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Résumé de la thèse

0.1 Introduction
Une question sans réponse qui se trouve au carrefour de la physique et de la chimie est: quelle est la
limite du tableau périodique. Les théories nucléaires suggèrent l’existence de ce qu’on appelle un “îlot de
stabilité” (voir figure 1), habité par des éléments à longue durée de vie.

Figure 1: Stabilité (en terme de durée de vie) des noyaux lourds. L’îlot de stabilité est ici prédit pour des
noyaux ayant un nombre de neutrons et protons voisins de 184 et 114 respectivement [1].

Ces éléments, comme tous les élément à partir du Rf (104 protons) et qu’on appelle « superlourd », ne
doivent leur existence qu’à d’importants effets quantiques et forment un laboratoire unique pour l’étude
de la structure et de la dynamique nucléaires sous l’influence d’une très forte répulsion Coulombienne
entre les nombreux protons du noyau. Cependant, un défi théorique réside dans la prédiction de la position
exacte de cet îlot, car différents modèles prédisent la position au nombre de protons Z=114,120 ou 126,
et au nombre de neutrons N=172 ou 184 de façon plutôt inharmonieuse [12]. Pour mieux comprendre le
comportement de la matière nucléaire dans des conditions extrêmes du nombre de protons et de neutrons
et contraindre les modèles nucléaires, il est donc nécessaire d’étudier la nature et la séquence d’états
nucléaires dans des noyaux superlourds plus légers dont les taux de production en laboratoire permettent
des études spectroscopiques détaillées.

0.2 Méthodes expérimentales
Dans ce travail, des états de 255Rf ont été peuplés par la réaction de fusion-évaporation 50Ti(207Pb, 2n)255Rf
en utilisant un faisceau intense de 50Ti [138] fourni par le cyclotron U400 du FLNR à Dubna. Les résidus
d’évaporation ont été séparés du faisceau et du fond d’autres produits de réaction à l’aide du séparateur de
noyaux de recul SHELS [38] et implantés dans le détecteur d’implantation du dispositif GABRIELA [37]
(voir figure 2). Le multidétecteur GABRIELA permet d’effectuer des corrélations en temps et en position
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Figure 2: Schéma du dispositif expérimental où apparaissent le filtre des produits de réaction SHELS et le
multidétecteur GABRIELA installé au plan focal de SHELS.

entre les noyaux implantés et leurs désintégrations ultérieures et est sensible à l’émission de rayonnements
gamma, d’électrons de conversion interne, de particules alpha et de produits de fission.

0.3 Caractérisation de GABRIELA à l’aide de Geant4
Afin d’interpréter les spectres de désintégration expérimentaux, le multidétecteur GABRIELA a été car-
actérisé à l’aide de simulations Geant4 [159]. Ce progiciel n’est cependant pas adapté aux décroissances
radioactives de noyaux ayant un numéro atomique supérieur à 100. Il a donc fallu adapter Geant4 jusqu’au
Rf (Z=104), en générant les fichiers de données des processus de relaxation atomique nécessaires et en
modifiant certaines parties du code source. Les simulations ont été validées avec des données d’étalonnage
(voir figure 3).

(a) (b)

Figure 3: Efficacités de détection (en %) a) des rayons gamma et b) des électrons de conversion interne en
fonction de leur énergie en keV. Les courbes représentent les efficacités simulées et les symboles représen-
tent les efficacités extraites à partir de données d’étalonnage simulées (étoiles bleues) et expérimentales
(carrés rouges) après correction d’effets de sommation (voir texte pour plus de détails).

L’impact des effets de sommation dans les détecteurs sur l’efficacité de détection des rayons gamma
et des électrons de conversion a été analysé en détail dans la réf. [2] et il a été démontré que les simula-
tions sont essentielles pour interpréter les spectres des multiples particules détectées dans des dispositifs
compactes et efficaces comme GABRIELA. Une nouvelle méthode pour estimer le profil de profondeur
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d’implantation des résidus d’évaporation a été mise au point, ce qui est essentiel notamment pour la spec-
troscopie des électrons de conversion interne, comme illustré sur la figure 4.
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Figure 4: Effets de la profondeur d’implantation des noyaux lourds d’intérêt sur l’efficacité de détecter des
électrons de conversion interne dans les détecteurs dits « tunnels » de GABRIELA.

0.4 Résultats expérimentaux
Grâce à l’étude des corrélations spatio-temporelles entre les résidus d’évaporation et leur décroissance
radioactive ultérieure, le temps de vie de l’état fondamental du 255Rf a pu être mesuré de 2 manières :
via la distribution en temps de son émission alpha caractéristique et celle de sa fission spontanée. Les
demi- vie T1/2,α = 1, 67(5) s, T1/2, f ission = 1, 69(3) s et les rapports d’embranchement Brα = 49, 1(1.3)%,
Br f ission = 50, 9(1, 1)% mesurés sont en bon accord avec les valeurs données dans la littérature. Dans un
premier temps, la structure fine de décroissance alpha du 255Rf a été étudiée. Le schéma de décroissance
vers des états excités du noyau fils 251No établi par le groupe de GSI [185] a ainsi pu être confirmé.
Notre étude a également permis de déterminer les coefficients de conversion interne des 2 transitions

Figure 5: Schéma de niveaux peuplés par l’émission de particules alpha du 255Rf. Les limites supérieures
des rapports d’embranchement sont indiqués en % pour l’émission alpha. Pour la désexcitation électro-
magnétique de l’état 9/2−, les rapports d’embranchement sont donnés en relatif par rapport à la transition
9/2− → 7/2+.
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les plus intenses et confirmer leur caractère dipolaire électrique. Elle a également permis d’identifier
de nouveaux états. Enfin les rapports d’embranchements de la décroissance alpha et de la désexcitation
électromagnétique ont pu être extraits grâce à une technique de comparaison en χ2 avec de nombreuses
réalisations de simulations Geant4. Le schéma de décroissance obtenu est illustré dans la figure 5.

Notre étude s’est alors portée vers les états excités du 255Rf. Trois états métastables ont pu être mis
en évidence grâce à une analyse assistée par simulation Geant4 des corrélations génétiques observées
dans les détecteurs de GABRIELA. Le premier état est interprété comme un isomère de spin 5/2+, dont
l’existence avait été déjà suggérée par le GSI [186] d’après la systématique des états de basse énergie des
isotones N = 151. Les 2 autres états sont interprétés comme des états à 3 quasi-particules impliquant un
neutron célibataire et des excitations de 2 quasi-protons attribuées à des états isomériques dans les noyaux
pair-pair voisins 254No [13, 130] et 256Rf [132–134] (voir figure 6).

Figure 6: Spectres schématiques des orbitales neutrons et protons et nombres de Nilsson asymptotiques
correspondants. Pour les 2 isomères de haute énergie identifies dans le noyau 255Rf, les excitations de
protons proposées et les spins et parités (Kπ) resultants sont illustrés.

L’existence de ces 2 isomères avait également été mise en avant dans un article récent [188], mais notre
étude a permis de séparer les différentes contributions des isomères peuplés dans la réaction et d’établir un
schéma de désexcitation complet.

Figure 7: Schéma de niveaux partiel proposé pour le noyau 255Rf avec les demi-vies des 3 états
isomériques, leurs configurations probables en terme d’excitations nucléaire et leur population dans la
réaction de fusion-évaporation.
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La figure 7 résume le schéma de désexcitation de l’isomère de spin et celui proposé pour les 2 isomères
dit de haut « K », qui implique une structure intermédiaire bâtie sur un état correspondant à une excitation
du neutron célibataire sur l’orbitale de Nilsson 11/2−[725]. Les propriétés électromagnétiques des états
nucléaires de ce schéma permettent de reproduire l’ensemble des observables experimentales, notamment
la forme et l’intensité des spectres des différents détecteurs de GABRIELA, comme l’illustre la figure 8.

Figure 8: Comparaison des spectres expérimentaux a) des photons b) des électrons de conversion interne et
c) des signaux de basse énergie détectés dans le détecteur d’implantation avec les spectres simulés suivant
le schéma de désexcitations de la figure 5. Dans les figures b) et c), la contribution de chaque isomère est
également indiquée.

0.5 Conclusions & Perspectives
Durant cette thèse, un important travail de modifications de Geant4 et de simulations de processus radioac-
tifs de noyaux superlourds a été effectué. L’efficacité de détection de photons et d’électrons de conversion
interne du multidétecteur GABRIELA a été simulée et les résultats ont été validés par des données ex-
périmentales. Des nouvelles techniques d’analyse de données assistée par simulation ont été développées
et ont permis d’interpréter les spectres d’émission des noyaux 255Rf et 251No et d’établir un schéma de
niveaux partiel dans chaque cas, qui est consistant avec ce qui est connu dans les isotones plus légers et les
propriétés d’isomères dans les noyaux pairs-pairs voisins. Ces résultats devront être confirmés par spec-
troscopie prompte à la cible de production et par des études de radioactivités en utilisant une électronique
digitale car les temps de vie mesurés sont extrêmement courts et les mesures réalisées dans ce travail ont
souffert d’un important temps mort électronique. La suite logique de cette étude serait de réaliser une
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expérience visant à produire le prochain isotone : 257Sg, pour lequel rien n’est connu et dont l’existence
même est incertaine, car il se situe aux limites de la charte des noyaux en terme de stabilité face à la fission
spontanée. Enfin, en ce qui concerne les simulations, il serait utile d’étendre le travail de modification de
Geant4 aux noyaux au delà de Rf, d’inclure les effets temporels (temps de vie et temps mort) et de rendre
l’outil disponible à la communauté.
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Chapter 1

Introduction

It has been more than a century since E. Rutherford discovered the nucleus at the center of an atom [3, 4].
An atomic nucleus is a dense clump of protons and neutrons held together by the strong force and gives
most of the mass to the atom. The number of protons in the nucleus determines whether the atom is gold
or silver. Together with the number of neutrons, they decide the stability of the nucleus, hence the fate of
the atom. Protons and neutrons (together known as nucleons) are not fundamental structureless particles.
They are made of three quarks bound together by the strong force mediated by gluons. The strong force
is mostly confined within the nucleons, only a tiny fraction of it acts outside the nucleons. This "residual"
strong force (or the nuclear force) holds the atomic nuclei together against the disruptive electromagnetic
force between the positively charged protons. The residual strong force is very much similar to the van
der Waals force that originates from the Coulomb force [6]. The exact nature of the nuclear interaction
is still not well understood and remains one of the unsolved problems in physics. No one knows for
sure how nucleons behave inside a nucleus. In 1982, physicists at the European Organization for Nuclear
Research (CERN) have discovered the EMC effect (named after European Muon Collaboration) that is
nucleons appear much larger inside a nucleus than when they are free (not bound). Nuclei being quantum
many-body systems, are complicated to deal with and certainly hiding a lot of mysteries within them.

Clues exist in the patterns that prevail from the simplest to the complex nuclides. Pattern seeking is
an old human habit for explaining the order in nature. In the same light, it took over two centuries to
organize the known elements into the periodic table, depending on their chemical properties. The periodic
table became a road-map of building blocks of matter for the chemists. Scientists have been adding new
elements to the periodic table ever since. With the advent of the particle accelerator, many new man-
made elements have been added to the periodic table, starting with the first synthetic element technetium
in 1937 [5]. But when will the end of the periodic table be reached remains one of the most persistent
mysteries in Chemistry. Richard Feynman predicted the end of the periodic table at element 137 based on
relativistic calculations where he presumed the atomic nucleus to be pointlike. His calculations showed
that electron orbitals would break down beyond this point. Recent calculations showed that this limit
can be pushed to 173 if the size of the nucleus is taken into account [10, 11]. But, relativity is not the
only factor that determines the existence of an atom. Positively charged protons inside a nucleus repel
each other making it less and less stable with more addition of protons. Uranium, with an atomic number
of 92, is the last relatively stable element to occur naturally on Earth. Every element beyond uranium
disintegrates quickly.

A macroscopic model known as the Liquid Drop Model (LDM), treats a nucleus as a charged droplet
of incompressible quantum liquid of constant density with the strong nuclear force holding the drop to-
gether against the Coulomb repulsion between the protons that upsets its stability. Although the LDM
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succeeded in describing the overall mode of nuclear stability across the known nuclides, nevertheless,
large deviations were observed for nuclei containing specific numbers of protons and neutrons. These
numbers, 2,8,20,28,50 and 82 for protons and neutrons in the elements lighter than uranium and another
number 126 for neutrons, later became known as magic numbers attributing extra stability to the associ-
ated nuclides. The nuclear shell model is particularly successful in explaining the origin of these magic
numbers. In this model, the protons and neutrons inside a nucleus fill up energy levels of increasing en-
ergy. Inhomogeneity in the distribution of the levels causes levels to cluster together forming shells with
relatively large energy gaps between them. Magic numbers correspond to the number of particles required
to fill up energy shells completely. It requires a large jump in energy for one nucleon to cross the gap to
the next shell. Thus, nuclei with closed shells are unusually stable, resembling the unreactive nature of
the noble gases which have the right number of electrons to fill the electronic shells. Complete filling of
both proton and neutron shells imparts double stability to the nuclei. The shell model not only explains
the stability trend across the nuclear chart it also explains the existence of the super-heavy nuclei (SHN).
These SHN should not exist based on LDM because the Coulomb repulsion would simply overpower the
nuclear force splitting the nucleus instantly. In fig. 1.1a the spontaneous fission half-lives have been drawn
as a function of the fissility parameter (see chapter 3 section 3.2 eq. 3.33): at Rf, the lifetime becomes less
than the lifetime (10−14 s [8]) required to form an atom. However, it is clear that the LDM underestimates
the fission half-lives of the elements lighter than and heavier than Rf, and in fact, elements up to 118
have already been synthesized in laboratories. These elements owe their existence to quantum shell effects
which creates a minimum in the potential energy surface of the nucleus at some deformation as shown in
fig. 1.1b.

(a) (b)

Figure 1.1: a) The spontaneous fission half-lives for even-even nuclei are compared between experimental
data (circles) and LDM predictions (dashed line) as a function of the fissility parameter. Starting with
rutherfordium the LDM prediction falls below the minimum lifetime for the formation of a chemical
element [7, 8]. b) The top figure shows the shapes of the LDM potential energies of heavy (green) and su-
perheavy (red) nuclei and the bottom figure shows the effects of shell correction on their potential energies
as a function of deformation [9].



15

Figure 1.2: Schematic illustration of the spherical single-proton orbitals in the region of superheavy ele-
ments showing different gap openings depending on the strength of the spin-orbit interaction. With large
spin–orbit coupling (left), the gap appears at 114 and with reduced spin–orbit coupling (right) the gap is
at 120 [13].

Since shells define the stability, it is natural to seek the next proton and neutron spherical shell clo-
sures. Unfortunately, there is no consensus across different theoretical models in the prediction of the next
spherical magic numbers beyond 208Pb (Z = 82, N = 126). Phenomenological models predict them to be
Z = 114, N = 184 while density functional theories based on Skyrme or Gogny interaction predict Z=

126, N =184 and those based on relativistic mean-field interaction predict Z = 120, N = 172 [12]. One
factor that gives rise to such differences is the strength of the spin-orbit interaction. For instance, in a nu-
cleus with 114 protons that fill all the orbitals up to 2f7/2 orbital, the strength of the spin-orbit interaction
between the proton 2f7/2-2f5/2 spin-orbit partners opens the proton shell gap either at 114 with large spin-
orbit coupling or at 120 with small spin-orbit coupling [13] (see fig. 1.2). Owing solely to the stability
resulting from the nucleonic shell effects, there lies a possibility of a real "island of stability" occupied
by the "superheavy elements" well beyond the limits of known elements. It was A. Sobiczewski, F.A.
Gareev, and B. N. Kalinkin from Dubna, Russia who first predicted the possible existence of superheavy
stable nuclei centered at Z = 114 and N = 184 [15]. Nuclear theories have predicted that the half-lives
of these elements can range from minutes to many years, even possibly spanning the age of the earth [7],
hence, experimentally accessible. The region then came to be known as the "island of stability", a term
first coined by W. D. Myers and W. J. Swiatecki [16]. Immediately after the conception of this island of
stability, attempts were made to find them in nature [17–19] and to synthesize them in a laboratory. The
earliest claim of discovering super-heavy elements in nature came in 1976 by a group of nuclear physi-
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Figure 1.3: The upper end chart of the presently known nuclei. The decay modes of each isotopes are
represented with different color codes: α-decay (yellow), β+- or electron-capture decay (red), β−-decay
(blue), spontaneous fission (green), and γ-decaying isomers (white) [14]. The deformed magic numbers
are seen at Z = 108 and N = 162 and the next spherical magic number at Z = 114, 120 (uncertain) and N
= 184. One can also see how far are these known elements from the predicted island of stability.

cists from the US, who claimed to have detected elements 116, 124, and 126 in the mineral monazite
from Madagascar [20, 21]. However, later searches for superheavy elements in monazite from Madagas-
car [22–25] and India [26, 27] were unsuccessful casting a doubt on the previous claim. The quest for
superheavy elements has culminated in the synthesis of the heaviest man-made element Z = 118. These
recently discovered heavy elements survive just fractions of a second suggesting that perhaps we reached
the shores of the island of stability (see fig. 1.3). Despite some indication in the measured lifetimes of
the heaviest synthesized nuclei (see the review [28]), the fabled island of stability awaits discovery. Fig.
1.4 illustrates the stability of nuclides as a function of the proton and neutron number. Theory predicts
about 6000 nuclei lie in the limit of existence, out of which nearly 3300 nuclei have been observed so far,
and only 252 are known to be stable, and the rest are unstable. The degree of instability grows as we go
further away from the line of stability and the stable nuclei move towards stability through radioactivity.
The last heavy non-radioactive stable isotope is doubly magic 208Pb with 82 protons and 126 neutrons, and
the neighboring single magic isotope 209Bi is fairly stable with an extremely long half-life. All elements
with an atomic number greater than 82 are unstable, and their half-lives decrease with increasing atomic
numbers. The half-life raises again to some high values between thorium and plutonium. This region is the
island of relative stability, with peaks at the non-magical 232Th and 238U whose lifetimes are comparable
with the age of the earth. Earlier it was postulated that the island containing spherical nuclei would require
a leap across the sea of instability. However, more recent studies [29,30] suggest that the superheavies are
deformed and more resilient to spontaneous fission. New magic numbers Z = 108 and N = 162 appear
as a consequence of deformed shell structure. This converted the lone faraway island of stability into a
peninsula with an isthmus of relatively stable deformed nuclei linking it to the region of stable nuclei [7]
(see fig. 1.4).

Elements heavier than uranium called transuranium elements are so unstable that they are not usu-
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Figure 1.4: 3-D rendering of the island of stability [1].

ally found in nature. Physicists synthesize the transuranium elements using accelerated beams of nuclei
that impinge on the heaviest possible target nuclei. As the half-life of elements decreases with increasing
atomic number, synthesis of elements with an atomic number beyond that of uranium becomes chal-
lenging. The elements residing in the island of stability are neutron-rich, and the targets and projectiles
available currently for fusion experiments are not neutron-rich enough to reach the island. With such
technological challenges, there is a growing fear that the island might never come to sight.

To confirm the position of the island of stability and constrain the nuclear models, it is pertinent to
study the nature, sequence, and spacing of the states of the lighter heavy nuclei. With the current state of
technology, they are relatively easier to produce than their heavier counterparts. One customary way to
study the nuclear structure is through decay spectroscopic studies. Hitherto the spectroscopic data in the
transfermium region remains sparse (see fig. 1.5a ). Constant efforts are underway in major experimental
facilities around the globe. Recent developments in nuclear spectroscopy techniques and instrumentation
have allowed the identification of single-particle and collective states in many heavy systems and the
results reveal discrepancies [32] (see fig. 1.5b) in the sophisticated theoretical models. To study the
structure in detail, two techniques are currently employed: the first one is prompt spectroscopy at the target
[33], generally performed using the recoil decay tagging method (RDT) [34,35]. The other complementary
technique is decay spectroscopy either at the focal plane of a recoil separator or at a decay station coupled
to a gas-jet transport system [36] where alpha, gamma, and internal conversion electron (ICE) spectroscopy
of superheavy nuclei and their daughter products is performed. Gamma spectroscopy has been carried out
for a few transfermium nuclei. However, in heavy nuclei, the emission of ICEs is a competitive de-
excitation mode. Thus, ICE spectroscopy is a necessary supplementary technique to gamma spectroscopy,
in studying the structure of heavy nuclei. The GABRIELA [37] setup at the focal plane of SHELS [38] in
Dubna, Russia is aimed at performing detailed alpha, gamma, and ICE spectroscopy in the transfermium
region. Since the beginning of the project in 2003, the decay properties of several nuclei have been studied
(see refs. [39–43]) or are being investigated (for example, 256,257Rf, 250No, 255,256No). The detection setup
is gradually being modernized and upgraded.

This study attempts to investigate the nuclear structures of 255Rf produced in the reaction 207Pb(50Ti,
2n)255Rf and its daughter 251No. First, an overview of the relevant theoretical models is presented in chapter
2. Then in chapter 3, different decay modes heavy nuclei can undergo are discussed briefly. The details
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(a)
(b)

Figure 1.5: a) Available experimental information for nuclei from Cm to Hs [7]. b) Single particle proton
and neutron energies calculated by phenomenological models with Woods Saxon (WS) or Folded Yukawa
(FY) potentials or by self-consistent mean field models using Skyrme (SLy4), Gogny (DS1) or relativistic
interactions (NL1) [32].

of the experiment, the setup, and its characteristics determined using the Geant4 Monte Carlo simulation
toolkit are presented in chapter 4. Afterward, in chapter 5, first, brief historical accounts of 255Rf and
251No isotopes are presented. Then the ground-state alpha decay populating excited states in 251No is
explored. The techniques followed to obtain the observables such as alpha decay and gamma branching
ratios, internal conversion coefficients are also discussed. After that, the experimental findings related
to the isomeric states observed in 255Rf are presented with possible interpretations and the methodology
followed to support our claims. Finally, the study is concluded in chapter 6.



Chapter 2

Theoretical Overview

Figure 2.1: Nuclear colour-coded chart showing calculated values of the quadrupole deformation. The
blue areas correspond to the regions of prolate shapes [44].

2.1 Macroscopic models
Macroscopic properties such as binding energy, shape, and nuclear stability are emergent properties of
the complex nuclear systems. Emergent properties are seen everywhere from ripples in water to cosmic
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structures. An individual entity never show these aspects on its own. These properties only appear when
the parts interact with one another in the whole ensemble. Hence the emergent behaviors are collective
behaviors. The correlated motions of many nucleons in different orbitals in the microscopic theories can
manifest dynamic properties such as surface vibrations, rotations, or a combination of both. Some form
of order appears in the seeming chaotic motions of many particles. Many interesting nuclear emergent
properties are expected as we go higher in mass numbers. From a simple hypothesis, one can say that
the number of collective behavior is proportional to the number of interactions between the system’s
components. In the nuclear landscape, the properties that are observed in one mass region may not be
evident in the other parts of the chart. Fig. 2.1 shows one such example where quadrupole deformations of
nuclei are plotted across the whole nuclear landscape. In the following sections, the macroscopic models
which treat nuclei as a whole are briefly described.

2.1.1 The Liquid Drop Model (LDM)
Historically, LDM is the first model to describe different nuclear properties and was conceived based on
few observational facts: the saturation property of the nuclear forces and evidence of low compressibility
and a well-defined surface by a nucleus. In this model, a nucleus is viewed as an incompressible drop
of nuclear fluid resembling an ordinary liquid drop, with nucleons behaving like molecules in a liquid.
Interestingly, before the discovery of the neutron in 1932 by J. Chadwick [45], G. Gamow in 1929 proposed
the LDM [46], hypothesizing that nuclei are composed of alpha particles. Later, based on this model
C. F. v. Weizsaecker in 1935, first introduced the semi-empirical mass formula [47]. It was followed
by numerous similar attempts to explain the binding energies, and many semi-empirical mass formulae
had emerged. The most commonly used one is that of Bethe and Weizsaecker given by the following
equation [48]:

B(N,Z) = aV A + aS A2/3 + aC
Z2

A1/3 + asym
(N − Z)2

A
− aPA−3/4 [MeV] (2.1)

where, the coefficients are determined empirically from a fit to experimental data: aV = −15.68, aS =

18.56 , aC = 0.717, asym = 28.1 and

aP =


34 for e-e nuclei.
0 for e-o nuclei.
−34 for o-o nuclei.

Each term in the equation have different theoretical justifications and named as such. The volume
term reflects the characteristics of strong nuclear force such as short-range and charge independence. The
surface term introduces a correction to the volume term as the nucleons close to the surface contribute less
to the binding energy. The Coulomb term includes the decrease in the binding energy due to the repulsion
of the protons. The symmetry energy or Pauli term comes from the imbalance between the neutron and
proton numbers, causing the system energy to be higher than what would be for N = Z. Finally, the pairing
energy term is because of the spin-coupling of like particles. The system would have lower energy if an
equal number of spin up and spin down of each kind of nucleons are there.

The binding energy appears from the mass difference between the mass a nucleus and the total mass
of its constituents. The average binding energy per nucleon (see fig. 2.2a) increases with mass number,
reaching a maximum about 8.8 MeV at mass number A ∼ 60. It trends downwards gently beyond this
point with increasing mass and atomic numbers as the Coulomb repulsion compete with the attractive
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(a) (b)

Figure 2.2: a) Binding energy per nucleon calculated using a mass formula (curve) over the experimental
values for β-stable odd-A nuclei (◦) [48]. b) LDM limits of stability drawn on the nuclear chart. The proton
and neutron drip lines are indicated by green lines. The vanishing fission barrier and spontaneous fission
half-life of 10−14 s are indicated by blue lines. The red line corresponds to the beta-stability line [12].

nuclear force. The approximate constant nature of the curve is a clear indication of the saturation property
of the nuclear force. In the vicinity of proton and/or neutron magic numbers and also in very deformed
nuclei, large deviations of the overall fit on the binding energy as a function of A are noticeable. These
local inconsistencies are attributed to the nuclear shell effects [48].

Using the semi-empirical mass formula the limiting contours on the nuclear chart can be drawn that
define the existence of nuclei (see fig. 2.2b). The proton and neutron separation energies defined as

S p = B(A,Z) − B(A − 1,Z − 1)

S n = B(A,Z) − B(A − 1,Z)

set limits on the stability at the proton and neutron drip lines, where S p = 0 and S n = 0 respectively.
The drip lines denote the proton and neutron numbers at which the strong force fails to keep the nuclei
bounded ending nuclear existence. The nuclear landscape is also bounded at the top (heavy mass region)
because of the strong Coulomb repulsion among the protons that tend to deform nuclear drops making
them unstable against fission. This upper limit on Z against the spontaneous fission occur when the fission
barrier vanishes B f = 0 (see section 3.2).

2.1.2 The Collective model
In a dynamical LDM, the oscillations on the surface of a spherical drop are usually parametrized by

R(θ, φ, t) = R0

1 +

∞∑
l=0

l∑
m=−l

alm(t)Ylm(θ, φ)

 (2.2)

where, R(θ, φ, t) is the distance between the center of the nucleus to the surface at angles (θ, φ) at time t,
R0 is radius of the nucleus if it was a sphere, R0 = r0A1/3 with r0 = 1.2 fm, Ylm(θ, φ) are the spherical
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harmonic functions of degree l and order m, and alm are the expansion coefficients. The monopole term a00

corresponds to a change in the nuclear volume [49], and the dipole terms l = 1 correspond to a translation
of the whole system. Hence, they are excluded from equation 2.2 when small deformations are considered.
The quadrupole term l = 2 was found to play a dominant role in nuclear spectroscopy. In this case, nuclei
have either a prolate or an oblate deformation. A prolate spheroid has one major- and two minor-axes and
an oblate spheroid has two major- and one minor-axis. The l = 3 terms are responsible for pear shapes and
octupole collectivity in nuclei. For a pure quadrupole deformed system at a given time t, eq. 2.2 becomes

R(θ, φ) = R0

1 +

2∑
m=−2

a2mY2m(θ, φ)

 (2.3)

In a rotational transformation from a laboratory frame to the body fixed frame, the five parameters for
quadrupole deformations a2m, −2 ≤ m ≤ 2 are reduced to two, a20 and a22 = a2−2 (a21 = a2−1 = 0)
(related to the intrinsic shape), which together with three Euler angles (corresponding to its instantaneous
orientation in space) describe the whole system [48, 49]. Using the Hill-Wheeler polar coordinates [50]
β (≡ deformation magnitude) and γ ( ≡ shape parameter) that are related to the quadrupole deformation
parameters by (first introduced by A. Bohr)

a20 = βcos(γ)

a22 =
1
√

2
βsin(γ)

the increments of the three semi axes in the body fixed frame are given by:

δRi = R0

√
5

4π
βcos(γ −

2π
3

i) i = 1, 2, 3. (2.4)

The nucleus has a prolate shape if γ = 0◦, 120◦, 240◦ with the 3, 2 and 1 axes as the symmetry axes and has
corresponding oblate shapes if γ = 180◦, 300◦, 60◦ [48]. In the axially symmetric case, β can be derived
from the above equation

β =
4
3

√
π

5
δR
R0

(2.5)

where δR is the difference between the major axis and the axis of the spheroid. It follows from this
equation that, β = 0 , β > 0 and β < 0 for no, prolate and oblate deformation respectively. Typically for a
normal deformation β ≈ 0.2 − 0.3 and nuclei with β ≈ 0.4 − 0.6 are called superdeformed nuclei. Another
deformation parameter ε is common in literature which is related to the β parameter by

ε =
δR
R0

= 0.946β (2.6)

In the cases when the γ parameter has intermediate values, the nuclei have triaxial deformation.

2.1.3 Rotations and Vibrations
Vibration

The low lying excitations produce small oscillations around the spherical shape (alm = 0). The Collective
Hamiltonian of the form of a harmonic oscillator is expressed as [48, 51, 52]

Hcoll = T + V =
1
2

∑
l≥2

∑
m

(Bl|
dalm

dt
|2 + Cl|alm|

2)
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where, Bl and Cl are the mass and stiffness parameters with ωl =
√

Cl/Bl. These parameters are calculated
from the classical hydrodynamical model with an assumption that the nuclear matter has an irrotational
flow and uniform charge distribution inside the nucleus. They are expressed as

Bl =
3

4πl
AmR2

0 (2.7)

Cl = (l − 1)(l + 2)R2
0σ −

3(l − 1)
2π(2l + 1)

(Ze)2

R0
(2.8)

where, m is the nucleon mass, and σ, the surface tension per unit area which is related to the coefficient
aS in eq. 2.1 by σ = aS

4πr2
0
.

The quantized form of this collective Hamiltonian is given by

Hcoll =
1
2

∑
l≥2

∑
m

~ωl(b†lmblm +
1
2

) (2.9)

where, b†lm and blm creates and destroys phonons of multipole l and obey Bose commutation rule

[bl′m′ , b
†

lm] = δll′δmm′ .

A multiphonon state is achieved by acting b† onto the ground state which has no phonon blm|0 >= 0. Using
angular momentum coupling rules the vibration spectrum is obtained. In the case of quadrupole vibration,
l = 2, we have two types of vibrations . The β-vibrations are the shape oscillations along the symmetry
axis which preserve the axial symmetry. In the γ-vibrations, the axial symmetry is no longer preserved
(see fig. 2.3).

Rotation

Nuclei having stable ground state deformation can exhibit collective rotations, which can be described by
time-dependent parameters alm(t) in the laboratory frame. Excitations of the system are the rotations and
small oscillations around this ground-state equilibrium deformation. Restricting to quadrupole deforma-
tion only and transforming to the body-fixed frame which shall be denoted by 123 axes, the Hamiltonian
is

H(β, γ) = T (β, γ) + V(β, γ) (2.10)

Figure 2.3: A schematic of the lowest order vibration modes [53].
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with potential energy expanded around the equilibrium position (a◦20, a
◦
22 = a◦2−2)

V(β, γ) =
1
2

C20[a20(β, γ) − a◦20]2 + C22[a22(β, γ) − a◦22]2 (2.11)

and the kinetic energy of the system

T (β, γ) = Trot(β, γ) + Tvib(β, γ) (2.12)

with

Trot(β, γ) =
1
2

3∑
i=1

Jiω
2
i (2.13)

where i represents an axis in the body-fixed frame, ωi is the angular velocity around the axis i and Ji is
the moment of inertia

Ji = 4B2β
2sin2(γ −

2π
3

i) i = 1, 2, 3. (2.14)

Figure 2.4: Schematic of flow patterns for
rotation of an ellipsoidal body [54].

Using eq. 2.7, it becomes

J irr
i =

3
2π

mAR2
0β

2sin2(γ −
2π
3

i) i = 1, 2, 3. (2.15)

which is different from the moment of inertia of a rigid body
with same deformation (see fig. 2.4 for an illustration)

J
rig
i =

2
5

mAR2
0(1 −

√
5

4π
βcos(γ −

2π
3

i)) i = 1, 2, 3 (2.16)

and experimental value [48]

Jexp ≈
β2A7/3

400
[MeV−1] (2.17)

measured from the first 2+ state of a rotational band. In
well deformed nuclei (β ∼ 0.2 − 0.4), it is found that the flow
within the nuclei is neither irrotational nor of a rigid rotor.

J irr < Jexp < J rig

Since, the components of the total angular momentum I along the intrinsic axes are Ii = Jiωi, the
rotational kinetic part can be expressed as

Trot =

3∑
i

I2
i

2Ji
(2.18)

The vibrational part is given by

Tvib =
1
2

B2(β̇2 + β2γ̇2) (2.19)

The quantized form of the collective quadrupole Hamiltonian in the formalism of A. Bohr is given by

H =
∑

i=1,2,3

I2
i

2Ji
−
~2

2B2
[

1
β4

∂

∂β
β4 ∂

∂β
+

1
β2

1
sin3γ

∂

∂γ
sin3γ

∂

∂γ
] + V(β, γ) (2.20)
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with volume element dτ = β4|sin3γ|dβdγdΩ.
In a symmetric rigid rotor with the 3-axis being the symmetry axis, we assume that the potential energy

surface has a deep deformed axially symmetric minimum at (β0, 0). The Hamiltonian is approximated
using J1(β0, 0) = J2(β0, 0) = J0 taking only the 0th order expansion term. The higher-order terms
couple rotations and vibrations and can be neglected in an attempt to decouple the rotational motions from
vibrations. The only remaining rotation vibration coupling term in the Hamiltonian is I3

2J3
that cannot be

expanded. The approximated rotational energy is

T ′rot =
I2 − I2

3

2J0
(2.21)

The energy spectrum is obtained by solving the eigenvalue problem

(Hrot + Hvib)|ψ(β, γ) > = E|ψ(β, γ) > (2.22)

where, the rotational band is seen to be superimposed on each vibrational state (nβ, nγ).

E(I) = E(0) +
~2

2J0
(I(I + 1) − K2) (2.23)

with,
E(0) = ~ωβ(nβ + 1/2) + ~ωγ(2nγ + 3/2 + 1/2(|K| − 1))

where, ωβ =
√

C20/B2 is the frequency and nβ is the number of phonons of β-vibration, similarly,
ωγ =

√
C22/B2 is the frequency and nγ is the number of phonons of γ-vibration and K ≤ I is the projection

of the angular momentum on the symmetry axis (see fig. 2.5). Only even values of K are allowed from
rotational symmetry around 1 and 2-axes by 180◦ (see ref. [48, 49]) and the spin sequence for K , 0, is
I = |K|, |K| + 1, |K| + 2, ... and when K = 0, it is I = 0, 2, 4, ....

2.2 Microscopic models
Nuclei are strongly interacting many-body fermionic systems. It is the interactions between the bodies
and the intricate motions of the particles that make the n-body problem extraordinarily complex or even

Figure 2.5: An illustration of the projection K of the angular momentum J on the symmetry axis in the
intrinsic frame (1,2,3 axes) [54].
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unsolvable exactly. The general many-body nuclear Hamiltonian that describes the nucleus in terms of
nucleonic degrees of freedom and their interactions is given by

Ĥ =

A∑
i=1

Ti +
∑
i< j

V̂(i, j) +
∑
i< j<k

V̂(i, j, k) + .... (2.24)

where Ti is the kinetic energy term, V(i j) and V(i jk) are the 2, 3 body forces, and i represents all the
coordinates (position, spin, isospin) of the ith nucleon besides being the particle index number.

2.2.1 Mean-Field approach
Restricting to 2-body interactions and neglecting relativistic effects the nuclear many-body Hamiltonian is

Ĥ =

A∑
i=1

p̂2
i

2m
+

A∑
i=1

A∑
j>i

V̂(i, j) (2.25)

In the mean-field approach, the A-body system of strongly interacting particles is approximated into
weakly interacting quasiparticles with perturbative residual interactions between them. The residual inter-
actions are often ignored, and the particles are treated as non-interacting independent particles moving in
an average potential well Û created by the other nucleons. In this approximation

Ĥ =

A∑
i=1

(
p̂2

i

2m
+ Û(i)

)
+

A∑
i=1

A∑
j>i

(
V̂i j − Û(i)

)
= Ĥm f + Ĥres (2.26)

where Û(i) is the mean field felt by the ith nucleon created by the rest of the nucleons, Ĥm f is the mean-field
Hamiltonian, which can be written as Ĥm f =

∑A
i=1 ĥi the sum of the Hamiltonian of individual particles,

describing the motion of A nucleons independent of each other in the same average field and Ĥres = V̂res,
the remaining residual interactions that generate correlations in the nucleus. The states in the phase space
are obtained by solving the Schrodinger equation

Ĥm f Ψ(1, 2, ..., A) = EΨ(1, 2, ..., A) (2.27)

which can be decomposed into
A∑

i=1

ĥiψki(i) =

A∑
i=1

εkiψki(i) (2.28)

Using the Hartree product, the A-body wave function is written as Ψ(1, 2, ..., A) =
∏A

i ψki(i) with cor-
responding energy eigenvalue E =

∑A
i=1 εki . To fulfill the Pauli principle for identical nucleons, fully

antisymmetrized wave functions called Slater determinants are used as defined in equation 2.29.

Ψ(1, 2, ..., A) =
1
A!

ψk1(1) ... ψk1(A)
... ... ...

ψkA(1) ... ψkA(A)
(2.29)

In the occupation number representation, the creation a† and the annihilation a operators are respon-
sible for creating and destroying a particle with wavefunction ψk in the level k. These operators obey
Fermi’s commutation laws. When the system is excited, the transfer of nucleons occurs from levels below
the Fermi level to the levels above it. They are represented by particle-hole ph state (particles above the
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Fermi level and holes below it) |Ψmi >= a†mai|Ψ0 > with an excitation energy εmi = εm − εi, where m
correspond to a level above the Fermi level and i to a level below it and |Ψ0 >, the ground state. In the
quasiparticle picture (see section 2.2.5), the ground state represents the vacuum αk|Ψ0 >= 0, and ph states
are two-quasiparticle states.

In the mean-field approximation, the complicated many-nucleon problem is transformed into a simpler
one-body problem, perhaps solvable exactly depending on the form of the mean potential. The mean-field
potential is chosen in such a way that it minimizes the residual interaction between the quasiparticles.
The residual interaction can then be either neglected or treated as a perturbation. Sometimes, the resid-
ual interaction is not so residual after all, whose effects are manifested as pairing correlations, collective
oscillations of the mean-field, etc. Realistic (best) average potentials can be determined from variational
techniques such as the Hartree Fock method using an effective interaction, for example, Skyrme force,
Gogny force, relativistic mean-field, etc. One can also use phenomenological potentials to a good approx-
imation. In the following subsections, such phenomenological mean field models will be discussed.

2.2.2 The Spherical Shell Model
The shell model was motivated by the experimentally known magic numbers of nucleons 2, 8, 20, 28,
50, 82, 126 at which the nuclei are more stable than other nuclei analogous to atomic inert gas configura-
tions. The shell model treats every nucleon to be independent of one another held together by an average
spherically symmetric potential created by themselves. The most commonly used ad hoc potential is the
Woods-Saxon potential [55].

V(r) = −V0

[
1 + exp

(r − R0

a

)]−1

(2.30)

with R0 = 1.2A1/3 fm is the nuclear radius, V0 ≈ 50 MeV depth of the potential and a ' 0.5 fm the diffuse-
ness parameter of the nuclear surface. The eigenfunctions of this realistic potential cannot be determined
analytically. Hence, the infinite square well and harmonic oscillator potential well are used as approxima-
tions (see fig. 2.6 for the shapes of these potentials), which serve as the limits for the realistic potential (as
pointed out by M. Goeppert-Mayer and J. Hans D. Jensen in 1950).

Figure 2.6: Most common phenomenological shell
model potentials: square well, harmonic oscillator
and Woods-Saxon.

The energy levels are obtained by solving the
one-body Schrodinger equation for each case and
the realistic single-particle energy levels are deter-
mined from interpolation between the two limiting
cases for each level. The simple harmonic potential
(SHO) is given by

V(r) = −V0 +
1
2

mω2r2

with ω =
√

2V0/mR2 and the infinite square well is

V(r) =

{
−V0 for r ≤ R0

+∞ for r > R0

Solving the Schrodinger equation for SHO po-
tential [

−
~2

2m
∆ + V(r)

]
φi(r) = εiφi(r)
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we obtain

EN = ~ω(N +
3
2

); N = 2n + l; N = 0, 1, 2, ...; l = N,N − 2, ...1 or 0; and n = (N − l)/2 (2.31)

where, N is the principal quantum number which gives the number of oscillator quanta, n, the radial
quantum number corresponds to the number of nodes in the radial part of the wavefunction, l is the orbital
quantum number. The degeneracy for each N is (N + 1)(N + 2) =

∑
l 2(2l + 1), where, for each l there

are (2l + 1) projections of ml (because of spherical symmetry ml values are not identifiable hence they are
degenerate) and the factor 2 is due to 2 spin states. The relation l = N − 2n allows l values to be either
even or odd for a given quantum number N, consequently the parity π = (−1)l = (−1)N . The harmonic
oscillator states are labeled by the (nlj) quantum numbers with spectroscopic notation s, p, d, f, g, h,... for
l = 0, 1, 2, 3, 4, 5,...

Both these potentials fail to explain the magic number sequence beyond 20. This was solved by adding
to the Hamiltonian a phenomenological attractive potential associated with the coupling of the intrinsic
spin s and the orbital momentum l of a nucleon, having the form U(r)(l̂.ŝ), where U(r) = λ 1

r
dV
dr with

λ ' −0.5 fm2. The term l.s can be written as

l̂.ŝ =
1
2

( ĵ2 − l̂2 − ŝ2), where ĵ = l̂ + ŝ (2.32)

This potential breaks the degeneracy by j = l± 1
2 , pushing l + 1/2 levels energetically below the l−1/2

levels with a separation gap proportional to (2l+1) in a given oscillator shell. For l > 3, the energy splitting
between the l + 1/2 and l− 1/2 can be large enough to lower the l + 1/2 state from one oscillator shell (N)
to the shell below (N-1). Such states are known as intruder states which have parity opposite to the states
of the shell they occupy (see fig. 2.7).

Instead of the interpolation method, a more practical method to achieve the desirable effect was intro-
duced by S.G. Nilsson i.e. to add another attractive potential ∝ l2 to the SHO potential. The final mean

Figure 2.7: Single particle energy levels for the modified oscillator potential. The “magic numbers”
indicated with red color are obtained after adding l2 and spin-orbit terms to the potential [53].
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field potential has then the form:

V(r) =
1
2

mω2r2 + Cl̂.ŝ + Dl̂2 (2.33)

The shell model describes the single-particle orbits of every nucleon in a nucleus. The nucleons occupy
the energy states in ascending order starting from the lowest level while obeying the Pauli exclusion
principle. With an assumption that due to pairing of nucleons, only the unpaired nucleon would describe
the total state of the nucleus that one observes experimentally. This is because of the short-range residual
interaction that couple two nucleons in the orbits | jm > and | j−m > (which have biggest overlap in the wave
functions hence large interaction energy) to I+ = 0. Besides its success in reproducing the magic numbers,
the model manages to predict the ground-state and excited-state spin and parities in many nuclei accurately.
The model also describes magnetic moments, isomeric states, beta decay systematic. Although the shell
model is quite successful in describing the light, spherical and near-spherical nuclei (in which the number
of nucleons outside closed-shell is small), it fails to describe nuclei if the number of valence nucleons is
large because the residual interactions between them can make their motions collective. In some cases, the
nuclei can become permanently deformed if these collective effects are large enough to lower the systems’
energy in deformed shapes than in their corresponding spherical shapes. Hence, the shell model cannot
explain the origin of rotational and vibrational spectra observed in heavy nuclei because it assumes that
the nucleons move in a spherically symmetric potential. And, quantum-mechanically a sphere cannot
have collective rotation. For this reason, A. Bohr, B. Mottelson, and S. G. Nilsson constructed nuclear
models with a deformed potential. In fact, the first failure of the shell model was identified in quadrupole
moments of heavy nuclei (in 1949) which the shell model predicts to be much smaller than the measured
value [56]. This led J. Rainwater (in 1950) to suggest that the nuclear shape, in this case, is not spherical
but spheroidal [57].

2.2.3 The Deformed Shell Model
The detailed microscopic properties of the quantum system determine the equilibrium shape of the nucleus.
In a deformed nucleus, the potential in which the nucleons move breaks the spherical symmetry. Nilsson
assumed the potential to be that of an anisotropic harmonic oscillator (ellipsoidal shape). Hamiltonian of
a nucleon in the body-fixed coordinate system is expressed as [58]:

ĤO = −
~2

2m
∆ +

m
2

(ω2
xx2 + ω2

yy2 + ω2
z z2) (2.34)

For an ellipsoidal potential (γ = 0◦ and R = R0(1 + βY20)), with 3-axis as the symmetry axis and a
deformation parameter δ, the angular frequencies are given by

ω2
x = ω2

y = ω2
0(δ)(1 +

2
3
δ) (2.35)

ω2
z = ω2

0(δ)(1 −
4
3
δ) (2.36)

where,

ω0(δ) = ω̊0(1 −
4
3
δ2 −

16
27
δ3)−1/6, ω̊0 = ω0(δ = 0) (2.37)

which comes from volume conservation

ωxωyωz = ω̊3
0 (2.38)
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Figure 2.8: A schematic of splitting of levels as a function of deformation [59].

the deformation parameter δ is the ε of equation 2.6. The oscillator Hamiltonian is separated into a spher-
ically symmetric term and particle deformation coupling term by introducing a dimensionless parameter:

r =

√
mω0

~
r′

ĤOφ = (
1
2
~ω0(−∆ + r2) − δ~ω0

4
3

√
π

5
r2Y20)φ = (H̊O + Hδ)φ = ε0φ (2.39)

The energy eigenvalues in cylindrical coordinates are given by

ε0 ' ~ω̊0

(
(N +

3
2

) + δ(
N
3
− nz)

)
, N = nx + ny + nz = 2nρ + nz + Λ, n = 0, 1, 2, 3, .....

N being the total number of oscillator quanta. The deformed eigenstates are characterized by Ωπ[NnzΛ]
where Ω = Λ + Σ, Σ = ±1/2 and Λ are the projections of intrinsic spin and orbital angular momentum l
on the symmetry axis and the parity of the orbit π = (−1)l = (−1)N .

By introducing new parameters κ = − C
2~ω̊0

and µ = 2D
C , the Nilsson Hamiltonian is expressed as:

ĤNilsson = ĤO + Ĥδ − 2~ω̊0κ(l̂.ŝ + µ(l̂2− < l̂2 >N)) (2.40)

= ĤO + Cl̂.ŝ + D(l̂2− < l̂2 > N) (2.41)

where κ and µ are adjusted such that the sequence of levels are reproduced for δ = 0 and < l̂2 >= 1
2 N(N +3)

is the expectation value of l̂2 in a major shell N. Because of deformation the (2 j + 1) degeneracy of each
level for zero deformation is broken into two-fold degenerate states ±Ω i.e. a j state split into ( j + 1/2)
levels (see fig. 2.8). Also, only parity and eigenvalue Ω remain good quantum number. No two levels with
the same quantum numbers Ω and π can cross because they repel each other, only levels with different Ω

or π can cross. The ground state spin and parity of an odd nucleus can then be determined by the unpaired
nucleon likewise in the spherical shell model. From the fig. 2.8, it can be seen that a prolate shape
is favored in the lower or mid-level single neutron and single proton energies of their respective shells,
whereas in the upper portions, an oblate shape is preferred. But interestingly, more prolate than oblate
nuclei are observed. The fundamental origin of the preference of prolate shape over oblate is still an open
question. There are several explanations available: 1) the strength of the spin-orbit potential plays a crucial
role in determining this predominance [63] 2) the collective effect of the surface and Coulomb terms in eq.
2 cause a significant number of nuclei to acquire energetically-favored prolate shapes [64].
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Figure 2.9: Proton and neutron single-particle levels obtained from momentum dependent Woods-Saxon
potential with universal parameters as a function of quadrupole deformation, ν2 [60]. The orbitals around
254No (Z = 102, N = 152) relevant to this work are highlighted with red squares.

Fig. 2.9 shows calculated proton and neutron single-particle states for actinides as a function of
quadrupole deformation ν2 = β in a momentum dependent Woods-Saxon potential [60]. The relevant
single-particle orbitals for this study are highlighted around Z = 102, and N = 152. The observation of
rotational bands in nuclei around 254No is a proof that these heavy nuclei are permanently deformed. For
255Rf the predicted quadrupole deformation parameter is β = 0.252 and for 251No it is β = 0.25. In fig.
2.9, around quadrupole deformation ν2 ≈ 0.25, there are shell gaps of approximately 1 MeV at Z = 100
and N = 152. Such quadrupole deformations are also calculated with energy self-consistent density func-
tional approaches using realistic interactions like SLy4 interaction (see fig. 2.10 [61]). Fig. 2.10 shows
the calculated ground-state deformation energies and quadrupole deformations for even-even heavy and
superheavy nuclei. It is clear from fig. 2.10b that the nuclei in the region of our interest are well deformed
(prolate shaped) and in fact, the largest ground-state shape elongations are predicted around 254No. It is
because these nuclei gain in energy from deformation (see fig. 2.10a where the difference between the en-
ergies of the spherical and the deformed configurations for even-even nuclei above uranium are displayed)
and become relatively stable as a result. From fig. 2.9, by virtue of paring the ground state of 255Rf is
defined by the last unpaired neutron and is predicted to have spin 9/2 and negative parity. This spin was
confirmed experimentally through laser spectroscopy in the case of the isotone 253No [65]. Similarly, the
ground-state of 251No (Z = 102, N = 149) is predicted to be 7/2+ which agrees well with the ground-state
of N = 149 isotones derived from α-spectroscopy (see refs. [66, 189, 190]).
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Figure 2.10: a) Deformation energy (in MeV) defined as a difference between the ground-state energy
and the energy at the spherical shape. b) Predicted ground-state mass quadrupole deformation β and
corresponding nuclear shapes: prolate shapes are coloured red–orange, oblate shapes are blue–green, and
spherical shapes are light yellow [61, 62].

2.2.4 Cranked Shell Model

A nucleus rotating with a non-zero quadrupole moment can have rotational excitations, and because the
potential is not symmetric, the angular momentum J is no longer a good quantum number. However, a La-
grange multiplier −ω.J can be added to the Hamiltonian. D. R. Inglis in 1954, introduced the microscopic
theory of a rotating nucleus based on the semiclassical cranking model [67]. In this model, the nucleons
move independently in an average unsymmetrical potential well that rotates with constant angular velocity
ω around a fixed axis in space. The rotational axis is chosen to be along x-axis perpendicular to the sym-
metry axis (z-axis) with no collective rotation. The Hamiltonian in the rotating frame (known as cranking
Hamiltonian or Routhian) is expressed as

Hω = H − ~ωJx =

A∑
i=1

hi
ω =

A∑
i=1

(hi − ~ω ji
x) (2.42)

where H is the sum of deformed single-particle Hamiltonians (in the laboratory frame) and the collec-
tive angular momentum J is taken as the sum of single-particle angular momenta with Jx =

∑A
i=1 ji

x, the
projection of total angular momentum on the rotational axis of the system in which ~j = ~l + ~s operators
generate rotations. The cranking term −~ωJx corresponds to centrifugal and Coriolis forces appearing in
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the rotating frame. To get the energy in the laboratory frame one solves the eigenvalue problem

E(ω) =< Ψω|H|Ψω >=< Ψω|Hω|Ψω > +~ω < Ψω|Jx|Ψω >= E(0) +
1
2
J1ω

2 + ... (2.43)

where |Ψω > is the ground-state Slater determinant and ... refers to higher order expansion terms. As a
function of the nuclear spin, it is expressed as

E(I) = E(0) +
~2I(I + 1)

2J1
(2.44)

by including the zero point oscillations with the condition that J(ω) =< Ψω|Jx|Ψω >= ~
√

I(I + 1) ≈ J1ω.
The two-fold degeneracy (±Ω) with respect to time reversal symmetry of Nilsson levels at ω = 0 is

broken by the Coriolis term −ωJx for ω , 0 as the Coriolis force has opposite signs based on whether
the nucleons are moving in the same or opposite direction to the rotation of the nucleus. Both the levels
correspond to eigenstates of the rotation operator Rx = eiπ jx with eigenvalues rx = ±i known as the
signature of the level. The total wavefunction remains unchanged for a system with even number of
fermions and changes sign for an odd number of fermions A, which can be expressed as R2

x = (−1)A. The
signature quantum number α is defined as r = exp(−iπα). In terms of total nuclear spin I its value is
r = (−1)I (Bohr and Mottelson 1975). Thus for system with even number of nucleons

r = +1 (α = 0) I = 0, 2, 4, ...
r = −1 (α = 1) I = 1, 3, 5, ...

while for an odd system:

r = −i (α = +1/2) I = 1/2, 5/2, 9/2, ...
r = +i (α = −1/2) I = 3/2, 7/2, 11/2, ...

where α is related to the total spin by I = αmod 2 and to the particle number by A = 2αmod 2. The only
symmetry that Hω conserve is the parity, hence the Routhian levels are often designated by (α, π).

The Coriolis and centrifugal forces affect the intrinsic structure of a rotating nucleus akin to the effect
of the earth’s rotation on the ocean currents and the weather patterns. Their effects are very strong for
the configurations with high j and small Ω values causing Ω- mixing and alignment along the rotational
axis. This can bring high lying orbits down in energy, possibly modifying the ground state structure band
and may even open new shell closures at high angular momenta. This effect is frustrated in even nuclei
by pairing forces that try to keep the particles in pairwise coupled orbits. The impact of the pairing force
can be seen in the lower value of the experimentally derived moment of inertia Jexp than the calculated
value JInglis [67] which is close to the rigid body value Jrigid. The rotational motion tends to reduce the
effective pairing force from the non-rotation value i.e., an increase in the angular velocity ω would result
in less pairing and consequently a larger moment of inertia [68]. By including higher-order perturbation
terms in H′ = −ωJx than in the usual case where only up to second order is taken, the energy spectrum
and the moment of inertia can be improved. Taking up to fourth-order term, the energy in the laboratory
system can be written as

E(ω) = E(0) +
1
2
J(ω)ω2 (2.45)

with J(ω) = J0 + 3Cω2 and the expectation value of the angular momentum

< Ψω|Jx|Ψω >= ωJ(ω) = ω
(
J0 + 2Cω2

)
(2.46)
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The parameters J0 and C are called Harris parameters [69].
We notice that the rotational motion of a nucleus is not as simple as for a rigid body. For a perfect

rotor, the rotational energy at spin I is E = ~2I2

2J . The variations in the moment of inertia due to changes in
the internal structure of the nucleus are quantified using two types of moments of inertia called kinematic
and dynamical moments of inertia. The kinematic moment of inertia is related to the overall motion of the
nucleus, and expressed as the first derivative of the rotational energy to the spin.

J (1) = Ix~
2
(
dE(ω)

dI

)−1

= ~
Ix

ω
(2.47)

The dynamic moment of inertia is expressed as the second derivative

J (2) = ~2
(
d2E(ω)

dI2

)−1

= ~
dIx

dω
(2.48)

which is related to the torque and represents the rate of change of spin with frequency.

J (2) = J (1) + ω
dJ (1)

dω
(2.49)

And the rotational frequency is derived from the relation

~ω =
dE(I)

dIx
(2.50)

For a rigid rotor,J (2) = J (1) reflecting that there is no change in the internal structure due to rotation.

2.2.5 Pairing Correlations
The evidence of pairing was found in the odd-even staggering of nuclear masses in the early days of
nuclear physics. M. Goeppert-Mayer in 1950 provided the theoretical explanation that the short-range part
of the nucleon-nucleon interactions energetically favors (J+ = 0+) coupled pairs in a given shell j [70,71].
The most efficient way two neutrons (or two protons) moving in the nucleus can minimize their energy is
by time-reversed motion in the same orbit having a maximal spatial overlap of their wavefunctions. The
Pauli exclusion principle is violated if both nucleons in the same sense of motion have identical quantum
numbers as oppose to the case in time-reversed motion, in which the magnetic quantum numbers, m, of the
two nucleons have opposite signs. As a result, the net intrinsic angular momentum imparted to the nucleus
is zero, and the nucleons are said to be paired. The pairing correlations become important if the energy
gap between the major oscillator shells ~ω0 becomes equivalent or smaller than the residual interaction
< Hres >. In light nuclei, ~ω0 >> < Hres > hence, the Hartree Fock ground state remains stable and
the excited states are well defined as independent particle-hole excitations [72]. However, for non-closed
shell nuclei, the nucleon distribution in the ground state can lead to smaller gaps. The spatial localization
of large j and m orbitals distorts the nuclear matter distribution away from spherical symmetry. As seen
previously, the loss of spherical symmetry decreases degeneracy and modifies level spacing. If the level
spacing becomes sufficiently small, then there is a probability to scatter the time-reversed particle pairs
from one level to another. Depending on the density of states and the strength of the pairing interactions,
the scattering of the nucleon pairs from occupied states into empty states will smear the Fermi surface
by affecting the occupation probabilities of the single-particle states. The first theoretical description of
this phenomenon was proposed by Bohr, Mottelson, and Pines in 1958 analogous to the BCS pairing in
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superconductors. The pairing correlations are reduced if the nucleus rotates because the Coriolis force
tend to break the pairs apart and align the individual angular momenta onto the rotational axis. In the BCS
formalism, the general pairing Hamiltonian is written as

Hp =
∑
k>0

εk(a
†

kak + a†
−ka−k) +

∑
kk′>0

< k2 − k2|Vpair|k1 − k1 > a†ka†
−ka−k′ak′ (2.51)

=
∑
k>0

εk(a
†

kak + a†
−ka−k) − |G|

∑
kk′>0

a†ka†
−ka−kak′ (2.52)

where εk is the single-particle energy in state i obtained from a phenomenological or a self-consistent
mean field model, < j2m2 j2 − m2|Vpair| j1m1 j1 − m1 >=< k2 − k2|Vpair|k1 − k1 >= −|G|, is the pairing
interaction strength of scattering a pair in time-reversed orbits (k,-k).

It is supposed that the ground state of the nucleus is constructed from pure pair configurations on the
vacuum sate of real particle ak|0 >= 0.

|BCS >=

∞∏
k>0

(uk + vka
†

ka†
−k)|0 >

where uk and vk are the variation parameters represent the non-occupation and occupation probabilities in
a given state k respectively and satisfy the relation

u2
k + v2

k = 1

As the |BCS > is not an eigenstate of the particle number operator N̂, the particle conservation is
established by determining the variational parameters uk and vk in such a way that the expectation value of
N̂ is the number of particles.

< BCS |N̂ |BCS >≡ 〈N̂〉 = 2
∑
k>0

v2
k = N (2.53)

This is achieved by adding the term −λN̂ to the pairing Hamiltonian

Ĥ′ = Ĥp − λN̂ (2.54)

where λ is a Lagrange multiplier and it is related to the particle number conservation condition, which is
given by

λ =
d < BCS |H|BCS >

dN = dE
dN

λ is also known as the Fermi energy and the chemical potential since the total energy of the system is
increased by λ after adding 1 particle. The parameters vk and uk are varied to minimize the Hamiltonian
H′ on the BCS ground-state.

δ < BCS |H′|BCS >= 0

The auxiliary Hamiltonian H′ has the same form as in eq. 2.51 except that the single-particle energies are
modified by the chemical potential

ε̃k = εk − λ (2.55)

The expectation value of the BCS ground state is given by

< BCS |H′|BCS >= 2
∑
k>0

ε̃kv2
k −G

∑
k>0

[ukvk]2 (2.56)
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h

Figure 2.11: A schematic representation of smearing of the Fermi surface because of pairing interaction
[53].

And, the probability of occupying the state i by a hole is thus given by

u2
k =

1
2

1 +
ε̃k√
ε̃2

k + ∆2

 (2.57)

and the occupation probability by a particle is

v2
k =

1
2

1 − ε̃k√
ε̃2

k + ∆2

 (2.58)

where, ∆ is called the gap parameter defined as

∆ = G
∑
k>0

ukvk (2.59)

In these expressions, it is noticeable that if the single-particle energies lie far below the Fermi surface
(εi � λ), v2

i = 1 and if far above the Fermi surface (εi � λ), u2
i = 1 and close to the Fermi surface the

occupations probabilities are mixed (see fig. 2.11).
From eq.[2.57 - 2.59], the so called gap equation can be obtained

1 =
1
2

∑
k>0

(ε̃2
k + ∆2)−

1
2 (2.60)

Eq. 2.53,2.57,2.58 and 2.59 are known as the BCS equations.
The Bogolyubov transformation to quasiparticles is an alternative method to formulate the BCS model.

In this approach, the creation and annihilation operators for the quasiparticles are defined as

αk = ukak − vka
†

−k (2.61)

α†k = uka
†

k − vka−k (2.62)

which obey the commutation relations

[αk, α
†

k′] = δkk′; [αk, αk′] = [α†k , α
†

k′] = 0. (2.63)
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The quasiparticles can be thought as nucleons whose energies and wavefunctions are modified by
pairing correlations.

Ei =
√

(εi − λ)2 + ∆2 (2.64)

In odd nuclei, the singly occupied quasiparticle orbitals block the scattering of pairs. This is called the
blocking effect. In odd-odd nuclei, the attractive proton-neutron potential between the valence particles
can play a important role.

2.3 Unified Model
The unified model is a fusion of the shell model and LDM. It assumes the motions of the nucleons are
coupled strongly to the variations of the nuclear potential that represent collective oscillations. If the
variations in the potential are sufficiently slow, the motions of the nucleons (≈ in a fixed field) can be
separated approximately from the collective motions (vibrations and rotations). But in many cases, they
are strongly coupled, requiring a unified treatment of both the single-particle and collective motions. In
1952, Bohr described the interaction between the collective motions of the core and the motions of valence
particles moving in the potential created by the core [73, 74]. Depending on the shape and the single-
particle orbits, the coupling can be weak for nearly spherical nuclei with small surface vibration or strong
for nuclei with permanent deformation. The nuclear Hamiltonian is described by

H = Hsp + Hcoll + Hint (2.65)

where, the particle Hamiltonian is
Hsp =

∑
i

Ti + V(ri, l̂i, ŝi) (2.66)

with Ti kinetic energy and Vi the shell model or Nilsson potential of the valence particle i and the collective
Hamiltonian is

Hcoll = Tvib + Trot + V(β, γ) (2.67)

and the coupling term
Hint =

∑
i

f (ri)
∑
λµ

aλµYλµ(θi, φi) (2.68)

Collective vibrations are characterized by quantum numbers nβ and nγ and the nuclear rotation character-
ized by total angular momentum I. The rotational energies depend on the deformation and become smaller
than the vibrational energies in strongly deformed nuclei. Restricting to the coupled system of particles
and a rigid top (rotational model), the collective Hamiltonian is given by

Hcoll =

3∑
i=1

R2
i

2Ji
(2.69)

where, Ri are the components of the collective angular momentum of the inert core in the body-fixed frame.
If there are valence particles the total angular momentum I of the system is I = R + J = R +

∑
k j, j are the

angular momenta of the valence particles (see fig. 2.12 for angular momentum coupling). The collective
Hamiltonian can be separated into

Hcoll =

3∑
i=1

I2
i + J2

i − 2IiJi

2Ji
= Hrot + Hrec + Hcor (2.70)



38 CHAPTER 2. THEORETICAL OVERVIEW

Figure 2.12: A schematic representation of angular-momentum coupling in a deformed nucleus; the K
quantum number is built from the projections of the angular momentum of the 2 valence particles onto the
symmetry axis [75].

where, Hrot represents the pure rotation, Hrec represents a recoil energy of the rotor and Hcor, the Coriolis
interaction between the valence particles and the rotor.

For axially symmetric nuclei, there is no collective rotation around the symmetry axis R3 = 0, hence
K, 3-component of I on the symmetry axis is K = Ω, the 3-component of J. In the strong coupling (de-
formation aligned) limit K is a good quantum number. The angular momentum J of the valence particles
precesses around the symmetry axis. Neglecting the Coriolis term, the excitation energy of a quantum
mechanical rotor is given by

EK(I) = EK(I0) +
1

2J
(I(I + 1) − K2) (2.71)

where, EK(I0) is the excitation energy due to the intrinsic nuclear excitation called the bandhead energy.
The form of the energy spectrum remains valid even with the inclusion of the coupling term except when
K = 1/2 in which case it is given by

EK(I) = EK(I0) +
1

2J
(I(I + 1) − K2 + a(I + 1/2)(−1)I+1/2) (2.72)

where, a is the decoupling factor whose value depends on the intrinsic motion of the odd nucleon and is
expressed as

a =
∑

j

(−1) j−1/2( j + 1/2)|c2
j | (2.73)

where c j are Clebsch-Gordon coefficients.
A rotational band associated with each nuclear configuration is the distinctive characteristic of collec-

tive rotation. The energy spectrum of collective rotation shows regularity as opposed to the level scheme of
the shell model, which is very irregular. In even-even nuclei, for ground-state band I = K = 0, there is no
intrinsic excitation energy, and the spin of the level sequence is I = 0, 2, 4, ... having even parities. In odd
A, odd-odd, and excited states in even-even nuclei where K , 0, the spin sequence is I = I0, I0 +1, I0 +2, ...
with same parity as that of the intrinsic state on which the rotational band is built. This particular spin se-
quence comes from the symmetry properties of the nuclear wavefunction. The coupling scheme of an
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axially symmetric deformed nucleus is shown in fig. 2.12 and we have I = K + R with Ω = K which
results in I ≥ K.

In general, the rotational energy can be improved by expanding in powers of I(I +1) to include Coriolis
coupling and other spin dependent effects

Erot(I(I + 1)) = E0 + AI(I + 1) − K2 + BI2((I + 1) − K2)2 + CI3((I + 1) − K2)3 + ... (2.74)

where, A = ~2

2J and B,C,.. are the corresponding higher order parameters. However, the leading order
correction terms for K > 1/2 are found to be small [76].

2.3.1 Shell model correction to LDM (Microscopic-Macroscopic model)
The Nilsson model had proven to be successful in describing many microscopic aspects of the nucleus,
for instance, the ground state, the excited state properties of many deformed nuclei, and also predicts their
existence in stable deformation. However, this phenomenological shell model fails to reproduce the bulk
properties of the nuclei namely the masses and the total binding energies. The LDM gives an overall
prediction of these behaviors. The LDM assumes a uniform distribution of the nucleons in phase space
and gives a smooth behavior of the nuclear binding energies as a function of A. The deviation from the
actual values in the neighborhood of shell closures (magic numbers) indicates rather in-homogeneous dis-
tribution. To account for the oscillatory behavior of the binding energies V. M. Strutinski [77] introduced
corrections based entirely on quantum mechanical effects. The binding energy E is divided into a smoothly
varying LDM part and an oscillatory part:

E = ELDM + Eosc (2.75)

where, the Eosc part is derived from shell model by subtracting the smoothly varying part Ẽshell from the
sum of single particle energies.

Eosc = Eshell − Ẽshell =

A∑
i=1

εi − Ẽshell (2.76)

Shells occur from the clustering of levels, and their inhomogeneity is reflected in the level density g(ε)
function (see fig. 2.13) that satisfies the particle number condition

A =

∫ λ

−∞

g(ε)dε (2.77)

Figure 2.13: Schematic representation of the level density in an infinite three dimensional potential [48].
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Eshell can be found by integrating up to the properly chosen Fermi level λ.

Eshell =

∫ λ

−∞

εg(ε)dε (2.78)

The smooth average energy part Ẽshell is derived by integrating on a uniform level density ˜g(ε) function
that has a mean functional behavior of g(ε) upto the corresponding mean Fermi level λ̃, calculated from
particle conservation

A =

∫ λ̃

−∞

g̃(ε)dε (2.79)

Ẽshell =

∫ λ̃

−∞

ε ˜g(ε)dε (2.80)

The average density function is determined by transforming g(ε) using a smoothing function f over an
average energy separation γ between two shells

g̃(ε) =
1
γ

∫ +∞

−∞

g(ε′) f
(
ε′ − ε

γ

)
dε′ (2.81)

where γ ' ~ω0, the shell interval. Pairing correlations also affect the density of states and after including
pairing correction term, the total energy is given by

E = ELDM + Eshell − Ẽshell + PBCS − P̃BCS (2.82)

For nuclei with magic or near a magic number of proton or neutron, the ground state masses are lowered
because of the shell correction. This effect is also seen for mid-shell nuclei at some finite deformation i.e.,
permanent deformations in nuclei stem from their intrinsic nuclear configurations. Fig. 2.14 shows the
shell corrections across the whole nuclear chart. Without shell effects, the heaviest nuclei would fission
spontaneously on a scale much shorter than what is observed. The fission isomers that LDM fails to
explain are also accounted naturally by the double-humped fission barrier predicted from the Strutinski’s
model.

Figure 2.14: Ground-state microscopic corrections [44].
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Radioactive decays

Figure 3.1: Nuclear landscape (Sergè Chart) by the type of decay [78].

Radioactivity was accidentally discovered by Henri Becquerel in Uranium in 1896 [79, 80]. Subse-
quently, G. Carl Schmidt and then Marie and Pierre Curie observed emission of radiation in thorium. It
was Marie Curie who first coined the term radioactivity (see ref. [81]). Radioactivity is an irreversible
statistical process, in which the unstable nuclei disintegrate into more stable nuclide, which may also be
radioactive. The number of nuclei in a radioactive sample follows the exponential decay law

N(t) = Nt=0e−λt (3.1)

where N0, is the number of nuclei present at time t = 0. The half-life is related to the mean lifetime τ of a
nucleus and its decay probability per unit time λ by:

T1/2 = ln(2)τ =
ln(2)
λ

(3.2)

41
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Some nucleides decay via more than one mode (described briefly in the following subsections). Then
the total decay constant λ is

λ =

N∑
i=1

λi (3.3)

and the total half-life T1/2

1
T1/2

=

N∑
i=1

1
T i

1/2

(3.4)

where i represents the ith mode of decay with the branching ratio bri = λi/λ and T i
1
2

are the partial half-lives
(see appendix A for details about the lifetime measurement method).

Fig. 3.1 gives the nuclear landscape based on the radioactive decay modes, only the decay types that
are relevant to super heavy nuclei are briefly discussed in the following sections.

3.1 Alpha decay
Alpha decay is a type of radiative disintegration in which an unstable nucleus dissipates excess energy by
ejecting an alpha particle (a 4He2+ ion) spontaneously. This decay process is represented by:

A
Z XN →

A−4
Z−2 YN−2 + α

where the parent nucleus X transmutes into Y with the emission of an α particle. This disintegration
occurs due to the disruptive Coulomb repulsive force, that grows at a faster rate proportional to Z2 than
the nuclear binding force ∝ A. Because the alpha particle is a stable and highly bound system (28.3 MeV
binding energy), it is the most energetically favored decay particle for many nuclei to release the largest
possible kinetic energy. This spontaneous kinetic energy appears from a decrease in the mass of the system
and quantitatively known as the Q-value of α decay.

Qα = TY + Tα = (MX − MY − Mα)c2 (3.5)

where TY and Tα are the kinetic energies of the daughter nucleus and the α particle respectively and MX,
MY and Mα are the masses of the mother, daughter and the α particles. Definitely, Q must be greater than
0 for this spontaneous decay to occur. In a ground state to ground state (g.s. → g.s.) alpha transition, the
kinetic energy of the α particle is given by

Tα = Qα

A − 4
A

(3.6)

assuming the original nucleus X to be at rest. The recoil energy of the daughter nucleus can be calculated
from the relation TY = Qα − Tα. Although, the α particle carries away most of the Qα value energy, the
recoil energy of the heavier fragment cannot be ignored while calibrating detectors (see chapter 4).

Although the alpha radioactivity was first discovered by E. Rutherford in 1899 [82], which he later
identified in 1907 as a 4He2+ ion [83], only in 1928, G. Gamow [84] and independently R. W. Gurney
and E. U. Condon [85] provided the first theoretical description of the decay process after the advent
of quantum mechanics. In this view, a preformed alpha particle inside the parent nucleus bombards the
Coulomb barrier repeatedly and finally tunnels through the barrier. For this reason, the alpha preformation
probability ω(α) inside the parent nucleus must not be equal to 0 and Qα > 0, i.e., kinetic energy is
available to the alpha particle for tunneling through the Coulomb barrier VC = 2Ze2

4πε0r with Z the atomic
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Figure 3.2: Modification of the potential energy in a decay due to the centrifugal potential (adapted from
[59]).

number of the daughter and r the distance of the α particle from the center of the system (see fig. 3.2). The
decay constant is then given by

λ = f Tω(α) (3.7)

where f is the frequency with which the alpha bombards the barrier and T, the tunneling probability.
In an α particle, the nucleons are in 1s state and coupled pairwise to 0 hence, the spin and parity of

an α particle is 0+. Therefore, when an alpha transition occur from an initial state Ii to a final state I f , the
orbital angular momentum l the α particle can carry away is restricted in the range (|Ii − I f | ≤ l ≤ Ii + I f )
and the parity change associated with the process is (−1)l. In the case of l , 0, the alpha particle must
tunnel through an additional centrifugal barrier Vl =

l(l+1)~2

2Mαr2 (as illustrated in fig. 3.2). The alpha decay rate
λl,0 for this instance is related to the rate in the absence of such centrifugal barrier by [59]

λl,0 ≈ λl=0e−(2.027(l(l+1))Z−1/2A−1/6) (3.8)

Parity is conserved in strong interactions, hence another selection rule applies to an alpha decay process

πi = π f (−1)l. (3.9)

This means that in an alpha transition if the initial and final states have the same parity, the alpha particle
must have only even l-values, but if there is a parity change ∆π = −1 then only odd l-values are permitted.
This selection rule forbids a g.s. → g.s. alpha decay if there is parity change and the transition proceeds
instead to an excited state of the daughter nucleus. However, decay to an excited state lowers the Qα-value
by

Q∗α = Qg.s.
α − E∗Y (3.10)

where Qg.s.
α is the Qα-value for the g.s. → g.s. transition and E∗Y is the excitation energy of the nuclear state

of the daughter nucleus Y populated in the transition. Lowering of the Qα-value means decreasing of the
probability T to penetrate the complete barrier.

T = e−2G (3.11)

where G is known as the Gamow factor given by the expression:

G =

√
2µ
~2

∫ S

R
[V(r) − Qα]1/2 (3.12)
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where µ is the reduced mass of the alpha particle and R and S are the classical turning points shown in fig.
3.2. Hence, the decay rates to the excited states decrease with an increase in excitation energy.

Often the predictions of alpha decay half-lives is a theoretical challenge, therefore the use of empirical
relations is quite prevalent. Interestingly, the empirical rule (see eq. 3.13) proposed by Geiger-Nuttall
surfaced before the theoretical explanation of the trend given by Gamow [84]:

log(T1/2) = a + bQ−1/2
α (3.13)

where T1/2(α) is given in s, Q in MeV, a, and b are constants and determined from fitting experimental
data.

Following later theoretical developments many multi-parameter empirical relations have also been
developed. Most notable is the Viola-Seaborg formula [86] that incorporates the hindrance factor logF for
odd nuclei (see section 3.1.1)

logT1/2 = a(Z)Q−1/2
e f f + b(Z) + logF (3.14)

where Qe f f is the effective alpha decay energy [MeV] inside the parent nucleus computed by adding the
recoil energy TY of the daughter nucleus and the orbital electron screening correction ∆Esc to the measured
alpha energy Eα

Qe f f = Eα + TY + ∆Esc. (3.15)

The orbital electron screening correction ∆Esc is a measure of the loss of the kinetic energy because of the
attraction of the orbital electrons and the alpha particle and is estimated from the relation:

∆Esc(Z) = 65.3 × Z
7
5 − 80 × Z

2
5 [eV] (3.16)

where Z is the atomic number of the parent nucleus. The parameters in the expression 3.14

a(Z) = 2.11329 × Z − 48.9879

and
b(Z) = −0.39004 × Z − 16.9543

are determined from experimental data fitting (see refs. [86, 87]).

Z N log F
Even Odd 1.066
Odd Even 0.772
Odd Odd 1.114

Table 3.1: Average hindrance factors [86].

The Viola-Seaborg formula does not take into account the l dependence of the decay rate. The follow-
ing improved empirical relations of G. Royer [88] include the effect of the centrifugal barrier on the decay
rate.

log T1/2 = −a − bA1/6
√

Z +
cZ
√

Q
∆l = 0 (3.17)

log T1/2 = −a − bA1/6
√

Z +
cZ
√

Q
+

dANZ[l(l + 1)]1/4

Q
+ eA[1 − (−1)l] ∆l , 0 (3.18)

In these equations, the Q-value is obtained from the Atomic Mass Evaluation and the parameters are
obtained from the experimental data fits. It is worth mentioning that there are several other empirical
relations (see ref. [89–91]) that exist in the literature.
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3.1.1 Hindrance factor

The one-body theory (where the alpha particle is treated as point like particle moving in the potential
created by the daughter nucleus) is only applicable to even-even alpha emitters. Odd A nuclei decay at a
slower rate than suggested by the one body theory. There are a couple of factors that influence this decay
rate. Firstly, the alpha preformation factor is affected by the presence of an unpaired nucleon (see fig. 3.3).
Secondly, there is a higher barrier resulting from non-zero angular momentum. Thirdly, the spin change
involved in a transition can deter an alpha decay. Such hindrances to the alpha decay process are grossly
quantified through a dimensionless quantity called the hindrance factor (HF). It is defined as the ratio of
measured partial half-life for a given alpha transition to the half-life calculated from the one-body theory
applied to ground state to excited state (g.s. → ex.s.) in neighboring e-e nuclei.

HF =
T partial

1/2 (measured)

T e−e
1/2 (calculated, g.s.→ g.s.)

=
λclaculated

λmeasured
(3.19)

It gives a measure of a departure (a slower rate) of a given alpha-decay than what would be from system-
atics based on g.s. → g.s. transition rates of the nearest e-e neighbors [92]. There can be hindrances to
alpha decay even in e-e nuclei if a transition occurs to an excited state in the daughter nucleus. The HF in
e-e nuclei can be defined similarly as the ratio of the measured partial half-life of a g.s. → ex.s. transition
to the measured partial half-life of g.s. → g.s. transition.

HFe−e =
T partial

1/2 (g.s.→ ex.s.)

T partial
1/2 (g.s.→ g.s.)

(3.20)

Figure 3.3: A schematic diagram of alpha decay. In an e-e nucleus the last bound pairs can easily form the
alpha particle whereas in an e-o system, the alpha particle can be formed by breaking a pair or by the first
pairs from the alpha particle leaving the daughter nucleus in an excited state [7].
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In general, the hindrance factors for odd A nuclei are classified into five categories based on the influ-
ence of the nuclear structures of the both parent and daughter nuclei [59]:

• In a favorable transition, the emitted alpha particle is formed from the two low-lying pairs of nucle-
ons in the parent nucleus, leaving the odd nucleon in its initial orbital. In such a transition, the HF
has a value between 1-4.

• If there is a favorable overlap between the initial and final nuclear wave functions, the decay has an
HF between 4-10.

• For a transition in which the spin projections of initial and final states are parallel, but the wavefunc-
tion overlap is not favorable, the HF takes the value between 10 to 100. Deformation can also cause
hindrances in the decay as it affects the overlap of the initial and final wave functions.

• If a transition involves a change in parity, but the spin projections of the initial and final states are
parallel, the HF is between 100-1000.

• HF > 1000 indicates that there is a change in parity in the transition, and the spin projections of the
initial and the final states are antiparallel.

Two methods namely, Preston’s spin-dependent method [93] and Rasmussen’s method [96, 97] are
widely used to calculate the HF. These calculation methods are described briefly in the following sections.

Preston’s spin dependent method

M. Alexander Preston [93] re-derived the theory of alpha decay to address some inaccuracies in the formal-
ism for l , 0. He argued that Gamow’s approximations give incorrect numerical results. As in Gamow’s
original theory, he assumed the alpha particle to be in a rectangular potential V = U, a constant, for r < r0

and V = 2Ze2/r, for r > r0, where Z is the charge number of the product nucleus, e is the elementary
charge, r is the distance of the alpha particle from the center of the daughter nucleus, r0 is the radius of
the daughter nucleus. The relationship between the variables Eα (the energy with which the alpha particle
emerges out of the potential barrier), λ, r0, and U are expressed in equations 3.21 and 3.22.

µ = − tanα0 tan(µkr0) (3.21)

λ =
2v
r0

µ2 tanα0

µ2 + tan2 α0
exp(−2ω0) (3.22)

where

µ =

√
(1 −

U
Eα

)

α0 = arccos(
mv2r0

4e2Z
)1/2

k =
mv
~

κR =
4e2Z
~v

ω0 = κR (α0 − sinα0 cosα0)
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The variable λ can be calculated from the experimentally known Eα and the calculated radius r0 and
potential U. For a given alpha decay transition with corresponding branching ratio Bri, the partial decay
rate can be calculated from the measured T1/2 using λi = ln(2) × Bri(in %)/(100 × T1/2). Then the HF of
this alpha transition is calculated using equation 3.19.

This approach is adopted in ENSDF (Evaluated Nuclear Structure Data File) to obtain the α-hindrance
factors. For odd A or odd odd nuclei, the nuclear radius is estimated as the average radius of the neighbor-
ing e-e nuclei for which the HF of g.s. → g.s. alpha transition is defined as HF = 1.

R(Z,N) =


R(Z−1,N)+R(Z+1,N)

2 for o-e nuclei
R(Z,N−1)+R(Z,N+1)

2 for e-o nuclei
R(Z−1,N)+R(Z+1,N)+R(Z,N−1)+R(Z,N+1)

4 for o-o nuclei
(3.23)

If only the radius Re−e of one adjacent e-e nucleus is known, the value is corrected for the A1/3 mass
dependence.

R = Re−e

(
A

Ae−e

)1/3

(3.24)

where A is the mass number of an o-o nucleus or an odd A nucleus and Ae−e, the mass number of the
known e-e nucleus.

Rasmmussen method

In one-body formalism (e.g. Gamow’s theory), the influence of the nuclear structures of both the parent and
the daughter nuclei on alpha decay is ignored completely. By defining a useful concept called the reduced
decay width of an alpha transition, the nuclear structure effects are taken into account. The reduced decay
width is defined by the overlap integral of the initial and the final states [94]:

δ2 = | < ψi(X)|ψ f (Y).φ(α) > |2 (3.25)

By comparing experimental reduced decay width to the theoretical value from a given nuclear structure
model, the robustness of the model can be tested.

Experimentally the reduced alpha-decay width is calculated using the experimental decay rate λ and
the theoretical barrier penetration factor T (see eq. 3.11) [96]:

δ2 =
λh
T

(3.26)

The Gamow factor G in eq. 3.12 includes an optical model potential V(r) besides the Coulomb barrier and
the centrifugal barrier

G = −

∫ S

R
[
2µ
~2 (V(r) + VC(r) + Vl(r) − Qα]1/2dr (3.27)

The optical model nuclear potential used in the expression is that of the potential introduced by Igo [95]
which has the form:

V(r) = −1100 exp(−[
r − 1.17A1/2

0.574
]) [MeV] (3.28)

Usually, for decays to an excited state in even-even nuclei, the hindrance factor can be defined as
the ratio of the rates of decay to the ground state and to the excited state multiplied by the ratio of the
corresponding barrier penetration factors calculated without including the centrifugal barrier [96].

HF =
λg.s.

λex.s.
×

Tg.s.

Tex.s.
(3.29)
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In the Rasmmussen’s prescription, the reduced hindrance factor HFreduc. is used to take into account
the centrifugal barrier effects on the barrier penetration probability. It is calculated as the ratio of δ2

g.s. for
the ground-state transition to the δ2

ex.s.(l) for the excited state transition [97].

HFreduc. =
δ2

g.s.

δ2
ex.s.

(3.30)

In the case of odd-mass alpha emitters, the HF is calculated by [97]

HF =
δ2

1 + δ2
2

2δ2
odd

(3.31)

where δ2
1 and δ2

2 are the reduced widths for the ground state transitions in the nearest neighboring e-e nuclei
and δ2

odd, the reduced width of the o-o nuclei. HFs are usually normalized relative to the alpha decay of
212Po to 208Pb (which is doubly magic, Z = 82 and N =126) or to a neighboring e-e nucleus. The hindrance
factors can also be evaluated from the Viola-Seaborg formula. Details about this method and the results
are given in ref. [92, 98].

Alpha decay serves as an important identification tool for discovering new SHEs. It is the most com-
mon form of cluster decay (heavy-ion radioactivity). The preformation probability of a cluster C(z, a)
heavier than the alpha particle but lighter than a typical binary fission fragment in the parent nucleus drops
as follows [99]:

ω(C) = ω(α)(A−1)/3 (3.32)

3.2 Spontaneous Fission
In the fission process, an unstable nucleus splits into two nearly equal lighter fragments. This process can
either be an induced process by bombarding with a beam called fission reaction or naturally occurring
without requiring excitation, a type of radioactive decay known as Spontaneous Fission (SF). It remains
a theoretical challenge for a complete understanding of the fission process after eight decades of its first
discovery by O. Hahn, L. Meitner and F. Strassman in 1938. Later in 1939 [100, 101], Lise Meitner and
her nephew O. R. Frisch explained it theoretically [102,103]. In the same year, N. Bohr and J. A. Wheeler
also gave a detailed theoretical treatment on the mechanism of nuclear fission based on the LDM [104].
SF is observed for very high mass number isotopes and was discovered by G. Flerov and K. Petrzhak
in 1940 [105–107]. Classically (LDM), the so-called fissibility parameter x characterizes the feasibility
of fission for a given nucleus. It quantifies the competition between the disruptive Coulomb energy that
decreases with deformation as opposed to the increase in restoring surface energy. It is given by

x =
ECoulomb

2ES ur f ace
=

Z2/A
(Z2/A)critical

(3.33)

where (Z2/A)critical ≈ 50. A classical droplet stays stable and spherical if x ≤ 1, and fissions immediately
if x > 1 [48]. Since, the LDM fails to describe spontaneous fission process for nuclei with x < 1 e.g.
238U : x ' 0.8 [48], the observed phenomenon is viewed as a barrier penetration phenomenon in which
the nucleus tunnels through the fission barrier similar to the alpha decay. Roughly, the fission barrier is the
minimum amount of energy required to deform a spherical nucleus to such a point known as the "saddle
point" that the nucleus has no other choice but fission (similar to squashing of a balloon until it burst). The
LDM fission barrier disappears around Z = 104.
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The half-life of a fission decay is expressed as

T S F
1/2 =

ln2
f P

(3.34)

where f is the frequency of impact on the fission barrier by the nucleus and P is its barrier penetration
probability. The approximate total kinetic energy of the fission fragments as result of Coulomb repulsion
can be estimated by [59]:

KE =
Z1Z2e2

r0(A1/3
1 + A1/3

2 )
MeV

where r0 = 1.8 instead of usual 1.2 as the fission fragments at scission are usually deformed. There also
exist empirical relations to estimate the kinetic energy released in the process [108].

EK = 0.1166Z2/A1/3 + 9.0 [MeV] (3.35)

An empirical formula for the spontaneous fission half-life is given in the ref. [86]

log T S F
1/2 = −3.344Z2/A + 133.86 + 6.884δm (3.36)

where δm represents the fission hindrance (nuclear structure effects) and T S F
1/2 is given in years. Indeed, ob-

servations have shown that the fission half-lives of odd nuclei are longer than those of their e-e neighboring
nuclei. In an odd nucleus, the unpaired nucleon hinders the decay because the spin and parity conservation
does not allow easy transition, unlike in e-e nuclei. The fission hindrance factor for an odd nucleus is
defined as the ratio of experimental fission half-life T S F

exp to the unhindered fission half-life Tee calculated
as the geometrical mean of the fission half-lives of the neighboring e-e nuclei [109].

δm(Z,N) =
T S F

exp(Z,N)

Tee(Z,N)
(3.37)

with
Tee(Z,N) =

√
T S F(Z,N − 1) × T S F(Z,N + 1)

for e-o nuclei,
Tee(Z,N) =

√
T S F(Z − 1,N) × T S F(Z + 1,N)

for o-e nuclei, and

Tee(Z,N) = (T S F(Z,N − 1) × T S F(Z,N + 1) × T S F(Z − 1,N) × T S F(Z + 1,N))1/4

for o-o nuclei. The dynamics of fission is more complicated than the LDM picture. We can have symmetric
and asymmetric fission based on the number of nucleons on each side of the neck (scission point) and
fragments, most likely in the excited states. Strutinski’s shell correction predicts a double-humped fission
barrier for many nuclei. The first minimum is usually the ground state, and the second minimum can
harbor quasi-stationary states known as fission isomers or shape isomers. The energy barrier on either
side traps the nucleus to retain its elongated shape. These fission isomers either tunnel back to the more
spherical ground state by emitting a gamma-ray or tunnel through the remaining fission barrier fissioning
spontaneously. As the barrier hindrance is lower in the second well than in the first, a smaller half-life is
expected for the isomeric sates than for the ground state.
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(a)
(b) (c)

Figure 3.4: The leading order Feynman diagram of a) β− decay b) β+ decay and c) EC decay.

3.3 β decay
A vast majority of nuclei lie in the region where alpha decay is not a predominant decay mode. They
become more stable by undergoing a beta decay in which the original nuclei transform into an isobar and
either a pair of high energy positron and a neutrino or an electron and an anti-neutrino pair are emitted
from the nucleus. Nuclei are said to be unstable against beta decay when protons and neutrons inside
are out of balance. Through beta decay, the balance is achieved by converting a proton into a neutron or
vice versa inside a nucleus, maintaining a constant mass number. Based on the sign of the charge of the
electron, these decays are called beta plus (β+) and beta minus (β−) decay. In some cases, when beta plus is
not favorable, absorption of one inner atomic orbital electron seems more economical in energy and such
decays are called electron capture (EC) decays. These three processes are written as

A
Z XN →

A
Z+1 YN−1 + e− + ν̄e for β− decay

A
Z XN →

A
Z−1 YN+1 + e+ + νe for β+ decay

A
Z XN + e− →A

Z−1 YN+1 + νe for EC

And the energy required to occur these decays corresponds to their respective Q-values:

Qβ− = (MP − MD)c2 (3.38)

Qβ+ = (MP − MD)c2 − 2mec2 (3.39)

QEC = (MP − MD)c2 − ε (3.40)

where the neutrino’s mass is neglected, MP, MD are the atomic masses of mother and daughter nuclei and
ε is the binding energy of the electronic orbital from which the electron is captured. Depending on from
which shell it is captured, the process is referred to as K-capture, L-capture and so on. EC depends on
the properties of the electron cloud around the nucleus and can be inhibited if the atom is fully ionized.
Beta-decay is possible because of the fundamental property of nucleons to be able to transform from one to
another through Weak interaction. Nucleons are composed of up (u) and down (d) quarks. Fig. 3.4 shows
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the leading order Feynman diagrams of the three processes showing how a Weak force carrier (either a W+

or a W− boson) changes the flavor of a quark inside the nucleon.
The Neutrino hypothesis due to Pauli, is from the shape of the beta energy spectrum energy in which

momentum conservation requires beta decay to be a three-body process. Based on the angular momentum
L decay radiations carry away, the beta decay transitions are classified as allowed L = 0 and forbidden
L > 0 transitions. Since both electron and neutrino are spin 1/2 particles, their spins can be combined
into a total of 0 (singlet case) or 1 (triplet case) hence the classifications called Fermi and Gamow-Teller
transitions respectively. For allowed transitions, there is no change in the parity ∆π = 1 of the nuclear
wave functions. In the singlet case, the electron and the neutrino are emitted in s state, and no change in
the total angular momentum ∆I = 0 occurs between the initial and the final states of the nucleus. Whereas
in the triplet case, there is an angular momentum change ∆I = ±1 or 0 between the initial and final states
with an exception being 0 to 0 transition.

A transition of Lth degree forbiddenness respects the following selection rules

∆I = −(L + 1), L, (L + 1)

and
∆π = (−1)L

and is slower than a allowed transition.

3.4 Electromagnetic decay
Similar to atomic relaxation process, a nucleus in an excited state can release its excess energy by emission
of a photon technically known as gamma decay and the process is represented by

AX∗ →A X + γ

where ∗ indicates an excited state of the nucleus. The energy of the photon emitted in the transition from
a high lying excited state to a low lying state is given by

Eγ = M∗c2 − Mc2 − Tr (3.41)

where Tr is the kinetic energy of the recoiling nucleus, M∗, and M masses of the higher and lower nuclear
states, respectively. By applying conservation of momentum the kinetic energy of the recoil is

Tr =
E2
γ

2Mc2 (3.42)

which is negligible compared to the photon energy. For example, for a Eγ = 1 MeV transition in 255Rf,
Tr ≈ 1.5 eV. For this reason, the level energies are usually denoted with the emitted photon energies.

3.4.1 Electromagnetic transition rates
Every nuclear state has charge and current distributions inside the nucleus that are different from one
nuclear state to another because of the spatial localization of the orbitals that nucleons occupy. The nucleus
emits a photon of either electric or magnetic type when a higher energy state decays to a lower level.



52 CHAPTER 3. RADIOACTIVE DECAYS

Electromagnetic decays in nuclei are described in terms of the interaction of the nuclear Hamiltonian Hnucl

with an external electromagnetic field. The total Hamiltonian of the system is then given by

H = Hnucl + H f ield + Hint (3.43)

where the nuclear Hamiltonian has eigenvalues Ei for a given set of eigen fuctions Ψi(1, .., A)

HnuclΨi(1, .., A) = EiΨi(1, .., A)

The Hamiltonian of the electromagnetic field is the integral of the energy density:

H f ield =
1

8π

∫
(E2(r, t) + B2(r, t))d3r (3.44)

where E and B are the electric and magnetic fields derived from the four-potential Aµ = (φ, ~A). And the
interaction Hamiltonian is

Hint = −
1
c

∫
jµAµd3r (3.45)

with four-current jµ = (cρ, ~j) where ρ and ~j are the nuclear charge and current densities. The current
density is related to the the magnetic moment ~µ by

~j(~r, t) = c∇ × ~µ(~r, t). (3.46)

The nuclear magnetic moment has two sources: the orbital motions of the protons and the intrinsic spin of
the protons and the neutrons. It is expressed as

~µ =

A∑
i=1

[
gl,i~li + gs,i~si

] µN

~
(3.47)

where µN = e~
2mpc is the nuclear magneton, mp, the rest mass of a proton, gs, the spin g-factor of a nucleon

whose value is gs = 5.586 for protons and gs = −3.826 for neutrons, and gl, the orbital g-factor with values
gl = 0 for neutron and gl = 1 for proton. The interaction Hamiltonian can be expanded in multipole forms

Hint =
∑
λµ

aλµQ̂λµ + bλµM̂λµ (3.48)

with the electric operator

Q̂λµ =

∫
ρ(~r)rλYλµ(θ, ϕ)d3r =

A∑
i=1

eirλi Yλµ(θi, ϕi) (3.49)

and magnetic operator

M̂λµ =

∫
µ(~r).∇(rλYλµ(θ, ϕ))d3r =

µN

~

A∑
i=1

[
2

(λ + 1)
gl,i~li + gs,i~si

]
.∇i(rλi Yλµ(θi, ϕi)) (3.50)

The transition probability denoted by T f i per unit of time, from an initial nuclear state |Ψi > to a final
state |Ψ f > which proceeds by a multipole component of degree λ and order µ of the radiation field from
either an electric or a magnetic source, designated by σ, is given by Fermi golden rule:

Tσλµ
f i =

2π
~
| < Ψ f |Hint(σλµ)|Ψi > |

2ρ(E f ) (3.51)
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where Hint(σλµ) is the perturbative interaction between the nuclear and electric fields that stimulates the
transition and ρ(E f ) is the product of the densities of the final nuclear and electromagnetic states. After
some rigorous mathematical treatment, the expression reduces to (see for eg. ref. [48])

Tσλµ
f i =

8π(λ + 1)
~λ[(2λ + 1)!!]2

(
Eγ

~c

)2λ+1

| < Ψ f |Ô f i(σλµ)|Ψi > |
2 (3.52)

where Eγ is the energy of the transition and Ô f i(σλµ) is the multipole transition operator whose form is
given in eq 3.49 and 3.50, |Ψ >= |ξIm >, a nuclear state with I and m as the total angular momentum and
the magnetic quantum numbers, and ξ representing the rest of the quantum numbers.

Since different orientations of the angular momenta are usually not observed separately when the initial
state is not polarized, hence averaging over the initial substates and summing over all the final magnetic
substates (m-values) and all the µ-values of the field the transition probability becomes

Tσλ
f i =

1
2Ii + 1

∑
mi,m f ,µ

T f i(σλµ) (3.53)

It is useful to define a quantity called the reduced transition probability B(σλ; Ii → I f ) which is the
sum over of all the final states |ξI f m f > and the µ-values of the transition operator Ô(σλµ) for a given
initial state |ξIimi >

B(σλ; Ii → I f ) =
∑
µm f

| < Ψ f |Ô(σλµ)|Ψi > |
2 =

1
2Ii + 1

| < Ψ f ||Ô(σλ)||Ψi > |
2 (3.54)

where < Ψ f ||Ô(σλ)||Ψi > is referred as the reduced matrix element. The equation 3.52 becomes

Tσλ
f i =

8π(λ + 1)
~λ[(2λ + 1)!!]2

(
Eγ

~c

)2λ+1

B(σλ; Ii → I f ) (3.55)

The B values contain information about the nuclear wave function and is often expressed in Weisskopf
single-particle estimates (WE). Weisskopf assumed that the transition in the nuclear states results from a
change in the electric charge and electric current distributions due to a single proton inside a nucleus with
a uniform mass density. The reduced transition probabilities from the single-particle limit are given by:

Bsp(E, λ) =
1

4π

[
3

(λ + 3)

]2

r2λ
0 A2λ/3 [e2 f m2λ] (3.56)

Bsp(M, λ) =
10
π

[
3

(λ + 3)

]2

r(2λ−2)
0 A(2λ−2)/3 [µ2

n f m(2λ−2)] (3.57)

These estimates serve as references for the observed transition rates. A transition occurring more
rapidly than the single-particle rate is said to be more collective as many particles participate in the process.
On the contrary, if a slower transition rate than the WE suggests a smaller overlap between the initial and
final nuclear states. It is a common practice to designate a transition in Weisskopf units (W.u.) by taking
the ratio of the observed decay rate to the WE rate.

The following selection rules (from angular momentum and parity conversations) apply for a transition
from an initial state |Iimi > to |I f m f > :

|Ii − I f | ≤ λ ≤ Ii + I f

m f − mi = m
πiπσλπ f = 1

(3.58)
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EL T (Eλ) [s−1] Bsp(Eλ) [e2 f m2λ] Tsp(Eλ) [s−1]
E1 1.587 × 1015E3B(E1) 6.446 × 10−2A2/3 1.023 × 1014E3A2/3

E2 1.2233 × 109E5B(E2) 5.940 × 10−2A4/3 7.265 × 107E5A4/3

E3 5.698 × 102E7B(E3) 5.940 × 10−2A2 3.385 × 101E7A2

E4 1.694 × 10−4E9B(E4) 6.285 × 10−2A8/3 1.065 × 10−5E9A8/3

E5 3.451 × 10−11E11B(E5) 6.928 × 10−2A10/3 2.391 × 10−12E11A10/3

(a)
ML T (Mλ) [s−1] Bsp(Mλ) [µ2

n f m(2λ−2)] Tsp(Mλ) [s−1]
M1 1.779 × 1013E3B(M1) 1.790 × A0 3.184 × 1013E3

M2 1.371 × 107E5B(M2) 1.650 × A2/3 2.262 × 107E5A2/3

M3 6.387 × 100E7B(M3) 1.650 × A4/3 1.054 × 101E7A4/3

M4 1.899 × 10−6E9B(M4) 1.746 × A2 3.316 × 10−6E9A2

M5 3.868× 10−13E11B(M5) 1.924 × A8/3 7.442 × 10−13E11A8/3

(b)

Table 3.2: Most significant (a) Electric and (b) Magnetic transition probabilities of multipolarity λ. The
transition energies are given in [MeV].

where, πσλ is the parity of the multipole radiation; for electric transition πEλ = (−1)λ and πMλ =

(−1)λ+1 for magnetic transition. Also, note that since the spin and parity of a photon is 1(−1), ∆λ = 0
transitions are forbidden. E0 transition proceeds via internal conversion process (discussed below). Since
no magnetic monopole is known to exist, there are no M0 transitions. From table 3.2, few observations
can be made. The transition probabilities decrease with increasing multipolarity. For transitions with
small energy differences, the transition probabilities also decrease, and the internal conversion process
becomes more and more important. For a given transition energy, the magnetic transition is weaker than its
electric counterpart. Often there is a competition between electric and magnetic transitions; for example,
E2 transitions compete with M1 transitions. This competition is expressed using a quantity called the
multipole mixing ratio ∆(E2/M1). It is defined as [110]

∆(E2/M1) =
< Ψ f ||Q̂2||Ψi >

< Ψ f ||M̂1||Ψi >

[
e f m2

µN

]
(3.59)

This ratio is an important measurable quantity which serves as a test for nuclear models. Experimentally,
a dimensionless quantity δ(E2/M1) is used which is related to the mixing ratio by

δ(E2/M1) =

√
Ti→ f (E2)
Ti→ f (M1)

= 0.835Eγ|∆(E2/M1)| (3.60)

where, Eγ is given in MeV and since the sign of the mixing ratio is not known a priori, absolute value of
|∆(E2/M1)| is taken.

3.4.2 Electromagnetic transitions in deformed systems
The electric multipole moments describe the charge distribution of the nucleus. In an axially symmetric de-
formed nucleus because of parity conservation, the odd moments vanish. For the lowest order deformation
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Figure 3.5: Schematic representations of quadrupole deformations [59].

the electric quadrupole moment becomes the primary measure of the deviation of the nuclear charge dis-
tribution away from spherical symmetry. Hence, the observation of large quadrupole moments is a direct
proof of the existence of stable deformed nuclei. The intrinsic quadrupole moment Q0 in the body-fixed
frame of an ellipsoid nucleus is given by:

Q0 =

∫
(3z2 − r2)ρe(r)d3r (3.61)

where ρe(r) is the charge distribution in the nucleus, sensitive to the nuclear shape. The intrinsic quadrupole
moment can be related to the deformation parameter β by

Q0 =
3
√

5π
ZR2

0β(1 + 0.36β) [eb] (3.62)

where R0 is the average nuclear radius. By convention, Q0 is positive for a prolate nucleus and negative
for an oblate nucleus (see fig. 3.5). The experimentally measured quadrupole moment Q (in the laboratory
frame) is related to the intrinsic value by

Q = Q0
3K2 − I(I + 1)
(I + 1)(2I + 3)

(3.63)

To make the quadrupole moment independent of charge and radius, the reduced quadrupole moment

Qred =
Q

ZeR2
0

is used to compare the deformations of nuclei with different mass numbers.
Experimental transition rates provide a measure of the quadrupole moment of the nucleus. For transi-

tions between two members of a rotational band with M1 or E2 transitions, the B(L, Ii → I f )- values are
given by the following equations:

B(M1; Ii → I f ) =
3

4π
(gK − gR)2K2 < IiK10|I f K >2 forK > 1/2 [µ2

n] (3.64)
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B(E2; Ii → I f ) =
5

16π
Q2

0 < IiK20|I f K >2 [(eb)2] (3.65)

where, the last terms in <> are the Clebsch-Gordon coefficients, gR is the gyromagnetic ratio which corre-
sponds to the magnitude of the magnetic moment of the nucleus because of the rotating core, gR ≈ qZ/A
with q in the range [0.7, 1] called the quenching factor and gK , the gyromagnetic ratio due to the valence
particle(s).

In a deformed and axially symmetric nucleus, collective rotation of many particles around an axis per-
pendicular to the symmetry axis can construct high angular momentum states. If the Coriolis effects are
large, breaking of pairs can occur, and the individual angular momenta of unpaired particles are aligned
with the rotation. Nucleons in high j orbitals and small projection of j on the symmetry axis (Ω) expe-
rience more Coriolis force than the nucleons with large Ω. Coupling of the projections of all individual
quasiparticles results in the total projection K on the symmetry axis:

Kπ =

n∑
i=1

Ω
∏
πi

i

where n is the number of quasiparticles equal to the number of unpaired nucleons.
If there are n quasiparticles, then gK in expression 3.64 becomes KgK =

∑n
i=1 ΩigΩi and the following

angular momentum coupling rules (Gallagher rules) [111, 112] apply to the Nilsson states represented by
the quantum numbers N, nz, Λ, and Σ (defined in section 2.2.3)

Ω = |Ω1 −Ω2|, if Ω1 = Λ1 ±
1
2

Ω2 = Λ2 ±
1
2

;

Ω = Ω1 + Ω2, if Ω1 = Λ1 ±
1
2

Ω2 = Λ2 ∓
1
2

;

The calculated gK values relevant to this study are given in table 3.3. Experimentally, the ground state
magnetic moment of 253No is µ = −0.527(33) µN and the quadrupole moment is Q = +5.9(1.4) eb [65].
The gK value is related to the magnetic moment by

µ

µN
= gK

I2

I + 1
+ gR

I
I + 1

(3.66)

where the rotational g factor is limited to 0.7Z/A ≥ gR ≥ Z/A giving an average value gK = −0.22(5) [65]
which agrees with the theoretical value for the 9/2−[734] configuration given in table 3.3.

Configuration gK

neutron
9/2−[734]ν -0.246
7/2+[624]ν 0.275
5/2+[622]ν -0.406

11/2−[725]ν -0.406
proton

7/2−[514]π 0.63
9/2+[624]π 1.296
1/2−[521]π -0.828

Table 3.3: Relevant single-particle gK values (Woods-Saxon).
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For transitions from an initial state i to different final states f1, f2, f3, ... of a rotational band due to a
given multipole radiation L < Ki + K f , the branching ratios depend only on the geometrical factors, written
as follows [113]

B(σL, Ii → I f1)
B(σL, Ii → I f2)

=
< IiLKi∆K|IiLI f1 K f >

2

< IiLKi∆K|IiLI f2 K f >2 (3.67)

where, ∆K = K f − Ki and < IiLKi∆K|IiLI f K f > is the Clebsch Gordon (vector addition) coefficient for
Ii + L = I f .

3.4.3 Internal conversion process
Besides γ-ray decay, an excited nucleus can de-excite through another competing process known as in-
ternal conversion (IC). This process occurs when an excited nucleus interacts electromagnetically with an
orbital electron thereby ejecting it. Emission of characteristic X-rays or Auger electrons follows subse-
quently. The transfer of the nuclear excitation energy to the electron is a direct radiationless process that
occurs via the Coulomb interaction, not a two-step process in which the nucleus first de-excite by emitting
a gamma ray that knocks out an orbital electron in the second step. The IC probability depends entirely
on the density of the atomic electrons inside the nucleus. The kinetic energy of the internally converted
electron is given by:

TICE = Etransition − BS e− (3.68)

where BS e− corresponds to the electron binding energy in shell S.
As the Coulomb interaction drops with increasing distance between the orbital electron and the nu-

cleus, so does the IC transition probability. Hence, in general we find conversion of K electrons to be more
dominant than the L electrons than the M electrons and so forth. The competition with the gamma-ray
emission is characterized by the internal conversion coefficient defined as:

α =
no of internal conversion decays

no of gamma decays
=

TIC

Tγ

(3.69)

The total enhanced electromagnetic transition rate is then given by

TIi→I f = Tγ +
∑
i=K

TICE,i = Tγ(1 + αtot) (3.70)

where i represents the electronic shell from which an electron is ejected and αtot is the total conversion
coefficient calculted by summing the internal conversion coefficients of all the shells involved in the IC
transition:

αtot = αK + αL + αM + ... (3.71)

The observed lifetime T observed
1/2 of an excited nuclear state is then given by

T observed
1/2 =

ln(2)
(1 + αTot)Tγ

(3.72)

If there are N branches of γ decay, the partial half-life of an individual transition j, T γ, j
1/2 is given by [114]:

T γ, j
1/2 = T observed

1/2 ×

∑n
i=1 Ii

γ(1 + αi
Tot)

I j
γ

(3.73)
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For a mixed multipolarity transition, such as E2 and M1 which compete significantly, the conversion
coefficient is obtained from the formula:

αmixed(σ,σ′) =
α(σL) + δ2 × α(σ′L′)

1 + δ2 , L′ > L. (3.74)

where σ represents electric or magnetic character of the transition and δ is the mixing ratio defined in
equation 3.60

It can been seen that the IC process becomes important for high Z nuclei, low energy transitions
and high multipolarity transitions from the following equations derived from a non-relativistic calculation
[59, 115]

α(EL) =
Z3

n3

( L
L + 1

) ( e2

4πε0~c

)4 (
2mec2

E

)L+5/2

(3.75)

α(ML) =
Z3

n3

(
e2

4πε0~c

)4 (
2mec2

E

)L+3/2

(3.76)

where Z is the atomic number, n is the principal quantum number of the ejected electron,
(

e2

4πε0~c

)
is the

fine structure constant. In an experiment, the X-ray intensity often serves as a good indication of the IC
process when the ICE is not detected.

In this work, the conversion coefficients are calculated using the BRICC software [116], which incor-
porates the relativistic aspect as well. By comparing the ratio of the experimental ICE intensity and γ-ray
intensity to the theoretical values, one can deduce the multipolarity and mixing ratio of the transition.

Atomic processes

The internal conversion process creates a vacancy in one of the inner shells or subshell (level) of the atom.
The ionized atom relaxes through either a radiative or a non-radiative process. The vacancy created can be
filled by electrons from higher energy levels emitting either a characteristic X-ray or an Auger electron.
The energy of the emitted radiation is the electronic binding energy difference between two atomic levels
involved in the process.

EXray:i− j = BEi − BE j j > i (3.77)

In the Auger electron emission process, the energy released in filling the vacancy in level i from a higher
level j is transferred to an electron located in even more higher-level k, which then escapes from the atom

Figure 3.6: A schematic illustration of the processes to fill a vacancy in L1 subshell: a) X-ray fluorescence
b) Auger process and b) Coster-Kronig process [117].
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with an energy
EAe−:i− jk = BEi − BE j − BEk k > j > i (3.78)

creating two secondary vacancies in the levels j and k. There is a special type of Auger process called
the Coster-Kronig process in which the initial vacancy is filled from a higher subshell of the same shell
instead of transition from a different shell, as in the case of Auger process. Fig. 3.6 illustrates these three
atomic relaxation processes. A cascade of the vacancy filling processes follows after the creation of an
initial vacancy. In the end, multiple vacancies are created in the outermost shell of the atom, leaving it
highly ionized. If a vacancy is created in level i, then the probability to be filled by one of the processes is:

ωi + αi + fi = 1 (3.79)

where ωi is the fluorescence yield, αi is the Auger yield and fi =
∑k

j=i+1 fi j is the sum of the Coster-Kronig
yields fi j. ωi represents the probability of filling the vacancy in subshell i through a radiative transition,
αi corresponds to the probability of filling the vacancy through a non-radiative transition by an electron
from the higher shell and fi j is the probability that a vacancy in the subshell i is filled via the non-radiative
transition from a higher subshell j located in the same major shell.

3.5 Isomers
An electromagnetic transition between two states with very different angular momenta is strongly hin-
dered, stretching the decay lifetime significantly. These long-lived nuclear meta-stable states are called
isomers, and their decays are formally known as isomeric transitions. In chemistry, the term isomers refer
to ions or molecules with the same elemental composition but have different physical arrangements giving
rise to distinct properties. In 1917, F. Soddy [118] first suggested the existence of states having "different
stability and mode of disintegration" in a given nuclide. G. Gamow [119, 120] later refers to them as
nuclear isomers analogous to chemical isomers. In 1921, O. Hahn [121] discovered nuclear isomerism
in Uranium. And later in 1936, C. F. v. Weizsäcker [122] provided the theoretical explanation of the
phenomenon. It then became an established fact that the protons and neutrons in nuclei can have different
arrangements in their quantum orbits molding different metastable excited states (The history of nuclear
isomerism can be found in ref. [123]). There are mainly three types of nuclear isomers: spin isomers, K

Figure 3.7: Secondary minima in the potential energy of a nucleus as a function of various nuclear variables
lead to differentiate kinds of isomers [124].
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isomers, and shape isomers (see fig. 3.7). Spin isomerism occurs when the decay from a higher excited
state to a lower state is hindered because the transition requires a large change in nuclear spin. Therefore,
to satisfy the spin selection rules, a high multipolarity L radiation needs to be emitted. The transition rate
(see eq. 3.58) decreases with increasing L, forming spin traps. K isomers are observed in well-deformed
nuclei and the isomerism occurs when a large change in the angular momentum orientation is required.

In axially deformed nuclei, the K quantum number is approximately conserved. For a transition from
an initial state (Ki, Ii, πi) to a final state (K f , I f , π f ) that involves a change in K, larger than the multipole
order L, the transition are usually forbidden. K isomers are thereby formed. The multipolarity L of the
transition must satisfy the K-selection rules:

|Ii − I f | ≤ L ≤ Ii + I f

π = πiπ f

|Ki − K f | = ∆K ≤ L
(3.80)

The last selection rule is not as strict as the preceding ones and it is understood in terms of K mixing
mechanism caused by Coriolis mixing, deviation from axial symmetry and level density [125]. The tran-
sitions that violate the last rule are called K-forbidden transitions, and the degree of K-forbiddenness is
characterized by:

ν = ∆K − L (3.81)

The other type of isomer is called the shape isomers, in which, the inhibition to the decay comes
from the associated shape changes requiring substantial rearrangement of individual nucleon orbits. All
the above three mechanisms influence, with varying degrees, the half-life of a given isomer that depends
on the competing decay branches, transition energies, and multipole orders. The inhibition to the decay
process is usually characterized by the Weisskopf hindrance factor defined as

FW =
T γ

1/2

T W
1/2

(3.82)

where T γ
1/2 is the partial γ-ray half-life determined experimentally and T W

1/2 is the half-life calculated from
Weisskof single-particle estimates. In particular, for K isomers, a reduced hindrance factor (the hindrance

Figure 3.8: Trends of the hindrance factor FW from the systematics of Lobner [125] for electromagnetic
transitions of different multipolarities as functions of ∆K [126].
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per degree of K-forbiddenness) is generally used which is defined as:

fν = (FW)1/ν (3.83)

Based on Lobner’s systematics [125] shown in fig. 3.8 and Rusinov’s empirical rule given by equation
3.84, as a rule of thumb, one considers with each additional unit of ∆K, the hindrance factor FW is in-
creased by approximately a factor of 100.

log FW = 2(∆K − L) (3.84)

Hence the reduced hindrance factor within the range fν ∼ 30 − 300 is usually used for assigning spin of
a state [75]. However, small reduced hindrances 2 < fν < 10 observed in several cases (in 179W [127],
172Hf [128] for example), question the validity of the K quantum number [124]. Instead of a nuclear
reorientation required for ∆K, involvement of a shape change was found to be a reason for such a rapid
transition. The fν values can also become small for highly excited isomers as the level density increases
with excitation energy resulting in more K mixing. The Coriolis effects can also induce K-mixing resulting
in lower fν values (see ref. [124]).

3.5.1 Quasiparticle states in neighboring nuclei
The study of K isomers is important not only to access the single-particle structure near the Fermi level
but also to access the states that cannot be populated in alpha decay. We expect to observe High-K
quasiparticles states in 255Rf as such states have been already observed in the neighboring even-even
and odd A nuclei. See figs. 3.9 - 3.11, for instance, in 252No, an 8− isomer having configuration
ν2(7/2+[624], 9/2−[734]) was observed feeding on to a vibrational band [129]. Similarly, in 254No an
8− isomer decaying to a 3+ intermediate state was observed [13, 130].

And, analysis of recent data from Dubna has identified a 5− isomer in 256Rf, which previously was
interpreted as K = 6 or 7 decaying to an intermediate 2− structure [133]. In 254Rf, two isomers were also
observed and have been interpreted as two- and four-quasiparticle states that are highlighted in figure 3.10a
which shows the energy and configurations of calculated high K states. In the isotone 253No, the existence
of a high-K isomer was first reported in ref. [41] and later in ref. [42]. The half-life of the isomeric state
was found to be 0.7 ms and it was suggested that the decay goes through an intermediate structure based
on the coupling of the odd neutron to the 3+ 2-quasiparticle state observed in 254No. The tentative partial
level scheme is shown in fig. 3.11 where the high energy lines (802 keV and 714 keV) were observed in
prompt emission at the target [126].
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(a)
(b)

Figure 3.9: a) Decay scheme of the 8− isomer in 252No [129]. b) Decay scheme of the 8− isomer in
254No [13].

(a)

(b)

Figure 3.10: a) Suggested (highlighted with red square) two and four quasiparticle configurations for the
isomers observed in 254Rf [131]. b) Decay scheme of the lowest isomer observed in 256Rf [134].
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Figure 3.11: Tentative level scheme of 253No [42].





Chapter 4

Experimental Techniques

The experiment was performed in two runs, first in May then in October (Oct) of 2017 at the Flerov
Laboratory of Nuclear Reactions (FLNR), JINR, Dubna. The U400 cyclotron delivered an intense 50Ti
beam of average intensity 7.42(5) eµA in May and about 7.92(5) eµA in Oct. Using the following relation

pµA = eµA/charge state

the beam intensities are ≈ 337-370 pnA in May, and ≈ 360-396 pnA in Oct with ≈ 20+ − 22+, the charge
state of the 50Ti ions. This also means about ∼ (2.1 − 2.3) × 1012 ions/s were delivered in May and
∼ (2.2 − 2.5) × 1012 ions/s in Oct. The beam impinged on a rotating 207PbS target of thickness 0.4
mg/cm2 (≈ 0.353 µm) mounted on a target wheel (see fig. 4.1). The target is deposited on a 1.5 µm
thick Ti backing that faces the beam. The nuclei of interest, the evaporation residues (ERs) were produced
in fusion evaporation reactions 207Pb(50Ti, xn), which were filtered and transported through the recoil
separator SHELS [38] and delivered into the GABRIELA [37] detection system (see fig. 4.2). After
passing through a Time of Flight (ToF) detector, the ERs are implanted into a position-sensitive detector
located at the focal plane of the recoil separator, where their kinetic energies and their radioactive decays
(alpha, spontaneous fission, gamma and IC) are measured.

Figure 4.1: 6 207Pb target foils mounted on the rotating target wheel.

65
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Figure 4.2: A schematic of the experimental setup.

4.1 Production: Fusion evaporation reactions

The first induced nuclear reaction in a laboratory was carried out by Rutherford in 1919 by colliding alpha
particles with nitrogen [135]. Similar to a chemical reaction, the final products must be different from the
initial ones in a nuclear reaction. Otherwise, the process is said to be a scattering process if the reactants
only interact with no change in their nature. The possibilities of different induced nuclear reactions were
limited as the alpha particles remained the only available projectile until the advent of accelerators around
1930. Depending on the entrance channel and the exit channel(s), many different kinds of reactions can
take place. These are summarized in fig. 4.3a. The probability of each exit channel is measured by a
quantity known as the cross-section of that channel. The reaction type we are interested in is known as
fusion evaporation reaction. A projectile nucleus fuses with a target nucleus forming a compound nucleus
(CN) in a highly excited state. The newly formed CN then cools down predominantly through the emission
of neutrons, protons, and alpha particles depending on the excitation energy much like the cooling of water
hence the term "evaporation". After most of the excitation energy is released the leftover nucleus is known
as the evaporation residue. The deexcitation process can lead to the ground state or to an isomeric state.
The basic mechanism is illustrated in fig. 4.3b. Complete fusion undergoes three stages: 1) the Coulomb
barrier is overcome by the colliding nuclei. At this stage, usually quasi-elastic and deep-inelastic reactions
channels dominate, resulting in projectile-like and target fragments in the exit channel. 2) The Captured
system Cap is formed, the colliding nuclei can re-separate at this point i.e., quasi fission directly without
the formation of a CN. 3) the excited CN cools down by emission of neutrons, charge particles, and gamma
rays with a strong possibility to fission [137]. Fusion evaporation reactions have been the primary method
of producing heavy elements in the past half a century. During the deexcitation process, the survival
probability of the CN against fission determines the production cross-section of the heavy elements. The
survivability of the CN is determined by its nuclear structure and the excitation energy. In the case of SHE,
this probability is diminished as the fission barrier height is small because of the contribution from just the
shell effects. It is therefore of paramount importance that the beam energy must be chosen optimally so that
the maximum cross-section can be reached. Heavy nuclei production requires heavier targets and heavier
projectiles, hence, powerful accelerators are needed to overcome the large Coulomb barriers. These days
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(a)

(b)

Figure 4.3: A schematic representation of (a) different reaction modes [136] (b) fusion evaporation reaction
[137] (see the text for details).

a variety of beam and target combinations are available. Ion beams such as 22Ne,40Ar, 48Ca, 50Ti are used
in combination with heavy-targets such as 208Pb, 209Bi, 238U in our experiments. A sufficient amount of
kinetic energy must be endowed to the projectile nucleus to overcome the Coulomb barrier between the
two positively charged particles to form the compound nucleus. The excess collision energy then appears
as excitation energy of the compound nucleus.

The Q value of a reaction whether it is an exothermic or endothermic reaction is:

Q = (Minitial − M f inal)c2 = ∆initial − ∆ f inal (4.1)

where M represents mass and ∆ represents mass-defect. The Q value is also equivalent to the difference in
the kinetic energies (KE [MeV])

Q = KE f inal − KEinitial = ∆KE. (4.2)
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Figure 4.4: Energy distribution of 253 MeV 50Ti ions after Ti backing and half lead target in SRIM [139]
calculation. The red-curve is a Gaussian fit.

In an exothermic case (Q > 0 ), the kinetic energy of the final products is greater that of initial reactants
implying that mass is converted into kinetic energy whereas in an endothermic case (Q < 0), the kinetic
energy converts into mass hence a minimum threshold energy is required. In fusion evaporation reactions,
the CN is left in an excited state and this excitation energy E∗ can be easily determined from the above
two relations in which M∗

CN = MCN + E∗

E∗ = ∆KE + Q (4.3)

Explicitly in terms of mass defect ∆ [MeV], the excitation energy of the CN is given by

E∗ = ∆beam + ∆target − ∆CN + KEbeam − KECN (4.4)

The beam energy is known and the kinetic energy of the CN derived from the momentum conservation
principle in non relativistic approach is

KECN = KEbeam
Mbeam

MCN
. (4.5)

During the deexcitation process, in every stage of the neutron evaporation cascade the fission process
competes. Hence, the production cross-section σ is often plotted as a function of the excitation energy. In
our experiments, the average energy of the beam was about 253 MeV, and it loses about ≈ 11 MeV while
passing through the Ti backing and about 1 MeV in half of the target material. These energy losses were
estimated from SRIM [139] calculations (see fig. 4.4). Therefore, at the mid target, only about 240.2 MeV
was available effectively for the reaction. From equation 4.5, we have,

KECN = 46.7 MeV

and
Q = ∆50Ti + ∆207Pb − ∆257R f = −169 MeV

Using mass-defect values listed in AMDC mass table [140]. Hence, the excitation energy of the compound
nucleus is found to be 23.7 MeV from equation 4.4.

In fig. 4.5 one can see that 2n evaporation channel is more probable than any other channel at the beam
energy of ∼ 240 MeV. Depending on the excitation energy of the CN, the fusion evaporation reactions



4.2. SEPARATION: SHELS 69

Figure 4.5: Calculated excitation functions of the reaction 207Pb(50Ti, xn)257−xn∗Rf [138].

Figure 4.6: Measured cross sections for a) cold and b) hot fusion reactions [142].

are categorized into two types: cold fusion and hot fusion. In the hot fusion, the CN has high excitation
energy and 3 to 5 neutrons are evaporated whereas, in cold fusion, the excitation energy is only sufficient
to evaporate one or two neutrons [141]. Fig. 4.6 shows that the cross-section drops rapidly in both hot
and cold fusion with increasing projectile proton number about an order of magnitude as Z increases by 2.
In the case of hot fusion, the production cross-section is enhanced around Z = 115 of the CN from shell
stabilizing effects.

4.2 Separation: SHELS
The separation of fusion reaction products can be performed by velocity filters. The separator SHELS [38]
is comprised of two identical velocity filters, two focusing lenses and a deflector. It is an upgrade from
VASSILISSA [143–145], which was a kinetic energy-based separator. The ion optical scheme of SHELS
(shown in the fig. 4.7) can be described as QQQ-E-D-D-E-QQQ-D, where Q denotes magnetic Quadrupole
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lenses, E stands for Electrostatic dipole deflectors and D for magnetic dipoles. Each filter consists of a
parallel flat plate electrostatic dipole and a magnetic dipole. The distance between the plates can be
adjusted to optimally match the angular distribution and electric rigidity of the evaporation residues (ERs).
The nominal deflection angle of ERs in the electric field is 8◦ and in the magnetic field ≈ 22◦.

Each focusing lens consists of three quadrupole magnets. The first quadrupole triplets converge the
beam of ERs emerging from the target, and the second triplet focuses the ERs onto the focal plane detector.
The last dipole magnet with a deflection angle ≈ 8◦ situated inside a thick wall places the GABRIELA
spectrometer away from the direct view of the target and the beam dump. This arrangement certainly
drastically reduces a large fraction of beam-type background. SHELS has a transmission and detection
efficiency of 40 % for 48Ca and 50Ti induced reactions [146–148].

Figure 4.7: Ion optical scheme of SHELS [38].

4.3 Detection Setup: GABRIELA

The detection system is installed at the focal plane of the recoil separator. The detection system is sensitive
to all the radioactive decay modes and capable of detecting gamma rays, alpha particles, beta particles,
spontaneous fission fragments, and the kinetic energies of the ERs. Hence the detection system is rightly
called GABRIELA [37] (Gamma Alpha Beta Recoil Investigations with the electromagnetic Analyser). It
is composed of a Time of flight detector, a position-sensitive silicon detector where ERs are implanted shal-
lowly, an array of silicon detectors forming a tunnel structure to detect escaping decay particles from the
implantation detector and an array of germanium (Ge) detectors for detecting gamma radiations. The Ge



4.3. DETECTION SETUP: GABRIELA 71

detectors are equipped with bismuth germanate crystals represented by the chemical formula Bi4Ge3O12,
hence BGO in short. The setup is described in more detail in the following sections.

4.3.1 Time of Flight detector

After going through the separator and the bending magnet, the evaporation residues pass through a Time
of Flight (ToF) detector in the experimental hall before their implantation into a silicon detector. The
ToF detector serves as an identifier by providing a "flag” (MCP flag) to distinguish the recoil implants
from the subsequent decays in the implantation detector. Although the resolution of the ToF does not
allow the identification of similar mass nuclei, it is useful in separating the ERs from scattered beam and
transfer products that have very different mass numbers from that of ERs. The ToF detector consists of
two emissive foils made of 30-40 µg/ cm2 of gold deposited on 40-50 µg/ cm2 of polypropylene. Each foil
is 102 mm wide and 90 mm long. In the experiment, the distance between the two foils can be changed
as there are three foil slots in the ToF "box". Two microchannel plates (MCP) are placed perpendicular to
each of the foils for collecting the secondary electrons released during the passage of an ER through the
foil. The MCPs plates are made of highly resistive material and have ∼ 5-10 µm diameter holes distributed
over the surface. The holes on the MCPs are about ∼ 15 µm apart from one another. When an ER ion
passes through an emissive foil, a large number of electrons are emitted, which are then accelerated using
an electric field and guided to the MCP plates by a magnetic field.

4.3.2 Implantation detector

After passing the ToF detector, the ERs pass through a Mylar foil. The Mylar foil is useful in reducing
the background of scattered beam and the kinetic energies of the ERs for shallow implantation in the focal
plane detector. A shallow implantation of the ERs is desirable to perform conversion electron spectroscopy
in the tunnel detectors (see section 4.3.3 and 4.7). The implantation depths in the silicon detector can vary

(a) (b) (c)

Figure 4.8: Photographs showing the components of the GABRIELA setup:( a) Implantation detector and
tunnel DSSDs (b) Ge array and (c) Inside of the vacuum chamber showing 4 of the 5 inserts.
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between 1-5 µm depending on the mass and the velocity of an ER. A method to estimate an average im-
plantation depth is described in section 4.7.1. The implantation detector is a double-sided silicon strip
detector (DSSD), providing position-sensitivity to an event, a requirement for genetic correlations among
the events occurring in the detector. The DSSD has a dimension of 100.4 × 100.4 mm2 with 128 ver-
tical and 128 horizontal strips, constituting 16384 pixels for time and position correlations. In the May
experiment, the DSSD had a thickness of 300 µm and in the Oct run, a 500 µm thick DSSD was utilized.
The DSSD is sensitive to the incoming recoils and the decay particles: alpha particles, internal conversion
electrons, and fission fragments. The thickness of the DSSD allows the detection of the decay particles
emitted in the upstream directions. Hence, just from the geometrical argument, the efficiency of the im-
plantation detector to detect alpha particles is roughly about 50% assuming the decay radiation emission
is isotropic.

4.3.3 Silicon detector array for ICE-spectroscopy

In the upstream direction of the implantation detector, eight small DSSDs are arranged in a tunnel con-
figuration and mounted perpendicular to the implantation detector (see fig. 4.8a). A brass cooling frame
supports the Si detector array in this tunnel structure. They are designed to detect the alpha particles, elec-
trons, and fission fragments that escape from the implantation detector. Each of the 50 × 60 mm2 tunnel
detectors is ∼ 0.7 mm thick and has 16 horizontal and 16 vertical strips. Angular correlations can be estab-
lished for the decay particles that escape the implantation detector and get detected in the tunnel detectors.
Taking into account the energy loss in the dead layers of the implantation detector and the tunnel detector,
the energies of these escaped particles (especially applicable to α particles) can then be reconstructed from
the angles of these events. Such event reconstructions have not been performed in this work.

4.3.4 Germanium detector array for gamma-spectroscopy

The gamma rays and X-rays are detected in the array of germanium detectors surrounding the focal plane
of the separator. The array consists of four coaxial, cylindrical, large volume Hyper Pure Germanium
detectors plus one clover [149]. The coaxial detectors are placed on each lateral side of the implantation
detector and the clover is placed behind it (see fig. 4.8b). The clover consists of four tapered crystals,
each 50 mm in diameter and 70 mm long. Two of the coaxial detectors are 73.1 mm long and 72.9 mm
in diameter and the other two have a diameter of 72 mm and a length of 71.9 mm. The Ge detectors
are equipped with uncollimated BGO Compton shields. The BGOs are 15 cm long and 15 mm thick.
Special inserts into the vacuum chamber with 1 mm thick Aluminum windows (see fig. 4.8c) allow the
Ge detectors to be placed close to the implantation detector. The BGO shields, when used in ‘suppressed’
mode, improve the peak-to-total (P/T) ratio by rejecting the gamma-ray events which Compton scatter out
of the Ge detectors. They are also used in ‘tagged’ mode’ when such Compton scattered gamma-ray events
are tagged with a flag. The flag is ON only when the energy deposition in the BGO shields of the same
detector is greater than the threshold set for the BGOs, which is about ≈30 keV. The Compton suppression
mode allows identification of low energy and low intense gamma lines that could otherwise get submerged
in the Compton background of higher energy and more intense lines when no such rejection is preferred.
The use of BGO shields increases the "search" times for long-lived isomers by filtering out radiation
coming from the concrete walls (natural radioactivity at higher energies for example 40K) reducing the
background radiation rate. Experimentally, the average P/T is extracted from the gamma-ray spectrum due
to a single transition (obtained by using either gamma or electron coincidences) by taking the ratio of the
peak intensity over the intensity of the whole spectrum. The average P/T with beam on target was found
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to be ∼ 40-45 % (see section 4.9 and fig. 4.47).

Interaction of radiation with matter
Heavy charged particles traversing through matter primarily interact via the Coulomb force with the elec-
trons and ions within the absorber material. Depending on the strength of the interactions, the medium’s
atoms can become excited or ionized at the expense of kinetic energy by the charged particle. The charged
particle slows down in the absorber medium and finally comes to rest after traveling a particular range.

In addition to Coulomb interactions, a fast electron can lose energy through the bremsstrahlung radia-
tive process, which is negligible in the case of heavy charged particles. The electrons also suffer backscat-
tering as they can be deflected easily in large angles along their tracks. It becomes more significant for
electrons with low incident energy and absorber with a high atomic number. This phenomenon has a
significant impact on the response of a detector as the backscattered electrons escape complete detection.

Gamma rays lose their energies mainly via photoelectric effect, Compton scattering, and pair produc-
tion. In the photoelectric process, a photon is absorbed in an atom followed by emission of an electron
with energy equal to Ee− = Eγ − Eshell where Eshell is the binding energy of the atomic shell from where
the photoelectron is emitted. As the energy and momentum cannot be simultaneously conserved, this
phenomenon cannot occur with free electrons and, therefore, the radiation is always absorbed by bound
electrons as the nucleus can absorb the recoil momentum. However, Compton scattering of photons can
occur on free electrons. The electrons in matter can be approximated as free when the photon energy is
very high compared to the binding energy. In this process, a portion of the photon’s energy is transferred to
the electron that deflects it from its original course. The energy loss ∆Eγ by the incident photon can vary
from zero to a large fraction of the original energy Eγ since the scattering of the photon by the electron is
possible in every direction. Assuming the electron is at rest, this energy loss is given by the expression:

∆Eγ = Eγ

1 − 1

1 +
Eγ

mec2 (1 − cosθ)


where me is the rest mass of the electron and θ is the angle with which the photon has defected from its
original direction.

For a photon with energy greater than twice the rest-mass energy of an electron, its transformation into
an electron-positron pair is energetically favorable given that the conservation of momentum is facilitated
by the presence of a third body, which is usually a nucleus. The excess energy of the photon Eγ − 2mec2

appears as the kinetic energy of the e−e+-pairs. The positron travels through the medium losing its energy
and finally annihilates after coming in contact with an electron producing two annihilation photons having
energy equal to 511 keV. Fig. 4.9 describes which of these three processes become important at different
photon energies in different absorbing materials.

4.3.5 Basic working principles of the semiconductor detectors
In many radiation detection applications, solid-state detectors are preferable simply because their sizes can
be kept smaller as the high energy radiation can give off their energy in a relatively small dimension. Semi-
conducting materials (Si, Ge) are generally used to make solid-state ionization chambers. Semiconductors
are normally poor electrical conductors. However, the charged particles created by ionizing radiation can
be collected by applying external voltage. A block of metal cannot be used as a detection medium because
even without ionizing radiation, a large current would flow through the material. In the other extreme case,
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Figure 4.9: Variation of the relative dominance of the three types of gamma-ray interactions at different
gamma-ray energies hν for different absorber of atomic number Z [150].

insulators are not suitable detector materials either, because they do not conduct even in the presence of
ionizing radiation. An energy band structure (consisting of a valence band, a forbidden energy gap, and a
conduction band) for the electrons originates from the arrangements of atoms in the solid. Electrons in the
valence band are bound to the parent atoms; however, if they are promoted to the conduction band, they
become free to roam about the entire crystal. At room temperature, a few electrons thermally excited elec-
trons to jump into the conduction band, leaving vacancies (holes) in the valence band. From a neighboring
atom, a valence electron can fill up the original hole, leaves a hole in the neighboring position. Repeti-
tion of this process causes the hole to appear moving through the crystal. In a semiconductor, therefore,
there are two charge carriers: free electrons in the conduction band and holes in the valence band. The
number of one kind of the charge carriers in the intrinsic semiconductor is increased by doping with small
amounts of trivalent or pentavalent atoms. If the dopant is pentavalent, the extra electron of the impurity
atom that could not participate in 4 covalent bond formation resides in a discrete energy level close (0.01
eV for germanium and 0.05 eV for silicon) to the conduction band. Since the majority charge carriers
are electrons (holes being the minority carriers), this kind of doped semiconductors are known as n-type
semiconductors. With the trivalent dopant, there is one less valence electron and an additional energy level
close to the valence band. The valence electrons can easily migrate into this extra level, leaving more holes
in the valence band. As a result, the holes become the majority charge carriers and the electrons minority
carriers, and such materials are called p-type semiconductors. When these two types of semiconductors
are combined into a pn junction, the majority charge carriers from both materials diffuse until the resulting
electric field gradient across the junction is strong enough to stop the process. This is illustrated in fig.
4.10. A special region known as the depletion region with no mobile charge carriers is created at the in-
terface between the two materials. Radiation entering the depletion region creates electron-hole pairs that
get pulled by the electric field. The liberated charges can be collected with electrical contacts placed on
either end of the junction, and a current signal proportional to the ionization can be detected. The width of
the depletion region (the sensitive volume of a radiation detector) can be increased by applying a reverse
bias voltage.
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Figure 4.10: (a) Schematic diagram of an pn junction, (b) diagram of electron energy levels showing the
creation of a contact potential V0, (e) associated charge density, and (d) the electric field intensity [151]

4.4 Instrumentation

The interaction of radiation in a detector instantaneously liberates an amount of charge proportional to
the energy deposited within the detector’s active volume. With opposite-polarity electrodes, the produced
charge moves under the influence of the electric field and produces a current signal i(t) lasting up to the
charge collection time tc typically about a few tens-hundreds nanoseconds in semiconductor detectors
depending on the volume. ∫ tc

t=0
i(t)dt = Q ∝ E

As the signal produced is too small for direct treatment, a charge sensitive preamplifier is used to
magnify it before sending it to the processing electronics. The preamplifier produces a voltage step ∆V
proportional to the amount of charge. The output signal of the preamplifier is then transformed into a de-
sirable form by a shaping amplifier. The shaping amplifier produces an output voltage pulse with a height
Vpeak proportional to the deposited charge Q. At this stage, the signal is amplified, and using a high-pass
filter and a low-pass filter the signal-to-noise ratio is improved. If an output of the shaping amplifier does
not quickly return to the baseline, overlapping with another signal can occur if the signals occur close in
time. This pile-up effect can distort the energy measurement as the pulse height is associated with the
deposited energy of the radiation. It is therefore desirable for a shaping amplifier to have a shorter shaping
time constant to minimize the pulse pile-up effect. The shaped pulse then passes through a discriminator
which selects pulses above a certain threshold to reduce unwanted signals. The selected signals are then
transferred to an analog-to-digital converter (ADC) that converts the signal into a corresponding digital
number at its output. For example, a 12-bit (resolution) ADC can give 28 = 4096 channels. After the
preamplifier, the signals pass through the shaping amplifiers. At this stage, the signals from the silicon
detectors are amplified with two different gains [153] for simultaneous measurement of conversion elec-
trons ranging from 70 keV to 2 MeV and alpha particles up to 25 MeV (another possibility is to measure
alpha particles up to 25 MeV and fission fragments up to 250 MeV). To lower the thresholds to detect
low energy electrons, the outputs of the implantation detector preamplifiers go through additional fast
linear amplifiers before the spectroscopic amplifiers. It was stated in the previous sections that there are
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Figure 4.11: A schematic drawing of GABRIELA’s instrumentation as it was in 2016 [152]. The only
difference with the setup used in this work is that the Clover detector has also a BGO shield.
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256 strips in total in the implantation detector and the tunnel detectors. To reduce the cost of back-end
electronics (number of ADCs), signals from several strips are multiplexed to share one ADC. Hence, after
the shaping amplifier, the signals pass through a 16-channel multiplexer that selects one output among 16
analog signals and sends the signal to an ADC. The front and back strips of the implantation detector are
arranged in an even-odd fashion so that the events in the neighboring strips of the implantation detector do
not get processed by the same ADC. Starting from strip number 0, sixteen successive even number strips
share the first ADC, and the sixteen successive odd number strips share the second and so on requiring
eight ADCs for the frontside and eight for the backside of the implantation detector. Similarly, the tunnel
detectors also require 16 ADCs. However, in the case of tunnel detectors, such an even-odd strip arrange-
ment was not used. For each tunnel detector, 16 frontside strips share one ADC, and the 16 backside strips
share another ADC. The signals from eight Ge crystals are not multiplexed, hence require 8 ADCs. The
outputs of the ADCs are sent to the data acquisition system. To distinguish an implantation event from a
decay event in the DSSD a ‘recoil tag’ from the ToF detector is used. The recoil marker (MCP flag) is ON
if there is a coincident signal in any of the four MCP plates. The ToF signal is the time difference between
the signals in two emissive foils and taken within a gate generated by the DSSD to reduce the occupation
time in the ToF electronics (see fig. 4.11).

All the ADCs are placed in two Computer Automated Measurement and Control (CAMAC) crates.
Each crate has a 1 MHz timing module that synchronizes the signals of the whole crate. A lower-level
time "timeL" is set for all the ADCs in the crate. The timer has a 16-bit memory, hence every 65536 µs
the clock resets, and a higher-level 16-bit timing module counter is incremented by 1 given by "timeH".
The higher-level clock also resets in every 65536 ticks, and a software highest-level clock "nLoops" can
count the number of times the "timeH" passes through zero. The absolute time of a given signal can be
calculated by

t = (nLoops × 232) + (timeH × 216) + timeL [µs] (4.6)

A signal in one of the ADCs and the resetting of the timing module triggers a look-at-me flag (LAM), and

Figure 4.12: A schematic of data acquisition system [152].

a signal is sent to the crate controller. The LAM is then transmitted to the computer and remains ON until
the signal is readout. A schematic of the data acquisition system is shown in fig. 4.12. While the LAM
flag is ON, no signal in the same ADC can be recorded. This inactive period is called the dead time of the
ADC. The dead time of a detector arises from the limiting time set by the detector (charge collection time)
and from delays in the associated electronics and can be defined as the minimum amount of time required
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for two events to be recorded separately. Therefore, the effects of the dead time can particularly become
severe if the counting rate is high as the detector is blind to the events occurring within this characteristic
time.

4.5 Data Format
The data from an ADC is written in binary format. For each ADC, there are four 16-bit words. The
first word corresponds to the number of the ADC from where the signal is registered. The second word
provides the lower-level time "timeL" given by the timer in the same CAMAC crate. In the third word, the
12 lower-bits give the low gain amplification data "dataL" ranging from 0 to 4095 values, and the 4 most
significant bits give the multiplexer output number varying from 0 to 15. The strip number of the DSSDs
can then easily be constructed from the ADC number and the multiplexer output number. To do so, one
needs to know the grouping of the ADCs given as follows:

• ADC no. [1-8] corresponds to the front-strips of the implantation detector.

• ADC no. [9-16] corresponds to the back-strips of the implantation detector.

• ADC no. [17-24] corresponds to the front-strips of the tunnel detectors.

• ADC no. [25-32] corresponds to the back-strips of the tunnel detectors.

• ADC no. [33-40] corresponds to the 8 Ge crystals.

• ADC no. [41] corresponds to the ToF detector.

• ADC no. [42] corresponds to the high-level clock "timeH".

Similarly, in the fourth word, the 13 lower-bits give the high-gain data of the same signal, and the higher
3-bits correspond to different flags used to identify the nature of the signal. For example, the MCP flag
associated with the ToF detector is set ON for an implantation type signal in the DSSDs and OFF for decay
type events. For the signals from the Ge detectors, the second-bit used as a BGO signal coincidence flag.
In the case of Si detectors, the second bit is used as beam ‘chopper flag’. The beam needs to be turned
ON and OFF to avoid the spoke on the target wheel. When a First in, First out buffer (FIFO) is used to
queue ADC signals before they can be read out by the acquisition system, the pile-up flag is used. Fig.
4.13 illustrates the data format succinctly.

There are also computer-generated data written to the disc that includes beam energy, beam intensity,
beam integral, and background information. Since the above data layout can be varied from one experiment
to another, there is a .pro file associated with every data set. This file provides information not only about
the data format but also the location of the ADCs in the crates. It is, therefore, necessary to consult the
.pro file before beginning the analysis of the data. The data are written in near time-order fashion because
of the CAMAC readout mechanism the close by time-events can be swapped. The detailed data analysis
procedure is discussed in the following section.

4.5.1 Data Analysis Methodology
The primary objective of the data analysis is to establish the decay properties of the ERs implanted in the
implantation detector and of their subsequent daughters. This objective can be realized by establishing
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Figure 4.13: A schematic of the data format.

Particle Energy [MeV] Range in Si [µm]
α particle 8 ∼48

fission fragment 120 ∼18
electron 0.2 ∼242

Table 4.1: Ranges of ionizing particles in Si.

position-time correlations of the decay events following every recoil (implantation) event. It is, therefore,
necessary to define ‘pixels’ as the smallest units of the implantation detector that form the basis of the
whole genetic correlation procedure. Unlike in a display device, there are no physical pixels in a DSSD.
The pixels are constructed based on the event sequence and therefore are transient. Before going into
the detailed data analysis procedure, it is apt to give justification for the pixel size in the implantation
detector with lateral dimension ≈ 760 × 760 µm2. Let an event in the implantation detector is represented
by the X-Y coordinates where the X value corresponds to the front strip and Y value to the back strip,
where the opposite charges created by the radiation in the detector’s active volume are collected. Table
4.1 justifies that the pixel size is large enough for the ionizing particles with typical energies such as alpha
particles, fission fragments, and low energy electrons as their ranges are small compared to the size of a
pixel assuming their sources are placed at the center of the pixel. Since the ERs are implanted randomly,
there is always a finite probability that two front strips or two back strips would share the charges of the
same event. Such events are called inter-strip events, and in such cases, we will consider the strips with
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the highest energies as the position of that event. A comparison of energies of two coincident signals in
two neighboring front or back strips requires calibration of the whole detector as different amplifiers are
associated with different strips of the detection. Needless to say, the calibration of detectors is the first and
foremost task that needs to be done before beginning the analysis of the data.

Fit Function

(a) Fit of 50 keV gamma-ray peak (b) Fit of 100 keV electron peak

Figure 4.14: Figures showing the components of the fits used for gamma-ray and electron peaks.

The gamma and electron and alpha full energy peaks are fitted with the following RadWare type func-
tion [154]:

Fit Function = Step Function + Gaussian + Skewed Gaussian + Flat Background

F(x, µ, σ, β) = h1Er f c
(
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 + const (4.7)

where x is the energy, µ, the mean energy, σ, the standard deviation, β, the decay constant and h1, h2 and
h3 are the heights related to step function, Gaussian and skewed-Gaussian distributions. The fits of gamma
and electron spectra obtained from Geant4 simulation are shown in the fig. 4.14. The Gaussian component
can be attributed to full energy deposition in the detectors. Incomplete charge collection can be described
by a skewed Gaussian component. The step function describes the back scattering of electrons as well as
the Compton scattering (scattering out of the detector volume, scattering back from outside materials into
the detector and multiple Compton scattering) of gamma rays and a flat background if any is described by
a constant.

Calibration

The detectors are calibrated using well-known radioactive sources. The high gain data of the implantation
detector and tunnel detectors are calibrated using a 133Ba source (figs. 4.15a and 4.15c show the alignment
of the strips of the implantation detector and the tunnel detectors respectively and figs. 4.16a and 4.16c
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(a) (b)

(c) (d)

Figure 4.15: Calibrated spectra after the calibration procedure for (a) DSSD high gain (b ) DSSD low gain
(c) tunnel detectors (d) Ge detectors.

show the corresponding energy spectra of 127 front strips). The low gain data of the implantation detector
are calibrated using known alpha-emitting nuclei produced at the target and implanted into the implantation
detector (see figs. 4.15b and 4.16b). Care needs to be taken while calibrating the DSSD using different
implanted alpha emitters as the energy detected is the sum of the energy deposited by the alpha particle
and a fraction of the recoil energy of the daughter nucleus Edaughter = Eα

4
A−4 . To obtain the true alpha

energies of SHE, one needs to correct for the mass differences in the recoil term (∼ 30 % of which goes
into ionization [155].)

The Ge detectors are calibrated using standard calibration sources namely 60Co, 133Ba, 152Eu, and
checked with in-beam sources, for example, the isomeric decay of 210Ra nuclei produced in the reaction
164Dy(50Ti, 4n)210Ra (see figs. 4.15d and 4.16d). Since there were two experimental campaigns, the
detectors needed calibration for each run. This amounts to the calibration of a total of 2 Experiments x (2
Gains x (256 DSSD + 256 Tunnel) + 8 Gamma ) = 1552 channels. In both the experimental campaigns
there were strips in the silicon detectors that could not be calibrated either because they had bad resolutions
or had noise or had no structure whatsoever. Such uncalibrated strips are referred to as missing strips as
they were excluded from the experimental analysis. There were also gain drifts during the experiments in
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(a) (b)

(c) (d)

Figure 4.16: The energy spectra of the electrons emitted from a 133Ba source detected in all the strips of
(a) the implantation detector and (c) the tunnel detectors. (b) Spectrum of alpha-particle energies emitted
by the nuclei produced in the reaction 170Er(50Ti, xn yp) (d) Energy spectrum of the Compton suppressed
gamma rays detected within 24 µs from the implantation of 210Ra nuclei. The insets in the figures show the
corresponding fits (red curves) of the peaks, from which the resolutions of table 4.3 have been extracted.
The histograms of insets a) and (c) have been scaled up by 100 to show their differences. The inset of
figure (d) shows the fit on the 1332.5 keV peak of 60Co since gamma-ray resolutions are often quoted at
this energy.

the DSSD which were corrected using 211Po alpha peak as reference. The DSSD signals also suffer from
pole-zero effect. If a decay signal is not well separated in time from the larger recoil implantation signal, it
can ride on the back of the implantation signal, thus increasing its energy artificially. Whereas, if it occurs
at the undershoot of the implantation signal, its signal can be reduced. These effects are responsible for
the arch shapes seen in fig. 4.17 in the case of 209Ra isomeric decay.

We have also encountered some low energy signals in the Clover detector, which appear ∼ 30 µs after
a decay event in the implantation detector. Such signals could be related to punch-through events and
could not be removed in software (see fig. 4.18). As a prospect, the punch-throughs can be rejected by
placing a veto detector in between the implantation detector and the Clover. However, this solution comes
with a drawback as the veto detector will impact on the efficiency of the low energy gamma rays. Another
problem that appeared is related to the cross-talk in the tunnel (at the level of the vacuum feedthroughs)
leading to spurious low-energy signals which could only be partially removed.

In the Oct experiment, in addition to missing strips in the Si detectors, one Ge ring detector was
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(a) (b)

Figure 4.17: Spectrum of low energy signals (CE) observed in the implantation DSSD in the decay of the
117 µs isomer in 209Ra (a) before and (b) after pole-zero software correction.

Figure 4.18: Punch-through signals in the Clover detector appearing ∼ 30 µs after a decay signal in the
implantation DSSD.

Detector May Oct
Implantation Detector 124, 136, 141 –

Tunnel Detector 4, 24, 27, 32, 35, 46,
64, 66, 67, 111, 114,
122, 123, 125, 127

4, 24, 27, 48, 51, 62,
64, 66, 67, 79, 111,
127

Ge detector – 1

Table 4.2: List of Missing strips or detectors in the two experiments.

not present as well. Table 4.2 lists the missing strips/detector in each experiment. In a spectroscopic
measurement using a detector, there can be many lines/peaks in the energy spectrum of a radiation source.
For a given type of detector, the widths of the peaks in the energy spectrum can vary depending on the
energy and nature of the incident particle. The energy resolution is the ability to distinguish between two
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incident radiations with slightly different energies. The narrower the peaks, the better is the resolution. It
is defined as the full width at half maximum (FWHM) of the full energy peak at a certain energy. The
resolution depends on the number of charge carriers which are produced per unit energy deposited in a
detector. The resolution can be affected by many factors such as a drift of the operating characteristics of
the detector during the course of the measurements, random noise within the detector and instrumentation
system, and statistical noise arising from the statistical nature of the processes by which the radiation
interacting with the detector medium produces the charge carriers [150].

(FWHMoverall)2 = (FWHMstatistical)2 + (FWHMnoise)2 + (FWHMdri f t)2 + ...

The statistical noise is inherent in nature and therefore will always be present and in most detector systems,
it is the dominant source of fluctuation in the signal, thus, limiting the performance of the detector. This
fluctuation is proportional to the square root of the average number of charge carriers.
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Figure 4.19: Measured FWHM for the Ge array.

For Ge detectors, the overall resolution as function of energy can be expressed as [154]

FWHM = (A2 + B2 × Eγ + C2 × E2
γ)

1/2 (4.8)

with Eγ in MeV and A, B, and C coefficients that are obtained from a fit on the experimental data. Fig.
4.19 shows the fit and parameters obtained from the our data.

The measured resolutions and the typical thresholds of the detectors in our setup are given in table 4.3.

Detector FWHM (keV) Threshold (keV)
Implantation 10.8 ± 0.6 at 320 keV 23.2

± 1.7 at 7922 keV
60 - 100

Tunnel 14.4 ± 1.2 at 320 keV 60 - 100
Gamma 2.26 ± 0.17 at 1332.5 keV ∼15

Table 4.3: The resolutions and the typical thresholds of the GABRIELA detectors. The fits at these
energies are shown in the insets of fig. 4.16.
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Figure 4.20: ToF in ADC channel number as a function of Recoil Energy (ER) in the reaction
207Pb(50Ti,xn)(257−xn)∗Rf

Event Construction and Correlation

After calibrating the detectors, it is now possible to construct pixelized events of the implantation detector.
The time difference between two signals in two front strips occurring subsequently in the data set gives
the corresponding coincidence window. Similarly, the other coincidence windows for two back strips, one
front strip and a back strip, and the vice-versa need to be obtained to construct pixelized events. While
reading a given data set, the DSSD events of either decay or recoil type are constructed separately from
the coincident signals in the front and back strips of the detector. In any event, if signals from multiple
strips on either side of the detector are coincident because of charge sharing, then the strips with maximum
energies that reflect more proximity to the event are considered. For any DSSD event, the energy detected
in the corresponding front strip is considered to be the energy of the event in our analysis. As a result, the
energy values for inter-strip events are smaller than those of the single-strip events. After assigning each
DSSD event with a physical position, it is necessary to associate each recoil type event with a ToF signal.
This can be done by demanding a coincidence between a ToF signal and a recoil event. The time of flight
is different for different types of recoil events namely scattered beams, ERs, and transfer products, hence,
ToF information can be used to distinguish them from one another. Fig. 4.20 shows a plot where recoil
energy is plotted against the ToF value [in ADC channel number]. By constraining the ToF value and the
recoil energy only the ERs can be selected. A proper selection of ERs is important not only to associate
decay events to the proper recoil event but also to have a longer correlation time.

Since ERs can decay in a variety of ways as discussed in chapter 3, it is pertinent to seek correlations
not only with subsequent events in the same pixel but also with events in the Ge and tunnel detectors.
These correlations are established in the following manner keeping the DSSD as the reference:

• The decay events appearing before a recoil event are generally ignored. These events occur randomly
from the decay of some long-lived isotopes accumulated in the implantation detector from earlier
experiments.
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Figure 4.21: Schematic of the sequence of implantation and decay signals observed in the implantation
detector and an entry of the correlation tree based on these decay chains.

• If multiple recoil events occur in sequence, the decay events are correlated to the last recoil. By
selecting ERs with proper ToF value and recoil energy (see fig.4.20) it is possible to associate the
decay events to associate the decay events to the real recoil event.

• A recoil decay correlation chain continues until another recoil event is observed in the same pixel
which marks the beginning of another new chain.

• For every recoil event, the coincident and subsequent events in the tunnel and Ge detectors occurring
before another recoil event are associated with the former. In this way the detected gamma rays and
electrons emitted from isomeric decays can be easily produced.

• For every decay event, the coincident and subsequent events in the tunnel and Ge detectors occurring
before another decay or recoil event are associated with the former decay event. This allows prompt
and delayed decay-gamma ray and decay-electron spectroscopy can be easily performed.

Note that, some events of the Ge and tunnel detectors that are coincident with a DSSD event are
recorded before the DSSD event. Hence, a backward search of these time-flipped events is necessary
while seeking correlations. These correlated events can be structured into a ROOT Ttree (correlation tree)
to avoid sorting of data every time a specific selection of events is required while analyzing the data. While
sorting the data at the end of every recoil-decay chain the correlation tree is filled. The structure of the tree
built for this work is displayed in fig. 4.21. Each entry of the Ttree contains the following information:

• X and Y positions

• The generation number (Alpha generation) of the reference (or current) DSSD decay event. It is
equal to the position number of the alpha or fission decay event (reference) with respect to the recoil
event, starting from 1 to the end of the decay chain. Alpha generation number equal to 0 is assigned
to the recoil event(s) for convenience. In fig. 4.21, the number associated with ‘d’ in the schematic
of the sequence of events at a given pixel represents the generation number.
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• In a given pixel, a decay event can have multiple preceding (mother) decay events and multiple
subsequent (daughter) decay events before another recoil starts a new recoil-decay chain. The en-
ergy and time information of the preceding decay events up to the great-grandmother are stored in
the Ttree and similarly for the daughter events up to the great-granddaughter. For alpha genera-
tion = 1, the mother corresponds to the recoil event and since there are no grandmothers or great-
grandmothers, the corresponding branches are filled with an arbitrary value say -100. Similarly, if
no subsequent decay events are found the daughter branches are filled with an arbitrary value.

• For every reference decay event, the information (energy, time, detector or strip number, BGO
marker) of the correlated gamma rays detected in the Ge detector and electrons detected in the
tunnel detectors are stored in variable containers. The information of the gamma rays and electrons
correlated with the recoil is also stored only if mother = recoil (i.e., alpha generation = 1) to save
memory. The recoil-gamma ray and recoil-electron information can be easily obtained by moving
up in the tree as this information is stored in alpha generation = 1 entry of the same recoil-decay
chain. For instance, entry j corresponds to alpha generation = 3, implying that recoil is the great-
grandmother in the recoil-decay chain (see fig. 4.21), the containers for mother gamma rays and
electrons are kept empty. Then to access the recoil-gamma ray and recoil-electron information, one
calls the entry (j-2) in which the reference decay event is of alpha generation = 1.

This correlation tree structure allows one easy forward and backward movement in time on the DSSD-
event plane. It may seem computationally expensive as the same information is written multiple times
in different entries of a recoil-decay chain. However, this structure facilitates the application of selection
cuts and easy manipulation of data. The usefulness of this tree structure is illustrated in 4.22a and 4.22b,
where, by selecting the 251No alpha peak and fission events, a clean spectrum of the mother 255Rf alpha
decay is obtained. Similarly, by selecting 255Rf alpha-peak events, it is possible to get the 251No daughter
events (see fig. 4.22c and 4.22d).

4.6 Geant4
A brief introduction
1 Geant4 [159] is a Monte Carlo simulation toolkit written in object-oriented C++ language primar-
ily developed for simulating high energy physics experiments and quickly found applications in a va-
riety of domains such as space science, medical applications, and so on. Nuclear physics is one do-
main where Geant4 is extensively used these days to interpret experimental data, especially when com-
plex setups are involved. Geant4 provides many components, and it rests upon the user for their uses
to build the desired application. The Geant4 kernel forms the skeleton for geometrical modeling and
the physics processes. It also controls the runs, events, tracks, steps, hits, and trajectories. To per-
form a Geant4 simulation, one first defines the experimental setup, the physics processes, and the pri-
mary particles associated with the experiment. In a Run (G4Run), a collection of events share the same
detector and physics conditions which cannot be changed during a Run. In analogy with real experi-
ments, a Run starts with "Beam On" and managed by the G4RunManager class. The kernel loops over
the number of events of a Run. In every event (G4Event), the G4PrimaryGenerationAction class first
creates primary particles that are pushed into a stack. G4EventManager class manages the process-
ing of an event in which the primaries are looped over. The primary particles can be generated us-
ing various utilities such as G4ParticleGun, G4GeneralParticleSource, and user-defined source (derived

1This section is based on ref. [156–158] and the Geant4 course held at LAL Orsay in May 2018
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(a) (b)

(c) (d)

Figure 4.22: By selecting a) 251No alpha-peak and fission events in the correlation tree b) 255Rf mother
decay events can be obtained. Similarly, by selecting mother c) 255Rf alpha-peak events d) daughter 251No
events can be obtained.

from G4VUserPrimaryGeneratorAction). Geant4 tracks the primary particles that undergo the registered
physics processes throughout the detector volume. The secondary particles created from the interaction of
the primary with the detector material are also tracked. Each track (G4track) is a snapshot of a particle
composed of many "delta information" called steps (G4Step), and the track is updated with every step.
Tracks and steps of a particle are managed by the G4TrackingManager and the G4SteppingManager, re-
spectively. As there are no default physics processes registered, the user must define the physics processes
explicitly. For this, one derives a user-defined class from the G4VUserPhysicsList abstract base class,
where one defines all the essential particles and physics processes (such as electromagnetic, hadronic, nu-
clear, decay processes, etc.) they can undergo. In this class, one can also define production threshold cuts
in terms of range. No secondary particles are created if particle energy falls below the cuts. These cuts can
also be applied at the level of a region of a detector as the production thresholds can vary from material to
material. The physics processes are model-driven and sometimes rely on experimentally evaluated data.
The physics models have different energy range applicability, and one can use complementary models to
cover a wide range of energy as desired for an experiment.

The detector geometry can be constructed using different types of solids and operations available in
Geant4. The procedure contains conceptual layers of volume construction: 1) the shape and size are
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(a) (b)

Figure 4.23: 3D rendering of the various elements of GABRIELA, as described in Geant4 (courtesy of K.
Hauschild).

defined by G4VSolid class, 2) material, sensitivity, and other characteristics are endowed to the solid by
G4Logicalvolumes class 3) the position and orientations are defined by G4VPhysicalVolume class. Using
the G4SensitiveDetector class sensitive detectors are instantiated corresponding to the logical volumes of
the detectors. When a particle passes through a sensitive detector Hits (G4Hits) are created using the
information provided by the G4step. Various types of information can be stored in a Hit such as energy
deposition, position and time of the step, momentum and energy of the track, and so on.

Simulations for GABRIELA setup

The geometry of the GABRIELA’s setup was constructed meticulously under the Geant4 framework tak-
ing care of the active areas, the dead layers, and the gaps between the detectors. Other additional com-
ponents such as the chamber, the PCB boards for mounting the silicon detectors, the support frame, etc.
were also included (see the visualization in fig. 4.23). The active areas of the detectors were defined as
sensitive detectors. The energy deposited in a sensitive volume by a step is collected in the Hits defined
in that sensitive detector class. For every sensitive detector class, a corresponding hit class was defined to
store relevant information such as strip number, crystal number, total energy deposited, and so on. Every
strip of a silicon detector is associated with a hit in its respective sensitive detector class. In the case of Ge
detectors and BGOs, for every crystal, a corresponding hit is instantiated. When the processing of an event
is over, event number, detector identity, strip, or crystal number and total energy deposited are saved to a
ROOT tree for post-processing. The data generated for each run has a similar format to the experimental
data and thus treated as such. A C++ program is written to read the simulated data where the effects of
electronics such as the multiplexing, the missing channels, the experimental energy resolutions, and the
typical thresholds of the detectors are added. For a given Run, γ − γ, γ − e−, γ − α, e− − e−, e− − α and
other correlations are established similarly as for the experimental data allowing a better comparison of
experimental and simulated results.

Radioactive decays in Geant4

The software package for the simulation of radioactive decays in the Geant4 Monte Carlo simulation
code is well established and validated [160] against the Evaluated Nuclear Structure Data File (ENSDF)
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database [78]. User-defined photon evaporation files and radioactive decay files can be added to the sim-
ulations to test various radioactive-decay schemes (see appendix B for details about the format of these
files). However, atomic relaxation processes are limited to Z = 100 in the current Geant4 versions. Hence,
simulation of radioactive decay of elements Z > 100 is not practical. For instance, in the internal conver-
sion decay of a Z > 100 isotope, a single electron is emitted with the total transition energy. This certainly
affects the energy spectra obtained using a compact detector setup like ours, as summing in the detectors
plays a big role. This inadequacy of Geant4 is tackled carefully using different methods. One approach is
to hard-code the whole atomic relaxation process as a part of the Primary Generator Action of Geant4. An-
other technique is to disguise heavy nuclei as lighter ones (i.e., to the heaviest element available in Geant4)
by modifying their atomic properties [161, 162]. Another approach is to modify the Geant4 source code
so that the internal conversion for heavy elements is taken into account. In this study, the third approach
was adopted after realizing that some modifications in the Geant4 source code and addition of new data
can solve the problem from a study of the radioactive decay classes and atomic-relaxation classes. The
following modifications were introduced in the source code to allow atomic-relaxation processes up to Rf.
First, In G4AtomicDeexication, G4AugerData, G4ITDecay, AtomicTransitionManager and G4ECDecay
classes, the atomic number limits were changed from 5 < Z < 100 to 5 < Z < 105. In the G4AtomicShell
class, the limit of Z needed modification accordingly with the inclusion of the binding energies of all the
atomic shells and electronic configuration for each additional element. Besides, for every electronic shell,
an index number and the number of electrons it can have were also included in this class. Electronic shell
binding energies of these elements need to be added as well in the file called binding.dat located in the
"fluor" directory. The G4ShellData class reads binding energies from this file. The binding energy values
of the atomic subshells designated by ENDL notations are from the Table of Isotopes (ToI) [163] (see
appendix B for ENDL notations). It is also required to add Fluorescence and Auger data files in the "fluor"
and the "auger" directories for every element up to Rf. The extrapolation is limited to Rf since my thesis’s
primary objective is to study the decay properties of 255Rf isotope. Since the atomic structures of Z = 90
to Z = 104 can be approximated to be similar except at the outermost electronic shell, the existing atomic
data files in Geant4 from Z = 90 to Z = 104 can be used to extrapolate Fluorescence and Auger data files
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Figure 4.24: Fluorescence transition (a) probability and (b) energy as a function of atomic number for a K
vacancy.
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(a) (b)

Figure 4.25: The difference between the extrapolated Energy in (a) Fluorescence and (b) Auger transitions
and the corresponding calculated value given in ToI for K shell vacancy in 255Rf.

up to Rf. Two C++ programs were written to extrapolate these data files and produce Geant4 readable
formats (see appendix B). In a given element, for every atomic transition, the data from Z = 90 to Z = 104

(a) (b)

Figure 4.26: (a) Comparison of extrapolated and Fluorescence emission probabilities with calculated val-
ues given in ToI for K shell vacancy in 255Rf after correcting the transition energies. (b) shows the relative
differences with ∆P = Extrapolated − ToI.

is fitted with a cubic Polynomial Function. In the first attempt, both the transition probabilities and the
energies were extrapolated (see fig. 4.24). However, a comparison of the extrapolated values of Rf to the
standard values given in the ToI revealed a few keV shifts in some extrapolated energies (see fig. 4.25).
Even though these shifts are within our detector resolution, the transition energies were calculated in the
second attempt using equation 3.77 and 3.78. A better agreement of the extrapolated values is visible in
fig. 4.26). Note that with these changes, it is no longer possible to utilize all the built-in Electromagnetic
physics lists (see appendix C for more detail). It is because some physics lists require models whose data
files were not extended up to Rf likewise.
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4.7 Efficiency Characterization
The response of a detector to incoming radiation is dependent on a few factors: the constituent materials,
the detector’s geometry, its position relative to the source, and on nature and the energy of the incoming
particle. In an experiment like ours, detection of radiations emitted by a sample of radioactive nuclei and
the analysis of their decay energy and time spectra are not enough to conclude on their nuclear structures.
The structural information is hidden in branching ratios, internal conversion coefficients, mixing ratios,
and so on. Their determination requires accurate knowledge of the behavior of each detector involved in
the experiment. Certainly, not every ionizing particle incident onto the detector’s surface is fully absorbed.
Many of them scatter out of the detector volume, some of them deposit only a fraction of the incident
energy due to the escape of secondary particles produced from the interactions of the primary particle
with the detector’s material. Hence, it is required to distinguish a detector’s total detection efficiency for
a particular radiation from its corresponding absolute detection efficiency, "absolute" in the sense that the
particles are detected completely (i.e. with their full energies), also known as the peak efficiency2. The
absolute detection efficiency of a detector to detect an ionizing particle with energy E is the fraction of
counts in the full energy peak Np for the total number Ne emitted by the source

ε(E) =
Np

Ne
= εi(E).εg (4.9)

where εi(E) is the interaction probability that a particle hitting the detector will appear in the full energy
peak and εg being the geometrical efficiency. The interaction probability is the ratio of the number of par-
ticles detected in the peak region over the number of particles hitting the detector: εi(E) =

Np

Nparticles hitting the detector

and the geometrical efficiency is the fraction of the solid angle Ω subtended by the detector’s aperture over
4π: εg = Ω

4π relative to the source. Similarly, the total detection efficiency is the fraction of the number of
particles detected Nd out of the total number of emitted particles.

εTot =
Nd

Ne
(4.10)

Another useful quantity called the peak to total ratio (P/T ) can be defined as:

P/T =
Np

Nd
=

εp

εTot
(4.11)

There are two ways to determine the efficiency of a detector. The obvious one is to experiment with a
standard radioactive source whose activity A in (in Bq) and the intensity I of the radiation of interest are
well known, the eq. 4.9 in this case then

εp(E) =
Np

A × I(E)
(4.12)

Such measurements may not be useful at all for the analysis of experimental data as the relative positions
of the detectors from the source can differ between the calibration run and the main experiment. Even if we
chose to measure the efficiencies using an in-beam source, the number of measured points could be very
few suggesting that interpolation or extrapolation on these points can induce huge error and lead to wrong
interpretation as a result. Furthermore, the efficiencies vary with the incident multiplicity (the number of

2It is worth to mention that many authors refer to absolute efficiency to the total detection efficiency and full energy detection
efficiency as peak efficiency.
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(a) Recoil-decay correlations for the 50Ti+164Dy reac-
tion. The red contour indicates the alpha decays used
to select 209,210Ra ERs.

(b) Time and energy distribution of gamma rays follow-
ing the ERs.

(c) Time and energy distribution of electrons following
the ERs.

Figure 4.27: Cuts applied to select 209Ra ions implanted in an isomeric state.

incident radiations at the same time) due to summing effects (see section 4.9). The other possible way
is to perform simulations with the proper geometry (discussed before) and then validate the simulation
results with some experimental values. To do so, a number of simulations were performed using two
experimental XY (Z: beam direction) distributions of the source in the implantation detector (one, slightly
off-centered, measured for 209Ra during a calibration run and the other one centered, measured for 255Rf
during an experiment, see fig. 4.28) and a point source centered in the middle of the detector (X=Y=0)
were used.

The 209Ra distribution was obtained by selecting full energy deposition events of 209−210Ra alpha decay
(they have similar alpha energies and lifetimes [see fig. 4.27a]). 209Ra has an isomer having half-life 117
± 5 µs [164] (see fig. 4.40a). The 209Ra implantation events were selected by requiring either a gamma
ray or an electron be detected after the implantation event within the time window from 16 to 956 µs.
The upper limit was set to exclude the random correlations whereas the lower limit excluded the isomeric
decay events of 2.24 µs isomer in 210Ra [165] (see fig. 4.27). Similarly, the X-Y distribution of 255Rf was
obtained by selecting events followed by the characteristic α-decay of 255Rf and the subsequent detection
of full energy α-decay of 251No. These distributions are compared in fig. 4.28.

It was shown in an earlier study of GABRIELA [37] that the depths at which the electron-emitting
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(a) X position (b) Y position

Figure 4.28: position distribution comparison between 209Ra isomers and 255Rf nuclei.

Figure 4.29: Effect of implantation depth on peak shape and intensity in the tunnel detector.

sources are positioned in the DSSD affect the tunnel detectors’ energy resolutions ( fig. 4.29 shows how
implantation depth affects the FWHM) hence their absolute electron detection efficiency. A similar study
was undertaken in this work. Several simulations were executed by placing an isotropic point source
centered in the middle of the implantation detector (X=Y=0) at various depths (Z). The source emits
either a gamma-ray or an electron with a given energy. In fig. 4.30, it is noticeable that the effect of the
implantation depth on the gamma ray detection efficiency is not significant but substantial for the electron
detection efficiency. Therefore, it is important to estimate the implantation depth profile of the evaporation
residues of interest for every experiment.

4.7.1 Method to estimate the implantation depth of evaporation residues
The energy deposited by an alpha particle escaping the implantation detector is directly proportional to
the thickness of the silicon it traverses, in other words, it depends on the Z position of the source inside
the concerned. Hence, the experimental Z distribution of all the decaying nuclei is determinable from the
energy spectrum of the escaping alpha particles using the following χ2 test against simulation results.

χ2 =

M∑
i=1

N i
exp − N i

sim

σi
exp

2

(4.13)
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Figure 4.30: Absolute efficiency to detect (a) gamma rays in the Ge array and (b) electrons in the tunnel de-
tectors that are emitted from a point source at (0, 0, depth) various implantation depths in the implantation
detector.

where, M is the number of bins, N i
exp and N i

sim are the experimental and simulated number of counts in

bin i respectively, and σi
exp =

√
N i

exp. As a starting point for simulations, one needs to know the depth
distribution profile of the alpha-emitting sources in the DSSD. As described before, the experimental alpha
sources are implanted inside the DSSD hence detected with finite energies. The depth profile of the recoils
is proportional to the energies with which they are detected and their measured energies are dependent
on the calibration procedure. But, the response of a semiconductor is different for an alpha particle and
a heavy ion. There is ample evidence that for the same energy, the observed pulse height is substantially
lower for a heavy ion than that of a light ion. This difference between the true energy of the heavy ion
and its apparent energy as determined from an energy calibration of the detectors using alpha particles is
known as the pulse height defect (PHD). It arises due to higher energy loss by the heavy ions than an alpha
particle in the entrance window and the dead layer of the detector. Additionally, as the velocity of the ion
decreases, nuclear collisions increase, which in turn increases the effective-charge of the ion. This effect
reduces the electronic interactions resulting in a net decrease in electron-hole pair production. Also, the
high rate of electron-hole recombination in the dense plasma created along the ion track contributes to the
pulse height defect [150].

The pulse height defect for a heavy-ion can be estimated using the following manner [166]:

PHD = (Etrue − Eloss) − Eα = Ed − Eα (4.14)

Where Etrue is the total energy of the ion before entering the target, Eloss, the amount it lost in the detector
window as well as in the dead layer, Ed, the deposited energy in the detector and Eα, the apparent value
from alpha calibration. A simple power-law derived from the fitting of experimental measurements of
PHD in silicon for a range of elements with different energies is [166]

PHD(Z) = 10bEa
d (4.15)

where Z is the atomic number of the incident ion, Ed is given in MeV and the parameters are obtained
from the following relations:

b(Z) = −0.1425(100/Z) + 0.0825 (4.16)

a(Z) = 0.02230(Z2/103) + 0.5682 (4.17)
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Ignoring the E loss by the ion in the dead layer and the entrance window, the actual deposited energy by
heavy-ions in the silicon can be estimated by adding the pulse height defect to the detected energy.

Etrue(Z) = Ed + PHD (4.18)

The true energy distribution of the 255Rf ERs obtained after correcting for pulse height deficit is shown
in fig. 4.31a. This energy distribution was taken as the input energy distribution for 238U projectiles in
SRIM calculations with Si as the target and assuming a perpendicular incidence of the beam onto the
target. In the SRIM calculations, the dead layer was not taken into account as the energy loss by the
incoming heavy-ions in the dead layer was not considered while estimating their true energy depositions
(since experimentally measured energy corresponds only to the energy deposited in the active volume of
the detector). The depth profile shown in fig. 4.31b is obtained from the position of the ion in the target
along the projectile direction when it comes to rest. This distribution is then fitted with a Gaussian function
to determine the mean depth and the standard deviation.

(a)
(b)

Figure 4.31: (a) Estimated true recoil E distribution: SRIM input energy for 238U projectiles. (b) Depth
profile of 238U beam in Si from SRIM calculation. The incident energy of the beam was the recoil energy
detected for 255Rf ERs after PHD correction (see fig. 4.31a).

Motivated by this result, we assume the implantation depth distribution of the 255Rf in the DSSD to
be Gaussian. For each run of the simulation of the alpha decay of 255Rf, the XY distributions of the 255Rf
nuclei were the same, only the mean depth and the standard deviation of the Z distribution were varied.
From the χ2 test mentioned before, it is possible to determine the experimental mean implantation depth
and the standard deviation of the depth profile. As seen in fig. 4.32a, a clear minimum is obtained for
an average implantation depth of 2.7 µm. Using this average depth and the standard deviation of 0.8 µm,
which minimizes the χ2 test, the energy spectrum of the escaping alpha particles emitted by 255Rf (shown
in fig. 4.32b) is well reproduced by the simulation.

The justification for considering only the energy spectrum of the escaping alpha particles instead of the
total sum energy is two-fold. First, the energy spectrum of the escaping alpha particles is dependent on the
thickness it traverse and, as a result, sensitive to the depth at which the source is placed inside the detector.
Second, in alpha decay from the mother’s ground state to an excited state in the daughter followed by
an internal conversion process, the summing of the energy of the electron and the alpha particle can be
ignored, because a 200 keV electron escaping from the mean depth in the DSSD loses about 4 keV energy,
which is very small compared to the resolution of the DSSD.
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(a) (b)

Figure 4.32: (a) Plot showing the χ2 difference (see equation 4.13) between the experimental and simulated
energy spectra of 255Rf alpha particles that escape the DSSD as a function of the mean and the standard
deviation of a Gaussian implantation depth distribution. (b) Experimentally observed and simulated spec-
tra of 255Rf alpha particles at minimum χ2 value. The inset shows the comparison of the alpha peaks in
the spectra. In the simulation, the decay scheme of 255Rf was taken from ref. [185] with alpha decay to
additional levels (see chapter 5 section 5.7).

Figure 4.33: Energy loss by an electron in the DSSD as a function of its energy .

The average energy loss by an electron in the range from 100 keV to 1 MeV while traversing the mean
implantation depth of the DSSD is shown in fig. 4.33. The energy loss in the DSSD can be parametrized
with a polynomial function

Eloss = p0 + p1 × Ee− + p2 × E2
e− + p3 × E3

e− + p4 × E4
e− (4.19)

The fit parameters are p0 = 6.17974±0.229795, p1 = −0.0198854±0.002408, p2 = (3.64747±8.21613)×
10−06, p3 = (−2.9957 ± 1.11334) × 10−08, p4 = (8.94348 ± 5.17532) × 10−12.

Using these parameters, the energy losses by the electrons are estimated and added back to their energy
depositions in the tunnel detector so that experimental and simulated electron spectra can be compared.

4.7.2 Electron detection efficiency of the Tunnel Detectors
The absolute electron detection efficiency of the tunnel detectors as a function of the electron energy was
extracted from simulations in the following manner. In the simulations, a single monoenergetic electron
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Figure 4.34: Comparison between the scaled-down and original efficiency curves

emitted isotropically by a particle gun. The position distributions of the ERs (described before) in the
implantation detector set the position of the particle gun inside the implantation detector at every event of
a simulation run of 100000 events. The energy of the particle gun was varied from 100 keV to 1 MeV
with an interval of 50 keV resulting in 3 distributions × 19 simulation runs. For a given tunnel detector,
a strip is chosen randomly from the strips with energy depositions above the threshold to simulate the
multiplexing of the tunnel detectors. In real electronics, different strips of a tunnel detector can have
different threshold levels, in the simulations however an average threshold of 55 keV was set for all the
strips. It was mentioned before that there are some missing strips in both the experimental campaigns.
The difference in the IDs and the number of these missing strips reflect their position with respect to the
source. The post-processing of the simulated data allows the exclusion of the missing strips separately for
each case. The average relative loss of the detection efficiency due to these missing strips is 10.6 % for the
May experiment and 9 % for the Oct experiment from the total detection efficiency. The efficiency loss as
a function of the electron energy can be quantified by

εloss(E) =
εallstrips(E) − εlessstrips(E)

εallstrips(E)

In different experiments, the number of missing strips and/or their IDs in the tunnel detectors might change.
It is of interest to investigate whether by comparing an efficiency scaled by the number of strips to the true
efficiency simulated by taking into account the missing strips. A difference between the two would signify
a dependence on the efficiency with the strip position. The scaled efficiency can be obtained by

ε128−n = εall − n
εall

128

A comparison of the scaled efficiency curves against the efficiency curves obtained originally by excluding
the specific strips missing in the experiment shows that they are equivalent within the error bars (see fig.
4.34). Hence, one can conclude that from the total detection efficiency and the number of missing strips it
is possible to obtain the efficiency for that configuration by simply scaling down efficiency curves.

It is also interesting to see the variation of the efficiency in different configurations of the tunnel de-
tectors. For this reason, the absolute detection efficiency at a given energy was computed for a single
multiplexed strip, energy summing in all the strips of a detector, and energy summing across all the tunnel
detectors. Fig. 4.35 compares the efficiency in each case. As expected, the efficiency of the per detector
is more than the individual strip case because of energy sharing among multiple strips. The efficiency of
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Figure 4.35: Electron detection efficiency as a function of energy for various ways of treating the signals
from the tunnel detector.

the whole tunnel detector is even greater as the energy shared among different tunnel detectors due to the
electron backscattering phenomenon is summed together.

4.7.3 Gamma-ray detection efficiency

The absolute gamma detection efficiency of the Ge array is obtained similarly. An isotropic particle gun
emits a monoenergetic gamma ray in every event of a simulation run that consists of 100000 events. The
position of the gun in the implantation detector is determined by the distributions mentioned before. The
energy of the gun is varied from 50 keV to 1.5 MeV with an interval of 50 keV. Hence, a total of 3
distributions × 30 runs were simulated in this case. An average cutoff of 30 keV energy was set for all the
BGO shields. In any event, if the energy deposition in a BGO is more than this threshold value, the energy
deposition in the corresponding Ge detector is neglected in the "suppression" mode. It is also interesting
to obtain the spectra in fully "unsuppressed mode", i.e., when all the gamma rays registered in the Ge
detectors are considered. The energy depositions in each crystal of the clover detector [149] can be treated
as separate events (singles mode) or summed in the so called addback mode. In this way, the full energy of
the photons, which scatter from one crystal to the neighboring crystals can be recovered. This procedure

(a) (b)

Figure 4.36: (a) Absolute gamma-ray detection efficiency of the components of the Ge array and (b) the
corresponding peak to total ratio.
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(a) (b)

Figure 4.37: (a) The contribution of the clover detector to the total efficiency with its (b) addback factor as
a function of gamma-ray energy.

increases the clover efficiency by an addback factor defined as F = εAB
εsingles

, which grows with photon energy
(see fig. 4.37b). The asymptotic value of the addback factor is found to be 1.52(1). The absolute gamma
detection efficiency is compared for various configurations in fig. 4.36:

• the four coaxial detectors are represented by "ring".

• the clover detector in the single-mode by "clover".

• the clover detector in the addback-mode by "cloverAB".

• ring + clover in single-mode by "singles".

• ring + clover in addback-mode by "singlesAB".

• ring + clover in singles and unsuppressed mode by "singlesUnsuppressed".

• ring + clover in addback and unsuppressed mode by "singlesUnsuppressedAB".

In addback mode, the absolute gamma-ray efficiency of GABRIELA peaks at 30% at 100 keV and
drops to 8% at 1332 keV (63% of which comes from the contribution of the clover alone as shown in fig.
4.37a).

In the Oct experiment, one ring detector was not functioning. The decrease of the efficiency is illus-
trated in the figs. 4.38. The loss of efficiency at a given energy is quantified as :

εloss(E) =
εalldetector(E) − εn−1missingring(E)

εalldetector(E)

We notice that about 10 % (relative) of the total efficiency is lost due to the absence of one ring detector.
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(a) (b)

Figure 4.38: (a) Effect of missing 1 ring detector in the Ge array on the gamma-ray detection efficiency.
(b) Relative loss of efficiency due to the absence of 1 ring detector.

4.8 Effects of distributions

To check how the position distributions of the source on the x-y plane of the implantation detector might
affect the efficiency, we compared the electron, and the gamma-ray detection efficiency curves for the
distributions mentioned earlier. In figs. 4.39a and 4.39b, the simulated efficiencies for a point source
positioned at the center of the implantation detector and for the 2 distributed sources mentioned above
are compared. It can be concluded that a little variation in the position distributions (255Rf and 209Ra), in
general, does not have such drastic effects on efficiency. This severity is only observed when compared
to the point distribution (X=Y=0). Thus, in principle, these efficiency curves could be useful for other
experiments if the position distributions of ERs remain somewhat similar. The efficiency of the tunnel
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Figure 4.39: Absolute efficiency curves as a function of energy for different XY-distributions in the im-
plantation detector with the same implantation depth profile, which minimizes the χ2 test on the 255Rf
escaped alpha-particle energy spectra. (a) Ge-array Compton-suppressed efficiencies for a point source
in addback mode H and in singles mode :, for the 209Ra distribution in addback mode l and in singles
mode n, and for the 255Rf distribution in addback mode # and in singles mode �; (b) Tunnel detector
efficiencies in the case of a point source H, for the 209Ra l and 255Rf # distributions.
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detectors remains flat around 21% for electron energies ranging from 100 to 550 keV. The gradual loss of
efficiency at higher electron energies is due to the finite thickness of the detector. Compared to the previous
version of GABRIELA, the absolute gamma-ray detection efficiency of the present setup is simulated to
be a factor of ∼ 3 - 4 higher, while the electron detection efficiency shows an increase of 5 - 7 %. The
gamma detection efficiency curves can be described with a Radware type function to obtain the efficiency
at any energy [154]

ε(Eγ) = exp
([

(A + Bx + Cx2)−G + (D + Ey + Fy2)−G
](−1/G)

)
(4.20)

where x = log(Eγ/E1), y = log(Eγ/E2), E1 = 100 keV, E2 = 1 MeV and C is usually set to 0, and the
parameters A,B,C,D,E,F and G obtained from a fit. The fit parameters are given in table 4.4.

Parameter 4 ring + clover 3 ring + clover
A 4.26498 4.2623
B 1.09247 1.20863
C 0 0
D 2.10553 2.00214
E -0.647628 -0.648445
F 0.0800258 0.0798024
G 3.5729 3,28612

Table 4.4: Fit parameters of the gamma efficiency curves in addback mode.

4.9 Validation
To check if the geometry constructed for Geant4 simulations is valid, a simple 2-transition cascade stem-
ming from the 117 µs isomer of 209Ra was used (see the level scheme of fig. 4.40a [164]). Experimentally,
the isomeric gamma or ICE decays were selected by requiring that they occur between 16 to 956 µs after
the implantation of 209Ra nuclei. The experimental and simulated isomeric gamma-ray and ICE spectra
are compared in figs. 4.41 and 4.42. In the experimental spectra, we notice some contributions from 207Rn

(a) (b)

Figure 4.40: Partial level schemes of (a) 209Ra [164] and (b) 207Rn [167] showing the low-lying 13/2+

isomer, whose decay has been used to validate the Geant4 simulations.
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(a) (b)

Figure 4.41: (a) Experimental and (b) simulated spectrum of gamma rays emitted in the isomeric decay of
209Ra.

(a) (b)

Figure 4.42: (a) Experimental and (b) simulated spectrum of ICE emitted in the isomeric decay of 209Ra.

isomer whose half-life is close to the half-life of 209Ra isomer (see the partial level schemes of these iso-
mers in fig. 4.40). The internal conversion coefficients and the energy of the electrons from BRICC [116]
corresponding to the transitions for these two isomers are given in table 4.5. The tails of random correla-
tions present in the recoil-gamma and recoil-tunnel correlation spectra of fig. 4.27 are responsible for extra
lines in the gamma-ray energy spectrum and exponential background in the electron energy spectrum of
the tunnel detectors.

In a simple decay consisting of a cascade of two transitions, the gamma-ray and electron detection
efficiencies can be measured using two methods. One is called the "singles method" as the values are
measured from the singles spectra, while the other method is called the "coincidence method". The disad-
vantage of the singles method is that the number of decaying isomers (Nisomer) needs to be known. Hence,
it cannot be applied to the experimental data. The efficiency values in the singles method are calculated
using the following simple equations

ε(E) =
Npeak

Nemitted
(4.21)

where, Npeak is the integral of the peak in the single spectrum and, Nemitted for gamma rays and electrons
are calculated as follows

Nemitted,γ =
Nisomer

(1 + αTot)
(4.22)



104 CHAPTER 4. EXPERIMENTAL TECHNIQUES

209Ra 207Rn
238.4 keV 644 keV 234 keV 665.1 keV

Shell Ece(keV) α (M2) Ece(keV) α (E2) Ece(keV) α (M2) Ece(keV) α (E2)
Tot 5.38 0.0219 4.94 0.0185
K 134.48 3.81 540.08 0.01555 135.6 3.55 566. 7 0.01354
L 219.57 1.164 625.43 0.00473 216.33 1.042 647.63 0.00374
M 233.72 0.298 639.43 0.00119 229.66 0.264 660.85 0.000932
N+ 237.44 0.108 643.079 0.00043 232.96 0.084 664.1 0.000288

Table 4.5: Internal conversion coefficients and electron energies of the isomeric transitions obtained from
BRICC [116].

Nemitted,S e− = Nisomer
αS

(1 + αTot)
(4.23)

where α is the internal conversion coefficient and S represents the shell from which the electron is emitted.
In the experiment, the L, M, and N+ peaks could not be resolved as individual peaks, hence, they were
treated as a single LMN+ peak with conversion coefficient αLMN+ = (αTot − αK).

In the coincidence method, the values are extracted from gamma-electron coincidences using equations
4.24 and 4.25, where for instance, εγ(T1γ) is the absolute gamma-ray detection efficiency for photons
emitted in the T1 transition and N(T1γ ⊗ T2S e−) indicates the number of gamma rays emitted in the T1
transition detected in coincidence with electrons emitted from the shell S in the T2 transition.

εγ(T1γ) =
N(T1γ ⊗ T2S e−)

N(T2S e−)
(1 + αTot(T1)) (4.24)

εe−(T1S e−) =
N(T1S e− ⊗ T2γ)

N(T2γ)
(1 + αTot(T1))

αS (T2)
(4.25)

In these expressions, if T1 transition represent the 238.4 keV transition then T2 transition represents
the 644 keV transition or vice versa, N(T2S e−) and N(T2γ) are the total number of internally converted
electrons from the S shell and gamma rays detected from the T2 transition in the corresponding singles
spectra.

Following this procedure, the efficiency values extracted from a simulation run consisting of 10 mil-
lion 209Ra isomeric decays. The measured values are listed in table 4.8 and found to disagree with the
expected values of figs. 4.39a and 4.39b obtained by simulating individual gamma rays and electrons.
This discrepancy can be attributed solely to summing in the detectors. Indeed, the 238.4 keV photon can
sum with the 644 keV gamma ray. Each of the gamma rays can also sum with X rays emitted in the atomic
relaxation process following the internal conversion of the other transition or with X rays emitted by the
BGO shields. In the Compton suppressed mode, full-energy events in one detector may be suppressed
when other gamma rays enter the BGO shield and deposit energy above the detection threshold. Similarly,
summing of conversion electrons with other conversion electrons, Auger electrons, or X rays can occur in
the tunnel detectors.

In the singles method, the gamma-ray efficiencies can be corrected by excluding the influence of one
transition on the other. In principle, this correction should be applied per detector as the detection proba-
bility of every detector is different

N i
peak(T1γ) =

Ndecay

(1 + αTot(T1))
εT1 × Probability of not detecting any of T2 in detector i
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Figure 4.43: Selected region of the simulated gamma-ray and ICE coincidence matrix measured in the
isomeric decay of 209Ra, showing the effect of summing.

the total efficiency is then given by

εγ(T1γ) =

no. o f detectors∑
i

N i
peak(T1γ)

Nemitted × (1 − εi
Tot(T2))

(4.26)

where εi
Tot(T2) is the detection probability in detector i of any radiation emitted in T2. This probability is

obtained by simulating the decay of T2 alone. Similar corrections can be applied to the electron efficiencies
as well, however, due to a relatively large number of strips involved, this correction was not carried out in
our study.

In the coincidence method, corrections can be made by integrating the peaks formed due to summing.
As an example, consider the coincidence between K converted electrons (Ke−) from the 238.4 keV transi-
tion and photons from the 644 keV transition, they are denoted by 644γ ⊗ 238.4Ke− in the gamma-electron
coincidence matrix shown in fig. 4.43. The Ke− of the 238.4 keV transition are seen not only in coinci-
dence with 644 keV gamma rays but also with photon events of apparent energies of 644 + KX rays. The
modified gamma-ray efficiency equation for a given transition is then, to first order, given by:

εγ(T1γ) =
∆N

N(T2Ke−)
(1 + αTot(T1)) (4.27)

where,
∆N = N(T1γ ⊗ T2Ke−) + N((T1γ + KXrays) ⊗ T2Ke−)

In fig. 4.43, other much smaller contributions below photon energy 644 + KX rays are also visible, but
since they are not solely due to summing with full energy 644 keV depositions, they have been neglected
here.

Similarly, the electron efficiency equations can also be corrected to account for summing effects. For
Ke−, the equation becomes:

εe−(T1Ke−) =
N1

N2

(1 + αTot(T1))
αK(T1)

(4.28)
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where,
N1 = N(T1Ke− ⊗ T2γ) + N(T1Ke− ⊗ (T2γ + KXrays))

and
N2 = N(T2γ) + N(T2γ + KXrays)

In order to extract the efficiency to detect LMN + e−, the contribution to the T1LMN+e− peak from the
summing of T1Ke− and X rays or summing of T1Ke− and Auger electrons in the tunnel detectors needs to
be subtracted. This contribution can be estimated by:

∆N(T1K) = N(T2γ)
αK(T1)

(1 + αTot(T1))
× εt

Ke−(ωKε
t
KXrays + aKε

t
KAuger)

where, εt
Ke− is the probability of detecting a Ke− in the tunnel detector with full energy, ωK and aK are

the fluorescence and Auger yields following a K shell vacancy in Ra, and, εt
KXrays and εt

KAuger are the
full-energy peak efficiency of KX rays and KAuger electrons in the tunnel detectors, respectively. These
probabilities are obtained by simulating a single photon and an electron with weighted mean KX-ray
energy (74.76 keV) and KAuger electron energy (90.63 keV) of Ra respectively. There is also summing
of partial energy depositions of L converted electrons with the X rays following L vacancies, which yields
counts in the full energy peak, which must also be subtracted. This increase is calculated by:

∆N(T1L) = N(T2γ)
αL(T1)

(1 + αTot(T1))
εt

Le−(CL1 + CL2 + CL3) (4.29)

where

CL1 = ωL1ε
t
L1Xrays + f12(ωL2ε

t
L2Xrays + f23ωL3ε

t
L3Xrays) + f13ωL3ε

t
L3Xrays

CL2 = ωL2ε
t
L2Xrays + f23ωL3ε

t
L3Xrays

CL3 = ωL3ε
t
L3Xrays

where similarly, εt
Le− is the probability of detecting an Le− in the tunnel detector with full energy, εt

iXray is
the absolute detection efficiency of the tunnel detectors for X rays emitted from the Li subshell determined
from simulations, ωLi is the fluorescence yield of subshell Li (see table 4.6), and f12, f13, f23 are Coster-
Kronig yields taken from the ToI. Simulations showed that the efficiency to detect L1, L2 and L3 Auger
electrons in the tunnel detectors is close to zero, hence their summing contributions are ignored. The
efficiency equation then becomes:

εe−(T1LMN+e−) =
N′

N(T2γ)
(1 + αTot(T1))
αLMN+(T1)

(4.30)

where,
N′ = N(T1LMN+e− ⊗ T2γ) − ∆N(T1K) − ∆N(T1L)

Accounting for all the summing contributions, the simulated efficiency values obtained by the singles
and coincident methods are tabulated in table 4.8 and displayed in fig. 4.46. They are consistent with the
efficiencies obtained by simulating individual electrons or gamma rays (figs. 4.39a and 4.39b).

Summing in the detectors has one advantage, as it is possible to deduce the KX-ray efficiency of a Ge
detector from the γdetector i − e− coincidences. Solely for computational time, we limited ourselves to the
clover detector and KX rays as K conversion is more dominant. Suppose there are N644 gamma rays of 644
keV in the clover detector in coincidence with K converted electrons of 238.4 keV transition detected in
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subshell energy (keV) εt in (%) ω

L1 15.74 22.63 ± 0.15 0.146
L2 15.82 22.63 ± 0.15 0.456
L3 9.59 24.54 ± 0.16 0.437

Table 4.6: The absolute detection efficiency of tunnel detector for X rays emitted from each subshell of L
having intensity weighted energy. The fluorescence yield, ω is taken from ToI [163].

the tunnel detectors. Let N0 be the number of counts in 644 keV peak if there were no KX-ray emission,
then N644 can be simply expressed as

N644 = N0 × (1 − Probability to detect KX rays) (4.31)

and number of N644 in coincident with KX rays is

N644+Xrays = N0 × Probability to detect KX-rays in the peaks (4.32)

dividing eq 4.31 by eq 4.32 gives

N644

N644+x−rays
=

(1 − ωK) + ωK(1 − εTot(KXrays))
ωKεpeak(KXrays)

≡ r

where εTot can be obtained if the P/T of the detector at the mean KX ray energy is known

εTot =
εpeak

P/T

For the clover detector
P/Tclover = 83.45 ± 0.81%

determined from simulation (see fig. 4.36b).

εpeak(KXrays) =
1

ωK(r + 1/P/T )

In general, for any Ge detector i the KX ray efficiency can be obtained by

εi
γ(KXrays) =

1

ωK( Ni
γ

Ni
γ+Xrays

+ 1
(P/T )i )

(4.33)

where Nγ is the number of counts in the T2 transition gamma-ray peak coincident with K shell electrons
emitted in the T1 transition, Nγ+Xrays is the number of counts in the peaks formed from summing of T2
gamma rays with KXrays radiated in the T1 transition and P/T denotes the peak-to-total ratio at the mean
energy of the Ra X rays.

Note that in table 4.8, without correction for summing, the extracted value of the KX-ray efficiency
is larger than the expected value. This is because the summing of Ke− with the X rays and the Auger
electrons in the tunnel detectors reduces the integral of the Ke− peak. Hence the apparent number of
photons Nγ detected in coincidence with Ke− is artificially reduced. Hence, the ratio r is modified to

r =
N644 + ∆N(238.4K)

N644+Kxrays
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Figure 4.44: An illustration of inverse transform sampling method.

with ∆N(238.4K) = N644 × f and f is the fraction of counts in the Ke− peak removed due to summing in
the tunnel detectors. f is determined to be 8.6(2)% by applying the ‘inverse transform sampling method’
on the Ke−, KX rays, and KAuger electrons energy spectra that are obtained from simulations of individual
radiation at the corresponding energies. The principle of this method is that if a random variable Y has a
uniform distribution on [0,1] and a continuous random variable X has a cumulative distribution function
FX(X), then the random variable F−1

X (Y) has the same distribution as X (see fig. 4.44).
In this method, the steps followed are given below:

• Convert the energy spectra of Ke, KX rays, and KAuger electrons into probability distributions
(PDFs). The PDF of a given spectrum can be obtained by dividing the counts in every bin of the
histogram by the total number of entries.

• Convert the pdfs into cumulative distribution functions (CDFs). To obtain the CDF of a given
distribution, at every bin the probability is cumulatively incremented.

• Invert the CDF of the Ke− distribution by generating a random number p of uniform distribution
whose value lies between [0,1]. The energy value Ee corresponding to the probability p is obtained
(see fig. 4.44). At this stage, the influence of the KX rays and the KAuger electrons can be added.
To add the KX ray contribution, if p ≤ ωK another random number q in the range [0,1] is generated
and the KX ray energy value Ex corresponding to probability q is obtained. The summed energy is
obtained by summing Ee + Ex. Similarly, the effect of the KAuger electrons on the energy of the
Ke− can be obtained. The summed electron spectrum is shown in fig. 4.45.

• By scaling the summed histogram with the original Ke− histogram, the fraction that is removed from
the peak as a result of summing in the tunnel detectors can be determined.

To extract the experimental efficiency values, a similar treatment was performed on the experimental
data. However, in the experimental data analysis there is an added complications from the isomeric decay
of 207Rn (the decay scheme is shown in fig. 7b). It is because the electrons emitted from the M2 transition
in the isomer decay of 207Rn and 209Ra have quite similar energies and cannot be resolved in the tunnel
detectors. Hence, intensity-weighted internal conversion coefficients (see table 4.7), fluorescence and
Auger yields and KX-ray and Auger electron energies were used in the equations 4.27-4.33.
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Figure 4.45: Summing of Ke− of 238.4 keV transtions with KX rays and KAuger electrons in the tunnel
detectors.

Shell α (M2) α (E2)
Tot 5.34±0.08 0.0216 ±0.0003
K 3.79 ± 0.05 0.0154 ± 0.0002

Table 4.7: Intensity-weighted conversion coefficients used in this work (see text for details).

The experimentally measured efficiency values obtained using coincidence method are compatible
with the simulation results (see the table 4.8 and fig. 4.46) except for the electron efficiency at Ke−(238.4)
energy. This lower-than-expected value is due to a threshold effect, as some of the tunnel strips had higher
thresholds than others. In our study, only the KX-ray efficiency of the clover detector was measured solely
for statistical reasons. Also note that the large error bars in fig. 4.46 are due to low number of recorded
238.4 keV gamma-ray events in coincidence with 644S e− . We have also extracted from gamma-electron
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Figure 4.46: Absolute efficiency curves for the (a) Ge and (b) Tunnel detectors. (a) n, l and H denote the
simulated efficiencies in singles and add back mode for the whole Ge array and the clover detector alone.
(b) l represent the simulated electron efficiency for the 113 active strips during the 209Ra calibration run.
: and 6 correspond to the simulated efficiencies extracted from simulated 209Ra isomeric data using the
singles and coincidence methods. n correspond to the measured gamma-ray or electron efficiencies.
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Simulated
single
gamma-ray
or electron
emission

Simulated 209Ra isomeric decay Experimental

Singles
Method

Singles Method Coincidence Method Coincidence Method

Energy
(keV)

ε (%) ε0 (%) ε∗ (%) ε0 (%) ε∗ (%) ε0 (%) ε∗ (%)

Gamma
KXrays
(clover)

19.40±0.14 - - 20.46±0.35 19.19±0.51 20.54±0.66 19.27±0.65

238.4 21.60±0.15 16.03±0.03 20.16±0.04 17.78±0.68 21.52±0.75 16.44±2.06 21.31±3.08
644 10.98±0.10 8.96±0.01 10.50±0.01 9.39±0.03 10.97±0.03 9.28±0.15 10.58±0.17

Electron
134.48 19.04±0.14 18.81±0.02 - 17.72±0.07 19.10±0.07 15.48±0.24 15.35±0.36
223.48 20.15±0.14 20.66±0.29 - 25.46±0.11 20.13±0.12 24.09±0.39 20.03±1.21
540.08 17.71±0.13 16.94±0.11 - 18.06±0.73 17.79±0.73 18.70±2.59 17.41±2.66
629.25 15.30±0.12 15.37±0.16 - 19.73±1.12 15.61±1.13 19.79±4.18 15.93±3.56

Table 4.8: The measured gamma-ray and electron efficiency values obtained from singles and coincidence
methods: ε corresponds to efficiency from a 209Ra distributed source emitting either a single gamma or an
electron isotropically with the given energy. ε0 and ε∗ indicate values extracted without or with summing
corrections (see the text) for 209Ra isomeric decay.

coincidences the addback factor of the clover detector at 644 keV in the simulated and the experimental
data. The values were also found to be in good agreement: 1.36 ± 0.01 (simulation) and 1.34 ± 0.05
(experimentally), and the P/T behavior is well accounted for (see fig. 4.47). This compatibility of the
simulation and experimental results proves that the geometry of GABRIELA described in Geant4 is quite
accurate. This is further confirmed by the ability to reproduce the decay spectrum of the isomer observed
in 257Rf [168] (see fig. 4.48).
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Figure 4.47: P/T measurement on the 644 keV peak.

Figure 4.48: Using the decay scheme established by Rissanen et al. [168], the spectrum of isomeric gamma
rays observed in Dubna could be reproduced with the GABRIELA Geant4 program. The excess L X ray
intensity is due to the contribution of a second isomer which was also observed in the data [ K. Hauschild
et al. to be published].





Chapter 5

Decay Spectroscopy of 255Rf and 251No

5.1 Discovery of Rf

Like many Transfermium elements, the discovery of element Z = 104, which eventually was named ruther-
fordium has a controversial history. In 1964, the earliest claim came from the JINR team in Dubna when
G. N. Flerov and his co-workers bombarded 242Pu with 22Ne ions, and the resulting isotope fissioned spon-
taneously with a half-life ∼ 0.3 sec. Based on nuclear reaction systematics, this nuclide was assigned to be
260104 [169]. The name kurchatovium (Ku) was suggested by the Russian group to this newly discovered
element, in honor of the Soviet physicist Igor Kurchatov. The half-life of this nuclide remained incon-
clusive as the same group later suggested it to be 0.1 sec., then 80 ms and most recently 28 ms [170]. In
1966, the identification of the atomic number of this new element was claimed by I. Zvara and her team
based on the thermochromatography experiment. However, it raised a doubt because the 28 ms half-life
of the 260104 nuclide was not enough to survive the passage through the apparatus used in the experiment
which is 1.2 s [170, 171]. Thus, a definitive conclusion on the discovery of the 104 element could not
be reached as the half-life and the atomic number remained undetermined. Five years later, A. Ghiorso
and his team at Berkeley claimed to have convincing evidence on the synthesis of the Z =104 element via
249Cf(12C,4n)257Rf with a half-life ∼3.8 s by identifying its daughter 253No from alpha decay. A similar
experiment was performed in the same period with 13C projectiles 249Cf(13C,3n)259Rf with a half-life ∼3.4
s in which case as well they detected daughter nuclei 255No from the alpha decays [172]. In honor of
Ernest Rutherford, this group later proposed that the element 104 to be named rutherfordium. In 1973,
physicists at Oak Ridge National Laboratory confirmed the claim of the Berkeley group from X-ray spec-
troscopy of the nobelium daughter. They observed photons coincident with the alpha decays of 257Rf that
match in energy and intensity of the theoretical KX-ray spectrum of Z =102 [173]. A controversy broke
out between the American and the Russian groups regarding the discovery or the first clear identification
of the element Z =104, hence the right to name the element. This conflict caused great difficulty for the
International Committee on Nomenclature of the International Union of Pure and Applied Chemistry (IU-
PAC) in naming the element. Only in 1977, IUPAC had decided to formally name the element 104 as
rutherfordium.

5.2 Discovery of No

In 1957, at the Stockholm’s Nobel Institue of Physics, a group of Swedish, American, and British physi-
cists bombarded a sample of curium with a beam of 13C. They identified an alpha emitter with a half-life

113
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about 10 min and alpha energy 8.5 MeV presumably due to either 13C(244Cm,6n)251No or 13C(244Cm,4n)253No
reaction because of the absence of spontaneous fission, and the method of preparation [174–176]. They
claimed it to be nobelium as the new alpha-emitter had the expected chemical properties of the element
102. They suggested the name nobelium with chemical symbol No for the new element in recognition
of Alfred Nobel’s contributions to the advancement of science. The discovery created a lot of sensation
in the European media as well. One British physicist of the group has noted that nobelium was the first
of the trans-uranium elements to be discovered on European soil and the first from an international effort.
However, later this discovery became highly controversial as the Berkeley group lead by G. T. Seaborg and
the Dubna group of G. Flerov failed to reproduce the results from Stockholm. A year later, the Berkely
group initially set out to confirm the Stockholm group’s discovery reported that they could not verify this
result [177] but claimed to have created 254No from the reaction 12C(246Cm,4n)254No [178]. Their claim is
based on the observation that the new element alpha decay with a 3 s half-life and confirmation from the
daughter nucleus 250Fm whose radioactive properties were known. The Dubna group in the early 1960s
also failed to duplicate the Nobel Institute’s work. They not only disbelieved the Stockholm results but
also cast doubt on Berkeley’s findings, which they consider to be a mere indication of the Z =102 ele-
ment. It is because they suspect that the American group had misidentified the reaction products hence
incorrectly claimed to have produced 254No isotope. To the Russian group, this incorrect assignment of the
isotope could not be considered a discovery. The American group later admitted that their earlier isotope
identification was wrong, and their new findings align with the Dubna results [179]. The Dubna group
maintained that element 102 was discovered in their studies from 1963-1966 in which they had identified
five isotopes of 102 (see ref. [180] for details about the experiments and results). They asserted the name
joliotium (Jo) for element Z =102 to IUPAC, in honor of the French scientist Frédéric Joliot-Curie. Much
later, in 1992, when IUPAC was reassessing the controversial claims of discovery of several elements,
the Dubna team was declared to have correctly detected and assigned decays to nuclei of element 102 in
1966. And two years later, the IUPAC ratified the name nobelium (No) for this element, as it had become
well-established in the literature over 30 years, and also because Alfred Nobel is commemorated well in
this way (see ref. [170, 179, 181] for more historical overviews).

5.3 What is known in 255Rf
Several experiments before our study have shed some light on the nuclear structure and decay properties
of 255Rf. The first investigation was carried out in Dubna in 1975 by Oganessian and his team. They
bombarded Pb isotopes with 50Ti ions producing two isotopes of Rf with mass numbers 255 and 256. The
spontaneous fission half-lives they measured for these isotopes are > 1 s in the case of 255Rf and 5 ms for
256Rf. The hindrance factor influencing the lifetime of the odd nucleus is about 103 [138].

Then a decade later, Heßberger and his coworkers at GSI using the same reactions produced 255Rf and
256Rf isotopes and confirmed the previously reported spontaneous fission activities with improved half-
lives 1.4 ± 0.2 s and 7.4+0.9

−0.7 ms. The evaporation residues were separated using the SHIP velocity filter
and implanted into position-sensitive detectors, where their alpha and spontaneous fission decay were
measured. They also found that 255Rf alpha decays Bα = 48(7) % of the time, and in the case of 256Rf, a
small alpha-decay branch 2.2+7.3

−1.8% of 256Rf was noticed [182].
The GSI group again carried out a similar study in 1997. In this experiment, the 255Rf nuclei were

produced in the reactions 208Pb(50Ti,3n)255Rf and 206Pb(50Ti,1n)255Rf. They carried out alpha-alpha cor-
relation and tentatively suggested an isomeric state with a half-life 0.8 ± 0.3 s from an observation of
correlations 8722 keV→ 8471 keV → 8126 keV which they assigned to 255mRf → 251mNo → 247mFm.
Their new fission branching ratio was B f = 45(6)% [183].
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In 2001, the GSI group, through α and α − γ spectroscopy, improved the decay data of 255Rf produced
int the reaction 207Pb(50Ti,2n)255Rf [184]. In this study with more statistics, the isomeric chain observed
in the earlier study was not found. They observed 203 keV and 142 keV gamma lines to be in coincident
with alpha-decays and established the decay scheme shown in fig. 5.1. The Q alpha for a transition to the
ground state they obtained is 9109± 15 keV. Their new spontaneous fission branching is B f = 52(6)% and
a half-life 1.63 ± 0.11 s.

In 2006, their improved data confirmed their previous measurements on the transitions found in co-
incidence with alpha decays of 255Rf. They determined the energies, intensities, and multipolarities of
these transitions. The measured half-life of the ground-state decay is 1.68 ± 0.09 s, which agrees with
the previous measurements. The 203.6 ± 0.2 keV and 143.3 ± 0.2 keV transitions were interpreted as E1
transitions like in the alpha decay of other known isotones (251Fm, 253No, see fig. 5.2 and 247Cm, 249Cf).
The alpha decay populates the excited state (9/2−) in the daughter nucleus 251No, which then gamma decay
to the (7/2+) ground state and the 9/2+ state, a member of the rotational band built upon the ground state.
The branching ratios of these two transitions were reported as 49 (6) % and 51 (6) % respectively to the
7/2+ and 9/2+ state. The alpha decay fine structure obtained is given in table 5.1. It has been suggested
that 8906 keV could be g.s. → g.s. transition plus summing of 8716 with conversion electrons because
the HF for g.s. → g.s. transition is substantially lower than values obtained in the lighter isotones that are
HF = 3800-8700. The 8678 keV transition was assumed to populate the 11/2− member of the 9/2− band.
As the alpha decay of 255Rf can populate some excited states in 251No, alpha decay of 259Sg can also give
access to some low lying excited states in 255Rf. The GSI group performed such an experiment in 2010
by producing 259Sg isotopes in the reaction 206Pb(54Cr,1n)259Sg. Two alpha emitting states with different
half-lives were observed and inferred as an 11/2− g.s. and 1/2+ isomer. From the decay properties of the
11/2− g.s., the 11/2− state in 255Rf was tentatively identified at an excitation energy (E∗) of ∼ 600 keV.

Figure 5.1: Decay scheme proposed for 255Rf. The numbers denote the Q values [184].

Eα irel HF
8906 ±8 0.025 ±0.01 1344
8716±4 0.92 ±0.05 2.4
8678±8 0.03 ±0.01 56
8646±5 0.015 ±0.005 90
8575±5 0.01 ±0.005 80

Table 5.1: α fine structure observed in the study of ref. [185].
.
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(a) (b)

Figure 5.2: a)251Fm α-decay scheme [189] b) 253No α-decay scheme [190].

Figure 5.3: Systematics of low-lying states in N= 151 isotones.

By performing triple correlation searches in chains consisting of an ER, an alpha decay and a low energy
signal , a short-lived (T1/2 = 50 ± 17µs) isomeric state in 255Rf was observed. The average energy of the
low energy signals (CE, a sum of conversion electrons, Auger electrons and low energy X rays) in the
42 ER-α-CE chains was ≈ 105 keV. Since no gamma or X rays were observed in coincidence with these
electrons, it was concluded that the isomer lies below the K binding energy of rutherfordium. The isomer
was interpreted as the 5/2+ state as in the systematic shown in fig. 5.3 and the decay proceeds via M2
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(a) (b)

Figure 5.4: (a) Suggested alpha decay scheme of 259Sg. (b) Energy spectrum and the lifetime fit (inset) of
the isomeric conversion electrons following the alpha decay of 259Sg [186].

transition to the ground state. Considering the L shell binding energy in Rf is 30 keV, the isomer is placed
at excitation energy ≈135 keV (see fig. 5.4) [186].

Isomeric decays with a half-life > 30µs were observed from pulse shape analysis in a recent experiment
at GSI. The rutherfordium isotopes were produced in the reaction 206Pb(50Ti, 1n) and separated using the
TASCA gas-filled recoil separator. A half-life of 1.9 ± 2 s was measured with estimated branching ratios
for alpha decay and spontaneous fission of 46 ± 8 % and 53 ± 8 %, respectively, which are in agreement
with the previously reported values. The isomeric state observed in this experiment was interpreted as the
135 keV isomer [187].

More recently [188], in another experiment, the GSI group reported high K isomers in 255Rf. They
used 207Pb(50Ti,2n) reaction to synthesize the isotopes. They observed a total of 144 ER–CE–SF/alpha
correlations. A broad CEs energy distribution (up to 800 keV) and several CEs in coincidence with gamma
rays were observed. They found 3 ER–CE-CE–SF/alpha correlations, for which, the decay time of the
first electron burst is significantly longer than the decay time of the second one. Out of a total of 147
correlations, 19 CEs were seen in coincidence with gamma ray. The spectra of CEs and the gamma rays
are shown in fig. 5.5. The half-life of the lower-energy electrons below 370 keV is found to be 35± 6
µs, and for the higher-energy group (above 370 keV) is 15+6

−4 µs. When coincidence with gamma rays is
demanded, the half-life for the lower-energy group CEs becomes 38+12

−7 µs. As can be seen from the gamma
energy spectra, they could not identify any distinct gamma line either in singles or in addback mode.
A maximum of 1050 keV was reached, after summing the energies of electrons and coincident gamma
rays. They concluded to have observed new high-energy high-K isomer(s) in 255Rf, as these results are in
contrast with the previously reported 5/2+[622] single-particle isomer where the CE energy spectrum has
a narrow peak at 105 keV with no coincident gamma ray. Therefore, they assumed that besides the direct
population of the 15 µs isomer during the production of the ER, the decay of the longer-lived 38 µs isomer
probably also feed the 15 µs isomer. From the energies of the first CEs in the chain plus the electronic
binding of K and L shells in Rf, the gap between the two isomeric levels was estimated to be 150–300 keV.
The proposed decay scheme of K isomers in 255Rf observed in this experiment is shown in fig. 5.6.
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(a) (b)

Figure 5.5: a) CE energies as a function of the time difference between the implantation of an ER and
the detection of a CE. Red dots, electrons not in coincidence with gamma rays; blue dots, electrons in
coincidence with gamma rays. b) Energy spectrum of coincident gamma rays [188].

Figure 5.6: Proposed decay scheme of K isomers in 255Rf (left) along with the alpha decay scheme of
259Sg (right). Adapted from ref. [188].

5.4 Ground state decay properties of 255Rf

In our study, the 255Rf nuclei were produced in the reaction 207Pb(50Ti,2n)255Rf from two experimental
campaigns in May and Oct of 2017. Some details of these two experimental runs are given in table 5.2.

Run duration (days) Ebeam (MeV) dose∗ Nproduced cross section (nb)
May 20.58 253 5.045 × 1018 4208 ± 83 1.71(9)
Oct 23.36 253 6.622 × 1018 3769 ± 81 1.16(6)

Table 5.2: Details of the 2 experiments: duration, average beam energy, total beam dose, number of 255Rf
ions detected and corresponding production cross section (assuming a 22+ charge state for the Ti ions and
a transmission and detection efficiency of SHELS of 40%).
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Figure 5.7: Log2 of the time difference between a recoil implant and subsequent decay vs energy of the
decay observed in the reaction 207Pb(50Ti,xn)257−xnRf.

For statistical reasons, the two data sets were treated as one. The recoil-decay correlation matrix is shown
in fig. 5.7, where the vertical axis represents the time difference between the implantation of recoil and
its subsequent decay in the same pixel, and the horizontal axis gives the decay energy in keV. The top
region of the plot shows random correlations. On the high energy side, the fission events are recorded
as overflows as the signal amplification gains were set to detect electron and alpha particles, thus do not
reflect the proper fission energy of ≈ 200 MeV. Besides the 2n evaporation channel, 1n and 3n channels
were also open which can be confirmed from the fit to the time distributions of fission events (shown in
the right panel of fig. 5.8). The measured fission half-lives of 255Rf and 256Rf are 1.69 ± 0.03 s and 6.82
± 0.37 ms, which agree to the values given in the literature. Because of our long deadtime, only a small
portion of 254Rf nuclei produced in the experiment is visible. We also measured the half-life of the alpha
decay branch by gating only on the full energy peak in the range [8660-8850] keV and found it to be

(a) (b)

Figure 5.8: Lifetime fit of the 255Rf (a) the alpha peak and (b) the fission events of fig. 5.7.
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Tα
1/2 = 1.67 ± 0.05 s.

A total of ≈ 7880 ± 112 255Rf nuclei were produced, out of which ≈ 3866 ± 92 of them were observed
to decay via alpha transition and 4013± 65 via spontaneously fission. The corresponding branching ratios
thus estimated are Bα = 49.1 ± 1.3% and B f = 50.9 ± 1.1% that are compatible with the values values
given in the literature. Since no 255Lr alpha decay was identified we deduced an upper limit for the β+/EC
decay branch to be 0.009 %.

5.5 Alpha decay of 255Rf
In our experiments, we observed both gamma rays and ICEs in coincident with the alpha decays of 255Rf.
In addition to the fact that ICEs were never measured directly before, we also have more statistics than
in any earlier studies. The spectra of gamma rays and conversion electrons detected in coincidence with
alpha decays of 255Rf were obtained in the following manner.

• Eα(any gen) < 9.5 MeV to exclude fission events (where, gen corresponds to the generation number
of 255Rf decay in the decay chains of the correlation tree).

• 11 > Log2(Tα − Trecoil) <= 24.2, the upper limit excludes most of the random correlations whereas
the lower limit excludes isomeric events.

• the daughter lifetime lies within 10 > Log2(Tα2 − Tα1) <= 23.8 ( the lifetime range of 251No).

The spectra are shown in fig. 5.9, where the energies of the coincident gamma rays and electrons are
plotted against the energies of the alpha particles. Fig. 5.10a and 5.10b show the γ-ray and e- spectra
observed in coincidence with the alpha peak of energy in the range 8.6-9 MeV. We observe two strong
lines at Eγ = 203 keV and Eγ = 143.2 keV as seen by the GSI group. Some KX rays and weak lines (e.g
70 keV) are also seen in fig. 5.10a. Furthermore, we notice that the energies of the coincident electrons
detected in the tunnel detectors are below 220 keV.

(a) (b)

Figure 5.9: Experimental a) α − γ and b) α − e− coincidence matrices.

5.6 Determination of relative γ-ray branching ratios
To interpret these findings, we shall first assume that the level scheme GSI proposed is correct. However,
we will modify the energies of the levels to adapt them to our data. Taking energy difference between the
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(a) (b)

Figure 5.10: Spectra of the a) γ rays and b) electrons in coincidence with 255R f − α peak.

203.2 keV and 143.2 keV transitions gives the excitation energy of the first member of the ground state
rotational band. This energy also fixes the moment of the inertia parameter in equation 2.71, which defines
the energies of a rotational band. The 60 keV energy spacing gives ~2

2J = 6.67. The energy of the 11/2+

state in fig.5.11 was determined using constant moment of inertia yielding a 9/2− → 11/2+ transition of ∼
70 keV, which fits well with the energy of a weak line obtained in the γ-ray spectrum. The Qα value (see
eq. 3.6) of the alpha decay to the 9/2− state can be extracted from the full energy alpha peak in coincidence
with 203 keV gamma rays. The mean energy was found to be Eα = 8709±2 keV giving the Q-value equal
to 8855 ± 2 keV taking into account the mass dependence of the ionization signal of the daughter recoil.
The Q value to the ground state can then be easily found by adding the 203.27 ± 0.07 gamma transition
energy to the Q(9/2−), which is Qα(g.s.) = 9058 ± 2 keV. This value is consistent with the value of 9055
keV obtained from mass differences between 255Rf and 251No (see eq. 3.5). Previously, it was reported
that the relative intensities of 203 keV and 143 keV gamma transitions to be 0.94(5) and 1 respectively,
and by including the conversion, the corresponding intensities are 0.49(6) and 0.51(6). In an attempt to
determine the branching ratios of the gamma transitions, we start with the basic decay scheme shown in

Figure 5.11: Simple ground state decay scheme of 255Rf.
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fig. 5.11. The gamma transition rates within the band can be calculated using equations given in table 3.2.
The reduced transition rates B(M1) and B(E2) are computed using equation 3.64 and 3.65 respectively.
To calculate B(E2), first, the intrinsic quadrupole moment of 251No is calculated using equation 3.62 with
quadrupole deformation parameter β = 0.25 as per ref. [44]. The calculated quadrupole moment is 12.05
eb. Using equation 3.4.1 the mixing ratios for ∆I = 1 transitions are obtained. The calculated branching
ratios and the mixing ratios corresponding to the first three states of the 7/2+ band are given in table 5.3.
Note that, for mixed transitions, the conversion coefficients need to be modified using equation 3.74.

Spin E (keV) br (E2) % br (M1+ E2) % δ
7
2

+ 0 0 0 0
9
2

+ 60 0 100 16.15
11
2

+ 133.3 80.79 19.21 16.01

Table 5.3: Calculated excitation energies and branching ratios of the first three rotational states in the the
ground-state band.

If we consider the basic scheme for the 255Rf ground state alpha decay as shown in fig. 5.11, the
only unknowns are the branching ratios of 203 keV and 143 keV transitions from the 9/2− state. Since
both these transitions stem from the same 9/2− state, the summing of these two transitions cannot occur.
We can, therefore, simulate each gamma transition individually and normalize to the experimental peak
integrals to extract their branching ratios in the manner discussed below. We know that absolute detection
efficiency is evaluated by:

ε =
Npeak

Nemitted
(5.1)

where Npeak is the peak integral and Nemitted is the number of radiation quanta emitted by the source.
Equating simulated and experimental efficiency,

ε =
Npeak(sim)

Ndecay(sim)
(1+αTot)

=
Npeak(exp)

br × Ndecay(exp)
(1+αTot)

(5.2)

where αTot is the total internal conversion coefficient of the transition and br is its branching ratio. Mul-
tiplying and dividing by a scaling factor S F =

Npeak(exp)
Npeak(sim) on the left hand side in order to normalize to the

experimental peak, we get
S F × Npeak(sim)
S F × Ndecay(sim)

=
Npeak(exp)

br × Ndecay(exp)

which implies that,
S F × Ndecay(sim) = br × Ndecay(exp) (5.3)

Hence, the relative gamma emission intensities of 203 keV and 143 keV transitions can be obtained
simply from the ratio of the corresponding scaling factors.

br(143)
br(203)

=
S F(143)
S F(203)

(5.4)

The conversion coefficients and electron energies of these two transitions taken from BRICC are tabulated
in the table 5.4. To make sure we only consider 255Rf α-decay events, we have restricted ourselves to the
alpha peak energy in the range 8.6MeV ≥ Eα ≥ 9MeV. Comparison between the experimental α − γ
and α − e− coincident spectra with the corresponding simulated spectra was carried out on the 255Rf alpha
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143.2 keV 203.2 keV
Shell Ece(keV) α (E1) Ece(keV) α (E1)
Tot 0.067 0.1148
K 0 53.9 0.0861
L 115.82 0.05 175.47 0.0214
M 136.18 0.0125 196.06 0.00533
N+ 141.70∗ 0.0045 201.67∗ 0.00197

Table 5.4: Conversion coefficients and electron energies from BRICC. The EceN+ are weighted by the
conversion coefficients and indicated by ∗.

Eγ Npeak(exp) Npeak(sim)
203.2 150 10885
143.2 122 - N(203:Xray) 11718

Table 5.5: gamma in coincident with 255Rf alpha peak.

peak only. The peak integrals of these two transitions from the experimental (May+Oct) and simulated
data (Ndecay(sim) = 100000) are given in table 5.5. In table 5.5, N(203:Xray) is the number of KX rays in
the range between 140-145 keV from the K conversion of the 203 keV transition. The number KX rays
contributing to the 143 keV peak can be estimated using the following relation.

N(203 : Xray) = Nγ(203) × αK(203) × Prob(143) × ε(143) (5.5)

where Prob(143) is the probability of emitting 143 keV X rays due to K vacancy, ε(143) is the detection
efficiency at 143 keV, Nγ(203) is the number of 203 keV gamma rays actually emitted, which can be
estimated by dividing the peak integral of 203 with the detection efficiency ε(203). Fluorescence yields of
Kβ1, Kβ3 and Kβ5 X rays due to K conversions can be usually found in the ToI [163], but in this case we
have taken the extrapolated values (see section 4.6). Hence, we find N(203 : Xray) ≈ 2.5. This number
can also be estimated from the Kα1 X-ray intensity

N(143) =
N(127)

ε(127) × Prob(127)
× Prob(143) × ε(143)

where N(127) is the peak integral of 127 keV peak, the energy of Kα1 X rays. We find N(143) = 4.7(5).
Care needs to be taken in estimating the background as under or over estimation will influence the branch-
ing ratio extracted using equation 5.4. Note that, the number obtained using Kα1 intensity is greater than
the number obtained using 203 keV intensity. This will be revisited later in this section. Using equation
5.4, the relative gamma branching ratio of 143 with respect to 203 is then 72.5(8.9) %. The decay scheme
of the fig. 5.11 was simulated for 100000 events. To compare the simulated γ-spectrum and e- spectrum
with the experimental ones, we have normalized them using a scaling factor S F =

Nexp(203)
Nsim(203) , they are dis-

played in fig. 5.12 and the peak integrals in the e- spectra are quantified in table 5.6. We noticed that in
the simulated spectra, there are fewer X rays and electrons than in the experimental ones. We conclude
that the internal conversion coefficients for the E1 transitions must be greater than the theoretical BRICC
values. Such anomalous behavior of the E1 transitions has been reported in other nuclides as well such as
in 177Hf [191] and also in 249Fm [39]. Therefore, we have estimated the internal conversion coefficients
and adjusted the branching ratios accordingly. First, we needed to evaluate the integrals of the LMN+

peak of 143 keV transitions since the summing of electrons from the 143 keV transition and 60 keV can



124 CHAPTER 5. DECAY SPECTROSCOPY OF 255RF AND 251NO

(a) (b) (c)

Figure 5.12: Energy spectra of a) gamma rays and b) electrons coincident with 255Rf alpha-peak events.
c) The full energy peak of the alphas in coincident with gamma rays. Note that in the γ-ray spectrum the
apparent mismatch between the experimental and simulated peak intensities of 203 keV and 143 keV lines
is a visual rendering.

ELMN+e Range N(exp) N(sim)
203.2 154-210 10 4.7
143.2 94-150 21 8.5

Table 5.6: electron in coincident with 255Rf alpha 8.6-8.85 MeV.

increase the count in the LMN+ peak of 203 keV transition. Also, the backscattered electrons of the 203
keV transition can form a background for the LMN+ peak of the 143 keV transition. Simulations of these
two transitions individually gave the ranges of the peaks of the alpha particles that are coincident with the
conversion electrons (see fig. 5.13). The peak integral values are given in table 5.7.

Transition N ε % Nemitted

203.2 10(3) 19.95 50
143.2 15(4) 18.46 81

Table 5.7: Measured LMN+e intensities.

The conversion coefficients αLMN+ can be estimated using the following equation

αLMN+ =
NLMN+e−

Nγ

The measured conversion coefficients are summarized in the table 5.8 where we have assumed that αK of
203 keV can also be scaled by the same factor αmeasured ÷ αtheory. To obtain the conversion coefficient of
143 keV, Nγ(143) needs to be evaluated again by subtracting the new KX-ray contribution from the 203
transition in the 143 keV peak using the equation 5.5. The number KX rays in the 143 keV peak obtained
using the modified conversion coefficient αK is ∼ 4.2, which is now equivalent to the number obtained
using Kα1 intensity.

Repeating, the procedure discussed before, the new relative gamma branching ratio of the 143 keV
transition is 66.3(8.3) %. Note that in the photonevaporation file, one needs to provide the conversion
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Figure 5.13: Simulated energy spectra of alpha particles coincident with ICE. The simulations of 143 keV
and 203 keV were carried out individually.

measured BRICC
Transition αK αLMN+ αtot αK αLMN+ αtot

203.2 0.234(34) 0.078(11) 0.312(36) 0.0861 0.0288 0.1148
143.2 0 0.200(24) 0.200(24) 0 0.067 0.067

Table 5.8: Measured conversion coefficients. Since the K conversion electrons of the 203 keV transition
have energy below the thresholds of the tunnel detectors, αK(203) was scaled using the same factor as for
the αLMN+(203).

coefficients from the inner K shell to the outer N+ shell separately. We have scaled the conversion co-
efficients of each subshell given in the BRICC by the same factor. Simulating the decay scheme of fig.
5.11 with the new branching ratios and conversion coefficients, we observed a good agreement between
the simulated and experimental data. The spectra are compared in fig. 5.14.

(a) (b)

Figure 5.14: Comparison of a) γ and b) e−energy spectra gated by α peak.

We can conclude that our assumption of scaling αK(203) by the same factor as αLMN+(203) is valid as
long as no other sources are contributing significantly to the X-ray intensities. We have mentioned in our
discussion about the transition from 9/2− to 11/2+ state that we observed a weak 70 keV transition, which
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Figure 5.15: Relative gamma branching ratios from 9/2− state.

fits well in the scheme. Following a similar procedure as described above, the relative branching ratio of
the 70 keV transition was estimated to be 3.5(1.5) %. Note that, for this transition, no change to BRICC
coefficients could be made because of low statistics and high threshold in the tunnel detectors. The results
from the simulation of the decay scheme shown in fig. 5.15 are compared with the experimental results in
fig. 5.16.

(a) (b) (c)

Figure 5.16: Energy spectra of a) gamma rays b) electrons coincident with 255Rf alpha peak and c) alpha
particles coincident with gamma rays.
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5.7 Determination of alpha-decay branching ratios
The alpha particles are detected in the implantation detector, which suffers the most from summing and
distorted peak shape as a consequence. Hence, the determination of alpha branching can be a challenging
task. We know that if all the input parameters in both the photoevaporation file and the radioactive decay
file are the true values, then simulations should in principle reproduce the experimental spectra provided
the geometry of the experimental setup is properly imitated in the simulations. Hence, by performing
simulations with different decay schemes and comparing the simulation results with the experimental
results, one could estimate the alpha-decay branching ratios. One could tune the input parameters (in
this case, the branching ratios) for every simulation run and compare the experimental and simulated
spectra until a full agreement is reached. But such a trial and error method can be very time-consuming,
especially for complicated decay schemes. This trial and error method can involve a few hundreds of
simulation runs, if not thousands. To avoid such a scenario, one could perform individual simulations
with 100 % alpha decay to every single level in the daughter nucleus involved in the decay scheme and
then adjust the branching ratios in a post-processing phase to obtain the total simulated spectra from the
corresponding contributions of each transition. Let there be m states in the daughter nucleus in which
alpha decay populates from a particular state in the parent nucleus. We know that,

brtot =

m∑
i=1

bri = 1 where, br stands for branching ratio (5.6)

and conservation of alpha peak integrals allow

Nsim =

m∑
i=1

bri × Nsim,i (5.7)

We can then perform χ2 tests to compare the results

χ2 =

M∑
i=1

N i
sim − N i

exp

σi
exp

2

M = no. of bins, N i = counts in bin i (5.8)

and σi
exp =

√
N i

exp. In this work, the empty bins N i
exp = 0 with N i

sim < 0.5 are ignored while if N i
sim > 0.5,

σi
exp is set to 1.

5.7.1 Decay to 9/2− state band
As a starting point, we first look at the alpha decay schemes in the neighboring isotones to see which
states are populated. Fig. 5.2a shows the decay scheme of 251Fm to 247Cf. We see that 11/2− and 13/2−

states of the 9/2− rotational band have small feeding branches onto them. The GSI group also hinted for
such decay branches in 251No. With a similar spirit, we have attempted to investigate alpha decay to these
levels in 251No. Our first decay model is shown in fig. 5.17, which includes feeding into the first three
states of the 9/2− band. First, we shall estimate the energy spacing between 11/2− and 9/2− by scaling
the values given in fig. 5.2a. In fig. 5.2a, the ∆E(9/2+,7/2+) is 55 keV, and the ∆E(11/2–, 9/2−) is 51.4
keV. For 251No, ∆E(9/2+,7/2+) is 60 experimentally. Therefore, we estimate the spacing ∆E(11/2−, 9/2−)
to be = 51.4

55 × 60 = 56 keV. From equation 2.71, we obtain a corresponding moment of inertia parameter
~2

2J = 5.1. We also assume that Q0 and β are the same as the ground state. As was done for the 7/2+ band,
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Figure 5.17: additional levels of the 9/2− band.

Spin E (keV) br (E2) % br (M1+ E2) % δ
9
2
− 203.2 0 0 0

11
2
− 259.3 0 100 0.22

13
2
− 325.6 13 87 0.22

Table 5.9: Calculated excitation energies, branching ratios (br in %) and mixing ratios (δ) of the first three
rotational states in the 9/2− band.

the transition energy, gamma branching ratios, and mixing ratios of the first three rotational members of
the 9/2− band are computed. These values are given in table 5.9.

We have simulated 100 % alpha decay to 9/2−, 11/2− and 13/2− separately. The 11/2− state, if pop-
ulated, is expected to decay to the 9/2− via a highly converted M1 transition. The corresponding alpha
energies will then sum with the energies of the conversion electrons and the emissions accompanying the
atomic relaxation process. Similarly, the 13/2− to 11/2− transition is also expected to be a highly converted
M1 transition. Hence more shift in the energies of the alpha particles is expected if the 13/2− level is pop-
ulated as illustrated in fig. 5.18. The energies of the conversion electrons in the three in-band transitions
of the 9/2− band are given in table 5.10.

Energy (keV) L M N+*
56.1 27.02 48.50 54.46
66.3 37.02 58.50 64.45

122.4 96.15 115.67 120.98

Table 5.10: Energy of the conversion electrons for the three in band transitions of the 9/2− band. * values
are the weighted values.

Based on the fact that the population of these higher-lying states would affect the peak shape of the
total α-particle spectrum, α − γ, and α − e− coincident spectra, the alpha branching was extracted. Ex-
perimentally, the total α-particle spectrum was obtained by selecting the daughter 251No alpha peak and
fission events and looking back in time for the Rf events. The experimental and simulated spectra were
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Figure 5.18: Simulated alpha particle energies when 100 % branching is given to each level. For each
case, the simulated peaks are normalized to the experimental peak.

compared within the energy range from 8.6 MeV to 9 MeV since, beyond these limits, there are lots of
empty bins that would skew the χ2 value. The tunnel spectra are compared above a safe value, above the
average threshold from 120 keV up to 250 keV. The γ-ray spectra are compared from 15-300 keV. Since
2D plots of alpha-gamma and alpha-electron have a lot of empty bins and computationally expensive as
well, we have instead used their projections for χ2 tests. Thus, we have 5 1D histograms on which χ2 tests
were performed. Note that, for performing χ2 tests, the corresponding histograms from experimental data
and simulations must have identical binning. To reduce skewness in the χ2 value, the bins in a histogram
were regrouped into categories such that each category contains at least five counts. If in the bin ‘i’, the
counts in simulated and experimental histograms are 0, that bin was excluded from χ2 evaluation. For the
experimental spectra, if the counts in a bin is less than 5 then the counts in the next bins are added until
the total count is more than 5.

We have 3 constraints for each histogram namely,

•
∑

N i
sim = Nexp where N i

sim is the number of counts contributing to the total simulated spectrum and
Nexp is the total number of counts in the corresponding experimental spectrum.

• µsim = µexp, the mean energies of the simulated and experimental histograms are equal.

• σ2
sim = σ2

exp, the variations of the simulated and experimental histograms are equal.

Hence, the number of degrees of freedom for every spectrum ν = number of bins - 3. We have a total of 80
bins in 5 histograms and another additional constraint come from the branching ratios, i.e.

∑
bri = 100%.

Therefore, the total number of degrees of freedom is 64. Using equation 3.8, it is possible to limit the
branching ratios into the 11/2− and 13/2− states with respect to the branching to the 9/2− state. The relative
alpha decay rates for 255Rf nuclei are given in table 5.11 as the angular momentum carried away by the
alpha particle is increased by 1 unit.

If we assume that alpha decay of 255Rf only populates these 3 states of 9/2− band, we can write

br9/2− + b11/2− + b13/2− = 100 %
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∆l kl
λl,0
λl=0

(%)
1 k1 85.40
2 k2 62.28
3 k3 38.78

Table 5.11: Relative alpha decay rates kl as a function of angular momentum carried away by the alpha
particle.

br9/2− =
100

1 + k1 + k2
%

where k1 and k2 values are given in table 5.11. This gives br9/2− = 40.4%, br11/2− = 35.5% and br13/2− =

25.7%. Hence, we have varied the branching ratio for the 11/2− state from 0 % to a maximum value of
40 % with an increment of 0.1 % in each step. At each step of br11/2− , br13/2− was varied from 0 % to
k2/k1 × br11/2− = 0.73× br11/2− in steps of 0.1 %. At each step of variation, the branching ratio for the 9/2−

state is obtained from:
br9/2− = 100 − (br11/2− + br13/2−) % (5.9)

and, a χ2 value is evaluated. The χ2 distribution contour plots are shown in figs. 5.19a, 5.19b and 5.19c.
The black region in each plot give the limits for the branching ratios beyond which χ2 > χ2

critical. The
critical values χ2

critical of the χ2-distributions can be obtained from standard statistics handbooks. We have
taken the conventional significance level α = 0.05 and the limits of acceptance are given in table 5.12.

state Eα (keV) χ2
min brlower−limit (%) brupper−limit (%)

9/2− 8716 78.9 72.8 83.5
11/2− 8660 12.2 9.5 19.8
13/2− 8595 8.9 5.8 10.8

Table 5.12: Table showing the branching ratios extracted from the χ2 comparison test for the alpha decay
to the 9/2− band. The branchings are given at the minimum χ2 value and for the χ2 values at the limits of
acceptance.

The null hypothesis (the simulation input parameters reproduce the experimental results) is rejected if
the test statistic is greater than the upper critical value or less than the lower critical value. For 64 degrees
of freedom, the upper and the lower critical values are χ2

upper−critical = 88.0 and χ2
lower−critical = 43.8, obtained

from WolframAlpha online calculator. Minimization of χ2 occurs at br9/2− = 78.9%, br11/2− = 12.2% and
br13/2− = 8.9%. At the minima, the experimental and simulated alpha peak spectra are compared in fig.
5.19d.

5.7.2 Decay to ground state band
To determine feeding into the ground state band following the same procedure described above, we in-
cluded the 7/2+, 9/2+ and 11/2+ states of the ground state band for χ2 evaluation. Their branching ratios
were varied from 0 % to 2 % in step of 0.2 %. The minimization of the χ2 still occurred at the same values
obtained in the previous section, i.e., with br7/2+ , br9/2+ , br11/2+ = 0%. Hence, we estimated an upper limit
for the ground state by comparing the high energy tail of alpha peak Eα > 8850 keV in the αTot energy
spectra (see fig. 5.18). Feeding to the 7/2+ state would decrease the branching into the 9/2− band. Hence,
we re-normalized the χ2

min branching ratios of the 9/2− band in accordance with br7/2+ . Table 5.13 gives the
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(a) (b)

(c)

(d)

Figure 5.19: χ2 value: a) 11/2− vs 13/2− b) 9/2− vs 11/2− c) 9/2− vs 13/2−. The dark area is the limit beyond
which χ2 > χ2

critical d) Comparison of experimental and simulated alpha peak shapes at the minimum χ2

value. The contribution due to each decay branch is shown separately. The experimental and simulated
peak integrals are 937 and 931 respectively.

counts of the alpha particles with energy in the range 8850 - 9000 keV for different values of br7/2+ . From
table 5.13, we see that there could be a maximum of 0.1 % branching to the ground state. Since, feeding
to the ground state is very small we did not check alpha decay branching to the higher lying states in the
band.

5.7.3 Decay to 5/2+ state

In the neighboring isotones, there is a small branch to the 5/2+ band. Assuming that the 5/2+ state lies
above K binding ( at an excitation energy greater than 149 keV) in 251No, we have estimated an upper
limit for the branching to the 5/2+ state. Since, we do not know the exact position of this state, we only
compared the X-ray counts within the range from 118-131 keV and ICE energy above 100 keV. As for
the 7/2+ state, we also varied the branching to the 5/2+ state in step of 0.2 % from 0% to 5%. The X-ray
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br(9/2−) band br(g.s.) Nexp Nsim

100 0.0 25 ± 5 35 ± 6
99.8 0.1 36 ± 6
99.8 0.2 37 ± 6
99.6 0.3 38 ± 6
99.6 0.4 37 ± 6
99.4 0.6 40 ± 6
99.2 0.8 42 ± 6
99 1.0 44 ± 7

Table 5.13: Table showing how the intensity of the simulated alpha peak between 8850 and 9000 keV
varies according to the relative branching to the 7/2+ ground state.

9/2− 5/2+ Nexp(x − ray) Nsim(x − ray) Nexp(e−) Nsim(e−)
100 0 40 ±6 47 ±7 31± 6 31± 6
99 1 48 ± 7 31 ± 6
98 2 50 ± 7 32 ± 6
97 3 52 ± 7 33 ± 6
96 4 55 ± 7 34 ± 6
95 5 57 ± 7 34 ± 6

Table 5.14: Table showing how the intensity of the X rays and electrons vary with branching to the 5/2+

state. A maximum of 3 % branching can be accommodated.

and the electron counts are given in table 5.14. By comparing the integrals we see that a maximum of 3
% can be fed to the 5/2+ state. We cannot rule out the possibility that the 5/2+ lies below the K binding.
This would require performing the χ2 minimization with two unknowns: the true conversion coefficient of
the 143 transition and the intensity of the 5/2+ → 9/2− transition. Such a multiparameter study could be
envisaged in the future. The final decay scheme established for the alpha decay of 255Rf is shown in fig.
5.20.

5.8 Hindrance Factors
Hindrance factors are calculated using Preston’s method described in section 3.1.1. To calculate the
hindrance factor we need to get the total decay branching to these states. From our measurements
brα = 49.1 ± 1.3% and br f ission = 50.9 ± 1.1%, T1/2 = 1.67 ± 0.05 s. The nearest even-even nucleus
is 256Rf with T1/2 = 6.67 ± 0.01 ms, brα = 0.32 ± .017% and Eα = 8790 keV. The calculated radius of
256Rf is ρ = 9.27 fm. After mass dependence correction using eq. 3.24, the radius of 255Rf is found to be
ρ = 9.26 fm. The HF to the states in 251No are reported in table 5.15.
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Figure 5.20: Proposed decay scheme of 255Rf where the given alpha branching ratios are the maximum
limits and the energies correspond to Q values.

state Eα (keV) brα % brdecay % HF
9/2− 8716 78.9 38.74 1.3

72.8− 35.74 1.4
83.5+ 41 1.2

11/2− 8660 12.2 6 5.5
9.5− 4.66 7.1

19.8+ 9.72 3.4
13/2− 8595 8.9 4.37 4.7

5.8− 2.85 7.2
10.8+ 5.3 3.9

7/2+ 8916 0.1+ 0.049 4114
5/2+ 8753 3 + 1.47 43.8

Table 5.15: HF calculated using Preston’s Method. + and - indicate maximum and minimum values
as discussed in the text. The alpha particle energies have been corrected for mass dependence of the
contribution of the recoil daughter to the detected energy.



134 CHAPTER 5. DECAY SPECTROSCOPY OF 255RF AND 251NO

5.9 Investigation of isomeric states in 255Rf
In section 5.3, we have discussed how the single-particle 5/2+[622] spin isomer and possible multi-
quasiparticle isomers were identified in 255Rf by the GSI group. In our study, we have detected 27 events
where 2 consecutive low energy signals in the implantation DSSD are observed before the characteristic
alpha decay or fission of 255Rf. This an indication of the presence of at least two isomers. In the following
sections detailed analysis for establishing the characteristics of these isomers is presented. First we shall
present the spectroscopic information obtained from the experiment and then we will discuss the decay
scenarios we have tested with Geant4 simulations to explain the observations. We have looked at isomeric
decays in several ways, i.e., through the detection of :

• low energy signals occurring in the same pixel as the recoil and subsequent alpha- or fission decays.
These events will be denoted by CE.

• Signals in the Ge or tunnel detectors either in coincidence with the CEs or not. They will be denoted
by γ or e- respectively.

5.9.1 Isomer spectroscopy of 255Rf
Detection of single isomeric events

The events where only 1 CE was detected in the implantation detector are referred to as ER*-[CE]-255Rf,
where * correspond to the event with respect to which the lifetime of the event enclosed in [ ] is measured
and these symbols will be used in the rest of the sections. The energy and time distribution of these CEs are
shown in fig. 5.21a. The time distribution has been fitted with the 1 lifetime component fit function given
in Appendix A. In fig. 5.21b, we can notice the dead time of the ADCs, which is about 25 = 32 µs. Due
to this dead time only 663 CEs were detected out of N f it = 1024 ± 45, an estimation from the lifetime fit.
The measured half-life of these CEs is T1/2 = 53± 2 µs. The spectra of gamma rays and electron observed
in coincidence with the CEs are shown in fig. 5.22a and 5.22b respectively. In the γ-ray spectrum, the

(a) (b)

Figure 5.21: a) Energy and time distribution plot, and b) the fit on the lifetimes of the CEs in the decay
chains ER*-[CE]-255Rf.



5.9. INVESTIGATION OF ISOMERIC STATES IN 255RF 135

(a) (b)

Figure 5.22: (a) 103 gamma rays and (b) 69 electrons(tunnel) observed in coincidence with CEs in the
decay chains ER-[CE]-255Rf.

most intense line is the 778 keV transition and some LX rays around 24 keV are visible. While in the e-
spectrum, two structures < 100 keV and around ∼ 145 keV are observed. We have attempted to disentangle
the CE events on the basis of whether a gamma ray and/or an electron is seen in coincidence with them.
Table 5.16 gives the half-lives, mean energy and counts of these CEs in different conditions. We can

Condition mean E (keV) Fit Schmidt Counts
w γ 202 75 ± 8 96+111

−9 97
wo γ 174 49 ± 2 72+3

−3 566
w e- 184 71±9 91+13

−10 63
wo e- 177.4 51 ± 2 74+3

−3 600
w γ and e- 177.8 105± 23 124+32

−21 24
wo γ and e- 172.7 49±2 72+3

−3 527
w γ wo e- 211 65±8 87+12

−9 73
wo γ w e- 189.3 50±8 70+13

−10 39
w γ or e- 198.4 68± 6 89+8

−7 136

Table 5.16: Half-lives (in µs) of conversion electrons for the chain ER*- [CE]-255Rf in different condi-
tions. Here ‘w’ and ‘wo’ refer to with and without coincidence respectively. Since CE events suffer from
deadtime, the T1/2 values should be considered as upper limits.

notice that the half-lives of the CEs without coincident gamma rays and/or electrons have similar half-
lives as the one established for the 5/2+ isomer from the work of the GSI group in contrast to the ones
with coincident gamma rays which tend to have longer lifetimes. We have summed the energies of the
CEs with the energies of the coincident gamma rays and electron on event-by-event basis to get an idea of
the total energy (Emax) removed. This Emax would then set a constraint on the energy step involved in the
deexcition of the supposed isomer. Since, ground state alpha and fission decays follow these CEs, the Emax

would than correspond to the the excitation energy of the isomer with respect to the ground state. Fig.
5.23 shows the Emax for these CEs with their corresponding detection times. One can notice that except
for 1 high energy event most of the events lie below 1100 keV.

One can also detect single isomeric decays when no CEs are recorded in the implantation detector. We
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Figure 5.23: CE time with respect to recoil implant vs the total energy Emax obtained by summing all the
energies detected in coincidence on an event-by-event basis.

have thus looked at the gamma rays and electron that follow the recoil with a subsequent alpha or fission
decay in the same pixel. These correlations shall be denoted by ER-γ/e−-255Rf. The energy spectra of
these gamma rays and electron are shown in fig. 5.24. We have measured the half-lives of the prominent
gamma rays lines at 778 keV, 708 keV, 666 keV, 543, 170 and 102 keV. Although some of the peaks
are not 3 σ peaks and the counts are very low, we have fitted their time distributions. The half-lives of
these gamma transitions were also determined using the method of Schmidt [192] (see Appendix A) as
it is appropriate for very low statistics. The mean energy, counts without background subtraction and the
half-lives from a fit and from Schmidt’s method are given in table 5.17. The last three columns in table

ER-γ 255Rfα/ f ER*-[γ] -CE-255Rfα/ f

E (keV) Counts Fit Schmidt Counts Fit Schmidt
778.4 33 32±6 35+7.4

−5.2 43 42±7 46+8
−6

708 7 66±27 66.6+40.5
−18.3 8 33±19 63.9+35

−17
666.3 6 14±6 14.7+10.1

−4.3 7 35±15 35.4+21
−10

610.4 5 44±24 62.2+50.4
−19.2 7 83 ± 43 78.6+48

−22
543.8 9 55±36 57.6+28.8

−14.4 12 59±29 59.1+24
−13

170 30 44±8 35.8+8
−5.5 33 49±8 42.1+8.9

−6.2
102.7 13 89±54 96.9+37.2

−21 17 116±39 101.9+32.6
19.9

Table 5.17: Half-lives (in µs) of prominent gamma lines observed (see fig. 5.24a) before the ground-sate
decay of 255Rf. [CEs] indicates that gamma rays in coincident with the CEs in the implantation detector
were also included.

5.17 under the heading ER*-[γ]-CEs-255Rf correspond to the gamma rays observed before the ground
state decay irrespective of whether a CE is detected or not in the implantation detector. We notice that for
each transition, the half-life measured in both the cases ER-γ-255Rf and ER-γ-[CEs]-255Rf is compatible,
at least from Schmidt’s method for the weak lines. We can also notice that the 102 keV transition has
a very different half-life, an indication that it must originate from a different isomer. To inspect more
closely, whether decay from more than one isomeric states were contributing to the γ-ray spectrum, we
have performed a weighted mean analysis. Fig. 5.25 shows the spread of the half-lives. The weighted
mean half-life of all the gamma transitions was found to be 30.78 µs (denoted by a black straight line)
with a standard deviation σ = 3.8 µs. Bands corresponding to 1 σ to 5 σ are drawn to identify abnormality
in the half lives, fit T1/2 and mean T1/2 correspond to the fit and Schmidt values given in table 5.17. The
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(a) (b)

(c)

Figure 5.24: (a) Spectrum of gamma rays (b) zoomed at low energy and (c) spectrum of tunnel electrons
observed in the chains ER-γ/e−- 255Rf.

errors on the Schmidt values are reflected in the asymmetric band drawn for mean T1/2. From this figure we
can notice that the 102 keV transition is very far from the weighted lifetime whereas, the other transitions
fall within 5 σ. The half lives obtained for the electron detected in the tunnel detector are given in table
5.18. Here in particular, we have separated the electron in energy intervals to look for different behaviors
in the lifetimes.

The γ − γ and γ − e− coincidence plots are shown in fig. 5.26 in which the coincidence of the few
high energy transitions at 778 keV, 708 keV and 610 keV with electron of energy < 200 keV can be
ascertained. We have summed the energies of the coincident gamma rays and electron to get Emax. This
allows a comparison of the isomeric properties in the two types of correlations: ER*-[CE]-255Rf and ER*-
[γ/e−]-255Rf. In fig. 5.27, we see that the Emax in both the correlations are comparable. Aside from the
dead time cut for the CEs, the time distributions seem to be compatible.
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Figure 5.25: Measured lifetime of prominent gamma-ray lines for ER- γ correlations with or without CEs
(i.e low-energy signals in the implantation DSSD) followed by the ground-state decay of 255Rf.

ER-e-255Rfα/ f ER*-[e-]-CE-255Rfα/ f

E Range (keV) mean E Fit Schmidt Counts mean E Fit Schmidt Counts
0-90 70 29±4 63.1+4

−4 242 70 44±4 52.9+3
−3 310

90-130 110 41±2 41.9+2.5
2.2 316 110 42±2 39.8+2

−2 336
130-170 142 43±4 44.9+5

−4 106 143 48±4 39+4
−3 123

>170 328 29±8 64.5+10
−7.8 52 324 33±9 58+9

7 58
Tot 117 41±2 51.2+2

−2 716 114 44±2 46+2
−2 827

Table 5.18: Energy ranges and associated half-lives (in µs) of electrons detected in the tunnel detectors
(see fig. 5.24c) before the ground-sate decay of 255Rf (see text for details on the last 3 columns of the
table).

(a) (b)

Figure 5.26: a) 65 γ− e− coincidences and b) 66 γ−γ coincidences observed in the decay chains ER-γ/e−
- 255Rf decay.

2 isomeric decays

It was mentioned before that two CEs cascades were detected in the implantation detector,these are denoted
by ER-CE-CE-255Rf. The energy and the time distributions of the first and second CEs are compared in fig.
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Figure 5.27: Comparison of Emax and lifetime of the isomer detected in two different correlations.

5.28. Two conclusions can be immediately drawn from this figure: (1) the first isomer (iso1) is relatively
longer-lived than the second (iso2), (2) the detected signal for the first isomer is of much smaller energy
than the second. The measured half-lives of isomers iso1 and iso2 are given in table 5.19 for different
energy ranges. The half-life of iso2 with respect to the recoil is also given to compare with the CEs in the
ER*-[CE]-255Rf correlations where we may have contributions from many possible sources: iso1 when
iso2 is missed and iso2 when iso1 is missed resulting in an apparent longer lifetime, iso2 alone and from
possibly the 5/2+ isomer, which is known to be populated in the reaction in other isotones. Incidentally,
neither a gamma ray nor an electron was detected in coincident with isomer iso1 CEs. However, 6 gamma
rays and 8 electrons were detected in coincident with the iso2 CEs. Their energy spectra are shown in
fig. 5.29. Interestingly, from fig. 5.29 we can identify the 543 keV and 778 keV gamma transitions that
are seen in coincidence with the CEs of the ER-CE-255Rf chains and in the ER-γ/e−-255Rf correlations.
This suggests that in all the three decay chains, the decay of the second isomer has been observed. Again
for the second CE, based on whether a gamma ray and/or an electron was observed with it, the half-lives
are presented in table 5.20. We can notice that under all the conditions, the half-lives of second CEs are

(a) (b)

Figure 5.28: a) Energy and b) time distribution comparisons between the CE observed in the 27 decay
chains ER-CE-CE-255Rf.
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E Range (keV) mean E (keV) Fit Schmidt Counts

ER*-[CE]-CE-255Rf
< 200 119.8 53± 11 83.7+19.9

−13.5 27
0 − 100 88.2 - 71.5+49.3

−20.7 6
100 − 200 128.8 - 87.1+24.3

−15.6 21

ER-CE*- [CE]-255Rf
< 350 190.8 13 ± 3 27.2+6.5

−4.4 27
0 − 200 129.4 10 ± 3 24.5+8.2

−4.9 16
>200 280 27 ± 16 31+13.4

−7.2 11
ER*-CE- [CE]-255Rf 84 ± 24 110.8+26.4

−18 27

Table 5.19: Half-lives (in µs) of the CEs measured in different conditions.

(a) (b)

Figure 5.29: a) 6 gamma rays and b) 8 electrons(tunnel) observed in coincidence with 2nd CEs in the
chains ER-CE-[CE]-255Rf.

similar suggesting that they are stemming from the same isomer. The time distribution vs Emax of iso2 is
shown in fig. 5.30a.

Summing the energies of the two cascading CEs and the coincident gamma rays and electron, we can
obtain the excitation energy Emax of the isomer iso1, which is shown in fig. 5.30b. The Emax obtained is
below 1.1 MeV similar to the limits obtained before.

Isomeric decays were also observed in the correlations ER-γ/e−-CE-255Rf. 19 such gamma rays and
23 electrons were detected before a CE signal. Their energy and time distributions are shown in fig. 5.31.
In the γ-ray spectrum we observe some LX rays around 26 keV, and a 102 keV transition and no KX rays,
suggesting no transition in the decay from iso1 to iso2 is above the K binding energy. Except for the 2
gamma rays above 200 keV and an electron around 250 keV, both the electron and γ rays have energies
less than the Emax of the iso1 in ER-CE-CE-255Rf correlations. The higher energy events could be due to
our selection of 255Rf ground state decays which lies very close to the randoms (see fig. 5.7). The half
lives of iso1 and iso2 in these correlations are given in table 5.21. In the case of gamma rays and electron
all the events were taken into consideration to obtain the half-lives. By analogy with the ER-CE-CE-255Rf
correlations, we expect the first isomer to have a longer lifetime than the second and from table 5.21, this
is indeed what can be inferred.

The energy and time distributions of the CEs in these decay chains are shown in fig.5.32a. From
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Condition mean E (keV) Fit Schmidt Counts
w γ 224.2 19 ± 17 24.1+16.7

−7 6
wo γ 181.3 15 ± 4 28+7.8

−5 21
w e- 153.5 20±11 30.3+16.6

−7.9 8
wo e- 206.5 13 ±4 25.8+7.7

−4.8 19
w γ and e- 197.2 - 23.9+57.7

−10 2
wo γ and e- 198.2 13±4 26.2+9.1

−5.4 15
w γ wo e- 237.7 12±7 24.26+24.3

−8.1 4
wo γ w e- 139 - 32.46+22.4

−9.4 6
w γ or e- 1281.6 28±8 28.3−11.5

−6.3 12

Table 5.20: Half-life (in µs) of conversion electrons for the chain ER-CE*- [CE]-255Rf in different condi-
tions.

(a) (b)

Figure 5.30: (a) Emax obtained by summing the energy of the (a) 2nd CE and the coincident gamma rays
and electron. (b) + CE1 on event-by-event basis.

(a) (b)

Figure 5.31: Energy and time distributions of the a) gamma rays and b) electron seen before the detection
of the CE in the decay chains ER-γ/e−-CE-255Rf.
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correlation Fit Schmidt Counts
ER*-[γ]-CE-255Rf 36±8 45.615.8

−9.4 15
ER*-[e-]-CE-255Rf 40 ± 8 46.3+13

−8.5 20
ER-γ*-[CE]-255Rf 49±12 41+16

−9 13
ER-e-*-[CE]-255Rf 22±6 25.2+7.2

−4.6 20
ER*-γ/e−e-[CE]-255Rf 55±9 78.4+16.8

−11.8 32

Table 5.21: Half-lives (in µs) of gamma rays and electrons in the tunnel and in the DSSD of fig. 5.31 and
5.32a.

(a) (b)

Figure 5.32: a) Energy and time distributions of the CEs in the decay chains ER-γ/e−-CE-255Rf. Their
lifetimes have been compared with the lifetime of iso2 mocking the non detection of iso1 in the ER*-CE-
[CE]-255Rf decay chains. b)Energy step of the 2nd isomer (CE) in the decay chain ER-γ/e−*-[CE]-255Rf.

energy arguments these cannot stem from iso1 as the Emax in the decay step from iso1 to iso2 is less than
200 keV, suggesting that their origin could be from iso2 decay. However, their lifetime seems longer than
the lifetime of iso2 which might be due to the poor statistics.

In these correlations as well, 6 gamma rays and 10 electrons were observed in coincidence with the
CEs, in particular the 778 keV line was observed. Again, to inspect whether more than two isomers are
contributing to these spectra we have measured the half-lives of the CEs under different conditions and
found them to be equivalent (see table 5.22). The Emax in the decay step of iso2 to the ground state is
shown in fig. 5.32b.

No ER-CE-γ-255Rf were investigated because of overwhelming punch through signals in the Clover
detector. For similar reason, no ER-γ-γ-255Rf correlations were investigated. It was also not possible to
investigate ER-CE-[e-]-255Rf correlations because of the limit set by random correlations. Since we have
detected only 2 isomers in cascade in whichever way we look, we can now compare them on the basis
of their generation in the decay correlation chains. The properties of the 1st, higher-lying isomers are
compared in fig. 5.33a and the low lying ones in fig. 5.33b. From there figures, we can conclude that the
energy gap between iso1 and iso2 is of the order of 150-200 keV and that iso2 lies ∼ 1.1 MeV above the
ground state. The various studied correlations indicate that the longer-lived iso1 feeds a shorter lived iso2
that emits a 778 keV gamma ray. There results confirm the GSI result of fig. 5.6.
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Condition mean E (keV) Schmidt Counts
w γ 182.9 21+17

−7 5
wo γ 218 34+8

−6 27
w e- 182.3 27+16

−7 7
wo e- 221.6 33+8

−7 25
w γ and e- 166.2 17+17

−6 4
wo γ and e- 220.4 33+9

−6 24
w γ wo e- 249.7 40+∞

−20 1
wo γ w e- 203.8 40+55

−15 3
w γ or e- 190.8.6 28+16

−7 8
tot 213 32+7

−5 32

Table 5.22: Half-lives (in µs) of CEs for the chain ER- γ/e−*-[CE]-255Rf in different conditions.

(a) (b)

Figure 5.33: Lifetime and Emax compared for the a) 1st isomer and b) the 2nd isomer.

5.9.2 Discussion

There are several possibilities for the 2 isomers at excitation energies around ∼ 1.1 − 1.25 MeV. The odd
neutron (9/2− [734]ν) can couple to the 5−, 8− or 3+ 2-quasiproton states observed and/or suggested in 254No
and 254,256Rf, or the odd neutron can couple to the 2− and 8− 2-quasi-neutron states observed in 252No. The
5− and 8− configurations are expected to be the lowest (see table VII in ref. [168]) and lie close in energy
and because of the microsecond lifetimes, the ∆K involved in the isomeric transitions must not be greater
than 5 (see figs. 5.34a, 5.34b and 5.35 where transitions lifetimes as a function of transition energy are
plotted for ∆K = 3 - 5). Possible high-K and low-lying 1-neutron ⊗ 2-proton configurations for the iso-
mers are therefore {9/2− [734]ν ⊗ 1/2− [521]π ⊗ 9/2+ [624]π} and {9/2− [734]ν ⊗ 7/2− [514]π ⊗ 9/2+ [624]π}
yielding states with Kπ=19/2+ and 25/2+. We have constructed several decay scenarios keeping in mind
the constraints set by observables such as Emax, T1/2 and the intensities in the γ-ray and e- spectra. These
scenarios were then simulated in Geant4 and the simulation results were compared to the experimental
results. The comparison between the simulated spectra and experimental ones is however not as straight-
forward as in the case of the α decay of 255Rf. This is due to 2 factors: the first one is the dead time between
2 subsequent events in a pixel of the DSSD and the second is related to the experimental thresholds. As
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(a)

(b)

Figure 5.34: Experimental half-lives of the prominent gamma transitions listed in table 5.17 for ER- γ -
255Rf decay compared with Weisskof estimates including a K-hindrance a) ν = 3− L and b) ν = 4− L. The
Weisskof estimates have been corrected for the internal conversion coefficients. For each transitions in the
figures, the band corresponds to fν = 30− 300 with a line corresponding to fν = 100. The upper and lower
limits on the half-life of iso1 and iso 2 are from table 5.19 and 5.21. A band has been drawn to highlight
its half-life in the visible range.

an example, gamma rays which are emitted by one or the other isomer may not be detected in coincidence
with a CE in the DSSD, not because the particles contributing to the CE signal were not emitted, but sim-
ply because they were not detected. For our study, an effective threshold of ∼ 80 keV and a dead time of
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Figure 5.35: Same as for fig. 5.34 for ν = 5 − L.

32 µs were used for the implantation detector.

In scenario 1, we suppose that the 19/2+ isomer decays directly to the ground state 9/2− band. Fig.
5.36 shows the corresponding decay scheme. Using a typical value of ~

2

2J = 6.1 in equation 2.71, a 170
keV can be obtained for the E2 cross-over transition at spin 15/2− in the ground state band and a few of
the observed high-energy lines may also be placed in the decay scheme. The K hindrance for such high

(a)
(b)

Figure 5.36: Scenario 1: a) Decay scheme b) simulated γ ray spectrum where experimental background
has been added.
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energy E1 transitions is of the order of 400, which is not uncommon for E1 transitions and is in line with
the fν=804 measured in the decay of the 8− isomer in 254No [130].

The simulated spectrum shown in fig. 5.36 has been adjusted to the experimental 778 keV peak and a
fraction of the experimental randomly-correlated background has been added to reproduce the low-energy
background, which is not present in the simulations. The simulated spectrum shows a noticeable deficiency
for the 170 keV line, which is expected given the internal conversion coefficient (αTot = 3.68(6)) for an E2
transition. Besides the experimentally unobserved peak at 196 keV, there is also an excess of KX rays in
the simulation. Hence, we discarded this decay scenario.

In scenario 2 displayed in fig. 5.37a, we assume that the 19/2+ isomer decays via a 170 keV E1 to the
11/2−, whose excitation energy was inferred from the properties of the α decay of 259Sg (see sec. 5.3).
Such an E1 decay would correspond to a K hindrance of ∼700.

(a)
(b)

Figure 5.37: Scenario 2: a) Decay scheme b) simulated γ ray spectrum with added experimental back-
ground.

To fit the high-energy lines we adjusted the rotational energies of the members of the ground state band
and placed the 11/2− state at an excitation energy of 590 keV. This energy is consistent with the GSI result
∼ 600 keV. Most of the flux leaves the 11/2− band before the bandhead. This is possible if the 11/2− band
is vibrational. N. Yu. Shirikova et al. [193], have investigated the nature of states in the region around
Z=100 using the quasiparticle phonon model. In 257Rf, for example, the 11/2− state is predicted to carry a
significant one-quasiparticle⊗phonon component: 7/2[613]⊗2−. Such a vibrational character of the 11/2−

band can also be inferred in 253No. The recent identification of the 11/2− state at 753 keV above the ground
state in 253No [K. Hauschild et al., to be published] has recently allowed to reinterpret the decay scheme
of the ∼ 700 µs isomer [42] as all the high-energy transitions identified in refs. [42] and [194] can easily
be placed if they all deexcite the 11/2− band (see fig. 5.38).

Regarding the 25/2+ isomer, Emax ≤ 200 sets a constraint on how far the 25/2+ isomer can be in energy
from the 19/2+ isomer. We assume that a low energy E2 transition deexcites the 25/2+ and populates the
21/2+ state of the 19/2+ band. The 25/2+ isomer cannot be lower than the 21/2+ because it would then
have to decay via an E3 transition to the 19/2+ band head, and thus have a much longer lifetime. We assign
the low energy E2 transition to 98 keV and the M1 transition in the band to be 102 keV, since we observe
them in our experiment. However, one should point out that a 98 keV E2 transition implies a K hindrance
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Figure 5.38: Revised partial decay scheme of 253No.

of ∼3000 in going from K=25/2 to K=19/2. The energy spacing of 102 keV can be reproduced by taking
~2

2J = 4.9 which is acceptable for a band built on a 3 quasiparticle configuration with reduced pairing.
The spectrum of gamma rays obtained in the simulations of decay scenario 2 is shown in fig. 5.37b.

Although the high-energy lines can be well accounted for in this decay scenario, there is now an excess
of counts in the simulated 170 keV line. To reduce its intensity, we added an additional branch out of the
isomer: a 29 keV E1 transition, that feeds the 21/2− member of the 11/2− band (see the decay scheme
of scenario 3 in fig. 5.39a). As a test we gave 50 % gamma emission branching to each of the 2 E1
transitions. With these ingredients, a reduction of the 170 keV intensity is observed, but at the cost of extra
lines, which are not visible in the experimental spectrum and which correspond to the additional M1 and
E2 crossover transitions at 141 and 264 keV. Thus, this decay scenario was ruled out as well.

Since none of the above three decay schemes reproduced our experimental γ-ray spectrum, we then
supposed that the 19/2+ isomer decays to both the ground state band and the 11/2− band. This time, we
changed the moment of inertia factor to be ~2

2J = 5.8 for the ground sate band, resulting in a 64 keV energy
spacing between the 11/2− and 9/2− states. This spacing is the same as the one observed in 253No. The
moment of inertia for the 11/2− band was kept the same as the obtained rotational sequence is in line with
the 11/2− band observed in 257Rf [168]. To fit the high-energy lines, the 11/2− band has to be pushed up
to 632 keV, which is slightly higher than what was inferred from α spectroscopy. The decay scheme is
shown in fig. 5.40a and the comparison of the simulation result is shown in fig. 5.40b. The ingredients
for simulating this decay scheme are given in table 5.23 and 5.24. We notice that we can reproduce more
or less all the gamma lines except for the LX rays, which could be due to the contribution of the 5/2+

spin isomer neglected in this decay scheme. The confidence in this decay scenario also increases from the
comparison of the Emax of iso2 in fig. 5.41a.

Now if we look at the simulated e- spectrum in fig. 5.41b, we see clearly a deficit of counts in the
simulated spectrum around 110 keV. To make this comparison we have simply scaled the detected e-
spectra from each isomeric decay by the same scaling factors used for the 778 keV and 102 keV peaks.
Most contributions from both isomeric decays appear on the low-energy side of the experimental spectrum
and are cut due to the threshold in the tunnel detectors. If we argue that the scaling factors applied to the γ-
ray spectra do not apply to the simulated e- spectra and scale them up so as to reproduce the excess counts
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(a)
(b)

Figure 5.39: Scenario 3: a) Decay scheme (bottom) and a zoomed part of experimental γ-ray spectrum
(top) b) simulated γ ray spectrum with added experimental background.

(a) (b)

Figure 5.40: Scenario 4: a) Decay scheme (bottom) and a zoomed part of experimental γ-ray spectrum
(top) b) simulated γ-ray spectrum with added experimental background.

at ∼110 keV , then extra strength appears above 150 keV, which is not observed in the experiment (see fig.
5.42a). Therefore, we conclude that the excess counts in the tunnel spectrum comes from the decay of the
5/2+ isomer, which is expected to be populated in the fusion evaporation reaction but whose contribution
could not be disentangled on the basis of lifetimes, since all 3 isomers have very similar lifetimes. The
excitation energy which best fits the excess counts puts the isomer at en excitation energy of 145 keV, just
below the K binding energy for Rf, which explains the lack of KX rays observed by GSI. After adding the
contribution from the 5/2+ state, the shape and intensity of the experimental e- spectrum can be reproduced
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(a) (b)

Figure 5.41: a ) Emax of the in the decay from 19/2+ isomer b) Comparison of e- spectra, where the
contribution from each of the isomeric decays are shown.

as shown in fig. 5.42b as well as the missing LX rays are recovered (see fig. 5.42c).
So far, we have used an average threshold of 80 keV and scaled the simulated γ-ray and e- spectra to fit

the experimental ones. We know that the DSSD threshold is between ∼ 60−100 keV, and depending on the
chosen threshold we will have to adjust the scaling factors. This however, will not affect our conclusions.

To reproduce the CE spectrum and estimate the isomer population numbers, the correct threshold needs
to be taken into account as well as the dead time associated with the implantation detector. In table 5.25
the fraction of the CE spectrum which lies below or above the two threshold extremes of 60 and 100 keV
are reported for each isomer, together with the fraction of the decays, which occur during the 32 µs dead
time or after it assuming T1/2(25/2+)= 49 +13

−10 µs, T1/2(19/2+) = 28.6+7.5
−4.9 µs from this work and T1/2(5/2+)

= 50(2) µs from the GSI result.
Let us denote the number of isomers populated during the experiment by N1, N2 and N3 respectively.

Spin (I) E* (keV) E(∆I = 1) E(∆I = 2) B(M1)/B(E2) δ brγ(∆I = 1) brγ(∆I = 2) αmixed α(E2)
9/2− 0 - - - - - - - -
11/2− 64 64 - 0.0467 0.247 100 73.2133
13/2− 139 75 139 0.066 0.244 100 18.9 43.1705 8.461
15/2− 226 87 162 0.088 0.244 100 41.6 26.8149 4.393
17/2− 324 98 185 0.114 0.242 100 70.16 18.4114 2.535
19/2− 437 113 211 0.143 0.249 100 100 11.9013 1.503
21/2− 560 123 236 0.175 0.246 68 100 9.1758 0.9823
11/2− 632 - - - - - -
13/2− 719 87 - 0.063 0.288 100 - 27.7954
15/2− 819 100 187 0.085 0.286 100 21 17.7325 2.427
17/2− 934 115 215 0.109 0.29 2.2 4.9 11.4502 1.398
19/2+ 1103 - - - - - -
21/2+ 1205 102 - - - 100 - 15.2
25/2+ 1303 102 - - - - -

Table 5.23: Calculated transition energies, B(M1)/B(E2) ratios in (µn/eb)2, mixing ratios δ, relative gamma
emission branching ratios and internal conversion coefficients for the M1 and E2 Intra band transitions
from states (Spin I) having excitation energies (E* in keV). In the cases where δ is not given αmixed is the
internal conversion coefficient of M1 transition αM1.
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transition E (keV) σ brγ α

25/2+ → 21/2+ 98 E2 100 41.43
19/2+ → 17/2− 170 E1 27 0.1754
19/2+ → 21/2− 543 E1 32 0.01699
19/2+ → 19/2− 666 E1 27 0.01186
19/2+ → 17/2− 778 E1 100 0.009068
17/2− → 17/2− 610 M1 77 0.4192
17/2− → 15/2− 708 M1 100 0.279
11/2− → 9/2− 632 M1 100 0.3805

Table 5.24: Table of inter band transitions of multipole character σ with relative gamma emission branch-
ing ratios brγ and internal conversion coefficients α.

We shall denote the fractions for each isomer given in table 5.25 by a subscript corresponding to the isomer
index number. As discussed before, the detection of 2 CEs can be viewed as iso1 feeding iso2 and the CEs
in both decay steps were detected. So, the number of observed (27) ER-CE-CE-255Rf correlations can be

(a) (b)

(c)

Figure 5.42: Simulated tunnel spectrum a) of iso1 + iso2 when scaled by 4, b) after including 5/2+ isomeric
decay. c) γ-ray spectrum after adding 5/2+ isomer’s contribution. Note that the missing LX rays in fig.
5.41b are recovered.
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Isomer no. spin parity alive % dead % < 60 keV (%) > 60 keV (%) < 100 keV (%) > 100 keV (%)
1 25/2+ 63.6 36.4 24.1 75.9 44.9 55.1
2 19/2+ 46 54 2.6 97.4 9.9 90.1
3 5/2+ 64.2 34.8 53.7 46.3 61.3 38.7

Table 5.25: Fractions of isomers that would not be detected (dead), detected (alive) because of the dead-
time associated with the ADCs of the implantation DSSD. The fractions of the CE spectra below (<) and
above (>) the 60 keV and 100 keV thresholds were obtained from simulations.

written as:
(N1 × (alive1 × aboveT H1)) × (alive2 × aboveT H2) = 27 (5.10)

Using the fractions given in table 5.25 we obtain N1 = 125(24) for 60 keV threshold and N1 = 186(36) for
100 keV threshold.

We can estimate the population number N2 from the ER-CE-255Rf correlations. However, when only
1 CE is detected there are multiple factors to consider as the spectrum has contribution from all 3 isomer
populations. The total number (701) of ER-CE-255Rf can then be expressed as:

N1 × (alive1 × aboveT H1) × (dead2 + alive2 × belowT H2)
+N1 × (dead1 + alive1 × belowT H1) × (alive2 × aboveT H2)

+N2(alive2 × aboveT H2)
+N3 × (alive3 × aboveT H3) = 701

(5.11)

This however requires an estimation of the N3 population of the 5/2+ isomer. We pointed out before
that in the e- spectrum for ER-γ/e-255Rf correlations there is a deficiency in the intensity without the
consideration of 5/2+ isomer. From this deficiency we can extract a scaling factor (S F3) that would give
an estimation of N3 from the following simple relation:

N3 = S F3 × Nsim × (dead3 + alive3 × belowT H3) (5.12)

where Nsim is the number of simulations, in this case Nsim = 105. The scaling factor S Fi is the simple ratio
of the counts (n) of e- in the energy range from 95 keV to 160 keV (where the deficiency is observed) and
can be expressed as

S F3 =
nexp − (nsim(iso1) × S F1 + nsim(iso2) × S F2)

nsim(iso3)
(5.13)

where nsim(isoi) is the simulated total counts in the e- spectra from isomer i including deadtime and thresh-
old effects.

The scaling factors S F1 and S F2 can be obtained by comparing simulated and experimental gamma
ray intensities of the 778 keV peak for iso2 and the 102 keV peak for iso1 since according to our decay
scheme the 102 keV peak is only due to decays of iso1. The 778 keV peak however, has two possible
sources: N1 isomeric decays when none of the CEs in the cascade are detected and N2 isomeric decays in
which case as well the CEs are not detected. With the obtained scaling factors for iso1 and iso2 we could
extract N3 = 1171(79) for 60 keV threshold and N3 = 1265(86) for 100 keV threshold.

Knowing the populations N1 and N3 we can deduce the N2 isomeric population from equation 5.11. The
obtained values are N2 = 649(79) and 721(87) for 60 and 100 keV thresholds respectively. These numbers
can in turn be translated into the following isomeric ratios: 1.9(4) % for the 25/2+ isomer, 8.7(1.1) % for
the 19/2+ isomer and 15.4(1.2) % for the 5/2+ isomer. Although, these numbers suffer from uncertainties
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due to uncertainties in the deadtime and the thresholds, they are consistent with known populations of low-
lying 1 quasiparticle and 3 quasiparticle states. The difference in isomeric ratios of the 2 high-K isomers
may reflect the average spin populated in the reaction [195]. The comparison between the experimental
and simulated CE spectra is given in fig. 5.43. The goodness of the reproduction of all the experimental
spectra gives confidence in the main features of the decay scheme shown in fig. 5.44 and the proposed
structure of the high-K isomers, which is in line with what is known in heavier Rf isotopes.
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Figure 5.43: Comparison of the experimental CE spectrum with simulations showing the contributions of
all 3 isomers for a) 60 keV and b) 100 keV thresholds.

Figure 5.44: Proposed partial level scheme for 255Rf.



Chapter 6

Conclusions and Perspectives

In this work, we have introduced the current configuration of the GABRIELA detection system. Using
Geant4 simulations the gamma-ray and electron detection efficiencies of this configuration have been
presented. An overall increase in performance is observed compared to its previous version. We have
validated the simulated efficiency curves using data from a calibration run, demonstrating that the geom-
etry constructed in the Geant4 code is accurate and can hence be reliably incorporated in the analysis
and interpretation of experimental data. It was also demonstrated how simulations may be used to esti-
mate the implantation depth of the evaporation residues in the implantation detector, which is crucial for
determining correctly the electron detection efficiency.

It has been shown that due to summing effects, the extraction of the absolute detection efficiency is
quite challenging even for cascades of only two transitions. With an increasing number of coincident tran-
sitions, as can be the case, for example, in the decay of a high K isomer or of high-energy excited states
populated by alpha decay, performing a similar correction procedure may not be straightforward and can
be quite cumbersome, especially since the transitions involved may not be pure or of unknown electro-
magnetic character. It would be erroneous to establish decay schemes based solely on the gamma-ray
and conversion electron efficiency-corrected intensities. Since the internal conversion process becomes
the dominating decay mode in the heavy region, more summing is expected due to atomic relaxation pro-
cesses, as a result, making the study of heavy nuclei difficult. Thus, in a compact and efficient spectrometer
such as GABRIELA, it is imperative to perform simulations and compare with the experimental results in
order to establish decay properties of heavy nuclei. A paper based on our work on the characterization of
the GABRIELA spectrometer has recently been accepted in EPJ A for publication. This characterization
was essential for interpretation of the experimental results and represents a large part of this thesis work.

In this study, we have demonstrated that a proper estimation of the implantation depth profile of the
evaporation residues in a detector is crucial especially for conversion electron spectroscopy and introduced
a novel technique to make such an estimation. For this work, we have extended the Geant4 simulation
code up to Rutherfordium. The code should be extended even further, so that it can be implemented in
the studies of other superheavies. Using this simulation tool, we have interpreted fine structure in the α
decay of 255Rf establishing branching ratios to some known and new levels in 251No. It has also allowed
us to extract some measurable quantities namely, relative gamma emission branching ratios and internal
conversion coefficients for transitions observed in 251No. The established properties of the ground state
decay of 255Rf have confirmed the GSI work and show that the decay of 255Rf follows the systematics
of the lighter isotones i.e., there is no change in the structure of the ground state of N = 151 isotones as
Z increases. The next isotone is 257Sg, which could be produced with a 54Cr beam on 204Pb target. No
spectroscopic data exists for this nucleus and the cross-section is expected to be ∼ 0.2 nb (a factor of 10

153
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less than 255Rf). This requires a high intensity Cr beam, which is currently being developed by the IPHC
and will be used in Dubna and also at SPIRAL2 at S3 [196].

We have firmly established the existence of at least 3 isomeric states in 255Rf: the expected 5/2+[622]ν
spin isomer present in the systematics of the lighter isotones and two high-K states most likely built on the
{9/2− [734]ν ⊗ 1/2− [521]π ⊗ 9/2+ [624]π} and the {9/2− [734]ν ⊗ 7/2− [514]π ⊗ 9/2+ [624]π} configurations
yielding states with Kπ=19/2+ and 25/2+. The proposed decay scheme reproduces all of our experimental
results. The fact that the 2 quasi-proton configurations explain the data suggest that the quasi-neutron
states are higher in energy. This in turn implies that the N= 152 gap persists in 255Rf. Although, there are
some uncertainties in the energy of the E2 transition transition deexciting the 25/2+ isomer (corresponding
to a very large hindrance), the exact decay scheme to the 19/2+ does not modify our conclusions since it is
constrained by the energy Emax removed in the cascade. A χ2 minimization technique, as was performed
for the study of the alpha decay of the ground state of 255Rf, could be performed to extract the branching
ratios of the transitions from the 19/2+ isomer and also to deduce the excitation energy of the 25/2+ isomer.
The proposed decay scheme should also be confirmed by better data. In particular, the prompt character
of the high energy transitions could be ascertained by performing prompt spectroscopy at the target for
255Rf. This could be attempted using JUROGAM at RITU in Jyväskylä. However, as the cross section is
low and the flux is fragmented such an experiment will probably require the next-generation gamma-ray
spectrometer such as AGATA [197].

Regarding the ground state decay of 255Rf to the 5/2+[622]ν state in 251No, so far, we have assumed
the excitation energy of the 5/2+ to be above the K-shell binding energy of nobelium. This study should
be revisited by placing it below the K binding. This could lower the conversion coefficient measured
for the 143 keV transition and better reproduce the shape of the e- spectrum around 130 keV. This might
however be a challenging task to find the correct balance between the feeding to the 5/2+ and the conversion
coefficients for the 143 keV transition. Artificial Intelligence methods applied to Geant4 simulation might
be the way forward.

This work has suffered from many electronics limitations such as, deadtime, high thresholds, multi-
plexing, cross-talk. FIFO buffers that are utilized in current experiments were not present in the experi-
ments related to this work. Such buffering of the ADC data could have lowered the deadtime of the ADCs
significantly allowing better measurements of lifetimes, especially for the short-lived isomer. By lower-
ing the density of connectors with better grounding could reduce the cross-talk problems. Regarding the
punch-through problem in the clover detector, the use of a veto detector is envisaged in future experiments.

To resolve the experimental challenges faced with the current version of GABRIELA, many upgrades
will be introduced in the next version. For instance, the Ge array will consist of only clover detectors,
digital electronics will be implemented in place of analog electronics. The replacement of the tunnel
detectors with thicker silicon detectors instrumented with very low noise electronics is also planned in
the framework of the SHEXI project. These detectors will allow high resolution LX-ray and conversion
electron spectroscopy.

In superheavy studies, statistics is the biggest hurdle as the production cross-section of these nuclei
is very low. Hence, it demands the development of effective data analysis and experimental techniques
for identifying these rare events. To this end, particle X-ray coincidence measurements coupled with
simulations can be very useful in identifying the atomic number of rarely produced superheavy nuclei. It
would be also very interesting to incorporate machine learning techniques for identification of rare events
in the pre-processing pulse shape analysis phase and find correlations in the events in post-processing
data analysis phase. The world is becoming data-driven day by day, and machine learning will definitely
change the current approach of scientific research in the future by becoming an integral tool for analyzing
data and also to predict new phenomena.



Appendix A

Lifetime measurement method

If N0 is the number of nuclei produced in a given state, the number of decays per unit is given by

dN(t)
dt

= N0λ exp (−λt) (A.1)

where λ is the decay probability per unit time. By using a change of variable θ = ln t/ ln 2 equation A.1
becomes:

dN(θ)
dθ

=
N0

τ
× ln 2 × 2θ exp

(
−

2θ

τ

)
(A.2)

This representation yields a peak in the time distribution at θmax, which is related to the lifetime τ by
τ = 2θmax .

In the case where 2 decays give rise to the observed time distribution, it can be fitted by the expression:

dN(θ)
dθ

=
N0

τ1
× ln 2 × 2θ exp (−2θ(

1
τ1

+
1
τ2

)) +
N0

τ2
× ln 2 × 2θ exp

(
−

2θ

τ2

)
(A.3)

In the event of low statistics, the K.H. Schmidt [192] approach was adopted to estimate the errors. The
method is described briefly below: The arithmetic mean of the individual observed lifetimes is:

t̄m =
1
n

n∑
i=1

(tm)i (A.4)

For n ≥ 2, the upper and lower limit of the lifetime τ for a given confidence level (1 − ε) are:

τupper ≈
t̄m

1 − z/
√

n
(A.5)

τlower ≈
t̄m

1 + z/
√

n
(A.6)

where, the quantity z is related to the confidence level by
ε

2
=

∫ ∞

z

1
√

2π
e−x2/2dx =

1
2

er f c(
z
√

2
) (A.7)

Choosing, a confidence level of (1 − ε) = 0.68

e f rc−1(ε) =
z
√

2

z =
√

2 × 0.7032 = 0.9945 ≈ 1
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Appendix B

Brief explanation of the Geant4 data formats

B.1 Fluorescence and Auger
The fluorescence data files containing radiative transition probabilities and corresponding transition ener-
gies (obtained from the Atomic Relaxation Data, EADL ) are in the ‘fluor’ directory. The naming format
of these files is "fl-tr-pr-NN.dat" where NN represents the atomic number. In every file, there are three
columns. A section of the Z = 100 file is in fig. B.1a as an illustration. In a file, each data set correspond-
ing to a vacancy subshell starts with a line of its ENDL designator (see table B.1) and separated from
other vacancy shell data set by a -1 line. In the intermediate lines that represent the transitions filling the
vacancy, the first column gives the subshell from where the transition occurs with a probability given in
the second column and the transition energy in MeV given in the third column.

For non-radiative processes, the Auger and Coster-Kronig informations are in the auger files that are
named "au-tr-pr-NN.dat" and located in the ‘auger’ directory where similarly NN represents the atomic
number. Each data file has four columns with every initial subshell vacancy data set starting with a vacancy
subshell index line and terminating by a -1 line (see fig. B.1b). For each transition, the first column points
to the electronic shell from where the relaxing electron originates that fill the current vacancy. The second
column indicates the subshell from where an Auger electron gets emitted with a probability given in the
3rd column and energy value given in MeV in the 4th column.

For any initial vacancy, the sum of all the radiative and non-radiative probabilities is unity.
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(a) Radiative transition

(b) Non-Radiative transition

Figure B.1: (a) Fluorescence and (b) Auger data formats in GEANT4 for Z =100.

B.2 Radioactive decay

Radioactive decays in Geant4 require two input data files to instruct Geant4 to simulate the desired decay
scheme. The excitation energy defined for the primary particle in the user-defined PrimaryGeneratorAction
class must be consistent with the energy level scheme of the isotope provided in the photon-evaporation
file. The radioactive decay data files in the format zXX.aYYY (XX gives the atomic number and YYY, the
mass number) are found in the directory "RadioactiveDecayV" with V the version number. The environ-
ment variable "G4RADIOACTIVEDATA" points to this directory. A user-defined decay data file can be
supplied to Geant4, and it is this special feature of Geant4 was exploited to test different decay schemes.
An example of the radioactive-decay data file is shown in the top part of fig. B.2. The lines beginning
with # are comments. The headers of each decay mode from a given level are given by lines beginning
with a ‘P’ indicates that the given level is a metastable state of the nucleus. The first number after P is the
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Desig-
nator

Subshell Desig-
nator

Subshell Desig-
nator

Subshell

1 K (1s1/2) 21 N4 (4d3/2) 41 P1 (6s1/2)
2 L (2) 22 N5 (4d5/2) 42 P23 (6p)
3 L1 (2s1/2) 23 N67 (4f) 43 P2 (6p1/2)
4 L23 (2p) 24 N6 (4f5/2) 44 P3 (6p3/2)
5 L2 (2p1/2) 25 N7 (4f7/2) 45 P45 (6d)
6 L3 (2p3/2) 26 O (5) 46 P4 (6d3/2)
7 M (3) 27 O1 (5s/2) 47 P5 (6d5/2)
8 M1 (3s1/2) 28 O23 (5p) 48 P67 (6f)
9 M23 (3p) 29 O2 (5p1/2) 49 P6 (6f5/2)
10 M2 (3p1/2) 30 O3 (5p3/2) 50 P7 (6f7/2)
11 M3 (3p3/2) 31 O45 (5d) 51 P89 (6g)
12 M45 (3d) 32 O4 (5d3/2) 52 P8 (6g7/2)
13 M4 (3d3/2) 33 O5 (5d5/2) 53 P9 (6g9/2)
14 M5 (3d5/2) 34 O67 (5f) 54 P1011 (6h)
15 N (4) 35 O6 (5f5/2) 55 P10 (6h9/2)
16 N1 (4s1/2) 36 O7 (5f7/2) 56 P11 (6h11/2)
17 N23 (4p) 37 O89 (5g) 57 Q (7)
18 N2 (4p1/2) 38 O8 (5g7/2) 58 Q1 (7s1/2)
19 N3 (4p3/2) 39 O9 (5g9/2) 59 Q23 (7p)
20 N45 (4d) 40 P (6) 60 Q2 (7p1/2)

61 Q3 (p3/2)

Table B.1: ENDL Atomic subshell designators

excitation energy in keV of the level from where the radioactive decays occur. The character following
the energy represents the floating level. The "-" character indicates that the level is fixed. If the level is
undetermined or floating characters such as +X, +Y, +Z, +W, +U, and +V are used. Next, the half-life of
the nucleus is given in seconds. The indented lines under the ’P’ lines are decay modes for that excitation.
The lines with only three columns are the headers describing the total strengths of each type of decay from
this level. In these lines, the first element states the decay mode, the second entry is set to always zero,
the third entry is the total branching ratio of the decay mode. Therefore, for a given P line, the sum of all
the elements in the third column should be 1. Following these header lines, there are lines with five or six
entries (for beta decay). These lines describe how the daughter levels are populated from each decay type.
In each line, the first column is the type of decay that populates the level with excitation level (keV) of
the daughter specified by the second entry and its floating-level by the third entry. The branching ratio to
this level is given in percentage in the fifth entry. The sixth entry is used only in the case of beta decay to
describe the forbiddenness of that particular decay channel.

The instructions for the nuclear deexcitation process are provided in a photon-evaporation data file.
The format of this file is illustrated in the bottom of fig. B.2 for a simple level scheme. The file for
a given isotope is arranged as per the energy states in the level scheme with the possible gamma tran-
sitions emanating from each level to the lower levels. An energy level defining line contains six en-
tries starting with an index integer number to identify the order of the state compared to the ground
state whose index number is 0 by definition. The floating level of the state is identified with a string
(-,+X,+Y,+Z,+U,+V,+W,+R,+S,+T,+A,+B,+C). The next entry gives the excitation energy of the level
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(keV) followed by the half-life in sec. For a stable ground state, the half-life is -1. Then follows the spin
and parity of the level with the sign of the value corresponding to the parity sign. The final entry of the
line is an integer "n" for the number of gamma transitions from the level. Below each level defining line,
there is a series of n lines for n transitions. The first entry of each transition line is the order number
of the state to which the gamma transition occurs. Next is the transition energy (keV), then the relative
gamma emission intensity, then an integer that defines the multipolarity. For a pure transition, the integer
takes value 0,1,2,3,4,5,6,7,... corresponding to an unknown multipolarity, E0, E1, M1, E2, M2, E3, M3,...
respectively. For a mixed transition, the integer has the form 100×X+Y, with X and Y, representing the
integers of the multipolarities involved in mixing. For example, for an M1+E2 mixed transition, the in-
teger is 304. Following the multipolarity number is the mixing ratio. Then, the total internal conversion
coefficient and the partial conversion probabilities from K-shell to N+ shells (the outer shells).

Figure B.2: Radioactive decay in Geant4



Appendix C

Geant4 EM Physics lists after the modifications
in the source code

There are several built-in EM physics lists and models for certain physics processes that can no longer be
employed in a simulation involving the primary particle to be Z > 100 after the modifications in the Geant4
source code. It is because there are certain models such as G4LowEPComptonModel, G4LivermoreComptonModel
that rely on data not extended for Z > 100. When the primary particle is an Z > 100 ion, the change in the
Z limits in source code prompts suspension of the program because of a lack of data. Table C.1 and C.2
tabulate the built-in EM physics lists that can and cannot be used.

One can also build one’s own EM class by excluding the models that do not support Z > 100. In the
simulations of this work, the Penelope EM Physics list with some changes was used. These modifications
are tabulated in table C.3. The first parameter in the SetStepFunction is dR

Range , where dR is the step size
in which the energy-dependent cross-sections of interactions remain the same and the second parameter
is the final range, the limit of dR. For accurate simulation, it is necessary to have smaller steps at the
cost of increased computing time. The reliability of the interaction models and the tracking algorithms
implemented in the PENELOPE simulation code in the energy range from a few keV up to 1 GeV was
confirmed in ref. [198].

The reproduction of the Bragg peak of an alpha particle from a well-known alpha emitter is a good
test for the physics list. To this end, alpha particles with 5.48 MeV energy (that of 241Am alpha-particle
energy) impinging into a silicon block of dimension 600×600×100 µm placed perpendicular to the beam
direction were simulated. The Silicon block has 400 segmented layers of equal thickness of 0.25 µm in the
z-direction. The energy loss by the ionizing alpha particles during its travel through each segment gives

c1 c2
G4EmStandardPhysics_option4 G4EmStandardPhysics_option1

G4EmLivermorePhysics G4EmStandardPhysics_option2
G4EmLowEPPhysics G4EmStandardPhysics_option3

G4EmStandardPhysics
G4EmStandardPhysicsGS
G4EmStandardPhysicsSS

G4EmStandardPhysicsWVI
G4EmPenelopePhysics

Table C.1: Built-in EM physics lists that can (c1) and cannot (c2) be used.

161



162APPENDIX C. GEANT4 EM PHYSICS LISTS AFTER THE MODIFICATIONS IN THE SOURCE CODE

EM process c1 c2

Photo-
electric
effect

G4PolarizedPEEffectModel G4PEEffectFluoModel
G4LivermorePhotoElectricModel

G4LivermorePolarizedPhotoElectricModel
G4PenelopePhotoElectricModel

Compton
scaterring

G4LivermoreComptonModel G4KleinNishinaCompton
G4LivermorePolarizedComptonModel G4KleinNishinaModel

G4LowEPComptonModel G4PenelopeComptonModel
G4LivermoreComptonModelRC* G4PolarizedComptonModel

Gamma
conversion

G4BetheHeitler5DModel* G4BetheHeitlerModel
G4PairProductionRelModel

G4LivermoreGammaConversionModel
G4BoldyshevTripletModel

G4LivermoreNuclearGammaConversionModel
G4LivermorePolarizedGammaConversionModel

G4PolarizedGammaConversionModel

Rayleigh
scattering

G4JAEAElasticScatteringModel* G4LivermoreRayleighModel
G4PenelopeRayleighModel

G4LivermorePolarizedRayleighModel

e-
ionization

G4PAIModel G4PenelopeIonisationModel
G4PAIPhotModel G4MollerBhabhaModel

G4LivermoreIonisationModel
G4PolarizedMollerBhabhaModel

µ ionisation G4MuBetheBlochModel

ion
Ionisation

G4LindhardSorensenIonModel* G4IonParametrisedLossModel
G4AtimaEnergyLossModel* G4BetheBlochModel

G4BetheBlochIonGasModel
G4BraggIonModel

G4BraggIonGasModel

eBremsstrahlung

G4PolarizedBremsstrahlungModel* G4PenelopeBremsstrahlungModel
G4SeltzerBergerModel

G4eBremsstrahlungRelModel
G4LivermoreBremsstrahlungModel

Table C.2: Models that that can (c1) and cannot (c2) be used for Z > 100. The models indicated by ‘*’ do
not exist in the Geant4 version used for this work.

particle before after
electron and positron (0.2, 100 µm) (0.1, 25 µm)

alpha (0.2, 10 µm) (0.1, 100 nm)
GenericIon (0.2, 1µm) (0.1, 10 nm)

proton and anti-proton (0.2, 50µm) (0.1, 100 nm)

Table C.3: Changes in the stepFunction Limit for ionization process made in the Penelope Physics list.
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Figure C.1: Energy loss by 5.48 MeV α particles in Si as simulated in Geant4 using modified Penelope
Physics list.

the Bragg curve. Figure C.1 shows the Bragg curves of 10000 events. The mean range obtained from
SRIM calculations is in agreement with the value seen in figure C.1.
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Titre: Caractérisation du multi-détecteur GABRIELA et spectroscopie de décroissance des noyaux
255Rf et 251No
Mots clés: Noyaux super lourds, structure nucléaire, spectroscopie γ, e− et α, caractérisation des détecteurs, simulation Geant4

Résumé: Une question sans réponse qui se trouve au carrefour
de la physique et de la chimie est: quelle est la limite du tableau
périodique. Les théories nucléaires suggèrent l’existence de ce qu’on
appelle “l’îlôt de stabilité", habitée par des éléments super-lourds à
longue durée de vie. Ces éléments ne doivent leur existence qu’à
d’importants effets quantiques. Ainsi, les éléments super-lourds for-
ment un laboratoire unique pour l’étude de la structure et de la dy-
namique nucléaires sous l’influence d’une très forte répulsion Coulom-
bienne entre les nombreux protons du noyau. Cependant, un défi
théorique réside dans la prédiction de la position exacte de cet îlôt,
car différents modèles prédisent la position des prochaines ferme-
tures de couches au delà de Z = 82 et N=126 à Z = 114, 120 ou
126, et N = 172, 184 de façon plutôt inharmonieuse. Pour mieux
comprendre le comportement de la matière nucléaire dans des con-
ditions extrêmes du nombre de protons et de neutrons et contrain-
dre les modèles nucléaires, il est donc nécessaire d’étudier la nature
et la séquence d’états dans des noyaux transactinides plus légers et
plus accessibles par des études spectroscopiques. Dans ce travail, des
états de 255Rf ont été peuplés par la réaction de fusion-évaporation
50Ti(207Pb,2n)255Rf en utilisant un faisceau intense de 50Ti fourni par
le cyclotron U400 du FLNR à Dubna. Les résidus d’évaporation
ont été séparés du faisceau et du fond d’autres produits de réac-
tion à l’aide du séparateur de noyaux de recul SHELS et implantés
dans le détecteur d’implantation du dispositif GABRIELA. Le mul-
tidétecteur GABRIELA permet d’effectuer des corrélations de temps
et en position entre les noyaux implantés et leurs désintégrations
ultérieures et est sensible à l’émission de rayonnemments gamma,
d’électrons de conversion interne, de particules alpha et de produits

de fission. Pour interpréter les spectres de désintégration expérimen-
taux, le multidétecteur GABRIELA a été caractérisé à l’aide de sim-
ulations Geant4, qui ont été validées avec des données d’étalonnage.
En particulier, l’impact des effets de sommation sur l’efficacité de
la détection des rayons gamma et des électrons a été étudié et a
montré que les simulations sont essentielles pour interpréter des ré-
sultats expérimentaux obtenus grâce à des dispositifs compactes et
efficaces comme GABRIELA. Une nouvelle méthode pour estimer le
profil de profondeur d’implantation des résidus d’évaporation a été
mise au point, ce qui est essentiel notamment pour la spectroscopie
des électrons de conversion interne. Afin de pouvoir utiliser Geant4
pour des éléments plus lourds que Fm (Z = 100), le code source a
été modifié et les données de fluorescence et d’émission Auger ont été
extrapolées pour permettre des simulations précises de décroissances
radioactives jusqu’à l’élément Rf. En utilisant les données expéri-
mentales obtenues sur le noyau 257Rf étudié à Dubna et le schéma
de désintégration connu de l’isomère 21

2
+ de haut K, la fonctionnalité

du code Geant4 modifié a été validée. Les simulations ont ensuite
été utilisées pour étudier la structure fine de décroissance alpha du
255Rf et dériver les rapports d’embranchements vers les états du 251No.
Les rapports d’embranchements de décroissance gamma et les coef-
ficients de conversion interne de transitions du 251No ont également
été extraits. Dans le 255Rf, deux nouveaux états isomériques de haut
K ont été identifiés et l’existence à basse énergie d’excitation d’un
isomère de spin a été confirmée. Les comparaisons quantitatives et
qualitatives des spectres expérimentaux aux simulations ont permis
d’établir les schémas de désexcitation les plus probables et d’assigner
les configurations quasi-particules possibles pour les 3 isomères.

Title: Characterization of the multi-detector GABRIELA and decay spectroscopy of 255Rf and 251No
Keywords: Superheavy nuclei, nuclear structure, γ-ray, e− and α spectroscopy, detector characterization,Geant4 simulations

Abstract: One unanswered question that lies at the crossroad
of physics and chemistry is: what is the limit of the periodic table.
Nuclear theories suggest the existence of the so-called “island of sta-
bility", inhabited by long-lived superheavy elements. These elements
can materialize only because of strong quantum shell stabilizing ef-
fects. Thus, superheavy elements form a unique laboratory for study-
ing nuclear structure and dynamics under the influence of very large
Coulomb forces between the numerous protons in the nucleus. How-
ever, a theoretical challenge lies in the prediction the exact position
of this island as different models predict the position of the next shell
closures at Z = 114, 120, or 126, and N = 172, 184 beyond the closed
spherical shells at Z = 82 and N = 126 rather inharmoniously. To
better understand the behavior of nuclear matter for extreme val-
ues of proton and neutron numbers and constrain nuclear models
it is, therefore, necessary to investigate the nature and sequence of
states in lighter, more accessible, transactinide nuclei through spec-
troscopic studies. In this work, states of 255Rf were populated through
the fusion-evaporation reaction 50Ti(207Pb,2n)255Rf using an intense
50Ti beam provided by the U400 cyclotron of FLNR in Dubna. The
evaporation residues were separated from the beam and background
of other reaction products using the recoil separator SHELS and im-
planted into the implantation detector of the GABRIELA setup. The
GABRIELA multidetector array allows to perform time and position
correlations between the implanted nuclei and their subsequent de-

cays and is sensitive to the emission of gamma rays, internal con-
version electrons, alpha particles and fission products. To interpret
the experimental decay spectra, the GABRIELA multidetector was
characterized using Geant4 simulations, which were validated with cal-
ibration data. In particular, the impact of summing on the gamma-
ray- and electron-detection efficiencies was investigated and showed
that simulations are vital for interpreting experimental results ob-
tained using compact and efficient setups like GABRIELA. A novel
method to estimate the implantation depth profile of the evapora-
tion residues was devised, which is essential especially for internal-
conversion-electron spectroscopy. To be able to use Geant4 for ele-
ments heavier than Fm (Z = 100), the source code was modified and
the Fluorescence and the Auger emission data were extrapolated to
allow accurate radioactive decay simulations up to the element Rf.
Using 257Rf experimental data obtained in Dubna and the known
decay scheme of the 21

2
+ high-K isomer, the functionality of the mod-

ified Geant4 code was validated. Simulations were then used to study
the fine structure alpha decay of 255Rf and derive branching ratios
to states in 251No. The gamma-decay branching ratios and internal
conversion coefficients for transitions in 251No were also extracted.
In 255Rf, two new high-K isomeric states were identified and the ex-
istence of a low-lying spin isomer was confirmed. Quantitative and
qualitative comparisons of the experimental spectra to simulations
have allowed to establish the likely decay schemes and assign possi-
ble quasiparticle configurations for all 3 isomers.
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