is also an inverse influence: energy shapes and
develops the hardware of the biological system.

In contrast, a computational machine lacks the capacity to autonomously modify
its hardware and establish criteria for its safe maintenance or enhancement. In other
words, intentionality, the driving force behind the pursuit of desired solutions, cannot be
developed by computational procedure executed by hardware. Intentionality serves as
a safety mechanism, or navigation system, for a continually evolving intelligent system
whose hardware is seamlessly integrated into its functionality and continuously updated.
To achieve this, a physically self-evolving wetware is necessary. At the level of artificial
intelligence or autonomous machines, a partial improvement, aimed at better mimicking
biological behavior, can be achieved by developing software that mimics biological self-
modification, such as genetic programming.

4.5. Final Considerations

So far, the finite speed of information transmission has been merely postulated, the
simulation analogy provides an explanation. Although real time and simulation time
are disconnected, to compute the effects of infinite speed particles you would need to
compute all the interactions all at once in one frame (requiring an infinite speed of computer
calculation power). Since this is impossible, you need a finite speed of propagation in
any simulation, because that is the only way you can integrate. This speed absolute value
depends directly on the computing power you have and nothing else.

Furthermore, quantum physics, which underpins quantum computing, exponentially
simplifies the evolution of classical physics, thereby practically enabling simulations that
were previously unattainable. Quantum physics serves as the foundational framework of
universe, while classical physics emerges on a macroscopic scale. The universe evolves
through quantum computation, with classical states derived only at discrete intervals. This
is less demanding than the computation of continuous classical evolution, highlighting the
sophistication of such an approach.

This suggests that the hypothesis, proposed by a large number of scientists, as positing
classical physics as fundamental while quantum physics arises from it through some
‘emergent’ mechanism, appears counterproductive and an unjustified complication from
computational standpoint.
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The SQHM agrees with Roger Penrose’s point of view that dispels the anthropocen-
tric idea that the act of measurement triggers the collapse: ‘It takes place in the physics,
and it is not because somebody comes and looks at it’. Penrose’s assertion that the in-
telligence (and the universe which inherently possesses it) is not classically computable
aligns closely with the perspective presented in this work, which argues that the universal
progression with integrated intelligence is achievable only through the foundation of its
quantum computing.

Moreover, considering that the maximum entropy tendency is not universally
valid [69–71], but rather the most efficient energy dissipation with order and living struc-
tures formation is the emergent law [64], we are positioned to narrow down the goal,
motivating the simulation, to two possibilities: the generation of life and/or the realization
of an efficient intelligent system.

Furthermore, as the physical laws, along with the resulting evolution of reality, are
embedded in the problem that the simulation seeks to address, intentionality and free
will are inherently manifested within the (simulated) reality to achieve the
simulation’s objective.

5. Conclusions

The stochastic quantum hydrodynamic model achieves a significant advancement by
incorporating the influence of the fluctuating gravitational background, akin to a form of
dark energy, into quantum equations. This approach offers solutions that effectively tackle
crucial aspects within the realm of objective-collapse Theories. A notable accomplishment
lies in resolving the ‘tails’ problem through the definition of the quantum potential length
of interaction, supplementing the De Broglie length. Beyond the quantum interaction range,
the quantum potential is unable to sustain coherent Schrödinger quantum behavior of
wavefunction tails.

The SQHM additionally emphasizes that an external environment is unnecessary,
illustrating that the quantum stochastic behavior leading to wave–function collapse can be
an intrinsic property of the system within a spacetime characterized by fluctuating metrics.
Moreover, positioned within the framework of relativistic quantum mechanics, seamlessly
aligning with the finite speed of light and information transmission, the SQHM establishes
a distinct connection between the uncertainty principle and the invariance of light speed.

The theory further deduces, within a fluctuating quantum system, the indeterminacy
relation between energy and time—an aspect not expressible in conventional quantum
mechanics. This revelation offers insights into measurement processes that cannot be
concluded within a finite time interval, particularly within a genuinely quantum global
system. Remarkably, the theory garners experimental validation through the confirmation
of the Lindemann constant concerning the melting point of solid lattices and the transition
of 4He from fluid to superfluid states.

The self-consistency of the SQHM is guaranteed by its ability to depict the collapse of
the wavefunction within its theoretical framework. This characteristic allows it to demon-
strate the compatibility of the relativistic locality principle with the non-local property
of quantum mechanics, specifically the finite speed of light and the uncertainty princi-
ple. Furthermore, by illustrating that large-scale systems naturally transition into deco-
herent stable states, the SQHM effectively resolves the ‘pre-existing’ reality problem in
quantum mechanics.
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Moving forward, the paper demonstrates that the physical dynamics of the SQHM
can be analogized to a computer simulation where various optimization procedures are
applied to bring it into realization. This conceptual framework leading to macroscopic
reality of foam-like consistency, wherein microscopic domains with quantum properties
coexist, helps in elucidating the meaning of time in our contemporary reality and deepens
our understanding of free will. The overarching design, introducing irreversible processes
influencing the manifestation of macroscopic reality in the present moment, posits that the
multiverse exists solely in future states, with the past constituted by the formed universe
after the present instant. The projective decay at the present time represents a kind of
multiverse reduction to a universe.

The discrete simulation analogy lays the foundation for a profound understanding
of several crucial questions. It addresses inquiries about, the emergence of gravity in a
discrete spacetime evolution, and the recovery of the classical general relativity limit in
Quantum Loop Gravity and Causal Dynamical Triangulation.

The Simulation Analogy reveals a strategy that minimizes the amount of information
to be processed, thereby facilitating the operation of the simulated reality in attaining
the solution of its predefined founding problem. From the perspective within, reality
is perceived as the manifestation of simulation-specific physical laws. In the scenario
under consideration, the simulation appears to employ an entropic optimization strategy,
minimizing information loss while achieving maximum useful data compression and
maintenance. All this in alignment with the simulation’s intended purpose of life as well as
intelligence generation.
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Appendix A

The Schrodinger–Langevin equation describing the quantum Brownian motion can be
derived from (34) by utilizing the following identities:

lim L
λc orT→0D = limT→0γD

(
L
λc

)2 }
2m

= limT→0γDL2 kT
4} = 0 (A1)

lim L
λc orT→0κ ∼= limT→0α

2kT
mD

= α0
8}

mγDL2 = f inite (A2)

lim L
λc orT→0Q(q,t) = 0. (A3)

Therefore, being lim L
λc orT→0|

Q(q,t)

2|ψ|2
| << |κS|, the term i

Q(q,t)
|ψ|2 can be disregarded in

Equation (34), resulting in the conventional Langevin-Schrödinger equation for quantum
Brownian motion:

−i}∂t|ψ| =
}2

2m
∂i∂iψ−

(
V(q) + κS− qmκD1/2ξ(t) + C

)
ψ (A4)
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