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Abstract: Quantum channels define key objects in quantum information theory. They are
represented by completely positive trace-preserving linear maps in matrix algebras. We
analyze a family of quantum channels defined through the use of the Weyl operators. Such
channels provide generalization of the celebrated qubit Pauli channels. Moreover, they are
covariant with respective to the finite group generated by Weyl operators. In what follows,
we study self-adjoint Weyl channels by providing a special Hermitian representation. For
a prime dimension of the corresponding Hilbert space, the self-adjoint Weyl channels
contain well-known generalized Pauli channels as a special case. We propose multipartite
generalization of Weyl channels. In particular, we analyze the power of prime dimensions
using finite fields and study the covariance properties of these objects.

Keywords: quantum channels; Weyl operators; Pauli maps

1. Introduction
A quantum channel is represented by a linear map ® : M;(C) — M,(C) that is

completely positive and trace-preserving (CPTP) [1-3]. Recall that P is a positive map if for
X > 0 one has ®(X) > 0. Complete positivity requires that the following extended map
id; @ ®: My(C) @ My(C) - My(C) ® My(C), (1)

defines a positive map but on the larger matrix algebra M,;(C) ® M,;(C) (id; denotes an
identity map on the matrix algebra M;(C)). Such maps define key objects of quantum
information theory [4] since any legitimate quantum operation (like quantum measurement
or quantum evolution) is represented by some completely positive map. Any such map
can be represented by so-called Kraus representation [4]

O(X) = ZKI-XKZT, 2)

with a suitable choice of Kraus operators {K;}. Now, ® is trace-preserving if }; KIK; = 1
(identity operator in M;(C)). Introducing the Hilbert-Schmidt inner product

(X, Y)ns := Tr(XTY), (3)

one defines an adjoint (dual) map &% via

(PH(X), Y)us = (X, @(Y))us, (4)
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for all X,Y € My(C). A map @ is self-adjoint (or self-dual) if & = &. Note that if ®
is trace-preserving, then ®% is unital, i.e., ®¥(1;) = 1;. Indeed, if ® is trace-preserving
then TrX = Tr®(X) = (15, ®(X))nus = (®(1,), X)gs which implies &¥(1;) = 1;. Any
self-adjoint map is necessarily unital. A paradigmatic example of a self-adjoint completely
positive trace-preserving (CPTP) map is a Pauli channel [4]

3
O(X) = 2 PO X0y, (5)
a=0
where 0, are Pauli matrices with 0y = 1, and p, is a probability distribution. The

characteristic feature of (5) is that Kraus operators o, are both unitary and Hermi-
tian. Interestingly, oy for k = 1,2,3 are traceless, isospectral, and mutually orthogonal
(0%, 01)1s = 206x¢. Moreover, the elementary maps A (X) = 03 X0y are mutually commuting,
thatis, Ay o Ay = Ay o A for k, ¢ = 1,2,3. Finally, Pauli maps are covariant with respect to
the Pauli group G (a group generated by Pauli matrices), i.e., forany U € G

ue(x)ut = euxut). (6)

Covariant maps were analyzed by several authors [5-12]. It is well known that unitary and
at the same time Hermitian orthonormal basis exists only in M;(C). Hence, in M;(C) with
d > 2 generalizing Pauli channel we have to relax either Hermiticity or unitarity. A natural
generalization consists in replacing Pauli matrices by well known unitary Weyl operators
{sz}i,iio and define the corresponding quantum channel via

d-1
D(X) = Y wi W XW, 7)
k(=0
with wyy > 0. This map is no longer self-dual. However, it is still trace-preserving and
unital. Moreover, the Kraus operators Wy, (except Woo = 1) are traceless and isospectral
and define an orthogonal basis in M;(C). Finally, (7) is covariant with respect to the group
generated by Weyl operators [10]. Another generalization of (5) is based on the observation
that eigenbases of three Pauli matrices define the maximal set of mutually unbiased bases
(MUBs) in C2 [13] (see [14] for a review). It is well known that in C¢ there exist at most
d +1MUBs [13,14], and if d is a power of prime, the explicit construction of the maximal
set of d +1 MUBs is known. Assuming the existence of the maximal set of MUBs |e,(<a))
(0 =1,...,d+1) such that for « # B one has |<e,(('x) \el(ﬁ)ﬂz = %, the generalized Pauli
channels are defined by [15-17]

a+1
O(X) = po Ly Tex + Z PaBa(X), ®)
=1
where A, (X) = Y7} P P(M with P('X) \ek )(e,(f) |.

In this paper, we propose a dlfferent generalization which is valid for any qudit
system. It turns out that (8) defines a special subclass of channels we construct. The paper
is organized as follows: in Section 2 we provide the basic construction of Weyl channels for
arbitrary d > 2 which for d = 2 reduces to Pauli maps. Section 3 discusses the Hermitian
representation in terms of Hermitian Qy, operators introduced in [18]. We generalize our
construction to multipartite scenario in Section 4, and in Section 5 we study a particular
case when the dimension of the corresponding Hilbert space is a power of prime number.
Final conclusions are collected in Section 6.
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2. Weyl Channels

Let us recall the definition of Schwinger Heisenberg—Weyl operators in M,;(C) [19-21]:
one defines two unitary operators Z and X (clock and shift operators that generate dis-
placements in discrete momentum and position, respectively) via

Zlk) = wk[k), X|k) = |k+1), )

where w = ¢2™/4 and we add modulo d. Note that
7kx! = Wkt zk, (10)

The unitary Weyl operators are defined by

Wy = XIZF = Zwkm|€+m><| (11)

m=0

fork,¢ =0,1,...,d — 1. They satisfy the following relations [22,23]

WieWrs = 0" Wigrons, Wl = oWy, (12)

Now, a Weyl channel is defined via (7) with wy, > 0 and } , wy, = 1. Now, let G, be a
group generated by Wyy. It turns out [10] that Gy = {w" Wy, |k, {,m =0,1,...,d — 1} and
hence |G,| = d%. If d = 2 one recovers G, = {41, £01, +ios, £03} which is isomorphic to
the quaternion group [9]. Now, the Weyl channel (7) is covariant with respect to G, [10]
(actually, it is irreducibly covariant since the standard unitary representation of G; by Weyl
operators is irreducible). In particular, the Pauli channel is (irreducibly) covariant with
respect to Gy [9].

Let us recall that if 4 is a prime number then the eigenbases of the following d + 1
unitary operators {X, Z, XZ, XZ72,..., XZd_l} are mutually unbiased [13,14]. In this case
d? — 1, unitary Weyl operators Wy, with (k, ¢) # (0,0) can be grouped into d + 1 classes of
mutually commuting operators Wy o witha =1,2,...,d — 1. One defines the following
class of Weyl channels called generalized Pauli channels [15-17]

d—1
O(X) =Y weWuXW/, (13)
k=0
with Wy o = wyy. Defining
7T = Woo, T :— wl,k (k = 1,. . .,d — 1), g := Wo1, 70441 = W10, (14)
one finds the following representation
d—1 d—1
O(X) = mX + 2 T Z Wk XWy o + 74 Y Woa XWG + a1 ) WaoX Wy |, (15)
a=1 a=1
with zd = 1. Now,
d—1
Y Wi XW] o+ X = dA(X), k=1,...,d-1, (16)
a=1

where Ay (X) is a decoherence map with respect to the eigenbasis of Wy j [15]. Similarly,

d— d—
2 Woa XWG, + X = dAg(X Z WaoXWio + X = dB g1 (X), (17)

a=1 a=1
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where A;(X) and Ay, 1(X) are decoherence map with respect to the eigenbases of Wy; and
Wi, respectively. Finally, using the following identity [15]

d+1
2 Ay(X) = X+ 1,TrX, (18)
a=1
one finds
1 d+1
O(X) = po 14TeX + Y. paBu(X), (19)
a=1
with
= 0 dny), p= —(dm - d— 1) (20)
Po=5"7 T0) s Pk = 57\ T a0 ,

fork =1,...,d + 1. Note, however, that in the above representation we do not require
that p, > 0. For example, pg < 0 for 7y > 1. In particular an identity map ®(X) = X
corresponds to pg = —d and py =1 (k=1,...,d 4 1). Still, one has Zii% pr =1

In this paper, we analyze a class of Weyl channels which satisfy an additional symmetry

S4P(X)Sy = P(S4XS,), (21)

where S;is a d X d permutation matrix defined by

Salk) i=|d—K), k=0,1,...,d—1 22)

Note that 5;W,S; = W_i_, and hence condition (21) is equivalent to the following
constraint wyy = w_j _s. Actually, S; defines a parity operator with eigenvalues 1. We
call such Weyl channels mirrored symmetric. It is evident that mirrored symmetric channels
are self-dual. Note that for d = 3, mirrored symmetric channels coincide with generalized
Pauli channels; however, it is no longer true for d > 3.

3. Hermitian Representation of Mirrored Symmetric Channels

Mirrored symmetric Weyl channels are self-dual and hence can be represented by a
Hermitian Kraus representation ®(X) = Y.;a;jK;XK;j, with a; > 0, and K; = K]* In this
section, we construct a family of self-dual completely positive maps by providing an ap-
propriate Hermitian representation. These maps are completely positive but in general not
trace-preserving. Interestingly, adding a mirror symmetry restores the trace-preservation
property and hence gives rise to a family of mirrored symmetric Weyl quantum channels.

Following [18], let us introduce

D¢ i= w /278X = /2 Wy (23)

Unitary operators Dy satisfy the following relations:

ks—rl

DZ@ =D_ ¢, DiDrs=w 7 Diryypqs (24)

Finally, let us define a set of Hermitian operators [18]

Que = (=DM (xD + DYy ). (25)

where x = 1(1 +1i) (actually authors of [18] did not include the factor (—1)).
These so called Heisenberg-Weyl observables [18] were recently used in tomographic
scenario [24-26]. Hermitian operators Qy, define an orthogonal basis in M;(C)
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Tr(Q},Qij) = d 6xidyj. (26)
One has Qpp = 1; and the remaining operators Qy, are traceless.
Proposition 1. Traceless operators Qy, are isospectral and their spectrum reads
0(Qge) = {cos(2mtj/d) —sin(27j/d)|j=0,1,...,d —1}. (27)

For a proof, see Appendix A.

Example 1. Note that for d = 2 one recovers the spectrum of Pauli matrices {—1,1}. For
d = 3, the spectrum reads o(Qg¢) = {1(—1—+/3),3(=1++/3),1} and for d = 4 one has
O’(ng) = {—1, —1, 1, 1}.

Remark 1. There is another well-known orthogonal basis in M;(C) defined in terms of Hermitian
generalized Gell-Mann matrices:

AY) = Eq+En, 1<k<t<d,
Ay = —i(Eke—Ezk) 1<k<(<d, (28)

AD = ey €+1 (ZE]] eEHl,Hl), (=1,...,d-1 (29)

where E;; = |i)(j|. They define generators of SU(d). Note, however, that contrary to Qy, general-
ized Gell-Mann matrices are not isospectral. Moreover, for the map defined via

d(X ZWA XAy + Z (qké A XAS +ai A l(cé)XAl(cé)) (30)

the trace-preservation condition is quite nontrivial. Finally, contrary to Weyl operators Gell-Mann
matrices cannot be split into disjoint sets of mutually commuting operators.

Proposition 2. Operators Qy, satisfy the following identity

Qpr+ Q% =21, 31)
Moreover, one has
QueX Qi + Qi XQ g = Wi XW[ , + W XWT, . (32)
Indeed, one easily finds
Qe+ Q%p =21+ 5 (Dkz +D%, _,— Df} - D% ﬁ) (33)

and due to (24) the second term vanishes. Simple algebra proves (32).
Remark 2. Interestingly, for d = 4 one has Qf, = 4.

Consider now the following class of completely positive maps

d—1

O(X) =Y w0 QuuXQxe, (34)
k(=0
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with xgy > 0. The above map is evidently self-dual. However, it is not trace-preserving
(and hence also not unital).

Proposition 3. If (34) is mirrored symmetric, i.e., Sy®(X)S; = P(S5;XS,), where Sy is a
permutation matrix defined in (22), and Yy ; K¢ = 1, then (34) is trace-preserving.

Proof. Indeed, observe that

SaZkSy=27F, S;Xx*s; =X, (35)

and hence

S4QuSa = (~1)Mw 2 ()z* X"+ 72X ) = @y . (36)

It is, therefore, clear that S;®(X)S; = P(S;XS;) is equivalent to the mirror symmetry
Kk¢ = K_,—¢ Which, in turn, taking into account Proposition 2 implies that ® is unital (and
hence trace-preserving). [

Note that if 4 is odd, one has ‘7122—_1 independent parameters k. If d = 2n is even, then

2 2 2
QOn = QnO = Qun = 1y,
d>—4

and one has “5= + 3 independent parameters «j;.

Proposition 4. If n is even, then operators {Qon, Quo, Qun} are mutually commuting. If
n =2r+1, then

1

1 1
Xy = EQOn , X = §<_1>7an , X3 = EQnOr (37)

satisfy commutation relation of the su(2) Lie algebra, i.e.,
(X, Z] = i€kemZm, (38)

where €yyy, stands for the Levi—Civita symbol.

For the proof cf. Appendix B.
Define the following family of unital quantum channels

Ae(X) = %(leXka +Q k- XQ k1), (39)

which are Sj-covariant, i.e., SyAx(X)Sy = Age(S4XS,;). One easily proves that
Aké 9] Az] = Al] o Aké~ (40)

Assuming mirror symmetry ki, = k_j _y, the map (34) can be represented as follows

d—1
b = Kie Aké- (41)
k,1=0
Due to the commutativity property (40), the spectral properties of ® are fully controlled by
the spectral properties of Agy. Simple analysis leads to

1 o -y .
Be(Q) = 5 (@M 4+ @M ) Qi = R~ 42)

and hence
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®(Qij) = 4 Qij, (43)
with real eigenvalues
d—1 o d
/\ij = 2 Kke Re wk]—fz = Z Kip COS(Z?T(kj — 61)/d) (44)

k,1=0 k,1=0

Note that )\ij = A—i,—j and Ay = 1.
Recall that any matrix X € M,(C) can be mapped to a vector |X)) € C? @ C? via

X)) =Y 1) @ Xi) =} Xjli®j), (45)
i i,j

where X;; are matrix elements of X. It simply means that one defines |x)) as a column
vector in C? ® C? by stacking the rows of the matrix [27,28]. Using this operation (so-
called vectorization) one may assign to any linear map ® : M;(C) — M;(C) a linear
super-operator ® : C? @ C? — C? @ C? as follows [27,28]

D[X)) = |@(X)). (46)

Vectorization enjoys the following property

|AXB) = A® B*|X)), (47)
and hence one finds the following super-operator corresponding to (34)
o d-l
D= ) w0 Qre ® Q- (48)
k,1=0

The spectral representation of ® reads

R d—1
O = % Y Mk 1Qee) (Qxel, ((Quel Qi) = ddridyy. (49)

k,1=0

Finally, using the following identity

R & =
Y Glelil=5 ¥ Que Qi (50)
ij=0 k,1=0
one finds the Choi matrix of ®
1 d—1
Co = g Y Ake Qe ® Qi (51)
k,1=0
with the corresponding spectral decomposition
d—1
Co =Y e |Que)) (Quel, (52)

k,1=0

which clearly shows that ® is completely positive if and only if Ce > 0, i.e., kg > 0.
Representing a density operator via the following Bloch tensor x = (x;;)

1 d—1
p=7 Y %ijQij, x0 =1, x;j €R, (53)
$,j=0

one has [p)) = J Z;i/].;lo xij|Qjj)), and hence
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o)) E Ao x);|Q), (54)

:n..M—‘

l

where (A o x);; = A;ix;;. Hence, on the level of a Bloch tensor x, the map simply operates
via the Hadamard product with the matrix A = (A;;) of eigenvalues of ®. This provides a
natural generalization of the Bloch representation of the Pauli channel

1 3
d(p) = 5 Y AaouTr(owp) , Ag =1, (55)
a=0

which maps the Bloch vector x = (x1, X2, x3) of p to X' = (A1x1, Aaxa, A3x3).
Let us observe that using Qy, operators one may easily restore a set of unitary operators

Uip := Qpr +1Q_,—¢- (56)
Indeed, one finds
Uk = CreWer, (57)

with &y = (—1)Fwk/2x. Note that || = 1 and hence Uy, defines a collection of unitary
operators. It shows, therefore, that any mirrored symmetric map (34) satisfies

U @(X) U], = @ (Ui XUJ,), (58)

that is, we restored the unitary covariance provided the self-adjoint map is mirrored sym-
metric.

4. Multipartite Channels

Consider now a multipartite system living in H = C% ® ... ® C%. Multipartite Weyl
channels were recently analyzed in [29]. Let us define

Wie := Wiye, ® .. @ W0, (59)

werek = (ky,...,kn), £ = ({1,...,€y), and Wy, are Weyl operators in C%. The multipartite
Weyl channel is defined as follows [29]

Q(X) =Y preWie XW,, (60)
Py

where pyy is a probability distribution. Now, let Sy, be a d; x d; permutation matrix such
that Sy |k;) = | — k;) and let

S; = Sdl ®®Sdn (61)
Proposition 5. A multipartite Weyl channel (60) is self-adjoint if

S ;P (X)Sy = P(S;XSy), (62)
forall X € My(C).

It is clear that self-adjoint Weyl channel satisfies the following mirror symmetry
Pke = P—k,—¢- In a similar way, we define multipartite operators Qy,

Qke = Qxyt, @ -+~ @ Qkts (63)
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were Qy.¢, are operators in C4.
Proposition 6. The operators Qyg are isospectral and satisfy
Qre+ Q% =21 ®...®1,, (64)
together with
QreXQxe +Q k- eXQ k- = Wit XWyy + Wi XWI, . (65)
Using operators Qyp, we define the following completely positive map
D(X) =) xkeQueX Qe (66)
k.

with ke > 0. Again, being completely positive, it is generally not trace-preserving.

Proposition 7. If (60) is mirrored symmetric, i.e., Sy®(X)S; = ®(S;XSy), where S; is a
permutation matrix defined in (61), and Y yp ko = 1, then (60) is trace-preserving.

Proof. Observe that defining

zhk=7zhg. . @z, xXt.=X0g.. X", (67)

one finds
S;zks, =z %, s xts, = x7¥, (68)

and hence S;Qy¢S; = Q_k,¢. Finally, observe that if each d; = 2m;, then
Qo = Qoo = Qoo =1y, ® ... ® 1y, (69)
where m = (mq,...,my)and 0 = (0,...,0). O

Define the following family of unital quantum channels

1
Are(X) = §<Q"£XQ"£ +Q k,—eXQ_k,—¢)- (70)

One has S Are(X)S; = Are(S4XSy4). Let us observe that

Ape = Aklfl ®...&Q Ak;zf;z’ (71)

and hence
AkloAij = Ai]'OAkg. (72)
Assuming the mirror symmetry «y, = x_y,_, the map (60) can be represented as follows

b = ZKkg Aké- (73)
ke

Due to the commutativity property (72), the spectral properties of ® are fully controlled by
the spectral properties of Agy. One obviously has

n
kr 'r_zr 'r
Are(Qij) = [TRewy” " Qij, (74)
r=1

2mi/d

where w; = ¢ , and hence
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®(Qij) = 1ijQij, (75)
with real eigenvalues
n
)\,']' = ZKkl H COS(ZT[(kr]'r — Eri;’)/d;’). (76)
k.t r=1
Note that Ajj = A_; jand Ago = 1.
If kg = K]g%l . K]?Z%n, then @ is a separable quantum channel

d=0Wg.. . 0o, (77)

with ®()(X) = Zz:,;}:() K,((:zr Qk,0,XQx,¢,, where Qy 4. are Q-operators in C%. In general,
however, «¢ does not factorize, and the map P cannot be represented as a tensor product
of single-partite maps which implies that ® acting on a separable state in C*1 @ ... ® C%
can create an entangled state.

5. Power of Prime Dimension: A Case Study

In this section, we analyze a particular scenario when d; = ... = d;, = p is a prime
number, that is, d := dimH = p" is a power of prime. It is well known that in this case
there exist the maximal set of d + 1 = p" + 1 mutually unbiased bases in H = C¥. Since
d is power of prime denote by F; a finite field with d elements [30,31]. Let us introduce a
computational basis |a) in H, with a € F; and define

Xor= ¥ latx)ixl, Za= T xlax)lx)xl, 78)

XG]Fd XEFd

where the operations ‘x + a’ and ‘ax’ are defined within F;, and

Xx(x):= exp(zpmtr(x)> = w;f(x), (79)

where the trace operation tr : Fy — F), is defined as follows

tr(x) =x + 22+ 427" (80)

Note that [, is a finite subfield of F; and hence F; = {0,1,...,p—1,m4,... ,ad,p}. The
character x : F; — C satisfies x(a + b) = x(a)x(b). Note thatif n = 1, i.e,, d = p, then
F; ={0,1,...,d — 1} and (78) recovers the original definition of Xk and Z¢. Finally, let us
define the following family of Weyl operators

Wﬂ,b = Xqu. (81)
One easily proves
7, Xy = x(ab)XpZ,, (82)
and hence
Wa,bwc,s = X(bc)wu+c,b+s ’ W;,b = X(ab)w—a,—b' (83)

Now;, let us define a Weyl channel via

CD(X): Z pu,bwu,bXWZ,b' (84)
ﬂ,bEFd
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D(X) = mpX +

where p,; is a probability distribution on F; x F;. & is self-adjoint if p,;, = p_,_p.
Introducing the following permutation matrix S;|a) = | — a) one arrives at the following

Proposition 8. The Weyl channel is self-adjoint if
SaP(X)Sy = P(S4XSy), (85)
forall X € My(C).

The key property of the family {W, , } is that eigenbases of the following d + 1 opera-
tors

Zl,X]Za ({1 c ]Fd)/ (86)

defines the maximal set of mutually unbiased bases in H = C?. Defining

0 := P00, Ta := P14 (@ € Fy), 74 := po1, Tas1:= P10, (87)

with F; = F; — {0}, one finds the following representation of the generalized Pauli channel

1
1 ( Yo e Y WauaXWE o+ 7a Y WooXWE, + 7401 Y WaOXWf;O), (88)

acly acly a€ly a€ly
with Ypep, 7T, = 1. Defining D, j, := x(ab) ~/2Z,X,, let us introduce

Qup = (~1)" (D, + x'D} ), (59)
with x = %(1 + 7). One has an analog of Proposition 1.

Proposition 9. Hermitian operators Qv are isospectral, and they define an orthogonal basis in
Md((C), ie., Tr(@x,y(@x/,y/) = déx,x’(sy,y"

Now, consider a self-adjoint completely positive map
CD(X) = Z Kx,y@x,yXQx,y- (90)
xyel,

If ® is mirrored symmetric, i.e., S;P(X)S; = P(S;XS,), then it is trace-preserving, i.e., it
defines a quantum channel.

Example 2. As an example, consider a two-qubit scenario corresponding to p = n = 2, i.e.,
d = 4. In Appendix C, we provide a list of Qi with k,¢ = 0,1,2,3 and Qx,, with x,y € Fy =
{0,1,a,b = a+ 1}. Interestingly, one finds the following five sets of mutually commuting operators

Qoi=00®0 Quu=0®0 Qyp=0®0

Qio=03®09
Qi=03®0
Qe = ®0y

Qipy =0 @0

Quo=03®03
Qa,ﬂ =0 Q03
Qup = @0
Qi1 =3 Q@0

Qpo =00 @03
Qpp =1 @02
Qp1 =00 @0

@b,a =01 ® 03.
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It should be stressed that operators Qg cannot be divided into five disjoint sets of mutually commut-
ing operators. Note that @ch,y = 1y. Moreover, note that Sy = 1y; hence, Sy4-covariance trivially
holds in this case. The map ® has the following form

3
(X)) =Y quoy @0 X0, @0y, (91)
u,v=0

with 22,1,:0 quv = 1. Actually, one easily proves

Proposition 10. Ifd = 2", then Qiy = 1 and Sy = 1. The n-partite quantum channel ® reads
D(X) =) qu0uXoy, (92)
"
wherep = (p1, .., pn), Oy = 0y @ ... @0y, and y, qu = 1.

6. Conclusions

The multipartite Weyl channels provide an important class of maps used in quantum
information theory. These maps define a direct generalization of Pauli qubit channels. It is
well known that Weyl channels are covariant with respect to the finite group generated by
Weyl operators [10]. In this paper we analyze Weyl channels which are self-adjoint with
respect to the standard Hilbert-Schmidt inner product. It is shown that self-adjoint channels
are additionally covariant with respect to a particular permutation S; (a parity operator).
Interestingly, self-adjoint Weyl channels allow for a Hermitian Kraus representation in
terms of Hermitian Qy, operators (introduced in [18]). Q-operators enjoy several interesting
properties: they are isospectral and define an orthonormal basis in M;(C). Interestingly,
for a map ®(X) = Y s kx¢ Qie X Qk¢ covariance with respect to S; implies that & is trace-
preserving. We call such maps mirrored symmetric due to the following property xx, = x_j _¢.
This analysis is then generalized for multipartite scenario. In particular, we studied the
structure of self-adjoint multipartite Weyl channels in power of prime dimensions. If
d = p" with p a prime number, then there exists a maximal set of ‘d + 1" mutually unbiased
bases which enables one to construct generalized Pauli channels. Our analysis is illustrated
for the simplest scenario d = 22. In this case, we found a set of Qy, operators with
x,y € Fy. It turns out that Qy, are simply tensor product of Pauli matrices and can be
grouped into five subsets of mutually commuting operators (it is not the case for Qg
operators in My (C)).

It would be interesting to apply these class of maps to study the quantum evolution
of open systems. In particular, in connection to quantum non-Markovianity (see [32-34]).
Moreover, presented formalism can be generalized to continuous variables (CV) systems
living in the infinite dimensional Hilbert spaces. One defines standard unitary displace-
ment operators

D(x,p) := ePfe¥Peixp/2, (93)
where (x, p) € R? and £ and p are position and momentum operators satisfying [£, p] =
(we put i = 1). Defining annihilation 4 and creation 4" operators

1 ) 1 ,
i=—(%+ip), at = %(f—zﬁ),

0’ 0" \vith a complex parameter &« = x + ip. Now, orthogonal-

one finds D(x) = e
ity relations for Q(«) operators read Tr(Q(x)Q(«')) = mé*(a — &) [18]. In particular,
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TrQ(a) = 716%(a). This formalism, therefore, enables one to consider a family of Gaussian
CV channels [35,36]

(p) = ~ [ Puq(@)Qa)pQ), 949

with g(a) > 0. Finally, the permutation matrix S, is replaced by a parity operator IT := ¢/,
with 71 = 474. One finds TID(x, p)I1 = D(—x, —p) and hence

TMO(a)IT = Q(—a).

Hence, the Gaussian channel (94) is mirrored symmetric or rather parity covariant if

[1®(p)IT = S(TTpIT), 95)

which is equivalent to g(a) = g(—a). It would be interesting to study further properties of
such covariant channels. We plan to address these problems in the future work.
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Appendix A. Proof of Proposition 1

Let us start with the following simple

Lemma Al. Ifd is even
(ZFxH? = (-1)¥1, (A1)
and if d is odd
(ZkxHd =1, (A2)

Proof. It immediately follows from commutation relations ZX = wXZ.
It is therefore clear that a spectrum of Z¥X" has the following structure: if d is odd or d
is even and k/ is even
o(ZFxY = 1,w,..., 01}, (A3)

and if d is even and k/ is odd

3

o(ZFx") = {w%,wf,...,w#} . (A4)

Both spectra are invariant under multiplication by w™, i.e., if A belongs to the spectrum
o
w™A. Now, Dyp = w=% 7kX!. One finds for any d

1w,..., w1}, k¢ even

o (Dy) —{ {-1,-w,...,—w™ 1}, klodd (A9

O

Corollary Al. One has therefore
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c((-D)¥Dy) = {Lw,..., w1}, (A6)

that is, (—1)X Dy, are isospectral.
Corollary A2. Since (—1)"5 Dy is normal (being unitary), one concludes that Qg are isospectral.

Appendix B. Proof of Proposition 4
One finds for d = 2n:

QnO =2Z" ’ QOn =X" ’ an =i{"7Z"X" ’ (A7)
and hence

[QnOz QOn] = (1 - wfnn/Z)Zan, (A8)

that is, [Qn0, Qon] = 0if 7 is even, and

[QnOr QOn] =27"X" = 2(_i)nan = (_1)71-an’ (A9)

for n = 2r + 1. Hence, commutation relations (38) follows.

Appendix C. Qi and Qy,,, Operators for d = 22

For the reader’s convenience, we present both Weyl operators Qs and Qy, operators
for d = 4. Recall that Qgp = Qgo = L4. One constructs the following set of Hermitian Qy,
operators [18]

*

0 x* 0 «x 0 01 0 0 x 0 yx
fx 0 x* 0 (o 0 0 1 [x 0 x ©
Qo= 0y 0 Qo= 100 0 Qoz= 0 ¥ 0
x* 0 x O 01 0 O x 0 x* 0
1 0 0 0 0 i 0 -1 0 0 —i 0
0 -1 0 0 1|-i o1 o 0 0 0 i
Quzly o 1 o Q“_ﬁ 0 10 —i| 9T 0 o0 o
0 0 0 1 ~1 0 i 0 0 —i 0 0
0 i 0 1 1 0 0 0 0 -x 0 x
1 =i 0 -1 o0 fo =1 0 o0 |=x o x o
Q""ﬁ 0 1 0 —i|l @ o 0 1 o “| o X0 —x
1 0 i 0 0 0 0 -1 x 0 —x* 0
0 0 -1 0 0 —x* 0 x 10 0 0
o 0o 0o 1 |-x o x o o1 0 o
Q= 1 o o o] | x 0 —x Qo=ly o —1 o
01 0 0 X 0 —x 0 00 0 -1
0 1 0 i 0 0 i 0 0 -1 0 i
11 o i o 0 0 0 i 1(-1 0o i o0
Q=70 =i 0 —1| ¥ 0 0 o ¥TAE| 0 i 01
—i 0 -1 0 0 —i 0 0 —i 0 10

To construct Wy 4, let us consider F4 = {0,1,4,b = 1+ a} with the following rules of
addition and multiplication [30,31]
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+10|1]|al|b X |0|1|al|b
0|0|1]alb 0(0|0|0]O0
1|11(0]|b|a and 1|10(1|al|b
alalb|0]1 a |0]la|b|1
b|blal|l|0 b|O0O|b|1]|a

One finds the following five sets of mutually commuting Weyl operators W, , with

x,y6F4:
10 0 0 1.0 0 0 10 0 0
01 0 0 0 -1 0 0 0 -1 0 0
W, = rW /W - 4
01 00 -1 0.4 0 0 -10 0b 0 0 1 0
00 0 -1 0 0 0 1 0 0 0 —1
0100 0010 000 1
100 0 000 1 0010
W = ,W = /W == ’
L0 000 1 20 100 0 b0 0100
0010 0100 100 0
01 0 0 0 0 -1 0 0 0 0 —1
10 0 0 0 0 0 1 0 0 1 0
W B /W = /W - 4
11 00 0 -1 o 1 0 0 0 bb 0 -1 0 0
00 -1 0 0 -1 0 0 1 0 0 0
0 -1 0 0 0 0 1 0 00 0 -1
Wy, = 1.0 0 0 W, — 0 0 0 —1 W, — 00 -1 0 |
. 0 0 0 1 4 10 0 0 ' 01 0 0
0 0 -1 0 0 -1 0 0 10 0 0
0 -1 0 0 00 -1 0 0 0 0 1
1 0 0 0 00 0 -1 0 0 -1 0
W = ,W — IW =
Lb 0 0 0 -1 a1 10 0 0 ba 0 -1 0 0
0 0 1 0 01 0 0 1.0 0 0
Now, the corresponding Qy,, operators are defined as follows:
Quy = 5 (19 ({14 i ey) Wy + [1— () W) = = (104 Wy + [1— W
vy = 5 X\XY )Wy x X\xXy yx) = 3 yx yx )

due to x(xy) = (1)), One finds
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01 00 0 01 0 0 0 0 1
1 0 0O 0 0 0 1 0 01 0
Wi=14 o o 1)’Q0'“ 100 o)’QW’ 0100 |’
0 01 0 01 0 0 1 0 0 O
1 0 0 0 1 0 0 0 1 0 0 0
01 0 0 0 -1 0 0 0 -1 0 0
Q=190 1 0 |"®=|g o 10| ®To 0 1 0 |
00 0 -1 0 0 0 1 0 0 0 -1
01 0 0 0 0 —-i O 0 0 0 —i
1 0 0 0 0o 0 0 i 0 0 i O
izl 0 0 |ty 0 0 0| Tl S0 0 |
00 -1 o0 0 —i 0 0 i 0 0 O
00 —i O 0 o0 1 0 —i 0 O
00 0 —i 0o 0 -1 0 i 0 0 O
Q=10 0 o "% 0o 1 0 o[ T 0 0 0 i |
0 i 0 O 1 0 0 0 0 0 i
00 0 —i 0 —i 0 0 0 0 1 o0
00 —i O i 0 0 O 0 0 0 -1
Qo=lo i 0 o ["WT| 0 o i "1 o0 0 o
i 0 o0 0 0 —i 0 0 -1 0 0
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