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2-color QCD (SU(2) gauge theory coupled to fundamental fermions) has several novel features:
for instance, enhanced Pauli-Gursey symmetry yields degeneracies between mesons and di/tetra-
quark states. The quantum mechanical matrix model provides a simplified platform to directly
probe the properties of low-energy (spin-0 and spin-1) hadrons. Using variational calculation,
we numerically obtain the energy eigenstates and eigenvalues of the matrix model at ultra-strong
coupling. In chiral limit, the effects of non-perturbative axial anomaly are quantified. Interestingly,
in chiral limit, gluons contribute significantly to spin of hadrons. These effects are suppressed in
heavy quark limit. Further, at strong coupling, the system can undergo quantum phase transitions
(in presence or absence of chemical potential). The ground state can be a spin-1 di-quark state
which spontaneously breaks spatial rotational symmetry.
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1. Introduction

Non-Abelian gauge theories play a crucial role in describing the interactions between sub-
atomic particles. It is well-known that computations in such a theory, especially in the strong
coupling regime, is very challenging. A matrix model of 𝑆𝑈 (𝑁) gauge theory (proposed in [1])
captures many interesting features of the gauge theory [2, 3]. Being quantum mechanical, the matrix
model provides a simplified computational platform and the low-energy spectrum of hadrons [4]
and glueballs [5] obtained in the matrix model framework have remarkable accuracy.

Here, we consider the matrix model of 2-color 1-flavor QCD (𝑆𝑈 (2) gauge theory coupled to
a single fundamental Dirac fermion, which we will refer to as matrix-QCD2,1), which is interesting
in its own right. The fundamental representation of 𝑆𝑈 (2) is pseudo-real and as a consequence,
the usual baryon number 𝑈 (1)𝐵 symmetry is enhanced to 𝑆𝑈 (2)𝐵. This also gives rise to unusual
bound states like physical di-quark states [6]. Further, the determinant of the Euclidean Dirac
operator with two colors is real which facilitate its investigation with finite baryon density [7]. In
this work, we estimate the low-energy spectrum of matrix-QCD2,1 in the extreme strong coupling
regime using a variational calculation. We demonstrate that the ground state can undergo level
crossings, signifying quantum phase transitions. We study the properties of the phases and found
that in some of these phases, the glue contribute significantly to the spin of the hadrons. Further, if
we include a baryon number chemical potential, there is a possibility of a ground state with non-zero
spin – a LOFF-like phase [8].

Matrix-QCD2,1 - Hamiltonian and symmetries: Matrix-QCD2,1 is quantum mechanical ap-
proximation of 𝑆𝑈 (2) Yang-Mills theory on R × S3 coupled to a fundamental Dirac fermion
[1, 4, 9]. In the matrix model, the 𝑆𝑈 (2) gauge fields are A𝑖 = 𝑀𝑖𝑎𝑇

𝑎, where 𝑀𝑖𝑎 with 𝑖 = 1, 2, 3
and 𝑎 = 1, 2, 3 are 3 × 3 real matrices (elements of M3 – the space of all 𝑀𝑖𝑎) and 𝑇𝑎’s are the
generators of 𝑆𝑈 (2) in the fundamental representation. Under spatial rotations and gauge trans-
formations, the gauge fields transform as A𝑖 → R𝑖 𝑗A 𝑗 and A𝑖 → ℎ−1A𝑖ℎ where R ∈ 𝑆𝑂 (3)𝑟𝑜𝑡
and ℎ ∈ 𝑆𝑈 (2). Consequently, M3 is a principle 𝐴𝑑𝑆𝑈 (2) bundle over the gauge configuration
space M3/𝐴𝑑𝑆𝑈 (2). The bundle is twisted and does not admit any global section [2]. As a result,
gauge fixing is impossible in the matrix model – the Gribov ambiguity which is a key feature of
non-Abelian gauge theories. In the quantum mechanical model, the chromoelectric field is given
by the conjugate momenta of the gauge field: Π𝑖 ≡ −𝑖𝑇𝑎 𝜕

𝜕𝑀𝑖𝑎
and the chromomagnetic field is

obtained from the gauge field curvature: B𝑖 =
1
2𝜖𝑖 𝑗𝑘𝐹𝑗𝑘 = − 1

𝑅
A𝑖 − 𝑖

2𝜖𝑖 𝑗𝑘
[
A 𝑗 ,A𝑘

]
[9]. Here, 𝑅 is

the radius of 𝑆3.

In matrix-QCD2,1, the quarks 𝜓 are Grassmann-valued matrices which only depends on time
[4]. In the quantum mechanical model we can represent 𝜓 as 𝜓 = (𝑏𝛼𝐴, 𝑑

†
𝛼𝐴

)𝑇 , where 𝛼 = 1, 2 and
𝐴 = 1, 2 are the spin and color indices, respectively and {𝑏†

𝛼𝐴
, 𝑏𝛽𝐵} = 𝛿𝛼𝛽𝛿𝐴𝐵 = {𝑑†

𝛼𝐴
, 𝑑𝛽𝐵}. The

quark transforms in the spin− 1
2 representation of 𝑆𝑂 (3)𝑟𝑜𝑡 and in the fundamental representation

of the 𝑆𝑈 (2) gauge group.

To study the dynamics of the quark and the glue in the extreme strong coupling regime, it
is convenient to use the rescaled dimensionless variables: A′

𝑖
= 𝑅𝑔−1/3A𝑖 and Π′

𝑖
= 𝑅−1𝑔1/3Π𝑖 ,

where 𝑔 is the Yang-Mills coupling constant. To keep the notation simple we will drop the prime in
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the entire discussion. Using above, the Hamiltonian of matrix-QCD2,1 in the Weyl basis is given by

𝐻 ≡ 𝑒0

[
Tr

(
Π𝑖Π𝑖 −

1
2
[A𝑖 ,A 𝑗]2 + 𝑔−

4
3 A𝑖A𝑖 + 𝑖𝑔−

2
3 𝜖𝑖 𝑗𝑘 [A𝑖 ,A 𝑗]A𝑘

)
+ 𝑐𝐻𝑐 + 𝑀𝐻𝑚 + 𝐻𝑖𝑛𝑡

]
(1)

𝐻𝑖𝑛𝑡 = 𝑀𝑖𝑎

(
𝑏
†
𝛼𝐴

𝜎𝑖
𝛼𝛽𝑇

𝑎
𝐴𝐵𝑏𝛽𝐵 − 𝑑𝛼𝐴𝜎

𝑖
𝛼𝛽𝑇

𝑎
𝐴𝐵𝑑

†
𝛽𝐵

)
, 𝐻𝑐 = 𝑏

†
𝛼𝐴

𝑏𝛼𝐴 − 𝑑𝛼𝐴𝑑
†
𝛼𝐴

(2)

𝐻𝑚 =

(
𝑒𝑖 𝜃𝑏

†
𝛼𝐴

𝑑
†
𝛼𝐴

+ 𝑒−𝑖 𝜃𝑑𝛼𝐴𝑏𝛼𝐴

)
(3)

where 𝑒0 ≡ 𝑔2/3𝑅−1 is the energy scale of the system, 𝑀𝑒0 is the fermion mass and the dimensionless
constant 𝑐 denotes the curvature coupling of the fermion on the 𝑆3. In the double scaling limit
𝑔, 𝑅 → ∞, 𝐻 has a meaningful spectra if 𝑒0 is held finite.

The glue and quark transform in the spin-1 and spin-1/2 representation of 𝑆𝑂 (3)𝑟𝑜𝑡 respectively
which are generated by 𝐿𝑖 ≡ −2𝜖𝑖 𝑗𝑘Tr

(
Π 𝑗A𝑘

)
, and 𝑆𝑖 ≡ 1

2 (𝑏
†
𝛼𝐴

𝜎𝑖
𝛼𝛽

𝑏𝛽𝐴+ 𝑑𝛼𝐴𝜎
𝑖
𝛼𝛽

𝑑
†
𝛽𝐴

). It is easy
to check that [𝐿𝑖 , 𝐿 𝑗] = 𝑖𝜖𝑖 𝑗𝑘𝐿𝑘 , and [𝑆𝑖 , 𝑆 𝑗] = 𝑖𝜖𝑖 𝑗𝑘𝑆𝑘 . The total spin 𝐽𝑖 = 𝐿𝑖 + 𝑆𝑖 , commutes with
𝐻: [𝐻, 𝐽𝑖] = 0 for 𝑖 = 1, 2, 3 and generates the 𝑆𝑂 (3)𝑟𝑜𝑡 symmetry in the system.

The 𝑆𝑈 (2) gauge symmetry is generated by the Gauss law generators𝐺𝑎 ≡ 2𝑖Tr
(
[Π𝑖 ,A𝑖]𝑇𝑎

)
+

(𝑏†
𝛼𝐴

𝑇𝑎
𝐴𝐵

𝑏𝛼𝐵 + 𝑑𝛼𝐴𝑇
𝑎
𝐴𝐵

𝑑
†
𝛼𝐵

) which satisfies [𝐺𝑎, 𝐺𝑏] = 𝑖𝜖𝑎𝑏𝑐𝐺𝑐 and [𝐻,𝐺𝑎] = 0.
The fermionic Hilbert space H𝐹 is finite dimensional: maximum occupancy of fermions in a

state is 8. On the other hand, the Hilbert space of the glue H𝐺 is infinite dimensional: the space of
square-integrable functions of 𝑀𝑖𝑎 with inner product measure 𝑑𝑀11𝑑𝑀12 . . . 𝑑𝑀33. The physical
Hilbert space is H𝑝ℎ𝑦𝑠 ⊂ H𝐺 ⊗ H𝐹 such that any state |·⟩ ∈ H𝑝ℎ𝑦𝑠 satisfies 𝐺𝑎 |·⟩ = 0. Hence,
H𝑝ℎ𝑦𝑠 is the space of color-singlet (gauge invariant) states.

Using the 𝑏𝛼𝐴 and 𝑑𝛼𝐴, we can define

𝐵+ = 𝜖𝛼𝛽𝜖𝐴𝐵𝑏
†
𝛼𝐴

𝑑𝛽𝐵, 𝐵− = 𝜖𝛼𝛽𝜖𝐴𝐵𝑑
†
𝛼𝐴

𝑏𝛽𝐵, 𝐵3 =
1
2
(𝑏†

𝛼𝐴
𝑏𝛼𝐴 − 𝑑

†
𝛼𝐴

𝑑𝛼𝐴) (4)

which satisfies [𝐵+, 𝐵−] = 2𝐵3 and [𝐵±, 𝐵3] = ∓𝐵±. Further, it is easy to check that [𝐻, 𝐵±] =

0 = [𝐻, 𝐵3]. Thus the system has a 𝑆𝑈 (2)𝐵 global symmetry generated by the {𝐵+, 𝐵−, 𝐵3}. This
is the Pauli-Gürsey symmetry.
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Figure 1: Energies of the ground states in the different (𝐵, 𝐽) sectors as function of c for 𝑀 = 0 (left) and
for 𝑀 = 0.5 (right). Here, the baryon number chemical potential is zero.

If the fermions are massless (i.e. 𝑀 = 0), the Hamiltonian (1) also commutes with the chiral
charge 𝑄0 = 1

2 (𝑏
†
𝛼𝐴

𝑏𝛼𝐴 − 𝑑𝛼𝐴𝑑
†
𝛼𝐴

). However, the global 𝑈 (1)𝐴 symmetry generated by 𝑄0 in
the theory with massless fermions is broken to Z2 by quantum anomalies [3]. When 𝑀 ≠ 0,
𝑈 (1)𝐴 is explicitly broken to Z2. So the global symmetry of matrix-QCD2,1 is 𝑆𝑈 (2)𝐵 × Z2.
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In the Hamiltonian, 𝐻𝑐 = 2𝑄0 and the parameter 𝑐 can be thought of as the “chiral chemical
potential". Because the symmetry generated by 𝑄0 is anomalous, 𝑐 is not a chemical potential in
the thermodynamic sense. Nonetheless, it is interesting to study the effect 𝑐 on the energy spectrum
and expectation values of other interesting observables.

The physical Hilbert space H𝑝ℎ𝑦𝑠 can be spanned by the colorless eigenstates of the Hamil-
tonian. Such color-singlet states must have even number of fermions and can be simultaneous
eigenstates of 𝐽𝑖𝐽𝑖 , 𝐽3, 𝐵𝑖𝐵𝑖 and 𝐵3 with the eigenvalues 𝐽 (𝐽 + 1),𝐽3,𝐵(𝐵 + 1), and 𝐵3. Here, 𝐽
can take integer values 𝐽 = 0, 1, 2 . . . with 𝐽3 = −𝐽,−𝐽 + 1 . . . 𝐽 − 1, 𝐽. On the other hand 𝐵 can
values 𝐵 = 0, 1, 2 with 𝐵3 = −𝐵,−𝐵 + 1, . . . 𝐵 − 1, 𝐵. The states with 𝐵3 = 0 has equal number of
quarks and anti-quarks and are mesons. The states with 𝐵3 = ±1 are di-quarks and 𝐵3 = ±2 are
tetra-quarks.
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Figure 2: Triple crossing and QPT in (𝐵, 𝐽) = (0, 0) sector. Left: First three energy levels vs 𝑐 at 𝑀 = 0.
Right: 𝑄0 vs 𝑐 with different 𝑀

2. Results

We employed the Rayleigh-Ritz variational method to construct the color-singlet eigenstates of
the Hamiltonian (for details of the numerical strategy see [9]). The energy of the lightest colorless
eigenstates of 𝐻 belonging to different (𝐵, 𝐽)-sectors at 𝑔 → ∞ limit are shown in Fig.1. We find
that the ground state of the system in the extreme strong coupling limit is a unique meson state
belonging to (𝐵, 𝐽) = (0, 0) sector for any value of 𝑐 and 𝑀 .

Quantum phase transitions: In the chiral limit (𝑀 = 0), the ground state energies of the
different (𝐵, 𝐽)-sectors undergoes level crossing if we tune 𝑐. Such level-crossings in the ground
state are signatures of quantum phase transitions (QPTs) in the system. In particular, the QPT in the
(𝐵, 𝐽) = (0, 0) sector is quite special as it is a triple crossing as shown in Fig.2 (left). In this sector,
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Figure 3:
〈
𝐿2〉, 〈𝑆2〉 and ⟨𝑆3⟩± in the ground state for (𝐵, 𝐽) = (1, 1) sector as a function of 𝑐.
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we find that the phase transition at the chiral limit happens at 𝑐 = 𝑐∗0 ≈ 0.928. The QPT is captured
as discontinuities in several observables. As shown in Fig.2 (right), the expectation value of the
chiral charge 𝑄0 in the ground state of (𝐵, 𝐽) = (0, 0) jumps discontinuously at 𝑐∗0 when 𝑀 = 0.
As 𝑄0 = (𝜕𝐸0/𝜕𝑐), this discontinuity demonstrates that the QPT at 𝑐∗0 is first order in nature.

When 𝑀 is non-zero, the abrupt discontinuous jumps in the observables at 𝑐∗0 get smoothed,
and the first order transition is replaced by continuous crossover.

Quark contribution to the spin of hadrons: In QCD, the contribution of quarks to spin of
hadrons (especially proton) has been a topic of immense interest [10]. In the matrix model, we can
directly estimate the contribution of the quark and the glue to the spin of any energy eigenstate.
Here, in matrix-QCD2,1, we can compute the expectation values of ⟨𝐿2⟩, ⟨𝑆2⟩ and ⟨𝑆3⟩ in any
energy eigenstate and estimate the distribution of its spin among the quark and the glue. We find
that in the chiral limit, the contribution of the quark to the spin of a state can be very small and in
the heavy quark limit, the entire spin of the state can come from the quark.
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Figure 4: Phase diagram in the presence of Baryon chemical potential for 𝑐 = 0 (left) and 𝑀 = 0 (right).
Blue, orange and green curves are the coexistence line between the phases and the black dot is the triple point
where all three phases can coexists.

To demonstrate that, we consider the ground state of the (𝐵, 𝐽) = (1, 1) sector in the chiral
limit: this state undergoes a level crossing at 𝑐 = 𝑐∗1 ≈ 0.22. The QPT is again captured by the
discontinuity in observables (see Fig.3). In both phases, the ground state has 𝐽 = 1 and we study the
contribution of quark spin to the states with 𝐽3 = ±1 by estimating ⟨𝑆3⟩±. As shown in Fig.3, in the
phase with 𝑐 < 𝑐∗1, the quark contributes significantly to the chiral ground state with ⟨𝑆3⟩± ≈ 0.67.
On the other hand, in the phase with 𝑐 > 𝑐∗1, the spin of the ground state gets dominant contribution
from glue and the quark account for only 33% of the spin with ⟨𝑆3⟩± ≈ 0.33.

For small non-zero 𝑀 , the disconituities in Fig.3 smoothens and the QPT is replaced by a
continuous crossover. For very large 𝑀 , we get ⟨𝑆2⟩± ≈ 2 and ⟨𝑆3⟩± ≈ 1 irrespective of 𝑐. This
indicates that the quark and glue are effectively decoupled in the heavy quark limit.

Phases with finite baryon chemical potential: We can study matrix-QCD2,1 with finite baryon
chemical potential term by adding 𝐻𝜇 = 𝑒0𝜇𝐵3 to the Hamiltonian (1). As [𝐻𝜇, 𝐵±] ≠ 0, the
global 𝑆𝑈 (2)𝐵 is explicitly broken and only a𝑈 (1)𝐵 generated by 𝐵3 is preserved. Thus the global
symmetry of the Hamiltonian with non-zero 𝜇 is 𝑈 (1)𝐵 ×Z2. When 𝜇 ≠ 0, the energy of the states
are given by 𝐸 (𝜇) = 𝐸 (𝜇 = 0) + 𝜇𝐵3. When 𝜇 = 0, each state in 𝐵 > 0 sectors are (2𝐵 + 1)−fold
degenerate with energy 𝐸 (𝜇 = 0). Turning on 𝜇, the degeneracy between the states with different
𝐵3 is lifted: the mesons, di-quarks and the tetra-quarks of a sector do not have the same energy. As
a result it might happen that when |𝜇 | is sufficiently large (but finite), the lighest meson state from
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(𝐵, 𝐽) = (0, 0) sector is heavier than the di-quark and/or tetera-quark states from (𝐵, 𝐽) = (1, 1)
and/or (2, 0)-sectors.

Consequently, the system can have three distinct phases: Phase I - ground state is a spin-0
meson with (𝐵, 𝐽) = (0, 0), Phase II - ground state is a spin-1 di-quark with (𝐵, 𝐽) = (1, 1) and
Phase III - ground state is a spin-0 tetra-quark with (𝐵, 𝐽) = (2, 0). The choice of the parameters
𝑐, 𝑀 and 𝜇 determines the phase of the system (see Fig. 4).

Interestingly, in phase II, the ground state is a spin-1 di-quark. This spin-triplet state is not
rotationally invariant: if we add a small perturbation 𝜖𝐽3, the degeneracy of the triplet is lifted and
the ground state is an unique linear combination of the triplet. In the limit of 𝜖 → 0, the degeneracy
is restored but the ground state remains frozen as a linear combination of the triplet. Thus, 𝑆𝑂 (3)𝑟𝑜𝑡
is spontaneously broken in phase II, which is a reminiscent of the LOFF phase of 2-color QCD [8].
The possiblity of such spin-1 di-quark ground state also agrees with the findings in [6].
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