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Abstract

We study global subalgebras of superconformal algebras in two dimensions and their unitary represen-
tations. Global superconformal multiplets are decomposed into conformal multiplets using Racah-Speiser 
algorithm, revealing many essential aspects of superconformal theories such as stress-energy tensor, con-
served current, supersymmetric deformation and supersymmetry enhancement. Character formulae for the 
representations are presented. We further find a collection of conserved charges that are k-forms under the 
R-symmetry, which must be part of the super Virasoro algebra with N ≥ 3 supersymmetries.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction and conclusion

Conformal field theory (CFT) is one of the key ingredients of theoretical physics, with its 
far-reaching applications from string theory to condensed matter theory. Power of the conformal 
field theories lies on the abundance of symmetries, which constrain the structure and contents of 
the theory to a large degree.

The power of symmetries becomes particularly pronounced with introduction of supersymme-
tries. The superconformal symmetry, considered to be the most general symmetry group in four 
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spacetime dimensions [1], enables a plethora of progress based on ‘kinematics’ of the theory 
alone, let aside the ‘dynamics’.

The conformal symmetry becomes significantly extended to have an infinite number of gener-
ators in two space-time dimensions, known as the Virasoro algebra [2]. In addition to the Virasoro 
algebra, many extensions of two-dimensional conformal algebra such as Kač-Moody algebra 
[3,4] or W-algebra [5] have been studied, see also [6,7].

However, the supersymmetric extension of the Virasoro algebra, namely super Virasoro alge-
bra, is increasingly complicated. It has been fully studied only for a relatively fewer number of 
supersymmetries N ≤ 4 [8–16]. For N ≥ 5, the full super Virasoro algebra has not been clearly 
constructed to the best of our knowledge.

Numerous authors have attempted to construct super Virasoro algebra with a large number N
of supercurrents. The results are yet incomplete and do have certain unconventional features. For 
instances, see [17–25]. It is the existence of certain generators, other than what are expected by 
a straightforward generalization of cases with fewer N , that makes the construction nontrivial.

Under the circumstances, we first study in the present work the structure of global subalgebra 
of the super Virasoro algebra in two dimensions and its unitary representations. We find that the 
study of the global subalgebra provides certain concrete implications on the poorly understood 
super Virasoro algebra.

Recently, the unitary representations of superconformal algebras with any number of super-
symmetries N in dimensions 3 ≤ d ≤ 6 were systematically organized in [26]. The key was to 
decompose each representation of a superconformal algebra into those of a conformal algebra, 
utilizing the Racah-Speiser algorithm to organize the conformal primaries into representations of 
Lorentz and R-symmetry groups. Since the global conformal algebra so(2, 2) in two dimensions 
is highly analogous to its higher-dimensional counterpart so(d, 2), we can maximize utilization 
of the methodology of [26].

The problem further simplifies in two dimensions because the two-dimensional conformal 
algebra splits into two copies of Virasoro algebra. The two copies are often referred to as left-
moving and right-moving sectors, or also as holomorphic and anti-holomorphic sectors. Each 
copy of Virasoro algebra can be extended to accommodate any number N of supersymmetries 
that results in super Virasoro algebra. Therefore, one can study multiplets of individual sectors, 
then simply take direct product of multiplets in each sector to form a full conformal multiplet.

Despite our limitation to the global subalgebra, we find that it contains many essential features 
of the larger super Virasoro algebra, particularly involving the shortening, or unitary, conditions. 
Thus, much can be inferred about the full superconformal theory in two dimensions by studying 
the global subalgebra.

We list some of the most notable results below.

• In two-dimensional global subalgebra of super Virasoro algebra with any number N of super-
symmetries, a multiplet that is constant on the conformal manifold, a.k.a. absolutely protected 
multiplet does not exist. In other words, every short multiplet that saturates the unitarity bound 
may recombine with another short multiplet to form a long multiplet in the limit of its satura-
tion of unitarity bound. See section 4.1.

• In all global superconformal theory with any numbers (N , N̄ ) of supersymmetries, holomor-
phic and anti-holomorphic conserved currents that are supersymmetric, R-neutral, and have 
spins s = 1, 32 , 2, · · · are allowed. In particular, a conserved current with s = 2 identified as 
the stress-energy tensor and a supersymmetric higher-spin current s = N

2 − 1 for N ≥ 7 are 
universal in all theories. See section 5.1.
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• In all global superconformal theory with (N �= 4, N̄ �= 4), or with large N = 4 or N̄ = 4 with 
equal Kač level for two copies of su(2) ⊂ so(4), relevant supersymmetric deformations with 
conformal dimension � = 3

2 that are Lorentz scalars and R-spinors are allowed. However, 
their existence is not guaranteed, and in two dimensions the universal mass as defined in [27]
does not exist in any superconformal theory. See section 5.2.

• In all global superconformal theory with any numbers (N , N̄ ) of supersymmetries, a marginal 
supersymmetric deformation that is a Lorentz scalar and an R-singlet is allowed. In particular, 
we rediscover that a universal marginal deformation is guaranteed to exist in the large (4, 4)

superconformal theory. See [28] and section 5.2.
• A global superconformal theory with N = 5 (or N̄ = 5) is automatically enhanced to an 

N = 6 (or N̄ = 6) theory. See section 5.3.
• A super Virasoro algebra with number of supersymmetries N ≥ 5 must contain conserved 

current operators that are k-forms under the R-symmetry group SO(N ) and have scaling 
dimensions (L0-eigenvalue) k

2 − 1, where k = 3, 4, · · · , N . The current is bosonic when k is 
even and fermionic when k is odd. (Anti-)commutation relation between the supercurrent and 
the k-form current must yield, among others, the (k + 1)-form current and the (k − 1)-form 
current. See section 6.1.

This article is organized as follows. We begin with preliminaries in section 2, where the global 
subalgebra, and decomposition principle and unitarity condition for its multiplets are explained. 
Presented in section 3 are lists of unitary multiplets, for global subalgebras with every number 
of supersymmetries N . Then, we discuss various implications of the results in order. First, we 
discuss more or less straightforward results in section 4, namely the recombination rules and 
character formulae for the multiplets. Then, section 5 contains more physically significant appli-
cations such as conserved currents, deformations, and supersymmetry enhancements, highlighted 
by the stress-energy tensor. Finally in section 6, we take a step further to discuss what we can 
infer about the super Virasoro algebra from our results on the global subalgebra.

2. Preliminaries

2.1. Global superconformal algebras

We start with a brief review on the global superconformal algebra with an arbitrary number of 
supercharges in two dimensions. Generic cases are first discussed, followed by a special case of 
the N = 4 superconformal algebra. We limit ourselves to the left-moving sector, as the algebra 
of the right-moving sector is identical.

2.1.1. Generic global subalgebras
A superconformal algebra with N supercharges is an so(N ) Kač-Moody algebra [29,30]. 

Its global subalgebra is generated by three Laurent modes L−1, L0, L1 of the Virasoro operator, 
two modes Ga

− 1
2
, Ga

1
2

of N supercharges, and one mode T ab
0 = −T ba

0 of R-symmetry generators, 

where a, b are so(N ) vector indices. Let us present the non-trivial (anti-)commutation relations 
below,

[Lm,Ln] = (m − n)Lm+n, (2.1a)

[Lm,Ga
r ] = (

m − r)Ga
m+r , (2.1b)
2



S. Lee, S. Lee / Nuclear Physics B 956 (2020) 115033 5
[Lm,T ab
0 ] = 0, (2.1c)

[T ab
0 , T cd

0 ] = i(δacT bd
0 − δbcT ad

0 − δadT bc
0 + δbdT ac

0 ), (2.1d)

[T cd
0 ,Ga

r ] = −(V cd)abG
b
r , (2.1e)

{Ga
r ,G

b
s } = 2Lr+sδ

ab − (r − s)(V cd)abT
cd
0 , (2.1f)

where

(V cd)ab = −i(δc
aδ

d
b − δd

a δc
b) (2.2)

are so(N ) generators T cd
0 in the vector representation. We work in Neveu-Schwarz sector, so 

r, s = − 1
2 , 12 and m, n = −1, 0, 1.

2.1.2. N = 4 global subalgebras
The case N = 4 where so(4) � su(2) ⊕ su(2) calls for a special treatment. As found in 

[12], there exists a one-parameter family of N = 4 superconformal algebra, where we use α
to parametrize relative levels of the two su(2)’s. Six so(4) generators are arranged into two mu-
tually commuting sets of su(2) generators T ±i

0 . For the global subalgebra of the superconformal 
algebra, last three subequations of (2.1) are modified as follows:

[T ±i
0 , T

±j
0 ] = iεijkT ±k

0 , [T ±i
0 , T

∓j
0 ] = 0, (i, j, k = 1,2,3) (2.3a)

[T ±i
0 ,Ga

r ] = iη±i
ab Gb

r , (2.3b)

{Ga
r ,G

b
s } = 2Lr+sδ

ab + 4(r − s)
( α

1 + α
iη+i

ab T +i
0 + 1

1 + α
iη−i

ab T −i
0

)
, (2.3c)

where

η±i
ab = ±δi[aδ4

b] + 1

2
εiab, (2.4)

and the parameter α is related to the su(2) levels by

α = k−
k+

. (2.5)

This global subalgebra is named D(2,1;α). When α = 1, D(2,1;α) is osp(4|2), which is pre-
cisely what one obtains by putting in N = 4 in the generic algebra (2.1). In doing so, one must 
be careful with a numerical factor in the relation between generators of so(4) and su(2) ⊕ su(2). 
That is, (T i

SO(4))
2 = 2((T i

SU(2)+)2 + (T i
SU(2)−)2), which accounts for the extra factor of 2 in the 

second term of (2.3c).
In subsequent sections, we will usually leave α as a free parameter and refer to D(2,1;α) as 

large N = 4 global subalgebra, although we will frequently give it the value 1.
Meanwhile, another subalgebra can be obtained from the above by, e.g., taking a limit α → ∞. 

This leaves us with only one su(2) generated by T i
0 , under which four supercharges transform as 

two independent sets of spinors G±
r , Ḡ±

s where r, s = ± 1
2 as before. The algebra is summarized 

by, in addition to the first three subequations of (2.1), (see [13,14])

[T i
0 , T

j
0 ] = iεijkT k

0 , (i, j, k = 1,2,3) (2.6a)

[T i
0 ,Ga

r ] = −1

2
σ i

abG
b
r , (a, b = 1,2) (2.6b)

[T i
0 , Ḡa

s ] = 1
(σ i

ab)
∗Ḡb

s , (2.6c)

2
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{Ga
r ,G

b
s } = {Ḡa

r , Ḡ
b
s } = 0, (2.6d)

{Ga
r , Ḡ

b
s } = 2Lr+sδ

ab − 2(r − s)σ i
abT

i
0 , (2.6e)

where σ i
ab are the usual Pauli matrices. This global subalgebra is su(2|1, 1) (see [12]), to which 

we refer as small N = 4 global subalgebra.

2.1.3. Comment on super Virasoro algebras
In two dimensions, super Virasoro algebras with N supercharges are constructed by central 

charge extension from the corresponding global subalgebras [2]. As a result, the full algebra 
contains an infinite number of Laurent modes for each of the operators L, Ga , T ab , with non-
trivial commutation relations such as[

Lm,Ln

] = (m − n)Lm+n + c

12
(m3 − m)δm+n,0, (m,n ∈Z) (2.7)

However, the super Virasoro algebra in general is not completed by the infinite modes of L, 
Ga , and T ab . For example, the super Virasoro algebra for the large N = 4 contains an additional 
u(1) generator among others [12], and higher-N algebras are expected to contain more extra 
generators. See [21] for an example.

While the super Virasoro algebras for 2 ≤N ≤ 4 have been thoroughly studied [8–16], those 
for generic N ≥ 5 are not fully understood to the best of our knowledge. It is one of the main 
goals of this article to find extra generators that must enter the algebra by studying their global 
subalgebras, in particular their stress-energy tensor multiplets. See section 6.1 for this account.

2.2. Superconformal multiplets

We now turn to global superconformal multiplets allowed by each global subalgebra with an 
arbitrary number N of supercharges. Let us first discuss the unitary multiplets of the left-movers 
Ga

1/2 below. Same argument applies to the right-movers as well.
An irreducible superconformal multiplet is fully determined by its superconformal primary V

that is annihilated by {Ga
1/2, L1}. A superconformal primary furnishes an irreducible representa-

tion under the maximally compact bosonic subalgebra sl(2) ⊕so(N ).1 The left-moving multiplet 
then consists of the primary V and its superconformal descendants, obtained by consecutive ac-
tions of L−1 and Ga

−1/2 on the primary.
Given any superconformal primary, it is straightforward to build a multiplet with its descen-

dants. However, unitarity conditions impose a bound on the allowed L0-eigenvalue h0 of the 
superconformal primary. Let us examine this bound in any N in two dimensions. This argument 
closely follows that of [31], and we shall thus be brief.

Let us denote the state corresponding to the superconformal primary [R]h0 by |[R]h0〉α , where 
[R] = [R1 R2 · · · Rr ] collectively denotes the highest weight so(N ) Dynkin labels with r =
�N /2� and α is an index for the representation [R]. The unitarity bound can be obtained by 
enforcing all first-level components in the multiplet to have non-negative norms. To be more 
explicit, let us consider a matrix element2

Abβ;aα = 〈[R]h0 |β Gb
1/2G

a
−1/2 |[R]h0〉α . (2.8)

1 There is an exception of small N = 4 superconformal algebra where so(4) reduces to su(2).
2 We actually need conjugate indices for the bra, but it is irrelevant as we are only interested in the eigenvalues.
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Since (Ga
1/2)

† = Ga
−1/2, all its eigenvalues are required to be non-negative.

We can proceed with the (anti-)commutation relation (2.1) since the primary ket is annihilated 
by G1/2:

Abβ;aα = 〈[R]h0 |β (2L0δba − 1

2
(V cd)baT

cd
0 ) |[R]h0〉α

= 2h0(I)bβ;aα − 1

2
(V cd)ba ⊗ (ρ(T0)

cd)βα, (2.9)

where (V cd)ba = −i(δc
bδ

d
a − δd

b δc
a) as in (2.2) and (ρ(T0)

cd)βα represents matrix elements of 
so(N ) generators in the vector and [R] representations. Eigenvalues of the matrix (2.9) can be 
obtained as in a well known quantum mechanics problem. The result is:

h0 ≥ 1

4
(c2([R′]) − c2([R]) − c2(V )), (2.10)

where c2([R]) denotes the quadratic Casimir of the representation [R], V denotes the vector 
representation, and [R′] is any irreducible representation that composes the tensor product [R] ⊗
V . For the generic case where the R-symmetry group is so(N ), under which the primary has 
Dynkin labels [R1 · · ·Rr ] and the vector has [1 0 · · ·0], (2.10) becomes

2h0 ≥ h1 =
{

R1 + · · · + Rr−2 + Rr−1+Rr

2 N is even,

R1 + · · · + Rr−1 + Rr

2 N is odd,
(2.11)

where h1 is the first orthogonal weight. The orthogonal basis will be used exclusively in sec-
tion 4.2. For later convenience, we present the relation between the Dynkin labels Ri and the 
orthogonal weights hi below:

When N is even,

hi = Ri + · · · + Rr−2 + Rr−1 + Rr

2
(i = 1,2, · · · , r − 2) ,

hr−1 = Rr−1 + Rr

2
, hr = Rr−1 − Rr

2
. (2.12)

When N is odd,

hi = Ri + · · · + Rr−1 + Rr

2
(i = 1,2, · · · , r − 1) , hr = Rr

2
. (2.13)

When the BPS condition (2.11) is saturated, Abβ;aα acquires a zero eigenvalue. Since (2.11)
corresponds to (2.10) with [R′] that yields the strongest bound, this indicates that among many 
states Ga

−1/2 |[R]h0〉α that transform in [R1 · · ·Rr ] ⊗[1 0 · · ·0] representation of the R-symmetry 
group, those belonging to the irreducible representation [R1+1 R2 · · ·Rr ] are null. Then, not only 
the component [R1 + 1 R2 · · ·Rr ]h0+ 1

2
but also its conformal descendants must be removed from 

the superconformal multiplet. A systematic procedure of such a removal is discussed in [26]. 
Such superconformal multiplets with null states are referred to as short multiplets, as opposed to 
long multiplets. Following the convention of [26], a long multiplet will be denoted as

L[R]h h > h1(R),

where [R] and h are quantum numbers of its superconformal primary. Similarly a short multiplet 
will be denoted as
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A[R]h h = h1(R).

In particular, a vacuum multiplet will be denoted as

V [0]0,

although it is also a short multiplet. The vacuum multiplet is defined as a multiplet whose primary 
is annihilated by all operators so there are no descendants. All of its quantum numbers vanish.

So far we have discussed the unitarity condition of first-level states only. We conjecture that 
it alone suffices, because the first-level states impose the strongest bound.

A complication arises in higher dimensions where the Lorentz group is also non-abelian. The 
strongest unitarity bound for a given primary arises from the descendant whose Dynkin labels 
for the Lorentz group are small and that for the R-symmetry are large. As a result, when the 
primary is a Lorentz singlet, second-level unitarity bound can be stronger than that of the first-
level, where the states are necessarily Lorentz spinors rather than of smaller Dynkin labels that 
would have been present (and given stronger bound) for generic primaries. This non-generic 
phenomenon leads to a diversity of short multiplets, including those with higher-level null states 
and more interestingly, isolated short multiplets. See [26] for more details. In contrast, all short 
multiplets in two dimensions are limiting cases of long multiplets, which results in the absence 
of absolutely protected multiplets. We will discuss these features further in section 4.1.

A superconformal multiplet is decomposed into conformal multiplets [26] that consist of con-
formal primaries (annihilated by L1) and their descendants (obtained by consecutive actions of 
L−1 on the primaries). Thus it is useful to express the superconformal multiplet as a collection 
of conformal primaries whose conformal multiplets make up the superconformal multiplet. We 
refer to these conformal multiplets as components of the superconformal multiplet. The collec-
tion consists of the superconformal primary V and the operators that are obtained by (repeatedly) 
acting only Ga

−1/2’s on V . Note that we can effectively set

{Ga
−1/2,G

b
−1/2} = 2L−1δ

ab ∼ 0, (2.14)

because the L−1 action does not generate a new conformal primary but generates a descendant. 
Due to this Fermi-Dirac statistic, decomposition into conformal multiplets is finite.

Since conformal primaries are also in the representations of sl(2) × so(N ) [26], it proves 
convenient to specify each conformal multiplet by the L0 eigenvalue h and the highest weight 
so(N ) Dynkin label [R1 · · ·Rr ] of the corresponding conformal primary. Thus,

[R]h : a conformal multiplet with corresponding primary.

Note that we are using the same notation to refer to superconformal multiplets as to conformal 
multiplets, except that a letter L, A, or V to indicate the presence of null states is omitted for the 
latter.

Conformal multiplet decomposition of a superconformal multiplet can be performed by con-
secutive actions of Ga

−1/2 on the superconformal primary, and organizing into irreducible repre-
sentations of the bosonic subalgebra sl(2) ⊕ so(N ). This process is best done via Racah-Speiser 
algorithm, inspired by [32] and thoroughly explained in [26]. In our case of two dimensions this 
is particularly simple, because Ga

−1/2 simply act as raising operators for the sl(2) and the only 
non-trivial part is the R-symmetry so(N ).

Number of operations of Ga
−1/2 required on the superconformal primary to obtain a particular 

conformal primary is referred to as level of the component. Thanks to the Fermi-Dirac statistics, 
the level is bounded from above by N in any superconformal multiplet. In fact, long multiplets 
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are always terminated at the level N while short multiplets are terminated earlier. In two di-
mensions where Ga

−1/2 simply raises the L0-eigenvalue by 1
2 , any component at level l has an 

L0-eigenvalue h0 + l
2 where h0 is that of the superconformal primary.

Note that in all of the discussions so far, and in most of the discussions that will follow, 
conformal and superconformal multiplets refer to representations of the global subalgebras. In 
general, multiplets of the full super Virasoro algebras include many global multiplets, as they 
include the action of all negative modes such as Ln<−1, Ga

r<−1/2, T [ab]
n<0 on the primary. For 

example, the vacuum multiplet and the stress-energy tensor multiplet for the global subalgebra 
belong to the same super Virasoro multiplet.

2.3. Supersymmetric deformations and conserved currents

One of the applications of decomposition of superconformal multiplets is to look for possible 
deformations of CFTs. Following [27], we seek possible deformations of SCFTs in two dimen-
sions in vicinity of RG fixed points by relevant or marginal local operators O. That is, given a 
superconformal theory, we aim to find a local operator that i) is a Lorentz singlet, ii) has scal-
ing dimension less than or equal to the dimension, which is 2 throughout this paper, iii) is not 
a total derivative, and iv) is supersymmetric. Note that the operator must reside in an allowed 
superconformal multiplet of the theory.

In two dimensions, superconformal algebras separate themselves into left- and right-moving 
sectors. The L0- (in the left) and L̄0- (in the right) eigenvalues h0 and h̄0 of an operator sum up 
to the scaling dimension, and their difference represents the spin of the operator. Thus, to satisfy 
the condition i) we require h0 = h̄0, and further for ii), it suffices to look for operators with 
h0 = h̄0 ≤ 1. The condition iii) suggests to consider only the conformal primaries, as conformal 
descendants are obtained by applying L−1 ∼ ∂z to another local operator.

The condition iv) is a little trickier to satisfy. One obvious way for a conformal primary 
belonging to a superconformal multiplet to be supersymmetric (i.e. to be annihilated by all super-
symmetries G−1/2) is to be a generic top component of the superconformal multiplet: to reside 
at the highest level of the multiplet since an application of G−1/2 raises the level by unity. As 
discussed in the last subsection, a long multiplet always has its generic top component at the 
level N while short multiplets have them at lower levels, and possibly more than one of them. 
Every superconformal multiplet possesses at least one generic top component.

Nevertheless, there are components of short superconformal multiplets at the level lower than 
the generic top component, that however are annihilated by all supersymmetries. Following [27], 
we refer to them as sporadic top components, and they prove to be very fruitful in discussion of 
conserved currents in two dimensions.

A sporadic top component is easily identified when, as in [27], there exists a conformal 
primary whose Dynkin labels match none of those at the next level when added by any of super-
charges. In such case, we infer that all conformal primaries at the next level must be produced 
by acting on other components at the previous level by supercharges. However, note that this is 
sufficient but not necessary a condition to be a top component. We shall see counterexamples in 
sections 3.5, 3.7, and 3.9.

Also of our interest are conserved currents. When an operator satisfies the conditions iii) and 
iv) above but has either h0 = 0 or h̄0 = 0, the supersymmetric operator is annihilated by L0 ∼ ∂z

or L̄0 ∼ ∂z̄, respectively. In other words, it is conserved. In particular, if such an operator is an R-
singlet and has (h0, h̄0) = (2, 0) it could be the holomorphic part of the stress-energy tensor and 
if it has (h0, h̄0) = (0, 2) it could be the anti-holomorphic part, expected to exist in all physical 
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Table 1
List of N = 1 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [0]h0 h0 > 0 - - [0]
h0+ 1

2
V [0]0 - [0] 1

2
- [0]0

theories. Further, to the same multiplet as the stress-energy tensor but at the previous level must 
belong the supercurrents (in the vector representation of the R-symmetry) and yet at the level 
below the R-symmetry currents (in the adjoint representation). Meanwhile, a supersymmetric 
and R-singlet operator with (h0, h̄0) = (0, 1) or (1, 0) would similarly indicate a flavor current, 
and those with (h0, h̄0) = (0, s > 1) or (s > 1, 0) the higher-spin currents.

Supersymmetric deformations and conserved currents will be discussed in sections 5.1 and 
5.2, respectively.

3. List of multiplets

We tabulate in this section all superconformal multiplets, long or short as explained in sec-
tion 2.2, for each number of supersymmetries. In this section, we restrict only to the left-moving 
sector, as the right-moving sector may have a same list of multiplets with its own N̄ . In doing 
so, we will explicitly list top components, generic or sporadic as explained in section 2.3, to be 
discussed in detail in the following sections.

3.1. N = 1

Let us begin with the simplest case, N = 1 that contains no R-symmetry. Representation with 
respect to the R-symmetry group is always trivial: [0]. For any superconformal primary [0]h0 , 
the unitarity bound simply becomes

h0 ≥ 0. (3.1)

When the bound is saturated, the only superconformal descendant G−1/2 |[0]h0〉 = |[0]
h0+ 1

2
〉 is 

null and the superconformal multiplet consists of only one conformal multiplet. Then a complete 
list of superconformal multiplets and their top components is as simple as Table 1.

3.2. N = 2

The N = 2 supersymmetry has an abelian R-symmetry SO(2) ∼ U(1) under which the two 
supercharges G±

−1/2 are charged by ±1. A superconformal primary [j0]h0 has to satisfy the uni-
tarity bound below:

h0 ≥ |j0|
2

, (3.2)

where j0 denotes a U(1) R-charge rather than a Dynkin label.
Note that this bound is weaker than the unitarity bounds put forward by the super Virasoro 

case [33]. A list of superconformal multiplets, along with their top components, is summarized 
in Table 2.
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Table 2
List of N = 2 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [j0]h0 h0 >
|j0|

2 - - [j0]h0+1
A [j0 > 0] j0

2
- [j0 + 1] j0

2 + 1
2

- [j0 − 1] j0
2 + 1

2
A [j0 < 0]− j0

2
- [j0 − 1]− j0

2 + 1
2

- [j0 + 1]− j0
2 + 1

2
V [0]0 - [±1] 1

2
- [0]0

Table 3
List of small N = 4 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1]h0 h0 >
R1
2 - - [R1]h0+2

A [R1 ≥ 2] R1
2

- [R1 + 1] R1
2 + 1

2
⊕ [R1 + 1] R1

2 + 1
2

- [R1 − 2] R1
2 +1

A [1] 1
2

- [2]1 ⊕ [2]1 - [0]1 ⊕ [0]1
V [0]0 - [1] 1

2
⊕ [1] 1

2
- [0]0

3.3. Small N = 4

Let us examine the N = 4 superconformal algebra before N = 3 for the reason that will soon 
be clear. The small N = 4 superconformal algebra has two independent sets of supercharges 
G±

−1/2 and Ḡ±
−1/2 in the fundamental representation of SU(2) R-symmetry.3 The superconformal 

primary is labelled by the SU(2) Dynkin label as [R1]h0 , where R1 is a non-negative integer. For 
instance, the fundamental representation is labelled by [1]. The small N = 4 superconformal 
unitarity bound is

h0 ≥ R1

2
, (3.3)

and as the bound is saturated, two copies of raising operators G+
−1/2 and Ḡ+

−1/2 simultaneously 
annihilate the primary. We summarize the list of small N = 4 multiplets in Table 3. Here, A[1] 1

2
is an example where there exist two degenerate top components [0]1.

3.4. Large N = 4

The large global N = 4 superconformal algebra D(2, 1; α) contains two copies of su(2) al-
gebra. When the free parameter α is set to unity, the R-symmetry group becomes SO(4).4 The 
Dynkin labels R1 and R2 now correspond to those of two su(2)’s such that the four supercharges 
are in the representation [1; 1]. Note that [1; 1] is the highest weight of a vector representation 
when the R-symmetry group becomes SO(4).

3 One can think of an extra U(1) that distinguishes the two, which we choose not to because it plays no role other than 
labelling the two and justifying some of (2.6).

4 The free parameter α is related to the levels k+ = c(1 + α)/(6α) and k− = c(1 + α)/6 of two su(2) current algebras 
when the global superconformal algebra is promoted to the large N = 4 super Virasoro algebra. See section 6.1 for more 
details.
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Table 4
List of large N = 4 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1;R2]h0 h0 >
h1
2 - - [R1;R2]h0+2

A
[R1 ≥ 1;R2 ≥ 1]h1/2
(but not R1 = R2 = 1)

- [R1 + 1;R2 + 1] h1
2 + 1

2
- [R1 − 1;R2 − 1] h1

2 + 3
2

A [1;1] 1
2

- [2;2]1 [0;0]1 [0;0]2
A [R1 ≥ 2;0] αR1

2(1+α)

- [R1 + 1;1] αR1
2(1+α)

+ 1
2

- [R1 − 2;0] αR1
2(1+α)

+1

A [0;R2 ≥ 2] R2
2(1+α)

- [1;R2 + 1] R2
2(1+α)

+ 1
2

- [0;R2 − 2] R2
2(1+α)

+1

A [1;0] α
2(1+α)

- [2;1] α
2(1+α)

+ 1
2

- [0;1] α
2(1+α)

+ 1
2

A [0;1] 1
2(1+α)

- [1;2] 1
2(1+α)

+ 1
2

- [1;0] 1
2(1+α)

+ 1
2

V [0;0]0 - [1;1] 1
2

- [0;0]0

[1; 1] 1
2

[2;0]1
[0;2]1
[0;0]1

[1; 1] 3
2

[0; 0]2

Fig. 1. An N = 4 multiplet with a sporadic top component.

The unitarity bound on the conformal weight h of the large N = 4 superconformal primary is 
given by

h0 ≥ h1

2
= αR1 + R2

2(1 + α)
. (3.4)

One can find the list of superconformal multiplets in Table 4. Since the multiplet A[1, 1] 1
2

is 
the first example where a sporadic top component appears, let us pause to examine this. The 
superconformal multiplet A[1; 1] 1

2
can be decomposed into various conformal multiplets as in 

Fig. 1.
We see that the null state [2; 2]1 and the Racah-Speiser trial state constructed by acting the 

supercharge of weight [1; 1] on the primary have the same quantum numbers. As explained in 
[26], any RS states involving the supercharge of weight [1; 1] 1

2
have to be removed from the 

superconformal multiplet. Then, none of the three other supercharges can act on [0; 0]1 at the 
first level to produce [1; 1] 3

2
at the second level. In other words, the conformal primary [0; 0]1

is annihilated by all supercharges and becomes a sporadic top component. As we will see in 
sections 5.2 and 6.1, the sporadic top component [0; 0]1 leads to two important features that any 
large N = 4 superconformal theories share. One of them is related to the universal marginal 
operator and the other to an extra U(1) symmetry.

3.5. N = 3

The N = 3 superconformal algebra is OSp(3|2) with R-symmetry SO(3). Three super-
charges transform as [2], namely the vector representation under SO(3). One can label a su-
perconformal primary as [R1]h where the Dynkin label R1 is a non-negative integer. Note that 
0
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Table 5
List of N = 3 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1]h0 h0 >
R1
4 - - [R1]

h0+ 3
2

A [R1 ≥ 3] R1
4

- [R1 + 2] R1
4 + 1

2
- [R1 − 2] R1

4 +1

A [2] 1
2

- [4]1 [0]1 [0] 3
2

A [1] 1
4

- [3] 3
4

- [1] 3
4

V [0]0 - [2] 1
2

- [0]0

[2] 1
2

[2]1
[0]1

[0] 3
2

Fig. 2. An N = 3 multiplet with a sporadic top component.

we use the SO(3) Dynkin label rather than SU(2), which differ by a factor of 2. The unitarity 
condition (2.11) is then

h0 ≥ R1

4
. (3.5)

For any short superconformal multiplet A[R1]h= R1
4

, the Q-descendant [R1 +2]R1
4 + 1

2
becomes 

null. However, since top components differ when R1 is small, we list them separately in Table 5. 
In particular, for the primary [0]ε>0, [2] 1

2 +ε
consists the first level alone, and as ε → 0 it be-

comes null and the multiplet terminates already at the level zero. This phenomenon is universal: 
for all N the superconformal multiplet V [0]0 consists of a superconformal primary only, which 
corresponds to the identity operator 1. This is because [0]0 can be annihilated by all lowering 
operators of SO(3): once the supercharge of the highest so(3) weight annihilates it, every super-
charge annihilates it. We refer to the multiplet V [0]0 as the vacuum multiplet.

The A[2] 1
2

multiplet that contains a sporadic top component calls for special attention. Its 
decomposition into conformal multiplets is given in Fig. 2. It is not obvious if the [0]1 at the first 
level is indeed a top component, because the supercharge of weight [0] might produce the [0] 3

2
at 

the second level when acted on the [0]1 in the sense of Racah-Speiser algorithm. However, this 
is not always the case because the actual state represented by [0]1 is some linear combination 
of elements of [2] 1

2
acted by an appropriate supercharge, and thus the null condition is highly 

non-trivial. For details, see [26].
In order to argue that [0]1 is indeed a sporadic top component, let us consider the large N = 4

superconformal theory that can be viewed as a special case of N = 3 superconformal theory. 
As will be explained in section 5.1, any N = 4 superconformal theory must have the stress 
tensor multiplet A[1; 1] 1

2
that we have analyzed in Fig. 1. Decomposition of each conformal 

primary in A[1; 1] 1
2

into SO(3) representations, summarized in Fig. 3, shows how the N = 3

short multiplet A[2] 1
2

can be embedded in the N = 4 short A[1; 1] 1
2
. In particular, we see that the 

sporadic top component [0; 0]1 in A[1; 1] 1
2
, annihilated by four supercharges, can be identified 

as [0]1 in A[2] 1 . Since three supercharges of N = 3 superconformal algebra are a subset of the 

2
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[2] 1
2[0] 1
2

[2]1
[2]1
[0]1

[2] 3
2[0] 3
2

[0]2

Fig. 3. An N = 4 multiplet with a sporadic top component, decomposed into SO(3) representations.

Table 6
List of N = 6 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1 R2 R3]h0 h0 >
h1
2 - - [R1 R2 R3]h0+3

A [1 0 0] 1
2

- [2 0 0]1 [0 0 0]1 [0 0 0]3
A [0 1 1] 1

2
- [1 1 1]1 [0 0 0] 3

2
[0 0 0] 5

2
A [0 0 2] 1

2
- [1 0 2]1 - [0 0 0]2

A [0 2 0] 1
2

- [1 2 0]1 - [0 0 0]2
A [0 0 1] 1

4
- [1 0 1] 3

4
- [0 1 0] 3

4
A [0 1 0] 1

4
- [1 1 0] 3

4
- [0 0 1] 3

4
V [0 0 0]0 - [1 0 0] 1

2
- [0 0 0]0

four supercharges of N = 4 one, this is sufficient to argue that [0]1 in Fig. 2 is indeed a sporadic 
top component as well.

3.6. N = 6

Let us examine the N = 6 superconformal algebra before the N = 5 superconformal algebra 
for the same reason as for the N = 4 and N = 3 algebras. The R-symmetry is now SO(6) �
SU(4),5 under which supercharges transform as a vector [1 0 0]. We label a superconformal 
primary as [R1 R2 R3]h0 . The unitarity bound for N ≥ 5 shall always be given by (2.11). In this 
case, it is

h0 ≥ h1

2
= R1

2
+ R2 + R3

4
. (3.6)

We tabulate the list in Table 6.
From this subsection, we do not attempt to give a complete list of short multiplets, but skip 

many of those that are irrelevant to the subsequent sections. Those short multiplets however can 
be easily reproduced from long multiplets via the procedure described in [26].

It proves useful to examine the short multiplet A[0 1 1] 1
2

in detail. Its decomposition into 
conformal multiplets is given by Fig. 4. [0 0 0] 3

2
at the second level is a sporadic top component 

because none of the supercharges, except the one of the highest weight [1 0 0] that annihilates the 
primary in short multiplets, can act on the R-singlet to produce the R-vector component at the 
next level.

5 SO(6) and SU(4) Dynkin labels are related by exchange of the first two. We choose to use SO(6) labels to be 
coherent with different values of N .
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[0 1 1] 1
2

[0 0 2]1
[0 2 0]1
[1 0 0]1

[0 1 1] 3
2[0 0 0] 3
2

[1 0 0]2 [0 0 0] 5
2

Fig. 4. An N = 6 multiplet with a sporadic top component.

Table 7
List of N = 5 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1 R2]h0 h0 >
h1
2 - - [R1 R2]

h0+ 5
2

A [1 0] 1
2

- [2 0]1 [0 0]1 [0 0] 5
2

A [0 2] 1
2

- [1 2]1 [0 0] 3
2

[0 0]2
A [0 1] 1

4
- [1 1] 3

4
- [0 1] 3

4
V [0 0]0 - [1 0] 1

2
- [0 0]0

[0 2] 1
2

[0 2]1
[1 0]1

[1 0] 3
2[0 0] 3
2

[0 0]2

Fig. 5. An N = 5 multiplet with a sporadic top component.

3.7. N = 5

The N = 5 superconformal algebra has the SO(5) � Sp(4) R-symmetry6 of which the super-
charges are in the vector representation [1 0]. The unitarity provides a bound on the conformal 
weight h0 of a superconformal primary [R1 R2]h0 ,

h0 ≥ h1

2
= R1

2
+ R2

4
. (3.7)

We tabulate a partial list of N = 5 superconformal multiplets in Table 7.
The A[0 2] 1

2
multiplet that contains a sporadic top component calls for special attention. Its 

decomposition into conformal multiplets is given in Fig. 5. It is not obvious if the [0 0] 3
2

at the 
second level is indeed a top component, because the supercharge of weight [0 0] might produce 
the [0 0]2 at the third level when acted on the [0 0] 3

2
in the sense of Racah-Speiser algorithm. 

However, this is not always the case because the actual state represented by [0 0] 3
2

is some linear 
combination of elements of [0 2] 1

2
acted by an appropriate combination of two supercharges, and 

thus the null condition is highly non-trivial. For details, see [26].
In order to argue that [0 0] 3

2
is indeed a sporadic top component, let us consider the N = 6

superconformal theory that can be viewed as a special case of N = 5 superconformal theory. In 
this perspective, the A[0 2] 1

2
multiplet in the N = 5 theory is a part of the A[0 1 1] 1

2
multiplet in 

the N = 6 theory described in Fig. 4. As shown in Fig. 6, decomposition of each conformal pri-

6 SO(5) and Sp(4) Dynkin labels are related by exchange of the two labels. We choose to use SO(5) labels to be 
coherent with different values of N .
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[0 2] 1
2[1 0] 1
2

[0 2]1
[0 2]1
[1 0]1
[0 0]1

[0 2] 3
2[1 0] 3
2[0 0] 3
2

[1 0]2
[0 0]2

[0 0] 5
2

Fig. 6. An N = 6 multiplet with a sporadic top component, decomposed into SO(5) representations.

Table 8
List of N = 8 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1 R2 R3 R4]h0 h0 >
h1
2 - - [R1 R2 R3 R4]h0+4

A [1 0 0 0] 1
2

- [2 0 0 0]1 [0 0 0 0]1 [0 0 0 0]4
A [0 1 0 0] 1

2
- [1 1 0 0]1 [0 0 0 0] 3

2
[0 0 0 0] 7

2
A [0 0 1 1] 1

2
- [1 0 1 1]1 [0 0 0 0]2 [0 0 0 0]3

A [0 0 0 2] 1
2

- [1 0 0 2]1 - [0 0 0 0] 5
2

A [0 0 0 1] 1
4

- [1 0 0 1] 3
4

- [0 0 1 0] 3
4

V [0 0 0 0]0 - [1 0 0 0] 1
2

- [0 0 0 0]0

[0 0 1 1] 1
2

[0 0 0 2]1
[0 0 2 0]1
[0 1 0 0]1

[0 0 1 1] 3
2[1 0 0 0] 3
2

[0 1 0 0]2
[0 0 0 0]2

[1 0 0 0] 5
2

[0 0 0 0]3

Fig. 7. An N = 8 multiplet with a sporadic top component.

mary in A[0 1 1] 1
2

into SO(5) representations shows how the N = 5 short multiplet A[0 2] 1
2

can 
be embedded in the N = 6 multiplet A[0 1 1] 1

2
. In particular, we see that the sporadic top com-

ponent [0 0 0] 3
2

in A[0 1 1] 1
2
, annihilated by N = 6 supercharges, can be identified as [0 0] 3

2
in 

A[0 2] 1
2
. Since the N = 5 supercharges are a subset of the N = 6 supercharges, this is sufficient 

to argue that [0 0] 3
2

in Fig. 5 is indeed a sporadic top component as well.

3.8. N = 8

Let us examine the case N = 8 before N = 7 for the same reason as before. The R-symmetry 
is SO(8) under which supercharges transform in the vector representation [1 0 0 0], and the su-
perconformal primary is labelled by [R1 R2 R3 R4]h0 . The unitarity bound is

h0 ≥ h1

2
= R1 + R2

2
+ R3 + R4

4
. (3.8)

We tabulate a partial list of N = 8 superconformal multiplets in Table 8.
It again proves useful to examine the stress-energy tensor multiplet A[0 0 1 1] 1

2
in detail. Its 

decomposition into conformal multiplets is given in Fig. 7. [0 0 0 0]2 at the third level is a sporadic 
top component because none of the supercharges, except the one of the highest weight [1 0 0 0]
that annihilates the primary, can act on the R-singlet [0 0 0 0]2 to generate an R-vector [1 0 0 0] 5
2
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Table 9
List of N = 7 multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1 R2 R3]h0 h0 >
h1
2 - - [R1 R2 R3]

h0+ 7
2

A [1 0 0] 1
2

- [2 0 0]1 [0 0 0]1 [0 0 0] 7
2

A [0 1 0] 1
2

- [1 1 0]1 [0 0 0] 3
2

[0 0 0]3
A [0 0 2] 1

2
- [1 0 2]1 [0 0 0]2 [0 0 0] 5

2
A [0 0 1] 1

4
- [1 0 1] 3

4
- [0 0 1] 3

4
V [0 0 0]0 - [1 0 0] 1

2
- [0 0 0]0

[0 0 2] 1
2

[0 0 2]1
[0 1 0]1

[0 1 0] 3
2[1 0 0] 3
2

[1 0 0]2
[0 0 0]2

[0 0 0] 5
2

Fig. 8. An N = 7 multiplet with a sporadic top component.

[0 1 0] 1
2[0 0 2] 1
2

[0 0 2]1
[0 0 2]1
[1 0 0]1
[0 1 0]1

[0 1 0] 3
2[0 0 2] 3
2[1 0 0] 3
2[0 0 0] 3
2

[1 0 0]2
[0 1 0]2
[0 0 0]2

[1 0 0] 5
2[0 0 0] 5
2

[0 0 0 0]3

Fig. 9. An N = 8 multiplet with a sporadic top component, decomposed into SO(7) representations.

at the next level. This pattern looks similar to other examples with sporadic top components we 
have examined in Fig. 1 and Fig. 4. We will discuss this universal feature in section 3.10.

3.9. N = 7

For the N = 7 superconformal algebra, the R-symmetry is SO(7), under which supercharges 
transform as a vector [1 0 0]. Labelling the superconformal primary by [R1 R2 R3]h0 , the unitarity 
bound on the conformal weight h0 is

h0 ≥ h1

2
= R1 + R2

2
+ R3

4
. (3.9)

We tabulate a partial list of N = 7 superconformal multiplets in Table 9.
The component [0 0 0]2 in the short multiplet A[0 0 2] 1

2
is a sporadic top component. To see 

this, we use an argument analogous to those in sections 3.5 and 3.7. Comparing Fig. 8 to Fig. 9, 
we can identify [0 0 0]2 at the third level of A[0 0 2] 1

2
as the sporadic top component [0 0 0 0]2

of the N = 8 short multiplet A[0 0 1 1] 1
2
. This implies that the component [0 0 0]2 has to be 

annihilated by all N = 7 supercharges. This observation is crucial because this is the only super-
symmetric [0 0 0]2 component one can find in the N = 7 superconformal algebra, which however 
is required for the existence of stress-energy tensor.
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Table 10
List of N = 10, 12, · · · multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1 · · ·Rr ]h0 h0 >
h1
2 - - [R1 · · · Rr ]h0+N

2
A [1 0 · · · 0] 1

2
- [2 0 · · · 0]1 [0 · · ·0]1 [0 · · ·0]N

2
A [0 1 0 · · · 0] 1

2
- [1 1 0 · · · 0]1 [0 · · ·0] 3

2
[0 · · ·0]N−1

2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

A [0 · · ·0 1 1] 1
2

- [1 0 · · · 0 1 1]1 [0 · · ·0] r
2

[0 0 0 0] r+2
2

A [0 · · ·2] 1
2

- [1 0 · · · 0 2]1 - [0 · · ·0] r+1
2

A [0 · · ·1] 1
4

- [1 0 · · · 0 1] 3
4

- [0 · · ·0 1 0] 3
4

V [0 0 0 0]0 - [1 0 0 0] 1
2

- [0 0 0 0]0

Table 11
List of N = 9, 11, · · · multiplets.

Primary Unitarity bound Null component Sporadic top Generic top

L [R1 · · ·Rr ]h0 h0 >
h1
2 - - [R1 · · · Rr ]h0+N

2
A [1 0 · · · 0] 1

2
- [2 0 · · · 0]1 [0 · · ·0]1 [0 · · ·0]N

2
A [0 1 0 · · · 0] 1

2
- [1 1 0 · · · 0]1 [0 · · ·0] 3

2
[0 · · ·0]N−1

2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

A [0 · · ·0 2] 1
2

- [1 0 · · · 0 2]1 [0 · · ·0] r+1
2

[0 · · ·0] r+2
2

A [0 · · ·0 1] 1
4

- [1 0 · · · 0 1] 3
4

- [0 · · ·0 1] 3
4

V [0 0 0 0]0 - [1 0 0 0] 1
2

- [0 0 0 0]0

3.10. N ≥ 9

Having worked out up to N = 8, which was necessary to manifest existence of stress-energy 
tensors in all N , we are ready to generalize the patterns into generic values of N . Under the 
R-symmetry group SO(N ), N being even or odd, N supercharges transform as the vector 
[1 0 · · ·0]. The superconformal primary is labelled as [R1 · · ·Rr ]h0 where r = [N2 ] is the rank 
of the R-symmetry group. Let us repeat the unitarity condition (2.11) for completeness:

2h0 ≥ h1 =
{

R1 + · · · + Rr−2 + Rr−1+Rr

2 N is even,

R1 + · · · + Rr−1 + Rr

2 N is odd.
(3.10)

We tabulate partial lists of superconformal multiplets in Tables 10 and 11, for even and 
odd N . A generic pattern is apparent. Fig. 10 shows a generic short superconformal multiplet 
A[0 · · ·0 1 0 · · ·0] with 1 being the kth Dynkin label, decomposed into conformal primaries. This 
multiplet has two top components, one of which is placed at the level k and the other at the level 
(N − k). Both top components are R-singlets.

Structure of this decomposition is physically clearer if we interpret the R-representation 
[0 · · ·0 1 0 · · ·0] as the kth anti-symmetric product of vector representations, denoted as ∧kV . 
This structure is further justified by the fact that the tensor product
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[∧kV ] 1
2

:

[0 · · · 0︸ ︷︷ ︸
k−1

1 0 · · ·0] 1
2

[∧k+1V ]1:

[0 · · ·0︸ ︷︷ ︸
k

1 0 · · ·0]1 · · ·
[∧N V ]N−k+1

2
:

[0 · · ·0]N−k+1
2

[∧k−1V ]1:

[0 · · ·0︸ ︷︷ ︸
k−2

1 0 · · ·0]1 · · ·
[∧0V ] k+1

2
:

[0 · · ·0] k+1
2

Fig. 10. A generic short multiplet with primary [∧kV ] 1
2

for generic N , written in both Dynkin labels and anti-symmetric 
tensor product notation.

∧kV ⊗ ∧1V ⊃ ∧k+1V ⊕ ∧k−1V, (3.11)

where the other parts vanish in short multiplets. Note that ∧1V here represents the supersymme-
try Ga

−1/2 that takes a component to the next level. This not only simplifies the notation, but also 
manifests the fact that midway in the decomposition{

[∧NV ] : [0 · · ·0 2 0] ⊕ [0 · · ·0 0 2] for SO(2N)

[∧NV ], [∧N+1V ] : [0 · · ·0 2] for SO(2N + 1)
(3.12)

appear, and also explains clearly why there are two ‘towers’ of components that both terminate 
with an R-singlet: a scalar (∧0V ) or a pseudoscalar (∧NV ). However, the most important role it 
plays will become clear in section 5.1.2.

4. Properties of the multiplets

Given the lists of multiplets, many implications and applications are in order. In this section, 
we discuss the recombination phenomenon that happens when the conformal weight h of a long 
multiplet L[R]h hits the unitarity bound. We also present character formulae for both long and 
short global superconformal multiplets.

4.1. Recombination rules

Decomposition of superconformal multiplets into conformal multiplets makes the recombina-
tion rules extremely apparent. For instance, let us consider an example of a long multiplet L[0 1]h
of the N = 5 superconformal algebra, where h is bound by h ≥ 1

4 (3.7). As h approaches 1/4, 
the long multiplet L[0 1]

h→ 1
4

splits into two short multiplets, one of which is A[0 1] 1
4

with the 
same quantum numbers and the other is A[1 1] 3

4
that contains the null states of A[0 1] 1

4
,

L[0 1]h
h→ 1

4−−−−−−→ A[0 1] 1
4
⊕ A[1 1] 3

4
. (4.1)

The above recombination rule is apparently demonstrated in Fig. 11.
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[0 1]h
[1 1]

h+ 1
2[0 1]

h+ 1
2

[0 3]h+1
[1 1]h+1
[0 1]h+1

[0 3]
h+ 3

2[1 1]
h+ 3

2[0 1]
h+ 3

2

[1 1]h+2
[0 1]h+2

[0 1]
h+ 5

2

[0 1] 1
4

[0 1] 3
4

[1 1] 3
4

[0 3] 5
4[1 1] 5
4[0 1] 5
4

[0 3] 7
4[1 1] 7
4[0 1] 7
4

[1 1] 9
4[0 1] 9
4

[0 1] 11
4

Fig. 11. One long L[0 1]h and two short N = 5 multiplets A[0 1] 1
4

and A[1 1] 3
4

.

In fact, this recombination rule generalizes to any long multiplets with generic N .7 We present 
a rather wordy proof for this statement.

Consider an arbitrary long multiplet L[R1 · · ·Rr ]h of a global subalgebra with any value of 
N . As h approaches the unitarity bound h1

2 in accordance with (2.11), its components are classi-
fied into two: they either belong to the short multiplet A[R1 · · ·Rr ]h1/2, or are null components 
of the short multiplet. According to Racah-Speiser algorithm, any components at level l have 
R-symmetry Dynkin labels that can be obtained by adding l different weights of the vector rep-
resentation to that of the primary. We refer to these l weights as a path from the primary. Then, 
the null components can again be classified by whether the path includes the highest weight 
[1 0 · · ·0], or [1; 1] for the large N = 4, or not:

1. Null components whose path from the primary does include the highest weight [1 0 · · ·0], 
form a short multiplet A[R1 + 1 · · ·Rr ] h1

2 + 1
2
. Such components are always included in the 

short multiplet, because they are obtained by adding l − 1 different weights of the vec-
tor representation to [R1 + 1 · · ·Rr ]. Also, it is obvious that every component of the short 
multiplet A[R1 + 1 · · ·Rr ] h1

2 + 1
2

appears as a null component in the original short multiplet 

A[R1 · · ·Rr ] h1
2

.

2. Null components whose path from the primary does not include the highest weight [1 0 · · ·0]
arise only when first k ≥ 1 Dynkin labels R1, · · · , Rk are zero. In such a case, some of the R-
symmetry group’s lowering operators annihilate the primary, thus not only the highest weight 
supercharge but also some lowered supercharges annihilate the primary. See section 3.3.3. of 
[26].

Such components complicate the argument because they do not seem to be included in 
the short multiplet A[R1 + 1 · · ·Rr ] h1

2 + 1
2
. However, these components are eliminated among 

themselves in the Racah-Speiser algorithm, and thus do not appear in the long multiplet. In 

7 The following argument holds for N ≥ 3, except for the small N = 4.
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other words, all components of the long multiplet that becomes null as it hits the unitarity 
bound fall into enumeration 1 above.

To see how, consider one of such components whose path from the primary includes 
[0 · · ·0 − 1 1 0 · · ·0] but not [1 0 · · ·0], · · · , [0 · · · − 1 1 0 0 · · ·0]. R1 = · · · = Rk = 0 with 
sufficiently large k is required for this to be a null component of A[R1 · · ·Rr ] h1

2
. For this 

component to appear in the decomposition of long multiplet, that is, to avoid a Dynkin la-
bel equal to −1, the path from the primary must also include either [0 · · ·0 1 − 1 0 · · ·0] or 
[0 · · ·1 − 1 0 0 · · ·0] but not both. Therefore, there is a one-to-one correspondence between 
components that belong to the enumeration 2: one whose path from the primary includes the 
former but not the latter and vice versa. However, treatment of Dynkin label equal to −2 by 
the RS algorithm precisely cancels the two.

Therefore, all components that appear in the long multiplet L[R1 · · ·Rr ]h fall into either the 
short A[R1 · · ·Rr ] h1

2
or another short A[R1 + 1 · · ·Rr ] h1

2 + 1
2
, and we can write the generic re-

combination rule as follows:

L[R1 · · ·Rr ]h
h→ h1

2−−−−−−−→ A[R1 · · ·Rr ] h1
2

⊕ A[R1 + 1 · · ·Rr ] h1
2 + 1

2
. (4.2)

Non-generic cases are easy to examine because the decompositions only contain few compo-
nents. We simply state the result.{

L[0]h h→0−−−−−−→ A[0]0 ⊕ L[0] 1
2

N = 1, (4.3)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L[j0 > 0]h
h→ j0

2−−−−−−−→ A[j0] j0
2

⊕ A[j0 + 1] j0
2 + 1

2

L[j0 < 0]h
h→− j0

2−−−−−−−−→ A[j0]− j0
2

⊕ A[j0 − 1]− j0
2 + 1

2

L[0]h h→0−−−−−−→ A[1] 1
2
⊕ A[−1] 1

2

N = 2, (4.4)

⎧⎪⎨
⎪⎩L[j0]h

h→ j0
2−−−−−−−→ A[j0] j0

2
⊕ A[j0 + 1] j0

2 + 1
2

⊕A[j0 + 1] j0
2 + 1

2
⊕ A[j0 + 2] j0

2 +1

small N = 4. (4.5)

A consistency check is to compare the number of physical states on both sides of the equations 
(4.2)-(4.5). This can be done by adding up dimensions of all R-representations in the decompo-
sition of each multiplet on both sides.

To count the number of physical states, we first combine a left-moving and a right-moving 
multiplet into a two-sided superconformal multiplet. A two-sided multiplet can be labeled by 
two letters with one unbarred and one barred to indicate the left-moving and the right-moving 
null states. For instance, a multiplet

LĀ[Rl |Rr ]h,h̄

can be understood as a tensor product of the left-moving multiplet L[Rl]h and the right-moving 
multiplet A[Rr ]h̄. Components of the two-sided multiplets are also given by tensor products of 
components in respective sectors, which we denote as

[Rl]h ⊗ [Rr ] ¯
h
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with a bar over the right-moving component.
When the recombination phenomenon happens for the left-moving sector, the number of states 

of each physical two-sided multiplet can be obtained by dimension of the left-moving sector 
multiplet multiplied by a common factor, which is dimension of the common right-moving sector 
multiplet. One exception is that the component [0]0 in the left-moving sector has to be counted as 
zero. This is because it combines with the right-mover to lead to a conserved current. Conserved 
current will be discussed in section 5.1, and comparing dimensions in recombination rules has 
been discussed in detail in [26].

We can see that the number of physical states on both sides of the recombination rules indeed 
agree level-by-level, with one exception: let us consider a recombination phenomenon where the 
long multiplet has an R-singlet primary. This long multiplet L[0]h splits into the vacuum multi-
plet V [0]0 and a short multiplet A[1 0 · · ·0] 1

2
as h → 0. As discussed in the last paragraph, the 

vacuum multiplet has to be counted as zero. On the other hand, the short multiplet contains a 
component [0]1 at the level one that does not appear as a conformal primary in the long mul-
tiplet L[0]h→0, but appears as a conformal descendant of the superconformal primary [0]h→0. 
This will be further discussed in the next subsection. To summarize, the primary [0]h→0 and its 
descendants of the long multiplet are split into the conserved current [0]0 which is the vacuum 
multiplet, and [0]1 and its descendants which appear in the short multiplet.

We find that unlike in higher dimensions, absolutely protected multiplets do not exist. A 
multiplet is absolutely protected when it does not appear in any of the recombination rules, so 
its spectrum is constant on the supersymmetric conformal manifold. Deformations of CFT are 
discussed in section 5.2, see also [27]. This is a consequence of the absence of isolated short mul-
tiplets: every short multiplet in two dimensions appears in the unitarity limit of the long multiplet 
with same quantum numbers.

4.2. Character formulae for the global multiplets

Let us present character formulae for unitary representations, both long and short, of a super-
conformal algebra. A character of a superconformal representation can be defined as

Ch(g)
h,R(τ, {zi}) = TrV (h,R)

[
e2πiτ(L0− c

24 )
∏
i

e2πiziT
i
0

]
= TrV (h,R)

[
qL0− c

24
∏
i

(
yi

T i
0
)]

,

(4.6)

where V (h, R) denotes a representation built on a primary of conformal weight h and R-
charge Dynkin label R. Here T i

0 are the Cartan generators of the R-symmetry group, and 
q = e2πiτ , y = e2πiz. Although the central charge c is irrelevant to the global subalgebra, we 
include its contribution to make connection with super Virasoro characters. See section 6.2.

To express superconformal characters, it is rather convenient to use orthogonal basis for the 
special orthogonal Lie group SO(N ) than the fundamental basis chosen in the previous section. 
We can find the linear relation between fundamental weights [R1 · · ·Rr ] and orthogonal weights 
[h1 · · ·hr ] of the SO(N ) in (2.12) and (2.13).

Character formulae for long multiplets follow directly from the structure of the multiplets. 
Given a superconformal primary, which is an irreducible representation of the R-symmetry group 
SO(N ), superconformal descendants are obtained by applying successively the supercharges 
G−1/2 and the Virasoro generator L−1 on the primary. The supercharges are in the vector repre-
sentation of the SO(N ) and their orthogonal weights are
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Ga
−1/2 : [±1 0 · · ·0], [0 ± 1 · · ·0], · · · , [0 · · ·0 ± 1] , [0 · · ·0]︸ ︷︷ ︸

for odd N

.

The character formula for a long multiplet L[{hi}]h then becomes

Ch(g)
h,{hi }(τ, {zj }) = qh− c

24 χo({hi}) ·
(1 + q1/2)

( r∏
i=1

∏
ε=±1

(1 + yε
i q1/2)

)
1 − q

(4.7)

for odd N with rank r , and

Ch(g)
h,{hi }(τ, {zj }) = qh− c

24 χe({hi}) ·

( r∏
i=1

∏
ε=±1

(1 + yε
i q1/2)

)
1 − q

(4.8)

for even N with rank r . Here χo({hi}) and χe({hi}) denote the Weyl character formula for so(N )

with odd and even N respectively [34],

χo({hi}) =

∣∣∣∣yhi+r−i+ 1
2

j − y
−(hi+r−i+ 1

2 )

j

∣∣∣∣∣∣∣∣yr−i+ 1
2

j − y
−(r−i+ 1

2 )

j

∣∣∣∣
, χe({hi}) =

∑
ε=±1

∣∣∣yhi+r−i
j + εy

−(hi+r−i)
j

∣∣∣
∣∣∣yr−i

j + y
−(r−i)
j

∣∣∣ ,

(4.9)

where |aij | denotes determinant of the matrix with indices i, j = 1, 2, · · · , r . The structure of 
these characters is straightforward. The primary contributes qh− c

24 multiplied by Weyl character 
formula corresponding to its R weights. The other factors in (4.7) and (4.8) account for the 
contribution from the superconformal descendants.

We need more elaborations to obtain the superconformal characters for short multiplets 
A[{hi}]h due to the presence of null states. One might naively remove the factor (1 +y1q

1/2) that 
accounts for the highest weight supercharge that produces the null states. However, although it is 
highly obscured in the Racah-Speiser algorithm, it is not actually the highest weight supercharge 
that produces the null states, but it is the highest weight representation obtained from the highest 
weight supercharge acting on the highest weight of the primary.

The short multiplet character can be derived using the recombination rule from section 4.1. 
We can rewrite the recombination rule (4.2) using the characters of global long multiplets 
Ch(g)

h,{hi }(τ, {zj }) and of global short multiplets χ(g)

h1/2,{hi }(τ, {zj }),

lim
h→ h1

2

Ch(g)
h,{hi }(τ, {zj }) = χ

(g)
h1
2 ,{hi }

(τ, {zj }) + χ
(g)
h1+1

2 ,{hi+δi,1}
(τ, {zj }). (4.10)

Note that the lowest exponent of q in the second short character on the RHS is larger by 1
2 than 

that in the first. This allows us to write the character of a short multiplet in terms of that of long 
multiplets perturbatively and to all orders. For simplicity, we omit the arguments (τ, {zj }) of each 
character.

χ
(g)
h1
2 ,{hi }

= Ch(g)

h→ h1
2 ,{hi }

− χ
(g)
h1+1

2 ,{hi+δi,1}
= Ch(g)

h1
− Ch(g)

h1+1 + χ
(g)
h1+2
h→ 2 ,{hi } h→ 2 ,{hi+δi,1} 2 ,{hi+2δi,1}
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=
∞∑

n=0

(−1)nCh(g)

h→ h1+n

2 ,{hi+nδi,1}
(4.11)

We can easily incorporate the series of long multiplet characters into the Weyl determinant, 
using the fact that determinant of a matrix is linear in one particular row. Different long multiplet 
characters that appear in the series all depend on determinants of the same matrix except for the 
first row. Thus, we present the character formulae for global short multiplets as follows,

χ
(g)
h1
2 ,{hi }

(τ, {zj }) =qh− c
24

| y
hi+r−i+ 1

2
j

1 + δi,1yjq
1
2

− y
−(hi+r−i+ 1

2 )

j

1 + δi,1y−1
j q

1
2

|

|yr−i+ 1
2

j − y
−(r−i+ 1

2 )

j |

×
(1 + q1/2)

( r∏
i=1

∏
ε=±1

(1 + yε
i q1/2)

)
1 − q

(4.12)

for odd N with rank r , and

χ
(g)
h1
2 ,{hi }

(τ, {zj }) =qh− c
24

∑
ε=±1

| y
hi+r−i
j

1 + δi,1yjq
1
2

+ ε
y

−(hi+r−i)
j

1 + δi,1y−1
j q

1
2

|

|yr−i
j + y

−(r−i)
j |

×

( r∏
i=1

∏
ε=±1

(1 + yε
i q1/2)

)
1 − q

(4.13)

for even N with rank r . Note that due to the Kronecker delta δi,1, the only modification from (4.7)
and (4.8) is the first row (i = 1) of the matrix in the determinant. This form of short multiplet 
character resembles the known formula for short super Virasoro multiplet of the small N = 4
algebra [14], see also (6.20) in particular.

Let us work out a simple example of the character formula. Consider the short multiplet 
A[1; 1] 1

2
of the large N = 4 algebra, which has been depicted in Fig. 1. Note that the primary 

[1; 1] is equivalent to [1 0] in the orthogonal basis. We first focus on the determinant part of 
(4.13), for which we expand the factor that includes Kronecker delta:

∑
ε=±1

∣∣∣∣∣∣∣
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+ · · · . (4.14)

Identifying each term to Weyl character formula (4.9) and inserting back into (4.13), we have

(q
1
2 − c

24

1 − q

)−1
χ

(g)
1
2 ,{1,0}(τ, {zj }) =

(
χe({1,0}) − q

1
2 χe({2,0}) + qχe({3,0}) − · · ·

)
× (1 + y1q

1/2)(1 + y−1
1 q1/2)(1 + y2q

1/2)(1 + y−1
2 q1/2).

(4.15)

Let us examine the RHS order-by-order. In the order q0 we have the primary representation, 
namely χe({1, 0}), or [1; 1] 1

2
in terms of fundamental weights. In the next order q

1
2 are all states 

that can be obtained by operating one of four supercharges on the primary, as would appear 
at the first level of the long multiplet. However, the LHS is a short multiplet which has the 
null states corresponding to χe({2, 0}), or [2; 2]1 in terms of fundamental weights. Thus it is 
subtracted. Then in the next order q1, from all states that can be obtained by operating two of 
four supercharges on the primary, as would appear at the second level of the long multiplet, 
those that can be obtained by operating one supercharge on the first-level null states χe({2, 0})
are subtracted because they are the null states. However, those corresponding to χe({3, 0}) do not 
exist in the long multiplet due to Fermi-Dirac statistics, yet have been subtracted. Therefore, they 
are added back. Proceeding similarly, and recalling the effect of Virasoro operator 1/(1 − q) that 
produces conformal descendants, one can confirm that the character formula (4.15) is compatible 
with Fig. 1.

Recall from the end of section 4.1 that there is an exceptional case of recombination rule 
related to conserved currents,

L[0 · · ·0]h h→0−−−−−−→ V [0 · · ·0]0 ⊕ A[1 · · ·0] 1
2
. (4.16)

When a long multiplet whose primary is an R-singlet approaches the unitarity bound, the corre-
sponding short multiplet V [0]0 counts as a zero degree of freedom, and an extra component [0]1
appears in the other short multiplet. The character formulae can shed light on this phenomenon.

Consider the vacuum multiplet V [0; 0]0 of the large N = 4 algebra. Its character, by (4.13), 
turns out to be

χ
(g)
0,{0,0}(τ, {zj }) = q− c

24
1 − q

1 − q
. (4.17)

The (1 − q) factor in the numerator cancels the same factor in the denominator, nullifying the 
effect of Virasoro operator L−1. In other words, in this vacuum multiplet, not only are there 
no conformal primaries other than the superconformal primary [0; 0]0, but also there are no 
conformal descendants that are derived from the conformal primary by L−1 ∼ ∂ . This is the 
manifestation of the conservation law

∂Jz = 0 or ∂̄J̄z̄ = 0, (4.18)

where the holomorphic conservation law holds when the vacuum multiplet belongs to the holo-
morphic sector of full superconformal multiplet, and vice versa. A superconformal multiplet with 
the vacuum multiplet V [0]0 in its (anti-)holomorphic sector is identified as the (anti-)holomor-
phic conserved current, as discussed in section 2.3 and will be discussed further in section 5.1.
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[∧3V ] 1
2[0 0 1 0 · · ·0] 1

2

[∧4V ]1
[0 0 0 1 0 · · ·0]1

· · ·

[∧2V ]1
[0 1 0 · · ·0]1
R-symmetry

current

[∧1V ] 3
2[1 0 · · ·0] 3

2

supercurrent

[∧0V ]2
[0 · · ·0]2

stress-energy
tensor

Fig. 12. Generic stress tensor multiplet, non-vacuum sector only.

On the LHS of (4.17), however, the primary component [0]h is not a conserved current since 
its conformal weight is non-zero, and therefore the conformal descendants (L−1)

n |[0]h〉 exist. 
These descendants are precisely the extra [0]1 component, now treated as a conformal primary 
|[0]1〉 and its descendants, that appears in the second short multiplet A[1 · · ·0] 1

2
but not in the 

long multiplet L[0 · · ·0]h as a conformal primary.

5. Applications

Continuing based on the results of section 3, we discuss various aspects of two-dimensional 
superconformal field theories, including stress-energy tensor, conserved currents, supersymmet-
ric deformations, and supersymmetry enhancement.

5.1. Stress-energy tensor and conserved currents

5.1.1. Stress-energy tensor
Any two-dimensional conformal field theories contain an identity operator and a stress-energy 

tensor. We present in this subsection that there always exist superconformal multiplets that con-
tain the corresponding states for all N including both small and large N = 4 with any value of 
the parameter α.

It is obvious that the vacuum superconformal multiplet VV [0 · · ·0|0 · · ·0]0,0 is present for 
any superconformal algebra.

The holomorphic stress-energy tensor T in two dimensions is a global conformal primary 
of scaling dimension two and spin two. (2.1) also implies that T must be neutral under the R-
symmetry, and is a top component in its superconformal multiplet. We can show that there is a 
unique multiplet that has the holomorphic (anti-holomorphic) stress-energy tensor [0 · · ·0]2 ⊗
[0 · · ·0]0 ([0 · · ·0]0 ⊗ [0 · · ·0]2) as a top component for each N except N = 6 (each N̄ except 
N̄ = 6). As will be discussed further in section 5.1.2, the N = 6 superconformal algebra has two 
candidate multiplets that have the stress-energy tensor.

For all N ≥ 3 except for the small N = 4, the holomorphic stress-energy tensor resides in a 
short multiplet T ≡ AV [0 0 1 0 · · · 0|0 · · ·0] 1

2 ,0, as depicted in Fig. 12. Note that the primary of 
T transforms in the 3rd anti-symmetric representation under the R-symmetry group SO(N ). In 
the present work, such a short multiplet T is referred to as a stress-energy tensor multiplet.
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[∧3V ] 1
2

:

[0 2 0] 1
2

⊕
[0 0 2] 1

2

[∧4V ]1:

[0 1 1]1

[∧5V ] 3
2

:

[1 0 0] 3
2

[∧6V ]2:

[0 0 0]2

[∧2V ]1:

[0 1 1]1

[∧1V ] 3
2

:

[1 0 0] 3
2

[∧0V ]2:

[0 0 0]2

Fig. 13. Holomorphic N = 6 stress tensor multiplet with left-moving sector only. It is reducible into two parts conjugate 
to each other. We use both the Dynkin label notation and the anti-symmetric tensor product notation.

We also observe from Fig. 12 that the stress-energy tensor multiplet T has other components 
such as [R-adjoint]1 ⊗ [0 · · ·0]0 and [R-vector] 3

2
⊗ [0 · · ·0]0 at level one and two. From (2.1)

that {G, G} ∼ L and {G, T } ∼ G, one can identify the former as the R-symmetry currents (T ab) 
while the latter as the supersymmetry currents (Ga).

The stress-energy tensor multiplet for small N = 4 superconformal algebra is a short multiplet 
AV [2|0]1,0. On the other hand, the stress-energy tensor resides in a long multiplet LV [0|0]2−N

2 ,0
for N ≤ 3.

5.1.2. Remark on the N = 6 stress-energy tensor and anti-symmetric vector products
The N = 6 superconformal algebra has SO(6) R-symmetry where the third anti-symmetric 

tensor ∧3V is no longer irreducible but decomposes into two irreducible representations

∧3V = [0 2 0] ⊕ [0 0 2], (5.1)

self-dual and anti-self-dual three-forms. Accordingly, the multiplet built on the primary 
[∧3V ] 1

2
depicted in Fig. 13 can reduce to two irreducible superconformal multiplets, each 

with the primary [0 2 0] 1
2

and [0 0 2] 1
2
. The short multiplets T = AV [0 2 0|0 0 0] 1

2 ,0 and T̃ =
AV [0 0 2|0 0 0] 1

2 ,0 are conjugate to each other.

Both T and T̃ contain the [0 0 0]2 ⊗[0 0 0]0 component. In terms of Dynkin labels, it is unclear 
which of the two [0 0 0]2 ⊗[0 0 0]0 components should be interpreted as the stress-energy tensor, 
or even whether both could be the stress-energy tensor or not. We can argue that only one of them 
should be identified as a true stress-energy tensor. Otherwise any N ≥ 7 superconformal theories 
would have two stress-energy tensors and thus become invalidated. This is because the N = 7
stress-energy tensor multiplet AV [0 0 2|0 0 0] 1

2 ,0 can reduce to such two N = 6 multiplets T and 

T̃ simultaneously. See section 5.3 for the detail.
The anti-symmetric tensor product makes this point clearer. In this language, it is apparent 

that one of the two [0 0 0]2 in Fig. 13 is a pseudoscalar with respect to the R-symmetry group 
while the other is a genuine scalar. The former is produced from an axial vector at the previous 
level, which in turn is produced from a 4-form at its previous level. However, for a genuine 
stress-energy tensor, the algebra requires that R-vector and R-adjoint components corresponding 
to the supercurrent and the R-current exist at the previous two levels. This implies that, although 
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the multiplet with an anti-self-dual 3-form primary appears to contain a top component [0 0 0]2, 
it cannot be identified as a stress-energy tensor, and the self-dual counterpart can.

Note that this argument applies to every short multiplet A[∧kV ] 1
2

for every N : one of the 
top components is a scalar, and the other is a pseudoscalar of the R-symmetry group. Therefore, 
it matters to distinguish two short multiplets A[∧kV ] 1

2
and A[∧N−kV ] 1

2
, although they appear 

to be identical in terms of Dynkin labels. The case N = 6 was special only because the stress-
energy tensor was involved.

An additional argument regarding supersymmetry enhancement and decomposition that sup-
ports the result here will be presented in section 5.3.

5.1.3. Conserved currents
From Table 1 through Table 11, one can see the presence of top component [0 · · ·0]1 for all 

N . It allows for a conserved current [0 · · ·0]1 ⊗ [0 · · ·0]0 with spin 1 in any (N , N̄ ) theory. It is 
a Lorentz vector, has scaling dimension 1, and commutes with R-symmetry and supersymmetry 
generators up to a total derivative. Thus, it qualifies as a flavor current.

Furthermore, a top component [0 · · ·0]s , thus a spin-s conserved current [0 · · ·0]s ⊗ [0 · · ·0]0
is allowed for every half value of s starting from s = 1.8 When s = 3

2 , [0 · · ·0] 3
2

⊗ [0 · · ·0]0

corresponds to an extra supercurrent, which will be discussed in section 5.3. The case s = 2
corresponds to the stress-energy tensor which has been just discussed, and s ≥ 5

2 corresponds to 
the higher-spin conserved currents.

In particular for each N ≥ 7, a supersymmetric higher-spin conserved current of spin s =
N
2 − 1 appears in the stress tensor multiplet, and thus is universal in all theories. In higher 

dimensions d ≥ 3, presence of the higher-spin currents indicates a locally free theory [35–38], 
thus imposing an upper bound on the number of supersymmetries N for interacting theories [26]. 
In two dimensions this is not necessarily true. One simple example is the three-state Pott’s model 
which is an interacting CFT with W3-algebra. We close this subsection with a remark that the 
above higher-spin current in the stress-energy tensor multiplet may extend the superconformal 
algebra to a non-linear (super W) algebra [5].

5.2. Deformations of CFT

5.2.1. Relevant and marginal deformations
We turn into operators leading to relevant or marginal deformations of a given superconformal 

theory that preserve supersymmetry, as discussed briefly in section 2.3. These operators have to 
be Lorentz scalars with scaling dimensions � ≤ 2 and supersymmetric. We thus look for top 
components from both left-moving and right-moving sectors with h0 = h̄0 ≤ 1. The deformation 
is marginal when the equality holds, and relevant when the inequality is strict.

From Table 1 through Table 11, we can conclude the followings.

1. Marginal deformations. For all N , including both small and large N = 4 with any value of 
the parameter α, a top component [0 · · ·0]1 is allowed in some multiplet. For N ≥ 3 it always 
appears as a sporadic top component in a short multiplet with an R-vector primary.

8 From s = 1 to s = N
2 they appear as top components of some short multiplets. For s > N

2 they appear as generic 
top components of long multiplets L[0 · · · 0]

s−N
2

. Note that in the latter case s can be any real number. See Tables 10

and 11.
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Therefore, in all global superconformal theories with any (N , N̄ ) in two dimensions, a 
supersymmetric marginal operator [0 · · ·0]1 ⊗ [0 · · ·0]1, which is a Lorentz scalar and an 
R-singlet, is allowed. For instance, a marginal operator resides in an N = 5 short multiplet 
AA[1 0|1 0] 1

2 , 1
2
.

2. Relevant deformations. For all N �= 4 and for large N = 4 with α = 1, a top component with 
h = 3

4 that is an R-spinor9 is allowed in some multiplet. Particularly for N even, there are two 
R-spinors conjugate to each other, and correspondingly there are two allowed R-spinor top 
components with h = 3

4 . For N ≥ 3 they always appear as a generic top component at level 
one in a short multiplet with an R-spinor primary. For instance, a component [0 0 1]3/4 resides 
in an N = 6 short multiplet A[0 1 0]1/4 at level one.

Therefore, a supersymmetric relevant deformation with � = 3
2 is allowed for all global

superconformal theories with any (N , N̄ ), except that if any of these is 4 it has to be the 
large N = 4 with α = 1. This relevant deformation however breaks the R-symmetry because 
it transforms as spinors under both SO(N ) and SO(N̄ ).

In case of the large N = 4 with α �= 1, relevant deformations with scaling dimensions 
� = 1 + α

1+α
and � = 1 + 1

1+α
are similarly allowed, provided that both sectors have large 

N = 4 symmetry and share the common value of α. In particular, note that the small N = 4
superconformal algebra (, i.e., α → ∞) does not admit a relevant deformation.

In particular, the marginal deformation [0; 0]1 ⊗ [0;0]1 is guaranteed to exist in a large (4, 4)

superconformal theory. It is known that the stress-energy tensor is actually a quasi-primary with 
respect to the Virasoro symmetry: it is a super Virasoro descendant of the vacuum. Therefore, 
whenever the stress tensor multiplet AV [1; 1|0; 0] 1

2 ,0 exists, there also exists in the same super 

Virasoro multiplet a global multiplet AA[1; 1|1; 1] 1
2 , 1

2
, where the marginal deformation resides. 

Therefore, a large (4, 4) superconformal field theory always contains a marginal deformation, and 
thus exhibits a non-trivial moduli space. This marginal deformation is in fact exactly marginal, 
and corresponds to moduli of the type IIB string theory on AdS3 × S3 × S3 × S1, see [39,28].

This argument can be applied to higher N , but it results in the existence of an irrelevant 
deformation, which is subject to less interest.

A relevant deformation that resides in the stress tensor multiplet is referred to as a universal 
mass [27]. It is a deformation that is guaranteed to exist because it appears in the stress tensor 
multiplet, which breaks the conformal symmetry and often the R-symmetry as well. It results 
in a deformed super-Poincaré algebra with central or non-central charge extension. Study of the 
universal mass in higher dimensions have led to many interesting results, see [27] and references 
therein.

However, the universal mass does not exist in two dimensions. Every relevant deformation 
in two dimensions resides in a global superconformal multiplet whose primary has conformal 
weights h = h̄ = 1

4 . It is obvious that this global multiplet itself is not a stress tensor multiplet 
nor a flavor current multiplet. One can further argue that this multiplet cannot belong to the same 
super Virasoro multiplet as the global stress tensor multiplet. This is because the stress tensor 
multiplet is the lowest super Virasoro descendant of the vacuum, and the primary of h = h̄ = 1

4
cannot become another descendant of the vacuum. This implies that a non-central charge exten-

9 For N = 1 it is just the trivial representation [0]. For N = 2 it is the [ 1
2 ] and [− 1

2 ], which are conjugate to each 
other.
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Table 12
List of allowed top components and multiplets in which they reside.

Case Allowed top component Primary of the multiplet

All N [0 · · ·0]0 [0 · · ·0]0
[0 · · ·0]1 [1 0 · · · 0] 1

2[0 · · ·0]2 [0 0 1 0 · · · 0] 1
2[0 · · ·0] Z≥5

2
[0 · · ·0 1 0 · · · 0] 1

2

All N �= 4 and [spinor] 3
4

[conjugate spinor] 1
4

large N = 4 with α = 1 [0 · · ·0] 3
2

[0 1 0 · · · 0] 1
2

Table 13
List of marginal or relevant deformations and conserved currents, and multiplets in which they reside. For conserved 
currents including stress tensor, corresponding versions with left and right exchanged are also required.

Supersymmetric operators Top component Multiplet in which it resides

Marginal deformation [0 · · ·0]1 ⊗ [0 · · ·0]1 [1 0 · · · 0] 1
2

⊗ [1 0 · · · 0] 1
2

Relevant deformation [spinor] 3
4

⊗ [spinor] 3
4

[dual spinor] 1
4

⊗ [dual spinor] 1
4

Unit operator [0 · · ·0]0 ⊗ [0 · · ·0]0 [0 · · · 0]0 ⊗ [0 · · ·0]0
Flavor current (left) [0 · · ·0]1 ⊗ [0 · · ·0]0 [1 0 · · · 0] 1

2
⊗ [0 · · ·0]0

Stress-energy tensor (left) [0 · · ·0]2 ⊗ [0 · · ·0]0 [0 0 1 0 · · · 0] 1
2

⊗ [0 · · ·0]0
Higher-spin currents (left) [0 · · ·0] Z=3,5,6,···

2
⊗ [0 · · ·0]0 [0 · · · 0 1 0 · · · 0] 1

2
⊗ [0 · · ·0]0

sion of Poincaré supersymmetry cannot be smoothly connected to a superconformal symmetry 
via relevant deformations.

Lists of allowed top components, conserved currents and deformations discussed in sec-
tions 5.1 and 5.2 can be found in Tables 12 and 13.

5.2.2. Recombination rules revisited
In section 4.1 we have discussed recombination rules: how long multiplets decompose into 

short multiplets as they hit the unitarity bound. There, we considered only one sector. That is, a 
long multiplet in the left-moving sector was decomposed into short multiplets while the one in 
the right-moving sector remained unchanged.

Having discussed conserved currents and deformations of CFT, it is fruitful to consider the 
case where multiplets in the left-moving and the right-moving sectors approach the unitarity 
bound simultaneously. In particular, we are interested in recombination rules where marginal 
deformations or flavor currents appear. We write some of the recombination rules for multiplets 
that have non-generic R-symmetry Dynkin labels but for any value of (N , N̄ ) below,

LL[0 · · ·0|0 · · ·0]h,h̄

h,h̄→0−−−−−−−→ V V [0 · · ·0|0 · · ·0]0,0︸ ︷︷ ︸
unit operator

⊕AA[1 0 · · ·0|1 0 · · ·0] 1
2 , 1

2︸ ︷︷ ︸
marginal deformation

⊕AV [1 0 · · ·0|0 · · ·0] 1
2 ,0 ⊕ V A[0 · · ·0|1 0 · · ·0]0, 1

2︸ ︷︷ ︸
flavor currents

,

(5.2)
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LL[1 0 · · ·0|0 · · ·0]h,h̄

h→ 1
2 ,h̄→0−−−−−−−−−−→ AV [1 0 · · ·0|0 · · ·0] 1

2 ,0︸ ︷︷ ︸
flavor current (left)

⊕

AA[1 0 · · ·0|1 0 · · ·0] 1
2 , 1

2︸ ︷︷ ︸
marginal deformation

⊕· · · , (5.3)

LL[1 0 · · ·0|1 0 · · ·0]h,h̄

h,h̄→ 1
2−−−−−−−−→ AA[1 0 · · ·0|1 0 · · ·0] 1

2 , 1
2︸ ︷︷ ︸

marginal deformation

⊕· · · . (5.4)

When a marginal deformation cannot remain marginal beyond the leading order, its scaling 
dimension should receive quantum corrections, and the corresponding short multiplet, combined 
with other short multiplets, should be up-lifted to a long multiplet. In other words, a short multi-
plet that contains an exactly marginal operator must not participate in any of the recombinations 
(5.2)-(5.4). It leads to a constraint that all marginal deformations become exactly marginal only 
if they do not break any flavor symmetry. Otherwise, one of (5.2) and (5.3) has to happen.

5.3. Supersymmetry enhancement

It is useful to understand how an N -superconformal multiplet can decompose into various 
multiplets of fewer superconformal symmetries N ′ < N . Note that, in the language of N ′ su-
perconformal algebra, N supercharges decompose into N ′ supercharges and extra (N − N ′)
fermionic conserved charges. The R-symmetry algebra decomposes into the R′-symmetry alge-
bra corresponding to the N ′-supersymmetry, flavor symmetry algebra commuting with the R′-
symmetry algebra, and the remaining off-diagonal generators charged under both R′-symmetry 
and flavor symmetry.

Let us in particular consider the (holomorphic) stress-energy tensor multiplet T (N+1) of the 
N +1 superconformal algebra. T (N+1) can split into various N -multiplets that must include the 
following multiplets of N superconformal algebra:

1. a stress-energy tensor multiplet T (N ) that has the holomorphic stress-energy tensor, N su-
percurrents and R-currents.

2. a short multiplet that has an extra R-neutral supercurrent as a top component. In order that it be 
part of the enhanced N +1 supercurrents, the N off-diagonal R-currents [1 · · ·0]1 ⊗[0 · · ·0]0
should be contained in the same short multiplet.

Conversely, if a theory with N -supersymmetry contains all the multiplets enumerated above 
with mentioned properties, the theory is enhanced to N + 1.

As an illustration, let us consider the stress tensor multiplet of large N = 4 algebra with 
an arbitrary value of α, AV [1; 1|0; 0] 1

2 ,0. The multiplet and its decomposition to the N = 3
algebra are described in Fig. 1 and 3, respectively. This decomposition consists of two N = 3
multiplets, LV [0|0] 1

2 ,0 which is the N = 3 stress tensor multiplet, and AV [2|0] 1
2 ,0 which is the 

extra supercurrent multiplet. The extra supercurrent multiplet AV [2|0] 1
2 ,0 has a top component 

[0] 3
2

⊗ [0]0 which can be identified as the extra supercurrent, and [2]1 ⊗ [0]0 at the first level 
which corresponds to the off-diagonal R-currents, as expected. Therefore, the N = 3 global 
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superconformal theory in two dimensions can have an enhanced large N = 4 theory if and only 
if there exists the extra supercurrent multiplet AV [2|0] 1

2 ,0.

This argument directly generalizes to generic values of N , as is clear from the fact that

∧kV in SO(N + 1) → ∧kV ⊕ ∧k−1V in SO(N ). (5.5)

For a generic N , the stress tensor multiplet of N + 1 superconformal algebra is decomposed 
into the stress tensor multiplet of N superconformal algebra and an extra supercurrent multiplet 
thereof:

T (N+1) = AV [∧3V |0] 1
2 ,0 ↔ T (N ) = AV [∧3V |0] 1

2 ,0 ⊕ AV [∧2V |0] 1
2 ,0︸ ︷︷ ︸

extra supercurrent multiplet

, (5.6)

where the number of supersymmetries N̄ in the right-moving sector is arbitrary and irrelevant.
Conversely, a global superconformal theory with a generic number N of supersymmetries in 

two dimensions is enhanced to an N + 1 theory if and only if it contains the extra supercurrent 
multiplet AV [∧2V |0] 1

2 ,0.

Note that for large N = 4 or N = 6, AV [∧2V |0] 1
2 ,0 or AV [∧3V |0] 1

2 ,0 on the RHS of (5.6) is 
reducible to two irreducible parts. Although only one irreducible part corresponds to a genuine 
extra supercurrent multiplet or stress tensor multiplet (see section 5.1.2), both parts are required 
in order to enhance the theory into N + 1.

There are several types of non-generic cases of supersymmetry enhancement. Although what 
happens in each case is highly analogous to the generic case, we make remarks on the differences.

5.3.1. N ≤ 2 to N + 1
For N ≤ 2 where the smaller R-symmetry is abelian, the representation ∧3V does not have a 

sensible interpretation. However, similar relations to (5.6) hold:

T (3) = LV [0|0] 1
2 ,0 ↔ T (2) = LV [0|0]1,0 ⊕ LV [0|0] 1

2 ,0︸ ︷︷ ︸
e.s.m. for N=2

, (5.7)

T (2) = LV [0|0]1,0 ↔ T (1) = LV [0|0] 3
2 ,0 ⊕ LV [0|0]1,0︸ ︷︷ ︸

e.s.m. for N=1

, (5.8)

where e.s.m. abbreviates the extra supercurrent multiplet.

5.3.2. N = 2 to small N = 4
N = 4 superconformal algebra that appears in the generic enhancement rule (5.6) is the large 

one with SO(4) R-symmetry group. Meanwhile, the small N = 4 with SU(2) R-symmetry 
group can be decomposed into or enhanced from the N = 2 theory, considering that SO(2) ⊂
SU(2). That is,

T (4s) = AV [2|0]1,0 ↔ T (2) = LV [0|0]1,0 ⊕ AV [2|0]1,0 ⊕ AV [−2|0]1,0︸ ︷︷ ︸
e.s.m. for N=2

. (5.9)

Therefore, the N = 2 global superconformal theory in two dimensions is enhanced into 
a small N = 4 theory if and only if both extra supercurrent multiplets AV [2|0]1,0 and 
AV [−2|0]1,0 exist. Note that two extra supercurrents are required since there are two more su-
percurrents in N = 4 than in N = 2.
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As an application of (5.9), let us discuss new anomalies in (N , N̄ ) = (2, 2) superconformal 
theories resolving a long-standing puzzle that, unlike generic (2, 2) superconformal theories, the 
conformal manifold of a (4, 4) superconformal theory does not factorize into a product of Kähler 
manifolds [40]. The authors of [40] have shown that whenever the operator product expansion 
(OPE) between a chiral multiplet AA[1|1] 1

2 , 1
2

and a twisted chiral multiplet AA[1| − 1] 1
2 , 1

2
de-

velops a pole,

O(x1)Õ(x2) ∼ 1

x−−
1 − x−−

2

J++(x2) + regular terms, (5.10)

the aforementioned anomaly occurs and the factorization fails. Here O and Õ are the primaries 
of chiral and twisted chiral multiplets while J++ is a conserved current of spin one and U(1)

R-charge two.
One can argue that any (2, 2) superconformal theories have enhanced (4, 4) superconformal 

symmetry if and only if the OPE between O and Õ has a pole. We present a sketch of the proof 
below.

Let us start with a (2, 2) superconformal theory that has a chiral multiplet and a twisted 
chiral multiplet. Suppose that the OPE (5.10) has a pole, which suggests that the given (2, 2)

superconformal theory has an extra supercurrent multiplet AV [2|0]1,0 and its complex conjugate 
AV [−2|0]1,0. This is because J±± is contained in the short multiplet AV [±2|0]1,0 as a compo-
nent. The existence of such extra supercurrent multiplets leads to the enhancement from (2, 2) to 
(4, 4), as explained above.

On the other hand, let us assume that the (2, 2) superconformal theory has enhanced (4, 4)

superconformal symmetry. Both chiral and twisted chiral multiplets as well as their conjugates 
are then combined in a (4, 4) short multiplet AA[1|1] 1

2 , 1
2
,

AA[1|1] 1
2 , 1

2︸ ︷︷ ︸
in N=(4,4)

↔
⊕
±

AA[±1| ± 1] 1
2 , 1

2︸ ︷︷ ︸
in N=(2,2)

. (5.11)

Its OPE with itself must give rise to the small (4,4) super Virasoro vacuum multiplet with 
an identity and the stress-energy tensor multiplet T (4s) = AV [2|0]1,0 included, as described 
schematically below:

(4,4)-theory : AA[1|1] 1
2 , 1

2
× AA[1|1] 1

2 , 1
2

∼ V V [0|0]0,0 ⊕ T (4s) ⊕ · · · . (5.12)

Decomposing back to the (2, 2) theory, the RHS of (5.12) must include the extra supercurrent 
multiplets AV [±2|0]1,0. Meanwhile, among various OPEs that appear in the LHS of (5.12), it is 
the OPE between the chiral multiplet AA[1|1] 1

2 , 1
2

and the twisted chiral multiplet AA[1| − 1] 1
2 , 1

2
that accounts for the extra supercurrent multiplet,

(2,2)-theory : AA[1|1] 1
2 , 1

2
× AA[1| − 1] 1

2 , 1
2

⊃ AV [2|0]1,0. (5.13)

This completes the proof.

5.3.3. N = 5 to N = 6
The enhancement of N = 5 to N = 6 is the most interesting.
Consider the genuine irreducible N = 6 stress tensor multiplet denoted by T (6). Its decom-

position into conformal multiplets is depicted in the upper row of Fig. 14. Note that the primary 
is self-dual part of the representation ∧3V = [0 2 0] ⊕ [0 0 2].
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[0 2 0] 1
2

[0 1 1]1 [1 0 0] 3
2

[0 0 0]2 : T (6)

[0 2] 1
2

[1 0]1 ⊕ [0 2]1 [0 0] 3
2

⊕ [1 0] 3
2

[0 0]2 : T (5)

Fig. 14. The N = 6 stress tensor multiplet decomposed into N = 5.

Decomposition of this multiplet into SO(5)R representations according to the general rule 
(5.5) is depicted in the lower row of Fig. 14. This is precisely the stress tensor multiplet T (5) of 
N = 5: A[0 2] 1

2
with a [0 0]2 at the third level.

Therefore, the irreducible N = 6 stress tensor multiplet is identical to the N = 5 stress tensor 
multiplet. In other words, an N = 5 global superconformal theory is automatically enhanced
into an N = 6 theory.

6. Relation to super Virasoro algebra

6.1. Implications to the super Virasoro algebra

Among deformations and conserved currents discussed in the last section, some are guaran-
teed to exist because they belong to the same multiplet as the stress tensor, which must exist 
in any superconformal field theories. In this subsection, we will systematically investigate such 
components and their implications to the super Virasoro algebra, which is not fully understood 
for generic values of N .

Let us start with the case N = 3, which is the simplest among interesting cases. For concrete-
ness, consider an (N = 3, N̄ ) theory with any N̄ for the right-moving sector. See the uppermost 
part of Fig. 15, where structure of the stress-tensor multiplet T (3) is depicted. Note that the 
product with V [0]0 in the right-moving sector is implied for all multiplets.

In addition to the components [2]1 ⊗ [0]0, [2] 3
2

⊗ [0]0, and [0]2 ⊗ [0]0 that we have already 

identified as holomorphic R-currents T [ab]
0 , supercurrents Ga

r , and stress-energy tensor L0, re-
spectively, we find another component [0] 1

2
⊗ [0]0 in the multiplet. This implies that a spin- 1

2

conserved current [0] 1
2
⊗ [0]0 exists in any N = 3 superconformal theories.

Furthermore, the multiplet structure contains additional information about the current. Not 
only does the current possess conformal weight h = 1

2 and transform as an R-singlet, but its anti-

commutation relation with the supercurrents Ga
r must also yield the R-currents T [ab]

m . Denoting 
the current as �r (r ∈ Z + 1

2 ) and matching dimensions and R-indices, one can predict that for 
all modes r, s ∈Z + 1

2 and n ∈Z,

[Ln,�r ] = (−n

2
− r)�n+r , (6.1a)

[�r,T
[ab]
n ] = 0, (6.1b)

{�r,G
a
s } ∼ εabcT

[bc]
r+s , (6.1c)

must be part of the N = 3 super Virasoro algebra. This is precisely what was found in [8].
Let us proceed to large N = 4. Small N = 4 is not interesting in this respect, as the stress 

tensor multiplet therein does not contain any extra component other than {L, G, T }, see the 
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N = 3 [0] 1
2

[2]1 [2] 3
2

[0]∗2

Small 
N = 4

[2]1
[1] 3

2[1] 3
2

[0]∗2

Large 
N = 4

[1; 1] 1
2

[2; 0]1
[0; 2]1
[0; 0]∗1

[1; 1] 3
2

[0; 0]∗2

N = 5 [0 2] 1
2

[0 2]1
[1 0]1

[1 0] 3
2[0 0]∗3
2

[0 0]∗2

N = 6 [0 2 0] 1
2

[0 1 1]1 [1 0 0] 3
2

[0 0 0]∗2

N = 7 [0 0 2] 1
2

[0 1 0]1
[0 0 2]1

[1 0 0] 3
2[0 1 0] 3
2

[0 0 0]∗2[1 0 0]2
[0 0 0]∗5

2

Fig. 15. Stress tensor multiplets for 3 ≤ N ≤ 7, where N denotes number of supercharges in the left-moving sector. 
Product with V [0]0 in the right-moving sector is implied. Top components are marked with an asterisk.

second part of Fig. 15. For the rest of this subsection, we no longer mention explicitly the right-
moving sector, but assume that tensor product with the vacuum multiplet V [0]0 in the right-
moving sector with any number of supercharges N̄ is always implied.

In addition to the components [2; 0]1, [1; 1] 3
2
, and [0; 0]2 that we have already identified as R-

currents T ±i
0 , supercurrents Ga

r , and stress-energy tensor L0, we find a sporadic top component 
[0; 0]1 and a primary component [1; 1] 1

2
. Therefore, conserved currents [0; 0]1 and [1; 1] 1

2
are 

guaranteed to exist in any large N = 4 superconformal theories.
Following [12], we denote the respective currents by U0 and Qa

r , where r = 1
2 and − 1

2 cor-
respond to each other’s conjugate. We can see, not to mention their transformation properties 
under the R-symmetry and their scaling dimensions 1 and 1

2 , that U0 commutes with supercur-
rents Ga

r , and that {Ga
r , Q

b
s } leads to T ±i

0 and U0. These currents with the respective properties 
are precisely what are present in the full N = 4 super Virasoro algebra [12].
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Some of the relevant (anti-)commutation relations are presented below,

[T +i
n ,Ga

r ] = η+i
ab (Gb

n+r − 2
1

1 + α
nQb

n+r ), (6.2a)

[T −i
n ,Ga

r ] = η−i
ab (Gb

n+r + 2
α

1 + α
nQb

n+r ), (6.2b)

{Qa
r ,G

b
s } = 2(η+i

ab T +i
r+s − η−i

ab T −i
r+s) + δabUr+s , (6.2c)

[Un,Q
a
r ] = 0, [Un,G

a
r ] = nQa

n+r , (6.2d)

{Qa
r ,Q

b
s } = −δabδr+s,0

c(1 + α)2

12α
, (6.2e)

{Um,Un} = −mδm+n,0
c(1 + α)2

12α
. (6.2f)

As in the global subalgebra (2.3), α parametrizes the su(2) levels:

k+ = c(1 + α)/(6α), k− = c(1 + α)/6, (6.3)

where c is the central charge. Note that c does not enter the global subalgebra while α does.
Therefore, although the global subalgebra is complete with {L, G, T } alone, we can find by 

physical reasoning what additional operators must exist, which actually appear in the Virasoro 
algebra. Admittedly, this approach may not exhaust all operators that appear in the Virasoro 
algebra.

Let us turn to the next example: N = 5. We can see that, in addition to the familiar operators 
T

[ab]
0 , Ga

r , and L0, there are conserved currents of dimensions 1
2 , 1, 32 that are 3-form, 4-form, 

and 5-form, respectively, under the R-symmetry group. The 5-form is also supersymmetric. Note 
that for odd SO(N ), k-form and (N − k)-form are identical. Thus, an additional R-singlet cur-
rent with dimension 3

2 that is supersymmetric, an R-vector current with dimension 1, and an 
R-adjoint current with dimension 1

2 are guaranteed to exist. The first two are identified as an 
extra supercurrent and extra R-currents that enhance the supersymmetry into N = 6. This has 
been the topic of section 5.3.3.

Due to peculiarity discussed in section 5.1.2 and 5.3.3, the N = 6 stress tensor multiplet 
contains no non-trivial components except for the primary, which is a self-dual 3-form under the 
R-symmetry with dimension 1

2 . Thus, implications to N = 6 super Virasoro algebra are more or 
less contained in the last paragraph.

Proceeding further, we can conclude that for all N ≥ 7, conserved currents U [a1a2···ak]
m(r) (k =

3, 4, · · · , N ) that are k-forms under the R-symmetry with dimensions k
2 − 1 are guaranteed to 

exist. The mode number is m ∈Z for k even, thus bosonic currents, and r ∈ Z + 1
2 for k odd, thus 

fermionic currents. Extending the mode numbers, commutation relations with the supercurrent 
is schematically written as

{Ga0
r ,U [a1a2···ak]

s } ∼ U
[a0a1···ak]
r+s + δa0,ai U

[a1a2···ak]\ai
r+s + · · · . (6.4)

Note that the conserved currents discussed in this subsection are to be distinguished from 
those discussed in section 5.1.3, which were supersymmetric and allowed for every half-integer 
value of spin, but not guaranteed to exist. Only the N -form coincides.
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6.2. Relation to super Virasoro characters in N = 2 and small N = 4

Recall that the superconformal multiplets analyzed in section 3 are representations of global 
subalgebras of the larger super Virasoro algebras. In this sense, super Virasoro multiplets can be 
decomposed into the global superconformal multiplets. In this subsection, we discuss how the 
super Virasoro multiplets are decomposed, and compare recombination rules of super Virasoro 
multiplets and global superconformal multiplets for N = 2 and small N = 4, for which the super 
Virasoro multiplets have been thoroughly studied.

6.2.1. N = 2
Super Virasoro multiplets in N = 2 have been classified in [33]. A multiplet is long, or mas-

sive, if its primary [j ]h lies above the unitarity bound, and it is short, or massless, if the primary 
lies on the unitarity bound. The unitarity bound is described by a set of line segments (see [33,41])

2h − 2rj + (
c

3
− 1)(r2 − 1

4
) = 0 (r ∈ 1

2
+Z) (6.5)

defined in the range

(
c

3
− 1)(|r| − 1

2
) ≤ sign(r) · j ≤ (

c

3
− 1)(|r| + 1

2
) + 1. (6.6)

The line segment labelled by r describes a set of primaries [j ]h that would be annihilated by the 
supercharge Gsign(r)

−|r| . Note that the global unitarity bound (2.10) corresponds to the line segments 

r = ± 1
2 extended to infinity.

It is known that the N = 2 super Virasoro algebra has an outer automorphism referred to as 
spectral flow [42]. Although the extended N = 2 algebra that incorporates the spectral flow by 
one unit has many applications (see e.g. [43]), we do not impose such an invariance here.

Character of an N = 2 super Viasoro multiplet with primary [j ]h, massive or massless, is 
written as (see [44–46])

Massive: Chh,j (τ, z) = qh− c
24 yj

∞∏
n=1

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2 , (6.7)

Massless: χh(j,r),j (τ, z) = qh− c
24 yj

∞∏
n=1

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2

1

1 + q |r|ysign(r)
,

(6.8)

where q = e2πiτ and y = e2πiz as in section 4.2. Note that h(j, r) in the massless character 
ensures that h be on the unitarity bound, where r labels which line segment (h, j) locates on. 
These multiplets satisfy a recombination rule as h in the massive multiplet approaches the uni-
tarity bound given j :

Chh,j (τ, z)
h→h(j,r)−−−−−−−−−→ χh(j,r),j (τ, z) + χh(j,r)+|r|,j+sign(r)(τ, z) (6.9)

Structure of the character can be analyzed as follows. Starting from the primary which 
contributes qh− c

24 yj , two factors in the numerator take negative-mode fermionic supercharges 
G±

−n+ 1
2

into effect while those in the denominator take negative-mode bosonic operators 

L−n, T−n into effect. The extra factor for the massless case simply cancels the operation by 
G

sign(r)
1 , which produces the null states.
− 2
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Meanwhile, we can write characters of global N = 2 superconformal multiplets enlisted in 
Table 2 using more general formula (4.8) and (4.13),

Massive: Ch(g)
h,j (τ, z) = qh− c

24 yj (1 + q
1
2 y)(1 + q

1
2 y−1)

(1 − q)
, (6.10)

Massless: χ
(g)
|j |
2 ,j

(τ, z) = qh− c
24 yj (1 + q

1
2 y)(1 + q

1
2 y−1)

(1 − q)

1

1 + q
1
2 ysign(j)

. (6.11)

These multiplets also satisfy a recombination rule that has been already written down in (4.4)
using different notation:

Ch(g)
h,j (τ, z)

h→ |j |
2−−−−−−−→ χ

(g)
|j |
2 ,j

(τ, z) + χ
(g)
|j |+1

2 ,j+sign(j)
(τ, z) (6.12)

For simplicity and without loss of generality, let us assume r > 0. Decomposition of super 
Virasoro multiplets into global multiplets is now straightforward. We first write for massive mul-
tiplets and massless multiplets with r ≥ 3

2 :

Chh,j (τ, z) = Ch(g)
h,j (τ, z)

1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2︸ ︷︷ ︸
(∗)

, (6.13)

χ
h(j,r≥ 3

2 ),j
(τ, z) = Ch(g)

h,j (τ, z)
1

(1 − q)(1 + qry)

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2︸ ︷︷ ︸
(∗∗)

.

(6.14)

An important point to note from (6.13) and (6.14) is that only long global multiplets appear on 
the RHS. This is because i) the unitarity bound for r ≥ 3

2 is higher than the global bound h = |j |
2 , 

so the global bound is never saturated by primaries of the super Virasoro multiplets, and ii) every 
monomial qayb that appears in (∗) or (∗∗), except for 1, satisfies a >

|b|
2 , so the corresponding 

global multiplet

Ch(g)
h,j (τ, z) × qayb = Ch(g)

h+a,j+b(τ, z) (6.15)

remains long: h + a >
|j+b|

2 , provided that h > |j |
2 .

However, the massless character with r = 1
2 requires a special treatment because it no longer 

satisfies i) in the last paragraph. Therefore, we need to single out a global short multiplet 
χ

(g)

h= j
2 ,j

(τ, z):

χ
h= j

2 ,j
(τ, z) =χ

(g)
j
2 ,j

(τ, z)

+ Ch(g)
j
2 ,j

(τ, z)
1

1 + q
1
2 y

(
1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2 − 1

)
︸ ︷︷ ︸

(#)

.

(6.16)
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Every monomial qayb in (#) satisfies a >
|b|
2 , and appears with a positive coefficient. Therefore, 

a massless super Virasoro multiplet on the segment r = ± 1
2 is decomposed into exactly one short 

global multiplet with the same primary, and infinitely many long global multiplets.10

The decomposition of super Virasoro multiplets can be applied to their recombination rule 
(6.9). Again, cases r ≥ 3

2 and r = 1
2 need to be treated separately.

First, for r ≥ 3
2 , super Virasoro multiplet recombination, or branching if we are looking at it in 

the opposite direction, occurs at h higher than the global unitarity bound, so the same constituent 
long global multiplets are simply regrouped to form different sets of super Virasoro multiplets:

Chh,j (τ, z) =Ch(g)
h,j (τ, z)

1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2

= (Ch(g)
h,j (τ, z) + Ch(g)

h+r,j+1(τ, z))
1

(1 − q)(1 + qry)

×
∞∏

n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2

h→h(j,r)−−−−−→ (Ch(g)

h(j,r),j (τ, z) + Ch(g)

h(j,r)+r,j+1(τ, z))
1

(1 − q)(1 + qry)

×
∞∏

n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2

=χh(j,r),j (τ, z) + χh(j,r)+r,j+1(τ, z). (6.17)

On the other hand, for r = 1
2 where super Virasoro and global unitarity bounds coincide, the 

super Virasoro multiplet recombination occurs simultaneously as one of its constituent global 
multiplet also experiences the recombination.

Chh,j (τ, z) =Ch(g)
h,j (τ, z)

1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2

=Ch(g)
h,j (τ, z) + Ch(g)

h,j (τ, z)

(
1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2 − 1

)

h→ j
2−−−→

(
χ

(g)
j
2 ,j

(τ, z) + χ
(g)
j+1

2 ,j+1
(τ, z)

)

+ Ch(g)
j
2 ,j

(τ, z)

(
1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2 − 1

)

=χ
(g)
j
2 ,j

(τ, z) + Ch(g)
j
2 ,j

(τ, z)
1

1 + q
1
2 y

10 Note that the global long multiplet Ch(g)
j
2 ,j

(τ, z) only works as a proxy for producing other long multiplets by multi-

plication with qayb’s. It itself does not make sense because the unitarity bound has been reached.
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×
(

1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2 − 1

)

+ χ
(g)
j+1

2 ,j+1
(τ, z)

+ Ch(g)
j+1

2 ,j+1
(τ, z)

1

1 + q
1
2 y

(
1

1 − q

∞∏
n=2

(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

(1 − qn)2 − 1

)
=χj

2 ,j
(τ, z) + χj+1

2 ,j+1(τ, z) (6.18)

6.2.2. Small N = 4
The small N = 4 super Virasoro multiplets are classified similarly to their global counterparts: 

a multiplet with primary [R]h is bounded by h ≥ R
2 , and is massless, or short, if the bound is 

saturated and massive, or long, otherwise. Their characters are similar to the case N = 2 except 
that now each R-representation may contain many states, graded by z. The central charge needs 
to be discretized by c = 6k (k = 1, 2, · · · ).

Using the orthogonal basis, we define l = R
2 so that the orthogonal weight l can take half-

integer values and represents conventional SU(2) spin T 3
0 . The unitarity bound becomes h ≥ l

in the NS sector we are working on. Then, the characters are given by11 (see [13,14])

Chh,l(τ, z) =qh− k
4

( ∞∏
n=1

(1 + y
1
2 qn− 1

2 )2(1 + y− 1
2 qn− 1

2 )2

(1 − yqn)(1 − qn)2(1 − y−1qn)

)

×
∞∑

m=−∞

y(k+1)m+l − y−(k+1)m−l−1

1 − y−1 q(k+1)m2+(2l+1)m, (6.19)

where 2l + 1 = 1, 2, · · · , k, and

χh=l,l(τ, z) =ql− k
4

( ∞∏
n=1

(1 + y
1
2 qn− 1

2 )2(1 + y− 1
2 qn− 1

2 )2

(1 − yqn)(1 − qn)2(1 − y−1qn)

)
1

1 − y−1

×
∞∑

m=−∞

(
y(k+1)m+l

(1 + y
1
2 qm+ 1

2 )2
− y−(k+1)m−l−1

(1 + y− 1
2 qm+ 1

2 )2

)
q(k+1)m2+(2l+1)m, (6.20)

where 2l + 1 = 1, 2, · · · , k + 1. The factor 1
1−y−1 is often absorbed into the product in the litera-

ture, but we choose to write it separately to manifest the appearance of Weyl character formula.
Meanwhile, characters of the global multiplets read

Ch(g)
h,l (τ, z) =qh− k

4
(1 + y

1
2 q

1
2 )2(1 + y− 1

2 q
1
2 )2

1 − q

yl − y−l−1

1 − y−1 , (6.21)

χ
(g)
h=l,l(τ, z) =ql− k

4
(1 + y

1
2 q

1
2 )2(1 + y− 1

2 q
1
2 )2

1 − q

1

1 − y−1

×
(

yl

(1 + y
1
2 q

1
2 )2

− y−l−1

(1 + y− 1
2 q

1
2 )2

)
. (6.22)

11 Another fugacity for the U(1) charge that distinguishes two copies of SU(2) ⊂ SO(4) may be introduced, as has 
been in [14]. However, we simply set the fugacity to unity because it plays no role in our argument.
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From (6.19)-(6.22) we can infer the recombination rule of (4.5), common to the super Virasoro 
and global multiplets.

Chh,l
h→l−−→ χl,l + 2χ

l+ 1
2 ,l+ 1

2
+ χl+1,l+1, (6.23)

Ch(g)
h,l

h→l−−→ χ
(g)
l,l + 2χ

(g)

l+ 1
2 ,l+ 1

2
+ χ

(g)
l+1,l+1. (6.24)

Note that this formulae are not directly derived from (4.8) and (4.13), because in the small 
N = 4 algebra the R-symmetry is SU(2) rather than SO(4), and the supercharges do not form 
a vector representation thereof. However, essential properties appear in common. In particular, 
note how the (1 + y± 1

2 q
1
2 )2 factors nullify the action of two supercharges simultaneously.

Decomposition of super Virasoro multiplets into global multiplets is done in a similar manner 
to N = 2. Massive super Virasoro multiplets are decomposed into long global multiplets only, 
while massless super Virasoro multiplets are decomposed into short and long global multiplets.

One thing we would like to check is when a massive super Virasoro multiplet hits the unitar-
ity bound to branch into massless multiplets (6.23), if its global constituents also branch into the 
global constituents of the massless multiplets via (6.24). For this purpose, we only need to con-
sider global constituents of massive multiplets that also saturate the global unitarity bound as the 
massive multiplet saturates its super Virasoro unitarity bound, and also short global multiplets 
in the decomposition of massless super Virasoro multiplets. It seems reasonable to believe that 
the other parts, which remain manifestly long throughout the recombination/branching, would 
simply regroup among themselves to belong to appropriate super Virasoro multiplets.

Consider the infinite sum in (6.19) and (6.20). As we are only interested in global constituents 
that hit the unitarity bound as h → l (h = l is automatic for (6.20)), we look for monomials 
qa− k

4 yb such that a ≤ b. Apart from the product term that only contains monomials qayb with 
a ≥ b, we require

0 ≥ (k + 1)m2 + (2l + 1)m + l − (k + 1)m − l

= (k + 1)m
(
m − (1 − 2l + 1

k + 1
)
)
. (6.25)

However, since 0 < 1
k+1 ≤ 2l+1

k+1 ≤ 1, the only way to satisfy (6.25) is by m = 0, which satu-
rates the inequality. Therefore, m �= 0 in the infinite sum always leads to global multiplets that 
are manifestly long even when the super Virasoro multiplet hits the unitarity bound, and m = 0
may contribute to global multiplets that hit their unitarity bound simultaneously with the super 
Virasoro multiplet.

Finally, we can write down the decomposition of small N = 4 multiplets as

Chh,l(τ, z) =Ch(g)
h,l (τ, z)

( ∞∏
n=2

(1 + y
1
2 qn− 1

2 )2(1 + y− 1
2 qn− 1

2 )2

(1 − yqn−1)(1 − qn)(1 − qn−1)(1 − y−1qn−1)

)

+ (Ch(g)

h′,l′(τ, z) such that h′ − l′ > h − l), (6.26)

χh=l,l (τ, z) =χ
(g)
h=l,l(τ, z)

( ∞∏
n=2

(1 + y
1
2 qn− 1

2 )2(1 + y− 1
2 qn− 1

2 )2

(1 − yqn−1)(1 − qn)(1 − qn−1)(1 − y−1qn−1)

)

+ (Ch(g)

h′,l′(τ, z) such that h′ > l′). (6.27)



42 S. Lee, S. Lee / Nuclear Physics B 956 (2020) 115033
Then, from the fact that a common multiplicative factor appears on the right-hand-sides of (6.26)
and (6.27), it can be inferred that the global multiplet decomposition of (6.23) is indeed compat-
ible with (6.24).

6.2.3. Large N = 4
For completeness, we conclude by relating characters of the large N = 4 global multiplets to 

their analogues in super Virasoro algebra that are studied in [47,48]. In particular, we consider 
representations of Ãγ , which is a subalgebra of the full large N = 4 superconformal algebra Aγ . 
It is obtained from the latter by decoupling four dimension- 1

2 operators and one dimension-1
current, denoted by Qa

r and Um in (6.2), see [29,49]. It is straightforward to obtain characters of 
representations of Aγ from that of Ãγ , see [47].

We first present the character formulae for the large N = 4 global subalgebra, massive or 
massless, which are special cases of (4.8), (4.9), and (4.13).

Ch(g)
h,{h1,h2}(τ, {z1, z2}) = qh− c

24 ·

( r∏
i=1

∏
ε=±1

(1 + yε
i q

1
2 )

)
1 − q

×

∑
ε=±1

∣∣∣∣∣y
h1+1
1 + εy

−h1−1
1 y

h1+1
2 + εy

−h1−1
2

y
h2
1 + εy

−h2
1 y

h2
2 + εy

−h2
2

∣∣∣∣∣∣∣∣∣y1 + y−1
1 y2 + y−1

2
2 2

∣∣∣∣
, (6.28)

χ
(g)

h= h1
2 ,{h1,h2}

(τ, {z1, z2}) = q
h1
2 − c

24 ·

( r∏
i=1

∏
ε=±1

(1 + yε
i q

1
2 )

)
1 − q

×

∑
ε=±1

∣∣∣∣∣∣∣
y

h1+1
1

1 + y1q
1
2

+ ε
y

−h1−1
1

1 + y−1
1 q

1
2

y
h1+1
2

1 + y2q
1
2

+ ε
y

−h1−1
2

1 + y−1
2 q

1
2

y
h2
1 + εy

−h2
1 y

h2
2 + εy

−h2
2

∣∣∣∣∣∣∣∣∣∣∣y1 + y−1
1 y2 + y−1

2
2 2

∣∣∣∣
.

(6.29)

We then present the character formulae for the massive and massless representations of Ãγ

[47,48] in our convention below. In particular, we move from the SU(2) isospins, related to the 
fundamental Dynkin labels by l+ = R1

2 and l− = R2
2 , with fugacities {z+, z−} into the orthogonal 

basis h1 = l+ + l−, h2 = l+ − l− with fugacities {y1 = z+z−, y2 = z+z−1− }.

Ch
Ãγ

h,{h1,h2}(τ, {z1, z2})

= qh− c
24

( ∞∏
n=1

2∏
i=1

∏
ε=±1

(1 + yε
i qn− 1

2 )

(1 − qn)3 ·
∏

(1 − y
ε1
1 y

ε2
2 qn)

)

ε1,ε2=±1
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×
∞∑

a,b=−∞

(
qk+a2+(h1+h2+1)a+k−b2+(h1−h2+1)b

×

∑
ε=±1

∣∣∣∣∣y
k+a+k−b+h1+1
1 + εy

−k+a−k−b−h1−1
1 y

k+a+k−b+h1+1
2 + εy

−k+a−k−b−h1−1
2

y
k+a−k−b+h2
1 + εy

−k+a+k−b−h2
1 y

k+a−k−b+h2
2 + εy

−k+a+k−b−h2
2

∣∣∣∣∣∣∣∣∣y1 + y−1
1 y2 + y−1

2
2 2

∣∣∣∣
)

,

(6.30)

χ
Ãγ

h= h1
2 ,{h1,h2}

(τ, {z1, z2})

= q
h1
2 − c

24

( ∞∏
n=1

2∏
i=1

∏
ε=±1

(1 + yε
i qn− 1

2 )

(1 − qn)3 ·
∏

ε1,ε2=±1

(1 − y
ε1
1 y

ε2
2 qn)

)

×
∞∑

a,b=−∞

(
qk+a2+(h1+h2+1)a+k−b2+(h1−h2+1)b

×

∑
ε=±1

∣∣∣∣∣∣∣
y

k+a+k−b+h1+1
1

1 + y1q
a+b+ 1

2

+ ε
y

−k+a−k−b−h1−1
1

1 + y−1
1 qa+b+ 1

2

y
k+a+k−b+h1+1
2

1 + y2q
a+b+ 1

2

+ ε
y

−k+a−k−b−h1−1
2

1 + y−1
2 qa+b+ 1

2

y
k+a−k−b+h2
1 + εy

−k+a+k−b−h2
1 y

k+a−k−b+h2
2 + εy

−k+a+k−b−h2
2

∣∣∣∣∣∣∣∣∣∣∣y1 + y−1
1 y2 + y−1

2
2 2

∣∣∣∣
)

,

(6.31)

where k± are the su(2) levels defined in (6.3). Note the recombination rules,

Ch
Ãγ

h,{h1,h2}
h→ h1

2−−−→ χ
Ãγ

h1
2 ,{h1,h2}

+ χ
Ãγ

h1+1
2 ,{h1+1,h2}

, (6.32)

Ch(g)
h,{h1,h2}

h→ h1
2−−−→ χ

(g)
h1
2 ,{h1,h2}

+ χ
(g)
h1+1

2 ,{h1+1,h2}
. (6.33)

Comparing (6.28) through (6.31), it is clear that the Ãγ characters can be written in terms of 
the global multiplet characters. Specifically, the summands over a and b in (6.30) and (6.31) are 
precisely the second lines of (6.28) and (6.29) for a = b = 0. More generally, the summand in 
(6.30) is the second line of (6.28) with

h → h + k+a2 + (h1 + h2 + 1)a + k−b2 + (h1 − h2 + 1)b,

h1 → h1 + k+a + k−b, and h2 → h2 + k+a − k−b. (6.34)

The summand in (6.31) is more involved, but after expanding the denominators in the first row 
of the determinant, it can be expressed as a sum of a massless global character and an infinite 
series of massive global characters.

However, it is not very illuminating to write the Ãγ characters entirely in terms of the global 
characters. Instead, we write analogues of (6.26) and (6.27) to illuminate how the saturation of 
unitarity bound occurs in terms of the global constituents.
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To do so, the following inequality is crucial:

k+a2 + (h1 + h2 + 1)a + k−b2 + (h1 − h2 + 1)b − 1

2
k+a − 1

2
k−b

=k+a(a + h1 + h2 + 1 − 1
2k+

k+
) + k−b(b + h1 − h2 + 1 − 1

2k−
k−

)

≥0 (for a, b ∈Z). (6.35)

Equality holds if and only if a = b = 0. It is valid because the spectral flow constrains isospins 
of Ãγ multiplets by{

1 ≤ h1 ± h2 + 1 = 2l± + 1 ≤ k±, (massive)

1 ≤ h1 ± h2 + 1 = 2l± + 1 ≤ k± + 1. (massless)
(6.36)

The inequality implies that only the contribution from a = b = 0 in (6.30) may saturate the 
unitarity bound h ≥ h1

2 as the LHS does, and that only the contribution from a = b = 0 in (6.31)
may be massless global multiplets. Therefore, we can generalize (6.26) and (6.27) into the large 
N = 4 characters as follows,

Ch
Ãγ

h,{h1,h2} =Ch(g),N=4
h,{h1,h2}

( ∞∏
n=2

2∏
i=1

∏
ε=±1

(1 + yε
i qn− 1

2 )

(1 − qn)(1 − qn−1)2 ·
∏

ε1,ε2=±1

(1 − y
ε1
1 y

ε2
2 qn−1)

)

+ (Ch(g),N=4
h′,{h′

1,h
′
2} such that h′ − h′

1

2
> h − h1

2
), (6.37)

χ
Ãγ

h1
2 ,{h1,h2}

=χ
(g),N=4
h1
2 ,{h1,h2}

( ∞∏
n=2

2∏
i=1

∏
ε=±1

(1 + yε
i qn− 1

2 )

(1 − qn)(1 − qn−1)2 ·
∏

ε1,ε2=±1

(1 − y
ε1
1 y

ε2
2 qn−1)

)

+ (Ch(g),N=4
h′,{h′

1,h
′
2} such that h′ >

h′
1

2
). (6.38)

Again, from the fact that a common multiplicative factor appears on the right-hand-sides of 
(6.37) and (6.38), it can be inferred that the global multiplet decomposition of (6.32) is indeed 
compatible with (6.33).
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Appendix A. Racah-Speiser algorithm

In this appendix, we review the Racah-Speiser Algorithm that has been used throughout this 
article. Similarly to [26], our focus will primarily be on how to use the algorithm rather than 
its construction, and we refer the readers to [50] for the latter. Moreover, we are particularly 
interested in its application to special orthogonal groups SO(N ).

Racah-Speiser Algorithm, in short, is an efficient algorithm that yields a tensor product of 
two irreducible representations of a Lie group as a direct sum of irreducible representations, 
while avoiding overly detailed relations between the weights best described by Clebsch-Gordan 
coefficients.

Consider two irreducible representations of a Lie group Gr with rank r , denoted by their high-
est weights λ1 and λ2. Our objective is to find irreducible representations �a with corresponding 
multiplicities mi , such that

λ1 ⊗ λ2 =
⊕

a

ma�a, (A.1)

where ma�a indicates that �a appears ma times in the sum.
Let us denote by {μa

2} (a = 1, · · · , dimλ2) the complete set of weights of the irreducible rep-
resentation λ2. Then, consider the set of weights {λ1 + μa

2} (a = 1, · · · , dimλ2). Each weight 
belongs to one of three categories, and contributes to the RHS of (A.1), after appropriate treat-
ments:

• Some of the weights live in the Weyl chamber, that is, all of their Dynkin labels are non-
negative. These weights do not require any special treatment, and each of them contributes to 
the RHS of (A.1) as a highest weight of an irreducible representation �a with multiplicity 1.

• Some of the weights do not live in the Weyl chamber, however, can be brought into one by a 
series of reflections. Here, the reflection is defined as a shift by the Weyl vector ρ, followed 
by a Weyl reflection and then a negative shift by the same Weyl vector ρ. Using fundamental 
Dynkin labels, the ith Weyl reflection σ i of a weight [R1 · · ·Rr ] can be written as

σ i([R1 · · ·Rr ]) = [R1 · · ·Rr ] − Ri[Ai1 · · ·Air ], (A.2)

where Aij denotes the Cartan matrix of gr . Incorporating the shifts by the Weyl vector ρ =
[1 · · ·1], the ith reflection is summarized as

ri([R1 · · ·Rr ]) = [R1 · · ·Rr ] − (Ri + 1)[Ai1 · · ·Air ]. (A.3)

Note that there are r different reflections, where r is the rank of the Lie group. Number of 
reflections required to bring a weight into the Weyl chamber is defined modulo 2. Then, each 
of the weights that belongs to this category contributes to the RHS of (A.1) after being brought 
into the Weyl chamber via W reflections, with multiplicity (−1)W .

• Finally, some multiplets are reflected into itself. By inspection of (A.3), one can see that a 
weight belongs to this category if and only if at least one of its fundamental Dynkin labels 
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equals −1. Considering the −1 factor that entails each reflection, these weights naturally have 
vanishing contribution to the RHS of (A.1).

To summarize, each weight in the set {λ1 + μa
2} whose Dynkin labels do not include −1, 

contributes to the RHS of (A.1) by an irreducible representation whose highest weight equals 
itself, or a reflection of itself. If an odd number of reflection is required in the process, it con-
tributes negatively, cancelling a positive but identical contribution from another weight. At the 
end, the cancellation is always complete and there is no remaining contribution with a negative 
multiplicity. Note that exchanging the role of two representations l1 and l2 gives the same result.

Throughout this article, the Racah-Speiser Algorithm is always performed in a special or-
thogonal group SO(N ), with one of the two multiplicands being the vector representation that 
represents the supercharges. In such cases, the minimum Dynkin label that can appear in any 
of the weights in the set {λ1 + μa

2} is −2, and the classification and treatment of the weights 
become extremely simple. That is, whenever there is a Dynkin label equal to −1 we dispose the 
weight, and else if the kth label is −2, we add the kth row of the Cartan matrix to the weight 
in accordance with (A.3) to bring the kth label to 0 then to cancel with an identical weight. Of 
course, if the reflection produces a −1 for another label, we dispose the weight.

Let us take the product [0 1 0] ⊗ [1 0 0] in SO(7) as an example. The weight system of the 
highest weight representation [1 0 0] is given by

[1 0 0], [−1 1 0], [0 − 1 2], [0 0 0], [0 1 − 2], [1 − 1 0], [−1 0 0], (A.4)

and thus the set of weights {λ1 + μa
2} is

[1 1 0], [−1 2 0], [0 0 2], [0 1 0], [0 2 − 2], [1 0 0], [−1 1 0]. (A.5)

The second and seventh weights are disposed because of the Dynkin label −1. To bring the fifth 
weight [0 2 − 2] into the Weyl chamber, we add the third row of the Cartan matrix [0 − 1 2] to 
get [0 1 0], which cancels the fourth weight. Therefore,

[0 1 0] ⊗ [1 0 0] = [1 1 0] ⊕ [0 0 2] ⊕ [1 0 0]. (A.6)

When [0 1 0] is the primary of a multiplet, the product with vector [1 0 0] represents states at the 
first level of the multiplet. The first piece [1 1 0] represents null states when the unitarity bound 
is saturated, then we can identify the remaining parts as

∧2V ⊗ ∧1V = ∧3V ⊕ ∧1V, (A.7)

in agreement with (3.11) and the discussion followed.
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