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Introduction

In the early days of quantum �eld theory, renormalizability was used as a criterion to select

physically viable models. It was later understood that e�ective �eld theories can be useful and

predictive in their domain of validity. Even if e�ective �eld theories are not renormalizable,

they can be used to describe phenomena within a certain range of energies (k < ΛEFT ).

However, there is no standard way of expressing the e�ects of physics at k > ΛEFT in low-

energy processes. Therefore, one would like to have a more restrictive guiding principle when

searching for fundamental theories. Asymptotic safety (AS) provides such a framework. A

quantum �eld theory is AS if all its couplings reache a �xed point in the ultraviolet (UV) limit

along the renormalization group (RG) �ow [1, 2]. Fixed points are de�ned as the points in

theory space at which the beta-functions vanish. When all the couplings of a theory go to

zero at a �xed point , we talk about asymptotic freedom (AF). In both cases, AS and AF, the

theory is well behaved at all energies. Typically, a �xed point is characterized by its relevant

and irrelevant directions. That is, directions that point towards or outwards the �xed point as

we move to the UV. Consequently, UV safe trajectories around the �xed point are described in

terms of the relevant directions. Since irrelevant directions are avoided, the number of relevant

directions determines what is called the UV safe surface SUV . Thus, when the dimension of SUV
is less than the number of couplings, some couplings are functions of others. The latter aspect

is a crucial property of AS.

While AF theories have been studied in di�erent contexts, work on AS models for particle

physics has only begun quite recently. For some early references based on the use of the

functional renormalization group see [3, 4, 5, 6, 7, 8]. A breakthrough came with the work of

Litim and Sannino, who found non-zero (interacting) �xed points that are under perturbative

control in an SU(Nc)-invariant system with a number Nf of fermions [9] (see also [10]). In

these models the �xed points arise from a cancellation between one- and two-loop terms in the

gauge β-functions. The crucial ingredient is the Veneziano limit, providing the small expansion
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parameter

ε =
Nf

Nc

− 11

2
.

It is reasonable to expect that there may exist AS models also for �nite values of ε. General

conditions for the existence of such �xed points have been discussed in [11, 9]. Applications of

these ideas to BSM physics have appeared since then [12, 13, 14, 15, 16, 17].

The Standard Model (SM) by itself is not AS because of the Landau pole in the U(1) gauge

coupling [18, 19] and the uncertain fate of the Higgs quartic interaction [20]. The Landau pole

can only be avoided by assuming that the gauge coupling is identically zero at all energies. This

is known as the triviality problem. Therefore, it is interesting to explore modi�cations of the

SM that allow for AS in order to tame the UV behavior of the U(1) gauge couplings. In this

work, we focus on two di�erent ways of turning the SM into an AS theory. In the �rst part,

we consider extensions of the matter content of the theory. In the �nal Chapter, we take into

account the gravitational corrections to the running of all the SM couplings.

Regarding the modi�cation of the matter content of the SM, the simplest (and most studied)

extension consists of multiple generations of vector-like fermions carrying diverse representations

under the SM gauge group. Vector-like fermions have the property of not giving rise to

gauge anomalies and being technically natural. Model building approaches in the subgroup

SU(3)×SU(2), as well as in the full SM group, were studied in [14, 21]. In these investigations,

the authors �nd several UV �xed points, which they match to the low-energy SM in a number

of benchmark scenarios. In a parallel development, the authors of [15, 16] studied AS for the

full SM gauge group, again extended by vector-like fermions, by means of a resummation of the

perturbative series of the β-functions. They �nd several UV �xed points, which however cannot

be matched to the low-energy SM in a consistent manner [16].

To move forward in this program, we report our results for a large class of models based

on an SUc(3) × SUL(2) × UY (1)-invariant theory containing gauge and Yukwa interactions.

Besides the matter SM content, we consider vector-like fermions minimally coupled to the SM.

Following [14], we also include Yukawa interactions between the Beyond the Standard Model

(BSM) fermions and a new set of scalar �elds. For simplicity, we only keep the top Yukawa

from the SM. This makes the form of the β-functions more manageable. Our models di�er in

the number of copies of vector-like fermions and the representations that they carry under SM

gauge group.

In contrast to [15, 16] we do not use resummed β-functions. Instead, we compare the results

of the two-loop gauge β-functions with the three-loop results. As explained in Chapter 3, the

β-functions for the Yukawa and scalar couplings are retained always at one- and two-loops
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less than the gauge couplings, respectively. By comparing the results of these two di�erent

approximation schemes, we are able to assess quantitatively the impact of radiative corrections

and therefore to decide whether a given �xed point is within the perturbative domain or not.

This selection is supported by the use of other tests of perturbativity that the �xed points must

satisfy, as discussed in sections 1.5 and 3.2.

We have made a systematic search of reliable �xed points in a large grid parameterized by

the number of vector-like fermions Nf and their SU(3)c × SU(2)L × U(1)Y quantum numbers

[22]. We �rst �nd all the zeros of the β-functions for each model in the grid. We then test each

�xed point under two conditions:

• The �xed point must occur in a region in which the perturbative expansion is reliable. At

the very least, this implies that it must be possible to reasonably trace its value at some

order in the perturbative expansion back to that of the previous order. We see a posteriori

that this can be done only when the values of the couplings and of the scaling exponents

(the eigenvalues of the linearized beta functions around the �xed point) are su�ciently

small, and the �xed point satis�es all the criteria introduced in Section 1.5.

• The �xed point must be connected to the SM at low energy. In general this would require

a delicate numerical analysis of the trajectories emanating from it. However, we �nd that

a rough necessary condition is su�cient for our purposes: the �xed point must not have

any coupling that is zero and irrelevant, because such couplings must be identically zero

at all scales to avoid Landau poles.

These two requirements taken together, that we consider to be quite reasonable, are very

restrictive. As a matter of fact, we are not able to identify any choice for the group

representations and number of generations of the vector-like fermions that makes the extension

of the SM reliably AS. This does not mean that such an extension does not exist: it only means

that if such an AS extension of the SM exists, it must either be di�erent from those that we

have considered, or else it must have a �xed point that lies outside the reach of perturbation

theory.

Having explored the matter extensions of the SM, we move on and ask whether gravitational

corrections modify the general picture of the previous analysis. Studies of gravitational systems

within the framework of functional renormalization group suggest that there exists a stable

�xed-point with a �nite number of relevant directions [23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39]. E�ects of vector, fermion and scalar degrees of freedom have been

also studied in the literature [29]. From these studies, it seems that the SM degrees of freedom

do not spoil the AS picture in gravity. Analogously, studies of gravitational e�ects on matter
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couplings have been also carried out [40, 41, 42, 43]. For our discussion, it is relevant to note

the nature of the corrections induced by gravity in gauge and Yukawa interactions. Due to the

universality of the gravitational interactions, the corrections to the running of a given gauge (g)

and Yukawa (y) coupling take the form

βg,y = βMatter
g,y + fg,yg(y),

where fg,y are functions of the gravitational couplings. These new set of RG equations open

the possibility of rendering the Standard Model asymptotically safe. In fact, there have been

attempts trying to exploit the properties of this modi�ed beta functions [44, 45, 46, 47, 48, 49,

50]. Here, we go one step further and explore the structure of the corrected beta functions in

the full quark sector of the SM.

In this context we study the set of quark Yukawa couplings and mixing parameters below and

beyond the Planck scale. Since the AS paradigm in gravity tells us that quantum corrections

are important beyond the Planck scale, we expect to have modi�cations to the running of the

SM parameters at very high energies. In particular, we look for non-trivial �xed points for

which the dimension of the critical hypersurface is smaller than the total number of couplings.

Since at least one of the Yukawa couplings is predicted by the presence of such a �xed point,

there is the possibility of explaining, at least in part, the hierarchy in the spectrum of masses

in the quark sector. Another important aspect of this analysis is the avoidance of the triviality

problem in the U(1) sector. In fact, it is the exclusion of the Landau pole in g1 what allows

us to talk about predictions in the Yukawa couplings because the theory becomes UV �nite.

The gravitational e�ects give a solution to the problem that is not resolved with the inclusion

of vector-like fermions. In Chapter 4, we describe the main features of the mechanism behind

the generation of the non-trivial �xed point in the gauge and Yukawa sector. Going from one

to three generations of quarks, we illustrate how the predictions arise and how the RG �ow of

the couplings gets modi�ed.
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Chapter 1

The Concept of Asymptotic Safety

In this chapter we introduce general concepts that are crucial for our discussions. In particular,

we de�ne in more detail the quantities de�ned in the Introduction. We start with the basic

notion of �xed point, and move towards speci�c properties that a perturbative AS theory must

possess.

1.1. The �xed points of the β-functions

Consider a theory with generic gauge, fermion or scalar �elds, and (generally dimensionful)

couplings ḡi characterizing the interactions of di�erent particles. In the study of the

renormalization group (RG) �ows it is customary to use dimensionless couplings gi. Then,

we de�ne the quantities gi = k−di ḡi, where di is the mass dimension of ḡi, and k is the sliding

energy scale. The renormalization of the theory is completely characterized by its β-functions

βi(gj) ≡ k
dgi
dk

, (1.1.1)

A �xed point of this theory, denoted by the coordinates g∗j , is de�ned by the location where the

β-functions of all couplings vanish:

βi(g
∗
j ) = 0 . (1.1.2)

When the couplings gj assume the values g∗j , their �ow has stopped. The space of couplings

is �lled with trajectories �owing towards or away from �xed points . In the next section, we

discuss some properties of the theory space and the �xed-point solutions of (1.1.2).
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1.2. Linearized �ow

Once we have a candidate �xed point, we can study the �ow in its immediate neighborhood.

We �rst introduce the coordinates yi ≡ gi− g∗i that quantify the proximity of the coupling gi to

the �xed point g∗i . Then, we study the RG evolution via the linearized the β-functions

dyi
dt

= Mijyj , (1.2.1)

where Mij ≡ ∂βi/∂gj is referred to as the stability matrix. In order to understand the UV

properties of a �xed point in theory space, we diagonalize the linear system by going to the

variables zi = (S−1)ijyj. The matrix S is de�ned such that it diagonalizes M

(S−1)ijMjlSln = δinθn , (1.2.2)

Thus, the new β-functions and their solutions take the simple form

dzi
dt

= θizi and zi(t) = ci e
θit = ci

(
k

k0

)θi
. (1.2.3)

We see that the evolution of each new variable zi around the �xed point depends on its eigenvalue

or scaling exponent θi. If we sit close to the �xed point, given the sign of θi we can have three

di�erent situations

• For θi > 0, as we increase k we are pushed away from the �xed point and zi increases

without control; the direction zi is said to be irrelevant.

• If θi < 0, as we increase k, we are pulled back to the �xed point; the direction zi is called

a relevant direction.

• If θi = 0, we do not know the fate of zi and we have to go beyond the linear order (see

discussion below). The direction zi is called marginal in this case.

The notion of relevance/irrelevance is independent of the direction of the �ow and of the

choice of basis. The eigendirections in (1.2.3) de�ne a linear space around the �xed point, as

seen Fig. 1.1. In the this �gure we depict in blue the full UV critical surface, de�ned as the

surface of points that are pulled to the �xed point at high energies. The points that are not on

the critical surface would generally �ow towards in�nite values. In order for the couplings gi
to be �nite, they must lie on the critical surface. As a consequence, some or the couplings will

not be independent from each other. The non-trivial equation de�ning the critical surface sets
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z3
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z1

SUV

Figure 1.1: Theory space of couplings gi where only 3 axes are shown for simplicity. For a given �xed

point we show the UV safe surface SUV (blue region), the approximated UV critical surface around the

�xed point (white plane), the new set of coordinates zi, a small region of possible initial points for the

�ow (red circle) and two UV safe trajectories ending at a given matching scaleM (green curve ending

at B and orange curve ending at A). We also show a trajectory starting at Q, close to the point B

but outside SUV . This trajectory approaches the �xed point but goes to in�nite values at very high

energies (magenta line).

non-trivial relations among couplings, for instance, gi = f(gj). This is source of the predictive

power of AS theories. We see here that the �niteness of dSUV , the dimension of the critical

surface, constrains the theory at all energy scales. The smaller the dimension of the critical

surface, the larger the number of prediction that can be made. In Chapter 4 we exploit this

property and use it to understand important features of the SM of particle physics. It is an key

question throughout this work to ask whether the SM couplings at low energies lie or not on a

critical surface.

The eigenvalues θi have the property of being universal quantities�meaning that they are

invariant under a general coordinate transformation in the space of couplings [10]. On the other

hand, from dimensional analysis we know that, in general, the β-function for a dimensionful

coupling ḡi has the form β̄i(ḡj, k) = kdiγi(gj), where γi(gj) contains the non-trivial dependence

on the dimensionless couplings gj. Then, the beta functions for the latter are given by

βi = −digi + γi(gj). (1.2.4)
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We see that γi(gj) encodes the pure quantum contributions to the β-functions, and the �rst

term represents the classical scaling. Therefore, the stability matrix is given by

Mij = −diδij +
∂γi
∂gj

. (1.2.5)

Thus, the eigenvalues θi arise also as the sum of a classical contribution, coming from the

classical scaling di, and non-trivial quantum corrections.

1.3. Marginal couplings

If one of the eigenvalues is equal to zero, the linear approximation does not give us information

about the RG behavior in the direction associated to it. Then we have to go further in the

expansion. At second order in the couplings yi, the β-functions take the form

dyi
dt

= Mijyj + Pijkyjyk , where Pijk =
∂2βi
∂gj∂gk

. (1.3.1)

The structure of these quadratic �ows is quite complicated to describe in full generality. The fate

of a speci�c trajectory depends strongly on the position of the initial point in the neighborhood

of the �xed point.

However, marginal couplings do not generally occur for a fully interacting �xed point: in

the models considered here they can always be identi�ed with some coupling that is itself zero

at the �xed point. We show in Appendix C that the structure of the β-functions is such that

the �ow of the marginal couplings near the �xed point is of the form

dyi
dt

= Piiiy
2
i , (1.3.2)

(no summation implied). Our beta functions in Chapter 3 will be written always in terms of

αi =
g2i

(4π)2
, which are bound to be positive. Therefore, marginal directions αi with Piii < 0

are UV attractive and are called marginally relevant (a well-known example being the QCD

gauge coupling) while those with Piii > 0 are UV repulsive and are called marginally irrelevant.

Altogether, the UV critical surface is thus spanned by the relevant and marginally relevant

directions.

1.4. Infrared matching

Once we have an understanding of the �xed point structure, there remains to �nd the trajectory

connecting a given �xed point to the IR physics. This is accomplished in the following manner.
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First, we de�ne IR scale which, depends on the problem we deal with. In Chapter 3 we take

it to be around the TeV scale. In terms of RG time, t = Log[k/MZ ], we choose the integer

value t0 = 3. In units of energy, it corresponds to roughly 1.83 TeV. The Z-boson mass MZ

plays just the role of a reference scale. In Chapter 4 we choose the matching scale to be in

the EW scale range (O(100GeV)). For concreteness, we associate this scale to the mass of the

top quark, 173.21 GeV [51]. This de�nes the target for the �ow to the IR from the UV �xed

point. The RG �ow is started from a point belonging to the UV critical surface, in�nitesimally

close to the �xed point (red circle in Figure 1.1). This guarantees, to high precision, that the

�ow towards the UV ends at the �xed point. The system is then allowed to �ow by means of

the full β-functions of the theory towards the IR. The initial point of the �ow is varied until a

trajectory hits approximately the desired IR values.

For most of the models that we consider in Chapter 3, this laborious procedure is not

necessary. For all their �xed points that can be regarded as being in the perturbative domain

(according to our discussion in Sec. 1.5), the hypercharge is zero at the �xed point and is also

a marginally irrelevant coupling. This means that in order to reach the �xed point in the UV

limit, the hypercharge must be zero at all energies. All other trajectories have a Landau pole.

These models are thus excluded by a version of the triviality problem. On the other hand, in

Chapter 4 we do need to perform a matching. The analysis is quite involved but we are able to

test the �xed-point regime and obtain IR values that are close to the measured ones.

In the Chapters 3 and 4 we study two di�erent approaches that attempt to render the SM

dimensionless couplings �nite in the far UV. The two analyses have di�erent nature. Therefore,

we need to introduce new concepts in each of those studies. The �rst deals with perturbative

stability, explained in section 1.5. The other one is about asymptotically safe gravity and

Functional Renormalization Group analysis, introduced in Chapter 2.

1.5. Perturbative Asymptotic Safety

When we work in the framework of perturbation theory, extra conditions should be imposed in

the resulting quantities associated to a �xed point. This is necessary in order to remain within

the domain of perturbative accuracy. We start demanding that all the couplings at the �xed

point g∗i are su�ciently small. In practice this means that the transition from one loop-order

to the next one does not change appreciably the position of the �xed point, neither its global

properties. Since every time we perform a loop expansion, the combination (g∗i /4π)2 appears
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with some power n, it is reasonable to demand that

0 <

(
g∗i
4π

)2

. O(1) . (1.5.1)

The condition in Eq. (1.5.1) excludes the appearance of large contributions for higher-loops

expansions. However, this condition is not enough because the size of the coe�cients present

in the expansion also constrains the accuracy of the perturbative approximation.

We saw in Sec. 1.2 that the scaling exponents contain information about the quantum

correction to the canonical scaling of the couplings gi. If we work in perturbation theory, this

quantum corrections should be small. Otherwise, the canonical power counting determining the

renormalizable operators in the Lagrangian does not hold. Given the de�nition of these scaling

exponents, we see that it gives us information about the largeness of the coe�cients in the

expansions of the beta functions βi. For canonically marginal couplings (di = 0), we note that

the scaling exponents have a fully quantum origin. Then, large values of θi signal the possible

breaking of perturbation theory. Thus, it is also reasonable to ask for the following requirement

|θi| . O(1) . (1.5.2)

As explained before, in every loop expansion fractions of the form (g∗j/4π)2 appears with a given

power n. Therefore, from now on, it is convenient to make use of the variables

αi =
g2
i

(4π)2
for i = 1, 2, 3, and αyj =

y2
j

(4π)2
, (1.5.3)

where gi are the SM gauge couplings, and yj are some Yukawa couplings.

Certainly, the conditions (1.5.1) and (1.5.2) are good guiding principles in order to select

�xed-point solutions that do not spoil the perturbative approximation. However, they do not

provide all the promising �xed points. The truly perturbative solutions are those that appear

at any loop order. That is, once they are found at some loop order n, they should remain at

higher loop-orders m > n. This does not mean that the numerical values of the �xed points do

not change, it means that there is only a small variation. Most importantly, the properties of a

given �xed point should not change (e.g., the number of relevant/irrelevant couplings and the

orientation of the relevant/irrelevant directions). In summary, it should be possible to keep track

of the �xed-point solutions at any loop order. Hence, every time we �nd non-trivial solutions

at a given loop order n, we verify whether these can be identi�ed at a higher loop order n+ 1.

Additionally, there are other two quantities that help us selecting the promising �xed points.

In Chapter 3 we work in particular with 2- and 3-loops gauge beta functions, then the good
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�xed-points candidates must be present in both cases (with the properties discussed above). If

we take the 3-loops β-functions of the gauge couplings αi, we have in general

βi =
(
A(i) +B(i)

r αr + C(i)
rs αrαs

)
α2
i , (1.5.4)

where A, B and C are the one-, two- and three-loops coe�cients; and r, s run over all space of

couplings. At a �xed point we can split each beta function in the following way

0 = βi = A(i)
∗ +B(i)

∗ + C(i)
∗ , (1.5.5)

where A
(i)
∗ = A(i)α2

i∗, B
(i)
∗ = B

(i)
r αr∗α

2
i∗ and C

(i)
∗ = B

(i)
rs αr∗αs∗α

2
i∗, and there is no sum in

i. According to our discussion so far, we expect the three contributions to be ordered as

C
(i)
∗ < B

(i)
∗ < A

(i)
∗ , or equivalently

ρi < σi < 1 , where ρi = |C(i)
∗ /A

(i)
∗ | and σi = |B(i)

∗ /A
(i)
∗ | . (1.5.6)

The condition 1.5.6 are good indicators for the validity of perturbation theory in the framework

of asymptotic safety.

We close by recalling that the β-function of a single coupling is independent of the gauge

choice in dimensional regularization. It is regularization scheme-independent up to two-loops.

If there are several couplings running together, their β-functions depend on the scheme already

at the two-loops [52]. There is therefore a degree of ambiguity in the position of the �xed points

we are going to discuss because it could be moved by changing the scheme. We assume that

these changes are small if the �xed point is found within the perturbative regime. One should

however bear in mind this problem of scheme dependence in all the discussions to follow.
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Chapter 2

Asymptotic Safety in Gravity

In this chapter, we discuss the concept of Asymptotic Safety for gravity. We start by analyzing

pure gravity. Then, we move to systems including gravity and matter. The latter case is of

particular relevance in our examination of the UV completeness of the Standard Model. It

is known that Einstein gravity is not renormalizable at the perturbative level [53, 54, 55, 56].

That is, we need to �t an in�nite number of free parameters in order to cancel the divergences

appearing at every loop order in the perturbative expansion. Consequently, the theory is valid

up to some physical scale (namely, the Planck scale). Quantum corrections to the Einstein

action are suppressed by powers of the Planck scale Mpl. Below this energy scale, and at a

given order in the momentum expansion, only a �nite number of counterterms are needed and

the theory is predictive as an E�ective Field Theory (EFT) [57, 58, 59, 60]. The breakdown of

the perturbative quantum treatment of Einstein gravity makes us wonder whether the issue lies

in gravity itself or in the perturbative analysis. It is possible that the theory is renormalizable

in a non-perturbative sense and therefore valid at all energies. Actually, if by means of non-

perturbative methods we are able to �nd a UV �xed point with the properties described in

Chapter 1, we can say we have found a quantum description of gravity in the framework of

Quantum Field Theory [23, 61, 62, 24, 25, 26, 27, 28, 63, 29, 30, 31, 32, 33, 35, 38, 38]. In the

following, we describe the main features of AS gravity.

2.1. Functional Renormalization Group Framework

Most of the studies of AS in gravity are carried out in the framework of Functional

Renormalization Group, which allows for a non-perturbative treatment. In particular, the
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Wetterich equation is used in order to determine the beta functions of any theory [64, 65, 66].

The scale dependence in the couplings is introduced in the de�nition of the generating functional

through an infrared cuto� Rk. The main idea of this approach is to provide an exact RG equation

that is valid in the perturbative, as well as in the non-perturbative regime. Here, we outline the

central notions of this framework for a scalar theory; then, we extend it to gravity in order to

discuss the current status of the �eld of AS. We start by modifying the quadratic part of the

action S in the de�nition of the generating functional of connected correlation functions Wk.

Introducing the so called `cuto�' or `regulator' action depending on an operator ∆

∆Sk(φ) =
1

2

∫
dxφRk(∆)φ, (2.1.1)

we write

eWk[j] =

∫
(dφ)e−S−∆Sk+

∫
dxjφ. (2.1.2)

It is useful to call z the argument of Rk. This variable can be regarded as the eigenvalue of

the operator ∆. The term (2.1.1) in (2.1.2) has the impact of modifying the quadratic part of

modes with eigenvalues λn less than k. That is, it guarantees that only modes with eigenvalues

larger than k are integrated out. The other modes are decoupled since they acquire a mass of

order k. In order �t the above requirements, Rk must satisfy some general conditions. First, we

require that Rk → 0 for k → 0 (for any value of z), in order to get the full quantum e�ective

action in the IR. Similarly, we demand Rk(z) to increase monotonically as a function of k for

�xed z, and to decrease monotonically with z for at �xed k. Then, for z > k the regulator goes

to zero fast enough so that it only suppress the IR modes. Finally, as a normalization condition,

we ask for Rk(0) = k2. To sum up, we see that the k plays the role of an IR cuto�. However,

Rk was used only to introduce an explicit scale dependence in the generating functional. In our

�nal result, we will see how the Wetterich equation will be UV and IR �nite.

We can apply the Legendre transform to (2.1.2) to obtain

Γ̃k(ϕ) = −Wk(jϕ) +

∫
dxjϕϕ, (2.1.3)

where we have introduced the expectation value of φ

ϕ(x)j = 〈φ(x)〉 =
∂W

∂j(x)
. (2.1.4)

The quantity jϕ is obtained by inverting Eq. (2.1.4); that is, jϕ becomes a function of ϕ. Finally,

we de�ne the E�ective Average Action (EAA) Γk(ϕ) by subtracting the cuto� action from Γ̃k(ϕ)

Γk(ϕ) = Γ̃k(ϕ)−∆Sk(ϕ). (2.1.5)
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In some sense, the subtraction of the cuto� action compensates its introduction done in the

generating functional. Now, the signi�cance of EAA is that its �ow equation presents a simple

and compact form. In fact, we can derive a �ow equation for Γk that is valid regardless of the

use of perturbation theory.

De�ning t = Ln k, the scale derivative of Wk is written as

dWk

dt
= − d

dt
〈∆Sk〉 = −1

2
Tr〈φφ〉dRk

dt
, (2.1.6)

where the trace stands for an integration over coordinate and momentum space. Now, from the

de�nition of ϕ, we obtain

dΓk
dt

=− dWk

dt
− d∆Sk[ϕ]

dt
,

=
1

2
Tr (〈φφ〉 − 〈φ〉〈φ〉)dRk

dt
,

=
1

2
Tr
δ2Wk

δjδj

dRk

dt
. (2.1.7)

From the Legendre transform of Wk[j], we see that

δΓ̄k
δϕ

= j, (2.1.8)

and, therefore

δ2Wk

δjδj
=

(
δ2Γ̄k
δϕδϕ

)−1

. (2.1.9)

Thus, transforming our results in terms of Γk, we arrive at the equation [64]

dΓk
dt

=
1

2
Tr

(
δΓk
δφδφ

+Rk

)−1
dRk

dt
. (2.1.10)

Eq. (2.1.10) is referred to as the Wetterich equation, Exact Renormalization Group Equation

(ERGE) or Functional Renormalization Group Equation (FRGE). It has the structure of a one-

loop equation whose graphic representation is given in Fig. 2.1. That representation comes

from the fact that in ∂kΓ we have the exact propagator
(
δΓk
δφδφ

+Rk

)−1

, which is depicted as a

continuous line in 2.1.

∂tΓk[ϕ] = 1
2

Figure 2.1: Representation of the FRG equation (2.1.10). The continuous line symbolize the complete

propagator. The crossed circle stands for the insertion of ∂kRk
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We observe that the �ow equation for Γk depends only on Γk itself, there is no reference to

the bare action S. That is, the derivative of Γk at a scale k depends only on the physics at

the scale k and below. We do not need information about the UV. Additionally, we note that

(2.1.10) is UV �nite. The insertion of dRk
dt

makes the trace �nite since we know that the cuto�

decreases fast for z > k2, and then dRk
dt

also does. In other words, in (2.1.10) we have di�erence

of two EAA at slightly di�erent k, therefore divergences in both expressions cancel out leaving

us the �nite part only.

We saw before that our �ow equation is free of UV and IR divergences, even though Wk and

Γk themselves are not. Therefore, it is useful to use Eq. (2.1.10) in order to study particular

QFT. We explain now how to proceed in this regard. We bring in the idea of `theory space' as

the space of all functionals of ϕ. Then, we write the most general EAA constructed with all the

functionals Oi(ϕ) in the theory space respecting the symmetries of the system

Γk(ϕ) =
∑
i

gi(k)Oi(ϕ), (2.1.11)

where gi(k) stand for the running coupling constants. Di�erentiating with respect to t we have

dΓk
dt

=
∑
i

βiOi(ϕ), where βi(gj, k) =
dgi
dt
. (2.1.12)

The quantities βi(gj, k) are the beta functions of the theory. They can be computed by expanding

the r.h.s. of (2.1.10) on the basis of operators Oi(ϕ), and comparing each side of the equation.

2.2. FRG in Gravity

The Wetterich equation can be used also for gauge theories, in particular, it is useful in the

study of Yang-Mills theory and Gravity. The extension for those cases share similar elements.

Therefore we focus on gravity since it is the most relevant for the upcoming chapters. The

functional integral in (2.1.2) depends strongly on the operator ∆ because it helps us classifying

modes according to their eigenvalues and k. Clearly ∆ is de�ned in some spacetime setting. For a

scalar theory, we usually work in a �at space. For gravity, however, spacetime is dynamical itself

so the notion of a �xed operator is doomed. A way out of this is by means of the Background

Field Method. If we split the metric into background and �uctuation

gµν = ḡµν + hµν , (2.2.1)

we can use ḡµν to construct an operator ∆̄ whose set of eigenvalues can be used to sort

di�erent modes in hµν . Although we have separated the metric in two parts and di�eomorphism

invariance is lost, we can still write the functional integral in a background gauge invariant way.
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In this gravitational context, the functional integral in (2.1.2) has to be readjusted to include

the gauge-�xing and ghost action, SGF and Sgh. Moreover, new sources terms appear in the

integration. In a compact form, the new generating functional is

eWk[j,J,J̄,ḡ] =

∫
(dhdCdC̄)e−S(h,C,C̄;ḡ)−∆Sk(h,C,C̄;ḡ)+

∫
dx
√
ḡ(jµνhµν+JµCµ+J̄µC̄µ), (2.2.2)

where S(h,C, C̄; ḡ) contains the gauge-�xing and ghost contribution

S(h,C, C̄; ḡ) = S(h; ḡ) + SGF (h; ḡ) + Sgh(C, C̄; ḡ), (2.2.3)

and the new cuto� term is written as

∆Sk(h,C, C̄; ḡ) =
1

2

∫
dx
√
ḡhµνR

µνρσ
k (ḡ)hρσ +

∫
dx
√
ḡC̄µḡ

µνRgh
k (ḡ)Cν . (2.2.4)

It is worth noting that the cuto� action (2.2.4) is constructed with the background metric, and

the cuto� function for the �uctuation hµν contains now spacetime indices. In a similar manner

as before, we de�ne the EAA by the Legendre transform of Wk, minus the cuto� action

Γk(h,C, C̄; ḡ) = −Wk(j, J, J̄ ; ḡ) +

∫
dx
√
ḡ(jµνhµν + JµCµ + J̄µC̄µ)−∆Sk(h,C, C̄; ḡ), (2.2.5)

where we have used the same names for the expectation value of the �elds, e.g., hµν = 〈hµν〉.
Following the same lines as before, we obtain the new ERGE

dΓk(ϕ; ḡ)

dt
=

1

2
Tr

(
δ2(Γk + ∆Sk)

δϕδϕ

)−1
d

dt

δ2∆Sk
δϕδϕ

. (2.2.6)

We have collected the metric �uctuations and ghosts in the expression ϕ = (hµν , Cµ, C̄µ). It

is important to point out the double dependence of Γk on the background and �uctuation

metric. In the next section, we discuss the meaning of the double dependence and how it can

be understood.

Studies of Eq. (2.2.6) are carried out in the same spirit as case of scalar case. The

idea consists in writing an e�ective action with a given number of operators O(g). Due to

computational reasons, people usually take truncations in theory space. That is, a �nite set

of operators is retained in Γk, in order to study the RG properties of the all the couplings

constants. In particular, we search for non-trivial �xed points in the gravitational couplings

de�ning a critical hypersurface of small dimensionality d. As explained in Chapter 1, d is given

by the number of relevant directions. In this case, however, (1.5.1) and (1.5.2) do not apply

because perturbation theory is not needed. Considering that a �nite number of operators can

be considered at once, the stability or reliance of the global properties of quantum gravity is
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investigated by comparing results in di�erent truncations. For instance, the number of relevant

operators or dimension of the critical surface should not change when enlarging the set of

invariants in Γk. Most works are done in the so called background approximation, that is,

identifying gµν = ḡµν . Within this approximation, the evolution of the ghost action is neglected.

Then, the e�ective average action is written as

Γk[g, ḡ, C, C̄] = Γ̄k[g] + Γ̂k[g − ḡ] + SGF [g, ḡ; ḡ] + Sgh[g − ḡ; ḡ]. (2.2.7)

We see that the classical gauge and ghost actions have been pulled out from the full quantum

contribution. The remaining part is decomposed in two quantities, Γ̄k and Γ̂k. The former

is de�ned as Γ̄k = Γk[g = ḡ], while the latter contains the non-trivial dependence on g and

h separately. Clearly Γ̂k[g = ḡ] = 0, and the background-�eld approximation corresponds

to taking Γ̂k precisely equal to zero. In gravity, the background-�eld approximation can be

expressed as

Γk = − 1

16πGN

∫
dx
√
g(R− 2Λ) + ΓHigher−Order

k

+
1

32πGNα

∫
dx
√
ḡḡµν

(
D̄ρhµρ −

1 + β

4
D̄µh

)(
D̄λhνλ −

1 + β

4
D̄νh

)
−
√

2

∫
dx
√
ḡC̄µ

(
(ḡµρD̄λgρνDλ + D̄λgλνDρ)−

1 + β

2
D̄µDν

)
Cν , (2.2.8)

where GN is the Newton coupling, Λ the cosmological constant, and ΓHigher−Order
k represents

higher order terms. The second line corresponds to the gauge-�xing action, parametrized by α

and β; while the third line is the Faddeev-Popov operator.

The Einstein-Hilbert (EH) truncation (ΓHigher−Order
k = 0) has been proven successful in

determining the existence of a non-trivial �xed point in the space GN -Λ [24]. Stability of the

results within the FRG framework has been tested by analyzing di�erent gauge-�xing conditions

(di�erent α and β) [67], cuto� actions ∆Sk [24], and parametrizations for the metric �uctuations

[67, 68, 69]. So far, the results in EH suggest that there exists a �xed point with GN and Λ

relevant, that is, with two relevant directions (dSUV = 2). Higher order truncations put forward

the conjecture that the actual dimension of SUV is dSUV = 3. Such extensions include powers

of R up to 70 [70], the operators RµνR
µν , CµνρσCµνρσ and beyond [32, 28, 35]. Although the

stability matrix is diagonalized by a mixture of di�erent directions (or operators) in theory

space, there are hints indicating that 1, R, and a combination of R2 and RµνR
µν are the

relevant operators in quantum gravity [71]. Higher order operators seem to be dominated by

their canonical dimension. This indicates that gravity displays a non-trivial �xed point with

a �nite number of relevant directions (dSUV < ∞). In order to have an idea about the fate of

the couplings at high energies, we plot in Fig. 2.2 the RG �ow of the dimensionless Newton
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coupling gN = GNk
2 for the Einstein-Hilbert truncation [48]. In that �gure, we can see that gN

goes to a �xed point value beyond the Planck scale, while it decreases considerably fast below

Mpl. We might be then allowed to neglect gN at low energies. The behavior of the dimensionful

coupling GN is precisely the opposite as gN . That is, it presents a nearly constant behavior

below the Planck scale, while it decreases afterwards.

gN
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Figure 2.2: RG �ow of the dimensionless Newton coupling gN in the EH truncation. Horizontal axis:

energy in GeV.

2.3. Split Weyl Transformations in Quantum Gravity

In the previous section, we saw that the cuto� action introduces in Γk a double dependence on

the metrics ḡµν and hµν . In other words, the shift or split symmetry that leaves the full metric

invariant, ḡµν → ḡµν+εµν and hµν → hµν−εµν , is broken in Γk through the cuto� and gauge-�xing

actions. The broken shift symmetry in Γk is related to the concept of background dependence:

since Γk is not the same for ḡµν and ḡµν + εµν , we can have di�erent results depending on the

background metric we use. Thus, the fate of the split symmetry in Γk is crucial to understand

background independence in quantum gravity [72, 73, 74, 75, 76].

Here we focus on the results of a very particular choice of εµν . We deal with split Weyl

(SW) tranformations when εµν = εḡµν . That is, we consider a split symmetry that corresponds

to a Weyl transformation of the background metric. Since the main source of split symmetry

breaking in the context of FRG is the cuto� action, we can try to solve the �ow equation and
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the resulting Ward identity coming from the breaking. By combining these two equations, we

can rewrite the double dependence in a single metric �eld. In the case of SW transformations,

we do not recover the full single metric dependence, but only the part associated to the group

action.

Conformally reduced gravity

In order to discuss the e�ects of Split Weyl transformations, we use the exponential

parametrization, which can be written schematically as g = ḡeh instead of using the usual

linear parametrization (g = g+ h). We also discuss �rst a simpler scenario in which the metric

belongs to a single conformal class, the conformally reduced case (CORE). That is, �xing a

"�ducial" metric in this class, every other metric can be obtained by a Weyl transformation

gµν = e2σĝµν . (2.3.1)

As the metric ĝµν is kept �xed, we see that gravity is reduced to a scalar �eld theory. For the

�eld σ, we have the split transformation as

σ = σ̄ + ω . (2.3.2)

Thus, we can de�ne a background metric

ḡµν = e2σ̄ĝµν , (2.3.3)

and therefore the full metric is obtained from the background metric by means of the Weyl

transformation

gµν = e2ωḡµν . (2.3.4)

Under a SW transformation, the conformal factors transform as δσ̄ = ε, δω = −ε, while the full
factor σ remains invariant.

In CORE gravity, the general form of the cuto� action is

∆Sk =
1

2

∫
dx
√
ḡ ωRk(σ̄, ĝ)ω. (2.3.5)

The cuto� kernel Rk is a function of a Laplace-type operator O constructed with the �ducial

metric and the background conformal factor. We start considering the cuto� constructed with

O = ∆̄, where ∆̄ = −ḡµν∇̄µ∇̄ν is the Laplacian of the background metric. For dimensional

reasons, it can be written as

Rk(∆̄) = kdr(y), (2.3.6)
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where r is a dimensionless function of the dimensionless variable y = ∆̄/k2. The result of the

Split Weyl transformations discussed in the previous section is

δ(S)∆Sk = −1

2

∫
ddx
√
ḡ(εRkω + ωRkε)

+
1

2

∫
ddx
√
ḡω

[
εdRk + ε

∂Rk

∂σ̄
+ ∂µε

∂Rk

∂(∂µσ̄)
+ . . .

]
ω. (2.3.7)

In order to derive a simple expression for the modi�ed Split Weyl Ward identity (mSWWI), we

introduce a SW-covariant derivative. We �nd that Dµω = ∂µω + ∂µσ̄ is invariant under SW

transformations. Thus, the new Laplacian ∆̄W = −ḡµνDµDν de�ned with Dµ transforms simply

as δ∆̄W = −2ε∆̄W . It is also useful to consider an �extended� transformation δ(E) which agrees

with δ on all �elds but acts also on the cuto� by

δ(E)k = −εk , (2.3.8)

as dictated by dimensional analysis. Thus, acting on any functional of the �elds and k,

δ(E) = δ −
∫
dx ε k

δ

δk
. (2.3.9)

Note that since ε is generally not constant, we cannot assume that k is constant either. This

fact can be taken just as a mathematical fact in order to derive the mSWWI.

The cuto� is now a function

Rk(∆̄
W ) = kdr(y), with y = ∆̄W/k2 . (2.3.10)

leading to the transformation

δ∆Sk =

∫
dxεk

δ

δk
∆Sk −

1

2

∫
ddx
√
ḡ(εRkω + ωr0ε), (2.3.11)

It will become clear later that transformations involving linear terms in ω do not contribute

to the variation of the e�ective average action, so they are harmless for the derivation of a

Ward identity. On the other hand, the transformations involving the functional derivative with

respect to k lead to Ward identities with a known and compact form.

The derivation of a modi�ed Ward identity follows the same lines as the derivation of the

Wetterich equation given in Sec. 2.1. We start from the generating functional Wk, de�ned by

eWk(j,σ̄;ĝ) =

∫
Dωe−S−∆Sk+

∫
jω, (2.3.12)
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Taking into account that S is invariant under δ, the variation of Wk is

δWk(j, ĝ, σ̄) = −〈δ∆Sk〉+

∫
ddx
√
ḡjε. (2.3.13)

From de�nition of the e�ective average action Γk, we have

Γk[〈ω〉, σ̄; ĝ] = −Wk +

∫
ddx
√
ḡj〈ω〉 −∆Sk(〈ω〉). (2.3.14)

Its transformation is

δΓk = −δWk +

∫
ddx
√
ḡjε− δ∆Sk(〈ω〉). (2.3.15)

The terms coming from the source cancel in the �nal variation of Γk, and we end up just with

δΓk = −〈δ∆Sk〉 − δ∆Sk(〈ω〉). (2.3.16)

Similarly, the linear terms in ω coming from δ∆Sk cancel out, and we �nd

δΓk =
1

2
Tr

(
δ2Γk
δωδω

+Rk

)−1 ∫
dxεk

δRk

δk
, (2.3.17)

where we have used the relation
(
δ2Γk
δωδω

+Rk

)−1

= 〈ω(x)ω(y)〉 − 〈ω(x)〉〈ω(y)〉, and the trace

means double integration in spacetime. Equation (2.3.17) tells us that the split symmetry in S

is broken at the quantum level due to the introduction of the cuto� action. On the other hand,

the local version of the Wetterich equation (Eq. 2.1.10) tells us that the e�ective action, for an

x-dependent scale, satis�es the �ow equation∫
dxδk

δΓk
δk

=
1

2
Tr

(
δ2Γk
δωδω

+Rk

)−1 ∫
dxδk

δRk

δk
. (2.3.18)

Therefore, the variation of the e�ective action with respect to the transformation δ is

proportional to the functional derivative with respect to the scale k

δΓk =

∫
dxεk

δΓk
δk

. (2.3.19)

This last expression states that Γk is invariant under the extended transformation δ(E)

δ(E)Γk = 0. (2.3.20)

Thus, the e�ective average action can be written in terms of the invariant quantities k̂ = eσ̄k

and σ = σ̄ + 〈ω〉 as
Γk[〈ω〉, σ̄, ĝ] = Γ̂k̂[σ, ĝ]. (2.3.21)
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We observe that we can reduce the number of variables that Γk depends upon. Namely, we

have reduced by one the number of independent variables. The extension to full gravity is

straightforward since we still consider the speci�c case of SW transformations. That is, we deal

only with one function ε characterizing the transformation. In that case, there are extra sources

of SW breaking coming from the gauge �xing. However, choosing the appropriate gauge-�xing

term, it is possible to include all the symmetry breaking terms in the cuto� action.

Full gravity

In the full gravity case, the metric is written as

gµν = ḡµρ(e
X)ρν where Xρ

ν = ḡρσhσν . (2.3.22)

Using matrices to represent two-index tensors, we have that g = ḡeX and X = ḡ−1h. Now,

decomposing the �uctuation �eld into its trace-free and trace part, we obtain

X = XT + 2ω1, (2.3.23)

where XT is traceless and we have de�ned ω = h/2d, with h = TrX = ḡµνhµν . For the particular

case considered before, i.e., metrics belonging to a single conformal equivalence class, we have

that

g = ḡe2ωeX
T

= ĝe2(σ̄+ω)eX
T

= ḡe2σeX
T

, (2.3.24)

where eσ is the conformal factor of the full metric, which is decomposed into a background part

eσ̄ and a quantum contribution eω. Under the SW transformations, the �elds change as

δhTµν = 2εhTµν , δω = −ε, δσ̄ = ε, ḡµν = 2εḡµν . (2.3.25)

In [76], we describe how to follow a similar procedure to the one for the CORE case. We

just need to include the gauge-�xing term and ghost action that are invariant under the SW

transformations. The gauge-�xing term is chosen to be

SGF =
1

2α

∫
ddx
√
ḡ FµY

µνFν , (2.3.26)

where Y µν = e−(d−2)σ̄ḡµν , and the quantity Fµ is invariant (δFµ = 0 [73])

Fµ = Dρhρµ − 2(β + 1)Dµω . (2.3.27)

To derive the Faddeev-Popov operator, we start from the transformation of the full metric

under an in�nitesimal di�eomorphism η, δηg = Lηg. The �quantum� gauge transformation of

the background ḡ and �uctuation �eld X satisfy

δ(Q)
η ḡ = 0 ; e−Xδ(Q)

η eX = e−Xḡ−1Lηg = e−Xḡ−1LηḡeX + e−XLηeX . (2.3.28)
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Under any variation δ, e−XδeX = 1−e−adX
adX

δX so using this on both sides we obtain

δ(Q)
η X =

adX
eadX − 1

ḡ−1Lηḡ + LηX . (2.3.29)

The Faddeev-Popov operator, acting on a ghost �eld Cµ, is de�ned by

∆FPµνC
ν = Dρ

(
(δ

(Q)
C X)ρµ −

1 + β

d
δρµTr (δ

(Q)
C X)

)
(2.3.30)

where the in�nitesimal transformation parameter η has been replaced by the ghost Cµ. The full

ghost action then has the form [77]

Sgh(C
∗
µ, Cµ; ḡµν , σ̄) =

∫
ddx
√
ḡ C∗µY

µν∆FPνρC
ρ . (2.3.31)

The in�nitesimal di�eomorphism parameter ηµ, and hence the ghost �eld Cµ, can be assumed

to be invariant under δ. Then, a straightforward calculation shows that δ
(Q)
C X is invariant.

Consequently, also ∆FPµ
νCν is invariant. Assuming that the antighost C∗µ is also invariant,

the transformation of Y µν then exactly cancels the transformation of the integration measure,

and we conclude that Sgh is SW-invariant. i Note that this statement refers to the full ghost

action, containing in�nitely many interaction vertices that are bilinear in the ghosts and contain

arbitrary powers of hµν .

To construct di�eomorphism- and Weyl-invariant cuto�s we use a Weyl-covariant second

order di�erential operator. For de�niteness we adopt a �type I� cuto� (in the terminology of

[27]) depending on the Laplacian

∆̄W = −ḡµνDµDν . (2.3.32)

The cuto� terms for all the �elds have the structure

∆STk (hT ; ḡ, σ̄) =
1

2

∫
ddx
√
ḡ hTµνRk(∆̄

W )hTνµ ,

∆Sωk (ω; ḡ, σ̄) =
1

2

∫
ddx
√
ḡ ωRk(∆̄

W )ω ,

∆Sghk (C∗, C; ḡ, σ̄) =

∫
ddx
√
ḡ C∗µRk(∆̄

W )Cµ , (2.3.33)

where

Rk(∆̄
W ) = kdr(y) , y =

1

k2
∆̄W (2.3.34)

iThese transformation of the ghost Cµ and antighost C∗
µ agree with those of [73] when ε is constant.
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We have chosen the cuto� terms to be diagonal in �eld space, without loss of generality. Except

for the introduction of the Weyl-covariant derivatives, the cuto� terms (2.3.33) are the same as

in [73].

Note that we write the cuto� in terms of the mixed �uctuation so that all the �elds have

weight zero, i.e., they are invariant, except for ω that transforms by a shift. For a general tensor

of weight α, the operator ∆̄W generates a tensor of weight α− 2. Thus we can write

δ(E)∆̄W = −2ε∆̄W + α[ε, ∆̄W ] . (2.3.35)

This implies that r(y) maps a tensor of weight α to another tensor of weight α under δ(E).

Therefore, by simple counting, the cuto� terms for hT and C are invariant under the extended

transformations δ(E). ii Using (2.3.9), there follows that

δ∆S
(i)
k =

∫
dx ε k

δ

δk
∆S

(i)
k for i ∈ T, gh (2.3.36)

where the functional variation with respect to k acts only on the cuto�s Rk.

The case i = ω works a little di�erently, because ω does not transform homogeneously:

δ∆Sωk =

∫
dx ε k

δ

δk
∆Sωk −

1

2

∫
dx
√
ḡ (εRkω + ωr0ε) . (2.3.37)

Thus this term is not invariant under δ(E).

We now have all the ingredients that are needed to derive the Ward identity for the SW

tranformations δ. One could follow step by step the derivation given in [73], which was based

on the integro-di�erential equation satis�ed by the EAA. Alternatively, we follow here the logic

of [72]. We subject Wk to a background scale transformation, with �xed sources and �xed k.

Since the actions S, SGF and Sgh are invariant by construction, the only variations come from

the cuto� and source terms,

δWk = −〈δ∆STk 〉 − 〈δ∆Sωk 〉 − 〈δ∆S
gh
k 〉+

∫
ddxjε (2.3.38)

The variations of the cuto� terms have been given in (2.3.36,2.3.37). Their expectation values

involve two- and one-point functions, that we can reexpress in terms of connected two-point

iiSee Appendix ?? for a detailed explanation.
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functions and one-point functions as follows

−1

2
Tr ḡµρḡνσ

∫
εk
δRk

δk

δ2Wk

δjµνT δjρσT
− 1

2

∫
ddx
√
ḡ
δWk

δjµνT
ḡµρḡνσ

∫
εk
δRk

δk

δWk

δjρσT

−1

2
Tr

∫
εk
δRk

δk

δ2Wk

δjδj
+
δWk

δj

∫
εk
δRk

δk

δWk

δj
−
∫
ddx
√
ḡεRk

δWk

δj

−Tr
∫
εk
δRk

δk

δ2Wk

δJµδJν∗
+ 2

δWk

δJµ∗
ḡµν
∫
εk
δRk

δk

δWk

δJµ

The variation of the EAA can be computed inserting these variations in (??). The terms

containing the sources cancel out, as does the term linear in ω from (2.3.37) and the variations

of the cuto� terms evaluated on the classical �elds. There remain only the terms with the

connected two-point functions, that can be re-expressed in terms of the EAA:

δΓk =
1

2
Str

(
δ2Γk
δφδφ

+Rk

)−1 ∫
εk
δRk

δk

=
1

2
Tr

(
δ2Γk
δhT δhT

+Rk

)−1 ∫
εk
δRk

δk
+

1

2
Tr

(
δ2Γk
δωδω

+Rk

)−1 ∫
εk
δRk

δk

−Tr
(

δ2Γk
δC∗δC

+Rk

)−1 ∫
εk
δRk

δk
+ . . . . (2.3.39)

Here we use the same super�eld notation as in (B.0.4), and the ellipses indicate further mixing

terms that arise in the inversion of the Hessian.

Comparing (2.3.39) and (B.0.4) we see that

δΓk =

∫
εk
δΓk
δk

, (2.3.40)

where we recall that the variation on the left-hand side involves only the �eld arguments of

Γk and leaves k �xed. We have thus arrived at a remarkably simple result: with our choices

for the gauge and cuto� terms, the anomalous variation in the mSWWI is given by the �beta

functional� of the theory, as expressed by the RHS of the local ERGE.

Recalling (2.3.9), we can rewrite (2.3.40) simply as

δ(E)Γk = 0 . (2.3.41)

This is a statement of invariance of the EAA under a particular realization of the Weyl

group. We can therefore rewrite the action entirely in terms of SW-invariant variables. Having
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chosen some of the �elds to be invariant obviously simpli�es the task. The choice of variables

that we �nd both conceptually most satisfying and technically most useful is the following:

k̂ = eσ̄k ; ĥTµν ; C∗µ ; Cµ ; σ = σ̄ + ω ; ĝµν . (2.3.42)

In the spirit of Weyl's theory, we are using the background dilaton �eld χ̄ = e−σ̄ as unit of length

and measure everything in its units. iii The solution of the mSWWI is therefore a functional

Γ̂k̂(h
Tµ

ν , C
∗
µ, C

µ, σ; ĝµν) = Γk(h
Tµ

ν , C
∗
µ, C

µ, ω; σ̄, ĝµν) . (2.3.43)

As expected the mSWWI eliminates the dependence of the EAA on the dynamical variable ω and

on the background variable σ̄, replacing them by the single invariant σ. In order to work out the

Ward identity for more complicated forms of εµν , we need to consider groups more complicated

than the Weyl group. That is, we need a richer structure in the split transformations. This is

an open question that we leave for future.

We end this important section by commenting on the signi�cance of having k(x). The ERGE

can be easily generalized to the case of non-constant cuto�, but its physical interpretation

becomes then less clear. The �ow of the FRGE in theory space would depend on a function,

instead of a single parameter, which would be somewhat reminiscent of the � `many-�ngered

time� of General Relativity. It would be interesting to explore a possible connection of the

local ERGE with the notion of local RG [78]. We have also noted that the solution of the

mSWWI implies that also the cuto� has to be replaced, as an argument of the EAA, by the

dimensionless quantity k̂. Unlike k, it is invariant under (extended) SW transformations. It is

therefore consistent to assume that k̂ is constant.

If k̂ is constant, we replace

k̂(x)
δΓ̂k̂
δk̂(x)

by k̂
dΓ̂k̂
dk̂

and the reduced ERGE becomes again an ordinary di�erential equation, whose solution are

curves in theory space depending on the single parameter k̂. In this way the local ERGE can

be seen just as an intermediate mathematical construction.

iiiWe avoid the alternative de�nition k̂ = eωk used in [73] because we �nd it awkward to have a dynamical

variable in the cuto� scale. Another possible invariant metric would be g̃µν = e2ω ḡµν . Note the relation

between invariants: g̃µν = e2σ ĝµν . The alternative de�nition ĥTµν = e2ωhTµν would lead to a more complicated

(o�-diagonal) Jacobian.
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2.4. Gravity and Matter

Since gravity cannot be described alone, we need to include matter degrees of freedom in order

to get a more realistic picture of a quantum theory for all fundamental forces of nature. Then

two questions naturally arise at this point: how do matter degrees of freedom alter the pattern

portrayed in the previous section? How do AS gravity a�ect the fate of the couplings in the

matter sector? In the speci�c case of the SM, we have NS = 4 scalars, NF = 24 fermions and

NV = 12 vector �elds. E�ects of matter degrees of freedom in AS gravity have been studied in

[79, 29, 80, 81, 82]. It is found that for a small number of matter �elds, the interacting �xed

point is still present. For a larger number of �elds, the �xed point might be lost, although

higher truncations might be needed in order to have a more precise conclusion. For the Newton

coupling, we can see how the matter �elds a�ect the existence of a �xed point. Assuming that

gN reaches an interacting �xed point in pure gravity, we can write the matter contributions as

βgN = βGrav
gN

+ βMatter
gN

, with βMatter
gN

= (NSaS +NFaF +NV aV )g2
N , (2.4.1)

where the sign of ai, i = S, F, V determine the screening or antiscreening e�ects of each �elds.

It is also expected that gravity modi�es the running of the matter couplings. The

speci�c form of such e�ects depends on the truncation, and the other free elements in the

FRG analysis. Even though a de�nite answer might be far from being obtained, several

calculations of the new matter beta functions have been carried out. In the gauge sector:

[83, 84, 85, 86, 87, 88, 45, 46, 89, 47, 49, 90]. In the Yukawa sector: [40, 91, 41, 43, 42]. They all

agree on the fact that the structure of gravity e�ects on a given canonicallly marginal coupling

is

βgj = βMatter
gj

+ βGrav
gj

, with βGrav
gj

= −fgjgj, (2.4.2)

where fgj is a function of the gravitational couplings, and gj is a gauge or Yukawa coupling.

For the gauge couplings g, the value of fg is still unclear but there are hints in favour of a

positive function, fg ≥ 0. The sign of the new contributions is important since it can destroy or

introduce a non-trivial �xed point . In Chapter 4, we explain the implications of having fg ≥ 0.

There, we use the loop-expanded beta functions for the matter contributions since the arising

�xed points lie at small enough values.

In order to have an idea about the form of fg, and its dependence on the gravitational e�ective

action, we show the results found in [45]. In that work, the function the gravitational correlation

to the U(1) gauge coupling is given by fg = − 3
π
gNΦ1

1(0), where gN is the dimensionless Newton

coupling, and the function Φ is

Φp
n(w) =

1

Γ(n)

∫ ∞
0

dz zn−1 r(z)− zr′(z)

(z + r(z) + w)p
, (n > 0) (2.4.3)
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In the previous expression, r is the cuto� pro�le used in the gravitational cuto� action, and

z = −D̄2/k2. We see here that the actual value is clearly scheme-dependent. Although the sign

of Φ1
1(0) seems positive for any admissable choice of r, the precise result is still debatable.

For the Yukawa couplings of the SM, Eq. (2.4.2) also applies, so we have an extra function

fy. This gravity contribution is the same for all the Yukawa couplings because gravity is a

�avour-blind interaction. Assuming that AS exists for gravity, and that it is not destroyed

by matter degrees of freedom, we can explore the consequences of (2.4.2) in the fate of SM

couplings. Exploiting the constant behavior of fg, fy beyond the Planck scale (see Fig. 2.2 for

gN), we can aim at �nding an interacting �xed point in the matter sector. As sketched in Fig.

1.1, the presence of an interacting �xed point can provide low-energy predictions. This last

aspect of asymptotically safe gravity is the key point to be discussed in Chapter 4.
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Chapter 3

Asymptotic Safety Beyond the Standard

Model

In this chapter, we study in detail the extensions of the SM via vector-like fermions described in

the Introduction. Here, besides the notion of perturbativity in terms of the �xed-point values of

the coupling constants and scaling exponents, we need to introduce additional concepts that are

useful throughout the text. We also clarify what approximation scheme we use in the remaining

part of the chapter. This is important because we make use of the perturbative loop expansion

in all the work presented here.

3.1. Approximation schemes

The perturbative β-functions of the SM and its extensions have a natural hierarchy originating

from the Weyl consistency conditions [92, 93, 94, 95, 96]:

∂βj

∂gi
=
∂βi

∂gj
. (3.1.1)

A consistent solution of eq. (3.1.1) relates di�erent orders in the perturbative expansion and

indicates that the gauge couplings must have the highest order in the loop expansion, while the

Yukawa coupling must be computed at one order less, and the quartic interaction one further

order less. This leaves us in practice with two approximations for the running of the couplings:

• the 210 approximation scheme, in which the gauge couplings are renormalized at the two-

loop order (NLO), the Yukawa coupling only at one-loop order (LO) and the quartic
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interaction is not renormalized; and

• the 321 approximation scheme, in which the gauge couplings are renormalized at the

three-loop order (NNLO), the Yukawa coupling at two-loop order (NLO) and the quartic

interaction at one-loop order (LO).

By comparing the two approximations it is possible to test the stability of the �xed point against

radiative corrections and the overall reliability of the perturbative computation.

Other approximation schemes are also possible, for example retaining all β-functions at the

same order or keeping only the gauge β-functions one order higher than the others. These

di�erent choices do not satisfy eq. (3.1.1). They are analysed in [97] where they respective

merits (and shortcomings) are discussed.

Perturbative β-functions: A digest of the literature

The perturbative study of the β-functions of the SM, together with some of its possible

extensions, has been a collective endeavor covering many years. We collect here the main

stepping stones in this ongoing computation.

The one-loop (LO) β-function for a non-abelian gauge group was computed in the classic

papers [98] and [99] where AF was discovered. The LO β-function for the Yukawa coupling

was presented in [100] and that for the quartic Higgs interaction in [101]. The two-loop (NLO)

β-functions for the gauge groups have been calculated in [102, 103, 104, 105], those for the

Yukawa couplings in [106, 107, 108] and that for the quartic Higgs interaction in [109, 108, 110].

The case of the SM has been discussed in [111]. Mistakes in some of these results were corrected

in [112, 113] where they were also generalized to arbitrary representations of non-simple groups.

The three-loop (NNLO) β-functions of a gauge theory with simple groups were given partially

in [114], then in [115]. The full NNLO β-functions for the SM were presented in [116] and

those for generic representations of non-simple gauge groups in [117]. In this last paper, some

contributions from the Yukawa and quartic Higgs interactions were not included. For these terms

we have used currently unpublished results of L. Mihaila [118]. The NNLO β-functions for the

Yukawa and quartic Higgs couplings were partially computed in [119] and fully in [120, 121].

We will not need them here.
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3.2. Testing �xed points with central charges

At a �xed point the theory is a conformal �eld theory (CFT). As explained in appendix D, one

can estimate the size of the relative changes of the central charges of the CFT to decide whether

a �xed point is within the domain of perturbation theory. These relative changes are obtained

in terms of the function a = afree + aq (aq refers to the contribution of quantum corrections)

and of the c-function as

δa ≡ a− afree
afree

=
aq
afree

and δc ≡ c− cfree
cfree

=
cq
cfree

. (3.2.1)

If δa or δc become smaller than −1 the �xed point is unphysical because it cannot correspond

to a CFT (since c > 0 and a > 0 are guaranteed for CFT). A �xed point for which δc or δa is

of order 1 should be discarded as well, since quantum corrections are then comparable in size

to the free-theory contribution.

The central charges in the 210 approximation scheme can be easily computed by embedding

the models in the general gauge-Yukawa Lagrangian of [122]. Computation in the 321

approximation scheme is signi�cantly more complicated due to a major increase in complexity

of the Zamolodchikov metric. We do not pursue the 321 computation for that reason and also

because the results in the 210 approximation scheme are enough to con�rm that our other

perturbativity criteria are compatible with the CFT tests.

3.3. Procedure summary

Given a model, we �rst look for all the �xed-point solutions of the β-functions. Since the β-

functions are given in the form of a Taylor expansion, they will have several zeroes that are mere

artifacts of the expansion, and we have to select those that have a chance of being physical.

The criteria we apply are: stability under radiative corrections and matching to the SM at low

energy (see Sec. 1.4).

We begin by analyzing the �xed points of the 210 approximation scheme. In the �rst step,

we retain only those �xed points that can be reasonably assumed to be within the perturbative

regime, that is, those for which the couplings and the scaling exponents satisfy the bounds in

eq. (1.5.1) and eq. (1.5.2). We use the criteria discussed in sections 1.5 and 3.2 to con�rm that

these bounds are indeed reasonable indicators of radiative stability.

We then compare with the results of the same analysis in the 321 approximation scheme.

We retain only those �xed points that can be reasonably identi�ed in both approximations.
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Their number is quite small. We �nd that the identi�cation is only possible if the couplings and

scaling exponents are su�ciently small.

Finally, for the �xed points that are radiatively stable in the sense just described, we look

for the possibility of matching to the SM at low energy. If all these conditions are satis�ed,

we have a �xed point that can be considered as physical. Otherwise, the �xed point should be

rejected and deemed unphysical.

3.4. The fate of the Standard Model couplings

The running of the SM couplings, when extended to high energies, presents two important

features: partial gauge coupling uni�cation and a Landau pole in the abelian gauge coupling.

Since this singularity appears beyond the Planck scale, where gravitational e�ects are important,

it might well happen that there will be no divergence and that all couplings are well-behaved once

we consider a full theory of gravity and matter (see Chapter 4). Nevertheless, it is interesting

to investigate whether such in�nities could be avoided within the matter sector.

α1 α2 α3 αt

0 20 40 60 80

5.×10
-4

0.001

0.005

0.010

t

Figure 3.1: Running of the gauge couplings αi and Yukawa αt for the SM in the 321 approximation

scheme. On the horizontal axis t = Log [k/MZ ]. Just above t ' 40 the three gauge couplings come

close together. At larger values of t, α1 begins its ascent towards the Landau pole.

Throughout this chapter, we shall consider a simpli�ed version of the SM where only the top-

Yukawa coupling yt is retained. The remaining Yukawa couplings are set to zero. For simplicity

we will keep calling this the SM. However, we stress that the degrees of freedom that enter the
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�ow are not only those of the top quark but the full SM matter content (i.e., the number of

fermions that enter in loops counts all the quarks and leptons).

3.4.1. The 210 approximation scheme

The �rst question is whether the β-functions of the SM have �xed points. We then consider the

beta functions in the 210 approximation scheme, which are given by

βNLO1 = α2
1

(
41

3
+

199

9
α1 + 9α2 +

88

3
α3 −

17

3
αt

)
,

βNLO2 = α2
2

(
−19

3
+ 3α1 +

35

3
α2 + 24α3 − 3αt

)
,

βNLO3 = α2
3

(
−14 +

11

3
α1 + 9α2 − 52α3 − 4αt

)
,

βLOt = αt

(
−17

6
α1 −

9

2
α2 − 16α3 + 9αt

)
, (3.4.1)

The set of β-functions in eq. (3.4.1) admits several zeroes. They are given by the last column

of Table E.1 in Appendix E. However, only two of them (solutions P16 and P17) have all αi
positive. Their properties are summarized in Table 3.1.

α∗
1 α∗

2 α∗
3 α∗

t θ1 θ2 θ3 θ4
FP1 0 0.543 0 0 3.44 −2.44 0 0

FP2 0 0.623 0 0.311 5.21 2.21 0 0

Table 3.1: Fixed points and their scaling exponents for the SM in the 210 approximation scheme.

Although less than 1, the values for the couplings constants are quite sizeable and we may

suspect that they lie outside the perturbative domain. Considering that scaling exponents are

classically zero, we see that the quantum correction are quite large. The values of θi indicates

the breakdown of the perturbative validity, as we will see in the next subsection. If we decide to

ignore the breaking of the perturbative regime and insist on looking for trajectories connecting

one of the �xed points to the IR regime, the requirement of lying on the UV critical surface

implies that there is always a coupling that vanishes at all scales. Namely, given that α∗1 = 0, and

that the β-function for α1 is proportional to a power of α1 itself, this coupling does not run at

all. In other words, the coupling α1 is frozen at zero at all scales and the U(1) gauge interaction

is trivial. Clearly there are no physical �xed point within the SM in the 210 expansion: the

problem of the Landau pole is still present even when the gauge couplings are taken at three

loops.
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3.4.2. The 321 approximation scheme

To check the perturbative stability of the two �xed points of the previous section, we now study

the β-functions to the next order. In the 321 approximation scheme, the β-functions take the

form [96]

βNNLO1 = βNLO1 + α2
1

[
−388613

2592
α2

1 +
205

48
α1α2 +

1315

32
α2

2 −
274

27
α1α3 − 2α2α3 + 198α2

3

−
(

2827

144
α1 +

785

16
α2 +

58

3
α3

)
αt +

315

8
α2
t +

3

2

(
α1 + α2 − αλ

)
αλ

]
,

βNNLO2 = βNLO2 + α2
2

[
−5597

288
α2

1 +
291

16
α1α2 +

324953

864
α2

2 −
2

3
α1α3 + 78α2α3 + 162α2

3

−
(

593

48
α1 +

729

16
α2 + 14α3

)
αt +

147

8
α2
t +

1

2

(
α1 + 3α2 − 3αλ

)
αλ

]
,

βNNLO3 = βNLO3 + α2
3

[
−2615

108
α2

1 +
1

4
α1α2 +

109

4
α2

2 +
154

9
α1α3 + 42α2α3 + 65α2

3

−
(

101

12
α1 +

93

4
α2 + 80α3

)
αt + 30α2

t

]
,

βNLOt = βLOt + αt

[
+

1187

108
α2

1 −
3

2
α1α2 −

23

2
α2

2 +
38

9
α1α3 + 18α2α3 − 216α2

3

+

(
131

8
α1 +

225

8
α2 + 72α3

)
αt − 24α2

t − 12αtαλ + 3α2
λ

]
, (3.4.2)

βLOλ = 12α2
λ −

(
3α1 + 9α2

)
αλ +

9

4

(
1

3
α2

1 +
2

3
α1α2 + α2

2

)
+ 12αtαλ − 12α2

t ,

where the quartic Higgs coupling

αλ =
λ

(4π)2
(3.4.3)

is now renormalized.

Due to the higher order of the equations, there are more �xed points than the two found in

the 210 approximation scheme. They are listed in Table 3.2.

α∗
1 α∗

2 α∗
3 α∗

t α∗
λ θ1 θ2 θ3 θ4 θ5

FP1 0 0 0 0.297 0.184 8.32 −2.57 0 0 0

FP2 0 0.120 0 0.0695 0.0575 1.46 1.18 0.495 0 0

FP3 0 0.124 0 0.333 0.230 8.82 −2.52 1.38 0 0

FP4 0.436 0.146 0 0.648 0.450 −27.0 17.3 −7.85 2.19 0

FP5 0.433 0 0 0.573 0.377 −25.6 15.7 −6.85 0 0

Table 3.2: Fixed points and their scaling exponents for the SM in the 321 approximation scheme.
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Consistently with the discussion in the case of the 210 approximation scheme, neither the

couplings nor the exponents are small. Moreover, it is not possible to recognize among the new

�xed points those of the 210 approximation scheme: the values change dramatically, contrary

to what would be expected in a well-behaved perturbative expansion.

The criterion of perturbativity introduced in section 1.5 con�rms the instability of the �xed

points . In the 210 approximation scheme, for the two �xed points of Table 3.1, we have

B
(2)
∗ = 1.87 and B

(2)
∗ = 2.46, respectively, while C

(2)
∗ = 32.7 and C

(2)
∗ = 53.9, respectively. For

both �xed points the ratio ρ2 is of order 10, grossly violating the bound (1.5.6). It therefore

appears that we are outside the domain where perturbation theory can be trusted. We conclude

that the SM (at least in the simpli�ed form considered here) does not have a physical �xed point

within perturbation theory. In the next section, we study a family of models that represents the

simplest extension to the SM content with the potential of generating perturbative �xed points.

3.5. Standard Model extensions

In this section, we consider (minimal) extensions of the SM by adding new matter �elds charged

under the SM group SUc(3) × SUL(2) × UY (1). The gauge sector is not modi�ed. Following

[11, 9, 14, 123], we take Nf families of vector-like fermions minimally coupled to the SM. The

idea is to consider a new type of Yukawa interactions among the vector-like fermions such that

their contribution generate new zeros in the gauge β-functions. Accordingly, new scalar �elds

must be included as well. These scalars are taken to be singlets of the SM group while the

fermions carry the representations R3 under SUc(3), R2 under SUL(2), and have hypercharge Y

of the gauge group UY (1). Denoting Sij the matrix formed with N2
f complex scalar �elds, the

Lagrangian characterizing this minimal BSM extension is

L = LSM + Tr (ψ̄i /Dψ) + Tr (∂µS
†∂µS)− yTr (ψ̄LSψR + ψ̄RS

†ψL). (3.5.1)

In eq. (3.5.1), LSM stands for the SM lagrangian, y is the BSM Yukawa coupling, which we

assume to be the same for all fermions, the trace sums over the SM representation indices as well

as the �avour indices, and we have decomposed ψ as ψ = ψL +ψR with ψR/L = 1
2
(1± γ5)ψ. For

simplicity, we do not consider self-interactions of the scalars Sij, neither portal couplings to the

SM Higgs doublet in order no to complicate the problem. Even though these scalar interactions

might result interesting from a phenomenological point of view, their impact will start being

relevant in the 321 approximation scheme. Our present concern deals with the existence of

viable UV �xed points. If one is able to achieve this task, it is then interesting to explore the

scalar sector by itself. From now on, the only scalar sector relevant in our discussion is the usual

SM Higgs potential.

40



3.5.1. The β-functions

Within the model de�ned by the Lagrangian (3.5.1), we look for �xed points satisfying the

requirements discussed in section 3.3. We start the analysis in the 210 approximation scheme

and write the β-functions of the system (3.5.1) in terms of the quantities in eq. (1.5.3) augmented

by the new coupling αy = y2

(4π)2
.

In the following, as in section 3.4, we keep only the top-Yukawa coupling. The β-functions
will depend on the dimensions of the fermion representations d, their Casimir invariants C and
Dynkin indices S, which are de�ned in general as

dR2 = 2`+ 1, dR3 =
1

2
(p+ 1)(q + 1)(p+ q + 2),

C
(2)
F = CR2 = `(`+ 1), C

(3)
F = CR3 = p+ q +

1

3
(p2 + q2 + pq),

S
(2)
F = SR2 =

dR2CR2

3
, S

(3)
F = SR3 =

dR3CR3

8
. (3.5.2)

Here, ` = 0, 1/2, 1, 3/2, . . . denotes the highest weight of R2, and (p, q) (with p, q = 0, 1, 2 . . .)

the weights of R3.

In the 210 approximation scheme, the β-functions are given by [105, 107, 109, 112]

βNLO1 =

(
B1 +M1α1 +H1α2 +G1α3 −D1αy −

17

3
αt

)
α2

1,

βNLO2 =
(
−B2 +M2α2 +H2α1 +G2α3 −D2αy − 3αt

)
α2

2,

βNLO3 =
(
−B3 +M3α3 +H3α1 +G3α2 −D3αy − 4αt

)
α2

3,

βLOt =

(
9αt −

17

6
α1 −

9

2
α2 − 16α3

)
αt,

βLOy =
(
Tαy − F1α1 − F2α2 − F3α3

)
αy, (3.5.3)

where we have included the gauge and matter contributions in the coe�cients Bi, Mi, Hi, Gi

and Di, for i = 1, 2, 3. These coe�cient are expressed in terms of dR2 , dR3 , CR2 , CR3 , SR2 , SR3 ,
Y and Nf as follows. For the diagonal and mixing gauge contributions to the gauge β-functions
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we have

B1 =
41

3
+

8

3
NfY

2dR2dR3 , M1 =
199

9
+ 8Y 4NfdR2dR3 ,

H1 = 9 + 8Y 2NfCR2dR2dR3 , G1 =
88

3
+ 8NfY

2CR3dR2dR3 ,

B2 =
19

3
− 8

3
NfSR2dR3 , M2 =

35

3
+ 4NfSR2dR3

(
2CR2 +

20

3

)
,

H2 = 3 + 8NfY
2SR2dR3 , G2 = 24 + 8NfSR2CR3dR3 ,

B3 = 14− 8

3
NfSR3dR2 , M3 = −52 + 4NfSR3dR2(2CR3 + 10),

G3 = 9 + 8NfSR3CR2dR2 , H3 =
11

3
+ 8NfY

2SR3dR2 . (3.5.4)

For the Yukawa contribution to the gauge β-functions we have

D1 = 4N2
fY

2dR2dR3 , D2 =
1

3
4N2

fCR2dR2dR3 , D3 =
1

8
4N2

fCR3dR2dR3 , (3.5.5)

whereas the running of the new coupling αy is characterized by the coe�cients

T = 2(Nf + dR2CR3), F1 = 12Y 2, F2 = 12CR2 , F3 = 12CR3 . (3.5.6)

All the new contributions to the gauge couplings running are multiplied by Nf , meaning that

we can go back to the SM by taking the Nf → 0 limit.

Due to the simplicity of the β-functions to this order in perturbation theory, we can �nd

analytic solutions of the equations βNLOi = βLOt = βLOy = 0 as functions of Y, `, p, q and Nf . All

these solutions are listed in Table E.1 and can be split in two categories according to whether

they depend on the hypercharge Y or not. Those independent of Y have α∗1 = 0.
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For the gauge couplings, the β-functions in the 321 approximation scheme are given by

βNNLO1 = βNLO1 +

[
−M11α

2
1 +M12α1α2 −M13α1α3 −G23α2α3 +H11α

2
2 +G11α

2
3

+
315

8
α2
t +Ky1α

2
y −

2827

144
α1αt −

785

16
α2αt −

58

3
α3αt

− (K11α1 +K12α2 +K13α3)αy +
3

2
(α1 + α2 − αλ)αλ

]
α2

1,

βNNLO2 = βNLO2 +

[
−M22α

2
2 +M21α2α1 −M23α2α3 −G13α1α3 −H22α

2
1 +G22α

2
3

+
147

8
α2
t +Ky2α

2
y −

729

16
α2αt −

593

48
α1αt − 14α3αt

− (K22α2 +K21α1 +K23α3)αy +
1

2
(α1 + 3α2 − 3αλ)αλ

]
α2

2, (3.5.7)

βNNLO3 = βNNLO3 +

[
−M33α

2
3 +M31α3α1 −M32α3α2 −G12α1α2 −H33α

2
2 +G33α

2
2

+30α2
t +K3yα

2
y − 80α3αt −

101

12
α1αt −

93

4
α2αt

− (K33α3 +K31α1 +K32α2)αy

]
α2

3 .

For the Yukawa and quartic Higgs couplings, the β-functions are given by

βNLOt = βLOt +

[
−24α2

t + 3α2
λ − 12αtαλ +

(
131

8
α1 +

225

8
α2 + 72α3

)
αt

+
1187

108
α2

1 +
3

2
α1α2 −

23

2
α2

2 +
38

9
α1α3 + 18α2α3 − 216α2

3

+
58

27
Bt1α

2
1 + 2Bt2α

2
2 +

160

9
Bt3α

2
3

]
αt (3.5.8)

βNLOy = βLOy +
[
(4− V )α2

y + (V1α1 + V2α2 + V3α3)αy

+W1α
2
1 +W2α

2
2 +W3α

2
3 −W12α1α2 −W13α1α2 −W23α2α3

]
αy,

βLOλ = 12α2
λ − (3α1 + 9α2)αλ +

9

4

(
1

3
α2

1 +
2

3
α1α2 + α2

2

)
+ 12αtαλ − 12α2

t .

In eqs. (3.5.7)�(3.5.8), we have introduced several coe�cients containing the gauge and Yukawa

contributions which depend on Nf and the group representations of the SM and new vector-like

fermions. These coe�cients are given in appendix F.

It is not possible to �nd analytic solutions for the �xed points in the 321 approximation

scheme. The system βNNLOi = βNLOt = βNLOy = βLOλ = 0 must be solved numerically, separately

for each given choice of (Nf , Y, p, q, `). No separation between Y -independent and dependent

solutions can be established before solving the equations.
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3.5.2. Results

In order to �nd �xed points satisfying the conditions (1.5.1) and (1.5.2), we generate a grid in

the space spanned by the quantum numbers (Nf , `, Y ) for three speci�c SUc(3) representations:

colorless (p = q = 0), fundamental (p = 1, q = 0) and adjoint (p = q = 1). For each of these

representations, we consider the following values for the number of vector-like fermions, their

isospin and hypercharge: Nf ∈ [1, 300] in steps of size 1, ` ∈ [1/2, 10] and Y ∈ [0, 10] both in

steps of size 1/2. This amounts to 126,000 points for each representation of SUc(3).

We highlight that for some of these representations, we can construct interaction terms with

SM particles. For instance, in the case of colorless fermions we can write operators with the

Higgs doublet and the SM leptons. In particular, we have the case of SU(2) singlets with Y = 1,

SU(2) doublets with Y = −1/2 or Y = −3/2 , and SU(2) triplets with Y = −1. Calling YN
the matrix of new Yukawa couplings, we have the following invariants

YN L̄LHψR , YN ψ̄LHlR , YN ψ̄LεH
∗lR , YN L̄LψRH , (3.5.9)

where LL and lR are the SM lepton doublet and singlet respectively. These four cases are

therefore considered separately. In the next subsection we discuss systematically only the BSM

Yukawa interactions, bearing in mind the particular modi�cations for the above cases. In the

end, the main conclusion does not change when we include (3.5.9).

Colorless vector-like fermions

Colorless vector-like fermions are the least phenomenologically restricted and therefore the most

attractive candidates for a successful extension of the SM. In the 210 approximation scheme

we �nd that only the Y -independent set of solutions contains �xed points ful�lling the required

conditions (α < 1, |θ| < O(1)).

To set the precise bound on |θ|, we plot in Figure 3.2 the largest eigenvalues of the stability

matrix Mij. For the Y -independent solutions there is a gap between 2.21 and 62.6; for the Y -

dependent solutions there are no eigenvalues less than 9.63. Accordingly, we decide to consider

�xed points with |θ| < 3. In this way we probably include some �xed points that are not

within perturbation theory, but we prefer to err on this side than to miss potentially interesting

�xed points. In this way we discard all the Y -dependent �xed points since there is always an

eigenvalue which is at least of order 10.

After having applied all the criteria discussed in subsection 3.3 we �nd that, for any value of

the hypercharge Y , the only representations producing satisfactory candidate �xed points are
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Figure 3.2: Distribution of the largest eigenvalues θmax of the stability matrix associated to the colorless

models. Blue dots: eigenvalues for the Y -independent solutions: there is a gap between 2.21 and 62.6.

Red dots: eigenvalues for the Y -dependent solutions: there is no gap, the eigenvalues start around 10.

those collected, together with the corresponding eigenvalues, in Table 3.3. The eigenvalues of

the stability matrix turn out to be Y -independent as well.

(Nf , `) α∗
1 α∗

2 α∗
3 α∗

t α∗
y θ1 θ2 θ3 θ4 θ5

(1, 1
2

) 0 0.200 0 0 0.300 2.04 −0.900 0.884 0 0 P16

0 0.213 0 0.106 0.319 2.21 1.19 0.743 0 0 P17

0 0.179 0 0 0 −1.61 0.893 −0.804 0 0 P18

0 0.189 0 0.0943 0 −1.70 1.15 0.697 0 0 P19

(1, 1) 0 0.0137 0 0 0.0411 0.333 −0.0616 0.0135 0 0 P16

0 0.0140 0 0.0070 0.0420 0.341 0.0633 0.0137 0 0 P17

0 0.0103 0 0 0 −0.247 −0.0464 0.0103 0 0 P18

0 0.0105 0 0.0052 0 −0.251 0.0473 0.0104 0 0 P19

(2, 1
2

) 0 0.104 0 0 0.117 1.0833 −0.467 0.328 0 0 P16

0 0.108 0 0.0542 0.122 1.14 0.525 0.315 0 0 P17

0 0.0827 0 0 0 −0.744 −0.372 0.303 0 0 P18

0 0.0856 0 0.0428 0 −0.770 0.427 0.283 0 0 P19

(3, 1
2

) 0 0.0525 0 0 0.0472 0.530 −0.236 0.109 0 0 P16

0 0.0543 0 0.0272 0.0489 0.552 0.251 0.109 0 0 P17

0 0.0385 0 0 0 −0.346 −0.173 0.0897 0 0 P18

0 0.0394 0 0.0197 0 −0.355 0.182 0.0896 0 0 P19

(4, 1
2

) 0 0.0189 0 0 0.0141 0.179 −0.0849 0.0179 0 0 P16

0 0.0194 0 0.0097 0.0146 0.185 0.0880 0.0182 0 0 P17

0 0.0130 0 0 0 −0.117 −0.0584 0.0130 0 0 P18

0 0.0132 0 0.0066 0 −0.119 0.0599 0.0132 0 0 P19

Table 3.3: Set of �xed points and eigenvalues for colorless vector-like fermions in the 210 approximation

scheme. We highlight in green the �xed points that appear also in the 321 approximation. The labels

in the second to the last last column refer to the list in Table E.1.

The bounds on Nf and ` come from the behavior of the eigenvalues as functions of these

parameters. If we plot one of the eigenvalues as a function of Nf for several values of l, we

observe that it increases very fast. From Figure 3.3, we see that only models with small Nf

produce su�ciently small eigenvalues.

It is important to note that the large scaling dimensions of models with large Nf frustrate

the apparently promising strategy of increasing Nf in order to increase the NLO term in the

gauge β-functions to cancel the (Nf -independent) LO term with smaller (and therefore more
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perturbative) values of the couplings αi.
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Figure 3.3: Behaviour of a given eigenvalue |θ| as a function of Nf for several values of ` in the

colorless case. The scaling dimension increases very fast with Nf , and only small values of Nf , `

produce |θ| < O(1).

The above selection of the viable �xed points is con�rmed by the study of their CFT central

charges. There are 20 Y -independent �xed points with eigenvalues up to about ±2. The

�xed point with least variation in the central charges is that with (Nf , `) = (1, 1), having

δa ' −0.0007 and δc ' 0.08. The one with the largest change is that with (Nf , `) = (1, 1/2),

having δa ' −0.2 and δc ' 0.8. All these �xed points (except for the one corresponding

to (Nf , `, Y ) = (1, 1/2, 0)) pass the collider bounds test (see appendix D). There are 69 Y -

dependent �xed points with eigenvalues up to ±10. None of them have positive a or c with δa

and δc being of O(1). They should all be discarded. These results con�rm our classi�cation of

the �xed points in Table 3.3 according to the size of their eigenvalues and the ratio ρ.

Now that we have isolated the candidates to study, we check whether these �xed points can

be connected to the SM via the RG �ow. We note that β1 is proportional to α2
1 and so, in

order to avoid Landau poles, α1 has to vanishes at all energy scales. In conclusion, although we

have perturbative �xed points, these cannot be matched to the SM because we know that g1 is

di�erent from zero at the TeV scale.

We then perform a similar search in the 321 approximation scheme. Here, we stick to

solutions having |θ| < 1. We �nd that the same combinations of Nf and ` that provide
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perturbative �xed points in the 210 case also give viable solutions here. Moreover, the solutions

turn out to be Y -independent as well.

In Table 3.4 we show the �xed point solutions satisfying the criteria in eq. (1.5.1) and

eq. (1.5.2). All the �xed points in Table 3.4 can be traced back to �xed points that were already

present in the 210 approximation scheme and listed in Table 3.3. Notice that for a given

pair (Nf , `), not all the �xed points in 210 persist. For those that do, the values of α∗ and θ

change by relatively small amount. We can then claim that the solutions given in Table 3.4 are

radiatively stable �xed points.

(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y α∗

λ θ1 θ2 θ3 θ4 θ5 θ6 σ2 ρ2
(1, 1) 0 0.0096 0 0.0048 0 0.0039 −0.244 0.0655 0.0430 0.0103 0 0 0.918 0.0821

0 0.0119 0 0.0060 0.0343 0.0048 0.301 0.0813 0.0531 0.0134 0 0 0.8601 0.140

(2, 1
2

) 0 0.0498 0 0.0259 0 0.0211 −0.592 0.382 0.282 0.200 0 0 0.581 0.418

0 0.0567 0 0.0296 0.0734 0.0242 0.696 0.442 0.314 0.224 0 0 0.5012 0.499

(3, 1
2

) 0 0.0291 0 0.0148 0 0.0120 −0.306 0.2080 0.132 0.0827 0 0 0.737 0.263

0 0.0362 0 0.0184 0.0353 0.0150 0.403 0.262 0.165 0.100 0 0 0.645 0.354

(4, 1
2

) 0 0.0117 0 0.0059 0 0.0048 −0.112 0.0804 0.052 0.0130 0 0 0.887 0.113

0 0.0162 0 0.0081 0.0125 0.0066 0.161 0.112 0.0723 0.0179 0 0 0.823 0.177

Table 3.4: Fixed points and eigenvalues for colorless vector-like fermions, in the 321 approximation

scheme. The last two columns give the values of the ratios σ2 and ρ2 (see 1.5.6).

Unfortunately, when we look at trajectories lying on the UV critical surface, we �nd again

that the coupling α1 must be zero at all scales in all the models. The abelian interactions

su�er from the triviality problem and no matching to the SM is possible if asymptotic safety is

assumed. All these colorless models are therefore ruled out.

Vector-like fermions in the fundamental of SUc(3)

For the fundamental representation (p = 1 and q = 0 or vice-versa) we follow the same procedure

as before and generate 126,000 models by scanning the same grid in the (Nf , `, Y ) space. We

split the solutions in two families depending on whether they depend on the value of their

hypercharge Y or not. The distribution of the largest eigenvalues given in Figure 3.4 shows

that there are no �xed points with |θ| < 52.1 for the Y -dependent solutions, whereas for the

Y -independent solutions there is a gap between 10.8 and 372.
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Figure 3.4: Distribution of the largest eigenvalues θmax of the stability matrix of the �xed points of

the SU(3) fundamental representation. Blue dots: eigenvalues for the Y -independent solutions: there

is a gap between 10.8 and 372. Red dots: eigenvalues for the Y -dependent solutions: there is no gap,

the eigenvalues start at 52.1.

Accordingly, we eliminate all Y -dependent solutions and impose the bound |θ| < 11 for

those that are Y -independent. In this way, even more than in the preceding section, we include

models that are probably unreliable, but these can be eliminated at a later stage. For the Y -

independent solutions, we �nd the combinations of Nf and ` in Tables 3.5 and 3.6 that generate

satisfactory candidate �xed points.

This selection is con�rmed by the study of the central charges for these models. Among the

49 distinct Y -independent �xed points with eigenvalues up to ±10, all have positive c-function,

but 6 of them have a negative a-function (with one more being borderline acceptable). The CFT

test seems to work well here: all �xed points with reasonable scaling exponents pass it, whereas

the ones with relatively large exponents do not. An unexpected fact is that the separation

between large and small exponents seems to be around a maximum value of |θ| around 3. For

these perturbative and �semi-perturbative� �xed points, we also notice that the a-function is

generically pushed toward 0 (aq < 0) whereas the c function is generically shifted to larger values

(cq > 0). This is why the �xed points with negative a-function still seem to pass the c-function

test. If one considers δc instead, then for most of these �xed points δc > 1, but apparently not

for all. Finally, if one also studies the collider bounds one �nds that ten more �xed points are

excluded, usually those which just barely satis�ed one or both of the a and c tests. The collider

bounds tests seem to be the most stringent.

When one tries to match these �xed points to the SM at low energies, it turns out that

the abelian gauge coupling α1 must again be zero at all scales. None of these �xed points is

physically viable.

In the 321 approximation scheme, there exist �xed points that can be reasonably traced

back to those in the 210 approximation scheme. These solutions are shown in Table 3.7, where

we have included only �xed points with |θ| < 1 in order to get small ratios ρi and σi. However,

they all have at least one coupling that has to be zero at all scales, thus preventing a proper
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matching to the SM. We conclude that also all the models with the vector-like fermions in the

fundamental representation of SUc(3) cannot provide an AS extension to the SM.

(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y θ1 θ2 θ3 θ4 θ5

(1, 1
2

) 0 0.0411 0 0 0.0264 0.378 −0.185 0.0936 0 0 P16

0 0.0422 0 0.0211 0.0271 0.389 0.195 0.0936 0 0 P17

0 0.0385 0 0 0 −0.346 −0.173 0.0897 0 0 P18

0 0.0394 0 0.0197 0 −0.355 0.182 0.0896 0 0 P19

(1, 1) 0 0 0.417 0 0 −6.67 −6.67 4.17 0 0 P11

0 0 0.521 0 0.417 10.8 −8.33 4.00 0 0 P9

(1, 3
2

) 0 0 0.176 0 0 −2.81 −2.81 1.52 0 0 P11

0 0 0.205 0.365 0 3.84 −3.28 1.52 0 0 P10

0 0 0.195 0 0.120 3.49 −3.12 1.51 0 0 P9

0 0 0.232 0.413 0.143 4.83 3.72 1.55 0 0 P8

(1, 2) 0 0 0.0982 0 0 −1.57 −1.57 0.720 0 0 P11

0 0 0.108 0.193 0 1.88 −1.74 0.735 0 0 P10

0 0 0.105 0 0.0526 1.78 −1.68 0.730 0 0 P9

0 0 0.117 0.208 0.0586 2.15 1.88 0.749 0 0 P8

(1, 5
2

) 0 0 0.0600 0 0 −0.960 −0.960 0.360 0 0 P11

0 0 0.0646 0.115 0 1.08 −1.03 0.371 0 0 P10

0 0 0.0632 0 0.0266 1.04 −1.01 0.368 0 0 P9

0 0 0.0683 0.121 0.0288 1.18 1.09 0.380 0 0 P8

(1, 3) 0 0 0.0412 0.0733 0.0150 0.689 0.660 0.184 0 0 P8

0 0 0.0388 0 0.0141 0.632 −0.621 0.178 0 0 P9

0 0 0.0395 0.0702 0 0.647 −0.632 0.180 0 0 P10

0 0 0.0372 0 0 −0.596 −0.596 0.174 0 0 P11

(1, 7
2

) 0 0 0.0221 0 0 −0.354 −0.354 0.0737 0 0 P11

0 0 0.0232 0.0413 0 0.376 −0.371 0.0764 0 0 P10

0 0 0.0229 0 0.0073 0.370 −0.366 0.0756 0 0 P9

0 0 0.0241 0.0428 0.0077 0.394 0.385 0.0784 0 0 P8

(1, 4) 0 0 0.0114 0 0 −0.182 −0.182 0.0235 0 0 P11

0 0 0.0118 0.0210 0 0.191 −0.189 0.0235 0 0 P10

0 0 0.0117 0 0.0033 0.188 −0.187 0.0233 0 0 P9

0 0 0.0122 0.0217 0.0035 0.197 0.195 0.0242 0 0 P8

(1, 9
2

) 0 0 0.0033 0 0 −0.0530 −0.0530 0.0022 0 0 P11

0 0 0.0034 0.0061 0 0.0550 −0.0549 0.0023 0 0 P10

0 0 0.0034 0 0.0009 0.0544 −0.0544 0.0023 0 0 P9

0 0 0.0035 0.0063 0.0009 0.0566 0.0564 0.0023 0 0 P8

Table 3.5: Fixed points and eigenvalues for vector-like fermions in the fundamental representation of

SUc(3), in the 210 approximation scheme, with Nf = 1. We highlight in green the �xed points that

appear also in the 321 approximation scheme. The labels in the second to the last last column refer to

the list in Table E.1.

Vector-like fermions in higher representations of SUc(3)

For the adjoint representation (with p = q = 1), the search over the same grid of values

for (Nf , `, Y ) (and thus 126,000 further models) does not produce any �xed point within the

perturbative domain. This is true both in the 210 and in the 321 approximation scheme.
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(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y θ1 θ2 θ3 θ4 θ5

(2, 1
2

) 0 0 0.176 0 0 −2.81 −2.81 1.52 0 0 P11

0 0 0.205 0.365 0 3.84 −3.28 1.52 0 0 P10

0 0 0.260 0 0.260 5.91 −4.16 1.59 0 0 P9

0 0 0.330 0.588 0.330 8.99 5.29 1.68 0 0 P8

(2, 1) 0 0 0.0600 0 0 −0.960 −0.960 0.360 0 0 P11

0 0 0.0646 0.115 0 1.08 −1.03 0.371 0 0 P10

0 0 0.0727 0 0.0529 1.30 −1.16 0.390 0 0 P9

0 0 0.0795 0.141 0.0578 1.50 1.27 0.405 0 0 P8

(2, 3
2

) 0 0 0.0221 0 0 −0.354 −0.354 0.0737 0 0 P11

0 0 0.0232 0.0413 0 0.376 −0.371 0.0764 0 0 P10

0 0 0.0252 0 0.0144 0.417 −0.403 0.0810 0 0 P9

0 0 0.0266 0.0473 0.0152 0.448 0.426 0.0842 0 0 P8

(2, 2) 0 0 0.0033 0 0 −0.0530 −0.0530 0.0022 0 0 P11

0 0 0.0034 0.0061 0 0.0550 −0.0549 0.0023 0 0 P10

0 0 0.0036 0 0.0017 0.0587 −0.0584 0.0024 0 0 P9

0 0 0.0038 0.0068 0.0018 0.0612 0.0608 0.0025 0 0 P8

(3, 1
2

) 0 0 0.0600 0 0 −0.960 −0.960 0.360 0 0 P11

0 0 0.0646 0.115 0 1.08 −1.03 0.371 0 0 P10

0 0 0.0882 0 0.0784 1.77 −1.41 0.423 0 0 P9

0 0 0.0985 0.175 0.0876 2.10 1.58 0.443 0 0 P8

(3, 1) 0 0 0.0114 0 0 −0.182 −0.182 0.0227 0 0 P11

0 0 0.0118 0.0210 0 0.191 −0.189 0.0235 0 0 P10

0 0 0.0143 0 0.0095 0.237 −0.229 0.0276 0 0 P9

0 0 0.0150 0.0267 0.0100 0.252 0.241 0.0288 0 0 P8

(4, 1
2

) 0 0 0.0221 0 0 −0.354 −0.354 0.0737 0 0 P11

0 0 0.0232 0.0413 0 0.376 −0.371 0.0764 0 0 P10

0 0 0.0335 0 0.0268 0.607 −0536 0.0987 0 0 P9

0 0 0.0361 0.0642 0.0289 0.670 0.577 0.104 0 0 P8

(5, 1
2

) 0 0 0.0033 0 0 −0.0530 −0.530 0.0022 0 0 P11

0 0 0.0343 0.0061 0 0.0550 −0.0549 0.0023 0 0 P10

0 0 0.0052 0 0.0038 0.0850 −0.0829 0.0034 0 0 P9

0 0 0.0055 0.0097 0.0040 0.0903 0.0878 0.035 0 0 P8

Table 3.6: Same as Table 3.5, with Nf > 1.

In Figure 3.5, we show the distribution the largest eigenvalues of the stability matrix for the

210 approximation scheme. We clearly see that the eigenvalues are rather large. In fact, the

minimum eigenvalue in the Y -independent set of solutions is 1342, while in the Y -dependent

set is 426.

This problem is con�rmed by the study of the central charges. For the Y -independent �xed

points we �nd for all �xed points δa of O(1000). Similarly, the Y -dependent the �xed points

have δa of O(100). Tests of the c-function con�rm these results, even though the a-function

seems to be more sensitive, in the sense that it su�ers greater relative change.

Again, we come up empty handed. The models with the vector-like fermions in the adjoint

representation of SUc(3) do not provide a viable AS extension to the SM. Higher SUc(3)

representations may worsen the distribution seen in Fig. 3.5. Therefore, we do not consider

them here.
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Figure 3.5: Distribution of the largest eigenvalue θmax of the stability matrix associated to the �xed

points of the SU(3) adjoint representation. Blue: eigenvalues for the Y -independent solutions. Red:

eigenvalues for the Y -dependent solutions. In both cases, there is no gap and the distribution starts at

very large values.

A model that almost works

Having ruled out all possible candidates, one may wonder if the criteria in (1.5.1) and (1.5.2)

might be too stringent and make us miss some potentially interesting models. In the case at

hand, we can indeed �nd additional �xed points that naively seem to be good candidates for an

asymptotically safe extension of the SM. This is achieved if we allow for larger values of θ and

relinquish the condition (1.5.2).

As an example, consider the case of colorless vector-like fermions with quantum numbers

Nf = 3, ` = 1/2 and Y = 3/2. Its �xed points and eigenvalues are given in Table 3.8.

(Nf , `, Y ) α∗
1 α∗

2 α∗
3 α∗

t α∗
y θ1 θ2 θ3 θ4 θ5

(3, 1/2, 3/2) 0.188 0 0 0 0.778 33.2 −3.36 −0.817 0 0

Table 3.8: Values of the couplings and eigenvalues at the promising �xed point for the model that

almost works (210 approximation scheme).

This example provides a very interesting (and non-trivial) extension of the SM which includes

non-trivial �xed point value for the gauge coupling α1, as well as the Yukawa coupling αy.

We see that some of the scaling exponents θi are large and the criterion (1.5.2) is accordingly

violated. Nonetheless, let us momentarily suspend disbelief and apply the formula in (1.5.1).

We do not �nd any coupling frozen to zero and therefore a SM matching seems plausible. In

fact, taking the IR scale M = MZexp(3) ' 1.83TeV � where the SM couplings have the values

α1 = 0.000795, α2 = 0.00257, α3 = 0.00673, αt = 0.00478 � we �nd a good matching, with an

error of the order of per mille, see Figure 3.6.

Ignoring the large scaling exponents, this model seems to provide a very promising candidate

for an AS extension of the SM. However, it is not radiatively stable. The 321 approximation
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Figure 3.6: Evolution of the couplings with t = Log[ k
MZ

] in a logarithmic scale for the �xed point in

Table 3.8. This running provides a trajectory in the theory space connecting the �xed point and the

physics at a matching scale around 2 TeV.

scheme β-functions generate very di�erent �xed points that cannot be easily traced back to

those in the 210 approximation scheme. This example shows us the power of our criteria used

so far. It is not just enough to �nd a �xed point and connect it to the IR physics. We have to

make sure that we are not violating important properties of our theory.

Five benchmark models studied in the literature

The authors of [14] �nd that it is possible to generate asymptotically safe extensions to the

SM in the subsystem (α2, α3, αy) of the couplings. The �ve benchmark models discussed in [14]

(labeled as A, B, C, D and E) are not among those in our scan because they do not include

hypercharge, top Yukawa and quartic interaction. We analyzed them separately.

The hypercharge Y can easily be added to these models. The charge Y must be larger

than a minimal value in order for the corresponding direction in the UV critical surface to be

marginally relevant. This does not change the behavior of the models.

Similar to what happens to the model in section 3.5.2, all these models have at least one

large scaling exponent (See Tab. 3.9). The large values of θ imply that the �xed points are not

in the perturbative domain even though they can be connected to the SM in the IR regime. In
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fact, the �xed points in the 210 approximation scheme cannot be identi�ed with those in the

321 approximation scheme because of their instability against radiative corrections. We can

see how the structure of the �xed points changes by comparing Table 3.9 to Table 3.10. The

eigenvalues are always large in both tables.

(R3, R2, Nf ) α∗
2 α∗

3 α∗
y θ1 θ2 θ3

A (1, 4, 12) 0.241 0 0.338 210 −1.90 0

B (10, 1, 30) 0 0.129 0.116 338 −2.06 0

0.277 0.129 0.116 341 −2.08 0.897

C (10, 4, 80) 0 0.332 0.0995 23258 −2.18 0

0.0753 0.0503 0.0292 1499 328 −2.77

0.800 0 0.150 145193 −2.12 0

D (3, 4, 290) 0.0615 0.0416 0.0057 943 45.3 −2.29

0.0896 0 0.0067 1984 −2.11 0

E (3, 3, 72) 0.218 0.150 0.0471 896 112 −1.78

Table 3.9: Couplings and eigenvalues for the benchmark models in [14] for the 210 approximation

scheme.

(R3, R2, Nf ) α∗
2 α∗

3 α∗
y θ1 θ2 θ3 ρ3

A (1, 4, 12) 0 0 0.1509 −4.83 0 0 −
B (10, 1, 30) 0 0.0138 0 −20.02 2.24 0 3.14

0 0 0.0594 −4.75 0 0 −
C (10, 4, 80) 0 0 0.0187 −4.501 0 0 −

0 0.0036 0 −49.4 2.28 0 9.29

D (3, 4, 290) 0 0 0.0115 −6.95 0 0 −
0 0.0108 0 −36.7 1.015 0 5.81

E (3, 3, 72) 0 0 0.0357 −5.79 0 0 −
0 0.0305 0 −21.8 1.098 0 2.66

Table 3.10: Couplings, eigenvalues and the ratio ρ3 for the benchmark models in [14] for the 321

approximation scheme.

If we take the �xed points in the 321 approximation scheme at their face value and try

to match them to the SM, we always encounter a coupling, α2 in almost all the cases (see

Table 3.10), that is frozen to its vanishing value: the theory is trivial in the coupling α2 and

it cannot be matched to the SM. In other words, the benchmark models in [14] su�er from the

same pathology of the models in our scan. Unlike those models, in this case it is a non-abelian

coupling that is trivial.

Combining more than one representation

Combining vector-like fermions in di�erent representations (as done, for instance, in [15, 16])

provides other examples of models that almost work. In the simplest scenario, we can try to
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construct a model with two types of vector-like fermions. In that case, we duplicate the last

three terms in Eq. (3.5.1) for fermions ψ̃ and scalars S̃. We call the extra Yukawa coupling z

with, as usual,

αz =
z2

(4π)2
(3.5.10)

and assume no mixing between the two families.

Since many of the BSM extensions attempt to describe dark matter, we take one of the

possible minimal models discussed in [124], and identify some of the vector-like fermions with

dark matter. We take Nf2 vector-like fermions with quantum numbers p = q = 0, ` = 2 and

Y = 0. That is, we take colorless quintuplets with no hypercharge. Additionally, we consider

3 colorless vector-like fermions in the (1, 2, 3/2) representation. Within the 210 approximation

scheme, for the combination (1, 2, 3/2) ⊕ (1, 5, 0), we realize that �xed points split in two

categories: �xed points that depend on the number of quintuplets Nf2 and �xed points that do

not. For the latter we have that αy = 0, and the conditions to lie on the critical surface de�ned

by the �xed points imply that α2 = 0. This feature makes the corresponding Nf2-independent

�xed points uninteresting.

α∗
1 α∗

2 α∗
3 α∗

t α∗
y α∗

z θ1 θ2 θ3 θ4 θ5 θ6
0.226 0.193 0 0 0.778 0.534 241 24.2 −2.85 −2.28 −1.51 0

Table 3.11: Values of the couplings at the �xed point of interest and eigenvalues for the model

combining 3 �elds in the representation (1, 2, 3/2) and 8 �elds in the representation (1, 5, 0) (210

approximation scheme).

For the Nf2-dependent �xed points, we �nd that in order to have αi < 1 for all couplings, the

minimum number of quintuplets should be equal to eight. Taking the minimal case of Nf2 = 8,

we �nd 6 �xed points, all of them having one large eigenvalue around 250. Thus, according

to our requirement about perturbation theory, these �xed points are not reliable since there is

always one θ which is much larger than 1. This is similar to what happens in section 3.5.2.

Nevertheless, we can �nd a matching with the SM. The only di�erence with respect to the

model in section 3.5.2 is that, in the present case, two matching scales are needed�the reason

being that the large number of quintuplets makes α2 decrease fast so that these �elds must be

decoupled at very high energies. In Figure 3.7 we show the logarithmic running of the couplings

and the two di�erent matching scales. The quintuplets decouple at an energy scale O(1013) TeV

(and must be considered wimpzilla dark matter [125]), the doublets at the energy scale of 1.83

TeV. All the couplings �ow to the �xed point in Table 3.11
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Figure 3.7: Evolution of the couplings with t for the �xed point in Table 3.11 within the 210

approximation with 3 �elds in (1, 2, 3/2) and 8 �elds in (1, 5, 0). This running provides a trajectory in

the theory space connecting the �xed point to a matching scale around 2 TeV passing through another

scale (for the quintuplets) at about 1013 TeV.

Even though Figure 3.7 shows a nice �ow of the coupling constants towards the SM, the

size of the eigenvalues implies a breakdown of perturbation theory. Indeed, the �xed point

analysed does not survive in the 321 approximation scheme. The results of this chapter reveal

us that extensions of the SM via vector-like fermion are unlikely to feature asymptotic safety.

This is certainly true under the requirements of perturbativity explained in Sec. 1.5. Beyond

perturbation theory di�erent things might happen. Since the main obstacle for a successful

extension comes from the Landau pole in the U(1) sector of the SM, we ask ourselves how to

render g1 �nite at very high energies. In the next chapter we explore a di�erent approach to

the problem. Namely, we consider the e�ects of gravity on the running of the SM couplings.

Substantial attention is given to the U(1) gauge coupling and the quark Yukawa couplings.
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(Nf , l) α∗
1 α∗

2 α∗
3 α∗

t α∗
y α∗

λ θ1 θ2 θ3 θ4 θ5 θ6 σ ρ

(1, 1
2

) 0 0.0291 0 0.0148 0 0.0120 −0.306 0.208 0.132 0.0827 0 0 0.737 0.263

0 0.0305 0 0.0155 0.0209 0.0126 0.322 0.219 0.139 0.0863 0 0 0.719 0.281

(1, 5
2

) 0 0 0.0346 0 0 0 −0.748 −0.748 0.295 0 0 0 0.577 0.423

0 0 0.0355 0 0.0167 0 −0.774 0.768 0.304 0 0 0 0.559 0.441

(1, 3) 0 0 0.0252 0 0 0 −0.501 −0.501 0.156 0 0 0 0.676 0.323

0 0 0.0258 0 0.0101 0 −0.516 0.514 0.160 0 0 0 0.664 0.336

(1, 7
2

) 0 0 0.0171 0 0 0 −0.315 −0.315 0.0670 0 0 0 0.771 0.228

0 0 0.0177 0.0358 0 0.0221 0.969 −0.329 0.290 0.0723 0 0 0.758 0.242

0 0 0.0175 0 0.0058 0 −0.324 0.324 0.0717 0 0 0 0.763 0.237

0 0 0.0182 0.0368 0.0061 0.0227 0.998 0.334 0.298 0.0742 0 0 0.748 0.252

(1, 4) 0 0 0.098 0 0 0 −0.170 −0.170 0.0223 0 0 0 0.864 0.136

0 0 0.0102 0.0193 0 0.0119 0.521 −0.177 0.165 0.0231 0 0 0.856 0.144

0 0 0.0101 0 0.0029 0 −0.175 0.175 0.0229 0 0 0 0.859 0.141

0 0 0.0104 0.0198 0.0030 0.0123 0.536 0.182 0.170 0.0237 0 0 0.8505 0.149

(1, 9
2

) 0 0 0.0032 0 0 0 −0.0519 −0.0519 0.0022 0 0 0 0.955 0.0451

0 0 0.0033 0.0059 0 0.0037 0.159 −0.0537 0.0526 0.0023 0 0 0.952 0.0476

0 0 0.0032 0 0.0008 0 −0.0532 0.0532 0.0023 0 0 0 0.953 0.0469

0 0 0.0033 0.0061 0.0009 0.00038 0.1635 0.0551 0.0540 0.0023 0 0 0.9505 0.0495

(2, 1) 0 0 0.346 0 0 0 −0.748 −0.748 0.295 0 0 0 0.577 0.423

0 0 0.0381 0 0.0319 0 −0.846 0.824 0.326 0 0 0 0.5077 0.492

(2, 3
2

) 0 0 0.0171 0 0 0 −0.315 −0.315 0.0699 0 0 0 0.771 0.228

0 0 0.0177 0.0358 0 0.0221 0.969 −0.329 0.295 0.0723 0 0 0.758 0.242

0 0 0.0187 0 0.0113 0 −0.350 0.349 0.0767 0 0 0 0.737 0.263

(2, 2) 0 0 0.0032 0 0 0 −0.0519 −0.0519 0.0022 0 0 0 0.955 0.0451

0 0 0.0033 0.0059 0 0.0037 0.159 −0.0537 0.0526 0.0023 0 0 0.952 0.0476

0 0 0.0035 0 0.0016 0 −0.0570 0.0570 0.0024 0 0 0 0.948 0.0521

0 0 0.0036 0.0065 0.0017 0.0040 0.1756 0.0592 0.0579 0.0025 0 0 0.945 0.552

(3, 1
2

) 0 0 0.0346 0 0 0 −0.748 −0.748 0.295 0 0 0 0.577 0.423

0 0 0.0417 0 0.0440 0 −0.950 0.913 0.359 0 0 0 0.431 0.569

(3, 1) 0 0 0.0098 0 0 0 −0.170 −0.170 0.0223 0 0 0 0.864 0.136

0 0 0.0102 0.0193 0 0.119 0.521 −0.177 0.165 0.0231 0 0 0.856 0.144

0 0 0.0118 0 0.0081 0 0.208 −0.208 0.0270 0 0 0 0.819 0.181

0 0 0.0123 0.0237 0.0085 0.0147 0.641 0.218 0.200 0.0281 0 0 0.8062 0.194

(4, 1
2

) 0 0 0.0171 0 0 0 −0.315 −0.315 0.0699 0 0 0 0.771 0.228

0 0 0.0177 0.0358 0 0.0221 0.969 −0.329 0.290 0.0723 0 0 0.758 0.242

0 0 0.0226 0 0.0196 0 0.439 −0.437 0.0931 0 0 0 0.647 0.353

(5, 1
2

) 0 0 0.0033 0 0 0 −0.0519 −0.0519 0.0022 0 0 0 0.955 0.0451

0 0 0.0033 0.0059 0 0.0037 0.159 −0.0537 0.0526 0.0023 0 0 0.952 0.0476

0 0 0.0048 0 0.0035 0 0.0798 −0.0793 0.0034 0 0 0 0.914 0.0859

0 0 0.0050 0.0092 0.0037 0.0057 0.248 0.0843 0.0809 0.0035 0 0 0.9066 0.0934

Table 3.7: Fixed points and eigenvalues for vector-like fermions in the fundamental representation of

SUc(3), in the 321 approximation scheme. The last two columns give the values of the ratio σ and ρ

for α2 or α3 depending on which coupling is non-zero (see 1.5.6).
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Chapter 4

Gravitational Corrections to the Running

of Standard Model Couplings

The purpose of this chapter is to determine the implications of quantum gravity corrections in

the running of the Standard Model couplings. In particular, we focus on the subset of gauge

and quark Yukawa couplings. For completeness, we write here the known Lagrangian for the

quark sector of the SM

L = q̄Liγ
µDµqL + ūRiγ

µDµuR + d̄Riγ
µDµdR − Y D

ij q̄
i
LHd

j
R − Y

U
ij q̄

i
LH̃u

j
R + h.c. , (4.0.1)

In this Lagrangian, H is the Higgs doublet, H̃ is the coujugate Higgs doublet εH∗ (with ε

the Levi-Civita symbol in two dimensions), qiL are the quark doublets, diR the right-handed

down quarks and uiR the right-handed up quarks. The last three �elds contain an additional

index labeling the speci�c generation, i.e., the number of copies we have for each �eld.

Therefore, the matrices Y D, Y U represent the general interaction among all the quarks present

in the SM and the Higgs doublet. Additionally, we have the covariant derivatives, which

are given in terms of the generators of each group and the corresponding quantum charges

of the �elds, DµqL =
(
∂µ + ig1

6
Bµ + ig2

2
Wµ + igGµ

)
qL, DµuR =

(
∂µ + i2g1

3
Bµ + igGµ

)
uR,

DµdR =
(
∂µ − ig1

3
Bµ + igGµ

)
dR.

4.1. General beta functions

Following the discussion started in section 2.4, we recall that, given the universality of

gravitational interactions, all the gauge couplings beta functions in the SM get modi�ed in
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the same way. Thus, the 2-loops beta functions for the three SM gauge couplings βi = dgi
dt

are

[105, 112, 113]

β1 = g1

(
41
6
g2

1

ε1

(4π)2
+ g2

1

[
199
18
g2

1 + 9
2
g2

2 + 44g2
3 − 17

6
U − 5

6
D
] ε2

(4π)4
− fg

)
, (4.1.1)

β2 = g2

(
−19

6
g2

2

ε1

(4π)2
+ g2

2

[
3
2
g2

1 + 35
6
g2

2 + 12g2
3 − 3

2
(U +D)

] ε2

(4π)4
− fg

)
, (4.1.2)

β3 = g3

(
−7g2

3

ε1

(4π)2
+ g2

3

[
11
6
g2

1 + 9
2
g2

2 − 26g2
3 − 2(U +D)

] ε2

(4π)4
− fg

)
. (4.1.3)

where the terms proportional to ε1 and ε2 represent the 1 and 2-loop contributions respectively.

Thus, for example, setting ε1 = 1 and ε2 = 0 we obtain the 1-loop beta functions. We have

also used the traces U = Tr(YUY
†
U) and D = Tr(YDY

†
D) of the up and down Yukawa matrices.

Similar equations for the gauge beta functions for a more simpli�ed system were given (3.5.3).

Analogously, the modi�cation of all the Yukawa beta functions will have the same form. At
very high energies, we can write the corrected beta functions for the two Yukawa matrices (YU ,
YD) in the quark sector of the SM as [107, 112, 113]

βYU =
dYU
dt

=
[
Y2(S)−GU + 3

2

(
YUY

†
U − YDY

†
D

)]
YU

ε1

(4π)2
+
[

3
2(YUY

†
U )2 − 1

4YUY
†
UYDY

†
D

+ − YDY †DYUY
†
U + 11

4 (YDY
†
D)2 +AUUYUY

†
U +AUDYDY

†
D +BU

]
YU

ε2

(4π)4
− fyYU , (4.1.4)

βYD =
dYD
dt

=
[
Y2(S)−GD + 3

2

(
YDY

†
D − YUY

†
U

)]
YD

ε1

(4π)2
+
[

3
2(YDY

†
D)2 − 1

4YDY
†
DYUY

†
U

+ − YUY †UYDY
†
D + 11

4 (YUY
†
U )2 +ADDYDY

†
D +ADUYUY

†
U +BD

]
YD

ε2

(4π)4
− fyYD. (4.1.5)

In the previous expressions, we have introduced the following pure gauge 1-loop contributions

GU =
17

12
g2

1 +
9

4
g2

2 + 8g2
3, GD =

5

12
g2

1 +
9

4
g2

2 + 8g2
3, (4.1.6)

as well as the pure trace factor

Y2(S) = Tr
(

3YUY
†
U + 3YDY

†
D

)
. (4.1.7)

On the other hand, for the 2-loops contribution we have

AUU =
(

223
48
g2

1 + 135
16
g2

2 + 16g2
3

)
− 9

4
Y2(S), (4.1.8)

AUD = 5
4
Y2(S)−

(
43
48
g2

1 − 9
16
g2

2 + 16g2
3

)
, (4.1.9)

58



ADD =
(

187
48
g2

1 + 135
16
g2

2 + 16g2
3

)
− 9

4
Y2(S), (4.1.10)

ADU = 5
4
Y2(S)−

(
79
48
g2

1 − 9
16
g2

2 + 16g2
3

)
, (4.1.11)

BU = −χ4(S)+
(

1
8

+ 145
81
Nsm

)
g4

1 −
(

35
4
−Nsm

)
g4

2 −
(

404
3
− 80

9
Nsm

)
g4

3

− 3
4
g2

1g
2
2 + 19

9
g2

1g
3
2 + 9g2

2g
2
3 + 5

2
Y4(S), (4.1.12)

BD = −χ4(S)−
(

29
72

+ 5
81
Nsm

)
g4

1 −
(

35
4
−Nsm

)
g4

2 −
(

404
3
− 80

9
Nsm

)
g4

3

− 9
4
g2

1g
2
2 + 31

9
g2

1g
3
2 + 9g2

2g
2
3 + 5

2
Y4(S), (4.1.13)

χ4(S) = 9
4
Tr
[
3(YUY

†
U)2 + 3(YDY

†
D)2 − 2

3
YUY

†
UYDY

†
D

]
, (4.1.14)

Y4(S) = (17
12
g2

1 + 9
4
g2

2 + 8g2
3)Tr (YUY

†
U) + ( 5

12
g2

1 + 9
4
g2

2 + 8g2
3)Tr (YDY

†
D), (4.1.15)

where Nsm is the number of families we have in the Standard Model. In the set of gauge and

Yukawa beta functions we have included the gravitational corrections (fg, fy). In principle, fg
and fy depend on all the relevant gravitational couplings of the theory, as we explained in Sec.

2.4. From our discussion on asymptotically safe gravity, we learned that at energies beyond

the Planck scale, the gravitational sector goes to a non-trivial �xed point, and therefore the

couplings approach a constant value. Thus, we can assume that (fg, fy) are constant beyond

Mpl and negligible below Mpl. The transition between the two regimes is ignored for now, and

we believe that its particular form does not a�ect the global picture of the present scenario.

We transform now the Yukawa beta functions to the basis of standard Yukawa couplings

and CKM elements, in order to make a connection with the quantities studied experimentally.

We start by de�ning two hermitian matrices out of YU and YD

MU = YUY
†
U , MD = YDY

†
D. (4.1.16)

At a given scale µ, these matrices are diagonalized by two unitary matrices V U
L , V

D
L as follows

V U
L MUV

U†
L = D2

U = diag[y2
u, y

2
c , y

2
t ], (4.1.17)

V D
L MDV

D†
L = D2

D = diag[y2
d, y

2
s , y

2
b ].

However, at another scale µ′ these matrices M are not diagonalized by same transformations

any more. Consequently, the diagonal entries will change with the energy scale. Our goal is to

�nd the beta-functions for the diagonal entries (or Yukawa couplings) [126, 127]. For simplicity,
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we use the label F to represent each �avor matrix, i.e., YF ,MF , D
2
F , V

F
L with F = U,D. First

of all, we perturb eq. (4.1.16) as follows

V F
L MFV

F †
L = D2

F −→ (V F
L + δV F

L )(MF + δMF )(V F †
L + δV F †

L ) = D2
F + δD2

F . (4.1.18)

Then, we write the new transformation matrix as Ṽ F
L = V F

L + δV F
L = (1 + ε)V F

L which implies

that ε† = −ε and Tr ε = 0. Keeping terms up to �rst order in perturbations, we obtain

V F
L MFV

F †
L − V

F
L MFV

F †
L ε+ εV F

L MFV
F †
L + V F

L δMFV
F †
L = D2

F + δD2
F . (4.1.19)

As a result, the variation in the diagonal elements will be given by

δD2
F = εD2

F −D2
F ε+ V F

L δMFV
F †
L = εD2

F −D2
F ε+ V F

L βMF
V F †
L δt, (4.1.20)

where we have used Eq. (4.1.16). Since the quantity εD2
F − D2

F ε does not contain elements

in the diagonal, it does not contribute to δD2
F . Therefore, the variation of D2

F is given by the

diagonal elements of V F
L βMF

V F †
L δt such that the beta functions for the Yukawa couplings are(

dD2
F

dt

)
ij

=
(
V F
L βMF

V F †
L

)
ij
δij. (4.1.21)

In the previous expression there is no summation in i, j. On the other hand, the o�-diagonal

elements of ε are expressed as

εFij =
1

y2
i − y2

j

(
V F
L βMF

V F †
L δt

)
ij
, (4.1.22)

where we have included a superscript F in ε since they are di�erent for the up- and down-type

quarks. The previous expression is valid only when y2
i 6= y2

j . That is, in order to talk about

mixing we need to avoid degeneracy in the up (down)-Yukawa couplings. De�ning the vectors

yi = (yu, yc, yt), yρ = (yd, ys, yb), and working out Eq. (4.1.21) we get

dy2
i

dt
=

[
2(Y2(S)−GU) + 3y2

i − 3
∑
ρ

y2
ρ|Viρ|2

]
y2
i

(4π)2
ε1 +

[
3y4

i −
5

2
y2
i

∑
ρ

y2
ρ|Viρ|2

+
11

2

∑
ρ

y4
ρ|Viρ|2 + 2AUUy

2
i + 2AUD

∑
ρ

y2
ρ|Viρ|2 + 2BU

]
y2
i

(4π)4
ε2 + 2fyy

2
i , (4.1.23)

dy2
ρ

dt
=

[
2(Y2(S)−GD) + 3y2

ρ − 3
∑
i

y2
i |Viρ|2

]
y2
ρ

(4π)2
ε1 +

[
3y4

ρ −
5

2
y2
ρ

∑
i

y2
i |Viρ|2

+
11

2

∑
i

y4
i |Viρ|2 + 2ADDy

2
ρ + 2ADU

∑
i

y2
i |Viρ|2 + 2BD

]
y2
ρ

(4π)4
ε2 + 2fyy

2
ρ, (4.1.24)
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where we introduced the CKM matrix Viρ

V = V U
L V

D†
L =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (4.1.25)

As a consequence, some of the quantities de�ned before become

Y2(S) = 3
∑
i

y2
i + 3

∑
ρ

y2
ρ, (4.1.26)

χ4(S) = 9
4

[
3
∑
i

y4
i + 3

∑
ρ

y4
ρ − 2

3

∑
i,ρ

|Viρ|2y2
i y

2
ρ

]
, (4.1.27)

Y4(S) = (17
12
g2

1 + 9
4
g2

2 + 8g2
3)
∑
i

y2
i + ( 5

12
g2

1 + 9
4
g2

2 + 8g2
3)
∑
ρ

y2
ρ. (4.1.28)

It is interesting to see that the gravitational corrections appear only in the running of the

diagonal elements of YF , they are absent in the εFij

(y2
i − y2

j )ε
U
ij =

[
−3

2
(y2
i + y2

j )
∑
ρ

y2
ρViρV

∗
jρ

]
δt

(4π)2
ε1 +

[
−1

2
y2
i y

2
j

∑
ρ

y2
ρViρV

∗
jρ

− (y4
i + y4

j )
∑
ρ

y2
ρViρV

∗
jρ +

11

4
(y2
i + y2

j )
∑
ρ

y4
ρViρV

∗
jρ + AUD(y2

i + y2
j )
∑
ρ

y2
ρViρV

∗
jρ

]
δt

(4π)4
ε2,

(4.1.29)

(y2
ρ − y2

σ)εDρσ =

[
−3

2
(y2
ρ + y2

σ)
∑
i

y2
i V
∗
iρViσ

]
δt

(4π)2
ε1 +

[
−1

2
y2
ρy

2
σ

∑
i

y2
i V
∗
iρViσ

− (y4
ρ + y4

σ)
∑
i

y2
i V
∗
iρViσ +

11

4
(y2
ρ + y2

σ)
∑
i

y4
i V
∗
iρViσ + ADU(y2

ρ + y2
σ)
∑
i

y2
i V
∗
iρViσ

]
δt

(4π)4
ε2,

(4.1.30)

where i 6= j and ρ 6= σ. The quantities εFij are useful because they help us �nding the running of

the matrix Viρ. Since we can rede�ne the phases of the quarks in the Lagrangian, we have the

freedom of changing V to PV Q where P and Q are diagonal phase matrices. Therefore, we will

have di�erent forms of parametrizing the CKM matrix V . In order to work with quantities that

are independent of any parametrization, we study the running of |Viρ|2. Using the de�nition of

V , and taking its in�nitesimal variation, we �nd that

δViρ = εUijVjρ − ViβεDβρ. (4.1.31)
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Then, the variation of |Viρ|2 is

δ|Viρ|2 = εUijVjρV
∗
iρ − ViβεDβρV ∗iρ + εU∗ij V

∗
jρViρ − V ∗iβεD∗βρ Viρ, (4.1.32)

where there is no sum neither on i nor on ρ. Working out a bit the expression, we �nd that

δ|Viρ|2 = (εUii + εU∗ii )|Viρ|2 − (εDρρ + εD∗ρρ )|Viρ|2

+
∑
j 6=i

(εUijVjρV
∗
iρ + εU∗ij V

∗
jρViρ)−

∑
β 6=ρ

(Viβε
D
βρV

∗
iρ + V ∗iβε

D∗
βρ Viρ). (4.1.33)

Since the matrices εF are antihermitian, their diagonal entries are purely imaginary. Then,

the �rst two terms in the previous expression vanish, and the variation of the squared CKM

elements is simply

δ|Viρ|2 =
∑
j 6=i

(εUijVjρV
∗
iρ + εU∗ij V

∗
jρViρ)−

∑
β 6=ρ

(Viβε
D
βρV

∗
iρ + V ∗iβε

D∗
βρ Viρ). (4.1.34)

We see that we do not need to know the diagonal entries of εF . The running of the CKM

elements are fully determined by Eqs. (4.1.29) and (4.1.30). Thus, the beta functions for |Viρ|2
up to two-loops are given by

d|Viρ|2

dt
= −3

2

[∑
β,j 6=i

y2
i + y2

j

y2
i − y2

j

y2
βViβV

∗
jβVjρV

∗
iρ +

∑
β,j 6=i

y2
i + y2

j

y2
i − y2

j

y2
βV
∗
iβVjβV

∗
jρViρ

∑
j,β 6=ρ

y2
ρ + y2

β

y2
ρ − y2

β

y2
jV
∗
jβVjρViβV

∗
iρ +

∑
j,β 6=ρ

y2
ρ + y2

β

y2
ρ − y2

β

y2
jVjβV

∗
jρV

∗
iβViρ

]
ε1

(4π)2

−

[∑
β,j 6=i

1

y2
i − y2

j

(
1
2
y2
i y

2
j + (y4

i + y4
j )− 11

4
(y2
i + y2

j )y
2
β − AUD(y2

i + y2
j )

)
y2
βViβV

∗
jβVjρV

∗
iρ

+
∑
β,j 6=i

1

y2
i − y2

j

(
1
2
y2
i y

2
j + (y4

i + y4
j )− 11

4
(y2
i + y2

j )y
2
β − AUD(y2

i + y2
j )

)
y2
βV
∗
iβVjβV

∗
jρViρ

+
∑
j,β 6=ρ

1

y2
ρ − y2

β

(
1
2
y2
ρy

2
β + (y4

ρ + y4
β)− 11

4
(y2
ρ + y2

β)y2
j − ADU(y2

ρ + y2
β)

)
y2
jV
∗
jβVjρViβV

∗
iρ

+
∑
j,β 6=ρ

1

y2
ρ − y2

β

(
1
2
y2
ρy

2
β + (y4

ρ + y4
β)− 11

4
(y2
ρ + y2

β)y2
j − ADU(y2

ρ + y2
β)

)
y2
jVjβV

∗
jρV

∗
iβViρ

]
ε2

(4π)4

(4.1.35)

In the following, we study in detail the e�ects of the gravitational corrections encoded in fg and

fy, for one, two and three generations of quarks. By doing so, we will understand better how the

�xed points arise, and how the predictions come about. We start from the heaviest generation
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and then we include the lighter ones. Additionally, we focus on the one-loop expressions since

the �xed-point values appear to be in the perturbative regime. Stability checks at two loops

are done throughout the analysis of the �xed-point solutions. For the promising �xed points,

we �nd that there are no substantial modi�cations from one to two loops. The identi�cation of

�xed points at one and two loops in the following sections translates in a modi�cation of the

parameter fy by 2%. The conclusions in terms of relevant directions and IR predictions are

barely a�ected by the loop expansion. Therefore, we do not repeat the analysis at two loops in

the text. We just have in mind that our results seem to be perturbatively stable.

4.2. One generation

The one generation case is important because it is here where we see the interplay between the

two parameters fg and fy. The number of Yukawa couplings is just two, so the full set of beta

functions is composed by the gauge sector

βg1 =
1

16π2

41

6
g3

1 − fg g1 , βg2 = − 1

16π2

19

6
g3

2 − fg g2 , βg3 = − 1

16π2
7g3

3 − fg g3 , (4.2.1)

and the Yukawa sector

βyt =
yt

16π2

(
9

2
y2
t +

3

2
y2
b −

17

12
g2

1 −
9

4
g2

2 − 8g2
3

)
− fy yt, (4.2.2)

βyb =
yb

16π2

(
9

2
y2
b +

3

2
y2
t −

5

12
g2

1 −
9

4
g2

2 − 8g2
3

)
− fy yb. (4.2.3)

We want now to look for non-trivial �xed points solutions for the full system. As we explained
in Chapter 1, the existence of a non-trivial UV �xed point has the potential of providing IR
predictions. Therefore, it might be possible to predict, for instance, the hierarchy present in
the top and bottom Yukawa couplings. This is in fact possible [50], and the dynamics is very
interesting. We start by noting that in order to have real �xed-point values in the gauge sector,
we need to specify the sign of fg. We can have either fg > 0 or fg < 0. In the former case, we
can have AS in the g1 coupling, in the latter g2 and g3 can become AS. In order to choose the
sign for fg we note that the main di�erence between βyt and βyb lies in the U(1) contribution.
Therefore, in order to have non-degenerate yt ∗ and yb ∗, we should have a non-vanishing value
for the g1 at the �xed point. With g2 and g3 equal to zero at the �xed point, we have the
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following set of possible �xed-point solutions in the subsystem (yt, yb, g1)

yt ∗ = 0 , yb ∗ = 0 , g1 ∗ = 0 , (4.2.4)

yt ∗ =

√
32π2 fy

9
, yb ∗ = 0 , g1 ∗ = 0 , (4.2.5)

yt ∗ = 0 , yb ∗ =

√
32π2 fy

9
, g1 ∗ = 0 , (4.2.6)

yt ∗ =

√
16π2 fy

3
, yb ∗ =

√
16π2 fy

3
, g1 ∗ = 0 , (4.2.7)

yt ∗ = 0 , yb ∗ = 0 , g1 ∗ = 4π

√
6 fg
41

, (4.2.8)

yt ∗ =
4π

3

√
17 fg
41

+ 2fy , yb ∗ = 0 , g1 ∗ = 4π

√
6 fg
41

, (4.2.9)

yt ∗ = 0 , yb ∗ =
4π

3

√
5 fg
41

+ 2fy , g1 ∗ = 4π

√
6 fg
41

, (4.2.10)

yt ∗ = 2π

√
23 fg
123

+
2 fy

3
, yb ∗ = 2π

√
− fg

123
+

2 fy
3

, g1 ∗ = 4π

√
6 fg
41

. (4.2.11)

We see that, for g1 = 0, the �xed-point solutions in the Yukawa sector have the symmetry

yt ∗ ↔ yb ∗. The second �xed point is studied in [48], the �fth �xed point in [49], and the last

one in [50]. It is the last �xed point the one we use for our discussion. It will help us explain

the mechanism that is used in the subsequent sections of this chapter. We already noticed that,

in order to have non-trivial solutions for the Yukawa couplings, we need a non-zero U(1) gauge

coupling. In particular, for the �xed-point solution in (4.2.11) we have

y2
t ∗ − y2

b ∗ =
1

3
g2

1 ∗ . (4.2.12)

We observe that g1 ∗ 6= 0 implies yt ∗ > yb ∗. The crucial question is how yt ∗ > yb ∗ implies the

right or approximate IR hierarchy once we follow the running down to low energies. For our

interesting �xed point, the number of irrelevant directions is equal to three, so in principle we

have three IR predictions. However, since we have two free parameters fg and fy, by simple

counting we end up with only one true prediction. (In a more general setting, where fg and

fy are determined from �rst principles, we actually have 3 predictions. For now, fg and fy are

adjustable). We choose the ratio between yt and yb as the quantity to be the predicted since

our goal is understand how the large splitting in the quark masses is generated. Looking for

precise matching of Yukawa couplings and masses might result in a �ne-tuning problem due

the simplicity of the corrections we are considering here. Starting the �ow around the �xed

point we look for values of fg and fy such that yb/yt at k = Mt coincides with the experimental

value. The value of fg is determined by analysing the �ow of g1. Since the beta function for this

coupling is simple, we can solve analytically the equation and choose fg such that we get the
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correct value for g1 in the IR. With the value of fg = 9.7× 10−3 we �nd that fy = 1.19× 10−4

generates the ratio yb/yt = 0.0217 which is close to the experimental value yb/yt = 0.0242 [51].

In Fig. 4.1 we can see the �ow of the couplings. We observe that the hierarchy between yt and yb
is neither inverted nor diminished substantially along the RG �ow. Therefore, we conclude that

gravity can be the source of the big gap observed in the top and bottom quark masses. Now,

we ask ourselves whether this pattern can be obtained when the other generations of quarks are

included. Once we consider more than one generation of quarks, the notion of mixing enters

the discussion. In the next section, we explore the two-generations case.

g1 g2 g3 yt yb

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

Figure 4.1: RG trajectory emanating from the asymptotically safe �xed point (4.2.11) at one-

loop. The dashed lines correspond to the SM running, while the solid lines contain the f -

corrections.

4.3. Two generations

Here, we consider the two heaviest generations of quarks. Therefore, the set of Yukawa

couplings is composed by yi = (yt, yc) and yρ = (yb, ys). Consequently, the 2-dimensional
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matrix characterizing the relative orientation between the bases that diagonalize YU and YD is

V =

[
Vtb Vts
Vcb Vcs

]
. (4.3.1)

This mixing matrix has in general 4 complex entries. However, unitary and phase

transformations in the quark �elds reduce the number of independent parameters to one real

entry. We call W this free parameter. Now, we de�ne |Vtb|2 = W such that |Vts|2 = 1 −W ,

|Vcb|2 = 1 −W and |Vcs|2 = W . Since we study the �ow of the squared CKM elements, it is

useful to construct a matrix made of the squares of each entry of V

V2 =
[
{|Vij|2}

]
=

[
W 1−W

1−W W

]
. (4.3.2)

The 1-loop beta function for the CKM parameter W is given by

dW

dt
= −3(1−W )W

[
y2
t + y2

c

y2
t − y2

c

(y2
b − y2

s) +
y2
b + y2

s

y2
b − y2

s

(y2
t − y2

c )

]
1

(4π)2
. (4.3.3)

We see that W = 1 corresponds to the case of no mixing (V = 1) among quarks belonging to

di�erent generations. On the other hand, W = 0 is seen as the situation of maximal mixing.

However, in the particle physics jargon, W = 0, 1 correspond both to minimal mixing, being

maximal mixing the case of W = 1/2.

For the Yukawa couplings we have the following set of beta functions

βyt =
yt

16π2

(
9

2
y2
t +

3

2
y2
b (2−W ) +

3

2
y2
s (1 +W ) + 3y2

c −
9

4
g2

2 − 8g2
3 −

17

12
g2

1

)
− fy yt, (4.3.4)

βyb =
yb

16π2

(
9

2
y2
b +

3

2
y2
t (2−W ) + 3y2

s +
3

2
y2
c (1 +W )− 9

4
g2

2 − 8g2
3 −

5

12
g2

1

)
− fy yb. (4.3.5)

The beta functions for the quarks of the second generation are obtained by the interchange

(t, b) ↔ (c, s). As it was explained in Sec. 4.2, the sign of fg is chosen such that g1 acquires

a non-trivial value at the �xed point. Therefore, we take here g1 ∗ = 4π
√

6 fg
41
, g2 ∗ = 0 and

g3 ∗ = 0 as �xed-point solutions for the gauge sector. For this con�guration of gauge couplings,

we look for the �xed-point solutions in the Yukawa sector. The outcome consists of two lines

of �xed points and a list of 24 isolated �xed points, see Appendix G. There are solutions with

W∗ = 0, 1, but also non-trivial CKM con�gurations. In order to select the promising �xed

points, we impose certain general conditions on the solutions. First, knowing the value of fg,

we look for solutions that have real couplings. This translates into conditions on fy. In some
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cases, there are no values of fy for which all the couplings in a �xed-point solution are real.

Those solutions are automatically excluded; in particular, the cases where we have a non-trivial

W∗. Then, we select the cases for which yt ∗ and yb ∗ are di�erent from zero. Otherwise, it would

never be possible to reach yt > yc and yb > ys in the IR due to the poles in (4.3.3). Thus,

we end up with only four possibilities, namely, �xed points 1b, 1c, 2b, 3a and the line (G.0.2).

Finally, we check whether there are actually values of fy for which yt ∗ > yc ∗ and yb ∗ > ys ∗. It

turns out that the �xed point (1c) is excluded, while (1b) and the line predict a yc ∗ & 0.0747.

The �ow towards the IR started around this �xed-point value produces always a yc larger than

yc(Mpl) = 0.00293. This makes impossible a correct IR matching. Thus, we end up with only

two promising candidates. In this section, as well as in the next one, we explore the properties

of the lines of �xed points. However, these lines disappear at two loops and beyond. They are

just an artifact of the loop expansion. Therefore, they are not as interesting as the isolated

�xed points in our discussion. In Appendix H, following the results of [128, 129], we study the

relation between surfaces of �xed points (e.g., lines or planes) and RG invariants at one-loop

order.

Now, we focus on the remaining �xed-point solutions. First, we take the �xed point (2b)

that we rewrite here for convenience

yt ∗ = 2π

√
23 fg
123

+
2 fy
3

, yb ∗ = 2π

√
− fg

123
+

2 fy
3

, yc ∗ = 0 , ys ∗ = 0 , W∗ = 1 . (4.3.6)

The analysis of the stability matrix around this �xed point tells us that one of the irrelevant

directions is aligned with the coupling ys. Being ys zero at the �xed point, it remains zero at all

energy scales. This is clearly not desired because we know that Ms 6= 0. Therefore, we discard

this solution. On the other hand, as a promising candidate, we have the �xed point

yt ∗ =
4π√
15

√
fg + 2fy, yb ∗ =

4π√
615

√
−19fg + 82fy , yc ∗ = 0 , ys ∗ = 0 , W∗ = 0 , (4.3.7)

for which we have the relation y2
t ∗ − y2

b ∗ = 2
3
g2

1 ∗. In order to show the power of our mechanism

and the phenomenological viability of (4.3.7), we study the RG �ow of the Yukawa couplings

and W from the �xed point to the IR. In Fig. 4.2, we can see the running of the these couplings

where the hierarchy between yt and yb is clear. In this case, the number of irrelevant directions

arising from the stability matrix Mij is 3. Therefore, following the discussion of Chapter 1, the

dimension of the UV safe surface is smaller than the number of couplings present in the theory.

As a consequence, we are able to predict some of the couplings in the IR. In general, the number

of predictions is equal to the number of irrelevant directions. However, since we are treating fg
and fy as unknown/free parameters in our setting, the total number of predictions is decreased

by two. Even though the number of predictions decreases, �tting the running couplings in the

IR to the experimental values is a rather non-trivial task given the large number of variables

we have.
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Figure 4.2: RG trajectory emanating from the asymptotically safe �xed point (4.3.7) in the

two-generations case.

The numerical values in the IR obtained from the running shown in Fig. 4.2 allow us to �t

the Yukawa couplings of the lightest quarks and the CKM parameter W with good accuracy.

For the CKM parameter we obtain the value WIR = 0.9985; this should be contrasted with

the expected result W = 0.9980. Translating Yukawa couplings into tree-level masses we have

Mb = 4.2GeV, Mc = 1.3GeV and Ms = 96MeV [51]. For the top quark we have instead

Mt = 185GeV. Since our goal is to understand the implications of AS in the SM, the use

of tree-level relations is enough to observe how to set some hierarchies in the quark sector.

In terms of ratios, for the heaviest generation we have yb/yt = 0.0225. This value should be

compared with the expected result yb/yt = 0.0241. We observe here an overestimation in the

top Yukawa, although the ratio yb/yt turns out to be of the desired order of magnitude. Thus,

we conclude that our setting of matter plus gravity corrections accounts for the large splitting or

gaps present in the quark sector of the SM. The precision in the individual predictions of yt and

yb requires richer structure; it can arise from minimal modi�cations of the SM itself, or extended

gravitational corrections. In any case, we know that it is already possible to generate hierarchies

in the deep UV that can be traced back to the EW physics. In the next section, we consider

the three known SM families of quarks, and the corresponding CKM mixing parameters.
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4.4. Three generations

For three generations of quarks, the CKM matrix contains only 4 physical elements. In this

work, we parametrize the entries of V by using the four quantities X = |Vud|2, Y = |Vus|2,
Z = |Vcd|2 and W = |Vcs|2. Then, the matrix of the squared CKM elements takes the form

V2 =
[
{|Vij|2}

]
=

 X Y 1−X − Y
Z W 1− Z −W

1−X − Z 1− Y −W X + Y + Z +W − 1

 . (4.4.1)

Working out Eq. (4.1.35), we �nd the beta functions for these parameters

dX

dt
= − 3

(4π)2

[
y2
u + y2

c

y2
u − y2

c

{
(y2
d − y2

b )XZ +
(y2
b − y2

s)

2
(W (1−X) +X − (1− Y )(1− Z))

}
+
y2
u + y2

t

y2
u − y2

t

{
(y2
d − y2

b )X(1−X − Z) +
(y2
b − y2

s)

2
((1− Y )(1− Z)−X(1− 2Y )−W (1−X))

}
+
y2
d + y2

s

y2
d − y2

s

{
(y2
u − y2

t )XY +
y2
t − y2

c

2
(W (1−X) +X − (1− Y )(1− Z))

}
+
y2
d + y2

b

y2
d − y2

b

{
(y2
u − y2

t )X(1−X − Y ) +
y2
t − y2

c

2
((1− Y )(1− Z)−X(1− 2Z)−W (1−X))

}]
,

(4.4.2)

dY

dt
= − 3

(4π)2

[
y2
u + y2

c

y2
u − y2

c

{
(y2
b − y2

d)

2
(W (1−X) +X − (1− Y )(1− Z)) + (y2

s − y2
b )YW

}
+
y2
u + y2

t

y2
u − y2

t

{
(y2
b − y2

d)

2
((1− Y )(1− Z)−W (1−X)−X(1− 2Y )) + (y2

s − y2
b )Y (1− Y −W )

}
+
y2
s + y2

d

y2
s − y2

d

{
(y2
u − y2

t )XY +
y2
t − y2

c

2
(W (1−X) +X − (1− Y )(1− Z))

}
+
y2
s + y2

b

y2
s − y2

b

{
(y2
u − y2

t )Y (1−X − Y ) +
(y2
c − y2

t )

2
(W (1−X − 2Y ) +X − (1− Z)(1− Y ))

}]
,

(4.4.3)

dZ

dt
= − 3

(4π)2

[
y2
c + y2

u

y2
c − y2

u

{
(y2
d − y2

b )XZ +
(y2
b − y2

s)

2
(W (1−X) +X − (1− Z)(1− Y ))

}
+
y2
c + y2

t

y2
c − y2

t

{
(y2
d − y2

b )Z(1−X − Z) +
(y2
s − y2

b )

2
(W (1−X − 2Z) +X − (1− Y )(1− Z))

}
+
y2
d + y2

s

y2
d − y2

s

{
(y2
u − y2

t )

2
((1− Y )(1− Z)−X −W (1−X)) + (y2

c − y2
t )ZW

}
+
y2
d + y2

b

y2
d − y2

b

{
(y2
t − y2

u)

2
((1− Z)(1− Y )−W (1−X)−X(1− 2Z)) + (y2

c − y2
t )Z(1− Z −W )

}]
,

(4.4.4)
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dW

dt
= − 3

(4π)2

[
y2
c + y2

u

y2
c − y2

u

{
(y2
s − y2

b )WY +
(y2
b − y2

d)

2
((1−X)W +X − (1− Y )(1− Z))

}
+
y2
c + y2

t

y2
c − y2

t

{
(y2
s − y2

b )W (1− Y −W ) +
(y2
b − y2

d)

2
((1− Y )(1− Z)−X −W (1−X − 2Z))

}
+
y2
s + y2

d

y2
s − y2

d

{
(y2
c − y2

t )WZ +
(y2
t − y2

u)

2
Z((1−X)W +X − (1− Y )(1− Z))

}
+
y2
s + y2

b

y2
s − y2

b

{
(y2
c − y2

t )W (1− Z −W ) +
(y2
t − y2

u)

2
((1− Y )(1− Z)−X −W (1−X − 2Y ))

}]
.

(4.4.5)

The standard parametrization of the quark mixing is generally given in terms of the angles θ12,

θ13, θ23 and δ. Using our variables, the mixing angles are written as

θ12 = arctan

√
Y

X
(4.4.6)

θ13 = arccos
√
X + Y (4.4.7)

θ23 = arcsin

√
1−W − Z
X + Y

(4.4.8)

δ = arccos
(X + Y )2Z − Y (X + Y + Z +W − 1)−X(1−W − Z)(1−X − Y )

2
√
XY (1−X − Y )(1− Z −W )(X + Y + Z +W − 1)

(4.4.9)

4.4.1. Fixed points of the CKM matrix

We know that the equations (4.4.2-4.4.5) do not admit solutions with degenerate up or down

Yukawa couplings. Therefore, for every solution we should have yi 6= yj (i, j = u, c, t) and

yρ 6= yγ (ρ, γ = d, s, b). However, the complexity of the CKM beta functions does not allow

us to �nd analytic solutions for the full set of equations (i.e., gauge, Yukawa and CKM beta

function simultaneously). Then, we look for particular cases that seem more interesting and

easier to analyse. We take �rst the cases for which each factor inside the curly brackets in

equations (4.4.2-4.4.5) vanishes. It turns out that there are only 6 CKM con�gurations for

which all the CKM beta functions vanish independently of the values of the Yukawa couplings.
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These con�gurations for V2 correspond to the matrices

M123 =

1 0 0

0 1 0

0 0 1

 , M132 =

1 0 0

0 0 1

0 1 0

 , M321 =

0 0 1

0 1 0

1 0 0

 ,

M213 =

0 1 0

1 0 0

0 0 1

 , M312 =

0 0 1

1 0 0

0 1 0

 , M231 =

0 1 0

0 0 1

1 0 0

 . (4.4.10)

We observe that these matrices also provide a faithful representation of the permutation

group of three objects. Hence, the solutions for each of these con�gurations will be related

by permutations. The second, third and fourth are odd permutations corresponding to

interchanging two families, whereas the other three correspond to cyclic permutations. The

matrix M123 represents the case of no mixing, where each up-type quark interacts only with the

corresponding down-type quark. In the standard terminology the other cases are also referred to

as �no mixing�, because each up-type quark interacts only with one down-type quark, although

possibly belonging to a di�erent family.

4.4.2. Fixed-point structure of the Yukawa couplings.

We can now insert the CKM �xed-point matrices of Eq. (4.4.10) in the Yukawa beta functions.

The resulting �xed-point equations can be solved analytically, yielding 392 solutions for each

choice of V2. In order to stay away from poles in the beta functions for the CKM matrix

elements, we note that the number of zero Yukawa couplings in each solution cannot be greater

than two. Otherwise, there will always exist two vanishing Yukawa belonging to either the up yi
or down set yρ. On the other hand, non-vanishing �xed-point values for the Yukawa couplings

must not exhibit degeneracies between up-type and down-type quarks. This rules out a large

number of solutions. Altogether end up with only 16 solutions for each choice of CKM matrix.

Of these, six are isolated �xed points, nine are lines of �xed points and one is a plane of �xed

points. Finally we can discard the six isolated solutions and three lines of �xed points, since

they all involve some negative squared Yukawa coupling (this is valid as long as fg > 0).

We give here the remaining seven solutions for the case V2 = M123 (X∗ = W∗ = 1,

Y∗ = Z∗ = 0). The plane solution is given by

y2
u ∗ =

4π2

123
(47fg − 82fy)− y2

c ∗ − y2
t ∗ , y2

s ∗ = −32fgπ
2

41
+ y2

c ∗ ,

y2
d ∗ =

4π2

123
(23fg − 82fy)− y2

c ∗ − y2
t ∗, y2

b ∗ = −32fgπ
2

41
+ y2

t ∗ . (4.4.11)
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The lines of �xed points are presented in Table 4.1. The Yukawa beta functions with the mixing

matrix V2 = Mabc, with (a, b, c) 6= (1, 2, 3) are obtained from those of the case V2 = M123

by multiplying the down-type quarks with the matrix M−1
abc. Thus, all the �xed points of the

Yukawa couplings for any V2 = Mabc can be obtained from the ones described in (4.4.11) and

Table 4.1 by just permuting the values of the down-type Yukawa couplings. We will therefore

not repeat them here.

1 y2u∗ = 4π2

123 (35fg − 82fy)− a y2c∗ = 0 y2t∗ = a

y2d∗ = 4π2

123 (11fg − 82fy)− a y2s∗ = 0 y2b∗ = − 32fgπ
2

41 + a

2 y2u∗ = 4π2

123 (23fg − 82fy)− a y2c∗ =
32fgπ

2

41 y2t∗ = a

y2d∗ = − 4π2

123 (fg + 82fy)− a y2s∗ = 0 y2b∗ = − 32fgπ
2

41 + a

3 y2u∗ =
32fgπ

2

41 y2c∗ = 4π2

123 (23fg − 82fy)− a y2t∗ = a

y2d∗ = 0 y2s∗ = − 4π2

123 (fg + 82fy)− a y2b∗ = − 32fgπ
2

41 + a

4 y2u∗ = 0 y2c∗ = 4π2

123 (35fg − 82fy)− a y2t∗ = a

y2d∗ = 0 y2s∗ = 4π2

123 (11fg − 82fy)− a y2b∗ = − 32fgπ
2

41 + a

5 y2u∗ = 4π2

123 (35fg − 82fy)− a y2c∗ = a y2t∗ = 0

y2d∗ = 4π2

123 (11fg − 82fy)− a y2s∗ = − 32fgπ
2

41 + a y2b∗ = 0

6 y2u∗ = 4π2

123 (23fg − 82fy)− a y2c∗ = a y2t∗ =
32fgπ

2

41

y2d∗ = − 4π2

123 (fg + 82fy)− a y2s∗ = − 32fgπ
2

41 + a y2b∗ = 0

Table 4.1: Lines of �xed points in the Yukawa sector for the case V2 = M123. These lines are

parametrized by some positive number a.

We now examine whether these solutions feature interesting properties from a phenomeno-

logical point of view. Since the value of fg is �xed by the running of the g1, we have the free

parameter fy that can be used to set the values of the Yukawa couplings at the �xed point. For

the lines of �xed points we also have the free parameter yt ∗ or yc ∗, but we do not to impose

conditions on those quantities in order to see if they can be indirectly determined. This would

result in a lower number of free parameters. We start by demanding that yt ∗ > yc ∗ > yu ∗
and yb ∗ > ys ∗ > yd ∗, because the poles in Eq. (4.4.2)-(4.4.5) imply that a �wrong� ordering at

the �xed point cannot be undone by the RG �ow. Note that we do not require speci�c values

of the Yukawa couplings. After analyzing all the solutions in (4.4.11) and Tab. 4.1, plus their

permutations, we �nd that only the case with proper no-mixing (X∗ = 1, Y∗ = 0, Z∗ = 0,

W∗ = 1) produces �xed points respecting the right ordering in the couplings. In particular,

we are left with the plane (4.4.11) and the solutions 3 - 4 in Tab. 4.1. The conditions on the

ordering of Yukawa couplings at the �xed point translates in a constrained parameter space

for the quantities fy and yt ∗ (yc ∗). However, for the allowed region of parameter space, we

�nd that the the resulting values for the couplings at the �xed point are much higher than its

corresponding values at the Planck scale. Thus, an agreement with measured quark masses
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becomes impossible due to the slow running of the Yukawa coupling. For instance, for the up

quark we have that yu ∗ & 0.273, while at the Planck scale yu(Mpl) = 5.079×10−6. On the other

hand, we �nd that the CKM elements seem to remain frozen at their �xed-point value. This is

due to the low number of relevant directions. In total, there are only two relevant directions,

these basically correspond to the gauge couplings g2 and g3. The number of marginal directions

is equal to two, whereas the number of irrelevant directions sums up to nine. These irrelevant

directions mix all the Yukawa couplings and CKM elements, so we cannot conclude that one

speci�c coupling is irrelevant. However, the RG �ow analysis shows us that the CKM remain

frozen at their �xed-point value. Therefore, we conclude that none of the �xed points arising

from Tab. 4.1 is of phenomenological interest.

In the analysis above, the beta functions of the mixing parameters were zero because the

coe�cient of each term of the form y2
i −y2

j vanishes independently. In principle there could exist

other �xed points where these coe�cients are not precisely zero but cancel one another. At such

�xed points the mixing angles could be di�erent from nπ/2, n ∈ R. These �xed points are harder
to �nd because the beta functions of the mixing parameters cannot be solved independently of

the ones of the Yukawa couplings.

Then, we adopt the following search strategy. As before, the �rst step is to solve the beta

functions of the gauge couplings and to retain only the �xed point g1∗ > 0, g2∗ = 0 = g3∗.

Then, leaving X, Y , Z, W arbitrary, we solve the beta functions of the Yukawa couplings. This

results in 64 �xed-point solutions depending parametrically on X, Y , Z, W , fg and fy. There

are always solutions containing at least one zero coupling, and only one solution with all the

Yukawa couplings non-trivial. As stated before, in order to avoid the poles in the CKM beta

functions, we note that the maximum number of zeros that we can have in each solution is equal

to two. The presence of more than two zeros will always implies that two up (or down) Yukawa

couplings are degenerate. Then, out of the 64 solutions, we isolate those having at most two

vanishing Yukawa couplings. Thus, we end up with 16 possibilities. The case with all Yukawa

couplings non-trivial has some degenerate couplings, so we ignore it. For the other 15 solutions,

we allow only the lightest generation to have a zero value at the �xed-point. Otherwise, as it

has been stated along the text, the correct ordering in the Yukawa sector cannot be achieved in

the IR. Thus, we �nd that there are only 3 solutions that have to be taken into account. These

3 solutions are pugged back into the CKM beta functions to obtain a system of four di�erential

equations with four variables, βX,Y,Z,W (X, Y, Z,W ). These new beta functions are quite involved

so it is not possible to �nd an analytic solution. We therefore study the system numerically.

Since fg is �xed by the running of g1, we only have fy as a free parameter. We take 4 di�erent

values for fy that are close to the one used in the two generations case, fy ∼ 2.25 × 10−3. In

order to solve the system of equations, we make use of the option FindRoot in the software

Mathematica. We construct a 4-dimensional grid of 94 points around which we look for the
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roots of the CKM beta functions. Eliminating the degenerate solutions for X, Y , Z and W ,

we replace back the resulting 1410 con�gurations in the expressions for the Yukawa couplings

yj(X, Y, Z,W ). Analyzing this set of solutions for the Yukawa couplings, we realize that there

are no non-degenerate and real solutions. Thus, we conclude that it is unlikely to �nd �xed-

point solutions with non-trivial CKM values and real Yukawa couplings. Although we do not

possess the complete set of solutions, this analysis supports our statements on the non-existence

of CKM �xed points beyond those reported in (4.4.10) .

4.4.3. Phenomenologically viable �xed points

In the preceding sections we have assumed that the �xed-point values of two up-type or down-

type Yukawa couplings cannot be equal, in order to avoid the singularities in the beta functions

of the CKM elements. However, there might be an exception to it: �xed points with equal

up-type or down-type Yukawa coupling can be approached asymptotically, as long as one avoids

directions along which the two couplings become equal. In the following, we take this path

and look for phenomenologically interesting con�gurations having more than two zero Yukawa

couplings.

We assume here that yc, ys, yd and yu go to zero values in the UV along a trajectory that

avoids yc = yu and ys = yd. That is, these couplings emanate from zero at very high energies and

�ow towards their observed values in the IR in the phenomenologically viable ordering yc > yu
and ys > yd. For yu → 0, yd → 0, ys → 0, yc → 0, the set of equations simpli�es greatly, allowing

analytical solutions for yt, yb, and the CKM elements. We obtain two substantially distinct group

of solutions. The �rst one given by the Yukawa couplings in Eq. (4.3.6), plus two possible CKM

con�guration: an isolated �xed point (X∗ = 0, Y∗ = 1, Z∗ = 1, W∗ = 0), and a line of �xed

points (X∗ = 1− δ, Y∗ = δ, Z∗ = δ, W∗ = 1− δ) parameterized by a number δ ∈ [0, 1]. On the

other hand, the second solution corresponds to (4.3.7), and admits four di�erent CKM sets of

�xed points, (X∗ = 1, Y∗ = 0, Z∗ = 0, W∗ = 0), (X∗ = 0, Y∗ = 1, Z∗ = 0, W∗ = 0), (X∗ = 0,

Y∗ = 0, Z∗ = 1, W∗ = 0) or (X∗ = 0, Y∗ = 0, Z∗ = 0, W∗ = 1). From this set of outcomes,

we focus on the last case since it is the one that carries more phenomenologically interesting

properties. Thus, the matrix of squared CKM elements corresponding to the interesting �xed

point is

V2 =

0 0 1

0 1 0

1 0 0

 . (4.4.12)

In Fig. 4.3, we show the running of the Yukawa couplings down to the IR starting from very

high energies. This running results in values that match yb(kIR) = 0.024, yc(kIR) = 0.0073,
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ys(kIR) = 5.5 × 10−4, yu(kIR) = 1.2 × 10−5, yd(kIR) = 2.7 × 10−5 with kIR = 173 GeV with

a percentage error of around 1% [51]; only yt(kIR) = 1.07 turns out to be much larger than

the expected result, yt(kIR) = 0.994. These values for the Yukawa couplings correspond to the

tree-level masses Mt = 186GeV, Mb = 4.2GeV, Mc = 1.3GeV, Ms = 96MeV, Md = 4.7MeV,

Mu = 2.1MeV. Regarding the ratio between the top and bottom Yukawa couplings we have

yb/yb = 0.0225. Once again, we �nd a ratio close to the experimental value yb/yb = 0.0242. The

overestimation of the top mass was already seen in the two-generations case. What is important

here is the generation of the gap between the top and bottom Yukawa couplings. As explained

before, a better estimation of the masses require extended versions of the corrections considered

here.
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Figure 4.3: Running of the full set of Yukawa couplings from the far UV to EW scale in the

case of three generations of quarks.

It is worth noting the particular behavior of ys. Its �ow appears to be determined by a

non-trivial �xed point. However, a closer look actually reveals a slow running towards zero. It

is also important to note the crossing of yc and ys, which is compatible with the pole-structure

in the beta functions that only excludes equality of up-type or down-type quarks, respectively.

The RG �ow of the CKM elements is shown in Fig. 4.4. Their very slow running follows from

tiny prefactors in their beta functions. For these couplings we can also obtain IR predictions.

Our computations tell us that X = 0.93262, Y = 0.05053, Z = 0.05035, W = 0.94962; while

the global �t for the measurements indicate that X = 0.94957, Y = 0.05041, Z = 0.05035,

W = 0.94788. The agreement of these predictions is within a few per cent. However, the

75



CKM parameters are known with a precision or order 10−4 and hence the matching has to be

improved. In particular, if we use our predicted values for X, Y , Z and W to compute the

remaining CKM elements, such as Vub, Vcb, Vtd, Vts and Vtb, we obtain clearly wrong results.

This is therefore a point that needs better numerical techniques and/or an extended theoretical

treatment.
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Figure 4.4: RG �ow of the CKM elements in the case of yu → 0, yd → 0, ys → 0, yc → 0 in the

far UV.

We conclude by making some remarks on the general e�ects of quantum gravity in the

evolution of the SM couplings. First, we observe that the generalization of [50] is possible.

That is, we can have an AS version of the SM in which the non-trivial �xed-point structure

generates an interesting pattern in the quark Yukawa sector at low energies. In particular, we

are able to account for the gap in the masses of the heaviest generation of quarks, even though

the precise numbers need further investigation. Moreover, we succeed in accommodating the

remaining couplings in agreement with IR values, thus connecting the EW physics of the SM

with an AS behavior in the UV. The �avor-blind gravitational corrections of gravity certainly

cannot explain the full structure of the Yukawa couplings, but it motivates future studies in

this direction. We already know that this universal modi�cation creates the �rst hierarchy in

the quark sector. Then, we might just need to include little modi�cations in order to arrive

at a more predictive situation in which the UV behavior of the theory determines the, a priori

arbitrary, structure seen in the SM at low energies.
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Conclusions

Asymptotically Safe theories, unlike ordinary �eld theories, generally depends on fewer free

parameters. Therefore, we can take Asymptotic Safety as a guiding principle to construct

fundamental theories of nature. As such, we have attempted to continue the line of recent studies

on Gauge-Yukawa systems, as welll as gravity-matter dynamics. The mechanism generating non-

trivial �xed points in these two approaches is very distinct in nature. The �rst one deals with

physics from the the electroweak scale up to the Planck scale. It also relies on perturbation

theory and the �xed points arise from the balance between two-loops and one-loop terms in

the gauge beta functions. Instead, the second mechanism deals with Planck scale physics and

beyond.

In the case of physics below the Planck scale, that is, without the inclusion of gravity, we

scan matter extensions in order to render the gauge couplings UV �nite. In particular, the

evolution of the U(1) gauge coupling was expected to become asymptotically safe. A systematic

search of possible extensions of the SM based on vector-like fermions charged under the SM

groups, carrying various representations and coming in several copies (generations) shows that

there are no �xed points in the β-functions that satisfy the minimal criteria to make them

perturbatively stable and therefore physical. In other words, the presence of a large number

of vector-like fermions make the loop coe�cients of the beta functions large, which turns the

models into highly non-perturbative.

We conclude that it is not possible, at least within the models we have studied, to extend the

SM up to arbitrarily high energies in perturbation theory. This result might indicate that the

search must be enlarged to include models with BSM �elds more complicated than vector-like

fermions. However, since vector-like fermions are actually just a proxy for more general matter

�elds, this does not seem as a promising line of inquiry. Another possibility is to embed the SM

gauge groups in a larger group before AS becomes manifest [13].
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A completely di�erent possibility is that the Landau pole is cured by gravity. In this scenario,

we take into account the absence of new discoveries in the current particle colliders. That is, we

assume that there are no new degrees of freedom from the electroweak scale up to the Planck

scale. If there is nothing between these two energy scales, we can in principle observe the imprint

of gravity in the SM couplings at low energies. In fact, the modi�cations of the running in the

SM couplings can be used to remove the Landau pole in the U(1) sector. Moreover, it also

gives us extra information that is not known a priori from the usual formulation of the SM. For

the parametrized gravitational corrections that we considered in this thesis, we learned how the

gravitational e�ects come into play. The introduction of non-trivial �xed points in the quark

Yukawa sector of the theory opens the door for interesting low energy predictions. In particular,

we saw that the generation of a gap between the heaviest quarks is possible while keeping the

other couplings free. Even though the we are not able to explain all the details in the mass

pattern of the quark sector, we can appreciate the power of Asymptotic Safety. Thus, following

the lines written above, we can use Asymptotic Safety as a guiding principle in constructing

fundamental theories of nature.
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Appendix A

Weyl calculus

In this appendix, we describe how to write Weyl-invariant quantities in order to understand the

construction of the functional integral in the full gravity case of section 2.3. The way to preserve

backgroundWeyl invariance in quantum �eld theory has been studied in [130, 131, 132, 133, 134].

In [135] this relied on the existence of a scalar �eld χ called the dilaton. Here we do not need to

appeal to the existence of an additional degree of freedom, but use instead the inverse square

root of the conformal factor of the background metric χ̄ = e−σ̄. It transforms under Weyl

transformations as

δχ̄ = −εχ̄ . (A.0.1)

Hence, it can be identi�ed with the background value of a dilaton. We can use χ̄ to construct a

pure-gauge abelian gauge �eld κµ = −χ̄−1∂µχ̄ = ∂µσ̄, transforming under Weyl transformations

as

δκµ = ∂µε . (A.0.2)

Let ∇̄µ be the covariant derivative with respect to the Levi-Civita connection of the metric ḡ

and ∇̂µ be the covariant derivative with respect to the Levi-Civita connection of the metric ĝ.

They are related by

Γ̂µ
λ
ν = Γ̄µ

λ
ν − δλµκν − δλνκµ + gµνκ

λ . (A.0.3)

The connection coe�cients Γ̂ are invariant under backgroundWeyl transformations, as is obvious

since the metric ĝ is. We say that a tensor t has weight α if it transforms under background

Weyl transformation as

δt = α ε t . (A.0.4)

(Here we do not write tensor indices, as they are the same on both sides of the equation.) For

example, the background metric has weight 2, as does the �uctuation hTµν . For any tensor t of
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weight α, we de�ne the Weyl-covariant derivative as

Dµt = ∇̂µt− ακµt . (A.0.5)

It is a tensor with the same weight as t. We note in particular the special cases

Dρḡµν = 0 ; Dρχ̄ = 0. (A.0.6)

The �elds σ̄ and ω transform inhomogeneously and therefore have to be treated separatel. Their

Weyl-covariant derivatives are de�ned as

Dρσ̄ = ∂ρσ̄ − κρ = 0 ; Dρω = ∂ρω + κρ (A.0.7)

and are invariant (re�ecting the absence of a homogeneous term in their transformation).
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Appendix B

The Local Exact Renormalization Group

Equation

In this Appendix, we derive a renormalization group equation for theories containing an x-

dependent scale k. We derive such an equation for a general �eld φ such that the result can

be applied to any theory. In particular, the equation would be valid for CORE gravity and full

gravity taking into account the fact that the gauge-�xing and ghost term do not contain any k

dependence. We start with the generating functional of connected Green functions

eWk(j) =

∫
(Dφ)Exp

[
− S(φ)−∆Sk(φ) +

∫
ddx (jφ)

]
(B.0.1)

The EAA (??) is therefore a functional of k. We can calculate the variation of Γk under an

in�nitesimal change in the cuto� function. As usual one starts from varying Wk, to obtain∫
δk
δWk

δk
= −

〈∫
δk
δ∆Sk
δk

〉
= −1

2
Tr 〈φφ〉

∫
δk
δRk

δk
, (B.0.2)

where we use the notation ∫
δk

δ

δk
=

∫
dx δk(x)

δ

δk(x)
.

The calculation then follows closely the derivation of the Wetterich equation, except for the fact

that δk remains inside the traces. One obtains∫
δk
δΓk
δk

=
1

2
Tr

(
δ2Γk
δφδφ

+Rk

)−1 ∫
δk
δRk

δk
. (B.0.3)

Since δk is arbitrary, we obtain a local �ow equation giving δΓk
δk(x)

by simply removing the integrals

and the factors δk from both sides. In the case when k is constant the functional derivatives

reduce to ordinary derivatives and the local ERGE reduces to the standard ERGE.
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In the case of gravity, the �ow equation would read∫
δk
δΓk
δk

=
1

2
Str

(
δ2Γk
δφδφ

+Rk

)−1 ∫
δk
δRk

δk

=
1

2
Tr

(
δ2Γk
δhT δhT

+Rk

)−1 ∫
δk
δRk

δk
+

1

2
Tr

(
δ2Γk
δωδω

+Rk

)−1 ∫
δk
δRk

δk

−Tr
(

δ2Γk
δC∗δC

+Rk

)−1 ∫
δk
δRk

δk
+ . . . . (B.0.4)

In the �rst line we have written the equation in terms of the �super�eld� φ = (hTµν , ω, C
∗
µ, Cµ) and

Rk is a block-diagonal matrix. In the second line the supertrace has been expanded, neglecting

o�-diagonal terms, which are denoted by the ellipses.
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Appendix C

Analysis of marginal couplings

Here we prove the statement, made in Section 1.3, that when the marginal couplings are

associated to vanishing gauge couplings, the behavior of the �ow at quadratic order is determined

by the coe�cients Piii.

The general form of the gauge β-functions is

βi = (Ai +Bi
rαr + Ci

rsαrαs)α
2
i , (C.0.1)

where Ai, Bi
r and C

i
rs represent the one, two and three-loops coe�cients. Their contribution to

the stability matrix is given by

Mij =
∂βi
∂αj

∣∣∣∣
α∗
i

= (Bi
j + 2Ci

jrα
∗
r)α

∗2
i + 2 (Ai +Bi

rα
∗
r + Ci

rsα
∗
rα
∗
s)α

∗
i δij. (C.0.2)

We see that if α∗i = 0, the row i will have zeros in all the entries. This does not happen for the

Yukawa interactions, whose NLO β-functions have the form βYi = (Di
rαr + F i

rsαrαs)αi. Then,

the contribution to the stability matrix reads

Mij =
∂βYi
∂αj

∣∣∣∣
α∗
i

= (Di
j + 2F i

jrα
∗
r)α
∗
i + (Di

rα
∗
r + F i

rsα
∗
rα
∗
s)δij, (C.0.3)

where we see that if α∗i = 0, the last piece will be in general di�erent from zero. Consequently,

we do not have a row of zeros. The fact of having rows of zeros implies that detM = 0. Thus,

the matrix M is singular and there exist vectors x such that Ax = 0x. As a result, M has the

eigenvalue λ = 0 with multiplicity given by the number of zero rows.

Suppose we have a �xed point with two gauge couplings equal to zero. Then the stability
matrix will have two zero rows, that we can assume to be the last two. This implies that
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the n − 2 eigenvectors corresponding to λi 6= 0 have the form Vi = [V i
1 , V

i
2 , . . . , V

i
n−2, 0, 0].

The eigenvectors for λ = 0 lie in a 2-dimensional plane. There is a freedom in choosing
these vectors, and we can take them to have the form Vn−1 = [V n−1

1 , V n−1
2 , . . . , V n−1

n−2 , V
n−1
n−1 , 0],

Vn = [V n
1 , V

n
2 , . . . , V

n
n−2, 0, V

n
n ]. Moreover, the entries V n−1

n−1 , V
n
n can be taken to be positive

without loss of generality. Thus, the transformation matrix constructed with the eigenvectors
of M takes the form [

a
]

S =



V 1
1 V 2

1 . . . V n−2
1 V n−1

1 V n
1

V 1
2 V 2

2 . . . V n−2
2 V n−1

2 V n
2

...
...

. . .
...

...
...

V 1
n−2 V 2

n−2 . . . V n−2
n−2 V n−1

n−2 V n
n−2

0 0 . . . 0 V n−1
n−1 0

0 0 . . . 0 0 V n
n


(C.0.4)

This implies that

S−1 =



a1,1 a1,2 . . . a1,n−2 a1,n−1 a1,n

a2,1 a2,2 . . . a2,n−2 a2,n−1 a2,n
...

...
. . .

...
...

...

an−2,1 an−2,2 . . . an−2,n−2 an−2,n−1 an−2,n

0 0 . . . 0 b 0

0 0 . . . 0 0 c


(C.0.5)

where we have labelled ai,j the non-zero entries and we have called b = 1/V n−1
n−1 , c = 1/V n

n . Now,

when we compute the form of the new variables zi = S−1
ij yj = S−1

ij (αj − α∗j ), we observe that

two of the new coordinates are just proportional to the asymptotically free variables, namely

zn−1 = b · yn−1 = b ·αn−1, zn = c · yn = c ·αn. This result has an important e�ect in the analysis.

For the gauge β-functions,

Pijk =
∂2βi
∂αjαk

∣∣∣∣
α∗
i

=2Ci
jkα
∗2
i + 2 (Bi

j + 2Ci
jrα
∗
r)α

∗
i δik + 2 (Bi

k + 2Ci
krα
∗
r)α

∗
i δij (C.0.6)

+ 2 (Ai +Bi
rα
∗
r + Ci

rsα
∗
rα
∗
s) δijδik

which in the case of the AF couplings reduces to

Pijk = 2 (Ai +Bi
rα
∗
r + Ci

rsα
∗
rα
∗
s) δijδik . (C.0.7)

We conclude that in order to know if a marginal coupling is relevant or irrelevant we need

only check the sign of Piii. If Piii < 0, the coupling is marginally relevant. If Piii > 0, the

coupling is marginally irrelevant.
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Appendix D

Conformal �eld theory and central charges

The CFT at a given �xed point is characterized by two local functions: c and a. We refer to

them collectively as central charges or CFT functions. They appear in the matrix element of

the trace of the energy-momentum tensor of the theory as 〈T µµ 〉 = cW 2 − aE4 + · · · , where W
is the Weyl tensor, E4 is the Euler density, and ellipses denote operators constructed from the

�elds in the theory. A function related to the CFT function a, often denoted ã, was proven to

be monotonically decreasing following the RG �ow from a UV �xed point to an IR one [92, 94].

In fact, the RG �ow of the ã-function is related to the dynamics by means of the β-functions of

the theory; it is given by

µ
∂ã

∂µ
= −χijβiβj , (D.0.1)

where χij is known as the Zamolodchikov metric. Evaluated at a �xed point, ã reduces to the

a-function.

In all of the models studied in this paper there is only a UV �xed point present, whereas

dynamics in the IR is not known. Nevertheless, central charges of the UV �xed points can still

be used to test whether the �xed points are reliable.

In any CFT, both a and c have to be positive, and their ratio has to satisfy the so-called

collider bounds [136], namely
1

3
≤ a

c

∣∣∣
FP
≤ 31

18
. (D.0.2)
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In perturbation theory, central charges are expanded in series

ã = ãfree +
ã(1)

(4π)2
+

ã(2)

(4π)4
+ ... (D.0.3)

c = cfree +
c(1)

(4π)4
+ ... , (D.0.4)

and since free-�eld theory contributions are positive [137],

ãfree =
1

(4π)2

ns + 11/2nw + 62nv
360

(D.0.5)

cfree =
1

(4π)2

1/6ns + nw + 2nv
20

(D.0.6)

(ns, nw, and nv referring to scalar, Weyl and vector degrees of freedom, respectively), the

positivity of the CFT functions is ensured in perturbation theory.

There is a correlation between critical exponents and the change in central charges, which

for the a-function can be explained as follows. At the �xed point we have,

ã∗ = a∗ = afree +
1

4

∑
i

biχgigiα
∗
i (1 + Aiα

∗
i ) (D.0.7)

where i runs over simple gauge groups, b1 = B1, b2 = −B2, b3 = −B3 are the one-loop coe�cients

of the gauge beta functions, and χgigi and Ai are components of the Zamolodchikov metric, see

[122]. One-loop critical exponent follows from βi = ±Biα
2
i (+ for the group U(1), − otherwise),

and reads θ1L = 2biα
∗
i . Then,

δa =
a∗ − afree
afree

=
1

8afree

∑
i

θ1L
i χgigi(1 + Aiα

∗
i ) , (D.0.8)

which explains the correlation.
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Appendix E

All the �xed points in the 210

approximation scheme

In Table E.1 we list all the distinct zeroes of the β-functions in the 210 approximation scheme

for all the models discussed in the text and for the SM. There are altogether 32 zeroes, with the

Gaussian �xed point appearing with multiplicity four (this is the reason for missing �xed point

P20, P27, P32, which are copies of P1).

The column labelled by Nf = 0 contains the values of α∗1, α
∗
2, α

∗
3, α

∗
t for the matter content

of the SM (the coupling α∗y does not appear in the SM). In this case the �xed points all come

in pairs. When Nf 6= 0 this degeneracy is lifted and all the �xed points are di�erent.

Note that the �xed points can be roughly divided in two classes. The �xed points with

α∗1 = 0 have coordinates α∗i independent of Y . The remaining �xed points have coordinates

that in general depend on all the quantum numbers.
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α∗
1 α∗

2 α∗
3 α∗

t α∗
y Nf = 0

P1 0 0 0 0 0 (0, 0, 0, 0)

P2 0 α∗
2(p, q, `) α∗

3(p, q, `) 0 α∗
y(p, q, `)

(
0, 499

617
,− 319

2468
, 0
)

P3 0 α∗
2(p, q, `) α∗

3(p, q, `) α∗
t (p, q, `) α∗

y(p, q, `)
(
0, 1226

1411
,− 189

1411
, 277
1411

)
P4 0 α∗

2(p, q, `) α∗
3(p, q, `) 0 0

(
0, 499

617
,− 319

2468
, 0
)

P5 0 α∗
2(p, q, `) α∗

3(p, q, `) α∗
t (p, q, `) 0

(
0, 1226

1411
,− 189

1411
, 277
1411

)
P6 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) α∗

3(p, q, `, Y ) 0 α∗
y(p, q, `, Y )

(
− 7938

9257
, 9841
9257

,− 5395
37028

, 0
)

P7 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) α∗
y(p, q, `, Y )

(
− 121821

142153
, 151229
142153

,− 41441
284306

, 427
142153

)
P8 0 0 α∗

3(p, q, `) α∗
t (p, q, `) α∗

y(p, q, `)
(
0, 0,− 9

38
,− 8

19

)
P9 0 0 α∗

3(p, q, `) 0 α∗
y(p, q, `)

(
0, 0,− 7

26
, 0
)

P10 0 0 α∗
3(p, q, `) α∗

t (p, q, `) 0
(
0, 0,− 9

38
,− 8

19

)
P11 0 0 α∗

3(p, q, `) 0 0
(
0, 0,− 7

26
, 0
)

P12 α∗
1(p, q, `, Y ) 0 α∗

3(p, q, `, Y ) 0 α∗
y(p, q, `, Y )

(
− 225

943
, 0,− 1079

3772

)
P13 α∗

1(p, q, `, Y ) 0 α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) α∗
y(p, q, `, Y )

(
− 7266

16847
, 0,− 4286

16847
,− 9907

16847

)
P14 α∗

1(p, q, `, Y ) 0 α∗
3(p, q, `, Y ) 0 0

(
− 225

943
, 0,− 1079

3772

)
P15 α∗

1(p, q, `, Y ) 0 α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) 0
(
− 7266

16847
, 0,− 4286

16847
,− 9907

16847

)
P16 0 α∗

2(p, q, `) 0 0 α∗
y(p, q, `)

(
0, 19

35
, 0, 0

)
P17 0 α∗

2(p, q, `) 0 α∗
t (p, q, `) α∗

y(p, q, `)
(
0, 38

61
, 0, 19

61

)
P18 0 α∗

2(p, q, `) 0 0 0
(
0, 19

35
, 0, 0

)
P19 0 α∗

2(p, q, `) 0 α∗
t (p, q, `) 0

(
0, 38

61
, 0, 19

61

)
P21 α∗

1(p, q, `, Y ) 0 0 0 0
(
− 123

199
, 0, 0, 0

)
P22 α∗

1(p, q, `, Y ) 0 0 α∗
t (p, q, `, Y ) 0

(
− 2214

3293
, 0, 0,− 697

3293

)
P23 α∗

1(p, q, `, Y ) 0 0 α∗
t (p, q, `, Y ) α∗

y(p, q, `, Y )
(
− 2214

3293
, 0, 0,− 697

3293

)
P24 α∗

1(p, q, `, Y ) 0 0 0 α∗
y(p, q, `, Y )

(
− 123

199
, 0, 0, 0

)
P25 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) 0 0 α∗

y(p, q, `, Y )
(
− 1461

1559
, 1222
1559

, 0, 0
)

P26 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) 0 α∗
t (p, q, `, Y ) α∗

y(p, q, `, Y )
(
− 21627

23569
, 515
637

, 0, 2719
23569

)
P28 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) 0 0 0

(
− 1461

1559
, 1222
1559

, 0, 0
)

P29 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) 0 α∗
t (p, q, `, Y ) 0

(
− 21627

23569
, 515
637

, 0, 2719
23569

)
P30 α∗

1(p, q, `, Y ) α∗
2(p, q, `, Y ) α∗

3(p, q, `, Y ) 0 0
(
− 7938

9257
, 9841
9257

,− 5395
37028

, 0
)

P31 α∗
1(p, q, `, Y ) α∗

2(p, q, `, Y ) α∗
3(p, q, `, Y ) α∗

t (p, q, `, Y ) 0
(
− 121821

142153
, 151229
142153

,− 41441
284306

, 427
142153

)
Table E.1: Only the highlighted �xed points appear in the tables in the main text. The column Nf = 0

contains the values for the SM.
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Appendix F

Coe�cients of the β-functions in the 321

expansion

The β-function in eqs. (3.5.7)�(3.5.9) contain a number of coe�cients that we collect in this

appendix. The BSM fermions enter in the running of αt via the coe�cients

Bt1 = Y 2NfdR2dR3 , Bt2 = SR2NfdR3 , Bt3 = SR3NfdR2 . (F.0.1)

For the BSM Yukawa coupling, besides the terms in Eq. (3.5.6), we have the coe�cients

V =
1

2
N2
f + 3NfdR2dR3 , V1 = 2 (8Nf + 5 dR2dR3)Y

2,

V2 = 2 (8Nf + 5 dR2dR3)CR2 , V3 = 2 (8Nf + 5 dR2dR3)CR3 ,

W1 =

(
211

3
− 6Y 2 +

40

3
Y 2NfdR2dR3

)
Y 2, W12 = 12Y 2CR2 ,

W2 =

(
−257

3
− 6CR2 +

40

3
NfSR2dR3

)
CR2 , W23 = 12CR2CR3 ,

W3 =

(
−154− 6CR3 +

40

3
NfSR3dR2

)
CR3 W13 = 12Y 2CR3 . (F.0.2)
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The gauge β-functions get more contributions. These are split in two classes: the Yukawa
contributions:

Ky1 = 6Y 2N3
f dR2dR3 + 7Y 2N2

f d
2
R2
d2
R3
, K11 = 6Y 4N2

f dR2dR3 ,

K12 = 6Y 2CR2N
2
f dR2dR3 , K13 = 6Y 2CR3N

2
f dR2dR3 ,

Ky2 = 2CR2N
3
f dR2dR3 +

7

3
CR2N

2
f d

2
R2
d2
R3
, K21 = 2Y 2CR2N

2
f dR2dR3 ,

K22 = 16CR2N
2
f dR2dR3 + 2C2

R2
N2
f dR2dR3 , K23 = 2CR2CR3N

2
f dR2dR3 ,

Ky3 =
3

4
CR3N

3
f dR2dR3 +

7

8
CR3N

2
f d

2
R2
d2
R3
, K31 =

3

4
Y 2CR3N

2
f dR2dR3 ,

K33 = 9CR3N
2
f dR2dR3 +

3

4
C2
R3
N2
f dR2dR3 K32 =

3

4
CR2CR3N

2
f dR2dR3 , (F.0.3)

and the gauge contributions, which contain the diagonal terms

M11 =
388613

2592
+

4405

162
NfY

2dR2dR3 +
463

9
NfY

4dR2dR3

+4NfY
6dR2dR3 +

88

9
N2
fY

6d2
R2
d2
R3
,

M22 =
324953

864
+

13411

54
NfSR2dR3 +

533

9
NfCR2SR2dR3 − 4NfC

2
R2
SR2dR3

−632

27
N2
fS

2
R2
d2
R3
− 88

9
CR2N

2
fS

2
R2
d2
R3
,

M33 = 65 +
6242

9
NfSR3dR2 +

322

3
NfCR3SR3dR2 − 4NfC

2
R3
SR3dR2

−316

9
N2
fS

2
R3
d2
R2
− 88

9
CR3N

2
fS

2
R3
d2
R2
, (F.0.4)

as well as mixed coe�cients

M12 =
205

48
− 8CR2NfY

4dR2dR3 , M13 =
274

27
+ 8CR3NfY

4dR2dR3 ,

M21 =
291

16
+ 32Y 2NfSR2dR3 − 8Y 2CR2NfSR2dR3 ,

M23 = 78 + 32CR3NfSR2dR3 − 8CR2CR3NfSR2dR3 ,

M31 =
154

9
+ 48Y 2NfSR3dR2 − 8Y 2CR3NfSR3dR2 ,

M32 = 42 + 48CR2NfSR3dR2 − 8CR2CR3NfSR3dR2 ,

G23 = 2 + 8CR2CR3NfY
2dR2dR3 , G13 =

2

3
+ 8Y 2CR3NfSR2dR3 ,

G12 =
1

4
+ 8Y 2CR2NfSR3dR2 , (F.0.5)
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H11 =
1315

32
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245

9
CR2NfY

2dR2dR3 − 4C2
R2
NfY

2dR2dR3 +
23

2
NfSR2dR3

−88

9
CR2N

2
fY

2SR2dR2d
2
R3
,

G11 = 198 +
178

3
CR3NfY

2dR2dR3 − 4C2
R3
NfY

2dR2dR3 −
968

27
NfSR3dR2

−88

9
CR3N

2
fY

2SR3d
2
R2
dR3 ,

H22 =
5597

288
+

23

6
NfY

2dR2dR3 +
463

9
Y 2NfSR2dR3 + 4NfY

4SR2dR3

+
88

9
N2
fY

4SR2dR2d
2
R3
,

G22 = 162 +
178

3
CR3NfSR2dR3 − 4C2

R3
NfSR2dR3 −

88

3
NfSR3dR2

−88

9
CR3N

2
fSR2SR3dR2dR3 ,

H33 =
2615

108
+

121

27
NfY

2dR2dR3 +
463

9
Y 2NfSR3dR2 + 4NfY

4SR3dR2

+
88

9
N2
fY

4SR3dR3d
2
R2
,

G33 =
109

4
− 11NfSR2dR3 +

245

9
CR2NfSR3dR2 − 4C2

R2
NfSR3dR2

−88

9
CR2N

2
fSR2SR3dR2dR3 , (F.0.6)
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Appendix G

Complete set of �xed points for two

generations of quarks

Lines of �xed points

The lines of �xed points are parametrized by the coupling y2
t ∗. The �rst one corresponds to the

proper no-mixing case

y2
c ∗ =

140fgπ
2

123
+

8fyπ
2

3
− y2

t ∗, y2
s ∗ = −32fgπ

2

41
+ y2

t ∗ ,

y2
b ∗ =

44fgπ
2

123
+

8fyπ
2

3
− y2

t ∗, W∗ = 0 . (G.0.1)

The second one has completely the opposite con�guration for the CKM matrix

y2
c ∗ =

140fgπ
2

123
+

8fyπ
2

3
− y2

t ∗, y2
b ∗ = −32fgπ

2

41
+ y2

t ∗ ,

y2
s ∗ =

44fgπ
2

123
+

8fyπ
2

3
− y2

t ∗, W∗ = 1 . (G.0.2)

We see that solution (G.0.2) is obtained from (G.0.1) by permuting yb ∗ ↔ ys ∗. Similartly,

the solutions of the table in the next page are related by permutations. For all the groups of

solutions, we can take the �xed points a and b as representatives, and obtain c and d by the

simultaneous permutations yt ∗ ↔ yc ∗ and yb ∗ ↔ ys ∗. Moreover, for the groups 1 − 4 we can

relate solutions with 0 and 1 by permuting either yt ∗ ↔ yc ∗ or yt ∗ ↔ yc ∗. These relations arise

from the symmetries in the beta functions once we use any of the particular values of W∗ given

in the last column of the following table.
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Appendix H

Surfaces of �xed points and 1-loop RG

invariants

In this Appendix, we discuss the relation between the existence of surfaces of �xed points and

RG invariants along the �ow. In particular, we will see how the existence of surfaces of �xed

points can help us �nding the 1-loop RG invariants in the quark Yukawa system of the Standard

Model. We start by mentioning previous results on RG and �avor invariants. Being, YU and

YD the up - and down - Yukawa matrices, it is easy to show that the following two quantities

are invariant along the RG �ow [128, 129]

I(1) =
Tr(MUMD)

(det(MUMD))1/3
, I(2) = Tr((MUMD)−1)(det(MUMD))1/3, (H.0.1)

where MU = YUY
†
U and MD = YDY

†
D. In the diagonalized basis, we have

I(1) =
∑
iρ

y2
i y

2
ρ|Viρ|2

(ytycyuybysyd)2/3
, I(2) = (ytycyuybysyd)

2/3
∑
iρ

y−2
i y−2

ρ |Viρ|2. (H.0.2)

These are invariants for the �ow in the 10-dimensional space of the Yukawas and the CKM

elements X, Y , Z, W . If we evaluate X, Y , Z, W at a �xed point, I(1) and I(1) are invariant

for the �ow in the 6-dimensional space of the Yukawa couplings only.

For instance, when the mixing matrix is equal to the identity (X = 1, Y = 0, Z = 0,W = 1),

the invariants in (H.0.2) become

I(1) =
(y2
t y

2
b + y2

cy
2
s + y2

uy
2
d)

(ytycyuybysyd)2/3
, I(2) = (ytycyuybysyd)

2/3

(
1

y2
t y

2
b

+
1

y2
cy

2
s

+
1

y2
uy

2
d

)
. (H.0.3)
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However one can show that each term in these sums is an invariant by itself:

U1 =
y2
uy

2
d

ytycybys
, U2 =

y2
cy

2
s

ytyuybyd
, U3 =

y2
t y

2
b

ycyuysyd
. (H.0.4)

Let us see now how we can obtain these invariants when we know the surface of �xed points .

For any of the 6 particular CKM con�gurations we have considered, and the gauge �xed

point (g1 =
√

96fgπ2/41, g2 = 0, g3 = 0), the structure of the Yukawa beta functions at one

loop take the form

βy2j = y2
jhj(y

2
k), (H.0.5)

where hj are linear functions of the couplings y2
k. Surfaces of �xed points arise when at least

one of these functions hj are not independent. When looking for non-trivial �xed points, we

have to solve the system of equations hj = 0. Thus, when the hi's are linearly dependent we

have in�nitely many solutions. Hence the appearance of surfaces of �xed points.

In general, an RG invariant is a quantity I that satis�es d
dk
I = 0. In terms of the beta

functions of the couplings

0 = βy2j ∂jI = y2
jhj∂jI. (H.0.6)

We take for the moment the case of n couplings yj. Then, if there are some dependent function

hj, let us say hn−1 and hn, we have that

hn−1 =
n−2∑
i=1

Aihi, hn =
n−2∑
i=1

Bihi. (H.0.7)

Consequently, eq. (H.0.6) becomes

n−2∑
j=1

(y2
j∂jI + y2

n−1Aj∂n−1I + y2
nBj∂nI)hj = 0. (H.0.8)

Since by assumption the n − 2 functions hj are linearly independent, each of their coe�cients

must vanish separately. This means that any function of the variable

W =
(y2

1)A1+B1(y2
2)A2+B2 . . . (y2

n−2)An−2+Bn−2

y2
n−1y

2
n

. (H.0.9)

is an RG invariant.

For example, in the case considered above (X = 1, Y = 0, Z = 0, W = 1) we have the linear

relations

ht = hu + hd − hb, hc = hu + hd − hs. (H.0.10)
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or Au = 1, Ab = −1, As = 0, Ad = 1, Bu = 1, Bb = 0, Bs = −1, B − d = 1, so we see that W

coincides with (U1)2. (Obviously any function of an invariant is an invariant).

But we can also write

ht = hu + hd − hb, hc = hu + hd − hs, (H.0.11)

and

ht = hu + hd − hb, hc = hu + hd − hs. (H.0.12)

which are obtained from the previous linear relation by the permutations (u ↔ c, d ↔ s) and

(u↔ t, d↔ b). These give rise to the invariants U2 and U3.

So we see that the surfaces of FPs and the one-loop invariants both originate from linear

relations between the beta functions. If we allow one coupling to be zero, the number of

equations decrease and then we will have only one linear relation. As a result, we obtain a line

of �xed points.
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