
NNT/NL : 2020AIXM0001/001ED000

THÈSE DE DOCTORAT
Soutenue à Aix-Marseille Université
le 11 octobre 2023 par

Vlad DEDU
Search for CP violation in semileptonic B meson decays at the

LHCb experiment

Discipline
Physique et Sciences de la Matière

Spécialité
Physique des Particules et Astroparticules

École doctorale
Physique et Sciences de la Matière (ED 352)

Laboratoire/Partenaires de recherche
Centre de Physique des Particules
de Marseille (CPPM)
Large Hadron Collider beauty (LHCb)

Composition du jury

Cristinel DIACONU Président du jury
CPPM (CNRS/IN2P3)

Emi KOU Rapporteuse
IJCLab (CNRS/IN2P3)

Matthew CHARLES Rapporteur
LPNHE (CNRS/IN2P3)

Lucia GRILLO Examinatrice
University of Glasgow

Marcello ROTONDO Examinateur
INFN-LNF

Olivier LEROY Directeur de thèse
CPPM (CNRS/IN2P3)

Anton POLUEKTOV Co-directeur de thèse
CPPM (CNRS/IN2P3)

C
ER

N
-T

H
ES

IS
-2

02
3-

42
5

11
/1

0/
20

23



Affidavit

I, undersigned Vlad Dedu, hereby declare that the work presented in this manuscript
is my own work, carried out under the scientific direction of Anton Poluektov and
Olivier Leroy, in accordance with the principles of honesty, integrity and responsibility
inherent to the research mission. The research work and the writing of this manuscript
have been carried out in compliance with both the french national charter for Research
Integrity and the Aix-Marseille University charter on the fight against plagiarism.

This work has not been submitted previously either in this country or in another
country in the same or in a similar version to any other examination body.

Marseille
July 03, 2023

Cette œuvre est mise à disposition selon les termes de la Licence Creative Commons
Attribution - Pas d’Utilisation Commerciale - Pas de Modification 4.0 International.

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr


Acknowledgements

First of all, I want to express my gratitude to my supervisor, Anton Poluektov, for always
being there and helping with any possible issue I had, either scientific or personal. Your
presence and guidance have been invaluable to my work which ultimately resulted
in this thesis. You were always available to discuss and answer my questions (even
during the Covid-19 pandemic). I am very grateful for your patience and pedagogical
abilities to discuss and explain the same topic several times if needed in order to
make sure I understand it. In general, I consider myself very lucky to have had you as
supervisor and to have worked with you for these three years. I have learned a lot from
you during this time, and it is close to impossible to compare myself at the start of the
PhD and now, at the end of it, in terms of the knowledge and experience I acquired
under your guidance. Finally, I want to thank you for reading this thesis and providing
many useful comments and suggestions.

I want to thank Olivier Leroy for his general guidance and advice and for his help
with various specific aspects of the analysis. I also thank Olivier for reading this thesis
several times and providing very useful comments. Furthermore, I want to express
my appreciation for the support from both the previous and actual members of the
LHCb group in Marseille. I thank Dorothea and Julien for many friendly discussions
and scientific advice. Special thanks goes to Raul and Resmi for their help with some
parts of the analysis. Finally, I want to thank the rest of my PhD and postdoc friends
from Marseille: Bianca, Lauri, Nemer, Jacopo, Gaya, Bogdan, Andy and Chen for their
support, help and many friendly interactions.

Many thanks go to Matthew Charles and Emi Kou for agreeing to be part of my
defense jury as rapporteurs. Thank you for reading this thesis and for the numerous
comments and suggestions you provided. Your feedback was extremely helpful and it
helped me to better understand some parts of the thesis, see the bigger picture, and
express those ideas more carefully and more clearly. In addition, I wish to thank the
LHCb semileptonic working group, in particular Biljana, Lucia, Greg and Marcello, for
providing many valuable comments and suggestions on the analysis as it progressed.
I also want to thank Adam, Yipeng and Manuel for their help with some technical
issues. Special thanks go to Lucia and Marcello for agreeing to be part of my defense
jury as examinateurs and for their useful comments and discussions that followed.

Last but not least, I want to thank my family and friends for supporting me during
the three years of the PhD journey. Special thanks go to Irina for her support during
the last months and the writing of this thesis.

3



Liste de publications et
participation aux conférences

Liste des publications réalisées dans le cadre du projet de
thèse:

1. V. Dedu, Measurement of CP-violating observables in B 0 → D∗+µ−νµ decays at
the LHCb experiment, JRJC 2021- Journées de Rencontres Jeunes Chercheurs.
Book of Proceedings. 2022.

2. V. Dedu and A. Poluektov, Towards the precision measurement of CP violation in
B → D∗µν decays at LHCb, [arXiv:2304.00966], JHEP 07 (2023) 063

Participation aux conférences et écoles d’été au cours de la
période de thèse:

1. GDR-InF annual workshop, Nov 2021, Paris, France

2. IN2P3 School Of Statistics, May 16-20 2022, Carry-le-Rouet, France

3. 2022 European School of High-Energy Physics, Nov 31-Dec 13 2022, Israel

4



Contents

Acknowledgements 3

Liste de publications et participation aux conférences 4

Contents 5

Résumé 7

Abstract 8

Synthèse en Français 9

1 Introduction 22

2 Theoretical framework 24
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 Quantum electrodynamics . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . 30
2.1.4 The weak interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.5 Electroweak theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.6 CP violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Semileptonic B decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.1 Lepton flavor universality . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Effective field theory and New Physics in b → cℓνℓ . . . . . . . . 54
2.2.3 CP violation in b → cℓνℓ . . . . . . . . . . . . . . . . . . . . . . . . 57

3 The LHCb detector at the LHC 64
3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 The LHCb experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 The vertexing and tracking system . . . . . . . . . . . . . . . . . . 72
3.2.2 The particle identification system . . . . . . . . . . . . . . . . . . 80
3.2.3 The trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.4 LHCb in Run 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Search for CP violation in B 0→ D∗−µ+νµ 98
4.1 Datasets and event selection . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Neutrino reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.1 Rest frame approximation . . . . . . . . . . . . . . . . . . . . . . . 109

5



4.2.2 Quadratic equation approach . . . . . . . . . . . . . . . . . . . . . 111
4.3 Background template fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.1 Simulation derived templates . . . . . . . . . . . . . . . . . . . . . 116
4.3.2 Data driven templates . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.3 Fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 NP reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5 Binned asymmetry fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.6 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.6.1 P-odd effects in backgrounds . . . . . . . . . . . . . . . . . . . . . 140
4.6.2 P-odd instrumentation effects . . . . . . . . . . . . . . . . . . . . 156

5 Results 183

6 Conclusions and prospects 187
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Appendices 191

6



Résumé

La mesure d’effets violant CP dans les désintégrations semileptoniques, telles que
B 0→ D∗−µ+νµ, permet de tester le Modèle Standard (MS) sans ambivalence: toute
violation de CP impliquerait sans ambiguïté la présence de Nouvelle Physique (NP)
dans ces désintégrations. Selon certains scénarios de NP, la distribution angulaire
de B 0→ D∗−µ+νµ donne lieu à certains termes antisymétriques par les transforma-
tions discrètes P (parité) et C P (conjugaison de charge et parité) qui sont rigoureuse-
ment absents dans le MS. L’analyse présentée dans cette thèse propose une nouvelle
méthode ne dépendant d’aucun modèle spécifique pour mesurer ces termes, tout
en annulant les termes présents dans le MS et donc les incertitudes théoriques ou
expérimentales qui leur sont associées.

L’analyse est réalisée en utilisant 5,4 fb−1 de données de collisions proton-proton
(pp) collectées au cours des années 2016-2018 du Run 2 par le détecteur LHCb du
CERN. Grâce à des techniques d’approximation spécifiques permettant d’évaluer les
paramètres cinématiques du neutrino échappant à la détection, on peut de mesurer,
d’une part, des asymétries par la transformation CP qui démontreraient la présence
de NP et, d’autre part, les asymétries par la transformation P qui devraient être nulles
par principe quelque soit le modèle (MS ou NP) et qui permettent ainsi de contrôler la
méthode. L’ajustement aux données d’un modèle discrétisé est effectué pour extraire
les couplages NP des asymétries CP .

Les incertitudes systématiques les plus importantes sont prises en compte et es-
timées. Des bruits de fond qui polluent l’échantillon de données sélectionnées peu-
vent donner naissance à des asymétries par P ou C P non nulles et peuvent pro-
duire des biais dans la mesure des couplages de NP. Un ajustement par maximum de
vraisemblance est effectué pour estimer les différentes fractions de bruit de fond dans
les données. L’ampleur des biais est estimée à l’aide d’une simulation MC des bruits
de fond produisant des asymétries. En outre, la mesure des couplages de NP peut
également être biaisée par des effets instrumentaux, tels qu’un mauvais alignement
du détecteur ou une non-uniformité des efficacités de reconstruction. Les biais lié à
l’alignement des éléments du détecteur est estimé à l’aide d’une simulation MC artifi-
ciellement désalignée. Une approche basée sur les données utilisant un échantillon
de contrôle complètement symétrique quelque soient les scénarios NP est proposée
pour contrôler tous les biais liés aux efficacités de reconstruction.

L’ajustement aux asymétries P insensibles à la NP donne des résultats cohérents
avec les attentes, validant ainsi la méthode utilisée. Quant aux asymétries CP sensibles
à la NP, les valeurs des résultats de l’ajustement sont masquées jusqu’à la finalisation
de l’analyse et seules les valeurs des incertitudes statistiques et systématiques sont
donnés.
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Abstract

The measurement of CP-violating effects in B meson semileptonic decays serves as a
null test of the Standard Model (SM): any CP violation would unambiguously imply
the presence of New Physics (NP) in these decays. Certain NP scenarios give rise to
observable parity- and CP-odd terms in the otherwise parity-even B 0 → D∗−µ+νµ
angular distribution. The analysis presented in this thesis proposes a novel model-
independent method to measure the parity- and CP-odd terms while effectively can-
celling out the parity-even terms and their associated theory uncertainty.

The analysis is performed using 5.4 fb−1 of proton-proton (pp) collision data col-
lected during the 2016-2018 years of Run 2 by the LHCb detector at CERN. Using
approximation techniques to reconstruct the neutrino and consequently, the kine-
matic parameters that describe the angular distribution, parity and CP asymmetries
can be constructed. The CP asymmetries are sensitive to the various NP couplings
while the parity asymmetries are expected to be zero whether in SM or NP due to the-
oretical considerations and can serve as a useful control channel. A binned template
fit is performed to extract the NP couplings from the CP asymmetries in data using
NP templates derived from Monte-Carlo (MC) simulation.

The most significant systematic uncertainties are considered and estimated. Parity-
and CP-odd effects which may arise in backgrounds that pollute the signal data sample
can produce biases in the NP couplings measurement. A binned maximum likelihood
fit is performed to estimate the various background fractions in data. The magni-
tudes of the biases are estimated using MC simulation of the specific background
processes where parity-odd effects are possible. Furthermore, the NP couplings mea-
surement may also be biased by parity- and CP-odd instrumentation effects such as
detector misalignment and non-uniform reconstruction efficiencies. The bias due
to the misalignment of detector elements is estimated using artificially misaligned
MC simulation. A data-driven approach using the control sample that is completely
parity-even even in NP scenarios is proposed to control any parity-odd effects which
may appear in the reconstruction efficiency.

The results of the fit to the CP asymmetries are still blinded and only the statistical
and estimated systematic uncertainties are reported for this channel. However, the
fit to the parity asymmetries as a control channel is unblinded and the results are
consistent with the expectations considering the uncertainties.
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Synthèse en Français

Cadre théorique
Le Modèle Standard (MS) est la théorie la plus aboutie de la physique des particules
depuis sa formulation dans les années 1970. Il décrit les particules élémentaires et
leurs interactions en termes de trois des quatre forces connues dans la nature : la
force électromagnétique, la force forte et la force faible (le modèle standard ne tient
pas compte de la gravitation). Le modèle standard a passé de nombreux tests et la
grande majorité des observations expérimentales sont conformes à ses prédictions.
Une propriété importante prédite par le modèle standard est l’universalité de la
saveur leptonique (LFU en anglais pour Lepton Flavor Universality). Elle stipule que
l’interaction des leptons avec les bosons de jauge électrofaibles est indépendante de
la saveur des leptons. Plusieurs expériences, dont LHCb, Belle, Belle2 et BaBar, ont
testé cette propriété dans diverses désintégrations des hadrons b avec des leptons
dans l’état final. De nombreux résultats provenant de toutes ces expériences montrent
des tensions de 2-3σ par rapport aux prédictions MS du LFU. Collectivement, tous
les écarts par rapport au MS récemment mesurés dans les désintégrations des beaux
hadrons sont connus sous le nom d’anomalies de saveur.

Généralement, les tests LFU sont effectués en mesurant les rapports des fractions
d’embranchement des désintégrations de hadrons beaux où seuls les leptons de
l’état final sont différents. Le principal avantage de ces mesures de rapport est que
la plupart des incertitudes théoriques et expérimentales sont annulées. Les deux
principales classes de désintégrations pour lesquelles des tests LFU sont effectués
sont les transitions b → sℓ+ℓ− et b → cℓνℓ. En ce qui concerne le canal b → cℓνℓ, les
deux principales observables qui ont suscité un grand intérêt ces dernières années
sont les rapports R(D) et R(D∗) pour lesquelles le résultat expérimental moyen
combinée est à plus de 3σ de la prédiction MS [1]. Ces rapports sont donnés par

R(D) = B(B → D τντ)

B(B → D ℓνℓ)
, ℓ=µ,e,

R(D∗) = B(B → D∗τντ)

B(B → D∗ℓνℓ)
, ℓ=µ,e.

(0.1)

Pour compléter la recherche directe de la non-universalité de la saveur leptonique,
d’autres observables sensibles aux effets NP dans b → cℓνℓ ont été proposées. Cette
thèse suit l’approche donnée dans [2] et se concentre sur la mesure d’observables
violant CP comme moyen de contraindre et de distinguer les différents scénarios de
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NP. Les effets violant CP dans b → cℓνℓ ne peuvent apparaître que comme des effets
cinématiques dans les distributions angulaires. Par conséquent, pour accéder aux ob-
servables violant CP , les distributions angulaires doit être reconstruites. Comme dans
ces désintégrations les tensions entre les résultats expérimentaux et les prédictions
du MS sont observées jusqu’à présent dans les rapports impliquant des leptons τ, cela
suggère la présence de NP dans les désintégrations b → cτντ. Cependant, comme
les τ se désintègrent dans des états finaux qui incluent un ou deux neutrinos qui ne
peuvent pas être reconstruits dans l’expérience, ces désintégrations sont très difficiles
à traiter et la quantité de mouvement des τ, p⃗τ, ne peut pas être reconstruite avec
une bonne précision. Il est donc logique de commencer par mesurer les effets de
violation de CP dans B 0→ D∗−µ+νµ puisque sa distribution angulaire est entièrement
reconstruite. Même si les anomalies de saveur sont de préférence expliquées par la
NP dans b → cτντ, la même NP peut affecter b → cµνµ et peut conduire à des écarts
mesurables par rapport au SM dans la distribution angulaire de B 0→ D∗−µ+νµ.

La distribution angulaire de B 0 → D∗−µ+νµ est entièrement décrite par quatre
paramètres cinématiques: la masse invariante au carré du système leptonique q2

et les trois angles d’hélicité indiqués sur la figure 1. Les angles sont définis dans les
cadres référentiels au repos de leur particule mère intermédiaire respective. L’axe z
est choisi de telle sorte qu’il est aligné avec la direction du D∗− dans le référentiel au
repos du B 0. Les angles ont les définitions suivantes

• θD est l’angle polaire entre la direction du méson D0 et la direction opposée du
méson B 0 dans le référentiel au repos du méson D∗− (θD ∈ [0,π])

• θℓ est l’angle polaire entre la direction du µ+ et la direction opposée du méson
B 0 dans le référentiel au repos W ∗+ (θℓ ∈ [0,π])

• χ est l’angle azimutal entre le plan contenant les µ+ et νµ provenant du W ∗+ et

le plan contenant les D0 et π− provenant du D∗− (χ ∈ [0,2π])

FIGURE 1: Angles d’hélicité de la désintégration B → D∗(→ Dπ)ℓνℓ. Figure extraite
de [3].
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Généralement, les désintégrations semileptoniques de mésons B sont traitées
théoriquement par la théorie effective des champs. Cette approche traite le MS comme
une approximation à basse énergie (effective) d’une théorie NP plus complète, où la
NP est plus lourde que le MS. Les effets des nouveaux degrés de liberté introduits par
la NP peuvent être paramétrés en ajoutant de nouveaux termes au lagrangien du MS,
ou alternativement, à l’hamiltonien, appelés opérateurs de Wilson et leurs coefficients
associés. Dans le cas de la désintégration B 0→ D∗−µ+νµ, l’hamiltonien effectif qui
inclut toutes les contributions NP possibles est donné par

He f f =
4GFp

2
Vcb{

[
(1+ gL)cγµPLb + gR cγµPR b

]
ℓγµPLνℓ

+ [
gScb + gP cγ5b

]
ℓPLνℓ+ gT cσµνPLbℓσµνPLνℓ+h.c.},

(3)

où GF = 1.662787×10−5 GeV−2 est la constante de Fermi, Vcb est l’élément de la
matrice CKM, PL est l’opérateur de projection de chiralité gauche et les opérateurs de
Wilson contribuant et leurs coefficients sont le vecteur gauche (gL), le vecteur droit
(gR ), le scalaire (gS), le pseudoscalaire (gP ) et le tenseur (gT ). Le MS correspond au
cas où gL = gR = gS = gP = gT = 0.

La distribution angulaire complète de B 0→ D∗−µ+νµ est dérivée dans [2] en termes
d’hamiltonien effectif NP le plus général présenté dans l’équation 3 et elle comprend
à la fois des termes conservant CP et des termes violant CP avec différents facteurs de
suppression. Les termes non supprimés violant CP sont donnés dans le Tab. 1 et sont
tous proportionnels à sinχ ou sin2χ. On peut voir qu’en mesurant ces termes, on
accède à deux couplages NP différents : la partie imaginaire du couplage vectoriel droit
Im(gR ) et la partie imaginaire de l’interférence entre les couplages pseudoscalaire et
tensoriel Im(gP g∗

T ). Une discussion sur les modèles NP qui sont exclus et ceux qui
sont favorisés si l’on mesure que gR ou gP g∗

T est non nul est donnée dans [2].

Coefficient Couplage Fonction angulaire
Im(A⊥A ∗

0 ) Im[(1+ gL + gR )(1+ gL − gR )∗] −p2sin2θℓ sin2θD sinχ
Im(A∥A ∗

⊥ ) Im[(1+ gL − gR )(1+ gL + gR )∗] 2sin2θℓ sin2θD sin2χ
Im(ASP A ∗

⊥,T ) Im(gP g∗
T ) −8

p
2sinθℓ sin2θD sinχ

Im(A0A
∗
∥ ) Im[(1+ gL − gR )(1+ gL + gR )∗] −2

p
2sinθℓ sin2θD sinχ

TABLEAU 1: Termes violant CP non supprimés dans la distribution angulaire, leurs
couplages et les fonctions angulaires auxquelles ils contribuent [2]

Le détecteur LHCb au LHC
Le Grand Collisionneur de Hadrons (LHC en anglais pour Large Hadron Collider) est
le plus grand accélérateur et collisionneur de particules jamais construit, installé dans
un tunnel d’une circonférence de 27 km. Il est situé à 100 m sous terre près de Genève,
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en Suisse, et est exploité par le Conseil Européen pour la Recherche Nucléaire (CERN).
Le LHC est un accélérateur de hadrons à deux anneaux où les faisceaux de protons (ou
d’ions lourds) sont accélérés dans des directions opposées dans les deux anneaux. Les
faisceaux entrent en collision en quatre points différents le long de l’anneau du LHC,
où quatre expériences (ATLAS, CMS, ALICE et LHCb) sont installées pour étudier les
résultats des collisions.

Le LHC a fonctionné pendant plusieurs périodes avec de longs arrêts entre les
périodes de prise de données. La première période de prise de données est appelée
Run 1, qui s’est déroulée entre 2010 et 2012. L’énergie du centre de masse (

p
s) pendant

le Run 1 était de 7 TeV pour 2010 et 2011, et de 8 TeV pour 2012. Après le Run 1, un
arrêt appelé Long Shutdown 1 (LS1) entre 2013-2015 a eu lieu afin de mettre à niveau
les détecteurs et l’accélérateur. La deuxième période de prise de données est appelée
Run 2 et a duré de 2015 à 2018 avec l’énergie du centre de masse augmentée à 13
TeV. Après 2018, un autre arrêt appelé Long Shutdown 2 (LS2) a eu lieu jusqu’en 2022
afin de poursuivre la mise à niveau des expériences LHC et d’augmenter l’énergie du
centre de masse à 14 TeV.

L’objectif principal du détecteur LHCb est d’étudier les désintégrations des hadrons
b et c (beauté et charme) et d’étudier les processus de violation de CP dans ces désin-
tégrations. Au cours des collisions pp, des paires de quarks bb et cc sont produites
et elles s’hadronisent immédiatement, formant des états liés tels que les mésons ou
baryons b et c. Le point de l’espace où les faisceaux de protons ont interagi et pro-
duit le hadron b est appelé vertex primaire (PV). Les hadrons b ont généralement
une durée de vie de l’ordre de ∼ 1 ps et voyagent donc sur quelques mm avant de
se désintégrer en d’autres particules. Le point où le hadron b se désintègre est ap-
pelé vertex secondaire (SV). Le hadron b est ensuite reconstruit par ses produits de
désintégration.

Afin de relever les défis posés par les désintégrations des hadrons b, le détecteur
LHCb doit répondre à certaines exigences :

• Comme les hadrons b ont des vertex de désintégration déplacés de quelques
mm par rapport au PV, LHCb doit être capable de détecter ces vertex et de faire
la distinction entre les PV et les SV.

• La quantité de mouvement des particules chargées doit être mesurée très pré-
cisément afin d’obtenir une masse invariante exacte du b-hadron. Cela permet
de distinguer les désintégrations du b-hadron des autres désintégrations et de
réduire ainsi le bruit de fond combinatoire.

• Afin de distinguer les différentes désintégrations ayant la même topologie, LHCb
doit être capable d’identifier très bien les différentes particules (µ, K , π)

• Un bon système de déclenchement (trigger system en anglais) est nécessaire pour
faire face à la grande luminosité instantanée afin de sélectionner les événements
de signal de manière efficace tout en limitant à une taille raisonnable de stockage
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FIGURE 2: Disposition du détecteur LHCb dans le plan y − z [4]

Le détecteur LHCb est composé de nombreux sous-détecteurs et composants indi-
viduels, comme le montre la figure 2. Voici un bref résumé des sous-détecteurs qui
suivent approximativement l’axe z. À l’origine (z = 0), le VErtex LOcator (VELO) est
installé autour du point d’interaction. Son rôle est de mesurer très précisément et de
distinguer les positions 3D des vertex primaires et des vertex déplacés (secondaires).
Un aimant est utilisé pour courber les trajectoires des particules chargées afin de déter-
miner leur quantité de mouvement. Les autres stations de poursuite sont le Tracker
Turicensis (TT) et les trackers T1-T3, placés respectivement avant et après l’aimant.
Deux détecteurs sont utilisés pour l’identification des hadrons chargés, les détecteurs
RICH1 et RICH2, placés avant et après l’aimant. Ensuite, le calorimètre électromag-
nétique (ECAL) et le calorimètre hadronique (HCAL) permettent d’identifier et de
mesurer l’énergie des particules chargées et neutres. Enfin, cinq stations muoniques
(M1-M5) sont utilisées pour mesurer les muons, la station M1 étant placée avant les
calorimètres.

Analyse expérimentale
La première recherche d’observables violant CP dans la désintégration semileptonique
B 0→ D∗−µ+νµ est effectuée dans cette thése. L’échantillon de données utilisé pour
la mesure est constitué des données prises par LHCb au cours des années 2016,
2017 et 2018 de la période du Run 2 du LHC à une énergie de centre de masse

p
s =

13 TeV. L’ensemble des données correspond à une luminosité intégrée de 5,4 fb−1. La
désintégration B 0→ D∗−µ+νµ est reconstruite comme une combinaison D0µ± où un
π± supplémentaire est ajouté au D0 pour former le candidat D∗. Ensuite, le méson
D0 est reconstruit avec le mode D0 → K +π−.
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Afin de reconstruire les quantités cinématiques qui sont essentielles pour cette
analyse, c’est-à-dire les trois angles définis dans la Fig. 1 et q2, une approximation
sur l’impulsion du neutrino doit être faite. Il y a deux approches pour approximer
la quantité de mouvement du neutrino non détecté, la première est basée sur une
approximation du référentiel au repos du méson B , tandis que la seconde utilise
l’information topologique pour résoudre une équation quadratique et obtenir le
moment du neutrino jusqu’à une ambiguïté double.

Une fois l’approximation du neutrino obtenue, afin d’améliorer la résolution des
paramètres cinématiques, un re-ajustement complet de l’arbre de désintégration qui
inclut toutes les informations cinématiques possibles (y compris l’approximation du
neutrino manquant) et toutes les corrélations possibles est mise en œuvre.

Un ajustement par maximum de vraisemblance est mis en œuvre dans l’echantillon
des données afin d’estimer la fraction des désintégrations du signal et les contri-
butions des divers bruits de fond avec la même signature d’état final que le signal
B 0→ D∗−µ+νµ. Les bruits de fond peuvent être divisés en deux catégories : les bruits
de fond semileptoniques et les bruis de fond de double charme. Les bruits de fond
semileptoniques sont constitués de désintégrations d’autres mésons B qui produisent
un D∗− et un µ+ primaire ou un muon secondaire provenant d’une désintégration
τ+ → µ+νµντ. Les bruits de fond de double charme sont des désintégrations de
mésons B en un D∗− et un autre hadron charmé qui se désintègre de manière semilep-
tonique. Les modèles de signal et de tous les bruits de fond physiques sont construits
à partir de simulations Monte-Carlo (MC) de chaque processus. Les modèles sont
des histogrammes tridimensionnels dans les variables q2, m2

mi ss et E∗
µ . Ces variables

cinématiques ont été choisies parce qu’elles ont un grand pouvoir de discrimination
entre le signal et les divers processus de bruit de fond. Certains des processus de fond
qui polluent l’échantillon de données peuvent donner naissance à des asymétries
par P ou CP non nulles et produire des biais dans la mesure des couplages de NP.
Par conséquent, une estimation de leurs fractions dans l’échantillon de données est
nécessaire pour attribuer des incertitudes systématiques.

L’analyse présentée dans cette thèse étudie la distribution angulaire dans les désinté-
grations de B 0→ D∗−µ+νµ et plus particulièrement les termes asymétriques par P de
la distribution angulaire. La fonction densité de probabilité totale de la désintégration
peut être écrite comme une somme des composantes symétriques et asymétriques
par P , c’est-à-dire

P (q2,θℓ,θD ,χ) = Peven(q2,θℓ,θD ,χ)+Podd(q2,θℓ,θD ,χ), (4)

où Podd est la somme des termes proportionnels à sinχ et sin2χ indiqués dans le
Tab. 1 et peut s’écrire explicitement comme suit

Podd(q2,θℓ,θD ,χ) = P (1)
odd(q2,θℓ,θD )sinχ+P (2)

odd(q2,θℓ,θD )sin2χ, (5)

où P (1)
odd et P (2)

odd sont les fonctions angulaires qui sont maintenant indépendantes de
χ. Les propriétés de symétrie de la distribution angulaire totale peuvent être exploitées
afin d’annuler la partie symétrique par P et d’extraire uniquement la composante
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asymétrique par P d’une manière indépendante du modèle. Les termes P (1)
odd et P (2)

odd
peuvent être obtenus en intégrant la densité de désintégration totale avec les poids
sinχ et sin2χ de la manière suivante :

P (1)
odd(q2,θℓ,θD ) = 1

π

∫ π

−π
P (q2,θℓ,θD ,χ)sinχdχ,

P (2)
odd(q2,θℓ,θD ) = 1

π

∫ π

−π
P (q2,θℓ,θD ,χ)sin2χdχ.

(6)

De cette manière, les quantités P (1)
odd et P (2)

odd qui représentent les composantes
asymétrique par P (en sinχ et sin2χ) de la densité de désintégration totale sont
obtenues séparément et le reste de la distribution angulaire (symétrique par P ) avec
ses incertitudes est annulé.

Selon le Tab. 1, le terme sinχ a des contributions provenant à la fois du couplage
vectoriel de droite gR et de l’interférence entre les courants pseudoscalaires et ten-
soriels gP g∗

T tandis que le terme sin2χ a des contributions provenant uniquement de
gR . Dans l’approximation où les couplages NP sont petits par rapport au couplage SM,
c’est-à-dire gR ≪ 1 et gP g∗

T ≪ 1, les relations suivantes peuvent être écrites

P (1)
odd(q2,θD ,θℓ) = Im(gR )F (1)

RH (q2,θD ,θℓ)+ Im(gP g∗
T )F (1)

PT (q2,θD ,θℓ),

P (2)
odd(q2,θD ,θℓ) = Im(gR )F (2)

RH (q2,θD ,θℓ).
(7)

Les fonctions F (1)
RH et F (2)

PT sont obtenues par simulation et sont appelées modèles

NP, tandis que P (1)
odd et P (1)

odd sont extraites des données. Les modèles NP sont générés
à l’aide de poids fournis par la bibliothèque logicielle Hammer (Helicity Amplitude
Model for Matrix Element Reweighting) [5]. Ces poids sont appliquées à l’échantillon
de simulation du signal SM pour modifier la forme des distributions observables dans
les deux scénarios NP qui nous intéressent. La procédure de pondération repose sur
des calculs tensoriels efficaces au niveau de l’amplitude et les seules données d’entrée
requises sont les vraies quadri-impulsions (disponibles en simulation) de toutes les
particules de l’état final dans la désintégration.

Dans la pratique, où les données expérimentales sont discrètes plutôt que continues,
il est commode de construire des asymétries binées. L’asymétrie dans le i -ième bin
Ai est donnée par

A(1)
i = Nbins

Nsignal

Ni∑
n=1

sinχn ,

A(2)
i = Nbins

Nsignal

Ni∑
n=1

sin2χn .

(8)

où Nsignal =
∑

i Ni est le nombre d’événements de signal dans l’échantillon et Nbins
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est le nombre de bins avec 1 < i < Nbins. La sommation est effectuée sur tous les
événements dans le i -ième bin. Le terme de normalisation Nbins/Nsignal garantit que
les asymétries sont indépendantes du nombre d’événements signal dans l’échantillon
et de la composante symétriques par P de la densité totale (comme ce serait le cas si
la normalisation 1/Ni était utilisée).

Le schéma des bins est effectué en deux dimensions dans cosθD vs.cosθℓ afin de
capturer l’ensemble de l’espace de phases. Le schéma n’inclut pas des bins dans q2

telle que cette variable est intégrée. Par conséquent, les asymétries sont obtenues sur
l’ensemble de la plage q2. On a choisi un schéma 2D avec 8 fois 8 bins dans cosθD,ℓ, ce
qui donne un total de 64 bins. Les asymétries de l’équation 8 sont les versions binées
des composantes asymétriques par P de la densité de désintégration de l’équation 7 et
sont linéairement proportionnelles. La fonction χ2

corr suivante peut donc être utilisée
pour ajuster simultanément les asymétries sinχ et sin2χ tout en tenant compte de
leurs corrélations

χ2
corr =

∑
i

∑
a,b=1,2

∆A(a)
i

(
Σ−1

i

)(ab)
∆A(b)

i , (9)

où les indices (a,b) représentent les termes sinχ et sin2χ et ∆A(a,b)
i est la différence

entre l’asymétrie attendue déterminée à partir des modèles NP et l’asymétrie observée
dans les données, i.e.

∆A(a,b)
i = Im(gR )fit

Im(gR )0
A(a,b)

RH ,i +
Im(gP g∗

T ) fit

Im(gP g∗
T )0

A(a,b)
PT,i − A(a,b)

i . (10)

Dans Eq. 10, les quantités A(1,2)
RH ,i et A(1,2)

PT,i sont les modèles d’asymétries binées sinχ
(1) et sin2χ (2) obtenus à partir de la pondération NP de la simulation avec Im(gR )0 et
Im(gP g∗

T )0. Les quantités A(1,2)
i sont les asymétries binées observées dans les données.

Enfin, les valeurs des couplages NP déterminées en minimisant la fonction χ2
corr dans

l’ajustement sont désignées par Im(gR )fit et Im(gP g∗
T )fit. La matrice Σ contient les

corrélations entre les asymétries binées sinχ et sin2χ.
À titre d’exemple, Fig. 3 montre le modèle d’asymétrie CP binnée dans le cas de

la contribution du couplage vectoriel droit Im(gR ) = 0,1i . Le graphique du haut
montre la densité de désintégration totale dans les bins 2D de cosθℓvs.cosθD où la
couleur indique le nombre d’événements qui tombent dans chaque bin. Les premier et
deuxième graphiques de la deuxième ligne montrent la densité pondérée de sinχ et de
sin2χ, respectivement. Dans chaque case, la couleur indique maintenant l’ampleur de
l’asymétrie (la composante asymétrique par P de la densité). Afin de pouvoir visualiser
les incertitudes sur l’asymétrie, les graphiques 2D sont transformé en graphiques 1D
présentés dans la troisième ligne. La projection des bins 2D se fait de gauche à droite,
rangée par rangée, de bas en haut, i.e. des valeurs négatives aux valeurs positives
de cosθℓ et cosθD . La figure montre que l’asymétrie CP pour la contribution NP de
Im(gR ) est non nulle et a des formes spécifiques dans les deux termes sinχ et sin2χ.
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FIGURE 3: Densité des événements (a), asymétries CP 2D (b,c) et asymétries CP 1D
(d,e) des termes sinχ et sin2χ dans les variables (cosθD ,cosθℓ) intégrés
sur q2 dans le cas NP de Im(gR ) = 0,1i .

Avec l’ensemble des données disponibles, cette méthode permet d’obtenir une
précision statistique inférieure à 1% pour Im(gR ) et inférieure à 0,1% pour Im(gP g∗

T ).
Les effets systématiques qui peuvent produire de faux termes asymétrique par P

même dans la distribution angulaire de type MS (symétrique par P ) sont ceux qui
doivent être soigneusement pris en compte et constituent la principale motivation
pour une analyse spécifique visant à mesurer les termes asymétriques par P plutôt que
la distribution angulaire complète. Les effets asymétrique par P peuvent être divisés
en deux catégories : les effets dans les bruits de fond et les effets d’instrumentation.

Les effets de violation de CP ne peuvent apparaître dans les désintégrations semilep-
toniques que dans les scénarios NP et sont nuls dans le MS. Par conséquent, les effets
systématiques asymétrique par CP dans les bruits de fond semileptoniques ne sont
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pas pris en compte. D’autre part, des effets asymétrique par P (mais pas asymétrique
par CP ) peuvent apparaître dans la désintégration B → D∗∗µν (états D∗∗ chargés et
neutres) qui est le bruit de fond semileptonique partiellement reconstruit dominant
dans l’échantillon de données du B 0→ D∗−µ+νµ signal. Dans ces désintégrations, des
phases fortes peuvent apparaître en raison de l’interférence de différentes résonances
de charme excitées [6]. Ce mécanisme générerait alors une violation de CP dans les
désintégrations B → D∗∗µν à condition qu’une phase faible soit également présente
dans ces désintégrations (ce qui ne peut se produire qu’avec NP). Cependant, en
l’absence de phase faible, la phase forte non nulle ne produit qu’une violation de la
parité.

Afin d’estimer l’ampleur de l’effet asymétrique par P de phases fortes générées de
cette manière, un échantillon de simulation de B+ → D∗∗0µ+νµ désintégrations a été
utilisé et une différence de phase forte δD a été injectée dans l’interférence entre les
états D1(2420) et D∗

2 (2460). Cette procédure permet d’obtenir un ensemble de poids
qui peuvent ensuite être appliqués aux modèles d’asymétrie. La valeur de la phase
forte n’étant pas connue, différentes valeurs de δD ont été injectées dans l’échantillon
de simulation dans l’intervalle 0◦-360◦ par pas de 45◦. Les angles d’hélicité et q2 sont
ensuite calculés à partir des paramètres de désintégration partiellement reconstruits
comme pour le signal et les deux modèles d’asymétrie en sinχ et sin2χ sont obtenus
pour chaque échantillon. Les deux asymétries sont ensuite ajustées à l’aide de la
fonction donnée dans Eq. 9 pour obtenir le biais sur la partie imaginaire des deux
couplages NP.

La contribution la plus importante au bruit de fond du double charme est donnée
par la désintégration ayant la plus grande fraction d’embranchement B 0 → D∗−D∗+

s
où D∗− → D0π−, D∗+

s → D+
s γ/π0 et D+

s → X 0µ+νµ. Il s’agit d’une désintégration
en deux mésons charmés vectoriels avec quatre particules dans l’état final et elle
peut donc produire une violation de la parité. Bien que la violation de CP dans ces
désintégrations soit possible dans le SM, l’amplitude dominante est donnée par la
transition b → c et, par conséquent, tout effet de violation de CP est supprimé par
|Vub |/|Vcb | et est donc négligeable. Par conséquent, seuls les effets de violation de la
parité dans ces désintégrations sont pris en compte ici. La structure d’amplitude du
B 0 → D∗−[→ D0π−]D∗+

s [→ D+
s γ] a été mesurée par l’expérience LHCb [7] et les phases

fortes mesurées qui régissent le degré de violation de la parité se sont avérées compati-
bles avec zéro. Une étude des effets de violation de la parité dans ces désintégrations a
été menée en utilisant des désintégrations simulées B 0 → D∗−[D0π−]D∗+

s [→ D+
s γ] où

une violation maximale de la parité a été injectée dans l’échantillon. Le bruit de fond
est alors partiellement reconstruit en tant que signal B 0→ D∗−µ+νµ et les modèles
d’asymétrie sont obtenus et ajustés avec le modèle NP. Aucun biais significatif dans
les couplages NP n’est trouvé, même dans le cas d’une violation de parité maximale.
Ce résultat pourrait s’expliquer par le fait que, puisque le photon n’est pas reconstruit
et que ses degrés de liberté sont intégrés, l’effet de violation de parité provenant des
désintégrations à deux particules des deux mésons vecteurs est annulé.

Les termes angulaires étudiés dans cette analyse sont de nature asymétrique par
P puisqu’ils sont proportionnels à sinχ et sin2χ où l’angle χ est intrinsèquement
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une quantité asymétrique par P (chirale). Par conséquent, tout effet chiral dans la
procédure de reconstruction, tel que le désalignement de détecteur ou des efficacités
de reconstruction qui ne sont pas symétriques par P , peut introduire de fausses contri-
butions asymétriques par P dans la distribution angulaire reconstruite. En particulier,
ces effets peuvent entraîner un biais dans l’angle χ et donc peuvent introduire un
biais dans la mesure des couplages NP.

Le désalignement des deux moitiés du VELO l’une par rapport à l’autre peut in-
troduire une incertitude significative dans les positions relatives entre le vertex sec-
ondaire et le vertex primaire et, par conséquent, dans la reconstruction de la quantité
χ, asymétrique par P . La procédure d’alignement de VELO calibre les positions
des deux moitiés de VELO en fonction de six degrés de liberté : trois translations
(Tx ,Ty ,Tz) et trois rotations (Rx ,Ry ,Rz) autour des axes x, y, z. Le biais produit par
le désalignement du VELO est estimé à l’aide d’échantillons de simulation de signal
artificiellement désaligné. Le biais le plus important provient du désalignement de
translation Ty , où un déplacement 2 µm des deux moitiés du VELO l’une par rapport
à l’autre a été introduit.

Un autre effet de l’instrumentation qui peut produire des termes asymétriques
par P dans la distribution angulaire reconstruite est une efficacité de reconstruction
non uniforme. Autrement dit, si l’efficacité contient des termes proportionnels à des
quantités asymétriques par P , cela peut biaiser la variable sinχ et donc biaiser les
couplages NP. Afin de comprendre les effets de ces termes potentiels asymétriques
par P dans l’efficacité de la reconstruction des traces des particules, un échantillon
de contrôle de données de B 0 → D−µ+νµ est utilisé, où le D− est reconstruit comme
D− → K +π−π−. Cet échantillon de contrôle a été choisi car il ressemble beaucoup à la
désintégration du signal B 0→ D∗−µ+νµ, mais comme il consiste en deux désintégra-
tions à trois particules et que le D− est un méson scalaire, c’est-à-dire qu’il a un spin
nul, il ne peut pas produire d’effets de violation de la parité ou du CP .

La désintégration B 0 → D−µ+νµ a les mêmes particules dans l’état final que la
désintégration du signal, i.e. K +π−π−µ+. Le pion qui donne la masse invariante
K +π− la plus petite est utilisé comme un substitut pour le pion lent , i.e. le pion
provenant de la désintégration D∗− → D0π−, tandis que l’autre pion est utilisé pour
former la combinaison K +π− qui sert de substitut à D0. Enfin, une fois ces substituts
définis, les paramètres cinématiques q2,θℓ,θD etχpeuvent être calculés et les modèles
d’asymétrie sinχ et sin2χ peuvent ainsi être obtenus et l’ajustement est effectué pour
extraire le biais dans les couplages NP. Une étude démontrant que les échantillons de
contrôle et de signal se comportent de manière similaire sous l’action de ces effets
symétriques par P est effectué. Comme les distributions cinématiques et topologiques
des deux échantillons ne sont pas totalement compatibles, une étude démontrant
que le biais ne dépend d’aucune des variables cinématiques et topologiques dans
les échantillons de signal et de contrôle est également réalisée. Par conséquent, le
biais trouvé par l’ajustement dans les échantillons de contrôle peut être utilisé pour
attribuer une incertitude systématique à l’échantillon de signal. En particulier, aucun
biais significatif n’a été constaté dans l’échantillon de contrôle.

Une vue d’ensemble des incertitudes systématiques pour les asymétries de parité et
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du CP est présentée dans les Tab. 2 et 3. L’incertitude systématique dominante dans
le cas des asymétries CP est due à désalignement Ty des deux moitiés du VELO l’une
par rapport à l’autre. Dans le cas des des asymétries P , le plus dominante incertitude
systématique provient de l’effet violant P dans le bruit de fond B → D∗∗µν.

Systématique attribué ∆ Im(gR )faux ∆ Im(gP g∗
T )faux

Misid 1.07×10−3 1.38×10−4

Fake D∗ comb 0.23×10−3 0.96×10−4

True D∗ comb 1.76×10−3 3.20×10−4

B− → D∗∗+µ−ν̄µ 9.64×10−3 3.67×10−4

B 0 → D∗+D∗−
s 0.41×10−3 1.81×10−4

Ty désalignement 1.44×10−3 3.27×10−4

Échantillon de contrôle 3.27×10−3 7.12×10−4

Total 10.50×10−3 9.55×10−4

TABLEAU 2: Résumé des incertitudes systématiques attribuées dans le cas des
asymétries de parité

Systématique attribué ∆ Im(gR ) ∆ Im(gP g∗
T )

Misid 0.85×10−3 2.45×10−4

Fake D∗ comb 0.40×10−3 0.70×10−4

True D∗ comb 1.45×10−3 1.98×10−4

Ty désalignement 4.81×10−3 6.17×10−4

Échantillon de contrôle 2.78×10−3 6.12×10−4

Total 5.82×10−3 9.27×10−4

TABLEAU 3: Résumé des incertitudes systématiques attribuées dans le cas des
asymétries de CP

Les résultats de l’ajustement aux asymétries CP , sensibles aux couplages NP Im(gR )
et Im(gP g∗

T ) sont toujours masqués et seules les incertitudes statistiques et systé-
matiques estimées sont rapportées pour ce canal. Cependant, l’ajustement aux
asymétries de parité, insensibles aux couplages NP, en tant que canal de contrôle,
n’est pas masqué et les résultats sont cohérents avec les attentes compte tenu des
incertitudes pour l’un des couplages NP, tandis que pour l’autre un biais d’environ
2,5 σ est observé. Cela indique un possible effet de violation de la parité non pris en
compte dans l’échantillon du signal et fait encore l’objet d’une enquête. Les résultats
finaux pour les asymétries de parité et les asymétries CP (masqués) sont présentés
dans les Eq. 11 et 12, respectivement.

Im(gR )faux = (−0.57±0.51 (stat.)±1.05 (syst.))%,

Im(gP g∗
T )faux = (−0.41±0.13 (stat.)±0.10 (syst.))%.

(11)
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Im(gR ) = (X.XX±0.51 (stat.)±0.58 (syst.))%,

Im(gP g∗
T ) = (X.XX±0.13 (stat.)±0.09 (syst.))%.

(12)
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1 Introduction

The Standard Model (SM) is the theoretical framework which describes all the ele-
mentary particles and their interactions. Since its formulation of the SM in the 1960s,
its predictions have been tested and validated. An important property predicted
by the SM is the so-called Lepton Flavor Universality (LFU), i.e. the interaction of
the leptons with the electroweak gauge bosons is independent of the lepton flavor.
This property has been tested in the recent years in B meson decays, specifically in
b → sℓ+ℓ− and b → cℓνℓ quark level transitions, and deviations of 2-3σwere observed
between theory and experimental results [8]. These tensions, generally referred to
as the b-anomalies, suggest the presence of New Physics (NP) in these decays. With
respect to the semileptonic b → cℓνℓ channel, to complement the searches of lepton
flavor non-universality, other observables sensitive to NP effects have been proposed.
One promising observable that can probe the nature of potential NP in semileptonic
decays is CP violation [2, 9]. Any CP-violating effects require the presence of at least
two amplitudes with non vanishing weak phase difference. Since in the SM semilep-
tonic decays have a single tree-level amplitude, a measurement of CP-violation in
these decays is in effect a null-test of the SM.

The CP-violating effects in b → cℓνℓ can only appear as kinematical effects in the
angular distribution. As a consequence, in order to get access to the CP-violating
observables, the angular distribution must be reconstructed. Since the tensions
between experimental results and SM predictions are so far observed in the ratios
involving τ leptons, this suggests the presence of NP in b → cτντ decays. However,
since the τ decays into final states that include one or two neutrinos which are not
reconstructable in experiment, these decays are very difficult to deal with and the τ
momentum, p⃗τ, cannot be reconstructed with good precision. Therefore, it is logical
to start by measuring the CP-violating effects in B 0 → D∗−µ+νµ since its angular
distribution is fully reconstructable. Even though the b-anomalies are preferably
explained by NP in b → cτντ the same NP may affect b → cµνµ and may lead to
measurable deviations from the SM in the angular distribution of B 0→ D∗−µ+νµ.

Chapter 2 presents the formalism of the SM with a focus on the flavor sector and CP-
violation. The effective field theory approach used to describe semileptonic decays
is introduced and the NP scenarios which can give rise to CP-violation in the B 0→
D∗−µ+νµ decay are discussed.

The searches of NP effects in B meson decays are pursued at particle colliders
such as the Large Hadron Collider (LHC) at CERN. The LHC is a proton-proton (pp)
collider where four experiments namely ATLAS, CMS, ALICE and LHCb are installed
and collect data. The LHCb detector is designed to exploit the signature features of
b-hadron decays and it is thus the optimal place to study the semileptonic B meson
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decays. The LHC accelerator complex and the LHCb detector are presented in Chapter
3.

The search for CP-violation in the semileptonic decay B 0→ D∗−µ+νµ is described
in Chapter 4. The search is performed on 5.4 fb−1 of data collected by the LHCb
detector at CERN during the years 2016-2018 of Run 2. This analysis makes use
of a novel model-independent method to cancel out all the C P-even terms (and
their uncertainties) in the angular distribution and measure only the NP-sensitive
CP-odd terms. The undetectable neutrino in the final state is reconstructed using
certain approximation techniques and the kinematic parameters which describe the
angular distribution of the B 0 → D∗−µ+νµ decay are obtained. Binned parity and
CP-asymmetries are then constructed using these kinematic parameters. The CP
asymmetries channel is sensitive to the NP couplings while the parity asymmetries
channel is expected to be zero due to theoretical considerations. A binned asymmetry
template fit is implemented and performed on both parity and CP-asymmetries in
order to extract the values of the NP couplings. The main sources of systematic
uncertainties due to parity- and CP-odd background and instrumentation effects are
considered and estimated. The results of the fit to the NP-sensitive CP channel are
still blinded, however the fit to the parity channel is unblinded and consistent with
the expectations within the estimated uncertainties. The results are summarized in
Chapter 5. Finally, conclusions are presented in Chapter 6.
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2 Theoretical framework

This chapter offers a description of the Standard Model of particle physics with an
emphasis on flavor physics and CP violation. The content of the chapter is based on
various books and particle physics lecture notes [10–16]. A detailed description of
the particles and their interactions in the SM is given in Sec. 2.1. The electroweak
interaction and the the flavor physics sector are introduced in Sec. 2.1.5 and the
mechanism of CP violation in the SM is discussed in Sec. 2.1.6.

An important property predicted by the SM is lepton flavor universality (LFU). This
property has been recently tested and deviations with respect to the SM predictions
have been observed in decays of mesons containing b quarks such as the b → sℓ+ℓ−

and b → cℓνℓ transitions. The latter are generally known as semileptonic B decays.
An overview of the direct LFU tests performed in semileptonic decays at several
experiments is given in Sec. 2.2.1. To complement the direct LFU searches, CP-
violating observables in semileptonic decays have been proposed as a null-test of the
SM. That is, if CP violation is measured it would unambiguously imply the presence of
NP in these decays and it would help distinguish and constrain the nature of various
NP scenarios. The mechanism that can give rise to CP violation in b → cℓνℓ decays
and the NP implications are discussed in Sec. 2.2.3.

2.1 The Standard Model
The Standard Model (SM) is the most successful theory of particle physics since its
formulation in the 1960s. It describes the 12 elementary particles and their interactions
in terms of three out of the four forces known in nature: the electromagnetic, the
strong and the weak forces (SM does not account for gravity). The Standard Model has
passed numerous tests and the vast majority of experimental observations have been
in accordance with its predictions. One of the most famous precision tests of the SM is
the measurement of the so-called anomalous magnetic moment of the electron which
agrees to the SM prediction within 10 parts per billion [17]. This makes quantum
electrodynamics (QED), the branch of the SM that incorporates the electromagnetic
interaction, the most precisely tested theory in the history of science. Another truly
remarkable prediction of the SM was the existence of the Higgs boson, which was
discovered by the ATLAS and CMS experiments at the Large Hadron Collider [18, 19].
The Standard Model also offered predictions for the W ± and Z bosons, the gluons, the
top and charm quark before these particles were actually discovered.

The elementary particles of the SM are shown in Fig. 2.1. A primary classification of
the particles is based on their spin, where particles with integer spin are called bosons
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Figure 2.1: Elementary particles of the SM [20]. The properties are taken from [21].

and particles with half-integer spin are called fermions. Due to the spin-statistics
theorem, which relates the intrinsic spin of the particle with the particle statistics
it obeys, fermions obey the Fermi-Dirac statistics. This means that fermions must
obey also the Pauli exclusion principle which states that two or more fermions cannot
occupy the same quantum state 1.

There are 13 bosons in the SM: 12 vector (i.e. spin-1) and 1 scalar (i.e. spin-0) boson.
Each of the three fundamental forces has an associated set of vector bosons, also
known as gauge bosons, which is exchanged between particles during the interaction
and which mediates the momentum transfer. There are eight massless gluons (g )
that mediate the strong force, the massive charged W ± and neutral Z boson that
mediate the weak force and the massless photon (γ) which mediates the electromag-
netic force. In addition, the scalar Higgs boson is responsible for the mechanism
of spontaneous symmetry breaking that gives mass to the fermions and the W ± and
Z bosons. The fourth fundamental force, gravity, is assumed in some models to be
mediated by a hypothetical boson called graviton [22, 23]. However, gravity is not
accounted for in the SM.

1In mathematical terms it is said that the fermions wavefunction is antisymmetric with respect to the
swap of two particles while the bosons wavefunction is symmetric.

25



Force Strength Range (m) Boson
Strong 1 10−15 Gluons (g )

Electromagnetic 10−3 ∞ Photon (γ)
Weak 10−8 10−18 W ±, Z

Gravity 10−37 ∞ Graviton?

Table 2.1: The four fundamental forces of nature and their relative strengths and
ranges [10]

Table 2.1 shows the relative strengths and ranges of the four fundamental forces. As
the name suggests, the strong force is the strongest of the four. The strong force only
affects particles that possess the charge quantum number known as color. Its short
range of O (10−15), which is the size of a nucleon, comes from the fact that gluons,
even though they are massless, carry color charge and interact between themselves.
The electromagnetic force couples to electric charge and is the second strongest force.
Since it is mediated by a massless, electrically neutral photon, it has infinite range.
The weak force is the weakest of the three forces in the SM and its very limited range of
O (10−18) is due to the large mass of the exchanged W ± and Z bosons. The weak force
couples only to so-called left-handed particles as it will be discussed in Section 2.1.4.
In the SM, the electromagnetic and weak forces are unified via the electroweak force
and thus they are manifestations of the same underlying interaction, as discussed in
section 2.1.5. Finally, gravity is the weakest of the four fundamental forces and as a
consequence it is neglected in the context of high-energy physics.

The twelve fundamental fermions are the particles that make up all matter and are
divided in two categories: six quarks and six leptons. The fundamental difference is
that quarks possess color charge while leptons do not. Therefore, quarks can interact
via strong and electroweak forces while leptons can only feel the electroweak force.
The fermions are described by the Dirac equation and as a consequence each particle
has a corresponding antiparticle with same mass and opposite charge.

Figure 2.2: Visual representation of the masses of the fundamental fermions [10]

The quarks and leptons can be grouped in three generations of increasing mass, as
illustrated in Fig. 2.2. The fact that there are exactly three generations of fermions is
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not explained in the SM. In the case of leptons, each generation contains one elec-
trically charged lepton, either electron, muon or tau (e−,µ−,τ−) and one associated
electrically neutral lepton called neutrino (νe ,νµ,ντ). In the SM, the neutrinos have
zero mass. The leptons also have a quantum number 2 which reflects the flavor of
the lepton for each generation. Lepton flavor is conserved in all interactions. The six
leptons have their corresponding antiparticles (e+,µ+,τ+ and νe ,νµ,ντ) which have
opposite charge and lepton quantum number.

The six quarks are arranged in a similar way, each of the three generations contains
an up-type quark (u,c, t) and a down-type quark (d , s,b). The up-type quarks have
electric charge of +2/3 while the down-type quarks have an electric charge of -1/3.
Unlike leptons, quarks carry color charge which comes in three values: red, green and
blue, in analogy with the primary colors of light. They also possess flavor quantum
numbers for each of the three generations 3. However, unlike lepton flavor, quark
flavor conservation is violated in the weak interaction mediated by W ± bosons where
the so-called flavor changing charged currents (FCCC) exist. Flavor changing neutral
currents (FCNC) exist in the SM only at loop level and are highly suppressed. Similar
to leptons, each quark has an associated antiquark with opposite quantum numbers.

The quarks can never exist freely and they can only form color neutral objects called
hadrons. This is also known as color confinement. When quarks are produced, they
immediately hadronise, i.e. combine to form colorless hadrons. Hadrons can be
either mesons which consist of a quark and antiquark pair (qq) with opposite colors
or baryons which consist of three quarks (qqq) or antiquarks (qqq) with the color
neutral rgb configuration. More recently, exotic states with four and five quarks known
as tetraquarks and pentaquarks were observed [24–26]. One of the first experimental
evidence for the existence of the color charge was the discovery of the Ω− baryon
which has the quark content of sss [27]. Since a state with three identical quarks would
violate the Pauli exclusion principle, a color property with three distinct values was
needed to distinguish between them. The quark model was developed in the early
1960s by Gell-Man and Zweig [28, 29] and it predicted the existence of theΩ− before it
was actually discovered.

2.1.1 Gauge theory
The Standard Model is a quantum field theory (QFT) which is gauge invariant under
specific symmetry groups. The groups are particular cases of the special unitary group
SU (n) which is the group of n ×n unitary matrices with unit determinant. A complex
n ×n matrix is specified by 2n2 parameters. The unitarity condition reduces it to n2

degrees of freedom and the unit determinant constraint finally gives n2 −1 degrees of
freedom. This means that each group has n2 −1 generators, i.e. traceless, hermitian,

2These are called electron, muon or tau number. The e− and νe have electron number +1 while their
antiparticles e+ and νe have electron number -1. The leptons in one generation have 0 lepton
number for the other generations.

3For the first generation (u,d) it is isospin while for the other two generations there is charm,
strangeness, topness and bottomness (or beauty)
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linearly independent n×n matrices. This in turn means that any special unitary n×n
matrix can be written as a linear combination of the group generators. In the SM,
each of three interactions is associated with a symmetry SU (n) group and the number
of generators of each group represents the number of vector bosons (also known as
gauge bosons) that mediate the interaction. The SU (n) groups relevant to the SM are
the cases where n = 2 and n = 3. The SU (2) group has three generators (2×2 matrices)
and it describes the weak interaction and its three vector bosons W ±, Z . The SU (3)
group has eight generators (3×3 matrices) and it describes the strong interaction
with eight gluons. The electromagnetic interaction is described by the U (1) symmetry
group which is the group of unitary matrices of dimension 1, i.e. all complex numbers
of absolute value 1. The group has one generator, therefore the electromagnetic force
has the photon as its single gauge boson. The electroweak force which is symmetric
under SU (2)×U (1) is a unification of the weak and electromagnetic interactions via
the spontaneous symmetry breaking by the Higgs mechanism [30, 31]. The Standard
Model is therefore a gauge theory with the symmetry group SU (3)×SU (2)×U (1).

In the QFT theory of the SM, particles are considered excitations of quantum fields.
The fields are mathematical functions that have a value at each point in the space-
time four-vector coordinate x ≡ (x, y, z, t ). The dynamics of such fields are described
via the Lagrangian formalism. In classical theory, the Lagrangian is a function of
the generalized coordinates of a system, however in field theory it is replaced by
the Lagrangian density which is a function of the fields and their derivatives. The
Lagrangian has the property is that it is Lorentz invariant, i.e. it has space-time
symmetry. The field equations of motion of a fieldΦ follow from Hamilton’s principle
of least action:

∂µ
∂L

∂(∂µΦ)
− ∂L

∂Φ
= 0, (2.1)

where the covariant derivative ∂µ ≡ ∂
∂xµ containts the derivatives with respect to

each of the four space-time coordinates, µ = 1,2,3,4 and the Einstein summation
convention is used on the repeated index µ.

The Lagrangian of a real scalar field φ with one degree of freedom which describes a
spin-0 particle with mass m is given by

L = 1

2
(∂µφ)2 − m

2
φ2. (2.2)

Applying Eq. 2.1 to the scalar field Lagrangian gives the equation of motion, known
as the Klein-Gordon equation:

(□+m2)φ= 0, (2.3)

where □≡ ∂µ∂µ is the d’Alembert operator.
A complex scalar field has two degrees of freedom and describes a charged spinless

particle with mass m. Its Lagrangian is given by
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L = (∂µφ)†(∂µφ)−m2φ†φ. (2.4)

A vector field Aµ has three degrees of freedom and describes particles with spin-1.
In case of massless particles such as the photon, there are just two degrees of freedom
and the Lagrangian is given by

L =−1

4
FµνFµν with Fµν = ∂µAν−∂νAµ. (2.5)

The equations of motion read

(□gµν−∂µ∂ν)Aν = 0, (2.6)

where gµν is the metric tensor. In the case of the photon as the vector field Aµ, the
field equations of Eq.2.6 represent the Maxwell equations of electromagnetism.

The fermions are spin- 1
2 particles and are described by four-component Dirac fields,

also known as Dirac spinors, usually denoted by ψ:

ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 . (2.7)

The Lagrangian of fermion fields is given by the Dirac Lagrangian:

LDi r ac =ψ(iγµ∂µ−m)ψ (2.8)

where ψ≡ψ†γ0 and γµ with µ= 0,1,2,3 are the 4×4 Dirac matrices. The equation of
motion is thus given by the Dirac equation:

(iγµ∂µ−m)ψ= 0, (2.9)

which has two solutions that correspond to particle and antiparticle fields.
The three fundamental interactions can be derived from the condition that their

Lagrangian stays invariant under transformations of the symmetry group.

2.1.2 Quantum electrodynamics
The field theory that accommodates the electromagnetic interaction is called quan-
tum electrodynamics (QED). The Lagrangian of charged fermion fields is the Dirac
Lagrangian given in Eq. 2.8. This Lagrangian is invariant to U (1) transformations of
the form:

ψ(x) →ψ′(x) = e iαψ(x), (2.10)

where α is an arbitrary phase. This means that the Lagrangian has a global U (1)
symmetry. The QED interaction can be derived by imposing local gauge invariance
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under U (1) transformations such that the phase α is now a function of the space-time
α→α(x). The Lagrangian now has to be invariant to transformations of the form:

ψ(x) →ψ′(x) = e iα(x)ψ(x). (2.11)

In order to achieve local gauge invariance, a vector field Aµ must be introduced and
the covariant derivative in Eq. 2.8 must be substituted by

∂µ→ Dµ = ∂µ− i e Aµ. (2.12)

This is called the minimal substitution rule. The field Aµ transforms as

Aµ(x) → A′
µ(x) = Aµ(x)+ 1

e
∂µα(x), (2.13)

where e is the electric charge.
The resulting local gauge invariant Lagrangian contains an additional term that

describes the interaction of the vector field Aµ with the charged fermions ψ.

L =ψ(iγµ∂µ−m)ψ=LDi r ac +eψγµψAµ. (2.14)

The interaction term eψγµψAµ can be written as jµAµ where jµ = eψγµψ is the
conserved electromagnetic current with the electric charge e as the associated con-
served charge. The full QED Lagrangian is obtained by adding a kinetic term (Eq. 2.5)
for the gauge boson Aµ and is invariant to local gauge transformations of Eq. 2.11

LQED =−1

4
FµνFµν+ψ(iγµDµ−m)ψ+eψγµψAµ. (2.15)

Thus, QED completely describes the electromagnetic interaction by having a term
that describes the kinematics of the gauge boson identified as the photon, a term that
describes the kinematics of the fermions, i.e. the Dirac Lagrangian and the interaction
term between the photon and the fermions resulting from imposing local gauge
invariance. The coupling strength of QED is defined in terms of the electric charge e

as α= e2

4π .
The field strength Fµν has the form given in Eq. 2.5 due to the fact that U (1) is an

abelian gauge group, i.e. two succesive U (1) transformations commute, since it is just
the product of two complex numbers. This is not the case for the other symmetry
groups in the SM since n ×n matrices do not commute in general and thus they are
referred to as non-abelian gauge groups.

2.1.3 Quantum chromodynamics
The theory that describes the strong interaction is known as quantum chromodynam-
ics (QCD) and it is based on the symmetry group SU (3). The group is specified by
eight generators which means that any SU (3) transformation can be written as a linear
combination of these eight matrices. The representation of the group is that the quark
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fields come in color triplets with red, blue and green color states

ψ=
ψr

ψg

ψb

 . (2.16)

The Dirac Lagrangian, where ψ is now a color triplet, has global SU (3) symmetry,
i.e. it is invariant under global transformations of the form

ψ(x) →ψ′(x) = e i
∑

i αi Tiψ(x), (2.17)

where Ti = 1
2λi are the group generators and λi are the 3×3 Gell-Mann matrices

and i = 1, . . . ,8. The generators do not commute, i.e

[Ta ,Tb] = i fabc Tc , (2.18)

thus SU (3) is a non-abelian gauge group. In order to extend the global gauge in-
variance to a local gauge invariance, the constants αi are promoted to functions of
space-time αi (x). Following the same recipe as for QED, to keep the Lagrangian in-
variant under local SU (3) eight new vector fields G a

µ are needed and the covariant
derivative becomes

∂µ→ Dµ = ∂µ− i gsT aG a
µ, (2.19)

where gs is the strong coupling constant. The field strength in the non-abelian case
is given by

G a
µν = ∂µG a

ν −∂νG a
µ+ gs fabcGb

µGc
ν. (2.20)

The final QCD Lagrangian is build in the same way as in the case of QED, with
a boson kinetic term, a fermion kinetic term (Dirac Lagrangian) and the resulting
interaction term, as follows

LQC D =−1

4
G a
µνG a,µν+ψ(iγµ∂µ−m)ψ+ gsψγ

µλ
a

2
ψG a

µ. (2.21)

The interaction term gsψγ
µ λa

2 ψG a
µ describes the interaction of eight quark currents

jµa = gsψγ
µ λa

2 ψ with the gluon gauge fields G a
µ. Due to the form of the gluon field

strength (Eq. 2.20), the kinetic term −1
4G a

µνG a,µν contains triple and quartic gluon self-
interaction. Since gluons carry color charge, they can interact between themselves,
however this is not case for QED as the neutrally charged photon can not interact with
itself.

2.1.4 The weak interaction
In the context of the weak interaction it is first useful to define the concepts of helicity
and chirality. Helicity states are defined by the projection of the spin onto the mo-
mentum direction. A particle with right-handed helicity has the direction of the spin
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along the direction of the momentum, while a particle with left-handed helicity has
the direction of the spin opposite to the momentum direction. The concept of chirality
is more abstract and has no trivial physical interpretation. For massless particles, the
helicity and chirality are equivalent. For fermions, in the Dirac representation, chiral-
ity is defined via the matrix γ5 ≡ iγ0γ1γ2γ3, thus the chirality states are eigenstates of
the γ5 matrix. A Dirac spinor can be written in terms of its left and right-handed chiral
states

ψ(x) = 1−γ5

2
ψ(x)︸ ︷︷ ︸

ψL

+ 1+γ5

2
ψ(x)︸ ︷︷ ︸

ψR

, (2.22)

using the left-handed and right-handed chiral projector operators

PL,R = 1±γ5

2
. (2.23)

Besides the symmetry of the SM with respect to the continuous transformations of
the gauge groups and the Lorentz invariance, i.e. symmetry with respect to space-time,
there are also discrete symmetries under which the SM may or may not be invariant.
The fundamental discrete symmetries in the SM are the following

• Parity (P): reverses spatial coordinates x →−x and thus changes the chirality of
the particle. Antiparticles have opposite parity than particles.

• Charge conjugation (C): changes the particle into its antiparticle switching all
quantum numbers such as the electric charge or color.

• Time reversal (T): reverses the time coordinate t →−t and thus changes the
sign of the momentum and spin of the particle

Even though each of the individual symmetries could be violated, there is a theorem
known as the C PT theorem [32] which establishes that the combined C PT symmetry
must be conserved for any Lorentz invariant quantity. The consequence of the C PT
symmetry for the fermion fields is that all particles states have an antiparticle with the
same mass.

In QED and QCD the quantum numbers of the parity and charge conjugation oper-
ations are conserved. This is due to the nature of the QED and QCD interactions and
in particular to their interaction term, or equivalently to the current jµ which is of the
form ψγµψ. In the late 1950s the Wu experiment [33] and later the Lederman experi-
ment [34] demonstrated that the weak interaction violates parity. These experiments
concluded that the neutrino comes only in one helicity state, namely left-handed,
which means that parity is violated maximally in the weak interaction. Since the weak
interaction couples only to left-handed fermions, parity violation implies that charge
conjugation is also maximally violated in weak processes. In order to accommodate
these observations in the theory, the structure of the weak current has to be different
than the vector (spin-1) current ψγµψ structure of QED and QCD. The form of the
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weak current has to be a bilinear combination of the two spinor fields of the form
ψ1Γψ2 where Γ is a 4×4 matrix based on the Dirac γµ matrices. The requirement of
Lorentz invariance of the interaction allows only the bilinear forms listed in Table 2.2.

Bilinear Form Boson spin
Scalar ψ1ψ2 0

Pseudoscalar ψγ5ψ2 0
Vector ψ1γ

µψ2 1
Axial vector ψ1γ

µγ5ψ2 1
Tensor ψ1(γµγν−γνγµ)ψ2 2

Table 2.2: Lorentz invariant bilinear covariant currents [10]

The structure of the weak current must therefore be a combination of the scalar (S),
pseudoscalar (P), vector (V), axial vector (A) or tensor (T) currents with couplings gS ,
gP , gV , g A and gT , respectively.

The weak current is experimentally established to be a (V − A) current, i.e. vector
minus axial vector, and thus the weak current must be of the form

jµweak = gW

2
p

2
ψ1γ

µ(1−γ5)ψ2 = gW

2
p

2
ψ1,Lγ

µψ2,L , (2.24)

where gW is the weak coupling and ψL(1,2) are two left-handed spinors 4.
Due to the form of the weak current, and the fact that it includes the left-handed

PL chiral operator given in Eq. 2.22, the weak interaction couples only to left-handed
(right-handed) chiral particle (antiparticle) states.

The symmetry group of the weak interaction is SU (2). The three gauge bosons W a
µ

are introduced by the same recipe as U (1) and SU (3) by requiring invariance of the
Lagrangian under SU (2) local phase transformations such as

ψ(x)′ → e iαi (x)Tiψ(x), (2.25)

where i = 1,2,3, Ti = 1
2σi are the three generators and σi are the 2×2 Pauli matrices.

The generators follow the same commutation rule from Eq. 2.18 as for SU (3). The
resulting interaction term in the Lagrangian is

L i nt
weak = gWψLγ

µσa

2
ψLW a

µ , (2.26)

which describes the interaction of the three W a
µ bosons with the left handed fermion

fields.
Since the generators of SU (2) are 2×2 matrices, the spinors on which they act are

defined to be weak isospin doublets, in analogy with the color triplets of QCD. The
weak isospin can be seen as the charge of the weak interaction and a doublet has a

4The relation (1+γ5)γµ(1−γ5) = 2γµ(1−γ5) is used to project out the particle and antiparticle fields
to their left-handed states
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total weak isospin of IW =+1/2 while the z (third) component of IW distinguishes the
two members of the doublet where the upper (lower) member has Iz =+1/2 (−1/2).
This is in analogy with the intrinsic spin of particles in quantum mechanics which
is also described by the Pauli matrices. The weak isospin doublets consist only of
left-handed particle (or right-handed antiparticle) chiral states that differ by one unit
of electric charge as given below

ψL =
(
νe

e−
)

L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

,

(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

. (2.27)

Since the local invariance to phase transformations of Eq. 2.25 affects only SU (2)
left-handed doublets, i.e. the interaction term in the Lagrangian couples the vec-
tor fields only to left-handed doublets, the right-handed particles (and left-handed
antiparticles) are placed in weak isospin singlets with IW = 0:

ψR = e−
R ,µ−

R ,τ−R ,uR ,dR ,cR , sR , tR ,bR . (2.28)

For this reason, the weak interaction symmetry group is also known as SU (2)L . The
right-handed neutrinos are chargeless with respect to all three SM interactions, that is
they do not carry electric charge, color charge or weak isospin. Therefore, they are not
part of the SM.

At this point, the W (1,2,3)
µ of SU (2)L are not yet the physical W ± and Z bosons of the

weak interaction. The massive weak interaction bosons are obtained in the framework
of the electroweak theory described in the following section.

2.1.5 Electroweak theory
In the 1960s, Glashow, Weinberg and Salam [35–37] unified the weak and electromag-
netic interactions as manifestations of the same underlying electroweak interaction.
The electroweak interaction is obtained by requiring local gauge invariance under
a new symmetry group SU (2)L ×U (1)Y , where U (1)Y replaces the U (1) of electro-
magnetism and introduces the coupling to a new charge Y called weak hypercharge.
The quantum number Y is assigned to the left- and right-handed fields such that the
following relation is satisfied

Q = Iz + Y

2
, (2.29)

where Q is the electric charge and Iz is the weak isospin. The three quantum
numbers of the electroweak interaction for all left-handed and right-handed fermions
are given in Tab. 2.3.
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νL ℓL uL dL ℓR uR dR

Iz + 1
2 - 1

2 + 1
2 - 1

2 0 0 0
Y -1 -1 + 1

3 + 1
3 -2 + 4

3 −2
3

Q 0 -1 + 2
3 - 1

3 -1 + 2
3 - 1

3

Table 2.3: The quantum numbers of weak isospin projection Iz , weak hypercharge Y
and electric charge Q for the left-handed and right handed fermions in the
SM. Here, ν and ℓ represent the three neutral and charged lepton genera-
tions while u and d the three up-type and down-type quark generations

In order to keep the Lagrangian invariant to local SU (2)L ×U (1)Y transformations,
four vector boson fields must be introduced in the covariant derivative, the three W a

µ

bosons of the weak interaction and a new Bµ boson of U (1)Y . The Lagrangian kinetic
term associated to the SU (2)L ×U (1)Y bosons of the electroweak interaction is

L ki neti c,bosons
EW =−1

4
W a
µνW µν,a − 1

4
BµνBµν, (2.30)

where the field strengths are given by

W a
µν = ∂µW a

ν −∂νW a
µ + gW fabcW b

µW c
ν ,

Bµν = ∂µBν−∂νBµ.
(2.31)

At this stage, the gauge fields W a
µ and Bµ are still massless, as a mass term would

violate gauge invariance. The masses of gauge bosons are generated by the mechanism
of spontaneous symmetry breaking of the electroweak interaction described later in
this section.

Since the right-handed fermion fields are singlets under SU (2), i.e. they have Iz =
0, they only couple to the U (1)Y boson while the left-handed fields couple to the
SU (2)L ×U (1)Y bosons. Therefore, the covariant derivative which is different for
left-handed and right-handed fields reads

∂µ→ DL,R
µ = ∂µ− i gW

σL,R
a

2
W a
µ − i g ′ Y

2
Bµ, a = 1,2,3, σR

a = 0. (2.32)

The symmetry of SU (2)L ×U (1)Y is spontaneously broken by introducing the Higgs
field φ as a SU (2) doublet of complex scalar fields with hypercharge Y = 1 and weak
isospin Iz =−1/2

φ(x) =
(
φ+(x)
φ0(x)

)
. (2.33)

The Lagrangian of the Higgs field is the Lagrangian of a complex scalar field intro-
duced in Eq. 2.4, however the field is not free anymore but has a potential V (φ)

LHi g g s = (Dµφ)†(Dµφ)−V (φ), (2.34)
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where Dµ = DL
µ as defined in Eq. 2.32. The potential has the form

V (φ) =−µ2φ†φ+λ(φ†φ)2, (2.35)

with µ2 > 0 and λ> 0. A schematic of the Higgs potential is shown in Fig. 2.3. The
minimum of this potential does not occur at φ= 0, but instead the minimum is not

uniquely determined and occurs at φ = e iθ
√

µ2

2λ . Therefore, the choice of θ ∈ [0,π]
spontaneously breaks the symmetry. In the so-called unitarity gauge, the nonzero
vacuum expectation value (VEV) of the Higgs potential is given by

〈0|φ |0〉 = 1p
2

(
0
v

)
, (2.36)

where v = 2µp
λ

. Expanding the field around the vacuum expectation value and

choosing a particular gauge, the Higgs field can be written as

φ(x) = 1p
2

(
0

v +H(x)

)
. (2.37)

Figure 2.3: Schematic of the Higgs potential. The minimum of the potential is not
uniquely determined causing symmetry breaking [38].

The potential in Eq.2.35 can then be written as

V =µ2H 2 + µ2

v
H 3 + µ2

4v2
H 4. (2.38)

The first term in the potential is of the form MH
2 H 2 and it describes a scalar particle

with mass MH = µ
p

2 which is identified as the Higgs boson. The other terms in
Eq.2.38 describe triple and quartic Higgs self-interactions. Introducing Eq. 2.37 in the
Higgs Lagrangian of Eq. 2.34 gives mass terms for the gauge bosons and interaction
terms between the Higgs field and the gauge bosons. The mass term reads
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1

2

(gW

2
v
)2

(W 2
1 +W 2

2 )+ 1

2

(v

2

)2
(W 3

µ ,Bµ)

(
g 2

W gW g ′

gW g ′ g ′2
)(

W 3,µ

Bµ

)
. (2.39)

In order to obtain the physical four bosons of the electroweak interaction, i.e. the
three massive weak bosons W ±, Z and the massless electromagnetic boson Aµ, the
following transformations need to be made

W ±
µ = 1p

2
(W 1

µ ∓ iW 2
µ ),(

Zµ
Aµ

)
=

(
cosθW sinθW

−sinθW cosθW

)(
W 3
µ

Bµ

)
,

(2.40)

where θW is the weak mixing angle defined as tanθW = g ′
gW

. With this transformation
of the fields, the mass term of Eq. 2.39 becomes diagonal and reads

M 2
W W +

µ W −µ+ 1

2
(Aµ, Zµ)

(
0 0
0 M 2

Z

)(
Aµ

Zµ

)
, (2.41)

with the masses of the gauge bosons given by MW = 1
2 gW v , MZ = 1

2

√
g 2

W + g ′2v and
MA = 0. In this way, three out of four bosons of SU (2)L ×U (1)Y have acquired mass
while the photon has remained massless.

The fermion kinetic term is obtained by replacing the covariant derivative of Eq. 2.32
in the Dirac Lagrangian. Writing the Lagrangian explicitly for left-handed doublets
and right-handed singlets for quarks and leptons gives

L
ki neti c, f er mi ons
EW =iℓLγ

µDL
µℓL + iℓRγ

µDR
µℓR

+ i qLγ
µDL

µqL + i dRγ
µDR

µdR + i uRγ
µDR

µuR .
(2.42)

The Dirac mass terms for the fermion fields have the form mψψ= m(ψLψR +ψRψL)
and mix left- and right-handed fields which form different multiplets under SU (2).
Therefore, Dirac mass terms are not allowed as they would break gauge invariance
of the theory. Masses for the fermions will be added to the Lagrangian in a later
step through their interaction with the Higgs in the form of gauge-invariant Yukawa
terms. In addition to the kinetic terms that describe the propagation of fermions, i.e.
iψLγ

µ∂µψL , Eq. 2.42 contains the interactions of the electromagnetic current and the
weak charged and neutral currents with the associated SU (2)L ×U (1)Y bosons. Using
the first lepton generation as an example, the first term of Eq. 2.42 written explicitly
using Eqs. 2.32 and 2.40 gives

−gW

2

(
νL eL

)
γµ

(
Zµ

cosθW

p
2W −

µp
2W +

µ cosθW Zµ−2sinθW Aµ

)(
νL

eL

)
. (2.43)
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The diagonal terms couple leptons of the same flavor to the Zµ and Aµ bosons,
giving the electromagnetic and neutral weak currents. In the case of neutrinos, only
the Z boson term survives since they are electrically neutral and can not interact with
the photon, while the charged leptons couple to both the Z and the photon. The
off-diagonal terms represent the charged current weak interactions and so the W ±

bosons couple leptons of different flavors. The main difference between quarks and
leptons lies in the charged current interactions and it is due to the phenomenon of
quark mixing which is a consequence of the mass Yukawa terms as shown later in this
section. In general the electromagnetic, neutral and charged weak currents can be
written as 5

jµE M =−e
∑

f =ℓ,q
Q f ψ f γ

µψ f ,

jµNC = gW

2cosθW

∑
f =ℓ,q

ψ f (C V
f γ

µ−C A
f γ

µγ5)ψ f ,

jµ+CC =gWp
2

( ∑
i=1,2,3

νLiγ
µℓLi +

∑
i=1,2,3

uLiγ
µdLi

)
,

(2.44)

where e = gW sinθW , C V
f = Iz, f −2Q f sin2θW , C A

f = Iz, f and the quantum numbers
Iz and Q for each fermion f are given in Tab. 2.3. The interaction part of the kinetic
electroweak Lagrangian can then be written as

L i nt
EW = jµE M Aµ+ jµNC Zµ+ jµ+CC W +

µ + jµ−CC W −
µ . (2.45)

Unlike the masses of the gauge fields which follow from the covariant derivative in
the Higgs kinetic term of Eq. 2.34, the fermion masses must be added by hand via the
Yukawa Lagrangian of the form

LY ukaw a = Y f ψLφψR +h.c.6, (2.46)

where Y f is the Yukawa coupling for the fermion f . After the spontaneous symmetry
breaking, the Higgs field takes the form given in Eq. 2.37 and thus the Yukawa terms
become proper gauge-invariant mass terms. Writing explicitly the Yukawa term for
the the first lepton generation gives

L e
Y ukaw a = Yep

2

(
νL eL

)( 0
v +H

)
eR +h.c., (2.47)

where the term Ye vp
2

(eLeR + eR eL) = Ye vp
2

ee appears and the mass of the electron is

identified as me = Ye vp
2

. The term proportional to H represents the coupling of the

Higgs to electrons. Since the upper component of the Higgs doublet is zero, the
neutrino does not acquire a mass term, therefore for the lepton doublets one Yukawa

5The charged current jµ−CC associated with the W −
µ boson has been omitted

6h.c. stands for hermitian conjugate

38



term in the Lagrangian is sufficient. For the quark doublets this is not the case, since
both components are massive and writing a single Yukawa term would yield mass only
for the down quarks. Consequently, the Yukawa term for up quarks must be written in

terms of φ̃= iσ2φ
∗ =

(
v +H∗

0

)
which has a nonzero upper component.

The most general gauge-invariant Yukawa Lagrangian accounting for all three gen-
erations of quarks and leptons can be written as

LY ukaw a = Y d
i j qLiφdR j +Y u

i j qLi φ̃uR j +Y ℓ
i jℓLiφℓR j +h.c., (2.48)

where Y d
i j ,Y u

i j ,Y ℓ
i j are arbitrary non-diagonal complex matrices with i , j = 1,2,3. It

can be seen that these matrices couple fermions from different generations and thus
give rise to the phenomenon of mixing. For the quark sector, after the spontaneous
symmetry breaking, the Yukawa Lagrangian becomes

L
quar ks
Y ukaw a = Y d

i j
vp
2

dLi dR j +Y u
i j

vp
2

uLi uR j +h.c.,

= M d
i j dLi dR j +M u

i j uLi uR j +h.c.
(2.49)

where the interaction terms have been omitted. In order to obtain proper mass
terms, the matrices M d

i j and M u
i j must have diagonal form. This is achieved with the

help of four unitary matrices V d
L ,V u

L ,V d
R ,V u

R such as

M d
di ag onal =V d

L M d V d†
R ,

M u
di ag onal =V u

L M uV u†
R .

(2.50)

The following redefinition of the quark states can be then performed to make the
transformation from the flavor eigenstates to the mass eigenstates

dLi → (V d
L )i j dL j , dRi → (V d

R )i j dR j ,

uLi → (V u
L )i j uL j , uRi → (V u

R )i j uR j .
(2.51)

The flavor eigenstates are the states that couple to the W ± bosons (where the W ±

interaction is diagonal) while the mass eigenstates are the states with definite masses
and lifetimes which are measured in experiments (where the masses are diagonal).
The Yukawa Lagrangian for quarks now contains proper mass terms for the three up
and down quark generations

L
quar ks
Y ukaw a = (M d

i j )di ag onal dLi dR j + (M u
i j )di ag onal uLi uR j +h.c. (2.52)

The consequence of the redefinition in Eq. 2.51 is that if the quarks are expressed
in their mass eigenstates instead of the flavor eigenstates, quark mixing between
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different generations appears in the charged current interactions. In other words, by
making the Yukawa matrices diagonal in order to obtain proper mass terms for the
quarks, the price to pay is that off-diagonal terms will appear in the charged currents.

Due to the unitarity of the matrices used in Eq. 2.51, introducing the mass eigen-
states in the weak neutral current, which only involves terms like uu and dd , does not
lead to off-diagonal terms. This means that transitions between up or down quarks
of different generations (such as b to s transitions) do not take place at tree level in
the SM. In literature, these transitions are known as flavor changing neutral currents
(FCNC) and they can only occur via loop diagrams, being highly suppressed in the SM.
This suppression is known as the GIM mechanism [39].

The quark charged current part of Eq. 2.45 written in the flavor and mass eigenspaces
is given by

L i nt
CC , f l avor =

gWp
2

uLiγ
µW −

µ dLi + gWp
2

dLiγ
µW +

µ uLi ,

L i nt
CC ,mass =

gWp
2

uLi (V u
L V d†

L )i jγ
µW −

µ dLi + gWp
2

dLi (V d
L V u†

L )i jγ
µW +

µ uLi .
(2.53)

The matrix V u
L V d†

L =V d
L V u†

L in Eq. 2.53 is the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [40, 41] and it is given by

VC K M =
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb

 . (2.54)

The CKM matrix is a 3×3 unitary complex matrix, whose elements describe the
probability of a transition from quark with flavor i to a quark with flavor j given by
|Vi j |2. In general, a N ×N unitary complex matrix is described by (N −1)2 parameters
which can be divided into mixing angles and complex phases as follows

(N −1)2 = 1

2
N (N −1)︸ ︷︷ ︸

mixing angles

+ 1

2
(N −1)(N −2)︸ ︷︷ ︸
complex phases

. (2.55)

In the case of N = 3 quark generations, the CKM matrix is described by three mixing
angles and one complex phase. The CKM matrix can be parametrized in multiple
ways and the so-called standard parametrization [42] in terms of three angles θi j and
one complex phase δ is given by

vC K M =
 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13

s12s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13

 (2.56)

where si j ≡ sinθi j , ci j ≡ cosθi j , i , j = 1,2,3 and the complex phase δ is chosen to
be between the first and third generation. The elements of the CKM matrix are not
predicted by the SM and must be determined experimentally using decays that involve
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quark transitions which are sensitive to each particular element7. The most recent
measurements of the CKM elements |Vi j | are given by [43]

VC K M =


0.974353+0.000049

−0.000056 0.22500+0.00024
−0.00021 0.003667+0.000088

−0.000073

0.22487+0.00024
−0.00021 0.973521+0.000057

−0.000062 0.04145+0.00035
−0.00061

0.008519+0.000075
−0.000146 0.04065+0.00040

−0.00055 0.999142+0.000018
−0.000023

 . (2.57)

The diagonal elements are all very close to one meaning that the couplings to the
same generation are stronger than to different generations. A popular parametrization
that takes advantage of this CKM hierarchy is the Wolfenstein parametrization [44]
which describes the CKM matrix in terms of the four parameters A,λ,ρ and η. These
parameters are related to the standard parametrization as

sinθ12 =λ,

sinθ23 = Aλ2,

sinθ13e−iδ = Aλ3(ρ− iη).

(2.58)

The CKM matrix in the Wolfenstein parametrization thus becomes

VC K M =

 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

+O (λ4). (2.59)

Instead of the parameters ρ and η, the generalized parameters are usually used and
they are defined as

ρ = ρ(1− 1

2
λ2),

η= η(1− 1

2
λ2).

(2.60)

The measured values of the Wolfenstein parameters are [43]

λ= 0.22500+0.00024
−0.00022,

A = 0.8132+0.0119
−0.0060,

ρ = 0.1566+0.0085
−0.0048,

η= 0.3475+0.0118
−0.0054.

(2.61)

7For example, the elemeent Vcb can be measured using tree level processes of b to c decays
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It is easy to see that with this parametrization the CKM matrix retains its unitarity
and the hierarchical structure is emphasized. The unitarity of the CKM matrix, i.e.
VC K M V †

C K M = 1, imposes the following relations∑
k
|Vi k |2 = 1, (2.62)

∑
k

Vi kV ∗
j k = 0. (2.63)

There are six constraints in Eq. 2.63 which can be interpreted as sides of a triangle
in the complex plane. For i = 1 and j = 3, Eq. 2.63 becomes

Vud V ∗
ub +Vcd V ∗

cb +Vtd V ∗
tb = 0. (2.64)

Eq. 2.64 represents the so-called unitarity triangle shown in Fig. 2.4. The apex of
the triangle lies in the complex plane at the point (ρ,η) given by

ρ+ iη=−Vud V ∗
ub

Vcd V ∗
cb

= 1− Vtd V ∗
tb

Vcd V ∗
cb

. (2.65)

Figure 2.4: The unitarity triangle shown in the complex plane [45].

The three angles of the unitarity triangle are given by

α=φ1 = arg

(
Vtd V ∗

tb

Vud V ∗
ub

−
)

,

β=φ2 = arg

(
Vcd V ∗

cb

Vtd V ∗
tb

−
)

,

γ=φ3 = arg

(
Vud V ∗

ub

Vcd V ∗
cb

−
)

,

(2.66)

and their experimental values are measured to be α= 91.98+0.82o
−1.40 , β= 22.42+0.64o

−0.37 ,
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Figure 2.5: Measurements of the CKM unitarity triangle as of spring 2021. [43]

γ= 65.5+1.3o
−1.2 [43]. The CKM unitarity triangle as measured by the CKM fitter group is

shown in Fig. 2.5.
In the lepton sector mixing between families does not occur in the SM since there

is no Yukawa term in the Lagrangian for the neutrino masses (as there are no right-
handed neutrinos). Therefore, for the charged leptons there exists a mass basis which
is the same as the flavor basis in which the mass matrix is diagonal. Nonzero masses
for neutrinos would require introducing a Yukawa mass term and this would allow
for lepton flavor mixing in the charged current interaction in analogy to the up and
down quarks. The equivalent of the CKM matrix in the lepton sector is known as the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [46].

2.1.6 CP violation
The charge-conjugation and parity operations were introduced in Sec. 2.1.4 and it
was shown that the weak interaction maximally violates both. The C P operation
combines charge-conjugation with parity and changes simultaneously the quantum
numbers and the handedness of a particle. For instance, a left-handed electron e−

L
is transformed under C P to a right-handed positron e+

R . The CP operation was still
considered to be a good symmetry in the early stages of the SM. The first evidence of
CP violation was established in neutral kaon decays from the Cronin-Fitch experiment
[47] in 1964.

The origin of CP violation in the SM lies in the complex entries Yi j of the Yukawa
matrices and consequently the complex entries of the CKM matrix. In fact, the third
generation of quarks was predicted in order to explain the observed CP violation. The
SM with only two generations of quarks implies a 2×2 real mixing matrix which has
only one free parameter known as the Cabibbo angle θC . In order for CP violation
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to occur in the SM, three generations are needed and thus the 3×3 CKM matrix is
described by three real parameters and one complex phase, as shown in the previous
section. It is this complex phase that allows for CP violation.

In order to see how CP violation arises, a generic Yukawa term can be written as

LY ukaw a = Yi jψLiφψR j +Y ∗
i jψR jφ

†ψLi , (2.67)

and performing a CP transformation of the spinor fields gives

C P (ψLiφψR j ) =ψR jφ
†ψLi , (2.68)

so that the Yukawa Lagrangian stays invariant under C P if Yi j = Y ∗
i j . Alternatively,

performing a C P operation on the mass basis charged current Lagrangian of Eq. 2.53
gives

LCC = gWp
2

uLi (VC K M )i jγ
µW −

µ dLi + gWp
2

dLi (V ∗
C K M )i jγ

µW +
µ uLi ,

L C P
CC = gWp

2
dLi (VC K M )i jγ

µW +
µ uLi + gWp

2
uLi (V ∗

C K M )i jγ
µW −

µ dLi ,
(2.69)

where again the Lagrangian stays invariant under C P if VC K M = V ∗
C K M . This con-

dition is not satisfied since the CKM matrix is not real but has one complex phase.
Therefore the C P symmetry of the Lagrangian is not conserved.

CP violation was first observed in neutral kaon decays and has since been observed
and well measured in both neutral B 0 meson decays and charged B± meson decays.
More recently, CP violation in neutral D0 charm meson decays has been observed [48].
In the SM, CP violation can be classified into the three different categories described
below.

2.1.6.1 CP violation in decay

This type of CP violation is also known as direct CP violation. It takes place when the
decay rate of a particle P to a final state F is not the same as the decay rate of the
antiparticle P to the CP conjugated final state F , i.e.

Γ(P → F ) ̸= Γ(P → F ), (2.70)

and the associated CP-violating observable is

ACP = Γ(P → F )−Γ(P → F )

Γ(P → F )+Γ(P → F )
. (2.71)

The total decay amplitudes which describe the Γ(P → F ) process and the CP conju-
gated process Γ(P → F ) can be denoted as A f and A f , respectively. From Eq. 2.69 it is
seen that under CP conjugation the complex coupling of the weak charged current is
turned into its complex conjugate. This means that the two amplitudes will have a
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phase that changes sign under CP . Since this phase comes from the complex coupling
of the weak interaction, it is referred to as weak phase. The amplitudes can also have
a different strong phase coming from gluon exchange in the final state. However,
since the strong interaction is CP-conserving, the strong phase does not change sign
under C P . Besides the weak and strong phases, the other key ingredient for direct CP
violation is the existence of two interfering amplitudes (a1 and a2) for the same P → F
process. Thus, the final amplitude for the process will be given by the vector sum of
the two amplitudes. Because of the weak phase that changes sign, the amplitudes for
the process and antiprocess will differ. This mechanism that generates CP violation is
illustrated in Fig. 2.6.

Figure 2.6: Schematic of CP violation. The weak phaseφ changes sign under CP , while
the strong phase δ stays invariant. The resulting vector sum of the two
amplitudes for the process and antiprocess are thus different, i.e. A f ̸= A f .

The total amplitudes A f and A f can then be written as

A f =|a1|e i (δ1+φ1) +|a2|e i (δ2+φ2),

A f =|a1|e i (δ1−φ1) +|a2|e i (δ2−φ2),
(2.72)

and knowing that Γ(P → F ) ∝|A f |2 the numerator of Eq. 2.71 becomes

AC P ∝−2|a1||a2|sin(δ2 −δ1)sin
(
φ2 −φ1

)
. (2.73)

From Eq. 2.73 it is evident that for direct CP violation there must be two interfering
amplitudes with different weak and strong phases. The condition for CP violation can
also be expressed as a ratio of the magnitudes of the two amplitudes∣∣∣∣∣∣ A f

A f

∣∣∣∣∣∣ ̸= 1. (2.74)

The condition implies that the decay rates for the process and antiprocess are
different. The condition would not be satisfied in case of vanishing weak phase, i.e.
real weak coupling. Direct CP violation can occur for both neutral and charged meson
decays and was observed for example in the B 0 → K +π− channel [49].
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2.1.6.2 CP violation in mixing

The phenomenon of neutral meson oscillation gives rise to the second mechanism
that generates CP violation. A generic neutral meson P 0 can turn into its antiparticle

P 0 while propagating, which can then turn back into the particle P 0 and this process
repeats over time. This process is called mixing. This is because the particle propa-

gates as a mass eigenstate which is a linear combination of CP eigenstates P 0 and P 0

and can oscillate between the two states as it propagates. In other words, the mass
eigenstates are not exact CP eigenstates. The heavy and light mass eigenstates as
functions of time can be written then as

|PH (t )〉 =p
∣∣P 0(t )

〉−q
∣∣∣P 0(t )

〉
,

|PL(t )〉 =p
∣∣P 0(t )

〉+q
∣∣∣P 0(t )

〉
,

(2.75)

where the complex coefficients q and p must satisfy |q |2 + |p|2 = 1. CP violation
in mixing occurs when the probability of oscillating from particle to antiparticle is
different than the probability for the reverse process, i.e.

Γ(P 0 → P 0) ̸= Γ(P 0 → P 0). (2.76)

These probabilities are functions of time and are given by the following expressions
of squared amplitudes

∣∣∣〈P 0
∣∣∣P 0(t )

〉∣∣∣2 =|g−(t )|2
∣∣∣∣p

q

∣∣∣∣2

,∣∣∣〈P 0
∣∣∣P 0(t )

〉∣∣∣2 =|g+(t )|2
∣∣∣∣ q

p

∣∣∣∣2

.

(2.77)

where the functions g±(t ) depend on the masses and decay constants (lifetimes) of the
two mass eigenstates of the neutral meson system [15]. The condition for CP violation
in mixing can then be expressed as ∣∣∣∣ q

p

∣∣∣∣ ̸= ∣∣∣∣p

q

∣∣∣∣ ̸= 1. (2.78)

C P violation in mixing is also known as indirect CP violation and it was first observed
in K 0 −K 0 mixing by the Cronin-Fitch experiment via neutral kaon decays to two
charged pions.

2.1.6.3 CP violation in interference between a decay with and without
mixing

The other possibility for indirect CP violation to occur is as a consequence of the
interference between the amplitude of a decay P 0 → F and the amplitude of the same
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decay, but with mixing P 0 → P 0 → F . This implies that the final state F has to be a

common CP eigenstate for both the particle P 0 and the antiparticle P 0.
The condition for CP violation in this case is given by

Γ(P 0 → P 0 → F ) ̸= Γ(P 0 → P 0 → F ). (2.79)

The two amplitudes that interfere in this case are the ones associated to the P 0 → F
and P 0 → P 0 → F processes. In order for CP violation to happen, there must be a
phase between the mixing and decay amplitudes. This phase, denoted by φI , is given
by [15]

φI = arg

 q

p

A f

A f

 , (2.80)

therefore the condition for CP violation in interference of mixing and decay can be
expressed as

φI ̸= 0. (2.81)

A good example of observed CP violation in the interference between mixing and
decay is in the so-called ’golden channel’ B 0 → J/ψK 0

S [50].

2.2 Semileptonic B decays

2.2.1 Lepton flavor universality
In the SM, the gauge bosons of the electroweak interaction have the same coupling
to all three lepton generations. In other words, the interactions of the electroweak
bosons with the leptons are independent of the lepton flavor. This means that particle
decays to any of the three lepton generations do not depend on the lepton flavor and
the only difference in branching ratios is due to a phase space factor accounting for
the different masses of the charged leptons. This property is known as lepton flavor
universality (LFU). Since the SM does not allow for LFU violation, any observation of
lepton flavor non-universality implies the existence of New Physics (NP).

Several experiments including LHCb, Belle, Belle2 and BaBar have been performing
tests of LFU in various b-hadron decays with leptons in the final state. A detailed
description of the LHCb experiment and a brief description of the other experiments
also known as B Factories is given in Chapter 3. The two main classes of decays
where LFU tests are performed are the b → sℓ+ℓ− and b → cℓνℓ transitions. There are
multiple results coming from all these experiments which show tensions of 2−3σwith
respect to the SM predictions of LFU. Collectively, all the recently measured deviations
from the SM in b−hadron decays are known as the b-anomalies.

47



2.2.1.1 LFU tests in b → sℓ+ℓ−

Transitions where a B hadron decays into another hadron containing an s quark and
a pair of charged leptons, i.e. B → Xsℓ

+ℓ− or at quark level b → sℓ+ℓ−, are FCNC
processes and are therefore highly suppressed in the SM by the GIM mechanism.
These transitions are not allowed to occur at tree level in the SM and thus can only
occur via loop diagrams such as the ones shown in Fig. 2.7.

b s

ℓ+

ℓ−

u,c, t

W −

γ, Z 0

b s

ℓ+ ℓ−

u,c, t

W + W −
ν

Figure 2.7: SM Feynman diagrams for the b → sℓ+ℓ− process showing a penguin loop
diagram (left) and a box diagram (right).

Typically, LFU tests are performed by measuring ratios of branching fractions of
B hadron decays where only the final state leptons differ. The advantage of defining
ratio observables is that most of the theoretical and experimental uncertainties are
cancelled out. These ratios are known as RX and are generically defined as

RX = B(Hb → Xℓ+1 ℓ
−
1 )

B(Hb → Xℓ+2 ℓ
−
2 )

, (2.82)

where Hb is the b−hadron, X is a hadron containing a strange quark and ℓ1, ℓ2 are
leptons from different generations. Two of the most important such ratios are the
RK ∗′ and RK

RK ∗0 =B(B 0 → K ∗0µ+µ−)

B(B 0 → K ∗0e+e−)
,

RK =B(B+ → K +µ+µ−)

B(B+ → K +e+e−)
.

(2.83)

The SM prediction for these ratios is equal to one with uncertainties at the per-
cent level [51]. These ratios depend on the q2 quantity which is the invariant mass
squared of the two leptons and typically the measurements are performed in bins of
q2. The measurements of the RK and RK ∗0 ratios from the LHCb, Belle and BaBar
experiments are given in Fig. 2.8 in bins of q2.
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Figure 2.8: Measurements of RK [52] (left) and RK ∗0 [53] (right) in bins of q2 from the
LHCb, Belle and BaBar experiments.

The values measured by the LHCb experiment using Run 1 data collected in 2011
and 2012 for RK ∗0 are compatible with the SM prediction at the level of ∼ 2.1 and ∼ 2.4
standard deviations for the two q2 regions as shown below [53]

RK ∗0 (0.045 < q2 < 1.1 GeV2) =0.66+0.11
−0.07 ±0.03,

RK ∗0 (1.1 < q2 < 6.0 GeV2) =0.69+0.11
−0.07 ±0.05.

(2.84)

The RK ratio was measured by LHCb using Run 1 and first half of Run 2 (2015
and 2016) data and the measurement is 3.1 standard deviations away from the SM
prediction. The measured value is given by [54]

RK (1.1 < q2 < 6.0 GeV2) = 0.846+0.044
−0.041. (2.85)

An updated combined measurement of RK and RK ∗0 using the full Run 1 and Run
2 data was performed more recently by LHCb in two q2 regions. These measurements
supersede the previous LHCb measurements and are all in agreement with the SM.
The values are given by [55, 56]

RK ∗0 (0.1 < q2 < 1.1 GeV2) =0.927+0.093
−0.087(stat)+0.036

−0.035(syst),

RK ∗0 (1.1 < q2 < 6.0 GeV2) =1.027+0.072
−0.068(stat)+0.027

−0.026(syst),

RK (0.1 < q2 < 1.1 GeV2) =0.994+0.090
−0.082(stat)+0.029

−0.027(syst),

RK (1.1 < q2 < 6.0 GeV2) =0.949+0.042
−0.041(stat)+0.022

−0.022(syst).

(2.86)

Other LFU tests in b → sℓ+ℓ− meson decays are performed in the B 0 → K 0
Sℓ

+ℓ−

and B+ → K ∗+ℓ+ℓ− channels and the measured ratios RK 0
S

and RK ∗+ are compatible

with the SM at 1.5 and 1.4 standard deviations, respectively [57]. The first LFU test
with baryon decays was performed at the LHCb experiment with the Λ0

b → pK −ℓ+ℓ−

49



modes [58].
An alternative approach to study the anomalies in b → sℓ+ℓ− transitions is given

by the angular analyses and certain observables related to the angular distribution
of the decay are good probes for NP. In general, the angular distribution depends
on q2 and a set of decay angles. An important set of angular observables are the so-

called optimized observables P (′)
a whose definition is chosen in order to minimize the

hadronic uncertainties. The definitions and descriptions of these angular observables
can be found in [59]. A deviation from the SM prediction of almost 3σ in some
q2 bins was observed by the LHCb experiment in the P ′

5 observable related to the
angular distribution of the B 0 → K ∗0µ+µ− decay [60]. Similarly, LHCb has observed
a deviation of 3σ with respect to the SM predictions in the same q2 region for the P2

angular observable in the B+ → K ∗µ+µ− decay [61]. The measurements of the two
angular observables P2 and P ′

5 are shown in Fig. 2.9.

Figure 2.9: Measurements of the P2 angular observable in B+ → K ∗+µ+µ− (right) [61]
and the P ′

5 angular observable in B 0 → K ∗0µ+µ− (left) [60]. The 2.9 (3)σ
deviations from SM in the P ′

5(P2) observables are found in the same q2

region of 6.0−8.0 GeV2

2.2.1.2 LFU tests in b → cℓνℓ

Decays where a b-hadron decays into a c-hadron and a lepton neutrino pair, generi-
cally denoted by Hb → Hcℓνℓ, are commonly referred to as semileptonic decays since
only one lepton is visible in the final state. The quark level transition is b → cℓνℓ
where the lepton can be either an electron (e), a muon (µ) or a tau lepton (τ). In the
SM these are tree-level FCCC transitions mediated by the W ± bosons. The Feynman
diagram of the quark-level SM b → cℓνℓ process is given in Fig. 2.10.

Lepton flavor universality tests are performed in these transitions using observables
defined as the following ratio

R(Hc ) = B(Hb → Hcℓ1νℓ1 )

B(Hb → Hcℓ2νℓ2 )
, (2.87)

where ℓ1 and ℓ2 are leptons from different generations. The two main observables
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b
Vcb

c

ℓ−

νℓ

W −

Figure 2.10: Feynman diagram of the b → cℓνℓ transition in the SM mediated by a W −

boson. The probability of the transition is given by |Vcb |2.

that generated a large amount of interest in the recent years are the so-called R(D)
and R(D∗) given by

R(D) = B(B → D τντ)

B(B → D ℓνℓ)
, ℓ=µ,e,

R(D∗) = B(B → D∗τντ)

B(B → D∗ℓνℓ)
, ℓ=µ,e.

(2.88)

By taking the ratio of the two branching fractions the uncertainties related to the
hadronic transition as well as the contribution of the CKM matrix element |Vcb | cancel
out. Therefore, these ratio observables are in principle theoretically clean. The most
recent average SM prediction based on several calculations for these ratios is [1]

R(D) = 0.298±0.004,

R(D∗) = 0.254±0.005.
(2.89)

On the experimental side so far Belle, BaBar and LHCb have performed combined
measurements of R(D) and R(D∗). The LHCb experiment has measured R(D∗) using
two of the τ lepton decay modes, the so-called hadronic τ→πππν and muonic τ→
µνν channel. The most recent measurements performed by these three experiments
so far are listed in Tab. 2.4 [1, 62–67].
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Experiment τ decay mode Measurement Value
BaBar τ→ ℓνν R(D) 0.440±0.058(stat)±0.042(syst)

R(D∗) 0.332±0.024(stat)±0.018(syst)

Belle τ→ ℓνν R(D) 0.375±0.064(stat)±0.026(syst)
R(D∗) 0.293±0.038(stat)±0.015(syst)

Belle τ→ ℓνν R(D) 0.307±0.037(stat)±0.016(syst)
R(D∗) 0.283±0.018(stat)±0.014(syst)

Belle τ→πν,τ→ ρν R(D∗) 0.270±0.035(stat)+0.028
−0.025(syst)

LHCb τ→µνν R(D) 0.441±0.060(stat)±0.066(syst)
R(D∗) 0.281±0.018(stat)±0.024(syst)

LHCb τ→πππν R(D∗) 0.257±0.012(stat)±0.014(syst)
±0.012(BF)

Table 2.4: Measured values of R(D) and R(D∗). In the measurements performed by
BaBar and Belle using the leptonic τ decay mode, the tau is reconstructed
in both τ− → e−νeντ and τ− →µ−νµντ while the LHCb measurement uses
only the muonic mode.

All the experimental results along with their averages and correlations as well as
the theoretical SM predictions are shown graphically in the plot given in Fig. 2.11.
The average experimental result for the combined R(D) and R(D∗) measurements
is more than 3σ away from the SM prediction. More precise measurements of these
ratios are being performed in order to confirm or infirm the presence of NP in these
decays.

In addition to R(D) and R(D∗), recently the LHCb experiment has performed LFU
tests in semileptonic decays of heavier b-hadrons which are not accessible at the other
B Factories. More specifically, LHCb measured the ratios R(J/ψ) and R(Λ+

c ) defined
as

R(J/ψ) =B(B+
c → J/ψτ+ντ)

B(B+
c → J/ψµ+νµ)

,

R(Λ+
c ) =B(Λ0

b →Λ+
c τ

−ντ)

B(Λ0
b →Λ+

c µ
−νµ)

,

(2.90)

for which the measured values are [68, 69]:
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R(J/ψ) =0.71±0.17(stat)±0.18(syst),

R(Λ+
c ) =0.242±0.026(stat)±0.040(syst)±0.059(ext).

(2.91)

The R(J/ψ) experimental result lies about 2σ away from the SM prediction given
by [70], while the R(Λ+

c ) result is in agreement with the SM prediction from [71].
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R(D)

0.2

0.25

0.3

0.35

0.4

R
(D

*)

HFLAV SM Prediction
 0.004±R(D) = 0.298 
 0.005±R(D*) = 0.254 

 = 1.0 contours2χ∆

World Average
total 0.029±R(D) = 0.356 

total 0.013±R(D*) = 0.284 
 = -0.37ρ

) = 25%2χP(

HFLAV

PRELIMINARY

σ3

LHCb22LHCb23

Belle17

Belle19

Belle15
BaBar12

Average

PRD 94 (2016) 094008
PRD 95 (2017) 115008
JHEP 1712 (2017) 060
PLB 795 (2019) 386
PRL 123 (2019) 091801
EPJC 80 (2020) 2, 74
PRD 105 (2022) 034503

HFLAV

2021

HFLAV
Prelim. 2023

Figure 2.11: Combined measurement of the R(D) and R(D∗) ratios. The black point
with errors shows the SM prediction. The various measurements of R(D∗)
by LHCb and Belle are shown as points while the combined R(D)-R(D∗)
measurements from LHCb, BaBar and Belle are shown as ellipses. The
average combined value over all measurements is given by the red ellipse.
The dashed red line indicates the 3σ contour. The average SM prediction
lies at about 3.2σ with respect to the experimental average [1]

Collectively, these ratio measurements which serve as direct LFU tests show sig-
nificant tensions between theory and experiment and thus point to NP in b → cℓνℓ
charged current transitions. To complement the direct search for lepton flavor non-
universality, other observables sensitive to NP effects in b → cℓνℓ have been proposed,
such as the longitudinal D∗ polarisation FL [72], τ lepton polarisation [65,73], forward-
backward asymmetry [74, 75] and full angular distributions [3, 9, 76, 77].
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2.2.2 Effective field theory and New Physics in b → cℓνℓ

Typically, semileptonic B decays are treated theoretically in terms of an effective field
theory (EFT). This approach treats the SM as a low-energy (effective) field theory of a
more complete NP theory, where NP is heavier than SM. A parallel can be made with
respect to the Fermi weak theory of the beta decay, i.e. n → pe−νe , which takes place
at an energy scale ∼ 1 MeV much lower than the electroweak scale mW ∼ 100 GeV. The
degrees of freedom of the heavy electroweak W boson are integrated out and encoded
into an effective weak coupling constant GF (the Fermi constant). Thus, the low-energy
weak decay is effectively described by a point-like four-fermion interaction which
concerns the light particles only. The short distance effects of the heavy electroweak
bosons were discovered only when the SPS reached the required energy scale, i.e. the
electroweak energy scale.

So far the SM provided an accurate description of the particle interactions probed
at the energies up to the electroweak scale. However, various measurements such
as the ones described in the previous section indicate that the SM might not be the
complete underlying theory. Therefore, the SM can be considered the low-energy
(long distance) approximation of a NP theory at a scaleΛ larger than the electroweak
scale, i.e. Λ≫ mW

8, where the new degrees of freedom appear. The effects of these
new (heavy) degrees of freedom can be parametrized at the electroweak scale by
adding NP terms to the SM Lagrangian, i.e.

Le f f =LSM + 1

Λ
L5 + 1

Λ2
L6 + 1

Λ3
L7 + . . . , (2.92)

where Λ is the characteristic scale of the NP and Ln represent NP terms in the La-
grangian given by

Ln =∑
i

g (n)
i O (n)

i . (2.93)

In Eq. 2.93, O (n)
i are gauge invariant operators of mass dimension n > 4 constructed

from the SM fields only and the g (n)
i are constant dimensionless effective couplings,

also known as Wilson coefficients, that incorporate the short distance effects of the
heavy NP contributions. Therefore, in general the EFT at low energies ignores the
short distance heavy degrees of freedom and keeps only the light degrees of freedom
which propagate over long distances. The effects of the heavy degrees of freedom
are incorporated in the short distance effective couplings that multiply the operators.
This method has the advantage that any NP contributions may be parametrized by
just adding new operators (and their coefficients) in the Lagrangian.

The SM Lagrangian LSM in Eq. 2.92 is of mass dimension four such that the factors
1
Λk , where n −k = 4, are needed to preserve the correct dimension of the Lagrangian.
It can be shown that the dominant corrections to LSM come from the dimension-
six term such that only correction to the SM Lagrangian given by the term 1

Λ2 L6 is
considered further [78]. A complete set of dimension-six operators is given in [79].

8Typically theΛ scale of NP of the order of 1 TeV
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Figure 2.12: Illustration of a b → cℓ−νℓ transition in the SM (left) and effective field
theory approach (right), as seen at the hadronic level, in the case of a B
meson decaying into an unspecified H meson [80]. In the effective (low
energy) approach, the degrees of freedom associated with the (heavy) W
boson are integrated out.

This approach can be employed in the case of b → cℓνℓ FCCC transitions which can
thus be described at low energies in terms of an effective Hamiltonian consisting of
a dominant SM contribution and corrections from NP contributions. An illustration
of the effective theory approach in the SM is shown in Fig. 2.12. The total effective
Hamiltonian reads

He f f =HSM +HN P = 4GFp
2

Vcb

(
OSM +∑

i
gi Oi

)
, (2.94)

where GF = 1.662787×10−5 GeV−2 is the Fermi constant, Vcb is the CKM matrix ele-
ment, gi are the Wilson coefficients and Oi their associated four-fermion dimension-
six Wilson operators which account for NP corrections. OSM is the dominant SM
Wilson operator defined as the left-handed vector operator:

OSM = (cγµPLb)(ℓγµPLνℓ) = (cLγ
µbL)(ℓLγµνℓL), (2.95)

where PL is the left-handed projection operator defined in Eq. 2.23. The normalisa-
tion in Eq. 2.94 is chosen such that the Wilson coefficient of the SM operator is 1. The
structure of OSM operator in Eq. 2.95 reflects the (V − A)× (V − A) nature of the weak
interaction in the SM. The complete set of operators that can contribute to b → cℓν
weak decays is restricted by the requirement of Lorentz invariance and is limited to
the Lorentz structures given in Table 2.2. The NP effective Hamiltonian that includes
these four-fermion operators has the general structure [81]

HN P = 4GFp
2

Vcb

∑
γ,µ,ϵ

gγµϵ(cΓγbµ)(ℓϵΓ
γνℓ)+h.c., (2.96)

where the index γ represents scalar (S), vector (V) or tensor (T) interactions accord-
ing to
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ΓS = 1,

ΓV = γµ,

ΓT =σµν = i

2

[
γµ,γν

]
,

(2.97)

and the indices µ,ϵ ∈ {L,R} represent the chirality of the fermion fields. For a given
γ, the chirality of c is fixed by µwhile the chirality of νℓ is fixed by ϵ. Summing over the
three indices γ,µ,ϵ gives a total 12 independent dimension six four-fermion Wilson
operators. Assuming that there are no right-handed neutrinos, i.e. g S

µL = g V
µR = g T

µL = 0,
only six possible operators are left. Furthermore, the tensor operator with opposite
quark and neutrino set of chiralities vanishes, i.e. OT

RR = (cLσ
µνbR )(ℓRσµννℓL) = 0,

and thus only one tensor operator contributes [82]. Within these assumptions, there
are thus five Wilson operators that contribute to the total effective Hamiltonian for
b → cℓνℓ weak decays, namely

He f f =
4GFp

2
Vcb

[
(1+ g V

LL)OV
LL + g V

RLOV
RL + g S

LROS
LR + g S

RROS
RR + g T

LROT
LR +h.c.

]
. (2.98)

Explicitly, the five Wilson operators in the equation above are given by

OV
LL = (cLγ

µbL)(ℓLγµνℓL) = (cγµPLb)(ℓγµPLνℓ),

OV
RL = (cRγ

µbR )(ℓLγµνℓL) = (cγµPR b)(ℓγµPLνℓ),

OS
LR = (cR bL)(ℓRνℓL) = (cPLb)(ℓPLνℓ),

OS
RR = (cLbR )(ℓRνℓL) = (cPR b)(ℓPLνℓ),

OT
LR = (cRσ

µνbL)(ℓRσµννℓL) = (cσµνPLb)(ℓσµνPLνℓ).

(2.99)

Using the following simplified notation: gL ≡ g V
LL, gR ≡ g V

RL, gSL ≡ g S
LR , gSR ≡ g S

RR ,
gT ≡ g T

LR and using the relation gS,P = gSL ± gSR it is possible to write Eq. 2.98 as

He f f =
4GFp

2
Vcb{

[
(1+ gL)cγµPLb + gR cγµPR b

]
ℓγµPLνℓ

+ [
gScb + gP cγ5b

]
ℓPLνℓ+ gT cσµνPLbℓσµνPLνℓ+h.c.},

(2.100)

where the contributing operators are the left-handed vector (L), right-handed vector
(R), scalar (S), pseudoscalar (P ) and tensor (T ). The SM corresponds to the case where
gL = gR = gS = gP = gT = 0.
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2.2.3 CP violation in b → cℓνℓ

The experimental results discussed in Sec. 2.2.1.2, such as R(D∗), R(D) and R(J/ψ)
indicate the possible presence of NP in b → cℓνℓ decays. Up to date, there is a wide
variety of theory papers and observables proposed to probe the nature of the NP in
these decays. In this thesis, we follow the approach given in [2] and focus on the
measurement of C P violating observables as means to constrain and distinguish
different NP scenarios.

As discussed in Sec. 2.1.6, any CP violation requires the presence of at least two
interfering amplitudes with different weak and strong phases. In the case of b → cℓνℓ
transitions, there is only one tree level SM amplitude which is shown in Fig. 2.13
for the B 0 → D∗−ℓ+νℓ decay. Since CP violation requires at least two amplitudes,
measuring nonzero CP violation automatically implies the existence of a second NP
amplitude. Therefore, CP violation in b → cℓνℓ is a smoking-gun signal of NP.

b c

d d

νℓ

ℓ+

W +

B 0 D∗−

Figure 2.13: The Feynman diagram of the B 0 → D∗−ℓ+νℓ decay in the SM, where
ℓ= e,µ or τ. The transition is mediated by a W + boson.

There are three classes of NP particles that can couple to both leptons and quarks
and thus can mediate b → cℓνℓ decays at tree-level. These are charged Higgs H±

bosons, W ′± bosons and leptoquarks (LQ). Feynman diagrams of b → cℓνℓ decays
mediated by W ′+ and a leptoquark are shown in Fig. 2.14. A list of references of NP
models that can contribute to b → cℓνℓ is given in [2].

b c

d d

νℓ

ℓ+

W ′+

B 0 D∗− b c

d d

ℓ+

LQ

νℓ

B 0 D∗−

Figure 2.14: Possible NP Feynman diagrams of the B 0 → D∗−ℓ+νℓ decay, where
ℓ = e,µ or τ. The b → cℓνℓ transition is mediated by a W ′+ (left) and
a leptoquark (right).

Regarding the CP-violating observables, the most common one is the direct C P
asymmetry defined in Eq. 2.71. In order for this observable to deviate from zero, there
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need to be (at least) two amplitudes with different weak and strong phases. However,
since strong phases originate from hadronic transitions (as can be seen in Fig. 2.12),
in the case of B 0 → D∗−ℓ+νℓ decays the only underlying hadronic transition is the
B → D∗ (or b → c at quark level) transition for any amplitude regardless of it being
SM or NP. As a consequence, there can be no strong phase difference between any
amplitudes in the b → cℓνℓ mode 9. The implication of the vanishing strong phase
difference is that the direct CP-violating observable is zero, i.e.

A C P
di r = Γ(B 0 → D∗+ℓ−νℓ)−Γ(B 0 → D∗−ℓ+νℓ)

Γ(B 0 → D∗+ℓ−νℓ)+Γ(B 0 → D∗−ℓ+νℓ)
= 0. (2.101)

As a consequence, if there are NP amplitudes with different weak phases (but no
strong phase difference) than the SM one, the C P violating effects will not appear as
a decay rate asymmetry but instead will appear as kinematical effects in the decay
angular distribution. These effects are generally known as triple product asymmetries
[9, 83, 84]. Since these are kinematic observables, in order to produce such effects,
the NP amplitude must have a different Lorentz structure than the left-handed vector
structure of the SM (Eq. 2.95). In general, the NP models that contribute only to gL

in Eq. 2.100, i.e. same Lorentz structure as the SM, are preferred to explain the b-
anomalies 10. Therefore, the measurement of nonzero CP-violating effects in b → cℓνℓ
decays would immediately rule out all NP models that contribute only to gL .

The b-anomalies of R(D), R(D∗) and R(J/ψ) together with the fact that there are
no tensions with respect to the SM in the measurement of R(D∗)µ/e [85] indicate that
the NP may be present in b → cτντ decays. The study of CP-violating effects would
require the experimental reconstruction of the angular distribution of B 0 → D∗−τ+ντ.
However, since the τ decays into final states that include one or two neutrinos which
are not reconstructable in experiment, these decays are very difficult to deal with
and the τ momentum, p⃗τ, cannot be reconstructed with good precision. Therefore,
it is logical to start by measuring the CP-violating effects in B 0 → D∗−µ+νµ since its
angular distribution is fully reconstructable. Even though the b-anomalies are prefer-
ably explained by NP in b → cτντ, the same NP may affect b → cµνµ and may lead to
measurable deviations from the SM in the angular distribution of B 0 → D∗−µ+νµ.

2.2.3.1 Angular distribution

The kinematics of the B 0 → D∗−µ+νµ are described within the formalism of helicity

angles. The decay is treated as B 0 → D∗−W ∗+ where the on-shell D∗− → D0π− while
the off-shell W ∗+ →µ+νµ. The decay is fully described by four kinematic quantities,

9Strong phases coming from higher-order amplitudes are considered negligible
10In the SM case, the total decay rate is proportional to |gSM |2. In the NP case with same Lorentz

structure as SM, the NP coupling simply adds to the SM coupling and the total decay rate is then
proportional to (|gSM |2 +2Re(gSM g∗

N P )+|gN P |2). In the case where NP has different Lorentz struc-
ture than SM, there is no SM-NP interference and the correction to the total decay rate is just |gN P |2.
Since NP effects are generally expected to be small, i.e. |gN P | < |gSM |, the largest correction to the
decay rate comes from the interference term 2Re(gSM g∗

N P )
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the invariant mass squared of the lepton system q2 defined as

q2 = (pB −pD∗)2, (2.102)

and the three helicity angles shown in Fig. 2.15. The angles are defined in the rest
frames of their respective intermediate parent particle. The z-axis is chosen such that
it is aligned with the direction of the D∗− in the rest frame of the B 0. The angles have
the following definitions

• θD is the polar angle between the direction of the D0 meson and the opposite
direction of the B 0 meson in the D∗− meson rest frame (θD ∈ [0,π])

• θℓ is the polar angle between the direction of the µ+ and the opposite direction
of the B 0 meson in the W ∗+ rest frame (θℓ ∈ [0,π])

• χ is the azimuthal angle between the plane containing the µ+ and νµ coming

from the W ∗+ and the plane containing the D0 and π− coming from the D∗−

(χ ∈ [0,2π])

Formally, the angles are defined as

cosθD =
(
p̂(D∗−)

D0

)
·
(
p̂(B 0)

D∗−
)
=

(
p̂(D∗−)

D0

)
·
(
−p̂(D∗−)

B 0

)
, (2.103)

cosθℓ =
(
p̂(W ∗+)
µ+

)
·
(
p̂(B 0)

W ∗+

)
=

(
p̂(W ∗+)
µ+

)
·
(
−p̂(W ∗+)

B 0

)
, (2.104)

cosχ=
(
p̂(B 0)
µ+ × p̂(B 0)

νµ

)
·
(
p̂(B 0)

D0 × p̂B 0

π−
)

, (2.105)

where p̂(Y )
X are unit vectors of the direction of particle X in the rest frame of Y .

We note that the convention where the angles are defined in the same way for the
CP conjugated decay is used, i.e. θD = θD ,θℓ = θℓ,χ=χ.
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Figure 2.15: Helicity angles of the B → D∗(→ Dπ)ℓνℓ decay. Figure taken from [3].

In order to calculate the angular distribution, the total amplitude of the B 0 →
D∗−µ+νµ decay is needed. In the SM, this amplitude can be written as

M(m;n) = ϵµD∗(m)Mµνϵ
ν
W ∗(n), (2.106)

where ϵµD∗ and ϵνW ∗ are the polarization vectors of the real D∗− meson and of the
virtual intermediate W ∗+ boson. There are three polarization states for the D∗−,
namely m =+,−,0 and four polarization states for the W ∗+, n =+,−,0, t . Since the
B 0 meson is spin-0 particle, out the 12 possible polarization combinations, only four
are nonzero due to conservation of angular momentum. These are ++,−−,00,0t and
they correspond to four helicity amplitudes A+,A−,A0,At . The total amplitude in
the SM takes the form

M SM = ∑
m=±,0,t

gmmHD∗(m)AmLW ∗(m), (2.107)

where HD∗ and LW ∗ are the hadronic and leptonic matrix elements, respectively,
and are functions of the kinematics. In the NP case, the decay becomes B 0 → D∗−(→
D0π−)N∗+(→µ+νµ) since the W ∗+ boson mediator is replaced by a new particle N∗+

with a different interaction and coupling. As no RH neutrinos are assumed, the NP
in the leptonic piece can only have three structures as seen in Eq. 2.100, namely
V −A (left-handed vector), S−P (left-handed scalar) and T (tensor). This leads to four
more helicity amplitudes, one from the S −P interaction, ASP , and three from the T
interaction, A0,T ,A+,T ,A−,T . With regards to the hadronic current, there are more NP
contributions, as seen from Eq. 2.100. The total amplitude in the NP case is

M N P =M SP +MV A +M T , (2.108)
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where the SM contribution is included in MV A. Each term in M N P has a structure
similar to the SM one in Eq. 2.107 and can be written as a product of a hadronic piece,
a leptonic piece and a helicity amplitude, summed over the possible polarizations of
D∗− and N∗+. The eight helicity amplitudes that govern the decay in the NP case are
given by [2]

ASP =−gP

√
λ(m2

B ,m2
D∗ , q2)

mb +mc
A0(q2),

A0 =−(1+ gL − gR )
(mB +mD∗)(m2

B −m2
D∗ −q2)

2mD∗
√

q2
A1(q2)

+ (1+ gL − gR )
λ(m2

B ,m2
D∗ , q2)

2mD∗(mB +mD∗)
√

q2
A2(q2),

At =−(1+ gL − gR )

√
λ(m2

B ,m2
D∗ , q2)√

q2
A0(q2),

A+ = (1+ gL − gR ) (mB +mD∗)A1(q2)− (1+ gL + gR )

√
λ(m2

B ,m2
D∗ , q2)

mB +mD∗
V (q2),

A− = (1+ gL − gR ) (mB +mD∗)A1(q2)+ (1+ gL + gR )

√
λ(m2

B ,m2
D∗ , q2)

mB +mD∗
V (q2) ,

A0,T = gT
1

2mD∗(m2
B −m2

D∗)

(
(m2

B −m2
D∗)(m2

B +3m2
D∗ −q2)T2(q2)−λ(m2

B ,m2
D∗ , q2)T3(q2)

)
,

A±,T = gT

√
λ(m2

B ,m2
D∗ , q2)T1(q2)± (m2

B −m2
D∗)T2(q2)√

q2
,

(2.109)

where λ(a,b,c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. The helicity amplitudes in Eq.
2.109 are quantities that describe the hadronic interactions and are parametrized
in terms of the functions A0, A1, A2,V ,T1,T2,T3 which are all functions of q2 and
are generally referred to as Form Factors. There are several parametrizations widely
used in literature to model the form factors. Some of the best known are the ISGW2
parametrization [86], the CLN parametrization [87], the BGL parametrization [88] and
the more recent BLPR parametrization [89]. In addition, it can be seen that various
NP couplings contribute to various helicity amplitudes and if all NP couplings are set
to zero, the eight amplitudes are reduced to the four ones present in the SM.

The angular distribution is proportional to the square of the total amplitude |M N P |2.
The full derivation of the angular distribution is given in [2] and the result is
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dΓ

d q2d cosθD d cosθℓdχ
= 3

8π

G2
F |Vcb |2(q2 −m2

ℓ
)2|pD∗ |

28π3m2
B 0 q2

×B(D∗− → D0π−)

(
N1 + mℓ√

q2
N2 +

m2
ℓ

q2
N3

)
,

(2.110)

where |pD∗ | =
√
λ(m2

B 0 ,m2
D∗ , q2)/(2mB 0 ) is the D∗ 3-momentum in the B 0 rest

frame. The angular functions N1, N2 and N3 are given in [2] and include both CP-
conserving and CP-violating terms. It can be seen that N2 and N3 terms have signif-
icant suppression factors since mℓ << q . In Tab. 2.5 only the unsuppressed (corre-
sponding to N1) CP-violating terms are reported.

Coefficient Coupling Angular function
Im(A⊥A ∗

0 ) Im[(1+ gL + gR )(1+ gL − gR )∗] −p2sin2θℓ sin2θD sinχ
Im(A∥A ∗

⊥ ) Im[(1+ gL − gR )(1+ gL + gR )∗] 2sin2θℓ sin2θD sin2χ
Im(ASP A ∗

⊥,T ) Im(gP g∗
T ) −8

p
2sinθℓ sin2θD sinχ

Im(A0A
∗
∥ ) Im[(1+ gL − gR )(1+ gL + gR )∗] −2

p
2sinθℓ sin2θD sinχ

Table 2.5: Unsuppressed CP-violating terms in the angular distribution, their cou-
plings and the angular functions they contribute to [2]

The three distinct angular terms given in Tab. 2.5 correspond to the terms usually
denoted by I7, I8, I9 in other derivations of the full angular distribution, e.g. in [3].
We note that all CP-violating terms are proportional to sinχ or sin2χ and that their
coefficients are all given by Im(Ai A

∗
j ) 11. Here Im(Ai A

∗
j ) can only be nonzero if the

two helicity amplitudes Ai and A j have different phases. If there is a different strong
phase but no weak phase between the pairs of amplitudes this would mean only parity
violation and not CP violation 12. Alternatively, if there is a different weak phase but
no strong phase between the pairs of amplitudes, this truly means CP violation.

This idea is illustrated in Eq. 2.111 where φi , j and δi , j are weak and strong phases
of the helicity amplitudes Ai ,A j , respectively, i.e. Ai , j = |A |e iφi , j e iδi , j

Im(Ai A
∗
j ) = |Ai ||A j |

sin
(
φi −φ j

)
cos

(
δi −δ j

)︸ ︷︷ ︸
CP violation

+cos
(
φi −φ j

)
sin

(
δi −δ j

)︸ ︷︷ ︸
parity violation

 . (2.111)

Since δi = δ j is true for any i , j , any terms in the angular distribution proportional
to Im(Ai A

∗
j ) are therefore truly CP-violating.

11In Tab. 2.5, the transversity basis is used for the amplitudes, i.e. A||,⊥(,T ) = (A+(,T ) ±A−(,T ))/
p

2
12Alternatively, this scenario can be referred to as fake CP-violation
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In order to distinguish between parity- and CP violation, the same angular term
must be compared in the decay and the CP-conjugated decay, i.e. in B 0 → D∗−µ+νµ
and B 0 → D∗+µ−νµ decays. When going from decay to CP conjugated decay, the
charge conjugation flips the sign of the weak phase and the parity conjugation flips
the sign of the azimuthal angle χ. Therefore, for CP-odd processes the sign of the
angular term stays the same while for parity odd processes, the sign of the angular
term changes.

As discussed previously, in B 0 → D∗−ℓ+νℓ decays there is only one B 0 → D∗−

hadronic transition and all amplitudes must have the same strong phase. There-
fore, the parity violation must be zero in these decays. In practice, this can serve as a
good consistency check that is independent of NP.

In Tab. 2.5 it is seen that the CP-violating terms are sensitive to different NP cou-
plings. In particular, two of the angular functions are sensitive to the imaginary part
of the right-handed vector coupling Im(gR ) while only one term is sensitive to the
imaginary part of the product of the pseudoscalar and tensor couplings Im(gP g∗

T ).
Therefore, a measurement of these angular terms will give information on these spe-
cific NP couplings. A discussion on which NP models are excluded and which are
favored if either of gR or gP g∗

T is measured to be nonzero is given in [2].
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3 The LHCb detector at the LHC

The work presented in this thesis is based on data from proton-proton collisions
collected by the LHCb experiment at the LHC in Run 2, specifically during the 2016-
2018 period.

The LHC accelerator complex at CERN and an overview of the four main experi-
ments that collect the proton-proton colission data is given in Sec. 3.1. The main
objective of the LHCb detector is to study the decays of hadrons containing b and c
quarks. In order to address the challenges of these decays, the LHCb detector makes
use of multiple detection systems. The vertexing and tracking system has the role to
reconstruct the trajectories of charged particles and to reconstruct their momentum
using the curvature of the trajectory. The tracking system and its performance are
discussed in Sec. 3.2.1. A particle identification (PID) system is used at LHCb to
efficiently distinguish between the different final state particles such as kaons, pions
and muons. The PID system and its performance are discussed in Sec. 3.2.2. Finally, a
trigger system is needed in order to reduce the collision rate to a lower rate that can
be saved on disk while rejecting background events and saving only interesting events.
The trigger system is discussed in Sec. 3.2.3.

3.1 The Large Hadron Collider
The Large Hadron Collider (LHC) [90] is the largest particle accelerator and collider
ever built, installed in a tunnel with a circumference of approximately 27 km. It is
located about 100m underground near Geneva, Switzerland and it is operated by the
European Organization for Nuclear Research (CERN). The tunnel was previously built
to host the Large Electron-Positron (LEP) collider which ran from 1989 to 2000 and
which is, to date, the most powerful lepton accelerator ever built. In the early 2000’s,
the LEP was dismantled such that the construction of the LHC could begin.

The CERN accelerators complex is shown in Fig. 3.1, where the LHC is the last
acceleration step. Protons are extracted from hydrogen gas in which the electrons are
removed from the hydrogen atoms by means of an electric field. The protons are first
sent to the LINAC2 linear accelerator and accelerated to 50 MeV. They are then sent to
a series of three circular accelerators of increasing size. Firstly, the protons are injected
in the Proton Synchrotron Booster (PSB), which consists of four superimposed rings
of radius 25 m, where the they are accelerated to 1.4 GeV. They then enter the Proton
Synchrotron (PS) with a circumference of 628 m, where the protons are accelerated
to 25 GeV and finally the Super Proton Synchrotron (SPS) with a circumference of
7 km, where the protons reach 450 GeV. Only at this point the protons are injected
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into the LHC, where they are further accelerated in two beampipes that circulate in
opposite directions. The heavy ions take a slightly different route. They are produced
by electron cyclotron resonance, they are sent first to the LINAC3 linear accelerator,
then to the Low Energy Ion Ring (LEIR). From there, they are injected in the PS along
with the protons, following the same chain to the LHC.

Figure 3.1: Schematic view of the CERN accelerator complex as of 2019 [91]

The LHC is a two-ring hadron accelerator where the proton (or heavy ion) beams
are accelerated in opposite directions in the two rings. It consists of 8 arcs of about
2.8 km and 8 straight segments of 500 m. The beams are accelerated by means of
radio-frequency cavities and are curved at the 8 arcs by 1232 superconducting dipole
magnets, each providing a strong magnetic field of up to 8.3 T. A very high intensity
current is needed to reach this magnetic field, therefore the magnets are made out of
superconducting material (NbTi) that needs to be cooled at 1.9 K. This is achieved via
a liquid helium cryogenic system. In order to have the protons focused in a beam and
reduce the transverse beam size, 392 quadrupole magnets are used.

The LHC beams are composed of up to 2808 bunches per ring with ∼ 1011 protons
per bunch. The period of time of about 20h between the beam injection and beam
dump is called fill. The proton bunches cross at 40 MHz, corresponding to a col-
lision each 25 ns. When the two beams cross, the protons in bunches collide and
convert their kinetic energy into massive particles. The beams are collided at four
different points along the LHC ring and where experiments are installed to study the
results of the collisions. The four main experiments at the LHC have different physics
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programmes:

• ATLAS: A Toroidal LHC Apparatus [92] is one of the two general purpose de-
tectors and the largest at the LHC. It has a cylindrical shape, covering the full
4π solid angle around the beampipe. The detector measures the momentum
of particles via a strong magnetic field produced by a toroidal magnet config-
uration, hence its name. Its physics programme includes SM studies such as
Higgs boson, W± and Z bosons, top and bottom quarks as well as Beyond the
Standard Model (BSM) physics such as suppersymmetry, dark matter candidates
and long-lived particles. One of the most important goals of ATLAS was to study
the Higgs boson, leading to its famous discovery in 2012 [18].

• CMS: Compact Muon Solenoid [93] is the second general purpose detector at
the LHC with a physics programme similar to ATLAS. Its geometry is the same as
ATLAS, while the main difference is that the magnetic field at CMS is produced
by a superconducting solenoidal magnet. The magnetic field is stronger than the
one at ATLAS, allowing for better momentum resolution. Together with ATLAS,
CMS shared the discovery of the Higgs boson in 2012 [19].

• ALICE: A Large Ion Collider Experiment [94] is the LHC experiment dedicated to
the study of ultrarelativistc heavy ion collisions. The aim of this experiment is to
study the strong interaction by studying Quark-Gluon Plasma (QGP), a special
state of matter that can offer information about the early Universe.

• LHCb: Large Hadron Collider beauty [4] is the experiment dedicated to fla-
vor physics. It is designed to study b-hadron and c-hadron decays. It will be
described in detail in the following section.

The performance of the LHC is expressed in terms of luminosity. Luminosity links
the number (N) of events of a certain process with the cross-section of the process (σ)
as shown in Eq. 3.1, where L (t ) is the instantaneous luminosity.

d N

d t
=L (t )σ. (3.1)

The instantaneous luminosity describes the number of collisions per unit time that
the LHC can achieve and is given as

L = n2Nb f γ

4πσx y
F, (3.2)

where n is the number of protons in a bunch, Nb is the number of bunches, f
is the revolution frequency of the proton bunches, γ is the relativistic factor, F is
a geometrical factor that accounts for the beam crossing angle, σx y is the size of a
bunch in the transverse X Y plane, which can be written as σx y = εβ, where ε is the
normalized transverse beam emittance and β is the beta function. From Eq. 3.2 we
see that luminosity is inversely proportional with the transverse beam size σx y , such
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that the highest luminosity occurs for the minimum value of β which is denoted by
β∗. Minimization of the β function is achieved by a special magnet at the interaction
point, called low-β triplet. The nominal instantaneous luminosity of the LHC at the
beggining of each fill is L = 1034 cm−2s−1. The number of collisions recorded at each
experiment at the LHC is given by the integrated luminosity Li nt =

∫
L (t )d t .

The instantaneous luminosity at ATLAS and CMS compared with the one at LHCb
is shown in Fig. 3.2. ATLAS and CMS operate at the maximum luminosity of 1034

cm−2s−1 delivered by the LHC, i.e. the beams are squeezed as much as possible are
collided head-on. As a consequence, the number of proton interactions (PVs) per
bunch crossing is around 10-100. That is because ATLAS and CMS study heavier
particles with large transverse momentum decay products and lower production
cross-sections, and in order to deal with the very busy particle environment, very tight
trigger selections are employed. Instead, at LHCb, the luminosity is artificially limited
to 4 × 1032 cm−2s−1 in order to have only 1-2 proton interactions (PVs) per bunch
crossing. This is because a larger number of PVs would be difficult to reconstruct
and the performance of the detector would be degraded by the large particle rates.
Therefore, at LHCb the beams are less focused and are spatially separated at the
beggining of the fill, such that they do not collide head-on. Over the fill duration,
as the number of protons in the beams decreases, the spatial separation of the two
beams is constantly adjusted such that the instantaneuous luminosity is kept constant
within 5% [4]. This procedure, illustrated in Fig. 3.2, is called luminosity leveling.

Figure 3.2: Instantaneous luminosity compared for ATLAS, CMS and LHCb during
one fill. The luminosity at LHCb is kept approximately constant for the
duration of the fill. [4]

The LHC ran during several periods of time with long shutdowns between the
data-taking periods. The first data-taking period is called Run 1, which took place
between 2010-2012. The center-of-mass energy (

p
s) during Run 1 was 7 TeV for 2010

and 2011, and 8 TeV for 2012. After Run 1, a shutdown called Long Shutdown 1(LS1)
between 2013-2015 took place in order to upgrade the detectors and the accelerator.
The second period of data-taking is called Run 2 and it lasted between 2015-2018
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with the center-of-mass energy increased to 13 TeV. After 2018, another shutdown
called Long Shutdown 2 (LS2) took place until 2022 in order to further upgrade the
LHC experiments and increase the centre-of-mass energy to 14 TeV. The integrated
luminosities recorded at ATLAS, CMS and LHCb experiments during Run 1 and Run
2, by year, are given in Tab. 3.1. The integrated luminosities recorded at LHCb are
significantly lower than ATLAS and CMS.

Integrated luminosity (fb−1)
Year

p
(s) (TeV) ATLAS CMS LHCb

2010 7 0.0450 0.0415 0.0377
2011 7 5.08 5.55 1.11
2012 8 21.3 21.8 2.08
2015 13 3.9 3.87 0.328
2016 13 35.6 38.3 1.67
2017 13 46.9 45.0 1.71
2018 13 60.6 63.7 2.19

Table 3.1: Center-of-mass energy
p

s and integrated luminosity recorded during the
several years of data-taking in Run 1 and Run 2 at ATLAS, CMS and LHCb.
[95–97]

3.2 The LHCb experiment
The LHCb detector was designed to study primarily decays of particles containing b-
quarks. Before discussing the LHCb detector and its features, it is useful to understand
how b-quarks are produced in particle colliders. There are two types of accelerators
that can produce large numbers of b-quarks: electron-positron (e−e+) colliders, also
called B Factories, and proton-proton (pp) colliders.

In the B Factories, electrons are collided with positrons at a centre-of-mass energy
of 10.58 GeV, the mass of the Υ(4S) resonance. This resonance decays exclusively to
bb (B 0B 0 or B+B−) pairs, making it very suitable to study decays of B mesons. The big
advantages of the B Factories are a high luminosity and a very low amount of physics
backgrounds due to the nature of the collided particles, i.e. e− and e+ are elementary
particles. The drawback is the low bb production cross-section of σ(e+e− →Υ(4S)) ≈
1.1 nb [98]. Another limitation is the centre-of-mass energy that can be achieved
with a e−e+ collider, due to photon radiation by the light charged particle beams. In
this type of colliders, the b-quarks are produced isotropically such that the detectors
have a full solid angle geometry. The B Factories were the Belle experiment [99] at the
KEKB accelerator located in Japan which took collision data between 1999-2010 and
the BaBar [98]experiment at the PEP-II accelerator at SLAC in the United States. The
Belle II experiment [100], the succesor of Belle, installed at the SuperKEKB upgraded
accelerator, has been running and collecting collision data since 2019.
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In pp colliders, such as the LHC, the cross section for bb production is about 105

larger than at B Factories. That is because the cross section increases linearly withp
s. The σ(pp → Hb X ) cross section, where Hb is a hadron containing a b-quark, as

measured by the LHCb experiment is (72±0.3±6.8) µb for
p

s = 7 TeV and (144±1±21)
for

p
s = 13 TeV [101]. Due to the larger cross-section, despite the larger luminosity at

the B Factories, more bb pairs are produced at LHCb, about 1012 pairs in one year of
data taking. The main production mechanisms of bb pairs in pp collisions are called
gluon-gluon fusion (g g → bb) and quark-quark fusion (qq → bb). The Feynman
diagrams of these processes are shown in Fig. 3.3.

Figure 3.3: Feynman diagrams for the gluon-gluon (left) and quark-quark (right) fusion
processes

After they are produced, the b-quarks undergo a process called hadronization,
i.e. the formation of hadrons out of quarks and gluons. In comparison with the
B Factories, due to the larger energy of the bb pairs at the LHC, b-hadrons with larger
masses than the B mesons (B 0,B±) can be produced, such as B+

c mesons orΛ0
b baryons.

However, due to the composite nature of the protons, many particles are produced in
the collisions, giving rise to much higher amounts of backgrounds at LHCb than at
the B Factories.

The dominant bb production mechanisms in pp collisions give rise to bb quark
pairs that are heavily boosted along the LHC beamline in the same forward or back-
ward cone, i.e. the two b quarks are produced at small angles with respect to the beam
axis. The cross-section of bb production is shown in Fig. 3.4 as a function of the beam
axis angles and, equivalently, as a function of the pseudorapidities. Pseudorapidity is
a quantity commonly used in particle physics to describe the angle of a particle with
respect to the beam axis and is defined as:

η= -ln(tan
θ

2
). (3.3)

As seen from Eq. 3.3, at large η, particles are very close to the beam axis, i.e. θ = 0o ,
while for small η particles are produced almost perpendicular to the beam axis, i.e.
θ = 90◦.
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Figure 3.4: Left: simulated bb production cross-section as a function of beam direc-
tion for

p
s = 14 TeV. Most of the bb pairs are produced at θ1 = θ2 = 0 and

θ1 = θ2 = π, where θ1 and θ2 are the angles with respect to the beam axis.
The acceptance of the LHCb detector is shown in red. Right: simulated bb
production cross-section as a function of the pseudorapidity η for

p
s =

14 TeV. The region indicated by the yellow square is the CMS and ATLAS
acceptance while the region indicated by the red square is the LHCb accep-
tance [102].

It is for this reason that LHCb detector was designed to have a forward geometry,
namely it has a forward conical shape with the apex at the interaction point. A trans-
verse view of the LHCb detector is shown in Fig. 3.5, where the coordinate system
is defined such that the origin is the interaction point, the z-axis is along the beam
direction and the y-axis is the vertical axis. LHCb is a single-arm forward spectrometer
that covers the angular acceptance of 10-250 mrad in the x − z plane and 10-300 mrad
in the y − z plane. This is equivalent to a pseudorapidity coverage of f 2 < η< 5. While
LHCb only has about 4% angular acceptace, and does not have full angular coverage
like ATLAS, CMS or the B Factories, about 25 % of the bb pairs fall into the acceptance
of the detector [102].

The main purpose of the LHCb detector is to study b- and c-hadron decays. During
the pp collisions, bb and cc quark pairs are produced and they immediately hadronize,
forming bound states such as b- and c- mesons and baryons. The point in space where
the proton beams interacted and produced the b-hadron is called primary vertex (PV).
The b-hadrons typically have a lifetime of the order of ∼ 1 ps so they travel a few
mm before decaying into other particles. The point where the b-hadron decays is
called secondary vertex (SV). The b-hadron is then reconstructed by its charged or
neutral decay products which can be either stable or unstable. In LHCb jargon, stable
particles are the ones that can travel through most or all of the detector, while the
unstable particles are the ones that decay before crossing the detector and need to
be reconstructed too from their decay products. Some examples of stable particles at
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Figure 3.5: Layout of the LHCb detector in the y − z plane [4]

LHCb are muons (µ±), charged kaons (K ±) and charged pions (π±). Neutrinos (ν) are
not directly detectable at LHCb.

In order to address the challenges of b-hadron decays, the LHCb detector must
meet certain requirements:

• Since b-hadrons have decay vertices displaced by a few mm from the PV, LHCb
must be able to detect these vertices and distinguish between PVs and SVs. As
such, a very precise vertexing system is needed.

• The momentum of charged particles must be measured very precisely in order
to obtain an accurate invariant mass of the b-hadron. This allows to distinguish
between b-hadron decays and other decays and thus reduce the combinatorics.
It also helps to distinguish between decays of b-hadrons with similar masses. A
precise tracking system with good momentum resolution is needed.

• In order to study the wide range of b-hadron decays and to distinguish between
different decays with the same topology, LHCb must be able to identify very well
different particles such as muons, kaons and pions and distinguish between. An
excellent particle identification system is needed.

• A good trigger system is needed to cope with the large instantaneous luminosity
in order to select the signal events in an efficient manner while rejecting the
background and keeping the data within a reasonable size.
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The LHCb detector is composed of many individual subdetectors and components,
as seen in Fig. 3.5. A brief summary of the subdetectors roughly following the z-axis
is as follows. At the origin (z = 0), the VErtex LOcator (VELO) is installed around the
interaction point. Its job is to measure very precisely and to distinguish between the
3D positions of primary vertices and displaced (secondary) vertices. A magnet is used
to curve the trajectories of charged particles in order to determine their momentum.
The other tracking stations are the Tracker Turicensis (TT) and the T1-T3 trackers,
placed before and after the magnet, respectively. There are two detectors used for
charged hadron identification, namely the RICH1 and RICH2, placed before and after
the magnet. Next, there is the Electromagnetic CALorimeter (ECAL) and Hadronic
CALorimeter (HCAL) which help identify and measure the energy of both charged
and neutral particles. Finally, there are 5 muon stations (M1-M5) used to measure the
muons, where the M1 station is placed before the calorimeters.

All LHCb components can be organized into three main systems: a tracking and ver-
texing system, a particle identification system and a trigger system. Each component
and its features, as in Run 2, will be presented individually in detail in the following
sections.

3.2.1 The vertexing and tracking system
Many of the b-hadrons of interest at LHCb decay to final states with multiple charged
particles. The purpose of the tracking system is to reconstruct the trajectories of
charged particles by using the information that the particles leave in the tracking
detectors, called hits. It consists of the VELO, the TT and the T1-T3 tracking stations.
A dipole magnet is also placed in the detector in addition to the tracking stations. The
magnet has the role to deflect the charged particles and curve their trajectories. The
trajectory is reconstructed by connecting particle hits in the different tracking stations.
The curvature of the trajectory is then used to infer the momentum of the charged
particle.

Vertex Locator

Displaced vertices are a distinctive feature of b- and c-hadron decays. The purpose
of the VELO subdetector [103, 104] is to measure track coordinates close to the inter-
action point. These tracks are then used to locate and distinguish between primary
vertices and displaced vertices, i.e. production and decay vertices of b- and c-hadrons
and to provide a measurement of their lifetimes. An accurate knowledge of the 3D
coordinates of the primary and secondary vertices is important to LHCb analyses and
is essential in the analysis presented in this thesis. The separation between PVs and
SVs is done based on tracks Impact Parameter (IP), which is the minimum distance
between the track and a vertex, here the PV.

The VELO consists of a series of parallel silicon modules situated along and perpen-
dicular to the beam axis and surrounding the interaction region, as shown in the top
part of Fig. 3.6. The silicon modules are placed only 7 mm away from the beams. Since
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this distance is smaller than the beam injection requirements, the VELO modules are
designed in two retractable halves which can be opened during each beam injection
and can be closed when the beams are stable, as shown in the bottom part of Fig. 3.6.
In this way, radiation damage that would be caused by the unfocused beam is avoided.
There is a small overlap between the two halves when VELO is closed. The two halves
of the VELO are called A and C side. Because of this movable system, the VELO halves
are subject to alignment imprecisions of up to 10 µm [104]. The VELO alignment
precision is very important for the measurement performed in this analysis.

Figure 3.6: Cross section of the VELO modules in the x − z plane (top) and x − y plane
(bottom) [4]

Each half of the VELO is made of 21 silicon modules, where each module consists
of two semicircular silicon strip sensors, called R andΦ sensors, which measure the
radial distance from the beam and the azimuthal angle around the beam, respectively.
The third coordinate is determined by knowing the position of each module on the z
axis. The sensors are made of silicon microstrips of 300 µm thickness. An illustration
of the sensors is given in Fig. 3.7 (left). The sensors have an outer radius of 41.9 mm.
In the case of the R sensors, the silicon strips are arranged concentrically with the
center given by the LHC beam, and the pitch of the strip varies between 38 µm and
102 µm along the radius. Each strip is subdivided into four 45o regions. In the case
of theΦ sensor which measures the coordinate orthogonal to the R sensor, the strips
are arranged radially, and are split into an inner and outer region. The outer region
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starts at a radius of 17.25 mm and its pitch is set to be roughly half (39.3 µm) that of
the inner region (78.3 µm), which ends at the same radius. Besides the arrangement of
the strips, the technology used for the two sensors is the same, and it was chosen due
to its radiation tolerance. The R andΦ sensors are placed in a back-to-back manner
on the modules, as shown in Fig. 3.7 (right).

Figure 3.7: Left: VELO R andΦ sensor geometry. The silicon strip arrangement on R
andΦ sensors is illustrated [4]. Right:

Figure 3.8: Primary vertex resolution on the x (left) and z (right) coordinate as a func-
tion of the track multiplicity [105]

The VELO is kept in a vacuum environment and it is enveloped in thin aluminium
foil in order to minimize the material that particles travel through and protect the vac-
uum of the VELO container from the vacuum of the LHC. Additionally, the aluminum
foil, also called RF foil, is used to protect the VELO sensors from electromagnetic
radiation coming from the beam. Since it is so close to the interaction region, the
VELO is subject to a high radiation environment. For this reason, a special CO2 cooling
system maintains the sensors between -10◦ C and 0◦ C.
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Figure 3.9: Resolution on the x (left) and y (right) coordinates of the IP as a function
of the inverse transverse momentum [105]

The performance of the VELO can be expressed in terms of vertexing and IP reso-
lution. For 2011 data, the resolution for a 25-track vertex was found to be 13 µm in
the transverse plane and 71 µm along the z-axis. This resolution is dependent on the
number of tracks in the vertex and it degrades as the number of tracks decreases. The
resolution on the x and z coordinates of the PV can be seen in the plots shown in Fig.
3.8. However, the resolution is much better then the typical flight distance of b- and
c-hadrons of about 10 mm, meaning that the VELO can achieve a good separation
between PVs and SVs. The track IP can be measured with a precision of up to 15 µm
for high transverse momentum tracks and it degrades as the transverse momentum
decreases.The resolution on the x and y coordinates of the IP of a track is shown in
the plots in Fig. 3.9.

The magnet

A dipole magnet [106] is used at LHCb to curve charged particles trajectories in order
to measure their curvature radius and hence their momentum. The magnet is made
out of two trapezoidal coils bent at 45◦ placed inside an iron yoke which weighs 1500
tons, while the coils together weigh 54 tons. A perspective view of the magnet is shown
in Fig. 3.10 (left). The magnet is also referred to as a warm magnet due to the fact that
it is not superconducting. The design of the magnet and its position at about 5 m from
the interaction point was chosen in order to have a magnetic field inside the RICH
stations of less than 2 mT and the largest possible field in the region between VELO
and the last tracking station (T3). The strength of the magnetic field along the z-axis
is shown in Fig. 3.10 (right). The magnet provides an integrated magnetic field of∫

Bdl = 4 Tm. The magnet bends charged particles trajectories in the horizontal (x−z)
plane. At LHCb, the tracking stations are required to have a momentum resolution on
charged particle tracks of 0.4% for momenta up to 200 GeV/c. In order to achieve this
resolution, the strength of the magnetic field is known with a precision of a few times
10−4 Tm and the position of the field peak with a precision of a few mm [107].

The magnet polarity is switched regularly such that at the end of each data-taking
period, equal amounts of data with MagUp and MagDown configurations are collected
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[108]. This is to ensure that any systematic asymmetric effects of the magnet polarity
are cancelled out and it is especially important for CP violation analyses.

Figure 3.10: Left: Perspective view of the dipole magnet [4]. Right: Scan of the mag-
netic field along the z-axis. The positions along z of the VELO, TT and
T1-T3 stations are also shown. The integrated magnetic field is 4 Tm.

Tracking stations

There are four main tracking stations at LHCb, the TT and the T1-T3 stations [109,110].
The TT is separated from the T1-T3 and it is located before the magnet. A layout of the
tracking stations is shown in Fig. 3.11.

Figure 3.11: Layout of the tracking system [111]

The TT measures 140 cm in width and 120 cm in height and is covered entirely
by silicon microstrip detectors. It is situated around the beampipe, and it covers
the full angular acceptance of LHCb. The total active area of the TT is about 8.4 m2.
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The particles that travel through are detected by creating electron-hole pairs in the
silicon and the electric signal which is generated is read out by the electronics. The
TT consists of four detection layers configured in a x −u − v −x geometry, where the
two layers in the middle (u and v) are tilted at a stereo angle of ±5o with respect to
the vertical. This arrangement allows the determination of the 3D coordinates of the
track. The four layers are grouped in two pairs, TTa (x and u) and TTb (v and x), as
seen in Fig. 3.12 (left), separated by a gap of 30 cm. Each of the four layers is covered
with sensors that are 500 µm thick, 9.64 cm wide and 9.44 cm long. The sensors have a
strip pitch of 183 µm which achieves a resolution on the track reconstruction of 50
µm. The main role of the TT is to reconstruct trajectories of charged particles with low
momentum, i.e. particles whose trajectories are not bent enough by the magnet and
would otherwise escape the acceptance of the other tracking stations.

Figure 3.12: Left: Layout of the four layers of the TT station. [112]. Right: Overview
of a tracking station. The IT is shown in orange while the OT is shown in
blue [109]

The T1-T3 stations, located after the magnet, consist of two sections: the Inner
Tracker (IT) and the Outer Tracker (OT). A front view of a tracking station showing the
IT and OT is given in Fig. 3.12 (right). The tracking stations are about 600 cm wide and
450 cm tall.
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Figure 3.13: Left: Layout of an x (stereo) layer of one IT station is shown on the top
(bottom) [109]. Right: Layout of the OT [113]

The IT covers the area around the beampipe, having a cross shape surface of 120 ×
40 cm2. It consists of four detection layers, with the same x −u −v −x configuration
as for the TT, where the two middle layers are tilted by ±5◦ with respect to the vertical.
The total active area of the IT is about 4.0 m2. The layers are covered by silicon strip
sensors 7.6 cm wide, 11 cm long and 320 µm thick with a strip pitch of 198 µm, giving
a similar 50µm resolution as for the TT. The layout of the first layer and a stereo layer
of the IT is shown in Fig. 3.13 (left). Since they have the same sensors of silicon
technology, the TT and IT are referred to as the Silicon Tracker (ST). Since the TT and
IT cover the area close to the beampipe, the silicon technology was chosen to deal
with the high hit density and to provide the required spatial resolution.

The OT covers the rest of the 600×450 cm2 tracking station surface. As the hit density
decreases in areas farther away from the beampipe, the constraints for the spatial
resolution are not so stringent. Because of this, and the fact that silicon technology is
more expensive, the straw drift tube technology was chosen for the OT.

The tubes have an inner diameter of 5 mm and a wall thickness of 75 µm with a
tube pitch in a layer of 5.25 mm. The distance between the two layer planes is 5.5
mm. Each station consists of four modules with the same x −u − v −x configuration
as the IT and TT, where the u and v layers are tilted by ±5◦ with respect to the vertical.
Each module consists of two layers of 64 straw tubes. A schematic of the OT stations
is given in Fig. 3.13 (right). The straw tubes are filled with a mixture of Ar (70 %) and
CO2 (30%). Particle that cross the tubes ionize the gas inside them and the liberated
electrons are collected by the metallic wire generating an electric pulse that is then
read out. The drift time of the gas combination is about 50 ns which gives a spatial
resolution of about 200 µm.
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Track reconstruction

The distribution of the magnetic field within the LHCb experiment is such that the
tracks are approximately straight lines in the VELO, TT and tracking stations, i.e. the
magnetic field is weak both upstream and downstream of the magnet, where the
tracking detectors are located. Different types of tracks are classified based on the
tracking detectors they hit along their trajectories. An overview of different track
categories at LHCb is shown in Fig. 3.14.

Figure 3.14: Different track types reconstructed at LHCb [114]

• Long Tracks are tracks that leave hits in all tracking detectors and thus have the
best momentum resolution. For this reason, in most LHCb analyses, and in this
analysis, long tracks are used.

• Upstream Tracks are tracks that leave hits in the VELO and TT station. These
are tracks with low momentum that have their trajectories significantly bent by
the magnet and thus do not reach the other tracking stations.

• Downstream Tracks are tracks that have hits only in the TT and T1-T3 stations.
These are tracks of decay products of particles that decay outside the VELO, such
as K 0

S and Λ.

• T Tracks are tracks with hits only in the T1-T3 stations. They are typically pro-
duced in secondary interactions.

• VELO Tracks are tracks that leave hits in the VELO only. They are useful for
primary vertices reconstruction

The reconstruction of long tracks is performed by two algorithms, known as forward
tracking and track matching [115]. In the case of forward tracking, the algorithms
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starts by creating VELO track segments, also known as seeds, and combines them with
hits in the T stations. The algorithm uses one VELO track and one hit in a T station
to form a trajectory, fix the momentum of the track and project this trajectory in the
other T stations. Hits in the T stations that are consistent with the projection are
included in the final long track. Additionally, in order to increase the momentum
resolution of the track, hits in the TT that are consistent with the projected track are
included. The track matching algorithm starts again with VELO seeds, but instead
combines them with T track segments. The T tracks are found by a separate algorithm.
Hits in the TT consistent with the projected trajectory are added in the same way. A
Kalman filter [116, 117] is run on each track to account for multiple scattering and
energy losses to the detector and thus improve the precision on the momentum of
the track. The quality of the track is determined by means of a χ2 test which helps to
remove fake tracks, also known as ghost tracks. Ghost tracks do not correspond to
real particle trajectories and appear due to incorrect matching of VELO and T tracks.
A machine learning algorithm is used to reject a large fraction of ghost tracks while
keeping 99% of real tracks [118].

The final relative momentum resolution on long tracks varies between 0.4% and
1.1%, depending on the track momentum, as shown in Fig. 3.15 (left). The track
reconstruction efficiency at LHCb is determined using data driven methods, such as
the tag and probe method which uses J/ψ→µ+µ− decays [115]. A comparison of the
track reconstruction efficiency between Run 1 and Run 2 is given in Fig. 3.15 (right).
The efficiency exceeds 95% in the region 5 GeV/c < p < 200 GeV/c.

Figure 3.15: Left: Relative momentum resolution as function of the momentum of the
track [119] Right: Track reconstruction efficiency compared between Run
1 and Run 2 [120]

3.2.2 The particle identification system
Since the b- and c-hadron decays studied at LHCb decay into a variety of both charged
and neutral final state stable particles, an efficient particle identification (PID) system
is needed to distinguish between the different particles and perform the precision
studies that LHCb is designed for.

The PID system at LHCb allows to distinguish between charged hadrons such as
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pions, kaons and protons, charged leptons, i.e. muons and electrons as well as neutral
particles such as neutral pions, neutral kaons and photons.

The PID system at LHCb consists of the Ring Imaging Cherenkov (RICH) detectors
which identify charged hadrons, the calorimeters which identify and measure the en-
ergy of electrons, photons and neutral hadrons and the muon stations which measure
the momentum of muons.

RICH detectors

A pair of RICH (RICH1 and RICH2) detectors are used in LHCb to separate the charged
hadrons, pions, kaons and protons over the full momentum range [121]. The RICH
detectors provide particle identification based on Cherenkov light. This light is emitted
when a particle travels through a medium with a speed greater than the speed of light
in that medium. The Cherenkov light is emitted in a cone with the direction given by
the angle θ according to the following equation:

cosθ = 1

nβ
(3.4)

Here n is the refractive index of the medium and β= v/c, where v is the speed of
the particle. Cherenkov light is emitted when v > c/n. In this way, by measuring the
angle θ the speed of the particle is inferred. The identification of a particle is achieved
by knowing its mass. This is done by combining the information of its momentum
from the tracking system with the velocity measured by the RICH according to the
following equation:

m = p

βγc
= pn cosθ

cγ
, (3.5)

where γ is the relativistic factor. In both RICH detectors, a system of spherical and
flat mirrors are used to to reflect the Cherenkov light out of the RICH acceptance.
Hybrid Photon Detectors (HPD) are then used to detect the Cherenkov photons in
the wavelength range of 200-600 nm. Since HPDs operate efficiently only in magnetic
fields of up 3 mT, they are protected by a MuMetal cylinder which allows the HPDs to
operate in magnetic fields of up to 50 mT [4].
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Figure 3.16: Left: Side view of the RICH1 detector [4] Right: Top view of the RICH2
detector

The RICH1 detector is placed upstream of the magnet and covers the full LHCb
acceptance. Its role is to identify particles at larger polar angles with lower momenta
and thus covers the low momentum range at about 1-60 GeV/c. The RICH1 detector
layout is given in in Fig. 3.16 (left). The radiative medium is aerogel and flurobutane
gas (C4F10). In Run 2, the aerogel was removed [122]. The distribution of Cherenkov
angles for different particles as measured by the C4F10 radiator in RICH1 is shown in
Fig. 3.17.

Figure 3.17: Cherenkov angles from data for different particles as function of the track
momentum for the RICH1 radiator of C4F10 gas [119]. At high momentum
the separation of particle identity is challenging.

The RICH2 detector is located downstream of the magnet and it has a reduced
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angular acceptance of about ±120 mrad horizontally and about ±100 mrad vertically.
This is because RICH2 is designed to identify particles with larger momentum, from
15 GeV/c up to 100 GeV/c, therefore it covers the region where particles with a harder
momentum spectrum are expected. A schematic of the RICH2 detector is shown in
Fig. 3.16 (right). The RICH2 uses a C F4 gas radiator which has a smaller refractive
index than the C4F10 radiator of RICH1, meaning that particles need to have larger
speed in order to produce Cherenkov light.

The Calorimeters

The main goal of the calorimeter system [123] is to provide identification for electrons,
photons and hadrons and to measure their energy as well as their position. The energy
information needs to be provided very fast, in a time window of 4 µs, as it is used in the
trigger system. The other essential function of the calorimeter system is to measure
photons as precisely as possible in order to study b-hadron decays that contain prompt
photons or neutral pions which decay to two photons. The calorimeter system is the
only system at LHCb capable of detecting photons.

The calorimeter system consists of two main components: the ECAL followed by
the HCAL. The ECAL has the role to detect and measure the energy of particles that
interact electromagnetically, i.e. electrons and photons, while the HCAL has the role
to detect and measure the energy of particles that interact hadronically (weakly or
strongly). Both calorimeters consist of alternating layers of a heavy material and a
scintillating material, thus the principle of particle detection is the same: the passage
of a charged particle through the heavy material produces particle showers that in
turn produce light in the scintillating material. The amount of light produced by
scintillations is measured and it is proportional to the energy of the incident particle.

Upstream of the ECAL, the PreShower (PS) detector and the Scintillating Pad De-
tector (SPD) are placed, with the SPD being the most upstream. The SPD/PS system
consists of two planes of scintillating pads with high granularity separated by a 12
mm thick lead wall. The scintillating light is transmitted by wavelength shifting fibers
(WLS) to photomultiplier tubes (PMTs). The thickness of the wall is equivalent to
2.5X0, where X0 is the radiation length, i.e. the distance that an electron can travel
in a material before its energy is reduced by 1/e. The purpose of the SPD/PS system
is to distinguish between electrons, photons and neutral pions. An electron, being a
charged particle, will produce a signal in the SPD whereas a neutral photon will not.
This information is used in the trigger system to separate electrons from photons. Both
particles will then produce showers in the lead wall and their energy will be measured
by the ECAL. The PS helps distinguish between electrons and hadrons (such as pions)
as the hadron will not produce a shower in the lead wall, and will only interact later in
the HCAL. Together, the four components of the calorimeter system can effectively
separate electrons, photons, charged and neutral hadrons, as shown in Fig. 3.18.
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Figure 3.18: Schematic of the calorimeter system showing the four components. The
principle of distinguishing between electrons, photons and hadrons is
shown [124]

The reconstruction of electrons at LHCb is more challenging than for the other
charged particles and it requires information from both the ECAL and the tracking
system. This is due to bremsstrahlung emission, which is an effect where a fraction of
the kinetic energy of a charged particle is released as a photon when it passes close to
a nucleus. This process is inversely proportional to the mass squared of the particle
such that it is much more significant for electrons than for muons or pions. Therefore,
the emission of bremsstrahlung photons during the passage of electrons through
the detector material degrades the momentum and energy resolution of electrons
with respect to other charged particles. For this reason, special algorithms have
been implemented to measure the electrons momentum and improve the resolution
[125, 126].

The ECAL consists of 66 layers of 2 mm thick lead absorber and 4 mm think scintil-
lator tiles arranged in a so-called shashlik structure. The total thickness of the ECAL is
42 cm. This is equivalent to 25X0 and is enough to contain the full high energy electro-
magnetic shower. It covers an area of 7.6×6.2 m2 and covers the angular acceptance of
300 (250) mrad in the horizontal (vertical) plane. The light produced in the scintillator
tiles is transmitted by WLS fibers to PMTs in the same way as for the SPD/PS. The
resolution of the ECAL is parametrised by [127]:

σ(E)

E
= (9.0±0.5)%p

E
⊕ (0.8±0.2)%⊕ 0.003

E sinθ
, (3.6)

where E is the particle energy (in GeV) and θ is the angle between the beam axis
and a line from the interaction point to the centre of the ECAL cell. The second term
is a constant term coming from mis-calibrations and non-linearities while the third
term is a noise term.

The HCAL consists of 6 layers of 16 mm thick iron absorber and 4 mm thick scintilla-
tor tiles arranged similarly in a shashlik structure. It has a total thickness of 1.65 m and
is equivalent to 5.6 hadronic interaction lengths. The hadronic interaction length is
the mean distance before a hadron interacts with a nucleus of the material it traverses
and is proportional to N 1/3 of the material, where N is the number of nucleons. This
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is why the material used for the HCAL is iron which has a lower atomic number than
lead. The thickness of the HCAL is not enough to capture the full hadronic showers
and thus it has a worse resolution than the ECAL. The information from the HCAL on
the hadron energy would not be accurate enough and thus it is used only for triggering
purposes, i.e. to decide on keeping an event if it is above a certain ET threshold. The
resolution of the HCAL is parametrised by [127]:

σ(E)

E
= (67±5)%p

E
⊕ (9±2)%, (3.7)

where E is the deposited energy in GeV.

Figure 3.19: Cross section of the SPD/PS and ECAL (left) and HCAL (right), showing
the calorimeter cells segmentation [127]

Since the density of particle hits changes by about 2 orders of magnitude over the
calorimeter surface, the calorimeters have variable segmentation depending on the
distance from the beam pipe. The ECAL is designed to have three regions with differ-
enct cell sizes, as shown in Fig. 3.19 (left). The cells are smaller in size in the region
closest to the beampipe, where the particle hit density is high, and have increasingly
larger sizes in the regions farther away from the beam pipe. The same segmentation
has been chosen for the SPD/PS system. Due to the dimensions of the hadronic
showers, the HCAL cells are larger than the ECAL cells and are divided in only two
regions with different cell sizes, as shown in Fig. 3.19 (right).

The muon stations

Many of the b-hadron decays studied by LHCb decay to final states containing muons,
such as the ’gold-plated’ channels B 0 → J/ψK 0

S and B 0 → J/ψφ, where J/ψ→µ+µ−, or
the very rare flavor changing neutral current decay B 0

s →µ+µ−. In the case of semilep-
tonic decays such as the one studied in this analysis, B 0→ D∗−µ+νµ, muons provide a
tag on the flavor of the initial state of the B meson. Muon identification and triggering
is therefore essential for LHCb. The muon system delivers information regarding the
transverse momentum of the muons in a 4 µs time window. This information is used
at the first level (hardware) L0 trigger to take a binary decision on saving the event.
The information from the muon system along with the calorimeters constitutes the
basis of the L0 trigger.
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Figure 3.20: Left: Side view of the muon system Right: Layout of one muon station
[128]

The muon system at LHCb consists of five muon stations [129] M1-M5, shown in
Fig. 3.20 (left). The muon stations M2-M5 are the last subdetectors along the z-axis,
downstream of the calorimeters, farthest away from the interaction point. Their
exploits the fact that muons are not affected by bremsstrahlung and do not interact
hadronically such that they are not stopped neither in the ECAL nor in the HCAL and
are the only particles able to reach the muon stations.

The inner and outer angular acceptances of the muon system are 20 (16) mrad and
306 (258) mrad in the bending (non-bending) plane respectively. They cover a total
area of 435 m2. This results in an acceptance of about 20 % for muons from inclusive
b-hadron semileptonic decays. Each of the five station is divided into four regions
R1-R4, as shown in Fig. 3.20 (right). The granularity is increased for the regions closer
to the beampipe where the occupancy is higher. This segmentation provides a similar
occupancy over the whole detector.

The M2-M5 stations are located downstream of the HCAL. Between each two consec-
utive stations, an iron absorber with a thickness of 80 cm is placed. The total thickness
of the muon system is equivalent to 20 radiation lenghts. Therefore, only muons with
a momentum greater than 6 GeV/c can reach the last muon station. The iron blocks
stop any other particles that may have traversed the calorimeters. In all four regions,
the M2-M5 stations consist of multi wire proportional chambers (MWPCs). The gas
mixture used in the MWPCs is Ar/CO2/CF4 (40:55:5 %).

The M1 station is placed upstream of the ECAL. Its role is to provide a more accurate
transverse momentum measurement which is used it the hardware trigger. Due to a
larger particle density, the inner R1 region of the M1 station uses a different detector
technology, namely triple gas electron multiplier detectors (triple-GEM) which are
filled with Ar/CO2/CF4 (45:15:40 %). The entire muon system has a total of 1380
MWPCs, which covers more than 99% of the system area. Each region of the muon
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stations is designed to have an efficiency of more than 99 % in order to have a global
hit reconstruction efficiency of 95 %. This is demonstrated in Fig. 3.21

Figure 3.21: Hit reconstruction efficiency of each of the four regions of the five muon
stations [119]

Performance of the PID system

The information provided by the PID system at LHCb is used to identify a wide range of
particles. Information from RICH, calorimeters and muon stations is used to identify
electrons, muons, protons, kaons and charged pions. Information from ECAL is used
to identify photons and neutral pions. Thus, the Cherenkov angle measured by the
RICH system, the energy deposits in the calorimeters and the hits in the muon stations
are combined into a set of PID variables that can be used offline in analyses to reject
misidentified particles.

For each particle track, a likelihood Lx is computed. This quantity reflects how
likely the particle is of species x, where x can be electron, muon, proton, kaon or pion.
Usually the logarithm of this likelihood is used, i.e. logLx . Due to the large number of
pions at LHCb, the likelihood is usually expressed as a difference log likelihood (DLL)
with respect to the pion hypothesis:

DLLx = logLx − logLπ, (3.8)

where a larger DLLx implies that the particle is more likely to be of species x.
The information from the RICH detectors provide the log likelihood of electron,

muon, proton and kaon relative to pion hypothesis. The calorimeters provide the log
likelihood of electrons relative to pions while the muon system provides the likelihood
of the (non) muon hypothesis. The likelihoods coming from all three PID subdetector
systems are added linearly to create a combined differential log likelihood (CombDLL).
This constitues the first class of PID variables at LHCb and are used at the trigger level
and in offline analyses to perform selections. In particular, in the analysis performed
in this thesis, variables such as CombDLLK and CombDLLµ are used to reject cases
where kaons or muons are misidentified as pions as well as pions misidentified as
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kaons.
The second class of PID variables use machine learning algorithms (neural networks)

to improve the likelihoods presented above. The likelihoods are combined with
information from the tracking system and other information from the PID subdetector
not used in the likelihood computation to create an improved set of PID variables.
These are known as Pr obN N variables and they provide a single probability for the
particle hypothesis [130].

The third type of PID variable is the isMuon binary variable [131], which is used to
decide whether a particle track is a muon or not. The identification of muons is based
on the hits in the muon stations and information from tracking system. Depending
on the track momentum, the isMuon decision is triggered by hits in certain muon
stations, as shown in Tab. 3.2.

Momentum range Muon stations
3 GeV/c < p < 6 GeV/c M2 and M3
6 GeV/c < p < 10 GeV/c M2 and M3 and (M4 or M5)
p > 10 GeV/c M2 and M3 and M4 and M5

Table 3.2: Muon stations needed to be hit in order to trigger isMuon [131]

The particle identification performance of the RICH system is studied using large
data samples with genuine pion, kaon and proton tracks. The data samples consist of
decays with large branching fractions such as K 0

S →π+π−,Λ→ pπ− and D∗+ → (D0 →
K −π+)π+. These decays cover the hadron tracks needed to estimate the performance
of hadron PID. The kaon identification efficiency, i.e. kaons identified as kaons over
the momentum range 2− 100 GeV/c is about 95% in Run 1 data, as shown in Fig.
3.22 (left). The pion misidentification efficiency, i.e. pions misidentified as kaons is
also shown and is on average about 10%. The plot shows the kaon ID efficiency and
pion mis-ID efficiency in two cases: where logLK − logLπ > 0 is required and where
logLK −logLπ > 5 is required. The more stringent requirement of logLK −logLπ > 5
decreases the pion mis-ID efficiency to an average of about 3% while losing only about
10% of the kaon ID efficiency [119]. This demonstrates the ability of LHCb to efficiently
separate kaons and pions.
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Figure 3.22: Left: Kaon ID efficiency and pion mis-ID efficiency as a function of the
track momentum. The two efficiencies are shown for two different re-
quirements of DLLK −DLLπ > 0 (empty dots) and DLLK −DLLπ > 5 (full
dots) Right: Pion mis-ID efficiency versus kaon ID efficiency as measured
in Run 1 as a function of track multiplicity [119]

The pion mis-ID efficiency versus the kaon ID efficiency for different numbers
of tracks in the event is shown in Fig. 3.22 (right). The PID performance is slightly
degraded with increasing track multiplicity.

The particle identification performance of the muon system is studied with the high
statistics data samples of J/ψ→ µ+µ−, Λ→ pπ− and D0 → K −π+ decays. The muon
identification (isMuon criteria) efficiency as a function of the track momentum, as well
as the proton, pion and kaon mis-ID, i..e protons, pions and kaons misidentified as
muons, efficiencies are shown in Fig. 3.23. The muon ID efficiency is, on average over
the momentum range, about 98 % while the proton, pion and kaon mis-ID efficincies
are all, on average, at about 1 %. This demonstrates the ability of LHCb to efficienctly
identify muons and separate muons from hadrons.
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Figure 3.23: Top left: Muon ID efficiency as function of the muon momentum. Top
right: Proton mis-ID efficiency as function of the proton momentum. Bot-
tom left: Pion mis-ID efficiency as function of pion momentum. Bottom
right: Kaon mis-ID efficiency as function of kaon momentum. All plots
show the efficiencies for different ranges of transverse momenta of the
tracks. [119]

3.2.3 The trigger system
The nominal bunch crossing rate at the LHC is 40 MHz, corresponding to a collision
each 25 ns. However, in practice at LHCb the collision rate visible at LHCb is about 30
MHz due to empty bunches and inelastic pp collisions. At an operating luminosity
of 2×1032 cm−2s−1 and a center-of-mass energy of 7 TeV, the visible pp interaction
have a rate of producing bb pairs of only about 100 kHz. Only 15 % of these will
produce a b-hadron that will actually fall into the detector acceptance. Furthermore,
the interesting decays studied at LHCb typically have low branching fractions. For
this reason, most of the events in a pp collision are not interesting for LHCb and thus
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saving the full 40 MHz on disk would be unnecessary. Furthermore, the 40 MHz rate
is equivalent to about 1.9 TBytes/s which would require an unreasonable amount
of space. The trigger system of LHCb [105, 132–135] has the purpose to reduce the
nominal 40 MHz of collision rate to a lower rate of a few kHz that can be saved on disk
while keeping the interesting events and rejecting background events.

The trigger system at LHCb consists of two stages, the hardware level trigger, known
as Level-0 (L0) trigger, and a software level trigger known as high level trigger (HLT).
The software trigger is further divided into HLT1 and HLT2. This trigger system reduced
the data rate from 40 MHz to 5 kHz in Run 1 (2012) and to 12.5 kHz in the whole Run
2. The trigger schemes at LHCb of 2012 and 2015 are shown in Fig. 3.24. The rest
of this section will describe the trigger conditions of Run 2. The L0 trigger has the
role to reduce the data rate from 40 MHz to 1 MHz, which is the rate at which the full
LHCb detector can be read out. The constraint on the readout rate comes from the
bandwidth and frequency of the front-end electronics operating at a µ= 1.1 visible
interactions per bunch crossing. The 1 MHz output rate of L0 is then passed to the
software trigger, where HLT1 reduces the rate to 150 kHz and HLT2 finally reduces
the rate to 12.5 kHz which is stored on disk. The trigger system consists of multiple
algorithms that are used to take the decision on whether an event is interesting or not
and to save it. These algorithms are conventionally referred to as trigger lines.

Figure 3.24: Left: Trigger scheme in Run 1. Right: Trigger scheme in Run 2 [136].
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L0 trigger

The L0 trigger is based on a system of field programmable gate arrays (FPGAs) that have
a latency of 4 µs. The L0 system uses mainly information from the two calorimeters
and muon stations which are the only subdetectors that can provide the information
fast enough. The information from these subdetectors is used in separate L0 trigger
lines which look for particles with large transverse momentum and transverse energy
as these are signatures of b-hadron decays due to their large mass.

The L0-calorimeter trigger line (L0Calo) selects events based on information from
the PS, SPD, ECAL and HCAL. The L0Calo line is divided into L0Hadron, L0Photon
and L0Electron. These lines are used to select hadrons, photons and electrons based
on their transverse energy (ET) deposited in clusters of 2×2 calorimeter cells. The
transverse energy is defined as:

ET =
4∑

i=1
Ei sinθi , (3.9)

where Ei is the energy deposited in cell i and θi is the angle between the cell i and
the beam axis. The SPD and PS allow to distinguish between hadrons, electrons and
photons. The ET thresholds for passing the L0Calo trigger line for hadrons, electrons
and photons are not the same in different data-taking periods. The thresholds of 2016
and 2017 are given in Tab. 3.3.

The L0-muon trigger line (L0Muon) selects events based on the existence of straight
line tracks in the M1-M5 muon stations and chooses pairs of muon tracks with the
largest pT in the event. The two muon trigger lines are L0Muon and L0DiMuon. The
L0Muon line selects events where either of the two tracks is above the pT threshold
and the L0DiMuon selects events with the product of the two pT above the threshold.
The pT thresholds for the L0 muon trigger lines are given in Tab. 3.3 for 2016 and 2017
years of data-taking. The thresholds were looser in 2017 due to some difficulties with
the beam injection that caused the collision rate to be lower [105].

ET/pT thresholds
L0 trigger 2016 2017 SPD hits
Hadron > 3.7 GeV > 3.46 GeV < 450
Photon > 2.78 GeV > 2.47 GeV < 450

Electron > 2.4 GeV > 2.11 GeV < 450
Muon > 1.8 GeV > 1.35 GeV < 450

DiMuon > 2.25 GeV2 > 1.69 GeV2 < 900

Table 3.3: The L0 trigger thresholds for pT and ET in 2016 and 2017 years of data-taking
in Run 2 [105]

In addition to the ET and pT thresholds, a requirement on the number of hits in
the SPD is placed in the L0 trigger in order to reject events with high occupancy in
the detector that would be difficult to process. In Run 2, this requirement was always
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that the number of SPD hits is smaller than 450. All L0 trigger lines decisions are
transferred to the L0 Decision Unit which performs a logical OR operation between
them. If the L0 trigger decision is passed then the whole detector is read out and the
event is passed further to the software trigger.

High level trigger

The first L0 trigger passes the reduced 1 MHz to the second level HLT trigger which
further reduces this rate in two steps, at the HLT1 and HLT2 levels. The HLT is im-
plemented as a software application in C++ and it runs on the event filter farm (EFF)
which consists of 1700 processors with 27000 physical cores.

Figure 3.25: HLT1 track and vertex reconstruction sequence [105]

At the HLT1 level a partial event reconstruction is performed and long tracks, i.e.
tracks that with hits in the entire tracking system, of charged particles with a pT larger
than 500 MeV/c are reconstructed. At the same time, a reconstruction of the primary
vertex is performed.

First, the hits in the VELO are combined to form a straight line which is fitted with a
simplified Kalmar filter. This VELO track is then extrapolated and hits in the TT are
matched to it to form upstream tracks. This provides an initial momentum estimate
with a precision of about 20 % which is used to reject tracks with low pT. Hits in the IT
and OT consistent with the extrapolation of a track with a pT larger than 500 MeV/c are
then added to form the long track. The long tracks are then fitted with a Kalmar filter
and fake tracks are rejected. The PV is reconstructed at the same time using the fitted
VELO tracks only. A schematic of the algorithm sequence for track reconstruction
performed in HLT1 is shown in Fig. 3.25.

Muon identification also takes place in the HLT1. Fully fitted tracks are extrapolated
to the muon stations and hits in the muon stations consistent with the extrapolation
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are searched for. The muon identification is performed by the isMuon algorithm based
on the number of hits in the different muon stations.

The HLT1 consists of a few different trigger lines which exploit the features of b-
and c-hadrons to select the events. There are two inclusive lines, which run on the
output of the whole L0 trigger, that look for events with displaced decay vertices
from the PV: a line that selects a single high pT track and a line that selects a high
pT two-track vertex. These lines are based on multivariate algorithms [137]. There
are also HLT1 muon lines used to select muons from b- and c-hadrons as well as
muons coming from W and Z boson decays. The muon lines run on the output of
the L0Muon and L0DiMuon lines. Additionally, there are calibration lines which select
D0 → K −π+ and J/ψ→µ+µ− candidates and are used for the alignment of the tracking
system and the muon system, respectively. A procedure of real time alignment and
calibration of the LHCb subdetectors, specific to Run 2, is performed in HLT1 and
it allows HLT2 to achieve a better performance on the reconstruction, similar to the
offline reconstruction performance. This is possible because the output of HLT1 is
buffered to disk and can be used for online alignment and calibration.

Figure 3.26: HLT2 track reconstruction sequence [105]

The HLT2 runs on the output of HLT1. HLT2 performs a full reconstruction of the
event and reduces the event rate to the final value of 12.5 kHz. The HLT2 performs an
improved track reconstruction of charged particles by making use of a more advanced
pattern recognition than the one in HLT1. The final precision on the momentum
resolution of long and downstream tracks is thus obtained. Besides the information
from the muon system, HLT2 also uses the PID information from the RICH system
and calorimeters, which was not used in HLT1 due to time constraints, to reconstruct
neutral particles and perform particle identification.

The charged track reconstruction steps are shown in Fig. 3.26. The sequence
begins with the same reconstruction performed in HLT1. However, at this stage the pT
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requirement on the track is dropped and low pT tracks can be also reconstructed. All
tracks are then reconstructed, including long tracks, which were also reconstructed
in HLT1, T tracks and downstream tracks for particles that decay outside the VELO.
The tracks are once again fitted with a Kalman filter and fake tracks are rejected with
neural network algorithms.

The HLT2 lines are more exclusive than the HLT1 ones and they are designed to
select decays with specific decay topologies and decay products.

Software and simulation

The data collected by the LHCb detector is subject to a series of processing steps
performed by different software applications [138]. The general C++ framework on
which all LHCb software is based is called GAUDI [139, 140]. The first processing step
of data is the trigger, described in the previous section, which at the software level
is run by the MOORE application. The output of the trigger is saved on disk and the
offline event reconstruction is performed by the BRUNEL application. The output of
the offline reconstruction is stored in so-called data summary type (DST) files.

Figure 3.27: Schematic of the LHCb data flow [141]

The final processing step of data is performed with the DaVinci application. During
DaVinci the reconstructed tracks from BRUNEL are used to fit decay vertices and
reconstruct candidates, i.e. sets of tracks assumed to come from a specific decay
chain hypothesis. Based on the information from the subdetectors, various kinematic
and geometric quantities (variables) useful for offline analyses are computed. Since
the data size at this point is still too large for offline analysis, another filtering step
known as stripping is performed during DaVinci. The stripping process is organised
in stripping lines. These lines define a set of loose requirements based on variables
computed during DaVinci and are dedicated to select specific decays and reject
backgrounds in an efficient manner. The analysts can then choose a convenient
stripping line based on their decay of interest. Therefore, DaVinci is run on stripped
DST files and the output is stored as a ROOT [142] file, known as an NTuple, which is
used for further analysis. A schematic of the whole data processing sequence at LHCb
is shown in Fig. 3.27.

95



Monte-Carlo (MC) simulation of particle data is widely used in high energy physics
and is essential to most of LHCb analyses. Simulations can be produced for any pro-
cess and particle decay of interest, also known as signal decay. At LHCb simulation
is realised with GAUSS [143]. The pp collisions and the hadronisations of the quarks
produced in the collisions are simulated with the PYHTIA package [144]. The resulting
particles are forced to decay to specific final states of interest. Hadronic decays are sim-
ulated with EvtGen [145] and PHOTOS [146] is used to account for final state radiations.
The passage of the final state particles through the LHCb detector is simulated with
the GEANT4 package [147]. The BOOLE application simulates the digitised responses of
the LHCb subdetectors. These responses are then passed to MOORE to run the software
trigger on the simulation. The MC data is then subject to the same data processing
steps as real data, as shown in Fig. 3.27.

3.2.4 LHCb in Run 3

Figure 3.28: Cross section of the upgraded LHCb detector [148]

Although the analysis presented in this thesis is based on data collected in Run 2, it is
worth mentioning the upgrade of the LHCb detector for Run 3 [149]. After the end of
Run 2, the LHC entered the LS2 phase during 2018-2021 in order to increase the center-
of-mass energy and the luminosity. The LHCb detector suffered major upgrades in
order to profit from these changes. The instantaneous luminosity at LHCb will be
increased by a factor of 5, from 4×1032 cm−2s−1 to 2×1033 cm−2s−1 thus increasing
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the number of interactions per bunch crossing from 1-2 to an average of about 5. In
order to deal with this higher luminosity, a new trigger system has been implemented.
During Run 2, the L0 trigger limited the data acquisition rate from 40 MHz to 1 MHz.
For Run 3, the hardware L0 trigger was removed and replaced by a full software trigger
that can process every single bunch crossing at 25 ns allowing for the full readout of the
detector at 40 MHz [133, 150]. Furthermore, most of the subdetectors at LHCb were
upgraded to deal with higher luminosity and endure a higher radiation environment.
The TT station upstream of the magnet was removed and replaced by a high granularity
silicon micro-strip detector with better coverage called the Upstream Tracker (UT).
The T1-T3 tracking stations downstream of the magnet will be replaced by three
Scintillating Fibre Tracker (SFT) stations which consists of scintillating fibres 2.5 m
long and are read out by Silicon Photomultipliers [148]. The SPD and PS in front of
the calorimeteres are removed while the ECAL and HCAL were kept in place. The
RICH and muon systems were upgraded to operate at a 40 MHz data rate and the M1
station was removed since it was only providing information to the L0 trigger which
does not exist anymore [151]. Finally, the VELO was upgraded to cope with the higher
readout rate and luminosity. For this reason, the silicon sensors and the electronics
were completely changed. [152]. A view of the upgraded LHCb detector is given in Fig.
3.28.
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4 Search for CP violation in
B 0→ D∗−µ+νµ

Semileptonic decays such as B 0→ D∗−µ+νµ (b → cℓνℓ at quark level) are mediated in
the SM by the W boson with a left-handed vector (V −A) interaction. The W boson has
the same coupling to all three lepton generations e,µ and τ, property which is known
as lepton flavor universality. As discussed in Sec. 2.2.1, several LFU tests such as R(D)
and R(D∗) were performed by various collaborations and tensions ∼ 3σ are observed
between the theoretical predictions and the experimental measurements. These
tensions suggest the presence of NP in semileptonic decays and are the motivation
for any measurements complementary to the R(Hc) ones. To explain the tensions,
several theoretical models where hypothetical particles such as charged Higgs (H±),
prime W ′ bosons or leptoquarks (LQ) may mediate the b → cℓνℓ decay in addition to
the SM W boson. These NP particles can interact via Lorentz structures different than
the left-handed vector one of the SM such as right-handed vector, scalar, pseudoscalar
or tensor. To complement the search for NP in semileptonic decays, CP-violating
observables have been proposed as means to constrain and distinguish different NP
scenarios, as discussed in Sec. 2.2.3. Since there is only one amplitude in the SM
at tree level for b → cℓνℓ decays, CP violation is zero to a good approximation in
these decays as any CP-violating effects require (at least) two interfering amplitudes.
Measuring nonzero CP violation in these decays is thus a clean probe of NP. The
standard direct CP violation, defined as the difference in the rates between process
and CP conjugated process, requires the presence of a weak phase and strong phase
difference between two interfering amplitudes. In the b → cℓνℓ case, the strong phase
difference vanishes since any amplitude either SM or NP will have the same b → c
hadronic transition and consequently CP violation in these decays can appear only as
a kinematic effect in the angular distribution.

Since the tensions with respect to the SM are seen in R(D) and R(D∗), i.e. ratios
involving tau leptons, the NP is generally considered to contribute in the b → cτντ
mode. The reconstruction of the τ at LHCb is problematic due to having two missing
neutrinos in the final state such that the reconstruction of the angular distribution
in this mode is heavily affected by detector resolution effects. Instead, the angular
distribution in the b → cµν mode is accessible and may be subject to the same NP as
the τ mode. In particular, the NP scenarios for which the CP asymmetry is nonzero
are the right-handed vector current and the interference between pseudoscalar and
tensor currents with couplings given by gR and gP g∗

T , respectively.
The B 0 → D∗−µ+νµ decay is fully described by four kinematic parameters, i.e q2
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and the three helicity angles shown in Fig. 2.15, namely θℓ,θD and χ. The analysis pre-
sented in this thesis aims to perform a measurement of CP violation in B 0→ D∗−µ+νµ
decays by measuring the P-odd part of its angular distribution which consists of terms
proportional to sinχ or sin2χ. Several angular analyses of semileptonic decays are
currently being carried out at LHCb, however in order to obtain the required precision
on the P-odd part, a dedicated analysis is needed where specific P-odd systematic
effects are considered. At LHCb, D∗µ combinations are reconstructed from the final
state particles and since the neutrino is not detectable, its momentum is reconstructed
from the B meson line of flight between the primary and secondary vertices.

The LHCb dataset used to reconstruct the B 0→ D∗−µ+νµ decays and the simula-
tion samples used in the analysis are described in Sec. 4.1. Details on the neutrino
reconstruction procedure and reconstruction of the helicity angles can be found in
Sec. 4.2.

A background template fit is performed to data using templates derived from simu-
lation in order to estimate the various background contributions and determine the
signal fraction. This step is important as an estimation of the background fractions
are needed in order to assign any systematic uncertainties arising from P-odd effects
in backgrounds. The fit procedure is described in Sec. 4.3.

The symmetry properties of the angular distribution are exploited in order to extract
the P-odd part and cancel out the P-even part in a model independent way. The
method is described in Sec. 4.5. The P-odd part is extracted in 2D bins of cosθD

vs cosθℓ with sinχ or sin2χ weights. The CP asymmetry is proportional to the NP
couplings such that a linear fit can be performed to extract the values of the NP
couplings. The fit uses NP templates obtained from SM simulation reweighted to the
two NP possible cases, i.e. complex values for gR and gP g∗

T . The NP reweighting is
performed using the Hammer software. The reweighting procedure and the NP CP
asymmetry templates are discussed in Sec. 4.4.

The two sources of systematic uncertainties due to P-odd effects in backgrounds
and potential P-odd effects in the track reconstruction efficiency are discussed and
estimated in Sec. 4.6.

4.1 Datasets and event selection
This section introduces the data and simulation samples used in this analysis and
the event selection procedure used to obtain the final sample with which the CP
asymmetry measurement is performed. The data sample consists of the data taken by
LHCb during the years 2016, 2017 and 2018 of the Run 2 period of the LHC at a centre
of mass energy

p
s = 13 TeV. The total dataset corresponds to an integrated luminosity

of 5.4 fb−1.
The B 0→ D∗−µ+νµ decay at LHCb is reconstructed as a D0µ± combination where

an additional π± is added to the D0 to form the D∗ candidate. Subsequently, the D0

meson is reconstructed with the D0 → K −π+ mode. The following three orthogonal
samples can be obtained from data:
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• Correct-sign. This sample consists of D∗−µ+ combinations. The particles have
the correct charges to be coming from a real B meson decay. This is the data
sample used for the measurement of the CP asymmetries.

• True-D∗. This sample consists of D∗−µ− combinations. The particles have the
same charges so they do not come from a true B meson decay. The sample is
used to model combinatorial background where a true D∗− and a µ+ coming
from different decay chains are combined.

• Fake-D∗. This sample consists of wrong sign D∗ combinations, i.e D0π−µ−

combinations. The flavor of the D0 and the charge of the π− are wrong such that
they do not form a legitimate D∗ meson. The sample is used to model the fake
D∗ combinatorial background where random D0 and pions are combined.

An additional sample is derived from data to model the background where another
particle, typically a hadron, is misidentified as a muon. This is referred to as the muon
misID sample. This sample is obtained by imposing specific particle identification
requirements on the muon candidate.

Finally, simulation samples are used to model the signal decay and all the partially
reconstructed backgrounds, i.e. other decays with the same final state signature as
the signal that may contribute in the data sample. The following sections discuss the
reconstruction and selection procedure applied to both data and simulation.

Event selection
The data sample is subject to a series of filtering steps where at each step events are
removed based on certain selection criteria designed to maximize the signal yield
and remove backgrounds. The three steps of this selection chain are applied in the
following order: the online filtering, i.e. the trigger, a central offline filtering referred
to as “stripping” and finally an analysis specific offline selection. Each step removes
events based on the values of various reconstructed quantities known as variables. A
list with all variables used in the selection procedure is given below.

• p. Momentum of the particle track.

• pT. Transverse momentum of the particle track.

• η. Pseudorapidity of the particle track

• nVeloClusters. Number of hit clusters in the VELO

• nITClusters. Number of hit clusters in the IT.

• nOTClusters. Number of hit clusters in the OT.

• nSPDHits. Number of hits in the SPD detector.
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• nPV. Number of primary vertices.

• track χ2. χ2 score of the track fitted by the tracking algorithm

• track χ2/ndf. χ2 score of the track divided by the number of degrees of freedom

• χ2
IP. χ2 score of the PV reconstruction with and without the track

• χ2
vtx. χ2 score of the fitted vertex of a particle.

• χ2
vtx/ndf. χ2

vtx divided by the number of degrees of freedom

• DOCA. Distance of closest approach between two particle tracks.

• DIRA. Cosine of angle between the direction of flight of a particle and a vector
that connects the PV and the decay vertex of the particle.

• FD. Flight distance between the primary vertex and the particle decay vertex.

• χ2
F D . χ2 score of the FD. This variable indicates how well a track can be separated

from the PV.

• mcor r . Variable defined as
√

m2
D∗µ+p2

⊥+p⊥ where mD∗µ is the invariant mass

of the D∗µ combination and p⊥ is the D∗µ momentum transverse to the B 0

flight direction

• GhostProb. Variable which describes the probability of a track to be a ghost track.
A ghost track is a random combination of segment tracks in the tracking stations.

• PIDx. The combined log likelihood for the given (x) particle hypothesis with
respect to the pion hypothesis. The definition of these variables is given in Eq.
3.8.

• IP. Impact parameter, i.e. distance of a particle track to the primary vertex

Trigger selection

At LHCb each event must pass the trigger decision before being saved for further
offline analysis. The trigger consists of the L0, HLT1 and HLT2 levels described in Sec.
3.2.3. The trigger system response can be placed in one of the following categories
[153]:

• Triggerred On Signal (TOS). The presence of the signal in the event is sufficient
to fire the trigger

• Triggerred Independent of Signal (TIS). The “rest of the event” is sufficient to fire
the trigger
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• Triggerred on Both (TOB). Neither TIS nor TOS is sufficient, but both are neces-
sary to fire the trigger

This analysis implements a trigger strategy similar to the ones designed for semilep-
tonic analyses with final state muons. The trigger lines used for L0, HLT1 and HLT2
levels are given in Tab. 4.1.

Trigger level Lines
L0 (D0 L0Hadron_TOS || B 0 L0Global_TIS)

HLT1 (D0 Hlt1TrackMVA_TOS || D0 Hlt1TwoTrackMVA_TOS)
HLT2 B 0 Hlt2XcMuXForTauB2XcMu_TOS

Table 4.1: Trigger line requirements

At the L0 trigger all events have to pass either the L0Hadron line (TOS on the
hadronic part of the event) or the L0Global requirement (TIS on the whole event).
The L0Global requires that at least one of the L0 trigger lines (Tab. 3.3) have been
passed. L0 trigger requirements for muons are not used in order to not cause any
biases in the shapes of their kinematic variables.

Before the HLT1 reconstruction takes place, some cuts are placed to remove events
with high occupancy in the tracking stations. These are called Global Event Cuts (GEC)
and are given in Tab. 4.2.

Global Event Cuts
50 < nVeloClusters< 6000

50 < nITClusters< 3000
50 < nOTClusters< 15000

Table 4.2: Cuts applied before the HLT1 reconstruction

The HLT1 trigger lines Hlt1TrackMVA and Hlt1TwoTrackMVA select one track or
two-track combinations with large momentum and decay vertex displaced from the
PV. At least one of the two lines is required to be TOS on the D0. The requirements
of the two HLT1 trigger lines for 2016 conditions are given in Tab. 4.3 and Tab. 4.4.
The displacement from the PV requirement is implemented with a multivariate anal-
ysis (MVA) classifier. However, in the case of Hlt1TrackMVA line, the MVA output is
approximated by the analytical formula shown in Tab. 4.3.

The HLT2 trigger makes use of the line Hlt2XcMuXForTauB2XcMu which was de-
signed for the muonic R(D) and R(D∗) analyses. It selects events with large-pT D0

detached from the PV and it avoids cuts on the muon kinematics 1. The selection
criteria imposed by the Hlt2XcMuXForTauB2XcMu trigger line are given in Tab. 4.5.

In addition, the trigger line Hlt2XcFakeMuXForTauB2XcMu is used for the muon
misID sample. This trigger line has the same selection as the regular one, except that

1In these analyses any biases in the shapes of muon kinematics may cause difficulties in distinguishing
between the tauonic and muonic modes
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Hlt1TrackMVA
Input track selections

pT > 600 MeV
p > 3 GeV

track χ2/ndf < 2.5
(pT > 25 GeV∧χ2

IP > 7.4)∨ [(1 GeV < pT < 25 GeV)∧
log(χ2

IP) > ( 1
pT[ GeV]−1 )2 + ( 1.1

25 GeV )(25 GeV−pT)+ log(7.4)]

Table 4.3: Requirements of the Hlt1TrackMVA trigger line in 2016

Hlt1TwoTrackMVA
Single tracks pT > 500 MeV

p > 5.0 GeV
track χ2/ndf < 2.5
GhostProb < 0.2

Track pair before vertexing (p1 +p2)T > 2.0 GeV
Track pair combination χ2

vtx < 10
mcor r > 1 GeV
2 < η< 5
DIRA > 0

MVA requirement MVA output > 0.95
MVA training variables χ2

vtx
Vertex distance χ2

pT 1 +pT 2

Nr. of tracks with χ2
IP < 16

Table 4.4: Requirements of the Hlt1TwoTrackMVA trigger line in 2016

the muon candidates are required to fail the isMuon requirement but still pass the
inMuon requirement. This means that the muon tracks are required to not have any
hits in the muon stations but still be in the muon stations acceptance.

Stripping selection

After the data passed the trigger selection, a central offline selection is performed at
LHCb for data reduction purposes. The stripping line b2D0MuXB2DMuForTauMuLine
is used in this analysis to combine D0 and µ candidates of both signs and apply cuts
on this combination. The selections required for this stripping line are given in Tab.
4.5 and they closely follow the HLT2 trigger selection with additional PID cuts on the
final state tracks.

In addition, the stripping line b2D0MuXFakeB2DMuForTauMuLine is used to con-
struct the muon misID sample. This stripping line exactly matches the selections
in the nominal line except that the µ candidates have to follow the same particle
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identification requirements as the misID HLT2 line.

Event-level cuts Variable Stripping HLT2

GEC nSPDHits < 600 —
PV Cut nPV > 0 —

Particle Cuts Variable Stripping Hlt2

µ χ2
IP > 16.0 > 16.0

GhostProb < 0.5 —
p > 3.0 GeV —
PIDµ >−200 —

K ,π pT > 300 MeV > 200 MeV
p > 2.0 GeV > 5.0 GeV
χ2

IP > 9.0 > 9.0
GhostProb < 0.5 —
K PIDK > 4 > 2
π PIDK < 2 < 4
|pT(π)|+ |pT(K )| > 2.5 GeV > 2.5 GeV
≥1 track pT — > 800 MeV

D0 χ2
vtx/ndf < 4.0 < 10.0

DIRA > 0.999 > 0.999
χ2

F D > 25.0 > 25.0
mass window ( MeV) 1790−1950 1830−1910
pT — > 2 GeV
Child pair DOCA — < 0.10 mm

D0µ m < 10 GeV < 10.5 GeV
m (before vertexing) < 10.2 GeV < 11 GeV
χ2

vtx/ndf < 6.0 < 15.0
DIRA > 0.999 > 0.999
DOCA — < 0.50 mm
χ2

F D — > 50

Table 4.5: b2D0MuXB2DMuForTauMuLine stripping line and Hlt2XcMuXForTauB2XcMu
trigger line cuts
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Offline selection

An analysis specific offline selection is implemented in order to suppress various
backgrounds. The offline selection follows the one in the muonic R(D∗) analysis [67]
and it is shown in Tab. 4.6. In the R(D∗) analysis, complex MVA classifiers, such as
isolation Boosted Decision Trees (BDTs) are trained and their response is cut on to
reject specific backgrounds. In this analysis, these procedures are avoided since they
may lead to parity-odd systematic effects that could be difficult to control.

Particle Variable Selection

µ p < 100 GeV
PIDµ > 2

log10(1 - p⃗µ · p⃗i /|pµ|pi |)i=K ,π,πS > -5
D0 pT > 2 GeV

χ2
IP > 9

lnIP > -3.5
mass window 1842-1888 MeV

D∗ |∆m-∆mPDG | < 2.5 MeV
πS GhostProb < 0.25

D0µ DIRA > 0.999
D∗µ mass window < 5280 MeV

DIRA > 0.999
dX Y (transverse FD) < 7 mm

χ2
vtx/ndf < 6

Table 4.6: Offline selection
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Figure 4.1: Left: ∆m variable distribution. Correct sign data in black and wrong sign
data in red. The sidebands of the distribution are cut away around the
signal D∗ peak. Right: Upper side-band of the D∗µ mass variable. Correct
sign data in black and same sign data in red.

The cut on the ∆m variable is meant to reduce the contribution of the fake D∗ com-
binatorial background by removing the events that are outside of the signal region. Fig.
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4.1 (left) shows the ∆m distribution for the correct sign and wrong sign data samples.
The wrong sign events form the fake D∗ combinatorial background sample which is
further used in the analysis to check whether these events introduce any bias in the
CP-violating observables. The upper side band of the D∗µ mass variable is shown in
Fig. 4.1 (right) for correct sign and same sign data. In this region there are no true
B meson decays and only combinatorial background contributes. The plot shows a
good agreement between the correct sign combinatorial and same sign combinatorial
which is evidence that the two samples are kinematically equivalent. This motivates
the use of the same sign data sample to model combinatorial background in the signal
region.

The final data sample of the combined 2016, 2017 and 2018 years after all selection
criteria have been passed consists of 2748185 events and this is the sample that will
be used for the measurement of the CP-violating observables.

Simulation samples

The B 0→ D∗−µ+νµ signal and all physical backgrounds are modelled using Monte
Carlo simulation. The MC sample for a specific decay is identified by an unique
number called the EvtType. The MC is produced at in both MagUp and MagDown
configurations of the magnet.

After the events are generated a set of loose cuts is applied to discard events that
would not pass the detection tresholds or would not be in the geometric acceptance
of the detector. These are referred to as generator level cuts and their efficiencies are
available and come together with each MC sample. The generator cuts are given in
Tab. 4.7. In addition to the generator level selection, before the events are saved on
disk, another step of selection called MC filtering is performed on the MC samples in
order to reduce the storage size. The selection used by the filtering closely resembles
the stripping selection such that events that would otherwise not pass the stripping
requirements are not saved on disk.

Particle Variable Selection

K ,π px/pz -0.38-0.38
py /pz -0.28-0.28

θ > 0.01 rad
pT > 250 MeV

µ px/pz -0.38-0.38
py /pz -0.28-0.28

θ > 0.01 rad
p > 2950 MeV

D0 |p(π)|+ |p(K )| > 15 GeV
|pT(π)|+ |pT(K )| > 2450 MeV

Table 4.7: MC generator level cuts

A procedure called truth matching is performed on the final state particles in the
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MC samples to ensure that the reconstructed particles are matched to the true gen-
erated ones. This procedure helps remove any misidentified tracks, ghost tracks and
combinatorial backgrounds.

A list of all MC samples used in this analysis is given in Tab. 4.8. The numbers of
events saved on disk, i.e. passing generator and filter cuts are reported separately
for the three years. The samples are either single modes such as B 0→ D∗−µ+νµ or
B 0 → D∗−τ+ντ or so-called cocktail modes such as the D∗∗ states or the double charm
decays. The cocktail modes consist of several decay modes with the appropriate
relative branching fractions. More details about the composition of each cocktail
sample can be found in Sec. 4.3 and in [154].

Sample EvtType 2016 2017 2018
B 0→ D∗−µ+νµ 11574021 85470057 81975745 103168826
B 0 → D∗−τ+ντ 11574011 17217664 18008069 25341935

B 0 → (D∗∗− → D∗−π0)µ+νµ 11874430 46653556 45469066 58082278
B 0 → (D∗∗− → D∗−π0)τ+ντ 11874440 375581 519245 561800
B+ → (D∗∗0 → D∗−π+)µ+νµ 12873450 37417148 117729837 48051754
B+ → (D∗∗0 → D∗−π+)τ+ντ 12873460 618529 598526 744330

B+ → D∗∗0[→ D∗+π0π+]µ+νµ 12675402 5560586 4739776 6162695
B 0 → D∗∗−[→ D∗−π+π−]µ+νµ 11676012 4824507 4834264 8353204

B 0
s → D∗∗−

s µ+νµ 13674000 1498067 1531966 2070074
B 0 → D∗−D+

(s)X ,D+
(s) → Xµ+νµ 11894610 16188308 13480119 16837410

B 0 → D∗−D+
(s)X ,D+

(s) → Xτ+ντ 11894210 1678170 1283823 1283823
B+ → D∗−D+

(s)X ,D+
(s) → Xµ+νµ 12895400 7000178 7459109 6798676

B+ → D∗−D+
(s)X ,D+

(s) → Xτ+ντ 12895000 899320 1555844 1282503

Table 4.8: Tracker-Only MC samples. The numbers shown are the numbers of events
saved on disk, i.e. events passing generator and filtering cuts.

The MC samples used in this analysis were generated for the R(D) and R(D∗)
analyses where the dominating systematic uncertainties are due to the statistics of the
MC samples. For this reason, very large numbers of events, especially for the signal
B 0→ D∗−µ+νµ sample, are generated. In order to reduce the time of the simulation
by a factor of ∼ 8, so called Tracker-Only (TO) MC samples were produced. For the
production of the samples, only the tracking system was simulated with Geant4 while
completely removing the simulated response of all other subdetectors such as the
RICH system or the calorimeters. As a consequence, trigger and PID information is
missing in the TO MC samples. In order to have the MC aligned with data in terms of
event selection, the trigger and PID responses have to be emulated offline.

The trigger emulation is implemented with dedicated software tools developed
for the TO samples used in this analysis. More details about the tools can be found
in [155]. The tools are based on the procedures given in [156].

The L0 trigger lines used in the analysis are the L0Hadron TOS on the D0 and the
L0Global TIS on the B 0 candidate. The L0Hadron line is triggered if the transverse
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energy passes a certain threshold, as shown in Tab. 3.3. The emulation of the L0Hadron
line is realized using an XGBoost regressor to predict the ratio of events passing this
line. A set of variables related to ET and available in the TO MC, as well as the trigger
response from a fully simulated sample are used to train the regressor. This results in a
set of weights that can be then applied to the TO samples. In the case of the L0Global
TIS decision, since the trigger decision is independent of the tracks that form the
candidate and there are many more particle tracks per event than the final state tracks
of the signal decay, it can be argued that the rest of event is the same for all B meson
decays. Therefore, the efficiency of the L0Global TIS decision can be measured in
data for a particular B meson decay and can then be ported to the TO samples. This
efficiency was measured with a B → J/ψK data sample in bins of kinematic variables
pT and pz of the B . A weight for each event in the TO is assigned based on which B 0

pT-pz bin it falls in. The true information on the pT and pz is used.
The Hlt1TrackMVA and Hlt1TwoTrackMVA trigger lines are required to be TOS on

the D0 or its daughters. The candidates have to pass a set of requirements on the single
and two-track combinations and the score of the MVA classifier has to pass a threshold,
as shown in Tab. 4.3 and 4.4. All the variables needed for the selection and training of
the MVA are available in the TO simulation 2 such that the response of the HLT1 trigger
can be emulated by applying all the selection offline. The Hlt2XcMuXForTauB2XcMu
trigger line is emulated by directly applying the selection shown in Tab. 4.5.

The PID selection used in this analysis consists of the two cuts on the K PIDK and π
PIDK variables in the stripping and the µ PIDµ requirement in the offline selection.
Their purpose is to remove events with misidentified final state particles. These PID
variables are not present in the TO simulation and need to be emulated offline. The
PIDGen2 package [157] is used to generate the PID variables needed for the selection.
The PIDGen2 tool uses sWeighted3 calibration data samples to generate a 4D PDF
in the PID variable, two kinematic variables pT and η, and one multiplicity variable
nTr acks . This 4D PDF is then smeared using a Gaussian filter. Finally, for each MC
event in (pT,η,nTr acks) the PID variable is drawn from the 4D PDF, this approach is
also referred to as PID resampling.

4.2 Neutrino reconstruction
The decay studied in this analysis, B 0→ D∗−µ+νµ, has a neutrino in the final state
that can not be detected at LHCb. In order to reconstruct the kinematic quantities
which are essential for this analysis, i.e. the three angles described in Sec. 2.2.3.1 and
q2, as well as other important variables needed for the template fit described in Sec.
4.3, some approximation on the neutrino momentum has to be made. There are two
approaches to approximate the momentum of the undetected neutrino, the first one

2These variables are extracted using a specific tool in the event reconstruction during DaVinci
3The sWeight method is based on the sPlot technique [158] and is a way to obtain the unfolded signal

distribution in a control variable by using other independent discriminating variables to remove the
background.
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is based on an approximation of the B meson rest frame, while the second one makes
use of topological information to solve a quadratic equation and obtain the neutrino
momentum up to a two-fold ambiguity.

4.2.1 Rest frame approximation
In the rest frame approximation, in order to estimate the four-momentum of the B
meson, the following assumption is made: the proper velocity in the lab frame (γβ) of
the B meson along the z-axis (beam axis) is equal to the proper velocity of the partially
reconstructed B meson, i.e. D∗µ combination, along the z-axis. This approximation is
valid because of the large boost of the B mesons along the z-axis in the LHCb detector
which is much larger than the boost of the B decay products in the B rest frame. Thus,
the following relation can be written

(pB )z = mB

mD∗µ
(pD∗µ)z , (4.1)

where mB is the (PDG) mass of the B meson and mD∗µ and pD∗µ are the mass and
momentum of the reconstructed D∗µ system. Using information provided by the
VELO subdetector at LHCb, the B meson direction vector can be computed as

BD X = (SV )x − (PV )x ,

BDY = (SV )y − (PV )y ,

BD Z = (SV )z − (PV )z ,

(4.2)

where (PV )x,y,z and (SV )x,y,z are the 3D coordinates of the primary vertex and B
decay vertex (secondary vertex), respectively, as measured by VELO. The topology of
the decay is illustrated in Fig. 4.2 where the red dotted line represents the direction of
the B meson determined by the measured positions of the PV and SV.
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Figure 4.2: Topology of the signal B 0→ D∗−µ+νµ decay. The coordinates of the PV and
of the SV, i.e. B decay vertex are measured by VELO.

The angles that the B direction makes with the X ,Y , Z axes are given by

cos(αx) = BD X

|B⃗D | ,

cos
(
αy

)= BDY

|B⃗D | ,

cos(αz) = BD Z

|B⃗D | .

(4.3)

The absolute value of the B meson three-momentum can be expressed as

pB = mB

mD∗µ
(pD∗µ)z

√
1+ tan2(αz). (4.4)

The components of the B meson four-momentum can then be expressed as

(pB )x = pB cos(αx),

(pB )y = pB cos
(
αy

)
,

(pB )z = pB cos(αz),

(pB )E =
√

m2
B + (pB )2

x + (pB )2
y + (pB )2

z .

(4.5)

A single estimate for the four-momentum of the B meson, and consequently of
the neutrino, is thus obtained. This approach is used to compute the m2

mi ss and E∗
µ

variables used in the template fit described in Sec. 4.3.
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4.2.2 Quadratic equation approach
In the quadratic equation approach, the B meson momentum is estimated using the
topological information of the position of the primary and secondary vertices up to
a two-fold ambiguity [159]. The absolute value of the B meson momentum can be
computed in terms of kinematic variables of the B 0→ D∗−µ+νµ candidate according
to the following equation

pB =

(
m2

B +m2
D∗µ

)
pD∗µ cosθ±ED∗µ

√
(m2

B −m2
D∗µ)2 −4m2

B p2
D∗µ sin2θ

2(m2
D∗µ+p2

D∗µ sin2θ)
, (4.6)

where mD∗µ, pD∗µ and ED∗µ are the invariant mass, momentum, and energy of
the reconstructed D∗+µ− system , mB is the mass of the B meson, and θ is the angle
between the direction of the B meson and the D∗µ system. The angle θ is given by

cosθ = B⃗D · ⃗pD∗µ

|B⃗D || ⃗pD∗µ|
, (4.7)

where B⃗D is the vector defined in Eq. 4.2. The events where cosθ < 0, i.e. θ > 90◦, are
unphysical since the pD∗µ and BD point in opposite directions and these events are
removed. We note that Eq. 4.6 yields two solutions which are referred to as solution
“+” and solution “−”. Because of detector resolution effects, in about 28 % of events
the expression under the square root in Eq. 4.6 becomes negative. In those cases, the
closest solution to the “physical” one is obtained by setting the square root to zero.
These events are included in both solutions. In this analysis, by always choosing either
solution “+” or solution “-” the correct choice rate would be 50% if there would be no
inefficiencies in reconstruction. However, since efficiency in general depends on the
momentum of the decay products (which in turn are different for the neutrino flying
forward or backward, i.e. solution “−” and solution “+”) the ratio can differ from 50%.
Several approaches to increase this rate can be used, such as using a multivariate
regression algorithm based on the decay flight information [160].

Once the absolute value pB is computed, the four-momentum of the B meson is
calculated using the knowledge of its flight direction vector, i.e. Eqs. 4.2 - 4.5. Finally,
the kinematic quantities of interest q2,cosθℓ,cosθD and χ are reconstructed for both
solutions p±

B . The residual distributions of the four kinematic variables for the two
solutions are shown in Fig. 4.3.

111



5− 4− 3− 2− 1− 0 1 2 3 4 5
)2 (GeV

true
2 - q2q

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
ou

nt
 

solution +
solution -

(a)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
true)lθ) - cos(lθcos(

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
ou

nt

 

solution +
solution -

(b)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
true)Dθ) - cos(Dθcos(

0

0.02

0.04

0.06

0.08

0.1

0.12C
ou

nt

 

solution +
solution -

(c)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
trueχ - χ

0.01

0.02

0.03

0.04

0.05

0.06

C
ou

nt

 

solution +
solution -

(d)

Figure 4.3: Residual distributions for the two solutions of the reconstructed B 0 →
D∗+µ−νµ kinematic parameters from MC simulation (a) q2, (b) θℓ, (c) θD

and (d) χ

It is clear that solution “-” offers a better resolution than solution “+”. The reason
for this can be understood from the following argument. Solution “+” corresponds to
the case where the muon and the neutrino fly in the same direction, while solution
“-” corresponds to the case where the muon and neutrino fly in opposite directions.
Effectively, the resolution function in this case is a mixture of the “true” and “fake” res-
olution functions. The ratio of this mixture depends on the reconstruction efficiency
of solutions “+” and “-”. But the efficiency of the two solutions (when they are the
true one) is different due to different kinematics. Therefore, the resolutions of the
two solutions are different and it appears to be better for solution “-” such that in all
subsequent studies only solution “-” is used.

After the first approximation of the B meson four-momentum is obtained, a kine-
matic refit of the track parameters is performed in order to improve the resolution on
the kinematic variables. This refit is done with DecayTreeFitter [161] 4 which is an
algorithm that can provide better estimates for the track parameters of the final state

4DecayTreeFitter is a LHCb specific tool based on code originally developed at BaBar
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particles by imposing hypothesis-driven mass constraints and/or vertex constraints.

10− 8− 6− 4− 2− 0 2 4 6 8 10
2GeV

sol -
2 q∆

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
ou

nt

 

before refit
after refit

(a)

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
sol -
lθ∆ 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C
ou

nt

 

before refit
after refit

(b)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
sol -
Dθ∆ 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16C
ou

nt

 

before refit
after refit

(c)

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
sol -χ ∆ 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08C
ou

nt
 

before refit
after refit

(d)

Figure 4.4: Residual distributions for solution “-” of the reconstructed B 0 → D∗+µ−νµ
decay parameters before and after the kinematic refit (a) q2, (b) θℓ, (c) θD

and (d) χ

By knowing the full decay chain that leads to the final state, the additional informa-
tion that comes with this hypothesis (mass or vertex constraints) can help to provide a
better estimate on the final state four-momenta. In this analysis, DecayTreeFitter is
used to perform a full kinematic refit of the B 0→ D∗−µ+νµ decay tree that includes all
possible kinematic information (including the missing neutrino with first momentum
estimation from Eq. 4.6) and all correlations. The neutrino, D0 meson and B 0 meson
masses are constrained to their PDG values. Fig. 4.4 shows the residual distributions
of the four kinematic parameters before and after the kinematic refit obtained using
MC simulation. The effect of the kinematic refit on improving the resolution is clearly
visible, especially in the θD and χ variables.

The distributions of the four kinematic variables q2,cosθℓ,cosθD and χ for solution
“-” are shown in Fig. 4.5. Since the true information is accessible in simulation, the
2D correlations between the true variables and the reconstructed variables after the
kinematic refit are shown in Fig. 4.6. A high correlation is visible in all four kinematic
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variables.
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Figure 4.5: Distributions of the kinematic variables for solution “-” after the kinematic
refit (a) q2, (b) cosθℓ, (c) cosθD and (d) χ.
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Figure 4.6: Correlations for solution “-” between the true and the reconstructed B 0→
D∗−µ+νµ decay parameters after the kinematic refit (a) q2, (b) cosθℓ, (c)
cosθD and (d) χ. Lighter colors indicate larger density of events.
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4.3 Background template fit
A template fit is implemented in the data sample to estimate the fraction of signal
decays and the contributions of various backgrounds with the same final state sig-
nature as the B 0→ D∗−µ+νµ signal. The partially reconstructed backgrounds can be
split in two categories: semileptonic and double charm backgrounds. Semileptonic
backgrounds consist of decays of other B mesons that result in a D∗− and a primaryµ+

or a secondary muon coming from a τ+ →µ+νµντ decay. Double charm backgrounds
are B meson decays to a D∗− and another charm hadron that decays semileptoni-
cally. The templates of the signal and all physics backgrounds are constructed from
MC simulations of each process. A third background category exists due to LHCb
reconstruction effects for which the templates are constructed in a data-driven way:
combinatorial background and background with hadrons misidentified as muons. A
description of all backgrounds is given in the following sections.

The fit is a binned extended maximum likelihood template fit and is implemented
using the RooFit data modelling package [162]. The templates are three-dimensional
histograms in the variables q2, m2

mi ss and E∗
µ . These kinematic variables were chosen

as they have a large discriminating power between signal and various background
processes [163]. The three variables are all defined in the B meson rest frame and their
definitions are the following

• q2 = (pB −pD∗)2 is the invariant mass squared of the lepton system

• m2
mi ss = (pB−pD∗−pµ)2 is the squared missing mass due to the missing neutrino

• E∗
µ is the muon energy in the B rest frame

where pB , pD∗ and pµ are the four momenta of the B meson, of the D∗ meson and
of the muon, respectively. The binning schemes used in the fit are given in Tab.4.9

Variable Nr of bins Range
q2 (GeV2) 4 [0, 10]

m2
mi ss (GeV2) 10 [-2, 8]

E∗
µ (GeV) 10 [0.2, 2.2]

Table 4.9: Bin schemes of the three variables used in the fit

Since the B meson rest frame can not be exactly reconstructed at LHCb, the approx-
imation methods described in Sec. 4.2 are used to compute these kinematic variables.
In particular, E∗

µ , m2
mi ss are computed using the rest frame approximation while the

q2 variable is computed using the quadratic equation approach and solution “-” is
used. Most of the templates are derived from simulation, while only three are derived
from data.

For most of the simulation derived templates, knowledge on the branching ratios
is used to constrain their contribution in the fit relative to the signal mode. Their

115



fraction with respect to signal is constrained via a Gaussian added to the likelihood
centered around the expected fraction which is given by

f exp
bkg = Nbkg

Nsig
= Bbkgϵbkg

Bsigϵsig
, (4.8)

where Bbkg, sig are the branching ratios and ϵbkg, sig are the efficiencies taken from
simulation of the background and signal modes, respectively. The next sections
introduce all the templates included in the fit and their constraints. The projections
of the templates for the signal and largest expected backgrounds are also shown.

4.3.1 Simulation derived templates
Signal

The signal template consists of reconstructed B 0→ D∗−µ+νµ decays. The three pro-
jections are shown in Fig. 4.7. The signal yield is unconstrained and allowed to float
freely in the fit.
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Figure 4.7: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the B 0→ D∗−µ+νµ
signal sample

Feed down from B 0 → D∗−τ+ντ

The relative contribution of this background is constrained by its relative branching
ratio and efficiency correction factor, introduced in the total PDF as a Gaussian con-
straint. The reported branching ratio is B(B 0 → D∗τν) = (1.58±0.09)% where the
B(τ→µνν) = (17.39±0.04)% needs to also be taken into account [164]. The resulting
combined branching ratio used as a constraint in the fit is (2.74±0.15)×10−3. The
expected size of this background is about 5% of the signal mode. The projections of
the 3D template for this mode are shown in Fig. 4.8
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Figure 4.8: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the B 0 → D∗−τ+ντ
sample in blue. The signal projections are shown in red for comparison

Feed down from B 0 → D∗∗−µ+νµ

This template consists of B 0 → D∗∗−[→ D∗−π0]µ+νµ decays where the D∗− candidate
comes from the decay of a charged excited charm meson resonance state. There are
three dominant resonances that can contribute, namely D1(2420)−, D ′

1(2430)− and
D∗

2 (2460)−, which are all included in a single template. The projections of the 3D
template are shown in Fig. 4.9.
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Figure 4.9: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the B 0 → D∗∗−µ+νµ
sample in blue. The signal projections are shown in red for comparison.

The relative contribution of this background is constrained by the sum of branching
fractions of the three D∗∗ modes. The separate branching ratios are given in Tab.
4.10. However, these branching ratios are given as the product B(B 0 → D∗∗−ℓ+νℓ)×
B(D∗∗− → D

∗0
π−). In order to correct this branching ratio, the following exact

isospin symmetry relationship is used: (B(D∗∗− → D∗−π0))/(B(D∗∗0 → D∗−π+)) =
1/2. Therefore, the branching ratios are taken as half of the values reported in Table
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4.10, such that the total branching ratio used as a Gaussian constraint is (3.29±0.47)×
10−3. The size of this background is expected to be about 6.5% of the signal mode.

Decay B(10−3) σ(10−3)
B 0 → D1(2420)−µ+νµ 2.80 0.28
B 0 → D

′
1(2430)−µ+νµ 3.1 0.9

B 0 → D∗
2 (2460)−µ+νµ 0.68 0.12

Table 4.10: Semileptonic branching ratios of B 0 to excited charm states [164]

Feed down from B+ → D∗∗0µ+νµ

This template consists of B+ → D∗∗0[→ D∗−π+]µ+νµ decays where the D∗− candidate
comes from the decay of a neutral excited charm meson resonance state. There are
three resonance that can contribute, namely D1(2420)0, D ′

1(2430)0 and D ∗2 (2460)0,
which are all included in a single template. The projections of the 3D template are
shown in Fig. 4.10.
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Figure 4.10: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the B+ →
D∗∗0µ+νµ sample in blue. The signal projections are shown in red for
comparison.

The contribution of this background is treated in the same way as for the B 0 →
D∗∗−µ+νµ mode. The branching ratios of the three modes are given in Table 4.11. In
this case, the branching ratios do not need to be adjusted since they are reported as
the product B(B+ → D∗∗0µ+νµ)×B(D∗∗0 → D∗+π−).

The total branching ratio used to constrain this background is (6.74±0.67)×10−3.
This size of this background is expected to be about 13% of the signal mode.

Feed down from B 0 → D∗∗−τ+ντ and B+ → D∗∗0τ+ντ

The contributions of these backgrounds are constrained to be the same as the cor-
responding muon modes times an overall factor composed of the B(τ → µνν) =
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Decay B(10−3) σ(10−3)
B+ → D1(2420)0µ+νµ 3.03 0.20
B+ → D

′
1(2430)0µ+νµ 2.7 0.6

B+ → D∗
2 (2460)0µ+νµ 1.01 0.24

Table 4.11: Semileptonic branching ratios of B+ to excited charm states [164]

(17.39±0.04)% and a phase space factor of 0.3 [165]. Thus, the resulting branching
ratios used to constrain these modes are (1.71±0.24)×10−4 and (3.51±0.11)×10−4.
The sizes of these backgrounds are expected to be about 0.3% and 0.7% of the signal
mode, respectively.

Higher D∗∗ states

This background is due to B decays to heavier D∗ππ resonances rather than D∗π.
Two templates corresponding to B 0 → D∗∗−[→ D∗−π+π−]µ+νµ and B+ → D∗∗0[→
D∗+π0π+]µ+νµ decays are included in the fit. Since the branching ratios of these
higher states are not measured, the contributions of these backgrounds are allowed to
float freely.

Feed down from B 0
s → D∗∗−

s µ+νµ

This background is composed of the two following modes: B 0
s → D−′

s1µ
+νµ and B 0

s →
D∗−

s2 µ
+νµ. The following branching ratio was measured to be B(B 0

s → Ds1(2536)−µν)×
B(D−

s1 → D∗−K 0
S ) = (2.7±0.7)×10−3 [164]. This branching ratio is corrected by the

fragmentation ratio fs/ fd [166]. The branching ratio of decays to the D∗+
s2 mode is

adjusted by an additional factor of 0.3 taken from the ratio of branching fractions of
B 0 to D−

1 and D∗−
2 . The total branching fraction used to constrain this background is

(9.1±2.3)×10−4. The size of this background is expected to be about 2% of the signal
mode.

Double charm with secondary muon B 0 → D∗−D+
(s)X ,D+

(s) → Xµ+νµ

This template consists of a cocktail of B 0 decay modes to a D∗− and another ground
state or excited charm meson (and possibly another particle), where the charm meson
decays semileptonically. The projections of the 3D template are shown in Fig. 4.11.
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Figure 4.11: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the B 0 →
D∗−D+

(s)X ,D+
(s) → Xµ+νµ sample in blue. The signal projections are

shown in red for comparison.

The leading modes present in this cocktail along with the appropriate subsequent
semileptonic branching ratios are reported in in Tab. 4.12. In particular, for the
secondary semileptonic decays, the branching ratio B(D0 → X −µ+νµ) is taken as the
sum of the two leading decay modes present in the cocktail simulation where X − is
either a K − or a K ∗− giving a value of 5.30±0.24%. In the case of B(D+

s → X 0µ+νµ)
the branching ratio is obtained as the sum of the leading decay modes where X 0 can
be a φ0, η0 or η′0 particle with a value of 5.40±0.87%.

The secondary semileptonic branching ratios B(D+
s → X 0µ+νµ) and B(D0 → X −µ+νµ)

are taken as the sum of their leading modes. The total branching ratio used to con-
strain this background is (2.46±0.22)×10−3. The size of this background is expected
to be about 5% of the signal mode.

Decay Additional B Final B

B 0 → D∗−D∗+
s B(D∗+

s → D+
s π

0/γ)×B(D+
s → X 0µ+νµ)

(1.77±0.14)% 1× (5.40±0.87)% (9.56±1.72)×10−4

B 0 → D∗−D∗0K + B(D∗0 → D0π0/γ)×B(D0 → X −µ+νµ)
(1.06±0.09)% 1× (5.30±0.24)% (5.62±0.54)×10−4

B 0 → D∗−D+
s1(2460) B(D+

s1 → D∗+
s π0)×B(D∗+

s → D+
s γ)×

(9.3±2.2)×10−3 ×B(D+
s → X 0µ+νµ) (2.25±0.82)×10−4

(48±11)%× (93.5±0.7)%
×(5.40±0.87)%

B 0 → D∗−D+
s B(D+

s → X 0µ+νµ)
(8.0±1.1)×10−3 (5.30±0.87)% (4.24±0.91)×10−4

B 0 → D∗−D∗+K 0 B(D∗− → D0π−)×B(D0 → X −µ+νµ)
(8.1±0.7)×10−3 (67.7±0.5)%× (5.30±0.24)% (2.91±0.28)×10−4

Table 4.12: Leading B 0 to double charm branching ratios with secondary muons [164]
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Double charm with secondary muon B+ → D∗−D+
(s)X ,D+

(s) → Xµ+νµ

This template consists of a cocktail of B± decay modes to two charm mesons (and
another particle), where one of the charm mesons decays semileptonically. The
projections of the 3D template are shown in Fig. 4.12.
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Figure 4.12: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the B+ →
D∗−D+

(s)X ,D+
(s) → Xµ+νµ sample in blue. The signal projections are

shown in red for comparison.

The two leading modes along with their appropriate semileptonic modes are given
in Table 4.13. The sum of the modes shown in the table is (5.34±0.67)×10−4. The size
of this background is expected to be about 1% of the signal mode.

Decay Additional B Final B

B+ → D∗0D∗+K 0 B(D∗0 → D0π0/γ)×B(D0 → X −µ+νµ)
(9.2±1.2)×10−3 1× (5.30±0.24)% (4.87±0.67)×10−4

B+ → D∗+D∗−K + B(D∗− → D0π−)×B(D0 → X −µ+νµ)
(1.32±0.18)×10−3 (67.7±0.5)%× (5.30±0.24)% (0.47±0.07)×10−4

Table 4.13: Leading B+ to double charm branching ratios with secondary muons [164]

Double charm with tertiary muon B 0/B− → D∗D(s)X ,D(s) → Xτν,τ→µνν

The two templates consist of B 0 and B− decay modes to two charm mesons, where
one of them decays semileptonically via the τ mode. In the case of B 0 decays, the
leading modes amount for a branching ratio of (2.79±0.36)×10−4 which is used as
a constraint. The size of this background is expected to be about 0.5% of the signal
mode. In the case of B− decays, since there are no values in the PDG for these decay
modes, their contribution is taken to be 10 times smaller than the corresponding
muon case. The final branching ratio used to constrain it is (0.53±0.07)×10−4. This
background is about 0.1% of the signal mode.
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All the branching ratios used to constrain the various simulation derived background
templates as well as the fractions with respect to signal are summarized in Tab. 4.14.
The table is split in two parts, first the semileptonic backgrounds and second the
doublecharm backgrounds.

Decay mode B estimate Fraction

B 0→ D∗−µ+νµ (signal) (4.97±0.12)% 1
B+ → (D∗∗0 → D∗−π+)µ+νµ (6.74±0.67)×10−3 0.130
B 0 → (D∗∗− → D∗−π0)µ+νµ (3.29±0.47)×10−3 0.065
B 0 → D∗−τ+ντ (2.74±0.15)×10−3 0.050
B 0

s → D∗∗−
s µ+νµ (9.10±2.30)×10−4 0.020

B 0 → (D∗∗− → D∗−π0)τ+ντ (1.71±0.24)×10−4 0.003
B+ → (D∗∗0 → D∗−π+)τ+ντ (3.51±0.11)×10−4 0.007

B 0 → D∗−D+
(s)X ,D+

(s) → Xµ+νµ (2.46±0.22)×10−3 0.050
B+ → D∗−D+

(s)X ,D+
(s) → Xµ+νµ (5.34±0.67)×10−4 0.010

B 0 → D∗−D+
(s)X ,D+

(s) → Xτ+ντ (2.79±0.36)×10−4 0.005
B+ → D∗−D+

(s)X ,D+
(s) → Xτ+ντ (0.53±0.07)×10−4 0.001

Table 4.14: The most significant expected backgrounds for the B 0 → D∗+µ−νµ decay
mode, estimates of their branching ratios (B) [164] and estimated yield
fractions with respect to signal.

4.3.2 Data driven templates
Combinatorial background

In the reconstruction procedure, random particles coming from different decay chains
may be combined to form particle candidates. This results in events where the can-
didates are fake ones coming from these random combinations. These events are
generally referred to as combinatorial background. In this analysis we deal with two
types of combinatorial backgrounds:

• True D∗ combinatorial. True D∗− particles and µ+ coming from different decay
chains are combined

• Fake D∗ combinatorial. The D∗− candidates are not true but random combina-
tions of D0 and pions coming mainly from the primary vertex.

The true D∗ combinatorial template is derived from data using same sign D∗+µ+

combinations. Since a D∗+ and a µ+ cannot come from the same B 0 decay these
events form a sample that is representative random D∗−µ+ combinations. In the fit,
this background is constrained to the number of same sign events found in data with
a standard deviation of 8%. The projections of the 3D template derived from data for
the true D∗ combinatorial background are shown in Fig. 4.13
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Figure 4.13: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the true D∗ com-
binatorial template in blue. The signal projections are shown in red for
comparison.

The second type of combinatorial background is modelled from data using wrong
sign D0π−µ+ combinations. This sample consists of events where D0 and π− come
from different decay chains. In a similar way as for the other type of combinatorial,
this background is constrained in the fit to the number of wrong sign events found in
data with a standard deviation of 8%. The projections of the 3D template derived from
data for the fake D∗ combinatorial background are shown in Fig. 4.13
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Figure 4.14: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the fake D∗ com-
binatorial template in blue. The signal projections are shown in red for
comparison.

Muon misID

Another source of background in the B 0→ D∗−µ+νµ data sample consists of decays
where other charged particles such as pions, kaons or protons (and to a less extent
electrons) are misidentified as muons. This sample is obtained from data using the
same selection except that the IsMuon requirement is not passed. Additionally, the
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selection criteria on the muon PID variable PIDmu is removed. This means the muon
misID sample is made out of events where the muon candidate is within the muon
chambers acceptance but is required to fail the muon identification requirement. The
contribution of this background is unconstrained and allowed to float freely in the fit.
The projections of the 3D template for the muon misID background are shown in Fig.
4.15.
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Figure 4.15: Projections of the 3D template in q2,m2
mi ss and E∗

µ for the muon misID
template in blue. The signal projections are shown in red for comparison.

4.3.3 Fit results
The background template fit is performed separately for the three years included in the
dataset i.e. 2016, 2017 and 2018. The fit projections in the case of the 2016 data sample
are shown in Fig. 4.16 and the contribution of the signal and of each background
mode are visible in different colors. The fit quality can be expressed in terms of χ2

per number of degrees of freedom and for the 2016 fit its value is χ2/384 = 4.79. The
agreement between the total PDF and data can be visualised also in terms of the
unfolded (flattened) 3D PDF where each of the 400 bins are compared with data. This
is shown in Fig. 4.17. Due to the chosen fit variables and binning scheme some bins in
either data or simulation templates are kinematically forbiden and therefore are empty.
In these cases, due to technical reasons the bin content is set to 1e-6, an arbitrarily
small (but nonzero) number, such that effectively these bins do not contribute to the
likelihood. The same approach is used in the R(D∗) analyses.

The large pulls in the 1D and 3D flattened projections, as well as the large χ2/ndof
value indicate that the agreement between the total PDF and the data is not ideal.
However, this is accepted since known discrepancies between data and simulation
are not accounted for and some of the templates included in the fit lack the proper
treatment. As discussed in Sec. 4.1, the only corrections applied to the Tracker-Only
MC samples are the trigger and PID response. Other corrections such as kinematic cor-
rections (some kinematic and topological variables of the B meson and its daughters
are not well reproduced in LHCb simulation) need to be applied. The hadronic model,
i.e. form factors, used in generating the MC samples may also affect the template
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shapes and cause discrepancies with respect to data. The data driven templates are
included in the fit directly as they are and their constraints are rough estimations. A
more careful treatment of these templates is needed to ensure better modelling of
the combinatorial and muon misID backgrounds. In particular, the µ misID template
can be split in several templates for different particles misidentified as muons with
the proper efficiencies. The fake D∗ combinatorial can be estimated by a fit to the
∆m variable in the correct sign sample and this yield can then be used to rescale the
shape of the wrong sign template. The µ misID contribution should be subtracted
from these samples in order to get the combinatorial for real muons only. The true
D∗ combinatorial contribution can be estimated by fitting the upper-sideband of the
m(D∗µ) variable (m(D∗µ) > 5280 MeV) in the correct sign data sample since in this
region there are no decays from real B mesons and only combinatorial background is
present. The contributions of the fake D∗ combinatorial and µ misID backgrounds
then have to be subtracted in order to avoid double counting. All these procedures
would ensure a much better agreement between data and the fit model and are needed
in order to reach sub-percent level precision on the background fractions in analyses
that measure R(D) and R(D∗). However, for the purpose of this thesis, this level of
precision is not needed and percent level precision on the background fractions is
sufficient. The measurement of the NP observables in this analysis is affected by the
fractions determined by the background fit results in the following way. The signal
fraction in the data sample is needed since it enters the overall normalisation in the
calculation of the NP couplings from the raw CP asymmetries (see Sec. 4.5). Since
some of the backgrounds can manifest parity- or CP-odd effects that may bias the NP
couplings measurement, upper limits on their fractions in data are needed in order to
assign systematic uncertainties due to these effects. Therefore, even though some of
the background components are over or underestimated, it will not impact the related
systematic uncertainties in a significant way.
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Figure 4.16: Fit projections of the three fit variables for the 2016 signal data sample.
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Figure 4.17: Flattened projection of the 3D PDF (red histogram) compared with data
(black points) across the 400 bins (top) and its pull distribution (bottom)
for the fit to the 2016 data sample.

The results of the fit are given in Tab. 4.15. The results for the different years
are compatible with each other and the results summed over the three years are
reported. The signal yield is found to be about 63% of the data sample. The largest
partially reconstructed backgrounds are found to be as expected the two B → [D∗∗ →
D∗π]µν modes which together are about 17% of the signal and the double charm
background which is about 5% of the signal. The B 0 → D∗−τ+ντ background seems
to be underestimated by the fit and a fraction of about 2% of the signal is found
whereas a fraction of around 5% is expected. The true D∗ combinatorial and µ misID
backgrounds are likely to be overestimated by the fit and their fractions with respect to
signal are found to be 5.5% and 6.5%, respectively. A discussion on which backgrounds
can manifest P and CP odd effects, an estimation of the magnitude of these effects
and the upper limits on the systematic uncertainties arising from these effects is given
in Sec. 4.6.1.
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Component Yield Signal fraction

B 0→ D∗−µ+νµ 1777896±3232 1

B 0 → D∗−τ+ντ 36424±2197 2.04%±0.12%

B 0 → [D∗∗− → D∗−π0]µ+νµ 80508±15900 4.52%±0.89%

B+ → [D∗∗0 → D∗−π+]µ+νµ 223117±16075 12.54%±0.90%

B 0 → D∗∗−τ+ντ 1690±156 0.09%±0.01%

B+ → D∗∗0τ+ντ 9326±244 0.52%±0.01%

B+ → [D∗∗0 → D∗+π0π−]µ+νµ 1±662.59 0.00%±0.03%

B 0 → [D∗∗− → D∗−π+π−]µ+νµ 1±529 0.00%±0.03%

B 0
s → D∗∗−

s µ+νµ 1±265 0.00%±0.01%

B 0 → D∗−D+
(s)X ,D+

(s) → Xµ+νµ 82888±3188 4.66%±0.18%

B+ → D∗−D+
(s)X ,D+

(s) → Xµ+νµ 19397±1289 1.09%±0.07%

B 0 → D∗−D+
(s)X ,D+

(s) → Xτ+ντ 16691±798 0.93%±0.04%

B+ → D∗−D+
(s)X ,D+

(s) → Xτ+ντ 1641±124 0.09%±0.01%

Fake D∗ combinatorial 15124±2592 0.85%±0.14%

True D∗ combinatorial 98871±2084 5.56%±0.11%

µ misid 116751±4899 6.56%±0.27%

Table 4.15: Values of the normalization parameters and their statistical uncertainty as
determined by the fit. The numbers shown are the fit results summed over
the three years of the data sample.
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4.4 NP reweighting
Typically, analyses of semileptonic decays have to deal with the impossibility to mea-
sure the full kinematics due to missing neutrinos and resolution effects need to be
acounted for. Additionally, significant backgrounds are present in the final states of
most semileptonic decays and the shapes of these backrounds need to be studied and
discriminated against the signal. For these reasons, large MC samples are needed to
model these type of decays and templates based on these MC samples are typically
used to fit certain observable variables in data. The distributions of these observables
are affected by various NP scenarios. As a consequence, MC samples for each NP
case that can contribute to a certain observable are needed to describe and directly fit
the data. The simulation samples that are typically produced in experiments such as
LHCb do not include NP effects and often use basic and outdated form factor models.

In this analysis, in order to generate the NP templates needed to fit the observed
asymmetry in data, the software library Hammer (Helicity Amplitude Model for Matrix
Element Reweighting) [5] is used to reweight the SM MC to the NP scenarios that
the CP-violating observables are sensitive to. The reweighting procedure relies on
efficient amplitude-level tensorial calculations and allows the user to control in detail
the NP model as well as the hadronic form factor scheme. At the end, Hammer provides
a set of weights that can be applied to change the shape of observable distributions
to the desired NP and form factor cases. The only input required is the truth-level
four-momenta of all the final state particles of the decay.

Considering a MC sample consisting of I events with weights w I and truth level
kinematics {q}I that we want to reweight from an ’old’ theory to a ’new’ theory, the
first step is to compute the ratio of the differential decay rates

r I =
dΓnew

I /dPS

dΓol d
I /dPS

, (4.9)

where PS stands for phase-space and Γ is the decay rate. This ratio is then used to
perform the event-by-event mapping w I → r I w I . In the typical case, the ’old’ theory is
the SM with a specific form factor parametrization, while the ’new’ theory can include
NP contributions, a different form factor scheme, or a combination of both.

In terms of NP reweighting possibilities, Hammer allows to reweight processes under
theories with a Lagrangian of the form

L =∑
α

cαOα, (4.10)

where Oα is a basis of Wilson operators and cα their associated Wilson coefficients.
The Wilson operator basis available in Hammer and their coefficients are given in Tab.
4.16. The χi

j coefficients represent the NP couplings to the quark currents, while the

λi
j represent the NP couplings to the lepton currents. The lower indices represent the

helicities of the neutrino and of the b-quark, while the upper indices represent the .
All Hammer internal calculations are done in the operator basis given in [167] which are
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defined as bΓc operators. However, the inputs are defined in the more conventional
cΓb operator basis.

Current WC tag Wilson Coefficient 4-Fermi/(i 2
p

2VcbGF )

SM SM 1
[
cγµPLb

][
ℓγµPLν

]
Vector

VqLlL χV
L λ

V
L

[
cχV

L γ
µPLb

][
ℓλV

L γµPLν
]

VqRlL χV
Rλ

V
L

[
cχV

R γ
µPR b

][
ℓλV

L γµPLν
]

VqLl R χV
L λ

V
R

[
cχV

L γ
µPLb

][
ℓλV

R γµPRν
]

VqRlR χV
Rλ

V
R

[
cχV

R γ
µPR b

][
ℓλV

R γµPRν
]

Scalar

SqLl L χS
Lλ

S
L

[
cχS

LPLb
][
ℓλS

LPLν
]

SqRlL χS
Rλ

S
L

[
cχS

R PR b
][
ℓλS

LPLν
]

SqLl R χS
Lλ

S
R

[
cχS

LPLb
][
ℓλS

R PRν
]

SqRlR χS
Rλ

S
R

[
cχS

R PR b
][
ℓλS

R PRν
]

Tensor
TqLl L χT

Lλ
T
L

[
cχT

Lσ
µνPLb

][
ℓλT

LσµνPLν
]

TqRlR χT
Rλ

T
R

[
cχT

Rσ
µνPR b

][
ℓλT

RσµνPRν
]

Table 4.16: NP operator basis and coupling conventions used in Hammer.

Accounting also for the form factors Fi , the generic amplitude for a process can be
written as

M ({q}) =∑
α,i

cαFi ({q})Aαi ({q}), (4.11)

where Aαi is the NP- and FF- generalized amplitude tensor. The differential rate is
then

dΓ

dPS
= ∑
α,i ,β, j

cαc†
β

Fi F †
j

(
{q}

)
Aαi A

†
β j

(
{q}

)
= ∑
α,i ,β, j

cαc†
β

Fi F †
j

(
{q}

)
Wαiβ j .

(4.12)

The quantity W =A A † defined as the product of the amplitude tesor is called the
weight tensor. The quantity

∑
i j Fi F †

j Wαiβ j is independent of Wilson coefficients and
is computed once for a given event {q} and can be contracted with any NP to generate
an event weight. The integrated rate over a generic region of phase spaceΩ is given by

ΓΩ = ∑
α,β

cαc†
β

∫
Ω

dPS
∑
i j

Fi F †
j

(
{q}

)
Wαiβ j

(
{q}

)
. (4.13)

The integral in the above equation is a NP-generalized tensor since it is independent
of the Wilson coefficients. Therefore, it is computed only once and can then be
contracted with any choice of NP Wilson coefficients. The Hammer library thus provides
very efficient reweighting of MC samples to any NP scenario by computing and storing
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large generalized tensorial objects which can be then contracted with any NP Wilson
coefficients to generate an event weight.

With respect to form factor parametrizations, the form factor schemes available in
Hammer for b → cℓνℓ transitions are ISGW2, CLN, BGL and BLPR parametrizations.
While ISGW2, CLN and BGL are implemented as SM only, the BLPR form factor scheme
is the only one that allows for NP reweighting.

In the case of B 0 → D∗−µ+νµ decays, the CP-violating observables are sensitive
to two NP scenarios, the presence of the right-handed vector complex coupling gR

and the interference between the pseudoscalar and tensor complex couplings gP g∗
T .

These NP cases can be specified in Hammer by setting a nonzero complex value to the
Wilson coefficients corresponding to the appropriate operators from Tab. 4.16, i.e. the
VqRlL operator for the right-handed vector case and a combination of the SqLl L ,SqRlL

and TqLlL operators for the interference between pseudoscalar and tensor case 5.
The distributions of the Hammer weights generated for the two relevant NP cases

are shown in Fig. 4.18. The LHCb simulation sample for B 0 → D∗−µ+νµ decays is
generated with SM coupling and with the HQET2 hadronic model of EvtGen6. The
weights are generated with the BLPR form factor model (a form factor model in Hammer
that supports NP in b → cℓνℓ decays) and with the inputs of NP Wilson operators and
couplings as described above.
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Figure 4.18: Hammerweights generated for the NP cases where gR = 0.1i (a) and gP g∗
T =

0.1i (b)

The weights are calculated by Hammer using the true four momenta of all the final
state particles of the B 0→ D∗−µ+νµ decay, i.e. the K + and π− from the D0 decay, the
slow pion π− coming from the D∗− decay and the lepton pair µ+ and νµ. Although the
LHCb MC simulation primarily concerns the reconstructed kinematic quantities of
final state particles and simulates detector resolution effects and missing neutrinos,
the true kinematic information of all particles as generated in the decay, i.e. before
the particles pass through the detector, is also available.

5Since the CP asymmetry only depends on the imaginary part of the product Im(gP g∗
T ), gP is set to be

real and equal to 1 while g∗
T is set to be complex

6HQET2 hadronic model corresponds to CLN form factor scheme
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4.5 Binned asymmetry fit
The analysis presented in this thesis studies the angular distribution in B 0→ D∗−µ+νµ
decays and more specifically the P-odd part of the angular distribution. The total
decay density given in Eq. 2.110 can be written as a sum of the P-even and P-odd
components, i.e.

P (q2,θℓ,θD ,χ) = Peven(q2,θℓ,θD ,χ)+Podd(q2,θℓ,θD ,χ), (4.14)

where Podd is the sum of the terms proportional to sinχ and sin2χ shown in Tab.
2.5 and it can be written explicitly as

Podd(q2,θℓ,θD ,χ) = P (1)
odd(q2,θℓ,θD )sinχ+P (2)

odd(q2,θℓ,θD )sin2χ, (4.15)

where P (1)
odd and P (2)

odd are the angular functions which are now independent of χ.
The symmetry properties of the total angular distribution can be exploited in order
to cancel out the P-even part and extract only the P-odd component in a model
independent way. The P (1)

odd and P (2)
odd terms can be obtained by integrating the total

decay density with sinχ and sin2χ weights in the following way7:

P (1)
odd(q2,θℓ,θD ) = 1

π

∫ π

−π
P (q2,θℓ,θD ,χ)sinχdχ,

P (2)
odd(q2,θℓ,θD ) = 1

π

∫ π

−π
P (q2,θℓ,θD ,χ)sin2χdχ.

(4.16)

In this way, the P (1)
odd and P (2)

odd quantities which represent the P-odd components
(in sinχ and sin2χ) of the total decay density are obtained separately and the rest of
the (P-even) angular distribution along with its uncertanties is cancelled out.

According to Tab. 2.5, the sinχ term has contributions from both the right-handed
vector coupling gR and the interference between the pseudoscalar and tensor currents
gP g∗

T while the sin2χ term has contributions only from gR . In the approximation
where the NP couplings are small with respect to the SM coupling, i.e. gR ≪ 1 and
gP g∗

T ≪ 1 the following relations can be written

P (1)
odd(q2,θD ,θℓ) = Im(gR )F (1)

RH (q2,θD ,θℓ)+ Im(gP g∗
T )F (1)

PT (q2,θD ,θℓ),

P (2)
odd(q2,θD ,θℓ) = Im(gR )F (2)

RH (q2,θD ,θℓ),
(4.17)

where the second order term proportional to Im(gL g∗
R ) in P (1)

odd is omitted. We note
that Im(gP g∗

T ) does not contribute to the sin2χ term and therefore does not contribute

to P (2)
odd. The functions F (1)

RH and F (2)
PT are obtained from simulation and are referred to

7This is because
∫ π
−π f (x)sin xd x ̸= 0 only if f (x) = sin x. The same holds for sin2χ. Therefore, since

P (q2,θℓ,θD ,χ) is a sum of several angular terms, by integrating with sinχ and sin2χ weights only
the terms proportional to sinχ and sin2χ survive.
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as NP templates while P (1)
odd and P (1)

odd are extracted from data. The reweighting process
to obtain the NP templates using Hammer was described in Sec. 4.4. Therefore, with
the use of Eq. 4.17, the imaginary part of the NP couplings can be determined from
data with NP templates.

In practice, where the experimental data is discrete rather than continuous, it is
convenient to construct binned asymmetries. The asymmetry in the i -th bin Ai is
given by

A(1)
i = Nbins

Nsignal

Ni∑
n=1

sinχn ,

A(2)
i = Nbins

Nsignal

Ni∑
n=1

sin2χn ,

(4.18)

where Nsignal =
∑

i Ni is the number of signal events in the sample and Nbins is the
number of bins with 1 < i < Nbins. The summation is performed over all the events in
the i -th bin. The normalisation term Nbins/Nsignal ensures that the asymmetries are
independent of the number of signal events in the sample as well as of the P-even
component of the total density (as would be the case if the normalisation 1/Ni was
used).

The binning is performed in two dimensions in cosθD vs.cosθℓ in order to capture
the whole phase space. The q2 variable is not binned but integrated over thus the
asymmetries are obtained over the whole q2 range. A 2D scheme with 8×8 bins in
cosθD,ℓ resulting in a total of 64 bins is chosen. A feasibility study of the method
presented in this section can be found in [168] where it was shown that a finer binning
does not impact the achieved statistical precision in a significant way. Consequently,
the 8×8 bins in cosθℓvs.cosθD is considered to be sufficient. The asymmetries in Eq.
4.18 are the binned versions of the P-odd components of the decay density from Eq.
4.17 and are linearly proportional. The following linear relation holds:

A(i ) ∝ P (i )
odd ∝ Im(gN P ). (4.19)

The linearity holds because the two quantities A(i ) and P (i )
odd are related via linear

operations such as factoring detector efficiencies, resolution effects and calculation of
integral over bin area. Therefore, a linear fit can be employed to extract the imaginary
part of the NP couplings from the binned asymmetries observed in data.

Since the asymmetries in each bin are given by a sum of a large number of inde-
pendent events, their fluctuations are Gaussian to a good degree of approximation
and a χ2 function can be implemented to fit simultaneously the binned versions of
Eq. 4.17. Since the sinχ and sin2χ terms are correlated as they are obtained from the
same events in each bin i , their correlation is taken into account with the following
χ2

corr function

χ2
corr =

∑
i

∑
a,b=1,2

∆A(a)
i

(
Σ−1

i

)(ab)
∆A(b)

i , (4.20)
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where the indices (a,b) represent the sinχ and sin2χ terms and ∆A(a,b)
i is the differ-

ence between the expected asymmetry determined from the NP templates and the
asymmetry observed in data, i.e

∆A(a,b)
i = Im(gR )fit

Im(gR )0
A(a,b)

RH ,i +
Im(gP g∗

T ) fit

Im(gP g∗
T )0

A(a,b)
PT,i − A(a,b)

i . (4.21)

In Eq. 4.21 the quantities A(1,2)
RH ,i and A(1,2)

PT,i are the sinχ (denoted by the upper index
(1) and sin2χ (denoted by the upper index (2) binned asymmetry templates obtained
from the NP reweighting of the simulation with the right-handed current coupling
Im(gR )0 and with the interference between pseudoscalar and tensor current couplings
Im(gP g∗

T )0. The quantities A(1,2)
i are the binned asymmetries observed in data. Finally,

the values of the NP couplings determined by minimizing the χ2
corr function in the fit

are denoted by Im(gR )fit and Im(gP g∗
T )fit.

The covariance matrix Σ contains the information about the correlations between
the sinχ and sin2χ binned asymmetries and is given by the 2×2 matrix

Σi =
(

Nbins

Nsignal

)2
( ∑Ni

n=1 sin2χn
∑Ni

n=1 sinχn sin2χn ,∑Ni
n=1 sinχn sin2χn

∑Ni
n=1 sin2 2χn ,

)
, (4.22)

where Ni is the number of events in each bin i .
The binned CP asymmetry templates in the SM case and in the two relevant NP

cases using simulation are shown in Fig. 4.19, 4.20 and 4.21. The plot in the first row of
each figure shows the total decay density in the 2D bins of cosθD vs.cosθℓ where the
color indicates the number of events that fall into each bin. The first and second plots
in the second row show the sinχ and sin2χ weighted density, respectively. In each
bin now the color indicates the magnitude of the asymmetry (the P-odd component
of the density). In order to be able to visualize the uncertainties on the asymmetry,
the 2D plots are flattened to 1D plots shown in the third row. The projection of the
2D bins is done from left to right, row by row, from bottom to top, i.e. from negative
to positive values in both cosθℓ and cosθD . In the SM case shown in Fig. 4.19, both
the sinχ and sin2χ asymmetries are consistent with zero. This is a trivial result since
there are no weak phases in the generation of the SM simulation so the CP asymmetry
is expected to be zero. Nevertheless, Fig. 4.19 demonstrates that there are no P-odd
effects in the detection and reconstruction in the simulation. In the case of the same
SM simulation reweighted with Im(gR ) = 0.1i shown in Fig. 4.20 the asymmetry has
specific shapes in both sinχ and sin2χ terms and its magnitude goes up to 1.5% and
2%, respectively. In the second NP case where Im(gP g∗

T ) = 0.1i , the presence of the
NP couplings contributes only to the sinχ asymmetry shown in (b) and (d) in Fig. 4.21
where the shape of the asymmetry is different than the one generated by the right-
handed vector coupling and its magnitude goes up to about 10%. Since the Im(gP g∗

T )
does not contribute to the sin2χ asymmetry, it is expected that this asymmetry is
zero. However, Fig. 4.21 (c) and (e) show a statistically significant small (relative to the
sinχ term) asymmetry of magnitude up to 1%. This effect can be understood from
the following argument. If the reconstruction efficiency contains terms proportional
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to cosχ, which is a parity-even quantity (parity-odd effects in the reconstruction
efficiency and their consequences are discussed in Sec. 4.6.2) then this will cause a
“leakage” of the sinχ term into the sin2χ term and give rise to the effect seen in Fig.
4.21 (c).

The angular terms proportional to sinχ (or sin2χ) are parity-odd in nature and they
reflect asymmetries between numbers of events with sinχ > 0 and sinχ < 0. These
asymmetries can be either parity- or CP-odd depending on how they are related
to the flavor of the B meson. As discussed in Sec. 2.2.3.1, for CP-odd processes,
the sign of the angular term stays the same while for parity-odd processes, the sign
changes between the decay and the CP conjugated decay. This is because the charge
conjugation flips the sign of the weak phase and the parity conjugation flips the sign
of angle χ, i.e. if there is no weak phase (parity-odd but not CP-odd) the CP operation
will change the sign while for a true CP-odd process the angular term will flip sign
twice and thus will not change. These two types of observable asymmetries can also
be understood by defining the following quantities

a =N (sinχ> 0)−N (sinχ< 0)

N (sinχ> 0)+N (sinχ< 0)
,

a =N (sinχ> 0)−N (sinχ< 0)

N (sinχ> 0)+N (sinχ< 0)
,

(4.23)

where a and a are the asymmetries in numbers of events where sinχ > 0 and
sinχ< 0 for the decay and the CP conjugated decay, respectively. Using Eq. 4.23, the
parity and CP asymmetries can be defined formally as

aP =1

2
(a −a),

aC P =1

2
(a +a),

(4.24)

where it is seen that in the parity-odd case, the angular term changes sign between
B and B while in the CP-odd case it does not. In practice, when constructing the
cosθℓvs.cosθD 2D binned asymmetries, the CP asymmetries are obtained with sinχ
and sin2χweights since in this case the sign does not change between B and B decays
and the content in each bin is just the regular sum of sinχ or sin2χ over all events.
However, for parity asymmetries, an additional minus sign depending on the charge
of the B meson in each event is assigned in addition to the sinχ or sin2χ weight.
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Figure 4.19: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B 0→ D∗−µ+νµ SM simulation sample.
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Figure 4.20: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B 0 → D∗−µ+νµ simulation sample in the NP
case of Im(gR ) = 0.1i
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Figure 4.21: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B 0 → D∗−µ+νµ simulation sample in the NP
case of Im(gP g∗

T ) = 0.1i
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The linear relation shown in Eq. 4.19 is valid only in the assumption where the NP
couplings are small with respect to the SM. If the NP contribution becomes large,
the effects of quadratic terms in the NP couplings will become significant and the
linearity will no longer hold. The NP couplings are fitted using the χ2

corr function given
in Eq. 4.20 in the interval [−0.3i ,0.3i ] in order to determine the region around zero
where the linearity between the “true” and fitted couplings holds. Fig. 4.22 shows
the dependence of the fitted couplings on the “true” couplings for both Im(gR ) and
Im(gP g∗

T ). In both cases the linear regime occurs approximatively in the interval
[−0.1i ,0.1i ]. This result motivates the choice of Im(gR )0 = 0.1i and Im(gP g∗

T )0 = 0.1i
for the NP templates used in Eq. 4.21 to fit the data, as these values lie within the linear
region.
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Figure 4.22: Dependence of the NP coupling obtained from the binned template fits
on the “true” coupling used in the simulation for (a) right-handed current
contribution and (b) interference of pseudoscalar and tensor currents.
An x = y line is also plotted in orange for a better visibility of the linear
regime.

4.6 Systematic uncertainties
The systematic effects that can contribute to the asymmetries and introduce biases in
the measurement of the NP couplings can be split into two categories: P-even effects
and P-odd effects. The P-even ones can not produce fake P-odd terms in the angular
distribution and can thus only affect the interpretation of the visible asymmetry in
data in terms of the imaginary part of the NP couplings. Systematic effects coming
from data sample composition (signal purity, background composition), form factor
parametrisations, magnitudes of efficiencies of reconstruction and selection are exam-
ples of P-even effects. These types of systematic effects enter relative to the magnitude
of the observed CP asymmetry and they become very small if the CP asymmetry in
data is consistent with zero. The P-odd systematic effects are the ones that need to be
carefully considered and are the main motivation for a dedicated analysis to measure
the P-odd terms rather than the full angular distribution. This kind of effects can
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produce fake P-odd terms even in the SM-like (P-even) angular distribution and can
be roughly split into two categories: P-odd background effects and instrumentation
effects. A discussion of several of these effects and an estimation of their magnitude is
given in the next sections.

4.6.1 P-odd effects in backgrounds
The physical backgrounds that can contribute in the B 0→ D∗−µ+νµ data sample can
be split in two categories: semileptonic backgrounds and double charm backgrounds.
The contributions of each particular mode was determined and the results were given
and discussed in Sec. 4.3. A discussion on which of these backgrounds can manifest
CP- and parity-odd effects and an estimation of their magnitudes is given in the next
sections. In addition, the data-driven backgrounds (combinatoric and misID) may
also introduce some bias in both CP and P asymmetries and their contributions are
also checked and estimated.

Semileptonic backgrounds

CP-violating effects can appear in semileptonic decays only in NP scenarios and are
zero in the SM. Therefore, systematic CP-odd effects in semileptonic backgrounds are
not considered. On the other hand, parity-odd (but not CP-odd) effects can appear in
the B → D∗∗µν decay (both charged and neutral D∗∗ states) which is the dominant
partially reconstructed semileptonic background in the B 0→ D∗−µ+νµ data sample.
Together, the fraction of the charged and neutral D∗∗ modes is about 17% of the signal
mode. The dominant excited charm D∗∗ → D∗π resonances consist of admixtures of
the D1(2420),D

′
1(2430) and D∗

2 (2460) states with different masses, widths, spin and
parity quantum numbers. The properties of these states are given in Tab. 4.17. The
contributions of other partially reconstructed semileptonic decays to the data sample
are a few times smaller than the D∗∗ modes and even if parity-violating effects appear
in them, they would most likely be negligible and are therefore not considered here.

D∗∗ state Mass (MeV) Width (MeV) J P

D1 2421 31 1+

D
′
1 2427 384 1+

D∗
2 2461 47 2+

Table 4.17: Mass, width, spin and parity of the D∗∗ excited states

In these decays, strong phases can appear due to the interference of different excited
charm resonances [6]. This mechanism would then generate CP violation in B →
D∗∗µν decays provided that there is also a weak phase present in these decays (which
can happen only with NP). However, in the absence the weak phase, the nonzero
strong phase only produces parity violation.
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In order to estimate the magnitude of the parity-odd effect coming from strong
phases generated in this way, a simulation sample of B+ → D∗∗0µ+νµ decays8 was
used (EvtType 12873450 in Tab. 4.8) and a strong phase difference δD was injected in
the interference between the narrow D1(2420) and D∗

2 (2460) states. This procedure
results in a set of weights that can then be applied to the asymmetry templates. As the
value of the strong phase is not known, the injected δD was scanned in the interval
0◦-360◦ in steps of 45◦ resulting in eight samples with different strong phase values.
The implementation of this reweighting is similar in approach to the one in Hammer
and it uses the true four momenta of the B+ → D∗∗0µ+νµ final state particles to cal-
culate the decay density with and without the strong phase and take the ratio as a
weight. The amplitudes for the two resonances and the form factor model parameters
are taken from [165]. The helicity angles and q2 are then calculated from the partially
reconstructed decay parameters as for the signal decay and the two asymmetry tem-
plates in sinχ and sin2χ are obtained. The two asymmetries are then fitted using the
function given in Eq. 4.20 to obtain the bias on the imaginary part of the two NP cou-
plings. The 2D cosθℓvs.cosθD density, the 2D asymmetries and the fitted flattened 1D
asymmetries for the B+ → D∗∗0µ+νµ sample with no strong phase and for the sample
with δD = 315◦ are shown in Fig. 4.23 and 4.24. The asymmetry plots for the samples
corresponding to the other values of the strong phase can be found in Appendix A. It
can be seen that for the unweighted sample the asymmetry is consistent with zero,
while in the presence of a nonzero strong phase the asymmetry becomes significant
in both sinχ and sin2χ terms and their shapes are different than the asymmetries due
to NP shown in Fig. 4.20 and 4.21. The results of the fits for the unweighted sample
and for the different values of the injected strong phase δD are reported in Tab. 4.18.
The largest bias for Im(gR ) is given by the case where δD = 315◦ while for Im(gP g∗

T )
the largest bias corresponds to the case where δD = 45◦. The values of the biases then
have to be corrected by the fraction of this background with respect to the signal in
order to assign an upper limit to the systematic bias coming from this effect. The final
values for the bias and for the assigned systematic uncertainty for this background are
given in Chapter 5.

8The B+ → D∗∗0µ+νµ simulation sample is described with the ISGW2 hadronic model
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Strong phase ∆ Im(gR ) ∆ Im(gP g∗
T )

no δD 0.0023±0.0019 0.0004±0.0005
δD = 0◦ 0.0237±0.0022 0.0011±0.0005
δD = 45◦ −0.0182±0.0022 0.0015±0.0005
δD = 90◦ −0.0483±0.0023 0.0013±0.0005
δD = 135◦ −0.0480±0.0023 0.0005±0.0005
δD = 180◦ −0.0200±0.0022 −0.0002±0.0005
δD = 225◦ 0.0192±0.0022 −0.0007±0.0005
δD = 270◦ 0.0485±0.0023 −0.0005±0.0005
δD = 315◦ 0.0509±0.0023 0.0002±0.0005

Table 4.18: Fitted values of the NP couplings from the binned asymmetry fit to the
B+ → D∗∗0µ+νµ MC sample with different strong phase values.
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Figure 4.23: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ simulation sample with no
strong phase. Figures (d) and (e) also show the result of the best fit in
green using the RH and PT templates.

143



1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0

20000

40000

60000

80000

100000

120000

E
nt

ri
es(a)

1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0.04

0.02

0.00

0.02

0.04
As

ym
m

et
ry

 (s
in

)
(b)

1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0.04

0.02

0.00

0.02

0.04

As
ym

m
et

ry
 (s

in
2

)

(c)

0 20 40 60
Bin number

0.010

0.005

0.000

0.005

0.010

As
ym

m
et

ry
 (s

in
)

(d)

0 20 40 60
Bin number

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

As
ym

m
et

ry
 (s

in
2

)

(e)

Figure 4.24: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ simulation sample with strong
phase δD = 315◦. Figures (d) and (e) also show the result of the best fit in
green using the RH and PT templates.
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Double charm backgrounds

It was shown in Sec. 4.3 that the largest double charm background contribution
comes from the B 0 decays to two charm mesons, where one decays semileptonically.
This template consists of a cocktail of B 0 decays to double charm, where the lead-
ing mode is given by the decay with the largest branching fraction B 0 → D∗−D∗+

s
where D∗− → D0π−, D∗+

s → D+
s γ/π0 and D+

s → X 0µ+νµ. This is a decay to two vector
charmed mesons with four final state particles and thus it can produce parity violation.
Although CP violation in these decays is possible in the SM, the dominant amplitude
is given by the b → c transition and as a consequence any CP-violating effect is sup-
pressed by |Vub |/|Vcb | and is thus negligible. Therefore, only parity-violating effects in
these decays are considered here.

The amplitude structure of the B 0 → D∗−[→ D0π−]D∗+
s [→ D+

s γ] was measured by
the LHCb experiment [7] where the total decay rate is given by the interference of three
helicity amplitudes H0, H− and H+. These amplitudes describe the relative orientation
of the polarisation vectors of the two vector mesons, i.e. H0 is the longitudinal ampli-
tude while H± are the two transverse amplitudes. The interference of these amplitudes
is described by the strong phases φ+ and φ− of the two transverse amplitudes with
respect to the longitudinal one. The values of these 5 parameters that fully describe
the decay are measured to be

|H0| = 0.760±0.007±0.007,

|H−| = 0.195±0.022±0.032,

|H+| = 0.620±0.011±0.013,

φ− =−0.046±0.102±0.020 rad,

φ+ = 0.108±0.170±0.051 rad.

(4.25)

The strong phases φ± govern the degree of parity violation and the measured val-
ues are consistent with zero, i.e. no parity violation is expected. A study of the
parity-violating effects in these decays was conducted using simulated B 0 → D∗−[→
D0π−]D∗+

s [→ D+
s γ] decays extracted from the cocktail sample (EvtType 11894610 in

Tab. 4.8). The events are generated in EvtGen [145] with the following amplitude
parameters

|H0| = 0.7204,

|H−| = 0.4904,

|H+| = 0.4904,

φ− =0 rad,

φ+ =0 rad.

(4.26)
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As a consequence, the parity asymmetry is expected to be zero in this simulation
sample. However, maximal parity violation can be introduced by setting the strong
phase values to φ± =±π/2. This is done in a similar way as in Hammer, by calculating
the total decay rate using the truth level kinematics with and without the nonzero
strong phase and taking the ratio as a weight. The background is then partially recon-
structed as B 0→ D∗−µ+νµ signal and the asymmetry templates are obtained. Fig. 4.25
and 4.26 show the 2D density, 2D and flattened 1D sinχ and sin2χ parity asymmetries
together with the result of the fit with the RH and PT templates for the unweighted
(zero parity violation) and the weighted (maximal parity violation) samples. We note
that most of the events in this background are present in the low cosθℓ region. The
fitted values of the Im(gR ) and Im(gP g∗

T ) couplings for the two samples are given in
Tab. 4.19.

Strong phase ∆ Im(gR ) ∆ Im(gP g∗
T )

φ± = 0 −0.0027±0.0045 0.00008±0.00120
φ± =±π

2 0.0011±0.0060 0.0017±0.0017

Table 4.19: Fitted values of the NP couplings from the binned asymmetry fit to the
B 0 → D∗−D∗+

s MC sample with different strong phase values.

The results of the fit show that there is no significant bias in the NP couplings coming
from this background even in the case where maximal parity violation was introduced
in the amplitude. This result could be explained by the fact that since the photon is
not reconstructed and its degrees of freedom are integrated out, the parity violating
effect coming from the two-body decays of the two vector mesons is cancelled out.
Nevertheless, the numbers shown in Tab. 4.25 have to be corrected by the fraction of
background double charm decays in the data sample. The final values for the bias and
for the assigned systematic uncertainty for this background are given in Chapter 5.

Other double charm partially reconstructed backgrounds, such as B → D∗Dsπ

or B → D (∗)D∗K contribute at the percent or subpercent level and any P- or CP-
violating effects coming from them are expected to be negligible and are therefore not
considered.
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Figure 4.25: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the unweighted B 0 → D∗−D∗+

s simulation sample
(no parity violation). Figures (d) and (e) also show the result of the best fit
in green using the RH and PT templates.
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Figure 4.26: Binned density (a), binned 2D parity asymmetries (b,c) and flattened
1D parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ)
bins integrated over q2 for the weighted B 0 → D∗−D∗+

s simulation sample
(maximal parity violation). Figures (d) and (e) also show the result of the
best fit in green using the RH and PT templates.
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Data-driven backgrounds

In order to estimate the biases on the NP couplings that may arise from the non-
physical backgrounds, the three samples derived from data described in Sec. 4.3.2,
i.e. the misID and the true- and fake-D∗ combinatorics, are used to build the sinχ
and sin2χ asymmetries and fit them with the RH and PT template model. Unlike
the previously discussed backgrounds which only affected the parity asymmetry,
since these are not physical backgrounds, they may contribute in both P and CP
asymmetries. Fig. 4.27-4.32 show the 2D densities, 2D asymmetries and 1D flattened
asymmetries for the three samples for both parity and CP templates. The results of
the fit are given in Tab. 4.20 and Tab. 4.21. The misID sample shows a small bias of less
than 2 sigma in both Im(gR ) and Im(gP g∗

T ) in the CP asymmetry case and in Im(gR )
only for the P asymmetry. In addition, the true D∗ combinatorial sample shows a
bias less than 2 sigma in Im(gR ) in both CP and P asymmetries with no bias seen in
Im(gP g∗

T ). The fake D∗ combinatorial shows no bias in either Im(gR ) or Im(gP g∗
T ).

Nevertheless, the magnitudes of these biases have to be normalised to the number of
background events found in the data sample. The contributions of these backgrounds
were determined by the fit discussed in Sec. 4.3 and the measured fractions are used
to place upper limit values on the systematic bias coming from them. The final values
for the bias and for the assigned systematic uncertainties due to the three data-driven
backgrounds are given in Chapter 5.

Bias source ∆ Im(gR ) ∆ Im(gP g∗
T )

misID −0.0105±0.0046 0.0007±0.0011
Fake D∗ comb −0.0008±0.0208 0.0049±0.0049
True D∗ comb 0.0190±0.0099 −0.0023±0.0027

Table 4.20: Fitted values of the NP couplings from the binned parity asymmetry fit to
the three data derived samples

Bias source ∆ Im(gR ) ∆ Im(gP g∗
T )

misID −0.0070±0.0046 0.0022±0.0012
Fake D∗ comb 0.0198±0.0208 0.0019±0.0049
True D∗ comb 0.0134±0.0099 0.00006±0.00273

Table 4.21: Fitted values of the NP couplings from the binned CP asymmetry fit to the
three data derived samples
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Figure 4.27: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the misID sample. Figures (d) and (e) also show the
result of the best fit in green using the RH and PT templates.
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Figure 4.28: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the misID sample. Figures (d) and (e) also show the
result of the best fit in green using the RH and PT templates.
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Figure 4.29: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the fake D∗ sample. Figures (d) and (e) also show
the result of the best fit in green using the RH and PT templates.
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Figure 4.30: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the fake D∗ sample. Figures (d) and (e) also show
the result of the best fit in green using the RH and PT templates.
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Figure 4.31: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the true D∗ sample. Figures (d) and (e) also show
the result of the best fit in green using the RH and PT templates.
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Figure 4.32: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the true D∗ sample. Figures (d) and (e) also show
the result of the best fit in green using the RH and PT templates.
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4.6.2 P-odd instrumentation effects
The angular terms studied in this analysis are parity-odd in nature since they are
proportional to sinχ and sin2χ where the χ angle is intrinsically a parity-odd quantity.
Therefore any chiral, i.e. asymmetric with respect to its mirror image, effect in the re-
construction procedure such as detector misalignments or reconstruction efficiencies
that are not parity-even can introduce fake P-odd contributions in the reconstructed
angular distribution. In particular, these effects can cause a bias in the χ angle and
can therefore bias the measurement of the NP couplings.

The reconstructed distribution of events is given by the product of the total ab-
solute amplitude squared which depends on kinematics and the total track recon-
struction efficiency which depends on the track parameters, i.e. |M (Θ⃗(⃗τ(k)))|2ε(⃗τ(k))9

with k looping over the four final state charged tracks π,K ,µ,πS . Here the vector
Θ⃗= (θD ,θℓ,χ, q2) describes the kinematics and τ⃗= (x0, y0, tx , ty ,1/p) is the vector of
reconstructed charged track parameters where x0, y0 are the track coordinates in the
x-y plane at z = 0, tx , ty are the track slopes defined as tx,y = px,y

p and p is the momen-

tum of the charged track. The total amplitude M (⃗τ(k)) is invariant under rotations
of the azmithual angle φ ∈ [−π,π] around the z-axis, i.e. rotations in the x-y plane,
defined as

φ= arctan
tx

ty
. (4.27)

However, if the efficiency ε(⃗τ(k)) contains terms that do not average out after in-
tegration over φ, this can influence the observable density and can give rise to fake
parity-odd terms in the angular distribution. More specifically, the sinχ angle can be
expressed in the lab frame in spherical coordinates as

sinχ= ∑
i ̸= j

Si j · sin
(
φi −φ j

)
, (4.28)

where i , j label the B and the final state tracks i , j ∈ {B ,K ,π,µ,πS}, φi is the az-
imuthal angle of particle i as defined in Eq. 4.27 and Si j are parity-even functions of
the kinematics. Terms in the efficiency that are functions of sin

(
φi −φ j

)
can thus give

rise to a bias in sinχ. Possible instrumentation effects include:

• VELO misalignment or VELO efficiency can produce terms such as sin
(
φB −φi

)
.

These are single track efficiency terms.

• Tracking efficiency that has different dependence on φ for different particle
species, i.e. PID efficiency, can produce terms such as sin

(
φi −φ j

)
with i ̸= j ̸= B .

These are two-track efficiency terms.

9The kinematic parameters are a function of the reconstructed track parameters so in principle we
can write M (Θ⃗(⃗τ(k))) =M (⃗τ(k))
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These instrumentation effects are studied in the following sections, and the asym-
metry bias arising from them is estimated and used to assign upper limit systematic
uncertainties.

x

y
[⃗r × t⃗ ]z < 0

x

y

[⃗r × t⃗ ]z > 0

Figure 4.33: Illustration of“Left-handed” and “right-handed” bias in the track parame-
ters relative to the original production point at x = y = 0.

4.6.2.1 VELO misalignment

Since the reconstruction of the kinematic parameters in the B 0 → D∗−µ+νµ decay
at LHCb relies on the vertex position information from the VELO subdetector, mis-
alignments of the VELO can introduce biases in the reconstructed parameters. The
reconstruction procedure was discussed in Sec. 4.2. More specifically, these misalign-
ments can systematically bias the tracks left and right with respect to their origin,
i.e. bias the impact parameter of the tracks either left or right with respect to the PV,
as illustrated in Fig. 4.33. This will induce a parity-odd effect in the reconstruction
of the kinematic parameters, in particular in the χ angle which in turn will bias the
asymmetries and the NP couplings.

A description of the VELO detector was given in Sec. 3.2.1. It consists of two movable
halves that are retracted at each fill and then closed when the beams are stable. In
Run 2, the VELO alignment procedure calibrates the positions of the two halves after
each fill. The misalignment of the two halves with respect to each other can introduce
a significant uncertainty in the relative positions between the secondary and primary
vertex and consequently in the reconstruction of the P-odd quantity χ. Misalignments
of the VELO as a whole do not affect the relative vertex position measurements and
thus are not considered here.

The VELO alignment procedure calibrates the positions of the two VELO halves in
terms of six degrees of freedom: three translations and three rotations around the
x, y, z axes. These misalignment operations are illustrated in Fig. 4.34. The alignment
of the VELO halves is mostly sensitive to Tx translations since this is the axis along
which they are retracted and closed during each fill. An alignment precision of about 5
µm in Tx is reported in [104] using Run 1 data. Out of the six translations and rotations,
the most dangerous ones are Ty and Rx , since they are the only ones that can produce
parity-odd effects in the reconstruction.
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Figure 4.34: Illustration of the six misalignment operations between the two halves of
the VELO, three translations Tx ,Ty ,Tz and three rotations Rx ,Ry ,Rz along
the three axes.

The misalignment is applied in the signal simulation sample by translating or ro-
tating the track parameters in opposite directions for tx > 0 and tx < 0 tracks, i.e. for
tracks with positive and negative slopes. The displaced tracks are then fed to the
kinematic refit algorithm discussed in Sec. 4.2.2 such that the vertices are refitted
and the displacements are propagated to the reconstructed kinematic parameters.
The misalignments introduce a bias in the paremeters such that the new parame-
ters Θ⃗′ = Θ⃗+δΘ⃗ are reconstructed. Since the asymmetry templates are obtained by
reweighting the cosθℓvs.cosθD 2D binned density with the sinχ and sin2χ weights,
the bias in χ due to any of the six misalignments will introduce a bias in the asymmetry

δA = ∂P

∂χ

∂χ

∂ρk
ρk , (4.29)

where P is either sinχ or sin2χ and ρk is the magnitude of one of the translation or
rotation operations. As such, the following weights are used instead of sinχ and sin2χ
to obtain the 2D asymmetries

wsinχ =cosχ(χρk −χ)
ρk

∆ρk
,

wsin2χ =2cos2χ(χρk −χ)
ρk

∆ρk
,

(4.30)

where the cosχ and cos2χ terms come from the ∂P/∂χ term in Eq. 4.29, the (χρk −
χ)/∆ρk term is the finite difference estimate of ∂χ/∂ρk and χρk is the misaligned
χ angle due to operation k. Once ∂χ/∂ρk is calculated in the simulation using an
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arbitrary small misalignment ∆ρk , the effect of a misalignment with any magnitude
can then be obtained by multiplying by ρk .

The effect of the misalignment on the asymmetries is evaluated using SM signal
simulation where the misalignment values shown in Tab. 4.22 are applied and the
weights given in Eq. 4.30 are used. The estimates of the Tx and Ty alignment precision
given in 4.22 are obtained via a data-driven study using a B+ → J/ψK + control sample
which is described in the next section. In particular, for the dangerous parity-odd
Ty operation, a misalignment of about 2 µm is found. Six misaligned simulation
samples are thus obtained and used to construct the asymmetries, fit them with the
NP template model and extract the bias on the NP couplings in the same way as for
the various background samples in the previous sections.

The results of the fit to the six samples for parity and CP asymmetries are sum-
marized in Tab. 4.24 and 4.23. The Ty and Rx are the only P-odd operations so it is
expected that they will be the largest source of bias. Indeed, in the CP asymmetries
case, the Ty misalignment shows the largest bias in both Im(gR ) and Im(gP g∗

T ) cou-
plings, while the Rx misalignment shows no significant bias in either of the two NP
couplings. In the case of parity asymmetries, no significant bias is observed due to any
of the misalignment operations. The fact that the Ty misalignment bias in the CP case
is one order of magnitude larger than in the parity case can be understood using the
following argument. The CP asymmetry is the sum of the B and B components and
does not keep track of the flavor of the B , while the parity asymmetry takes the flavor
of the B into account. Since the tracking and vertexing in the VELO is insensitive to the
charges of the tracks, i.e. there is no magnetic field inside the VELO, it is not surprising
that the bias is more significant in the CP asymmetry case. Fig. 4.35 and 4.36 show the
2D and fitted 1D CP and parity asymmetries in the case of Ty misalignment of 2 µm.
The asymmetry plots for the other five misalignment samples are given in Appendix
B . The asymmetries due to Ty misalignment have a different pattern than the ones
generated in the NP cases and their contribution can in principle be determined by
including them as an independent component in the fit to data. However, for the
purposes of this thesis, a systematic uncertainty is assigned based on the bias in the
NP couplings determined by the fit.

Operation Value (ρk )

Tx 5 µm
Ty 2 µm
Tz 10 µm
Rx,y 100 µ rad
Rz 1 m rad

Table 4.22: Misalignment values applied in simulation
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Translation/rotation ∆ Im(gR ) ∆ Im(gP g∗
T )

Tx −0.00049±0.00084 0.00007±0.00024
Ty −0.00037±0.00084 0.00002±0.00024
Tz −0.00062±0.00085 0.00002±0.00024
Rx 0.00022±0.00084 0.00001±0.00024
Ry −0.00015±0.00084 −0.00004±0.00024
Rz −0.00025±0.00084 0.00002±0.00024

Table 4.23: Fitted values of the NP couplings from the binned parity asymmetry fit for
the translational and rotational components of VELO halves misalignment

Translation/rotation ∆ Im(gR ) ∆ Im(gP g∗
T )

Tx −0.00004±0.00084 −0.00007±0.00022
Ty −0.00374±0.00084 −0.00031±0.00023
Tz 0.00019±0.00084 −0.00007±0.00023
Rx −0.00022±0.00084 −0.00004±0.00023
Ry −0.00026±0.00085 −0.00005±0.00023
Rz −0.00152±0.00084 −0.00021±0.00023

Table 4.24: Fitted values of the NP couplings from the binned CP asymmetry fit for the
translational and rotational components of VELO halves misalignment
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Figure 4.35: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the Ty misalignment B 0 → D∗−µ+νµ simulation
sample. Figures (d) and (e) also show the result of the best fit in green
using the RH and PT templates.
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Figure 4.36: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the Ty misalignment B 0 → D∗−µ+νµ simulation
sample. Figures (d) and (e) also show the result of the best fit in green
using the RH and PT templates.
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VELO misalignment calibration

In order to understand the magnitude of the VELO misalignments and correct for them,
in particular with respect to the (parity-odd) Ty translation, a fully reconstructed,
high-statistics data control sample of B+ → J/ψ[→ µ+µ−]K + decays is used. The
misalignment of the two VELO halves with respect to each other in the x-y plane
can introduce a “left-right” asymmetry in the vertex positions, which can introduce a
parity-odd effect in the reconstruction of the kinematic parameters and will ultimately
bias the measurement of the CP-violating variables, as discussed in the previous
section. The bias in the position of the PV reconstructed using tracks passing entirely
through either the left of the right VELO halves introduced by the misalignment of the
two VELO halves along the x-axis is illustrated in Fig. 4.37.

Left A-side

Right C-side

Figure 4.37: Reconstruction of the same PV using tracks flying separately in each VELO
half. The misalignment along the x-axis introduces a bias in the vertex
position.

The signed impact parameter (SIP) of the B in the x − y plane, i.e. its z-component,
can be used as a measure of the systematic bias either left or right with respect to the
PV and is defined as:

SI P = [⃗r × n⃗]z = (xBV −xPV )
py

pT
− (yBV − yPV )

px

pT
, (4.31)

where r⃗ = (xBV − xPV , yBV − yPV , zBV − zPV ), n⃗ = ( px
pT

,
py

pT
, pz

pT
) and (xBV , yBV ) are the

coordinates of the B decay vertex, (xPV , yPV ) are the coordinates of the primary vertex
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and (pT , px , py ) are the B meson transverse momentum and its x − y components.
The SI P defined in Eq. 4.31 is a parity-odd quantity and in the ideal case of no mis-
alignments or any other parity-odd effects in reconstruction efficiency, this quantity is
expected to be zero on average. The dependence of the SI P parameter on the angle
φ of the B candidate (defined in Eq. 4.27) consists of two sinusoids with different
phases and amplitudes in general, for φ > 0 and φ < 0. In addition, there exists a
transitional region between the two sinusoids which consists of B decays where tracks
are reconstructed in both VELO halves. The dependence is shown in Fig. 4.38 using all
events for the 2016 MagDown data sample.
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Figure 4.38: 2D event density in SI P vs. φ (a) and SI P as a function of φ (b) for the
2016 MagDown B+ → J/ψK + data sample

Although after averaging out over φ only a small bias remains in 〈SI P〉 (up to 1 µm),
large variations with φ of up to 5 µm are observed in data. This result indicates the
misalignment of the two VELO halves with respect to the axes of the x-y plane. In
the case of the B+ → J/ψK + simulation sample, the SI P as a function of φ shows no
significant bias indicating that there is no misalignment present in simulation, i.e.
simulation and reconstruction use the same VELO coordinates. This is shown in Fig.
4.39 for the 2016 MagDown simulation sample.
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Figure 4.39: 2D event density in SI P vs. φ (a) and SI P as a function of φ (b) for the
2016 MagDown B+ → J/ψK + simulation sample

Since the SI P has a sinusoidal dependence on the angle φ of B candidate, the
dependence can be parametrized in the following way

SI P (φ;∆x,∆y) =
√
∆x2 +∆y2 cos

(
φ−atan2(∆y,−∆x)

)
, (4.32)

where the ∆x and ∆y parameters are the misalignment biases of the VELO halves
along the x and y axes. A fit is performed in order to determine these bias parameters
by minimizing the following χ2 function

χ2 =∑
i

(yi −SI P (φ;∆x,∆y))2

σ2
i

, (4.33)

where yi and σi are the observed SI P values as a function of φ and their uncer-
tainties and SI P (φ;∆x,∆y) is the function defined in Eq. 4.32. The fit is performed
separately on events where all tracks are reconstructed purely in either left or right
VELO halves, as shown in Fig. 4.40. Therefore, the misalignment biases are obtained
separately for the left (∆x−,∆y−) and right (∆x+,∆y+) VELO halves. In addition, the
points in the transitional region around φ = 0 and φ = ±π, i.e. B candidates flying
“up” and “down”, are not included in the fit since these points have low statistics and
most of the B candidates in these regions have tracks which do not pass exclusively
through one half only. These regions are therefore difficult to parametrize and are
excluded from the fit. The fit results for the different data taking years of Run 1 and
Run 2 B+ → J/ψK + data samples across the two magnet polarities are given in Tab.
4.25. The results show that the direction of the bias is consistent across all years and
smaller in Run 1 than in Run 2 samples. The values of the misalignment biases are on
average about 5 µm along the x-axis and 1-2 µm along the y-axis. The results indicate
that the misalignment is present mostly along x since this is the direction along which
the two halves are opened and closed during each fill, while the misalignment along y
is several times smaller.

165



100 0 100
( )

40

20

0

20

40
SI

P 
(

m
)

0

50

100

150

200

250 E
nt

ri
es(a)

100 0 100
 ( )

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

SI
P 

(
m

)

(b)

Figure 4.40: 2D event density in SI P vs. φ (a) and SI P as a function of φ (b) for the
2016 MagDown B+ → J/ψK + data sample with tracks reconstructed entirely
in either left or right VELO halves. The fit result, separate for each half, is
shown in red.

Polarity Shift 11 12 16 17 18
MagDown ∆x+ −4.51±0.25 −3.24±0.18 −5.82±0.14 −7.46±0.13 −6.81±0.12

∆y+ −0.44±0.09 −0.45±0.06 −0.15±0.05 −0.54±0.04 −0.72±0.04
∆x− 2.71±0.24 1.79±0.18 4.53±0.14 5.58±0.13 5.73±0.11
∆y− −0.92±0.09 1.58±0.06 1.56±0.05 1.87±0.04 1.19±0.04

MagUp ∆x+ −4.02±0.30 −2.42±0.18 −5.67±0.14 −6.93±0.13 −6.92±0.11
∆y+ −0.56±0.10 −0.46±0.06 0.40±0.05 −0.32±0.05 −0.33±0.04
∆x− 2.47±0.29 1.33±0.18 4.11±0.14 5.91±0.13 5.77±0.11
∆y− −0.44±0.10 1.63±0.06 1.11±0.05 1.30±0.05 0.49±0.04

Table 4.25: Fitted values of the misalignment biases in left and right VELO halves for
the different years and magnet polarities of Run 1 and Run 2. All values are
given in µm.

In order to correct for this effect, a procedure similar to the one described in Sec.
4.2 is implemented where each track state is shifted by either the (∆x+, ∆y+) or (∆x−,
∆y−) amounts determined by the fit (depending on which VELO half the track belongs
to). The DecayTreeFitter algorithm is then used to refit the B vertex (the PV is not
refitted since it is assumed that the shifts of the two VELO halves average out for a large
number of tracks) and thus obtain a corrected set of coordinates for the B vertex. Using
these corrected BV coordinates the SI P (Eq. 4.31) is recalculated and its dependence
on φ is plotted. Fig. 4.41 shows the 2016 MagDown B+ → J/ψK + data sample after the
misalignment correction (the same plot before the correction was shown in Fig. 4.38).
The figure shows that the bias is mostly removed and the remaining bias is < 1µm.
The SI P vs. φ plots before and after applying the corrections with shifted track states
for the rest of the Run 1 and Run 2 B+ → J/ψK + control data samples are given in
Appendix D .
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Figure 4.41: 2D event density in SI P vs.φ (a) and SI P as a function ofφ (b) for the 2016
MagDown B+ → J/ψK + data sample after correcting for the misalignment
of the VELO

During Run 2, the alignment of the VELO was performed online, i.e. after the two
halves of the VELO have been closed. The positions of the VELO halves are calibrated
automatically at the beggining of each fill and as data is being recorded by LHCb, the
positions are updated online if the variations with respect to either of the six alignment
operations exceed a specific threshold. In particular, for the Tx and Ty translations,
the threshold is 1.5 µm. An LHC fill lasts about 12h, however the LHCb data-taking
scheme consists of runs, which typically last about one hour. Therefore, during one
fill, the data collected by LHCb is split into several runs indexed by the so-called run
number. Consequently, as the alignment is run online while data is being collected,
the positions of the VELO halves can vary with different run numbers. Fig. 4.42 shows
the SI P vs. φ dependence for the 2018 MagUp B+ → J/ψK + samples corresponding
to different run numbers. The motivation for choosing the specific run numbers
shown in Fig. 4.42 is that the VELO calibration procedure was changed between
them and whether this has any effect on the misalignment. The distributions show
that the misalignment does not have a significant dependence on the run number.
An additional check was performed to determine whether the VELO misalignment
depends on the time passed since the start of the fill, i.e. if the VELO halves are moving
during the fill. The SI P vs. φ dependence for different fill times is shown in Fig. 4.43
where it can be seen that the time during the fill does not have a significant impact on
the misalignment of the two VELO halves.
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Figure 4.42: SI P vs. φ dependence for the 2018 MagUp B+ → J/ψK + data sample for
run number < 210500 (top) and run number > 211500 (bottom) before
(left) and after (right) correcting for the misalignment of the VELO
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Figure 4.43: SI P vs. φ dependence for the 2018 MagUp B+ → J/ψK + data sample for fill
time < 10e3 seconds (top), fill time ∈ (30e3,60e3) seconds (middle) and
fill time > 80e3 seconds (bottom) before (left) and after (right) correcting
for the misalignment of the VELO
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4.6.2.2 P-odd effects in reconstruction efficiency

Besides the relative misalignment of the VELO halves, another instrumentation effect
that can produce fake parity-odd terms in the reconstructed angular distribution
is non-uniform reconstruction efficiency. That is, if the efficiency contains terms
proportional to parity-odd quantities that can bias the parity-odd sinχ variable and
thus bias the NP couplings. These effects can appear in either single track or two-track
efficiency terms as follows:

• Single track efficiency terms. These terms can appear if the track efficiency de-
pends on both the impact parameter, i.e. the track coordinates at the origin, and
the direction of the track. If the efficiency depends on the parity-odd cross prod-
uct [⃗r × t⃗ ] then it would affect differently left-handed and right-handed tracks
(see Fig. 4.33) and would introduce a parity-odd effect in the reconstructed an-
gular distribution. This effect can appear in the VELO reconstruction efficiency
since it is the only detector element that provides information on both track
origin coordinates and direction. With respect to Eq. 4.28, this effect produces
terms of the type sin

(
φB −φi

)
with i being a final state particle.

• Two-track efficiency terms. These terms can appear if the tracking efficiency
depends on the track direction t⃗ (but not on r⃗ ) and this dependence is different
for different particle species. This effect can come from the efficiency of the PID
detector elements and would produce terms of the type sin

(
φi −φ j

)
where i , j

are different final state tracks. In addition, asymmetries in the opening angle ∆φ
between two tracks could also introduce terms proportional to sin

(
φi −φ j

)
.

In order to understand the effects of these potential parity-odd terms in the track
reconstruction efficiency, a data control sample of B 0 → D−µ+νµ decays is used, where
the D− is reconstructed as D− → K +π−π−. The control decay is reconstructed at LHCb
as D−µ+ combinations in a similar way as the signal decay. The same 2016, 2017 and
2018 data samples are used and the event selection closely follows the signal case
in terms of trigger, stripping and offline selection. The trigger path required for the
control data sample is exactly the same as for the signal sample. The stripping line
used in the control sample case is b2DpMuXB2DMuForTauMuLine which is identical to
the line used in the signal case (given in Tab. 4.5) with the only exception that the
cuts applied to the D0 and D0µ combination are applied to D− and D−µ combination
instead. The offline selection applied to the control sample is the same as the one
given in Tab. 4.6 for the signal, except the cuts on the D∗ and D∗µ candidates, which
are not applicable and the cuts on the D0 are applied to the D− candidate instead.
After all selection criteria have been passed, the combined control data sample over
the three years consists of about 9 million events which is about three times the size
of the signal data sample.

This control sample was chosen as it closely resembles the signal B 0→ D∗−µ+νµ
decay, but since it consists of two three-body decays and the D− is a scalar meson, i.e.
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it has zero spin, it can not produce any parity or CP-violating effects. Consequently,
in this control sample, any observed P-odd effect has to come from the P-odd ef-
fects in the track reconstruction efficiency discussed above. The largest background
contribution in the B 0 → D−µ+νµ data sample comes from B 0 → D∗−µ+νµ decays
where D∗− → D−π0/γ. Nevertheless, even if the NP that produces CP violation in
B 0→ D∗−µ+νµ is present, the kinematic parameter distributions will remain parity-
even since the degrees of freedom of the unreconstructedπ0 or γwill be integrated out.
Therefore, this control sample can be used without the need to remove the background
of D− coming from excited charm decays.

The B 0 → D−µ+νµ decay has the same final state particles as the signal decay, i.e.
K +π−π−µ+. The pion that gives the lower K +π− invariant mass is used as a slow pion
proxy, i.e. the pion coming from the D∗− → D0π− decay, while the other pion is used
to form the K +π− combination that serves as the D0 proxy. Finally, with these proxies
defined, the kinematic parameters q2,θℓ,θD and χ can be calculated. It is important
to note that the distributions of these variables, and in particular of the angle χ, should
be completely parity-even. The sinχ and sin2χ asymmetry templates can thus be
obtained and fitted to extract the bias in the NP couplings. To simulate the possible
parity-odd effects in the efficiency, the following weights are applied in addition to the
sinχ and sin2χ weights when creating the asymmetry templates:

• “Left-right” asymmetry in track efficiency (single track): Efficiency weight
ε= sign[⃗r × t⃗ ]z , where [⃗r × t⃗ ]z = (x0ty − y0tx)

• [⃗r × t⃗ ] term in track efficiency (single track): Efficiency weight ε= [⃗r × t⃗ ]z /1 mm.

• φ dependence of track efficiency (two-track): Efficiency weight ε= sinφi cosφ j .

• ∆φ dependence of track pair efficiency (two-track): Efficiency weight ε =
sin

(
φi −φ j

)
.

These efficiency weights are O (1) such that they should be much larger than the
actual P-odd effects that may appear in data. The effect of the P-odd efficiency weights
is studied in both control data and signal MC samples. The samples are splitted by
the two B 0 and B 0 flavors and by the MagUp and MagDown magnet polarities such
that four sub-samples are obtained for each of the two samples. The asymmetries
are then fitted to obtain the NP couplings bias in these four categories. The reason
behind the splitting is that the efficiency may depend on the curvature of the track,
and consequently the dependence on φ might be different for B 0 and B 0 and MagUp
and MagDown. Therefore, these categories have to be studied separately in order to
check whether they may lead to a cancellation of the bias in the control channel when
looking at the full sample.

The 2D and flattened 1D CP asymmetries in the signal and control samples due to
the [⃗r × t⃗ ]z term in µ single track efficiency and the sinφµ cosφπs two-track efficiency
term are shown in Fig. 4.44 and 4.45 for the B 0 and MagDown category. The figures
demonstrate that both the single track and two-track P-odd efficiency terms of O (1)
introduce nonzero contributions to the asymmetry in both signal and control samples.
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Figure 4.44: CP Asymmetry due to the µ single track [⃗r × t⃗ ]z term. Comparison of
the MC signal sample (left plots) and data control sample (right plots).
(a,b,e,f) 2D binned asymmetries and (c,d,g,h) the corresponding flattened
asymmetries for (a-d) sinχ and (e-h) sin2χ asymmetry terms. The green
solid line in plots (c,d,g,h) is the result of the template fit.
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Figure 4.45: CP asymmetry due to the two-track term sinφµ sinφπs . Comparison of
the MC signal sample (left plots) and data control sample (right plots).
(a,b,e,f) 2D binned asymmetries and (c,d,g,h) the corresponding flattened
asymmetries for (a-d) sinχ and (e-h) sin2χ asymmetry terms. The green
solid line in plots (c,d,g,h) is the result of the template fit.
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Template fits are performed and biases in the two NP couplings are extracted using
the four efficiency weights listed above for all possible single track and two-track
combinations in the four categories. The biases on Im(gR ) are shown in Fig. 4.46
and 4.47, while the biases on Im(gP g∗

T ) are shown in Fig. 4.48 and 4.49. It can be
seen that the biases in the control and signal samples are consistent with each other
across all four categories indicating that the two samples behave in a similar way
under all the P-odd efficiency weights and that the bias would not cancel out when
looking at the full sample. In addition, the fact that the control sample shows a larger
bias in both Im(gR ) and Im(gP g∗

T ) across almost all the P-odd effects suggests that
the potential bias extracted from the control sample can be used as an upper limit
systematic uncertainty in the signal sample.

In the ideal case, the systematic uncertainty in the signal sample due to any P-odd
effecs in the efficiency could be estimated by fitting the control sample and using the
extracted bias on the NP couplings to assign the systematic. However, since kinematic
and topological distributions of the two samples are not fully compatible, the bias
extracted from the control sample should not be used directly to assign a systematic
uncertainty in the signal sample. Consequently, the control sample bias must be
studied as a function of those kinematic and topological variables and a suitable way
to extrapolate this information to the signal sample must be used.

As expected, the largest differences between the control and signal samples are
in the kinematic and topological variables related to the D0 and πs , since these are
the particles that are approximated in the control sample. The distributions of the
M(K −π+), pT(K −π+), pT(πs) and χ2

IP(πs) variables are shown in Fig. 4.50. A compar-
ison of other kinematic and topological variables between the two samples can be
found in Appendix C .

The invariant mass of the K +π− combination, i.e. the D0 proxy, in the case of the
control sample is a broad distribution going up to about 1800 MeV, just before the
actual D0 mass, while in the case of the signal sample with a real D0 meson, the
distribution is a delta function at the D0 mass. The pT distribution of the real D0 in
the signal sample is softer than the pT distribution of the K +π− combination in the
control sample. The distribution of the pT distribution of the proxy πs is much softer
than in the real πs case. Since the proxy πs comes from the D− decay, i.e. from a
tertiary vertex, whereas the real πs in the signal decay comes from a secondary vertex,
a large difference in the topological variable χ2

IP(πs) is observed. The NP couplings
biases in the control and signal samples are thus studied in bins of various kinematic
and topological variables in the four categories split by B 0 flavor and magnet polarity.
As an example, the control and signal bias in Im(gR ) in bins of pT(K +π−) is shown
in Fig. 4.51 in the four categories. The biases in the two NP couplings as a function
of other variables for signal an control samples are shown in Appendix E . We note
that these biases are due to the control and signal samples themselves, i.e. no P-odd
efficiencies are applied. The biases show no trends in any of the investigated variables,
are consistent across the four categories and are mostly consistent with zero. In this
case, the results of the control sample bias may still be translated into the signal bias
even if the kinematic distributions do not match between the two samples.
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Figure 4.46: Im(gR ) biases due to all P-odd efficiency weights for signal (orange) and
control (blue) samples in the MagDown B 0 (top) and B 0 (bottom) cate-
gories.
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Figure 4.47: Im(gR ) biases due to all P-odd efficiency weights for signal (orange) and
control (blue) samples in the MagUp B 0 (top) and B 0 (bottom) categories.
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Figure 4.48: Im(gP g∗
T ) biases due to all P-odd efficiency weights for signal (orange)

and control (blue) samples in the MagDown B 0 (top) and B 0 (bottom) cate-
gories.
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Figure 4.49: Im(gP g∗
T ) biases due to all P-odd efficiency weights for signal (orange) and

control (blue) samples in the MagUp B 0 (top) and B 0 (bottom) categories.
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Figure 4.50: Comparison of the M(K +π−), pT(K +π−), pT(πs),χ2
IP(πs) variables be-

tween the signal and control samples.
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Figure 4.51: Im(gR ) bias for signal (orange) and control (blue) samples in bins of
pT(K +π−) across the four categories
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Figure 4.52: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B 0 → D−µ+νµ control data sample. Figures (d)
and (e) also show the result of the best fit in green using the RH and PT
templates.
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Figure 4.53: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D
CP asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B 0 → D−µ+νµ control data sample. Figures (d)
and (e) also show the result of the best fit in green using the RH and PT
templates.
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The 2D cosθℓvs.cosθD density, the 2D and the fitted 1D flattened parity and CP
asymmetries in the B 0 → D−µ+νµ control data sample are shown in Fig. 4.52 and 4.53.
Due to the difference in kinematics, the control sample cosθℓvs.cosθD distribution is
different than the one in the signal sample (e.g. Fig. 4.19). The results of the template
fit are given in Tab. 4.26. No bias is observed in any of the two NP couplings in the
control sample in either parity- or CP asymmetry.

Asymmetry ∆ Im(gR ) ∆ Im(gP g∗
T )

Parity −0.0011±0.0017 0.0002±0.0004
CP 0.0006±0.0017 0.0001±0.0004

Table 4.26: Fitted values of the NP couplings from the binned parity and CP asymmetry
fit to the B 0 → D−µ+νµ control data sample

The study presented in this section of possible P-odd efficiencies in the reconstruc-
tion can be summarized in the following way:

1. We use signal MC and control data samples and apply (large) P-odd weights to
them. We fit the NP couplings (in 4 categories to make sure the bias does not
cancel out when looking at the full sample) and obtain the bias due to the P-odd
efficiency weights.

2. We show that the control and signal samples behave similarly under these effi-
ciency weights and have similar patterns across the 4 categories. In addition,
the bias in the control sample is larger than the signal one in almost all cases. It
is also important that there is no P-odd weight for which there is a bias in the
signal but not in the control. If that would be the case, then for that particular
efficiency term we would not be able to extrapolate from control to signal.

3. We fit the NP couplings in the control sample itself (without any efficiency
weights). If there are any P-odd efficiency effects in real data, there will be a bias
in the control sample fit. Since the bias seen in the control (with the efficiency
weights) is (almost) always larger than the signal one, the bias extracted from
the fit to the control sample (without the efficiency weights) can be used as an
upper limit to assign systematic in the signal.

4. We present the results of the control sample fit to be consistent with zero. This
result is used to assign the systematic uncertainty in the signal sample as is
shown in the results section in Chapter 5.
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5 Results

The magnitudes of the systematic biases coming from all P-odd background and
instrumentation effects are summarized in Tab. 5.1 and 5.2 for the parity and CP
asymmetries, respectively. The biases coming from P-odd effects in backgrounds are
corrected by their fractions in data as determined by the template fit results presented
in Sec. 4.3.3. As discussed in Sec. 4.6.1, the biases coming from the semileptonic and
double charm backgrounds affect only the parity asymmetries.

Bias source ∆ Im(gR ) ∆ Im(gP g∗
T )

Misid (−0.68±0.30)×10−3 (0.46±0.72)×10−4

Fake D∗ comb (−0.01±0.17)×10−3 (0.41±0.42)×10−4

True D∗ comb (1.05±0.55)×10−3 (−1.27±1.50)×10−4

B− → D∗∗+µ−ν̄µ (8.68±0.31)×10−3 (2.55±0.87)×10−4

B 0 → D∗+D∗−
s (0.05±0.27)×10−3 (0.79±0.79)×10−4

Ty 2µm misalignment (−0.37±0.85)×10−3 (0.20±2.39)×10−4

Control sample (−1.10±1.70)×10−3 (2.00±4.00)×10−4

Table 5.1: Overview of systematic biases in the case of parity asymmetries

Bias source ∆ Im(gR ) ∆ Im(gP g∗
T )

Misid (−0.46±0.30)×10−3 (1.44±0.78)×10−4

Fake D∗ comb (0.17±0.18)×10−3 (0.16±0.41)×10−4

True D∗ comb (0.74±0.55)×10−3 (0.03±1.51)×10−4

Ty 2µm misalignment (−3.74±0.84)×10−3 (3.10±2.39)×10−4

Control sample (0.60±1.70)×10−3 (1.00±4.00)×10−4

Table 5.2: Overview of systematic bias in the case of CP asymmetries
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The systematic uncertainty due to each effect is assigned using the 90% percentile
of the bias according to the following formula:

σsyst = |µbias|+1.28σbias (5.1)

The final values of the systematic uncertainties for the parity and CP asymmetries
are reported in Tab. 5.3 and 5.4. The dominant systematic uncertainty in the case of
CP asymmetries is due to the Ty misalignment of the two VELO halves with respect
to each other. The 2 µm misalignment used in the simulation to estimate the bias is
obtained in a data-driven way using a B+ → J/ψK + control sample.

Assigned systematic ∆ Im(gR ) ∆ Im(gP g∗
T )

Misid 1.07×10−3 1.38×10−4

Fake D∗ comb 0.23×10−3 0.96×10−4

True D∗ comb 1.76×10−3 3.20×10−4

B− → D∗∗+µ−ν̄µ 9.64×10−3 3.67×10−4

B 0 → D∗+D∗−
s 0.41×10−3 1.81×10−4

Ty 2µm misalignment 1.44×10−3 3.27×10−4

Control sample 3.27×10−3 7.12×10−4

Total 10.50×10−3 9.55×10−4

Table 5.3: Overview of assigned systematic uncertainties in the case of parity asymme-
tries

Assigned systematic ∆ Im(gR ) ∆ Im(gP g∗
T )

Misid 0.85×10−3 2.45×10−4

Fake D∗ comb 0.40×10−3 0.70×10−4

True D∗ comb 1.45×10−3 1.98×10−4

Ty 2µm misalignment 4.16×10−3 4.33×10−4

Control sample 2.78×10−3 6.12×10−4

Total 5.82×10−3 9.27×10−4

Table 5.4: Overview of assigned systematic uncertainties in the case of CP asymmetries

As argued in Sec. 2.2.3.1, the parity asymmetry in B 0 → D∗−µ+νµ has to be zero.
Fitting the parity asymmetry in the signal data sample serves as an useful cross-check
and any deviation from zero might indicate an unaccounted for source of systematic
bias. Furthermore, since this fit is performed to the full signal data sample, the
statistical uncertainty for the CP asymmetry measurement can be also extracted.
For the purpose of this thesis, the fit to the CP asymmetry, and consequently the
measurement of the Im(gR ) and Im(gP g∗

T ) couplings, is still blinded.
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The 2D cosθℓvs.cosθD density, the 2D parity asymmetry and the template fit to the
flattened 1D parity asymmetry in the signal data sample is shown in Fig. 5.1. The
results of the fit corrected by the fraction of signal events found in data are given in Eq.
5.2.
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Figure 5.1: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B 0→ D∗−µ+νµ signal data sample. Figures (d)
and (e) also show the result of the best fit in green using the RH and PT
templates.
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∆Im(gR ) =−0.0057±0.0051,

∆Im(gP g∗
T ) =−0.0041±0.0013,

(5.2)

where the uncertainty on the couplings represents the statistical uncertainty which
is equally applicable for the CP asymmetry measurement. The statistical uncertainty
achieved with the 2016-2018 Run 2 dataset is found to be 0.51% for the Im(gR ) and
0.13% for Im(gP g∗

T ).
The final results for the parity and the (blinded) CP asymmetry measurements

including the statistical and estimated systematic uncertainties are given in Eqs. 5.3
and 5.4, respectively.

∆Im(gR ) = (−0.57±0.51 (stat.)±1.05 (syst.))%,

∆Im(gP g∗
T ) = (−0.41±0.13 (stat.)±0.10 (syst.))%.

(5.3)

Im(gR ) = (X.XX±0.51 (stat.)±0.58 (syst.))%,

Im(gP g∗
T ) = (X.XX±0.13 (stat.)±0.09 (syst.))%.

(5.4)

The fit results in the parity asymmetry control channel in the case of ∆Im(gP g∗
T )

show a deviation of about 2.5σ from the expected null result even after including both
statistical and systematic uncertainties. This result means that the current systematic
uncertainties are not estimated accurately or that there is a possible unaccounted for
parity-violating effect (e.g. coming from a background). At the time of the writing
of this thesis, this effect is still under investigation. Nevertheless, a check that could
give a clue on the source of this bias is to perform the asymmetry fit in bins of q2.
Thus, depending in which q2 region this bias appears, it could be linked with a type of
background (e.g. the semileptonic and double charm backgrounds that are studied in
this thesis are mostly present in the low-q2 region).
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6 Conclusions and prospects

6.1 Conclusions
The search for CP-violating observables in the semileptonic B 0 → D∗−µ+νµ decay
presented in this thesis is performed on 5.4 fb−1 of data collected by the LHCb experi-
ment during the 2016-2018 years of Run 2 at the LHC. The novel model-independent
method of extracting the parity- and CP-odd terms in the angular distribution of
B 0→ D∗−µ+νµ while cancelling out the parity-even terms and their associated the-
oretical uncertainties is presented. This method gives access to the first direct mea-
surement of two separate New Physics (NP) observables: the imaginary part of the
right-handed vector coupling Im(gR ) and the imaginary part of the interference be-
tween the pseudoscalar and tensor couplings Im(gP g∗

T ).
Approximation techniques are employed to reconstruct the undetectable neutrino

in the B 0 → D∗−µ+νµ final state and thus to reconstruct the kinematic parameters
that describe the angular distribution. In order to improve the resolution on the
kinematic parameters, a full refit of the decay tree that includes all possible kinematic
information (including the approximation of the missing neutrino) and all possible
correlations is implemented for the first time in a semileptonic analysis.

The binned parity- and CP-asymmetries are then obtained from the reconstructed
kinematic parameters. A binned asymmetry template fit with NP templates derived
from simulation is performed in order to extract the values of the NP couplings. In
particular, the CP asymmetries are sensitive to NP while the parity asymmetries are
expected to be zero in either SM or NP and thus serve as a control channel for the
method.

The most significant sources of systematic uncertainties due to parity- and CP-odd
effects in backgrounds and in the reconstruction procedure at LHCb are considered
and upper limits are estimated. These systematic effects are specific to the method
used in this analysis and have not been previously considered in other semileptonic
angular analyses. Therefore, their contributions have been studied and evaluated for
the first time.

The results of the fit to the parity asymmetry as a control channel are unblinded
and are consistent with the expected values within the estimated uncertainties for
one of the couplings while a 2.5σ deviation is found for the other coupling. This
result indicates either a misestimation of the current systematic uncertainties or a
possible unaccounted for parity-violating effect (e.g. coming from a background). At
the time of the writing of this thesis, this effect is still under investigation. The fit to
the CP asymmetries is still blinded and only the statistical and estimated systematic
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uncertainties are reported for the NP observables. The final results for the parity and
the (blinded) CP asymmetry fits are given in Eq. 6.1 and 6.2, respectively.

∆Im(gR ) = (−0.57±0.51 (stat.)±1.05 (syst.))%,

∆Im(gP g∗
T ) = (−0.41±0.13 (stat.)±0.10 (syst.))%.

(6.1)

Im(gR ) = (X.XX±0.51 (stat.)±0.58 (syst.))%,

Im(gP g∗
T ) = (X.XX±0.13 (stat.)±0.09 (syst.))%.

(6.2)

The statistical precision obtained with the method and the used dataset is below 1%
for the Im(gR ) coupling and about 0.1% for the Im(gP g∗

T ) coupling.
The largest systematic bias in the parity asymmetry case comes from the possible

parity-violating effect in the semileptonic B → D∗∗µνµ background. The parity-odd
effects arise from the potential presence of a strong phase in the interference of
different excited charm resonances. The magnitude of this effect is found to be about
two times larger than the statistical precision in the case of Im(gR ) and smaller than the
statistical precision in the case of Im(gP g∗

T ) for the strong phase value that produces
the maximal parity-violating effect.

The largest contribution to the systematic uncertainty in the CP asymmetries and
consequently in the NP observables is found to come from parity-odd instrumen-
tation effects. In particular, it was found that detector misalignments introduce a
systematic bias at the level of the statistical precision in both Im(gR ) and Im(gP g∗

T ).
The other main source of systematic bias is due to potential non-uniform reconstruc-
tion efficiencies at LHCb. A data-driven approach is proposed where a completely
parity- and CP-even sample even in NP scenarios is used to control any parity-odd
contributions in the efficiency. This systematic effect is found to contribute at the
level of the statistical precision in both NP couplings.

6.2 Prospects
The measurement of the NP observables in this analysis is subject to systematic
uncertainties that are at the same level with the statistical uncertainty. Several ways
in which they can be improved are foreseen. The largest systematic uncertainty in
the parity asymmetry case is assigned in a conservative way by considering the value
of the strong phase in B → D∗∗µνµ that produces the maximal parity violation, since
this phase is currently not known. A future measurement of the amplitude structure
of these decays and consequently of the value of the strong phase (if any) will help
estimate this systematic effect more accurately.

The largest systematic due to the VELO detector misalignments in the CP asym-
metries case, and thus in the actual NP couplings measurement, can be mostly cor-
rected for in a data-driven way using high-statistics fully reconstructed data samples
such as B+ → J/ψK +. Furthermore, since the other source of systematic bias due to
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non-uniform reconstruction efficiencies is also controlled in a data-driven way, the
statistical uncertainties estimated with these methods will improve as more data is
collected by the LHCb with e.g. Run 3 and beyond. However, since the VELO detector
has been completely replaced in Run 3 [152], and it consists of two L-shaped halves, its
geometry is now mirror-asymmetric. This may result in additional parity-odd effects
in the reconstruction that may be more difficult to control.

Although this analysis is performed in the case of b → cµνµ transitions, it could
be performed in the b → ceνe and b → cτντ modes as well. The measurements of
CP-violating observables in these modes would help constrain a wider range of NP
scenarios that break lepton flavor universality. In particular, the τmode could be more
useful, since it is typically considered as the one that is potentially the most affected
by NP.

Another possibility to obtain CP violation in charged current b → cℓνℓ transitions
is by exploiting the interference of excited charm states in B → D∗∗ℓνℓ decays [6].
The strong phase needed for a direct CP violation can appear due to the interference
of different excited charm resonances while the weak phase may arise from any NP
amplitude. This approach is in particular sensitive to the gS , gP and gT couplings,
rather than the gR and the gP g∗

T interference that the approach presented in this
thesis is sensitive to.
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Appendix A

Semileptonic background asymmetries and bias fits
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Figure 1: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ with δD = 0◦. Figures (d) and (e)
also show the result of the best fit in green using the RH and PT templates.
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Figure 2: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ with δD = 45◦. Figures (d) and (e)
also show the result of the best fit in green using the RH and PT templates.
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Figure 3: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ with δD = 90◦. Figures (d) and (e)
also show the result of the best fit in green using the RH and PT templates.

193



1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0

20000

40000

60000

80000

100000

120000

E
nt

ri
es(a)

1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0.04

0.02

0.00

0.02

0.04
As

ym
m

et
ry

 (s
in

)
(b)

1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0.04

0.02

0.00

0.02

0.04

As
ym

m
et

ry
 (s

in
2

)

(c)

0 20 40 60
Bin number

0.015

0.010

0.005

0.000

0.005

0.010

As
ym

m
et

ry
 (s

in
)

(d)

0 20 40 60
Bin number

0.025

0.020

0.015

0.010

0.005

0.000

0.005

As
ym

m
et

ry
 (s

in
2

)

(e)

Figure 4: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ with δD = 135◦. Figures (d) and
(e) also show the result of the best fit in green using the RH and PT templates.
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Figure 5: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ with δD = 180◦. Figures (d) and
(e) also show the result of the best fit in green using the RH and PT templates.
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Figure 6: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ with δD = 225◦. Figures (d) and
(e) also show the result of the best fit in green using the RH and PT templates.

196



1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0

20000

40000

60000

80000

100000

120000

E
nt

ri
es(a)

1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0.04

0.02

0.00

0.02

0.04
As

ym
m

et
ry

 (s
in

)
(b)

1.0 0.5 0.0 0.5 1.0
cos

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

co
s

D

0.04

0.02

0.00

0.02

0.04

As
ym

m
et

ry
 (s

in
2

)

(c)

0 20 40 60
Bin number

0.010

0.005

0.000

0.005

0.010

As
ym

m
et

ry
 (s

in
)

(d)

0 20 40 60
Bin number

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

As
ym

m
et

ry
 (s

in
2

)

(e)

Figure 7: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the B+ → D∗∗0µ+νµ with δD = 270◦. Figures (d) and
(e) also show the result of the best fit in green using the RH and PT templates.
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Appendix B

VELO misalignment asymmetries and bias fits
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Figure 8: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D CP
asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins integrated
over q2 for the Tx misalignment sample. Figures (d) and (e) also show the
result of the best fit in green using the RH and PT templates.
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Figure 9: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the Tx misalignment sample. Figures (d) and (e) also
show the result of the best fit in green using the RH and PT templates.
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Figure 10: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D CP
asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins integrated
over q2 for the Tz misalignment sample. Figures (d) and (e) also show the
result of the best fit in green using the RH and PT templates.
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Figure 11: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the Tz misalignment sample. Figures (d) and (e) also
show the result of the best fit in green using the RH and PT templates.
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Figure 12: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D CP
asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins integrated
over q2 for the Rx misalignment sample. Figures (d) and (e) also show the
result of the best fit in green using the RH and PT templates.
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Figure 13: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the Rx misalignment sample. Figures (d) and (e) also
show the result of the best fit in green using the RH and PT templates.
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Figure 14: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D CP
asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins integrated
over q2 for the Ry misalignment sample. Figures (d) and (e) also show the
result of the best fit in green using the RH and PT templates.
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Figure 15: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the Ry misalignment sample. Figures (d) and (e) also
show the result of the best fit in green using the RH and PT templates.
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Figure 16: Binned density (a), binned 2D CP asymmetries (b,c) and flattened 1D CP
asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins integrated
over q2 for the Rz misalignment sample. Figures (d) and (e) also show the
result of the best fit in green using the RH and PT templates.
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Figure 17: Binned density (a), binned 2D parity asymmetries (b,c) and flattened 1D
parity asymmetries (d,e) of sinχ and sin2χ terms in (cosθD ,cosθℓ) bins
integrated over q2 for the Rz misalignment sample. Figures (d) and (e) also
show the result of the best fit in green using the RH and PT templates.
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Appendix C

Comparison of kinematic and topological variables
in signal B 0 → D∗−µ+νµ and control B 0 → D−µ+νµ
samples
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Figure 18: Comparison of kinematic variables between the signal and control samples.

208



2 2.5 3 3.5 4 4.5 5
)[a.u.]η(µ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

C
ou

nt

 

control data
signal MC

3 4 5 6 7 8 9 10 11 12
(IPCHI2))[a.u.]µlog(

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

C
ou

nt

 

control data
signal MC

2 3 4 5 6 7 8 9 10 11
log(K(IPCHI2))[a.u.]

0

0.01

0.02

0.03

0.04

0.05

C
ou

nt

 

control data
signal MC

2 3 4 5 6 7 8 9 10 11
(IPCHI2))[a.u.]πlog(

0

0.01

0.02

0.03

0.04

0.05

C
ou

nt

 

control data
signal MC

Figure 19: Comparison of topological variables between the signal and control sam-
ples.
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Appendix D

VELO misalignment calibration
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Figure 20: SI P vs. φ dependence for the 2011 MagUp (top) and MagDown (bottom)
B+ → J/ψK + data sample before (left) and after (right) correcting for the
misalignment of the VELO
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Figure 21: SI P vs. φ dependence for the 2012 MagUp (top) and MagDown (bottom)
B+ → J/ψK + data sample before (left) and after (right) correcting for the
misalignment of the VELO
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Figure 22: SI P vs. φ dependence for the 2016 MagUp (top) and MagDown (bottom)
B+ → J/ψK + data sample before (left) and after (right) correcting for the
misalignment of the VELO
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Figure 23: SI P vs. φ dependence for the 2017 MagUp (top) and MagDown (bottom)
B+ → J/ψK + data sample before (left) and after (right) correcting for the
misalignment of the VELO
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Figure 24: SI P vs. φ dependence for the 2018 MagUp (top) and MagDown (bottom)
B+ → J/ψK + data sample before (left) and after (right) correcting for the
misalignment of the VELO
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Appendix E

Comparison of control and signal bias in bins of
kinematic and topological variables
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Figure 25: Im(gP g∗
T ) bias for signal (orange) and control samples in bins of pT(K +π−)

across the four categories
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Figure 26: NP couplings bias for signal (orange) and control (blue) samples in bins of
M(K +π−) across the four categories
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Figure 27: NP couplings bias for signal (orange) and control (blue) samples in bins of
pT(µ) across the four categories
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Figure 28: NP couplings bias for signal (orange) and control (blue) samples in bins of
η(µ) across the four categories
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Figure 29: NP couplings bias for signal (orange) and control (blue) samples in bins of
χ2

IP(µ) across the four categories
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Figure 30: NP couplings bias for signal (orange) and control (blue) samples in bins of
pT(K ) across the four categories
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Figure 31: NP couplings bias for signal (orange) and control (blue) samples in bins of
η(K ) across the four categories
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Figure 32: NP couplings bias for signal (orange) and control (blue) samples in bins of
χ2

IP(K ) across the four categories
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Figure 33: NP couplings bias for signal (orange) and control (blue) samples in bins of
pT(π) across the four categories
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Figure 34: NP couplings bias for signal (orange) and control samples (blue) in bins of
η(π) across the four categories
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Figure 35: NP couplings bias for signal (orange) and control (blue) samples in bins of
χ2

IP(π) across the four categories
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Figure 36: NP couplings bias for signal (orange) and control (blue) samples in bins of
pT(πs) across the four categories
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Figure 37: NP couplings bias for signal (orange) and control (blue) samples in bins of
η(πs) across the four categories

227



<4 4-6 6-8 >8
2
IP( s)

0.02

0.00

0.02

Im
(g

R
) b

ia
s 

M
D

 B
0

<4 4-6 6-8 >8
2
IP( s)

0.02

0.00

0.02

Im
(g

R
) b

ia
s 

M
D

 B
0

<4 4-6 6-8 >8
2
IP( s)

0.02

0.00

0.02

Im
(g

R
) b

ia
s 

M
U

 B
0

<4 4-6 6-8 >8
2
IP( s)

0.02

0.00

0.02

Im
(g

R
) b

ia
s 

M
U

 B
0

<4 4-6 6-8 >8
2
IP( s)

0.006

0.000

0.006

Im
(g

Pg
T*

) b
ia

s 
M

D
 B

0

<4 4-6 6-8 >8
2
IP( s)

0.006

0.000

0.006

Im
(g

Pg
T*

) b
ia

s 
M

D
 B

0

<4 4-6 6-8 >8
2
IP( s)

0.006

0.000

0.006

Im
(g

Pg
T*

) b
ia

s 
M

U
 B

0

<4 4-6 6-8 >8
2
IP( s)

0.006

0.000

0.006

Im
(g

Pg
T*

) b
ia

s 
M

U
 B

0

Figure 38: NP couplings bias for signal (orange) and control (blue) samples in bins of
χ2

IP(πs) across the four categories
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