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Abstract: Quantum channels define key objects in quantum information theory. They are

represented by completely positive trace-preserving linear maps in matrix algebras. We

analyze a family of quantum channels defined through the use of the Weyl operators. Such

channels provide generalization of the celebrated qubit Pauli channels. Moreover, they are

covariant with respective to the finite group generated by Weyl operators. In what follows,

we study self-adjoint Weyl channels by providing a special Hermitian representation. For

a prime dimension of the corresponding Hilbert space, the self-adjoint Weyl channels

contain well-known generalized Pauli channels as a special case. We propose multipartite

generalization of Weyl channels. In particular, we analyze the power of prime dimensions

using finite fields and study the covariance properties of these objects.

Keywords: quantum channels; Weyl operators; Pauli maps

1. Introduction

A quantum channel is represented by a linear map Φ : Md(C) → Md(C) that is

completely positive and trace-preserving (CPTP) [1–3]. Recall that Φ is a positive map if for

X ≥ 0 one has Φ(X) ≥ 0. Complete positivity requires that the following extended map

idd ⊗ Φ : Md(C)⊗ Md(C) → Md(C)⊗ Md(C), (1)

defines a positive map but on the larger matrix algebra Md(C)⊗ Md(C) (idd denotes an

identity map on the matrix algebra Md(C)). Such maps define key objects of quantum

information theory [4] since any legitimate quantum operation (like quantum measurement

or quantum evolution) is represented by some completely positive map. Any such map

can be represented by so-called Kraus representation [4]

Φ(X) = ∑
i

KiXK†
i , (2)

with a suitable choice of Kraus operators {Ki}. Now, Φ is trace-preserving if ∑i K†
i Ki = 1ld

(identity operator in Md(C)). Introducing the Hilbert–Schmidt inner product

(X, Y)HS := Tr(X†Y), (3)

one defines an adjoint (dual) map Φ‡ via

(Φ‡(X), Y)HS = (X, Φ(Y))HS, (4)
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for all X, Y ∈ Md(C). A map Φ is self-adjoint (or self-dual) if Φ‡ = Φ. Note that if Φ

is trace-preserving, then Φ‡ is unital, i.e., Φ‡(1ld) = 1ld. Indeed, if Φ is trace-preserving

then TrX = TrΦ(X) = (1ld, Φ(X))HS = (Φ‡(1ld), X)HS which implies Φ‡(1ld) = 1ld. Any

self-adjoint map is necessarily unital. A paradigmatic example of a self-adjoint completely

positive trace-preserving (CPTP) map is a Pauli channel [4]

Φ(X) =
3

∑
α=0

pασαXσα, (5)

where σα are Pauli matrices with σ0 = 1l2, and pα is a probability distribution. The

characteristic feature of (5) is that Kraus operators σα are both unitary and Hermi-

tian. Interestingly, σk for k = 1, 2, 3 are traceless, isospectral, and mutually orthogonal

(σk, σl)HS = 2δkℓ. Moreover, the elementary maps ∆k(X) = σkXσk are mutually commuting,

that is, ∆k ◦ ∆ℓ = ∆ℓ ◦ ∆k for k, ℓ = 1, 2, 3. Finally, Pauli maps are covariant with respect to

the Pauli group G (a group generated by Pauli matrices), i.e., for any U ∈ G

UΦ(X)U† = Φ(UXU†). (6)

Covariant maps were analyzed by several authors [5–12]. It is well known that unitary and

at the same time Hermitian orthonormal basis exists only in M2(C). Hence, in Md(C) with

d > 2 generalizing Pauli channel we have to relax either Hermiticity or unitarity. A natural

generalization consists in replacing Pauli matrices by well known unitary Weyl operators

{Wkℓ}d−1
k,ℓ=0 and define the corresponding quantum channel via

Φ(X) =
d−1

∑
k,ℓ=0

wkℓWkℓXW†
kℓ, (7)

with wkℓ ≥ 0. This map is no longer self-dual. However, it is still trace-preserving and

unital. Moreover, the Kraus operators Wkℓ (except W00 = 1ld) are traceless and isospectral

and define an orthogonal basis in Md(C). Finally, (7) is covariant with respect to the group

generated by Weyl operators [10]. Another generalization of (5) is based on the observation

that eigenbases of three Pauli matrices define the maximal set of mutually unbiased bases

(MUBs) in C2 [13] (see [14] for a review). It is well known that in Cd there exist at most

d + 1 MUBs [13,14], and if d is a power of prime, the explicit construction of the maximal

set of d + 1 MUBs is known. Assuming the existence of the maximal set of MUBs |e(α)k ⟩
(α = 1, . . . , d + 1) such that for α ̸= β one has |⟨e(α)k |e(β)

l ⟩|2 = 1
d , the generalized Pauli

channels are defined by [15–17]

Φ(X) = p0
1

d
1ldTrX +

d+1

∑
α=1

pα∆α(X), (8)

where ∆α(X) = ∑
d−1
α=0 P

(α)
k XP

(α)
k with P

(α)
k = |e(α)k ⟩⟨e(α)k |.

In this paper, we propose a different generalization which is valid for any qudit

system. It turns out that (8) defines a special subclass of channels we construct. The paper

is organized as follows: in Section 2 we provide the basic construction of Weyl channels for

arbitrary d ≥ 2 which for d = 2 reduces to Pauli maps. Section 3 discusses the Hermitian

representation in terms of Hermitian Qkℓ operators introduced in [18]. We generalize our

construction to multipartite scenario in Section 4, and in Section 5 we study a particular

case when the dimension of the corresponding Hilbert space is a power of prime number.

Final conclusions are collected in Section 6.
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2. Weyl Channels

Let us recall the definition of Schwinger Heisenberg–Weyl operators in Md(C) [19–21]:

one defines two unitary operators Z and X (clock and shift operators that generate dis-

placements in discrete momentum and position, respectively) via

Z|k⟩ = ωk|k⟩ , X|k⟩ = |k + 1⟩, (9)

where ω = e2πi/d and we add modulo d. Note that

ZkXl = ωkℓXℓZk. (10)

The unitary Weyl operators are defined by

Wkℓ = XℓZk =
d−1

∑
m=0

ωkm|ℓ+ m⟩⟨m|, (11)

for k, ℓ = 0, 1, . . . , d − 1. They satisfy the following relations [22,23]

WkℓWrs = ωℓrWk+r,ℓ+s , W†
kℓ = ωkℓW−k,−ℓ, (12)

Now, a Weyl channel is defined via (7) with wkℓ ≥ 0 and ∑k,ℓ wkℓ = 1. Now, let Gd be a

group generated by Wkℓ. It turns out [10] that Gd = {ωmWkℓ | k, ℓ, m = 0, 1, . . . , d − 1} and

hence |Gd| = d3. If d = 2 one recovers G2 = {±1l2,±σ1,±iσ2,±σ3} which is isomorphic to

the quaternion group [9]. Now, the Weyl channel (7) is covariant with respect to Gd [10]

(actually, it is irreducibly covariant since the standard unitary representation of Gd by Weyl

operators is irreducible). In particular, the Pauli channel is (irreducibly) covariant with

respect to G2 [9].

Let us recall that if d is a prime number then the eigenbases of the following d + 1

unitary operators {X, Z, XZ, XZ2, . . . , XZd−1} are mutually unbiased [13,14]. In this case

d2 − 1, unitary Weyl operators Wkℓ with (k, ℓ) ̸= (0, 0) can be grouped into d + 1 classes of

mutually commuting operators Wαk,αℓ with α = 1, 2, . . . , d − 1. One defines the following

class of Weyl channels called generalized Pauli channels [15–17]

Φ(X) =
d−1

∑
k,ℓ=0

wkℓWkℓXW†
kℓ, (13)

with wαk,αℓ = wkℓ. Defining

π0 := w00, πk := w1,k (k = 1, . . . , d − 1), πd := w01, πd+1 := w10, (14)

one finds the following representation

Φ(X) = π0X +
1

d − 1

(
d−1

∑
k=1

πk

d−1

∑
α=1

Wα,αkXW†
α,αk + πd

d−1

∑
α=1

W0αXW†
0α + πd+1

d−1

∑
α=1

Wα0XW†
α0

)
, (15)

with ∑
d+1
j=0 πj = 1. Now,

d−1

∑
α=1

Wk,αkXW†
k,αk + X = d∆k(X), k = 1, . . . , d − 1, (16)

where ∆k(X) is a decoherence map with respect to the eigenbasis of W1,k [15]. Similarly,

d−1

∑
α=1

W0αXW†
0α + X = d∆d(X),

d−1

∑
α=1

Wα0XW†
α0 + X = d∆d+1(X), (17)
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where ∆d(X) and ∆d+1(X) are decoherence map with respect to the eigenbases of W01 and

W10, respectively. Finally, using the following identity [15]

d+1

∑
α=1

∆α(X) = X + 1ldTrX, (18)

one finds

Φ(X) = p0
1

d
1ldTrX +

d+1

∑
α=1

pα∆α(X), (19)

with

p0 =
d

d − 1
(1 − dπ0) , pk =

1

d − 1
(dπk + dπ0 − 1), (20)

for k = 1, . . . , d + 1. Note, however, that in the above representation we do not require

that pα ≥ 0. For example, p0 < 0 for π0 >
1
d . In particular an identity map Φ(X) = X

corresponds to p0 = −d and pk = 1 (k = 1, . . . , d + 1). Still, one has ∑
d+1
k=1 pk = 1.

In this paper, we analyze a class of Weyl channels which satisfy an additional symmetry

SdΦ(X)Sd = Φ(SdXSd), (21)

where Sd is a d × d permutation matrix defined by

Sd|k⟩ := |d − k⟩ , k = 0, 1, . . . , d − 1 (22)

Note that SdWkℓSd = W−k,−ℓ and hence condition (21) is equivalent to the following

constraint wkℓ = w−k,−ℓ. Actually, Sd defines a parity operator with eigenvalues ±1. We

call such Weyl channels mirrored symmetric. It is evident that mirrored symmetric channels

are self-dual. Note that for d = 3, mirrored symmetric channels coincide with generalized

Pauli channels; however, it is no longer true for d > 3.

3. Hermitian Representation of Mirrored Symmetric Channels

Mirrored symmetric Weyl channels are self-dual and hence can be represented by a

Hermitian Kraus representation Φ(X) = ∑j ajKjXKj, with aj > 0, and Kj = K†
j . In this

section, we construct a family of self-dual completely positive maps by providing an ap-

propriate Hermitian representation. These maps are completely positive but in general not

trace-preserving. Interestingly, adding a mirror symmetry restores the trace-preservation

property and hence gives rise to a family of mirrored symmetric Weyl quantum channels.

Following [18], let us introduce

Dkℓ := ω−kℓ/2ZkXℓ = ωkℓ/2Wkℓ. (23)

Unitary operators Dkℓ satisfy the following relations:

D†
kℓ = D−k,−ℓ , DkℓDrs = ω

ks−rl
2 Dk+r,ℓ+s. (24)

Finally, let us define a set of Hermitian operators [18]

Qkℓ := (−1)kℓ
(

χDkℓ + χ∗D†
kℓ

)
, (25)

where χ = 1
2 (1 + i) (actually authors of [18] did not include the factor (−1)kℓ).

These so called Heisenberg-Weyl observables [18] were recently used in tomographic

scenario [24–26]. Hermitian operators Qkℓ define an orthogonal basis in Md(C)
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Tr(Q†
kℓQij) = d δkiδℓj. (26)

One has Q00 = 1ld and the remaining operators Qkℓ are traceless.

Proposition 1. Traceless operators Qkℓ are isospectral and their spectrum reads

σ(Qkℓ) = {cos(2π j/d)− sin(2π j/d) | j = 0, 1, . . . , d − 1}. (27)

For a proof, see Appendix A.

Example 1. Note that for d = 2 one recovers the spectrum of Pauli matrices {−1, 1}. For

d = 3, the spectrum reads σ(Qkℓ) = { 1
2 (−1 −

√
3), 1

2 (−1 +
√

3), 1} and for d = 4 one has

σ(Qkℓ) = {−1,−1, 1, 1}.

Remark 1. There is another well-known orthogonal basis in Md(C) defined in terms of Hermitian

generalized Gell–Mann matrices:

Λ
(s)
kℓ = Eeℓ + Eℓk , 1 ≤ k < ℓ ≤ d,

Λ
(a)
kℓ = −i(Ekℓ − Eℓk) , 1 ≤ k < ℓ ≤ d, (28)

Λ
(d)
ℓ

=

√
2

ℓ(ℓ+ 1)

(
ℓ

∑
j=1

Ejj − ℓEℓ+1,ℓ+1

)
, ℓ = 1, . . . , d − 1 (29)

where Eij = |i⟩⟨j|. They define generators of SU(d). Note, however, that contrary to Qkℓ general-

ized Gell–Mann matrices are not isospectral. Moreover, for the map defined via

Φ(X) =
d−1

∑
ℓ=1

qℓΛ
(d)
ℓ

XΛ
(d)
ℓ

+ ∑
k<ℓ

(
q
(s)
kℓ Λ

(s)
kℓ XΛ

(s)
kℓ + q

(a)
kℓ Λ

(a)
kℓ XΛ

(a)
kℓ

)
, (30)

the trace-preservation condition is quite nontrivial. Finally, contrary to Weyl operators Gell–Mann

matrices cannot be split into disjoint sets of mutually commuting operators.

Proposition 2. Operators Qkℓ satisfy the following identity

Q2
kℓ + Q2

−k,−ℓ
= 21ld. (31)

Moreover, one has

QkℓXQkℓ + Q−k,−ℓXQ−k,−ℓ = WkℓXW†
k,ℓ + W−k,−ℓXW†

−k,−ℓ
. (32)

Indeed, one easily finds

Q2
kℓ + Q2

−k,−ℓ
= 21ld +

i

2

(
D2

kℓ + D2
−k,−ℓ

− D†2
kℓ − D†2

−k,−ℓ

)
, (33)

and due to (24) the second term vanishes. Simple algebra proves (32).

Remark 2. Interestingly, for d = 4 one has Q2
kℓ = 1l4.

Consider now the following class of completely positive maps

Φ(X) =
d−1

∑
k,ℓ=0

κkℓ QkℓXQkℓ, (34)
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with κkℓ ≥ 0. The above map is evidently self-dual. However, it is not trace-preserving

(and hence also not unital).

Proposition 3. If (34) is mirrored symmetric, i.e., SdΦ(X)Sd = Φ(SdXSd), where Sd is a

permutation matrix defined in (22), and ∑k,ℓ κkℓ = 1, then (34) is trace-preserving.

Proof. Indeed, observe that

SdZkSd = Z−k , SdXkSd = X−k, (35)

and hence

SdQkℓSd = (−1)kℓω−kℓ/2
(

χZ−kX−ℓ + χ∗ZkXℓ
)
= Q−k,−ℓ. (36)

It is, therefore, clear that SdΦ(X)Sd = Φ(SdXSd) is equivalent to the mirror symmetry

κkℓ = κ−k,−ℓ which, in turn, taking into account Proposition 2 implies that Φ is unital (and

hence trace-preserving).

Note that if d is odd, one has d2−1
2 independent parameters κkℓ. If d = 2n is even, then

Q2
0n = Q2

n0 = Q2
nn = 1ld,

and one has d2−4
2 + 3 independent parameters κkℓ.

Proposition 4. If n is even, then operators {Q0n, Qn0, Qnn} are mutually commuting. If

n = 2r + 1, then

Σ1 :=
1

2
Q0n , Σ2 :=

1

2
(−1)rQnn , Σ3 :=

1

2
Qn0, (37)

satisfy commutation relation of the su(2) Lie algebra, i.e.,

[Σk, Σℓ] = iϵkℓmΣm, (38)

where ϵkℓm stands for the Levi–Civita symbol.

For the proof cf. Appendix B.

Define the following family of unital quantum channels

∆kℓ(X) =
1

2
(QkℓXQkℓ + Q−k,−ℓXQ−k,−ℓ), (39)

which are Sd-covariant, i.e., Sd∆kℓ(X)Sd = ∆kℓ(SdXSd). One easily proves that

∆kℓ ◦ ∆ij = ∆ij ◦ ∆kℓ. (40)

Assuming mirror symmetry κkℓ = κ−k,−ℓ, the map (34) can be represented as follows

Φ =
d−1

∑
k,l=0

κkℓ ∆kℓ. (41)

Due to the commutativity property (40), the spectral properties of Φ are fully controlled by

the spectral properties of ∆kℓ. Simple analysis leads to

∆kℓ(Qij) =
1

2

(
ωkj−ℓi + ωℓi−kj

)
Qij = Re ωkj−ℓi Qij, (42)

and hence
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Φ(Qij) = λijQij, (43)

with real eigenvalues

λij =
d−1

∑
k,l=0

κkℓ Re ωkj−ℓi =
d−1

∑
k,l=0

κkℓ cos(2π(kj − ℓi)/d). (44)

Note that λij = λ−i,−j and λ00 = 1.

Recall that any matrix X ∈ Md(C) can be mapped to a vector |X⟩⟩ ∈ Cd ⊗Cd via

|X⟩⟩ = ∑
i

|i⟩ ⊗ X|i⟩ = ∑
i,j

Xij|i ⊗ j⟩, (45)

where Xij are matrix elements of X. It simply means that one defines |x⟩⟩ as a column

vector in Cd ⊗ Cd by stacking the rows of the matrix [27,28]. Using this operation (so-

called vectorization) one may assign to any linear map Φ : Md(C) → Md(C) a linear

super-operator Φ̂ : Cd ⊗Cd → Cd ⊗Cd as follows [27,28]

Φ̂|X⟩⟩ := |Φ(X)⟩⟩. (46)

Vectorization enjoys the following property

|AXB†⟩⟩ = A ⊗ B∗|X⟩⟩, (47)

and hence one finds the following super-operator corresponding to (34)

Φ̂ =
d−1

∑
k,l=0

κkℓ Qkℓ ⊗ Q∗
kℓ. (48)

The spectral representation of Φ̂ reads

Φ̂ =
1

d

d−1

∑
k,l=0

λkℓ |Qkℓ⟩⟩⟨⟨Qkℓ| , ⟨⟨Qkℓ|Qij⟩⟩ = dδkiδℓj. (49)

Finally, using the following identity

d−1

∑
i,j=0

|i⟩⟨j| ⊗ |i⟩⟨j| = 1

d

d−1

∑
k,l=0

Qkℓ ⊗ Q∗
kℓ, (50)

one finds the Choi matrix of Φ

CΦ =
1

d

d−1

∑
k,l=0

λkℓ Qkℓ ⊗ Q∗
kℓ, (51)

with the corresponding spectral decomposition

CΦ =
d−1

∑
k,l=0

κkℓ |Qkℓ⟩⟩⟨⟨Qkℓ|, (52)

which clearly shows that Φ is completely positive if and only if CΦ ≥ 0, i.e., κkℓ ≥ 0.

Representing a density operator via the following Bloch tensor x = (xij)

ρ =
1

d

d−1

∑
i,j=0

xijQij , x00 = 1, xij ∈ R, (53)

one has |ρ⟩⟩ = 1
d ∑

d−1
i,j=0 xij|Qij⟩⟩, and hence
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Φ̂|ρ⟩⟩ = 1

d

d−1

∑
i,j=0

(λ ◦ x)ij|Qij⟩⟩, (54)

where (λ ◦ x)ij = λijxij. Hence, on the level of a Bloch tensor x, the map simply operates

via the Hadamard product with the matrix λ = (λij) of eigenvalues of Φ. This provides a

natural generalization of the Bloch representation of the Pauli channel

Φ(ρ) =
1

2

3

∑
α=0

λασαTr(σαρ) , λ0 = 1, (55)

which maps the Bloch vector x = (x1, x2, x3) of ρ to x′ = (λ1x1, λ2x2, λ3x3).

Let us observe that using Qkℓ operators one may easily restore a set of unitary operators

Ukℓ := Qkℓ + iQ−k,−ℓ. (56)

Indeed, one finds

Ukl = ξkℓWℓk, (57)

with ξkℓ = (−1)kℓωkℓ/2χ. Note that |ξkℓ| = 1 and hence Ukℓ defines a collection of unitary

operators. It shows, therefore, that any mirrored symmetric map (34) satisfies

UkℓΦ(X)U†
kℓ = Φ(UkℓXU†

kℓ), (58)

that is, we restored the unitary covariance provided the self-adjoint map is mirrored sym-

metric.

4. Multipartite Channels

Consider now a multipartite system living in H = Cd1 ⊗ . . . ⊗Cdn . Multipartite Weyl

channels were recently analyzed in [29]. Let us define

Wkℓ := Wk1ℓ1
⊗ . . . ⊗ Wknℓn

, (59)

were k = (k1, . . . , kn), ℓ = (ℓ1, . . . , ℓn), and Wkiℓi
are Weyl operators in Cdi . The multipartite

Weyl channel is defined as follows [29]

Φ(X) = ∑
k,ℓ

pkℓWkℓXW†
kℓ, (60)

where pkℓ is a probability distribution. Now, let Sdi
be a di × di permutation matrix such

that Sdi
|ki⟩ = | − ki⟩ and let

Sd := Sd1
⊗ . . . ⊗ Sdn

. (61)

Proposition 5. A multipartite Weyl channel (60) is self-adjoint if

SdΦ(X)Sd = Φ(SdXSd), (62)

for all X ∈ Md(C).

It is clear that self-adjoint Weyl channel satisfies the following mirror symmetry

pkℓ = p−k,−ℓ. In a similar way, we define multipartite operators Qkℓ

Qkℓ := Qk1ℓ1
⊗ . . . ⊗ Qknℓn

, (63)
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were Qkiℓi
are operators in Cdi .

Proposition 6. The operators Qkℓ are isospectral and satisfy

Q2
kℓ + Q2

−k,−ℓ
= 21ld1

⊗ . . . ⊗ 1ldn
, (64)

together with

QkℓXQkℓ + Q−k,−ℓXQ−k,−ℓ = WkℓXW†
kℓ + W−k,−ℓXW†

−k,−ℓ
. (65)

Using operators Qkℓ, we define the following completely positive map

Φ(X) = ∑
k,ℓ

κkℓQkℓXQkℓ, (66)

with κkℓ ≥ 0. Again, being completely positive, it is generally not trace-preserving.

Proposition 7. If (60) is mirrored symmetric, i.e., SdΦ(X)Sd = Φ(SdXSd), where Sd is a

permutation matrix defined in (61), and ∑kℓ κkℓ = 1, then (60) is trace-preserving.

Proof. Observe that defining

Zk := Zk1 ⊗ . . . ⊗ Zkn , Xℓ := Xℓ1 ⊗ . . . ⊗ Xℓn , (67)

one finds

SdZkSd = Z−k , SdXℓSd = X−ℓ, (68)

and hence SdQkℓSd = Q−k,−ℓ. Finally, observe that if each di = 2mi, then

Q2
0m = Q2

m0 = Q2
mm = 1ld1

⊗ . . . ⊗ 1ldn
, (69)

where m = (m1, . . . , mn) and 0 = (0, . . . , 0).

Define the following family of unital quantum channels

∆kℓ(X) =
1

2
(QkℓXQkℓ + Q−k,−ℓXQ−k,−ℓ). (70)

One has Sd∆kℓ(X)Sd = ∆kℓ(SdXSd). Let us observe that

∆kℓ = ∆k1ℓ1
⊗ . . . ⊗ ∆knℓn

, (71)

and hence

∆kℓ ◦ ∆ij = ∆ij ◦ ∆kℓ. (72)

Assuming the mirror symmetry κkℓ = κ−kk,−ℓ the map (60) can be represented as follows

Φ = ∑
kℓ

κkℓ ∆kℓ. (73)

Due to the commutativity property (72), the spectral properties of Φ are fully controlled by

the spectral properties of ∆kℓ. One obviously has

∆kℓ(Qij) =
n

∏
r=1

Re ω
kr jr−ℓr ir
dr

Qij, (74)

where ωd = e2πi/d, and hence
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Φ(Qij) = λijQij, (75)

with real eigenvalues

λij = ∑
k,ℓ

κkℓ

n

∏
r=1

cos(2π(kr jr − ℓrir)/dr). (76)

Note that λij = λ−i,−j and λ00 = 1.

If κkℓ = κ
(1)
k1ℓ1

. . . κ
(n)
knℓn

, then Φ is a separable quantum channel

Φ = Φ(1) ⊗ . . . ⊗ Φ(n), (77)

with Φ(r)(X) = ∑
dr−1
kr ,ℓr=0 κ

(r)
krℓr

Qkrℓr
XQkrℓr

, where Qkrℓr
are Q-operators in Cdr . In general,

however, κkℓ does not factorize, and the map Φ cannot be represented as a tensor product

of single-partite maps which implies that Φ acting on a separable state in Cd1 ⊗ . . . ⊗Cdn

can create an entangled state.

5. Power of Prime Dimension: A Case Study

In this section, we analyze a particular scenario when d1 = . . . = dn = p is a prime

number, that is, d := dimH = pn is a power of prime. It is well known that in this case

there exist the maximal set of d + 1 = pn + 1 mutually unbiased bases in H = Cd. Since

d is power of prime denote by Fd a finite field with d elements [30,31]. Let us introduce a

computational basis |a⟩ in H, with a ∈ Fd and define

Xa := ∑
x∈Fd

|a + x⟩⟨x| , Za := ∑
x∈Fd

χ(ax)|x⟩⟨x|, (78)

where the operations ‘x + a’ and ‘ax’ are defined within Fd, and

χ(x) := exp

(
2πi

p
tr(x)

)
= ω

tr(x)
p , (79)

where the trace operation tr : Fd → Fp is defined as follows

tr(x) = x + x2 + . . . + xpn−1
. (80)

Note that Fp is a finite subfield of Fd and hence Fd = {0, 1, . . . , p − 1, a1, . . . , ad−p}. The

character χ : Fd → C satisfies χ(a + b) = χ(a)χ(b). Note that if n = 1, i.e., d = p, then

Fd = {0, 1, . . . , d − 1} and (78) recovers the original definition of Xk and Zℓ. Finally, let us

define the following family of Weyl operators

Wa,b := XaZb. (81)

One easily proves

ZaXb = χ(ab)XbZa, (82)

and hence

Wa,bWc,s = χ(bc)Wa+c,b+s , W†
a,b = χ(ab)W−a,−b. (83)

Now, let us define a Weyl channel via

Φ(X) = ∑
a,b∈Fd

pa,bWa,bXW†
a,b, (84)
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where pa,b is a probability distribution on Fd × Fd. Φ is self-adjoint if pa,b = p−a,−b.

Introducing the following permutation matrix Sd|a⟩ = | − a⟩ one arrives at the following

Proposition 8. The Weyl channel is self-adjoint if

SdΦ(X)Sd = Φ(SdXSd), (85)

for all X ∈ Md(C).

The key property of the family {Wa,b} is that eigenbases of the following d + 1 opera-

tors

Z1,X1Za (a ∈ Fd), (86)

defines the maximal set of mutually unbiased bases in H = Cd. Defining

π0 := p0,0, πa := p1,a (a ∈ F∗
d), πd := p0,1, πd+1 := p1,0, (87)

with F∗
d = Fd −{0}, one finds the following representation of the generalized Pauli channel

Φ(X) = π0X +
1

d − 1


 ∑

a∈F∗
d

πa ∑
α∈F∗

d

Wα,αaXW†
α,αa + πd ∑

α∈F∗
d

W0αXW†
0α + πd+1 ∑

α∈F∗
d

Wα0XW†
α0


, (88)

with ∑a∈Fd
πa = 1. Defining Da,b := χ(ab)−1/2ZaXb, let us introduce

Qa,b = (−1)tr(ab)
(

χDa,b + χ∗D†
a,b

)
, (89)

with χ = 1
2 (1 + i). One has an analog of Proposition 1.

Proposition 9. Hermitian operators Qx,y are isospectral, and they define an orthogonal basis in

Md(C), i.e., Tr(Qx,yQx′ ,y′) = dδx,x′δy,y′ .

Now, consider a self-adjoint completely positive map

Φ(X) = ∑
x,y∈Fd

κx,yQx,yXQx,y. (90)

If Φ is mirrored symmetric, i.e., SdΦ(X)Sd = Φ(SdXSd), then it is trace-preserving, i.e., it

defines a quantum channel.

Example 2. As an example, consider a two-qubit scenario corresponding to p = n = 2, i.e.,

d = 4. In Appendix C, we provide a list of Qkℓ with k, ℓ = 0, 1, 2, 3 and Qx,y with x, y ∈ F4 =

{0, 1, a, b = a+ 1}. Interestingly, one finds the following five sets of mutually commuting operators

Q0,1 = σ0 ⊗ σ1 Q0,a = σ1 ⊗ σ0 Q0,b = σ1 ⊗ σ1

Q1,0 = σ3 ⊗ σ0 Qa,0 = σ3 ⊗ σ3 Qb,0 = σ0 ⊗ σ3

Q1,1 = σ3 ⊗ σ1 Qa,a = σ2 ⊗ σ3 Qb,b = σ1 ⊗ σ2

Q1,a = σ2 ⊗ σ0 Qa,b = σ2 ⊗ σ2 Qb,1 = σ0 ⊗ σ2

Q1,b = σ2 ⊗ σ1 Qa,1 = σ3 ⊗ σ2 Qb,a = σ1 ⊗ σ3.
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It should be stressed that operators Qkℓ cannot be divided into five disjoint sets of mutually commut-

ing operators. Note that Q2
x,y = 1l4. Moreover, note that S4 = 1l4; hence, S4-covariance trivially

holds in this case. The map Φ has the following form

Φ(X) =
3

∑
µ,ν=0

qµνσµ ⊗ σνXσµ ⊗ σν, (91)

with ∑
3
µ,ν=0 qµν = 1. Actually, one easily proves

Proposition 10. If d = 2n, then Q2
x,y = 1ld and Sd = 1ld. The n-partite quantum channel Φ reads

Φ(X) = ∑
µ

qµ σµXσµ, (92)

where µ = (µ1, . . . , µn), σµ = σµ1
⊗ . . . ⊗ σµn , and ∑µ qµ = 1.

6. Conclusions

The multipartite Weyl channels provide an important class of maps used in quantum

information theory. These maps define a direct generalization of Pauli qubit channels. It is

well known that Weyl channels are covariant with respect to the finite group generated by

Weyl operators [10]. In this paper we analyze Weyl channels which are self-adjoint with

respect to the standard Hilbert–Schmidt inner product. It is shown that self-adjoint channels

are additionally covariant with respect to a particular permutation Sd (a parity operator).

Interestingly, self-adjoint Weyl channels allow for a Hermitian Kraus representation in

terms of Hermitian Qkℓ operators (introduced in [18]). Q-operators enjoy several interesting

properties: they are isospectral and define an orthonormal basis in Md(C). Interestingly,

for a map Φ(X) = ∑k,ℓ κkℓQkℓXQkℓ covariance with respect to Sd implies that Φ is trace-

preserving. We call such maps mirrored symmetric due to the following property κkℓ = κ−k,−ℓ.

This analysis is then generalized for multipartite scenario. In particular, we studied the

structure of self-adjoint multipartite Weyl channels in power of prime dimensions. If

d = pr with p a prime number, then there exists a maximal set of ‘d + 1’ mutually unbiased

bases which enables one to construct generalized Pauli channels. Our analysis is illustrated

for the simplest scenario d = 22. In this case, we found a set of Qx,y operators with

x, y ∈ F4. It turns out that Qx,y are simply tensor product of Pauli matrices and can be

grouped into five subsets of mutually commuting operators (it is not the case for Qkℓ

operators in M4(C)).

It would be interesting to apply these class of maps to study the quantum evolution

of open systems. In particular, in connection to quantum non-Markovianity (see [32–34]).

Moreover, presented formalism can be generalized to continuous variables (CV) systems

living in the infinite dimensional Hilbert spaces. One defines standard unitary displace-

ment operators

D(x, p) := eipx̂e−ixp̂e−ixp/2, (93)

where (x, p) ∈ R2 and x̂ and p̂ are position and momentum operators satisfying [x̂, p̂] = i

(we put h̄ = 1). Defining annihilation â and creation â† operators

â =
1√
2
(x̂ + i p̂) , â† =

1√
2
(x̂ − i p̂),

one finds D(α) = eαâ†−α∗ â, with a complex parameter α = x + ip. Now, orthogonal-

ity relations for Q(α) operators read Tr(Q(α)Q(α′)) = πδ2(α − α′) [18]. In particular,
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TrQ(α) = πδ2(α). This formalism, therefore, enables one to consider a family of Gaussian

CV channels [35,36]

Φ(ρ) =
1

π

∫
d2α q(α)Q(α)ρQ(α), (94)

with q(α) ≥ 0. Finally, the permutation matrix Sd is replaced by a parity operator Π := eiπn̂,

with n̂ = â† â. One finds ΠD(x, p)Π = D(−x,−p) and hence

ΠQ(α)Π = Q(−α).

Hence, the Gaussian channel (94) is mirrored symmetric or rather parity covariant if

ΠΦ(ρ)Π = Φ(ΠρΠ), (95)

which is equivalent to q(α) = q(−α). It would be interesting to study further properties of

such covariant channels. We plan to address these problems in the future work.
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Appendix A. Proof of Proposition 1

Let us start with the following simple

Lemma A1. If d is even

(ZkXℓ)d = (−1)kℓ1l, (A1)

and if d is odd

(ZkXℓ)d = 1l, (A2)

Proof. It immediately follows from commutation relations ZX = ωXZ.

It is therefore clear that a spectrum of ZkXℓ has the following structure: if d is odd or d

is even and kℓ is even

σ(ZkXℓ) = {1, ω, . . . , ωd−1} , (A3)

and if d is even and kℓ is odd

σ(ZkXℓ) = {ω
1
2 , ω

3
2 , . . . , ω

2d−1
2 } . (A4)

Both spectra are invariant under multiplication by ωm, i.e., if λ belongs to the spectrum

ωmλ. Now, Dkℓ = ω− kℓ
2 ZkXℓ. One finds for any d

σ(Dkℓ) =

{
{1, ω, . . . , ωd−1} , kℓ even

{−1,−ω, . . . ,−ωd−1} , kℓ odd
(A5)

Corollary A1. One has therefore
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σ((−1)kℓDkℓ) = {1, ω, . . . , ωd−1} , (A6)

that is, (−1)kℓDkℓ are isospectral.

Corollary A2. Since (−1)kℓDkℓ is normal (being unitary), one concludes that Qkℓ are isospectral.

Appendix B. Proof of Proposition 4

One finds for d = 2n:

Qn0 = Zn , Q0n = Xn , Qnn = inZnXn , (A7)

and hence

[Qn0, Q0n] = (1 − ω−nn/2)ZnXn, (A8)

that is, [Qn0, Q0n] = 0 if n is even, and

[Qn0, Q0n] = 2ZnXn = 2(−i)nQnn = (−1)riQnn, (A9)

for n = 2r + 1. Hence, commutation relations (38) follows.

Appendix C. Qkℓ and Qx,y Operators for d = 22

For the reader’s convenience, we present both Weyl operators Qkℓ and Qkℓ operators

for d = 4. Recall that Q00 = Q00 = 1l4. One constructs the following set of Hermitian Qkℓ

operators [18]

Q01=




0 χ∗ 0 χ

χ 0 χ∗ 0

0 χ 0 χ∗

χ∗ 0 χ 0


 Q02=




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 Q03=




0 χ 0 χ∗

χ∗ 0 χ 0

0 χ∗ 0 χ

χ 0 χ∗ 0




Q10=




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


 Q11=

1√
2




0 i 0 −1

−i 0 1 0

0 1 0 −i

−1 0 i 0


 Q12=




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0




Q13=
1√
2




0 i 0 1

−i 0 −1 0

0 −1 0 −i

1 0 i 0


 Q20=




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 Q21=




0 −χ 0 χ∗

−χ∗ 0 χ 0

0 χ∗ 0 −χ

χ 0 −χ∗ 0




Q22=




0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


 Q23=




0 −χ∗ 0 χ

−χ 0 χ∗ 0

0 χ 0 −χ∗

χ∗ 0 −χ 0


 Q30=




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




Q31=
1√
2




0 1 0 i

1 0 i 0

0 −i 0 −1

−i 0 −1 0


 Q32=




0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


 Q33=

1√
2




0 −1 0 i

−1 0 i 0

0 −i 0 1

−i 0 1 0




To construct Wx,y, let us consider F4 = {0, 1, a, b = 1 + a} with the following rules of

addition and multiplication [30,31]
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+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

and

× 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

.

One finds the following five sets of mutually commuting Weyl operators Wx,y with

x, y ∈ F4:

W0,1 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , W0,a =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


 , W0,b =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


,

W1,0 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 , Wa,0 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 , Wb,0 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 ,

W1,1 =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


 , Wa,a =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


 , Wb,b =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


 ,

W1,a =




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


 , Wa,b =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


 , Wb,1 =




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


 ,

W1,b =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 , Wa,1 =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


 , Wb,a =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 .

Now, the corresponding Qx,y operators are defined as follows:

Qx,y =
1

2
(−1)tr(xy)

(
[1 + i]χ(xy)Wy,x + [1 − i]χ(xy)∗W†

y,x

)
=

1

2

(
[1 + i]Wy,x + [1 − i]W†

y,x

)
,

due to χ(xy) = (−1)tr(xy). One finds



Symmetry 2025, 17, 943 16 of 17

Q0,1 =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 , Q0,a =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 , Q0,b =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 ,

Q1,0 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , Qa,0 =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


 , Qb,0 =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 ,

Q1,1 =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


 , Qa,a =




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0


 ,Qb,b =




0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0


 ,

Q1,a =




0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0


 , Qa,b =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 , Qb,1 =




0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0


 ,

Q1,b =




0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0


 , Qa,1 =




0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0


 , Qb,a =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0



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