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DESCRIPTION: We study the evolution of the Standard Model couplings within the
framework of Asymptotic Safety in two different settings. First, we explore the dynamics of
Gauge-Yukawa systems, which has been proven to be successful in the generation of UV fixed
points . With an extensive analysis, we examine the UV properties of the Standard Model under
extensions of its fermionic sector. On the other hand, considering the compelling evidence of
Asymptotic Safety in gravity, we take into account the gravitational effects in the running of
gauge and quark Yukawa couplings. Special attention is given to the gravitationally-induced
hierarchy in the quark masses.
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Introduction

In the early days of quantum field theory, renormalizability was used as a criterion to select
physically viable models. It was later understood that effective field theories can be useful and
predictive in their domain of validity. Even if effective field theories are not renormalizable,
they can be used to describe phenomena within a certain range of energies (K < Agpr).
However, there is no standard way of expressing the effects of physics at k& > Agpr in low-
energy processes. Therefore, one would like to have a more restrictive guiding principle when
searching for fundamental theories. Asymptotic safety (AS) provides such a framework. A
quantum field theory is AS if all its couplings reache a fixed point in the ultraviolet (UV) limit
along the renormalization group (RG) flow [1, 2]. Fixed points are defined as the points in
theory space at which the beta-functions vanish. When all the couplings of a theory go to
zero at a fixed point , we talk about asymptotic freedom (AF). In both cases, AS and AF, the
theory is well behaved at all energies. Typically, a fixed point is characterized by its relevant
and irrelevant directions. That is, directions that point towards or outwards the fixed point as
we move to the UV. Consequently, UV safe trajectories around the fixed point are described in
terms of the relevant directions. Since irrelevant directions are avoided, the number of relevant
directions determines what is called the UV safe surface Syyy. Thus, when the dimension of Sy
is less than the number of couplings, some couplings are functions of others. The latter aspect
is a crucial property of AS.

While AF theories have been studied in different contexts, work on AS models for particle
physics has only begun quite recently. For some early references based on the use of the
functional renormalization group see [3, 4, 5, 6, 7, 8]. A breakthrough came with the work of
Litim and Sannino, who found non-zero (interacting) fixed points that are under perturbative
control in an SU(N.)-invariant system with a number N; of fermions [9] (see also [10]). In
these models the fixed points arise from a cancellation between one- and two-loop terms in the
gauge [-functions. The crucial ingredient is the Veneziano limit, providing the small expansion
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It is reasonable to expect that there may exist AS models also for finite values of €. General

conditions for the existence of such fixed points have been discussed in [11, 9]. Applications of
these ideas to BSM physics have appeared since then [12, 13, 14, 15, 16, 17].

The Standard Model (SM) by itself is not AS because of the Landau pole in the U(1) gauge
coupling [18, 19] and the uncertain fate of the Higgs quartic interaction [20]. The Landau pole
can only be avoided by assuming that the gauge coupling is identically zero at all energies. This
is known as the triviality problem. Therefore, it is interesting to explore modifications of the
SM that allow for AS in order to tame the UV behavior of the U(1) gauge couplings. In this
work, we focus on two different ways of turning the SM into an AS theory. In the first part,
we consider extensions of the matter content of the theory. In the final Chapter, we take into
account the gravitational corrections to the running of all the SM couplings.

Regarding the modification of the matter content of the SM, the simplest (and most studied)
extension consists of multiple generations of vector-like fermions carrying diverse representations
under the SM gauge group. Vector-like fermions have the property of not giving rise to
gauge anomalies and being technically natural. Model building approaches in the subgroup
SU(3) x SU(2), as well as in the full SM group, were studied in [14, 21|. In these investigations,
the authors find several UV fixed points, which they match to the low-energy SM in a number
of benchmark scenarios. In a parallel development, the authors of [15, 16| studied AS for the
full SM gauge group, again extended by vector-like fermions, by means of a resummation of the
perturbative series of the S-functions. They find several UV fixed points, which however cannot
be matched to the low-energy SM in a consistent manner [16].

To move forward in this program, we report our results for a large class of models based
on an SU.(3) x SUL(2) x Uy(1)-invariant theory containing gauge and Yukwa interactions.
Besides the matter SM content, we consider vector-like fermions minimally coupled to the SM.
Following [14], we also include Yukawa interactions between the Beyond the Standard Model
(BSM) fermions and a new set of scalar fields. For simplicity, we only keep the top Yukawa
from the SM. This makes the form of the S-functions more manageable. Our models differ in
the number of copies of vector-like fermions and the representations that they carry under SM

gauge group.

In contrast to [15, 16] we do not use resummed [-functions. Instead, we compare the results
of the two-loop gauge S-functions with the three-loop results. As explained in Chapter 3, the
B-functions for the Yukawa and scalar couplings are retained always at one- and two-loops



less than the gauge couplings, respectively. By comparing the results of these two different
approximation schemes, we are able to assess quantitatively the impact of radiative corrections
and therefore to decide whether a given fixed point is within the perturbative domain or not.
This selection is supported by the use of other tests of perturbativity that the fixed points must
satisty, as discussed in sections 1.5 and 3.2.

We have made a systematic search of reliable fixed points in a large grid parameterized by
the number of vector-like fermions Ny and their SU(3). x SU(2), x U(1)y quantum numbers
[22]. We first find all the zeros of the S-functions for each model in the grid. We then test each
fixed point under two conditions:

e The fixed point must occur in a region in which the perturbative expansion is reliable. At
the very least, this implies that it must be possible to reasonably trace its value at some
order in the perturbative expansion back to that of the previous order. We see a posterior:
that this can be done only when the values of the couplings and of the scaling exponents
(the eigenvalues of the linearized beta functions around the fixed point) are sufficiently
small, and the fixed point satisfies all the criteria introduced in Section 1.5.

e The fixed point must be connected to the SM at low energy. In general this would require
a delicate numerical analysis of the trajectories emanating from it. However, we find that
a rough necessary condition is sufficient for our purposes: the fixed point must not have
any coupling that is zero and irrelevant, because such couplings must be identically zero
at all scales to avoid Landau poles.

These two requirements taken together, that we consider to be quite reasonable, are very
restrictive. As a matter of fact, we are not able to identify any choice for the group
representations and number of generations of the vector-like fermions that makes the extension
of the SM reliably AS. This does not mean that such an extension does not exist: it only means
that if such an AS extension of the SM exists, it must either be different from those that we
have considered, or else it must have a fixed point that lies outside the reach of perturbation
theory.

Having explored the matter extensions of the SM, we move on and ask whether gravitational
corrections modify the general picture of the previous analysis. Studies of gravitational systems
within the framework of functional renormalization group suggest that there exists a stable
fixed-point with a finite number of relevant directions |23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39|. Effects of vector, fermion and scalar degrees of freedom have been
also studied in the literature [29]. From these studies, it seems that the SM degrees of freedom
do not spoil the AS picture in gravity. Analogously, studies of gravitational effects on matter
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couplings have been also carried out [40, 41, 42, 43]. For our discussion, it is relevant to note
the nature of the corrections induced by gravity in gauge and Yukawa interactions. Due to the
universality of the gravitational interactions, the corrections to the running of a given gauge (g)
and Yukawa (y) coupling take the form

59,3} = ;\,/[yatter + fg,yg(y)a

where f,, are functions of the gravitational couplings. These new set of RG equations open
the possibility of rendering the Standard Model asymptotically safe. In fact, there have been
attempts trying to exploit the properties of this modified beta functions [44, 45, 46, 47, 48, 49,
50]. Here, we go one step further and explore the structure of the corrected beta functions in
the full quark sector of the SM.

In this context we study the set of quark Yukawa couplings and mixing parameters below and
beyond the Planck scale. Since the AS paradigm in gravity tells us that quantum corrections
are important beyond the Planck scale, we expect to have modifications to the running of the
SM parameters at very high energies. In particular, we look for non-trivial fixed points for
which the dimension of the critical hypersurface is smaller than the total number of couplings.
Since at least one of the Yukawa couplings is predicted by the presence of such a fixed point,
there is the possibility of explaining, at least in part, the hierarchy in the spectrum of masses
in the quark sector. Another important aspect of this analysis is the avoidance of the triviality
problem in the U(1) sector. In fact, it is the exclusion of the Landau pole in g; what allows
us to talk about predictions in the Yukawa couplings because the theory becomes UV finite.
The gravitational effects give a solution to the problem that is not resolved with the inclusion
of vector-like fermions. In Chapter 4, we describe the main features of the mechanism behind
the generation of the non-trivial fixed point in the gauge and Yukawa sector. Going from one
to three generations of quarks, we illustrate how the predictions arise and how the RG flow of
the couplings gets modified.
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Chapter 1

The Concept of Asymptotic Safety

In this chapter we introduce general concepts that are crucial for our discussions. In particular,
we define in more detail the quantities defined in the Introduction. We start with the basic
notion of fixed point, and move towards specific properties that a perturbative AS theory must
possess.

1.1. The fixed points of the S-functions

Consider a theory with generic gauge, fermion or scalar fields, and (generally dimensionful)
couplings g; characterizing the interactions of different particles. In the study of the
renormalization group (RG) flows it is customary to use dimensionless couplings g;. Then,
we define the quantities ¢; = k=% g;, where d; is the mass dimension of g;, and k is the sliding
energy scale. The renormalization of the theory is completely characterized by its g-functions

dg;

— 1.1.1
=3 (11.1)

Bi(g;) =k

A fixed point of this theory, denoted by the coordinates g7, is defined by the location where the
B-functions of all couplings vanish:
Bi(g;) =0. (1.1.2)

When the couplings g; assume the values g7, their flow has stopped. The space of couplings
is filled with trajectories flowing towards or away from fixed points . In the next section, we
discuss some properties of the theory space and the fixed-point solutions of (1.1.2).
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1.2. Linearized flow

Once we have a candidate fixed point, we can study the flow in its immediate neighborhood.
We first introduce the coordinates y; = g; — g7 that quantify the proximity of the coupling g; to
the fixed point g7. Then, we study the RG evolution via the linearized the g-functions

dy;
i My, , (1.2.1)
where M;; = 00,;/0g; is referred to as the stability matriz. In order to understand the UV
properties of a fixed point in theory space, we diagonalize the linear system by going to the

variables z; = (S71);;y;. The matrix S is defined such that it diagonalizes M
(Sil)iijlSln = 5zn0n > (122)
Thus, the new S-functions and their solutions take the simple form

Az _ d () ot AN (1.2.3)
— = 0;%; an Zi =cer =¢c | — . 2.
dt ko

We see that the evolution of each new variable z; around the fixed point depends on its eigenvalue
or scaling exponent 6;. If we sit close to the fixed point, given the sign of 6; we can have three

different situations

e For 6, > 0, as we increase k we are pushed away from the fixed point and z; increases
without control; the direction z; is said to be irrelevant.

e If 0, < 0, as we increase k, we are pulled back to the fixed point; the direction z; is called
a relevant direction.

e If §; = 0, we do not know the fate of z; and we have to go beyond the linear order (see
discussion below). The direction z; is called marginal in this case.

The notion of relevance/irrelevance is independent of the direction of the flow and of the
choice of basis. The eigendirections in (1.2.3) define a linear space around the fixed point, as
seen Fig. 1.1. In the this figure we depict in blue the full UV critical surface, defined as the
surface of points that are pulled to the fixed point at high energies. The points that are not on
the critical surface would generally flow towards infinite values. In order for the couplings g;
to be finite, they must lie on the critical surface. As a consequence, some or the couplings will
not be independent from each other. The non-trivial equation defining the critical surface sets
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Figure 1.1: Theory space of couplings g; where only 3 axes are shown for simplicity. For a given fixed
point we show the UV safe surface Sy (blue region), the approximated UV critical surface around the
fixed point (white plane), the new set of coordinates z;, a small region of possible initial points for the
flow (red circle) and two UV safe trajectories ending at a given matching scale M (green curve ending
at B and orange curve ending at A). We also show a trajectory starting at @, close to the point B
but outside Syy. This trajectory approaches the fixed point but goes to infinite values at very high
energies (magenta line).

non-trivial relations among couplings, for instance, g; = f(g;). This is source of the predictive
power of AS theories. We see here that the finiteness of dg,,, the dimension of the critical
surface, constrains the theory at all energy scales. The smaller the dimension of the critical
surface, the larger the number of prediction that can be made. In Chapter 4 we exploit this
property and use it to understand important features of the SM of particle physics. It is an key
question throughout this work to ask whether the SM couplings at low energies lie or not on a
critical surface.

The eigenvalues 0; have the property of being universal quantities—meaning that they are
invariant under a general coordinate transformation in the space of couplings [10]. On the other
hand, from dimensional analysis we know that, in general, the g-function for a dimensionful
coupling g; has the form 3;(g;, k) = k%~;(g;), where 7;(g;) contains the non-trivial dependence
on the dimensionless couplings g;. Then, the beta functions for the latter are given by

B = —digi + i(g5)- (1.2.4)
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We see that ~;(g;) encodes the pure quantum contributions to the S-functions, and the first
term represents the classical scaling. Therefore, the stability matrix is given by

i
Thus, the eigenvalues 6; arise also as the sum of a classical contribution, coming from the
classical scaling d;, and non-trivial quantum corrections.

1.3. Marginal couplings

If one of the eigenvalues is equal to zero, the linear approximation does not give us information
about the RG behavior in the direction associated to it. Then we have to go further in the
expansion. At second order in the couplings y;, the S-functions take the form
Ay OB
dt 99,09

The structure of these quadratic flows is quite complicated to describe in full generality. The fate

= M;jy; + Pijryjyr, where Py = (1.3.1)

of a specific trajectory depends strongly on the position of the initial point in the neighborhood
of the fixed point.

However, marginal couplings do not generally occur for a fully interacting fixed point: in
the models considered here they can always be identified with some coupling that is itself zero
at the fixed point. We show in Appendix C that the structure of the S-functions is such that
the flow of the marginal couplings near the fixed point is of the form

dyi 2
= il 1.3.2
o y (1.3.2)
(no summation implied). Our beta functions in Chapter 3 will be written always in terms of
2
o = (fT"')Q, which are bound to be positive. Therefore, marginal directions a; with Py; < 0

are UV attractive and are called marginally relevant (a well-known example being the QCD
gauge coupling) while those with Py; > 0 are UV repulsive and are called marginally irrelevant.
Altogether, the UV critical surface is thus spanned by the relevant and marginally relevant
directions.

1.4. Infrared matching

Once we have an understanding of the fixed point structure, there remains to find the trajectory
connecting a given fixed point to the IR physics. This is accomplished in the following manner.
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First, we define IR scale which, depends on the problem we deal with. In Chapter 3 we take
it to be around the TeV scale. In terms of RG time, ¢t = Log|k/Mz], we choose the integer
value {5 = 3. In units of energy, it corresponds to roughly 1.83 TeV. The Z-boson mass My
plays just the role of a reference scale. In Chapter 4 we choose the matching scale to be in
the EW scale range (O(100GeV)). For concreteness, we associate this scale to the mass of the
top quark, 173.21 GeV [51]. This defines the target for the flow to the IR from the UV fixed
point. The RG flow is started from a point belonging to the UV critical surface, infinitesimally
close to the fixed point (red circle in Figure 1.1). This guarantees, to high precision, that the
flow towards the UV ends at the fixed point. The system is then allowed to flow by means of
the full S-functions of the theory towards the IR. The initial point of the flow is varied until a
trajectory hits approximately the desired IR values.

For most of the models that we consider in Chapter 3, this laborious procedure is not
necessary. For all their fixed points that can be regarded as being in the perturbative domain
(according to our discussion in Sec. 1.5), the hypercharge is zero at the fixed point and is also
a marginally irrelevant coupling. This means that in order to reach the fixed point in the UV
limit, the hypercharge must be zero at all energies. All other trajectories have a Landau pole.
These models are thus excluded by a version of the triviality problem. On the other hand, in
Chapter 4 we do need to perform a matching. The analysis is quite involved but we are able to
test the fixed-point regime and obtain IR values that are close to the measured ones.

In the Chapters 3 and 4 we study two different approaches that attempt to render the SM
dimensionless couplings finite in the far UV. The two analyses have different nature. Therefore,
we need to introduce new concepts in each of those studies. The first deals with perturbative
stability, explained in section 1.5. The other one is about asymptotically safe gravity and
Functional Renormalization Group analysis, introduced in Chapter 2.

1.5. Perturbative Asymptotic Safety

When we work in the framework of perturbation theory, extra conditions should be imposed in
the resulting quantities associated to a fixed point. This is necessary in order to remain within
the domain of perturbative accuracy. We start demanding that all the couplings at the fixed
point gf are sufficiently small. In practice this means that the transition from one loop-order
to the next one does not change appreciably the position of the fixed point, neither its global
properties. Since every time we perform a loop expansion, the combination (g}/47)* appears

14



with some power n, it is reasonable to demand that

™

0< (j—)Q <o(1). (1.5.1)

The condition in Eq. (1.5.1) excludes the appearance of large contributions for higher-loops
expansions. However, this condition is not enough because the size of the coefficients present
in the expansion also constrains the accuracy of the perturbative approximation.

We saw in Sec. 1.2 that the scaling exponents contain information about the quantum
correction to the canonical scaling of the couplings g;. If we work in perturbation theory, this
quantum corrections should be small. Otherwise, the canonical power counting determining the
renormalizable operators in the Lagrangian does not hold. Given the definition of these scaling
exponents, we see that it gives us information about the largeness of the coefficients in the
expansions of the beta functions (3;. For canonically marginal couplings (d; = 0), we note that
the scaling exponents have a fully quantum origin. Then, large values of 6; signal the possible
breaking of perturbation theory. Thus, it is also reasonable to ask for the following requirement

10:] < O(1). (1.5.2)

As explained before, in every loop expansion fractions of the form (g;/ 47)? appears with a given
power n. Therefore, from now on, it is convenient to make use of the variables

g; vi
o = ()2 fori=1,2,3, and q, = W’ (1.5.3)

where g; are the SM gauge couplings, and y; are some Yukawa couplings.

Certainly, the conditions (1.5.1) and (1.5.2) are good guiding principles in order to select
fixed-point solutions that do not spoil the perturbative approximation. However, they do not
provide all the promising fixed points. The truly perturbative solutions are those that appear
at any loop order. That is, once they are found at some loop order n, they should remain at
higher loop-orders m > n. This does not mean that the numerical values of the fixed points do
not change, it means that there is only a small variation. Most importantly, the properties of a
given fixed point should not change (e.g., the number of relevant /irrelevant couplings and the
orientation of the relevant /irrelevant directions). In summary, it should be possible to keep track
of the fixed-point solutions at any loop order. Hence, every time we find non-trivial solutions
at a given loop order n, we verify whether these can be identified at a higher loop order n + 1.

Additionally, there are other two quantities that help us selecting the promising fixed points.
In Chapter 3 we work in particular with 2- and 3-loops gauge beta functions, then the good
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fixed-points candidates must be present in both cases (with the properties discussed above). If
we take the 3-loops [-functions of the gauge couplings «;, we have in general

8 = (Am + BWa, + Cr(i)aras)a?, (1.5.4)

where A, B and C are the one-, two- and three-loops coefficients; and r, s run over all space of
couplings. At a fixed point we can split each beta function in the following way

0=p8=A"+BY+C" (1.5.5)
where AY = A0a2 BY = BYq,a2 and ¢ = BYa,.0,02, and there is no sum in
i. According to our discussion so far, we expect the three contributions to be ordered as
C% <« BY <« AY or equivalently

pi<o; <1, where p;=|CY/AD| and o; =|BY/AV|. (1.5.6)

The condition 1.5.6 are good indicators for the validity of perturbation theory in the framework
of asymptotic safety.

We close by recalling that the S-function of a single coupling is independent of the gauge
choice in dimensional regularization. It is regularization scheme-independent up to two-loops.
If there are several couplings running together, their S-functions depend on the scheme already
at the two-loops [52]|. There is therefore a degree of ambiguity in the position of the fixed points
we are going to discuss because it could be moved by changing the scheme. We assume that
these changes are small if the fixed point is found within the perturbative regime. One should
however bear in mind this problem of scheme dependence in all the discussions to follow.
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Chapter 2

Asymptotic Safety in Gravity

In this chapter, we discuss the concept of Asymptotic Safety for gravity. We start by analyzing
pure gravity. Then, we move to systems including gravity and matter. The latter case is of
particular relevance in our examination of the UV completeness of the Standard Model. It
is known that Einstein gravity is not renormalizable at the perturbative level [53, 54, 55, 56].
That is, we need to fit an infinite number of free parameters in order to cancel the divergences
appearing at every loop order in the perturbative expansion. Consequently, the theory is valid
up to some physical scale (namely, the Planck scale). Quantum corrections to the Einstein
action are suppressed by powers of the Planck scale M,;. Below this energy scale, and at a
given order in the momentum expansion, only a finite number of counterterms are needed and
the theory is predictive as an Effective Field Theory (EFT) [57, 58, 59, 60]. The breakdown of
the perturbative quantum treatment of Einstein gravity makes us wonder whether the issue lies
in gravity itself or in the perturbative analysis. It is possible that the theory is renormalizable
in a non-perturbative sense and therefore valid at all energies. Actually, if by means of non-
perturbative methods we are able to find a UV fixed point with the properties described in
Chapter 1, we can say we have found a quantum description of gravity in the framework of
Quantum Field Theory (23, 61, 62, 24, 25, 26, 27, 28, 63, 29, 30, 31, 32, 33, 35, 38, 38|. In the
following, we describe the main features of AS gravity.

2.1. Functional Renormalization Group Framework

Most of the studies of AS in gravity are carried out in the framework of Functional
Renormalization Group, which allows for a non-perturbative treatment. In particular, the
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Wetterich equation is used in order to determine the beta functions of any theory [64, 65, 66].
The scale dependence in the couplings is introduced in the definition of the generating functional
through an infrared cutoff R;. The main idea of this approach is to provide an exact RG equation
that is valid in the perturbative, as well as in the non-perturbative regime. Here, we outline the
central notions of this framework for a scalar theory; then, we extend it to gravity in order to
discuss the current status of the field of AS. We start by modifying the quadratic part of the
action S in the definition of the generating functional of connected correlation functions Wj.
Introducing the so called ‘cutoft” or ‘regulator’ action depending on an operator A

85,(6) = 5 [ droRu(d)o. (2.11)

we write

JWilil / (dp)e—S—ASi+] drio. (2.1.2)

It is useful to call z the argument of Ry. This variable can be regarded as the eigenvalue of
the operator A. The term (2.1.1) in (2.1.2) has the impact of modifying the quadratic part of
modes with eigenvalues )\, less than k. That is, it guarantees that only modes with eigenvalues
larger than k are integrated out. The other modes are decoupled since they acquire a mass of
order k. In order fit the above requirements, Ry must satisfy some general conditions. First, we
require that Ry — 0 for & — 0 (for any value of z), in order to get the full quantum effective
action in the IR. Similarly, we demand Rj(z) to increase monotonically as a function of k for
fixed z, and to decrease monotonically with z for at fixed k. Then, for z > k the regulator goes
to zero fast enough so that it only suppress the IR modes. Finally, as a normalization condition,
we ask for R (0) = k% To sum up, we see that the k plays the role of an IR cutoff. However,
Ry, was used only to introduce an explicit scale dependence in the generating functional. In our
final result, we will see how the Wetterich equation will be UV and IR finite.

We can apply the Legendre transform to (2.1.2) to obtain

Fu(e) = ~Wilio) + [ doiap (2.1.3)

where we have introduced the expectation value of ¢

o(a); = (9(0) = 5 (2.1

The quantity j, is obtained by inverting Eq. (2.1.4); that is, j, becomes a function of ¢. Finally,
we define the Effective Average Action (EAA) I'(¢) by subtracting the cutoff action from I'j(¢)

Ti() = Tilp) — ASk(e). (2.1.5)
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In some sense, the subtraction of the cutoff action compensates its introduction done in the
generating functional. Now, the significance of EAA is that its flow equation presents a simple
and compact form. In fact, we can derive a flow equation for I'; that is valid regardless of the
use of perturbation theory.

Defining t = Ln k, the scale derivative of W}, is written as

AW, d 1 dRy,

P _ 2 IAS N =T —— 2.1.6
where the trace stands for an integration over coordinate and momentum space. Now, from the
definition of ¢, we obtain

dt dt dt '
1 dRy,
=5 ((60) — (D)) -,
1, 0*WydRy,
=— —. 2.1.
2" 5jo5 dt (2.1.7)
From the Legendre transform of Wy[j], we see that
oy .
—F _ 2.1.8
and, therefore
82 W, 3T\ 7
o (=) (2.1.9)
0567 dpdp
Thus, transforming our results in terms of I'y, we arrive at the equation [64]
N 5Ty, AR,
—_ == R —. 2.1.10
i a2t (5¢5¢ + "“) it (2.1.10)

Eq. (2.1.10) is referred to as the Wetterich equation, Exact Renormalization Group Equation
(ERGE) or Functional Renormalization Group Equation (FRGE). It has the structure of a one-
loop equation whose graphic representation is given in Fig. 2.1. That representation comes

—1
from the fact that in 91" we have the exact propagator ( 5555’; + Rk) , which is depicted as a

continuous line in 2.1.

Olklp] = %

Figure 2.1: Representation of the FRG equation (2.1.10). The continuous line symbolize the complete
propagator. The crossed circle stands for the insertion of O Ry
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We observe that the flow equation for I'y, depends only on I'j, itself, there is no reference to
the bare action S. That is, the derivative of I';, at a scale k depends only on the physics at
the scale k& and below. We do not need information about the UV. Additionally, we note that

(2.1.10) is UV finite. The insertion of “ makes the trace finite since we know that the cutoff

decreases fast for z > k2, and then % also does. In other words, in (2.1.10) we have difference
of two EAA at slightly different k, therefore divergences in both expressions cancel out leaving

us the finite part only.

We saw before that our flow equation is free of UV and IR divergences, even though W} and
I'; themselves are not. Therefore, it is useful to use Eq. (2.1.10) in order to study particular
QFT. We explain now how to proceed in this regard. We bring in the idea of ‘theory space’ as
the space of all functionals of . Then, we write the most general EAA constructed with all the
functionals O;(¢) in the theory space respecting the symmetries of the system

Lu(e) = > 0:(k)Oil), (2.1.11)

where g;(k) stand for the running coupling constants. Differentiating with respect to t we have

dryy
dt

dg;
Z@Oi(w), where f(g;, k) = dgt

. (2.1.12)

The quantities 5;(g;, k) are the beta functions of the theory. They can be computed by expanding
the r.h.s. of (2.1.10) on the basis of operators O;(¢), and comparing each side of the equation.

2.2. FRG in Gravity

The Wetterich equation can be used also for gauge theories, in particular, it is useful in the
study of Yang-Mills theory and Gravity. The extension for those cases share similar elements.
Therefore we focus on gravity since it is the most relevant for the upcoming chapters. The
functional integral in (2.1.2) depends strongly on the operator A because it helps us classifying
modes according to their eigenvalues and k. Clearly A is defined in some spacetime setting. For a
scalar theory, we usually work in a flat space. For gravity, however, spacetime is dynamical itself
so the notion of a fixed operator is doomed. A way out of this is by means of the Background
Field Method. If we split the metric into background and fluctuation

G = Guv + Py, (2.2.1)

we can use g, to construct an operator A whose set of eigenvalues can be used to sort
different modes in h,,,. Although we have separated the metric in two parts and diffeomorphism
invariance is lost, we can still write the functional integral in a background gauge invariant way.
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In this gravitational context, the functional integral in (2.1.2) has to be readjusted to include
the gauge-fixing and ghost action, Sqp and Sy,. Moreover, new sources terms appear in the
integration. In a compact form, the new generating functional is

eWli. ) _ /(dth'dC_v)e—S(h,CC;g)—ASk(thC;g)Jrfdwﬁ(j“”hWrJ“wa“@u)’ (2.2.2)

where S(h,C,C;g) contains the gauge-fixing and ghost contribution
S(h,C,C;g) = S(h;9) + Sar(h; §) + Sen(C, C; 9), (2.2.3)
and the new cutoff term is written as

_ 1 _
AS(,C,Cg) = / Ao/ R (5)hy + / dn/GC" R (G)C, (2.2.4)

It is worth noting that the cutoff action (2.2.4) is constructed with the background metric, and
the cutoff function for the fluctuation £, contains now spacetime indices. In a similar manner
as before, we define the EAA by the Legendre transform of W}, minus the cutoff action

T(h, C.C:5) = —Wa(j, J. J: 3) + / dn/G(" b + JUCyy + JHC) — ASu(h, C,Cs3), (2.2.5)

where we have used the same names for the expectation value of the fields, e.g., hy = (h.).
Following the same lines as before, we obtain the new ERGE

.5 2 -1 2

=-T — :
dt 2! dpdp dt 6pdp

We have collected the metric fluctuations and ghosts in the expression ¢ = (h,,,C,, CM). It
is important to point out the double dependence of I'y on the background and fluctuation
metric. In the next section, we discuss the meaning of the double dependence and how it can
be understood.

Studies of Eq. (2.2.6) are carried out in the same spirit as case of scalar case. The
idea consists in writing an effective action with a given number of operators O(g). Due to
computational reasons, people usually take truncations in theory space. That is, a finite set
of operators is retained in 'y, in order to study the RG properties of the all the couplings
constants. In particular, we search for non-trivial fixed points in the gravitational couplings
defining a critical hypersurface of small dimensionality d. As explained in Chapter 1, d is given
by the number of relevant directions. In this case, however, (1.5.1) and (1.5.2) do not apply
because perturbation theory is not needed. Considering that a finite number of operators can
be considered at once, the stability or reliance of the global properties of quantum gravity is
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investigated by comparing results in different truncations. For instance, the number of relevant
operators or dimension of the critical surface should not change when enlarging the set of
invariants in I'y. Most works are done in the so called background approximation, that is,
identifying ¢,,, = g,,. Within this approximation, the evolution of the ghost action is neglected.
Then, the effective average action is written as

'[9, 3, C,C] = Tilg] + Tilg — 3] + Sarlg, 3: 9] + Senlg — 3; 7). (2.2.7)

We see that the classical gauge and ghost actions have been pulled out from the full quantum
contribution. The remaining part is decomposed in two quantities, I'; and ['s. The former
is defined as I'y, = I'x[g = g], while the latter contains the non-trivial dependence on g and
h separately. Clearly I',[g = g] = 0, and the background-field approximation corresponds
to taking I precisely equal to zero. In gravity, the background-field approximation can be
expressed as

_ 1 . Higher—Order
Dy = —fora /dx\/g(R 2A) + T}
1 _ [ = 1+8 = . 1+8 =
- - MY P - = -~
+* orGn / /37 (D by == Duh) (D hor = — D,,h)
_ _ _ 1 _
V& [ asiC, (809D + DoniDy) ~ 52D, ) €. (2.28)

where Gy is the Newton coupling, A the cosmological constant, and nggherforder represents
higher order terms. The second line corresponds to the gauge-fixing action, parametrized by «

and (; while the third line is the Faddeev-Popov operator.

The Einstein-Hilbert (EH) truncation (I}'#*~ 9" — () has been proven successful in
determining the existence of a non-trivial fixed point in the space Gy-A [24]. Stability of the
results within the FRG framework has been tested by analyzing different gauge-fixing conditions
(different o and ) [67], cutoff actions ASy, [24], and parametrizations for the metric fluctuations
[67, 68, 69]. So far, the results in EH suggest that there exists a fixed point with Gy and A
relevant, that is, with two relevant directions (dg,, = 2). Higher order truncations put forward
the conjecture that the actual dimension of Syy is dg,,, = 3. Such extensions include powers
of R up to 70 [70], the operators R, R" 6 C**°C,,,, and beyond [32, 28, 35]. Although the
stability matrix is diagonalized by a mixture of different directions (or operators) in theory
space, there are hints indicating that 1, R, and a combination of R? and R, R" are the
relevant operators in quantum gravity [71]. Higher order operators seem to be dominated by
their canonical dimension. This indicates that gravity displays a non-trivial fixed point with
a finite number of relevant directions (dg,, < 00). In order to have an idea about the fate of
the couplings at high energies, we plot in Fig. 2.2 the RG flow of the dimensionless Newton
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coupling gy = Gnk? for the Einstein-Hilbert truncation [48]. In that figure, we can see that gy
goes to a fixed point value beyond the Planck scale, while it decreases considerably fast below
M,;. We might be then allowed to neglect gy at low energies. The behavior of the dimensionful
coupling Gy is precisely the opposite as gy. That is, it presents a nearly constant behavior
below the Planck scale, while it decreases afterwards.

107" ]

1 0—21 L i

10°'L ‘ ‘ ‘ ]
100 10" 10% 10% 10%

k [GeV]

Figure 2.2: RG flow of the dimensionless Newton coupling gy in the EH truncation. Horizontal axis:
energy in GeV.

2.3. Split Weyl Transformations in Quantum Gravity

In the previous section, we saw that the cutoff action introduces in I'y, a double dependence on
the metrics g, and h,,. In other words, the shift or split symmetry that leaves the full metric
invariant, g,, — g +€u and by, — hy,—€,, is broken in I'y, through the cutoff and gauge-fixing
actions. The broken shift symmetry in I'; is related to the concept of background dependence:
since I';, is not the same for g,, and g, + €,,, we can have different results depending on the
background metric we use. Thus, the fate of the split symmetry in ['y is crucial to understand
background independence in quantum gravity |72, 73, 74, 75, 76].

Here we focus on the results of a very particular choice of €,,. We deal with split Weyl
(SW) tranformations when €,, = €g,,. That is, we consider a split symmetry that corresponds
to a Weyl transformation of the background metric. Since the main source of split symmetry
breaking in the context of FRG is the cutoff action, we can try to solve the flow equation and
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the resulting Ward identity coming from the breaking. By combining these two equations, we
can rewrite the double dependence in a single metric field. In the case of SW transformations,
we do not recover the full single metric dependence, but only the part associated to the group
action.

Conformally reduced gravity

In order to discuss the effects of Split Weyl transformations, we use the exponential
parametrization, which can be written schematically as ¢ = ge” instead of using the usual
linear parametrization (g = g+ h). We also discuss first a simpler scenario in which the metric
belongs to a single conformal class, the conformally reduced case (CORE). That is, fixing a
"fiducial" metric in this class, every other metric can be obtained by a Weyl transformation

Guv = 6209;1,1/- (231)

As the metric g, is kept fixed, we see that gravity is reduced to a scalar field theory. For the
field o, we have the split transformation as

o=0+w. (2.3.2)

Thus, we can define a background metric

g;w - 62&guyy (233)
and therefore the full metric is obtained from the background metric by means of the Weyl
transformation

G = € G - (2.3.4)
Under a SW transformation, the conformal factors transform as 66 = €, dw = —e, while the full

factor o remains invariant.

In CORE gravity, the general form of the cutoff action is

AS), = %/dx\/g_ka(@ﬁ)w. (2.3.5)

The cutoff kernel Ry is a function of a Laplace-type operator O constructed with the fiducial
metric and the background conformal factor. We start considering the cutoff constructed with
O = A, where A = —g’“’?ﬂﬁy is the Laplacian of the background metric. For dimensional
reasons, it can be written as

Ri(A) = kr(y), (2.3.6)
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where 7 is a dimensionless function of the dimensionless variable y = A/k?. The result of the
Split Weyl transformations discussed in the previous section is

1
SWAS, = —§/ddw\/§(e7€kw + wRye)

1 Ry, ORy,
+ §/d x\/ﬁw |:€de + Ga—a_ + aHEW + .. | w. (237)

In order to derive a simple expression for the modified Split Weyl Ward identity (mSWWTI), we
introduce a SW-covariant derivative. We find that D,w = J,w + 0,0 is invariant under SW
transformations. Thus, the new Laplacian AW = —g*D, D, defined with D,, transforms simply
as 60AY = —2¢AW . It is also useful to consider an “extended” transformation 6¥) which agrees
with 0 on all fields but acts also on the cutoff by

0BV = —ek | (2.3.8)

as dictated by dimensional analysis. Thus, acting on any functional of the fields and &,

J
(B) _ 5 _ —_
) ) /dmekék : (2.3.9)

Note that since € is generally not constant, we cannot assume that k is constant either. This
fact can be taken just as a mathematical fact in order to derive the mSWWI.

The cutoff is now a function
Ri(A™) = kr(y), with y=A"/k*. (2.3.10)

leading to the transformation

) 1
OAS, = /dxekﬁASk - §/ddx\/§(e7€kw + wro€), (2.3.11)
It will become clear later that transformations involving linear terms in w do not contribute
to the variation of the effective average action, so they are harmless for the derivation of a
Ward identity. On the other hand, the transformations involving the functional derivative with

respect to k lead to Ward identities with a known and compact form.

The derivation of a modified Ward identity follows the same lines as the derivation of the
Wetterich equation given in Sec. 2.1. We start from the generating functional Wy, defined by

Welisd) _ / Duge-5-A8c+[ iw (2.3.12)
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Taking into account that S is invariant under 9, the variation of Wy is

Wi, §,5) = —(GAS) + / d'efGje. (2.3.13)

From definition of the effective average action 'y, we have

Dulw), 5: 9] = — Wi + / 42/ () — AS((w)). (2.3.14)
Its transformation is
0Ly = =W, + /ddx\/§j6 — JAS,((w)). (2.3.15)

The terms coming from the source cancel in the final variation of I'y, and we end up just with

Similarly, the linear terms in w coming from dAS) cancel out, and we find

1 (0T, - O Ry
I'y==T — 2.3.1
0 k 5 T((Sw5w+Rk> /diEEk 5]5’ ( 3 7)
) -1
where we have used the relation (gwgfz + Rk) = (w(z)w(y)) — (w(x)){w(y)), and the trace

means double integration in spacetime. Equation (2.3.17) tells us that the split symmetry in S
is broken at the quantum level due to the introduction of the cutoff action. On the other hand,
the local version of the Wetterich equation (Eq. 2.1.10) tells us that the effective action, for an
xr-dependent scale, satisfies the flow equation

6Ty 1, (8T - SRy

Therefore, the variation of the effective action with respect to the transformation ¢ is
proportional to the functional derivative with respect to the scale k

ol
Iy = —. 2.3.1

This last expression states that I'j, is invariant under the extended transformation ¢(*)
SET, = 0. (2.3.20)

Thus, the effective average action can be written in terms of the invariant quantities k= ek
and 0 =7 + (w) as

~

Fk[<w>75-7g} = Fl};[o-a g] (2321)
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We observe that we can reduce the number of variables that 'y, depends upon. Namely, we
have reduced by one the number of independent variables. The extension to full gravity is
straightforward since we still consider the specific case of SW transformations. That is, we deal
only with one function e characterizing the transformation. In that case, there are extra sources
of SW breaking coming from the gauge fixing. However, choosing the appropriate gauge-fixing
term, it is possible to include all the symmetry breaking terms in the cutoff action.

Full gravity

In the full gravity case, the metric is written as
Qv = Gup(€™)?,  where X?, =g h,, . (2.3.22)

Using matrices to represent two-index tensors, we have that g = geX and X = g 'h. Now,
decomposing the fluctuation field into its trace-free and trace part, we obtain

X = X" 4201, (2.3.23)

where X7 is traceless and we have defined w = h/2d, with h = Tr X = g*h,,. For the particular
case considered before, i.e., metrics belonging to a single conformal equivalence class, we have

that

g = ge2eX = g2t X — g2 X" (2.3.24)

where €7 is the conformal factor of the full metric, which is decomposed into a background part
e’ and a quantum contribution ¢¥. Under the SW transformations, the fields change as
Sh,, =2eh,, dw=—€, 67 =€ Gu = 26Gum- (2.3.25)

In [76], we describe how to follow a similar procedure to the one for the CORE case. We
just need to include the gauge-fixing term and ghost action that are invariant under the SW
transformations. The gauge-fixing term is chosen to be

1
Ser =5 / d'z\/g F,Y"F,, (2.3.26)
a
where YH = e=(@=27g1 and the quantity F), is invariant (§F, = 0 [73])
F,=D,h", — 2+ 1)Dw . (2.3.27)

To derive the Faddeev-Popov operator, we start from the transformation of the full metric
under an infinitesimal diffeomorphism 7, d,g = £,g. The “quantum” gauge transformation of
the background g and fluctuation field X satisfy

57(762)@ =0: 6_X57(7Q)6X _ e—Xg—lﬁng _ e_Xg_lﬁngeX 4 e_XLUeX . (2.3.28)
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1_67adx

<—0X so using this on both sides we obtain
X

Under any variation 6, e XdeX =

s@x — _0dx

——1p =
n eadx——]_g Eng + ‘CﬂX . (2329)

The Faddeev-Popov operator, acting on a ghost field C*, is defined by
v 1+
AppuC” =D, ((59){)@ - Tﬁaﬂ,ﬂr (5§?>X)) (2.3.30)

where the infinitesimal transformation parameter 1 has been replaced by the ghost C*. The full
ghost action then has the form [77]

Son(C, Cris Gy, 7) = / dhan/G CY ™ App,,CP . (2.3.31)

The infinitesimal diffeomorphism parameter n*, and hence the ghost field C*, can be assumed
to be invariant under §. Then, a straightforward calculation shows that 5(CQ)X is invariant.
Consequently, also App,”C, is invariant. Assuming that the antighost C} is also invariant,
the transformation of Y then exactly cancels the transformation of the integration measure,
and we conclude that Sy, is SW-invariant. ' Note that this statement refers to the full ghost
action, containing infinitely many interaction vertices that are bilinear in the ghosts and contain
arbitrary powers of h,,.

To construct diffeomorphism- and Weyl-invariant cutoffs we use a Weyl-covariant second
order differential operator. For definiteness we adopt a “type I” cutoff (in the terminology of
[27]) depending on the Laplacian

AV = —-g"D,D, . (2.3.32)

The cutoff terms for all the fields have the structure

1 ~
ASE(Tig.0) = 5 [ deV/GHTRAAY T,

ASY(w;g,0) = %/ddm Gw R (A )w |
ASJ"(C*,Cig,6) = /ddx@C;Rk(AW)C“, (2.3.33)
where .
Re(AY) = Kir(y) . y= ;A" (2.3.34)

iThese transformation of the ghost C), and antighost C,, agree with those of [73] when € is constant.
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We have chosen the cutoff terms to be diagonal in field space, without loss of generality. Except
for the introduction of the Weyl-covariant derivatives, the cutoff terms (2.3.33) are the same as
in [73].

Note that we write the cutoff in terms of the mixed fluctuation so that all the fields have
weight zero, i.e., they are invariant, except for w that transforms by a shift. For a general tensor
of weight «, the operator AW generates a tensor of weight o — 2. Thus we can write

SEIAY = —2¢AW 4 afe, AV] . (2.3.35)

This implies that r(y) maps a tensor of weight a to another tensor of weight o under §(),
Therefore, by simple counting, the cutoff terms for A’ and C are invariant under the extended
transformations (%), i Using (2.3.9), there follows that

o

SASY — / dxek;EAS,gi) for i € T, gh (2.3.36)

where the functional variation with respect to k acts only on the cutoffs Ry.

The case 1 = w works a little differently, because w does not transform homogeneously:

1

SASY = /dxekiAs;g -3

5% /dx\/ﬁ (eRyw + wroe) . (2.3.37)

Thus this term is not invariant under 6&).

We now have all the ingredients that are needed to derive the Ward identity for the SW
tranformations 0. One could follow step by step the derivation given in |73], which was based
on the integro-differential equation satisfied by the EAA. Alternatively, we follow here the logic
of [72]. We subject W} to a background scale transformation, with fixed sources and fixed k.
Since the actions S, Sgr and Sy, are invariant by construction, the only variations come from
the cutoff and source terms,

Wi = —(0AST) — (6AS®) — (SASI™) + / d'xje (2.3.38)

The variations of the cutoff terms have been given in (2.3.36,2.3.37). Their expectation values
involve two- and one-point functions, that we can reexpress in terms of connected two-point

liSee Appendix ?? for a detailed explanation.
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functions and one-point functions as follows

L SR Wi 1 [, oW . SRy SW,
s (TP B B R A B Ok Gupgro [ Nk Ok
519 /6 5k /07807 2/ xﬁajgﬁ”g 9 /6 5k 05
1 SR. 82W, oW, [ OR. SW, W
L, N ROk Ok [ oWk
21"/6 Sk 0505 o) /6 k4 / IR
SR. W, oW SRy SW,

_T 2 1224 "
' / R A Py S A / ST P

The variation of the EAA can be computed inserting these variations in (?7). The terms
containing the sources cancel out, as does the term linear in w from (2.3.37) and the variations
of the cutoff terms evaluated on the classical fields. There remain only the terms with the
connected two-point functions, that can be re-expressed in terms of the EAA:

2 —1
ol = 1Str (5 Lk +Rk) /ek;é&

2 5606 5k
1 52T, ! SR, 1 52T, ! SRy,
— T E—" 4 T 2k
T (5hT6hT +R’“> /6 ok Tt ((5w(5w +R’“) /d‘" ok
(SQFk - 5Rk

Here we use the same superfield notation as in (B.0.4), and the ellipses indicate further mixing
terms that arise in the inversion of the Hessian.

Comparing (2.3.39) and (B.0.4) we see that

5T
T = —_— 2.3.4
5T /ekék , (2.3.40)

where we recall that the variation on the left-hand side involves only the field arguments of
[’y and leaves k fixed. We have thus arrived at a remarkably simple result: with our choices
for the gauge and cutoff terms, the anomalous variation in the mSWWI is given by the “beta
functional” of the theory, as expressed by the RHS of the local ERGE.

Recalling (2.3.9), we can rewrite (2.3.40) simply as

S, =0. (2.3.41)

This is a statement of invariance of the EAA under a particular realization of the Weyl
group. We can therefore rewrite the action entirely in terms of SW-invariant variables. Having
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chosen some of the fields to be invariant obviously simplifies the task. The choice of variables
that we find both conceptually most satisfying and technically most useful is the following:

k=ek: h™, Co; C's o=0+w; Gu- (2.3.42)

In the spirit of Weyl’s theory, we are using the background dilaton field Y = e~7 as unit of length
and measure everything in its units.  The solution of the mSWWI is therefore a functional

fk(hTuua C;a CH, 05 G) = Fk(hTHw CZ7 C* w;a, Qul/) : (2.3.43)

As expected the mSWWI eliminates the dependence of the EAA on the dynamical variable w and
on the background variable 7, replacing them by the single invariant o. In order to work out the
Ward identity for more complicated forms of €,,, we need to consider groups more complicated
than the Weyl group. That is, we need a richer structure in the split transformations. This is
an open question that we leave for future.

We end this important section by commenting on the significance of having k(z). The ERGE
can be easily generalized to the case of non-constant cutoff, but its physical interpretation
becomes then less clear. The flow of the FRGE in theory space would depend on a function,

“‘many-fingered

instead of a single parameter, which would be somewhat reminiscent of the
time” of General Relativity. It would be interesting to explore a possible connection of the
local ERGE with the notion of local RG [78]. We have also noted that the solution of the
mSWWT implies that also the cutoff has to be replaced, as an argument of the EAA, by the
dimensionless quantity k. Unlike k, it is invariant under (extended) SW transformations. It is

therefore consistent to assume that k is constant.

If k is constant, we replace

. I; ~dl;
k(x) ‘? k by k—k
Sk(z) d

and the reduced ERGE becomes again an ordinary differential equation, whose solution are
curves in theory space depending on the single parameter k. In this way the local ERGE can
be seen just as an intermediate mathematical construction.

i'We avoid the alternative definition k& = e*k used in [73] because we find it awkward to have a dynamical
variable in the cutoff scale. Another possible invariant metric would be §,, = eQWQW. Note the relation

20pT  would lead to a more complicated

between invariants: §,, = €2?§,,. The alternative definition h,gy = e*hl,

(off-diagonal) Jacobian.

31



2.4. Gravity and Matter

Since gravity cannot be described alone, we need to include matter degrees of freedom in order
to get a more realistic picture of a quantum theory for all fundamental forces of nature. Then
two questions naturally arise at this point: how do matter degrees of freedom alter the pattern
portrayed in the previous section? How do AS gravity affect the fate of the couplings in the
matter sector? In the specific case of the SM, we have Ng = 4 scalars, Nr = 24 fermions and
Ny = 12 vector fields. Effects of matter degrees of freedom in AS gravity have been studied in
[79, 29, 80, 81, 82]. It is found that for a small number of matter fields, the interacting fixed
point is still present. For a larger number of fields, the fixed point might be lost, although
higher truncations might be needed in order to have a more precise conclusion. For the Newton
coupling, we can see how the matter fields affect the existence of a fixed point. Assuming that
gn reaches an interacting fixed point in pure gravity, we can write the matter contributions as

ﬁgN = By + ;V]I\fatterj with pater — (NSaS + NFaF + NVaV>g]2V7 (241)

- MgN gN

where the sign of a;, i = S, F,V determine the screening or antiscreening effects of each fields.

It is also expected that gravity modifies the running of the matter couplings. The
specific form of such effects depends on the truncation, and the other free elements in the
FRG analysis. FEven though a definite answer might be far from being obtained, several
calculations of the new matter beta functions have been carried out. In the gauge sector:
[83, 84, 85, 86, 87, 88, 45, 46, 89, 47, 49, 90]. In the Yukawa sector: [40, 91, 41, 43, 42]. They all
agree on the fact that the structure of gravity effects on a given canonicallly marginal coupling
is

By, = Matter 4 621”“, with 5_2“” = —f4,95; (2.4.2)

9;
where f,. is a function of the gravitational couplings, and g; is a gauge or Yukawa coupling.
For the gauge couplings g, the value of f; is still unclear but there are hints in favour of a
positive function, f; > 0. The sign of the new contributions is important since it can destroy or
introduce a non-trivial fixed point . In Chapter 4, we explain the implications of having f, > 0.
There, we use the loop-expanded beta functions for the matter contributions since the arising
fixed points lie at small enough values.

In order to have an idea about the form of f,;, and its dependence on the gravitational effective
action, we show the results found in [45]. In that work, the function the gravitational correlation
to the U(1) gauge coupling is given by f, = —3gy®}(0), where gy is the dimensionless Newton
coupling, and the function @ is

v L [ )
&P (1) — /O dz 2t L (00 (2.4.3)
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In the previous expression, r is the cutoff profile used in the gravitational cutoff action, and
z = —D?/k?. We see here that the actual value is clearly scheme-dependent. Although the sign
of ®1(0) seems positive for any admissable choice of r, the precise result is still debatable.

For the Yukawa couplings of the SM, Eq. (2.4.2) also applies, so we have an extra function
fy- This gravity contribution is the same for all the Yukawa couplings because gravity is a
flavour-blind interaction. Assuming that AS exists for gravity, and that it is not destroyed
by matter degrees of freedom, we can explore the consequences of (2.4.2) in the fate of SM
couplings. Exploiting the constant behavior of f,, f, beyond the Planck scale (see Fig. 2.2 for
gn), we can aim at finding an interacting fixed point in the matter sector. As sketched in Fig.
1.1, the presence of an interacting fixed point can provide low-energy predictions. This last
aspect of asymptotically safe gravity is the key point to be discussed in Chapter 4.
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Chapter 3

Asymptotic Safety Beyond the Standard
Model

In this chapter, we study in detail the extensions of the SM via vector-like fermions described in
the Introduction. Here, besides the notion of perturbativity in terms of the fixed-point values of
the coupling constants and scaling exponents, we need to introduce additional concepts that are
useful throughout the text. We also clarify what approximation scheme we use in the remaining
part of the chapter. This is important because we make use of the perturbative loop expansion
in all the work presented here.

3.1. Approximation schemes

The perturbative S-functions of the SM and its extensions have a natural hierarchy originating
from the Weyl consistency conditions [92, 93, 94, 95, 96]:

op7 B op"
09 dg; .

A consistent solution of eq. (3.1.1) relates different orders in the perturbative expansion and

(3.1.1)

indicates that the gauge couplings must have the highest order in the loop expansion, while the
Yukawa coupling must be computed at one order less, and the quartic interaction one further
order less. This leaves us in practice with two approximations for the running of the couplings:

e the 210 approximation scheme, in which the gauge couplings are renormalized at the two-
loop order (NLO), the Yukawa coupling only at one-loop order (LO) and the quartic

34



interaction is not renormalized; and

e the 321 approximation scheme, in which the gauge couplings are renormalized at the
three-loop order (NNLO), the Yukawa coupling at two-loop order (NLO) and the quartic
interaction at one-loop order (LO).

By comparing the two approximations it is possible to test the stability of the fixed point against
radiative corrections and the overall reliability of the perturbative computation.

Other approximation schemes are also possible, for example retaining all S-functions at the
same order or keeping only the gauge [-functions one order higher than the others. These
different choices do not satisfy eq. (3.1.1). They are analysed in [97] where they respective
merits (and shortcomings) are discussed.

Perturbative g-functions: A digest of the literature

The perturbative study of the [-functions of the SM, together with some of its possible
extensions, has been a collective endeavor covering many years. We collect here the main
stepping stones in this ongoing computation.

The one-loop (LLO) S-function for a non-abelian gauge group was computed in the classic
papers [98] and [99] where AF was discovered. The LO pS-function for the Yukawa coupling
was presented in [100] and that for the quartic Higgs interaction in [101]. The two-loop (NLO)
[-functions for the gauge groups have been calculated in [102, 103, 104, 105], those for the
Yukawa couplings in [106, 107, 108] and that for the quartic Higgs interaction in [109, 108, 110].
The case of the SM has been discussed in [111]. Mistakes in some of these results were corrected
in [112, 113] where they were also generalized to arbitrary representations of non-simple groups.
The three-loop (NNLO) S-functions of a gauge theory with simple groups were given partially
in [114], then in [115]. The full NNLO pS-functions for the SM were presented in [116] and
those for generic representations of non-simple gauge groups in [117]. In this last paper, some
contributions from the Yukawa and quartic Higgs interactions were not included. For these terms
we have used currently unpublished results of L. Mihaila [118]. The NNLO pS-functions for the
Yukawa and quartic Higgs couplings were partially computed in [119] and fully in [120, 121].
We will not need them here.

35



3.2. Testing fixed points with central charges

At a fixed point the theory is a conformal field theory (CFT). As explained in appendix D, one
can estimate the size of the relative changes of the central charges of the CF'T to decide whether
a fixed point is within the domain of perturbation theory. These relative changes are obtained
in terms of the function a = ayee + a4 (a4 refers to the contribution of quantum corrections)
and of the c-function as

ja=2"Uree Y0 yng ge= S Gree - G (3.2.1)

Afree Qfree Cfree Cfree

If da or dc become smaller than —1 the fixed point is unphysical because it cannot correspond
to a CFT (since ¢ > 0 and a > 0 are guaranteed for CFT). A fixed point for which dc or da is
of order 1 should be discarded as well, since quantum corrections are then comparable in size

to the free-theory contribution.

The central charges in the 210 approximation scheme can be easily computed by embedding
the models in the general gauge-Yukawa Lagrangian of [122]. Computation in the 321
approximation scheme is significantly more complicated due to a major increase in complexity
of the Zamolodchikov metric. We do not pursue the 321 computation for that reason and also
because the results in the 210 approximation scheme are enough to confirm that our other
perturbativity criteria are compatible with the CFT tests.

3.3. Procedure summary

Given a model, we first look for all the fixed-point solutions of the g-functions. Since the (-
functions are given in the form of a Taylor expansion, they will have several zeroes that are mere
artifacts of the expansion, and we have to select those that have a chance of being physical.
The criteria we apply are: stability under radiative corrections and matching to the SM at low
energy (see Sec. 1.4).

We begin by analyzing the fixed points of the 210 approximation scheme. In the first step,
we retain only those fixed points that can be reasonably assumed to be within the perturbative
regime, that is, those for which the couplings and the scaling exponents satisfy the bounds in
eq. (1.5.1) and eq. (1.5.2). We use the criteria discussed in sections 1.5 and 3.2 to confirm that
these bounds are indeed reasonable indicators of radiative stability.

We then compare with the results of the same analysis in the 321 approximation scheme.
We retain only those fixed points that can be reasonably identified in both approximations.
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Their number is quite small. We find that the identification is only possible if the couplings and
scaling exponents are sufficiently small.

Finally, for the fixed points that are radiatively stable in the sense just described, we look
for the possibility of matching to the SM at low energy. If all these conditions are satisfied,
we have a fixed point that can be considered as physical. Otherwise, the fixed point should be
rejected and deemed unphysical.

3.4. The fate of the Standard Model couplings

The running of the SM couplings, when extended to high energies, presents two important
features: partial gauge coupling unification and a Landau pole in the abelian gauge coupling.
Since this singularity appears beyond the Planck scale, where gravitational effects are important,
it might well happen that there will be no divergence and that all couplings are well-behaved once
we consider a full theory of gravity and matter (see Chapter 4). Nevertheless, it is interesting
to investigate whether such infinities could be avoided within the matter sector.

0.010} - o az a3 — @
0.005
0.001} T~—_
-4 B \\*\\ ]
>0 \\\\
0 20 40 60 80

Figure 3.1: Running of the gauge couplings «; and Yukawa oy for the SM in the 321 approximation
scheme. On the horizontal axis t = Log[k/Mz]. Just above ¢t ~ 40 the three gauge couplings come
close together. At larger values of ¢, a1 begins its ascent towards the Landau pole.

Throughout this chapter, we shall consider a simplified version of the SM where only the top-
Yukawa coupling v, is retained. The remaining Yukawa couplings are set to zero. For simplicity
we will keep calling this the SM. However, we stress that the degrees of freedom that enter the
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flow are not only those of the top quark but the full SM matter content (i.e., the number of
fermions that enter in loops counts all the quarks and leptons).

3.4.1. The 210 approximation scheme

The first question is whether the S-functions of the SM have fixed points. We then consider the
beta functions in the 210 approximation scheme, which are given by

41 199 88 17
= (3 Tog et ey - EO“) ’
19 35
o _ o2 <_ T 301+ S+ 240 —3at> :

11
gLO = Oég (—14—|—§Oé1 +9a — 5203 _4at> ’

17 9
;'O = oy (—gal — 5042 —16a3 + 90@) , (341)
The set of S-functions in eq. (3.4.1) admits several zeroes. They are given by the last column
of Table E.1 in Appendix E. However, only two of them (solutions Pjg and Pj7) have all o,

positive. Their properties are summarized in Table 3.1.

0 0.543 0 0 344 | =244 | O 0
0 0.623 0 0.311 | 5.21 2.21 0 0

Table 3.1: Fixed points and their scaling exponents for the SM in the 210 approximation scheme.

Although less than 1, the values for the couplings constants are quite sizeable and we may
suspect that they lie outside the perturbative domain. Considering that scaling exponents are
classically zero, we see that the quantum correction are quite large. The values of 6; indicates
the breakdown of the perturbative validity, as we will see in the next subsection. If we decide to
ignore the breaking of the perturbative regime and insist on looking for trajectories connecting
one of the fixed points to the IR regime, the requirement of lying on the UV critical surface
implies that there is always a coupling that vanishes at all scales. Namely, given that o] = 0, and
that the S-function for oy is proportional to a power of «; itself, this coupling does not run at
all. In other words, the coupling «; is frozen at zero at all scales and the U(1) gauge interaction
is trivial. Clearly there are no physical fixed point within the SM in the 210 expansion: the
problem of the Landau pole is still present even when the gauge couplings are taken at three
loops.
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3.4.2. The 321 approximation scheme

To check the perturbative stability of the two fixed points of the previous section, we now study
the S-functions to the next order. In the 321 approximation scheme, the S-functions take the
form [96]

388613 205 1315 274
NNLO - — BNLO 4 o2 {——2592 oF + g e + =5 o3 — o7 s 2 asas + 198 aj
2827 785 +58 +315 9 —|—3<a fa—a >a
— )+ —as+ —ag | oy + —a = —
VR T T A T AN A
5597 291 324953 2
SO = B + ag {—%cﬁ 1—6a1a2 361 ag — 50410[3 + 78 asrg + 162 oz%
593 729 147 1
_ (Eal + Eag + 14a3> oy + ?af + 5(041 + 3ag — 3a,\>oz,\] ,
2615 1 109 154
i1)’\1NLO — il’)\ILO 4 ag {_ma% Za1a2 + Ta% + 7041@3 =+ 42 Q3 + 65 Ckg
101 93
_ (Eal -+ ZO&Q + 800&3) oy + 30 Oét2:| s
1187 3 23 38
NLO Lo 4, [+ma§ — 500 = ?ag + 5 oas + 18 apaiz — 216 a3
131 225
+ (?al + - @ + 72a3) ap — 2407 — 1200 + 30&} : (3.4.2)

L, 2 2 _ 2
o] + oo + o | + 120000 — 1204,

9
0 = 1203 — (3a1+9a2>o¢,\—|—— <3 3

4

where the quartic Higgs coupling
(3.4.3)

is now renormalized.

Due to the higher order of the equations, there are more fixed points than the two found in
the 210 approximation scheme. They are listed in Table 3.2.

0 0 0 0.297 0.184 8.32 —2.57 0 0 0
0 0.120 0 0.0695 | 0.0575 1.46 1.18 0.495 0 0
0 0.124 0 0.333 0.230 8.82 —2.52 1.38 0 0
0.436 | 0.146 0 0.648 0.450 —-27.0 17.3 —7.85 | 2.19 0
0.433 0 0 0.573 0.377 —25.6 15.7 —6.85 0 0

Table 3.2: Fixed points and their scaling exponents for the SM in the 321 approximation scheme.
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Consistently with the discussion in the case of the 210 approximation scheme, neither the
couplings nor the exponents are small. Moreover, it is not possible to recognize among the new
fixed points those of the 210 approximation scheme: the values change dramatically, contrary
to what would be expected in a well-behaved perturbative expansion.

The criterion of perturbativity introduced in section 1.5 confirms the instability of the fixed
points . In the 210 approximation scheme, for the two fixed points of Table 3.1, we have
B® = 1.87 and B£2) = 2.46, respectively, while CZEZ) =327 and C? = 53.9, respectively. For
both fixed points the ratio py is of order 10, grossly violating the bound (1.5.6). It therefore
appears that we are outside the domain where perturbation theory can be trusted. We conclude
that the SM (at least in the simplified form considered here) does not have a physical fixed point
within perturbation theory. In the next section, we study a family of models that represents the
simplest extension to the SM content with the potential of generating perturbative fixed points.

3.5. Standard Model extensions

In this section, we consider (minimal) extensions of the SM by adding new matter fields charged
under the SM group SU.(3) x SUL(2) x Uy(1). The gauge sector is not modified. Following
[11, 9, 14, 123], we take Ny families of vector-like fermions minimally coupled to the SM. The
idea is to consider a new type of Yukawa interactions among the vector-like fermions such that
their contribution generate new zeros in the gauge [g-functions. Accordingly, new scalar fields
must be included as well. These scalars are taken to be singlets of the SM group while the
fermions carry the representations R3 under SU.(3), Rs under SUL(2), and have hypercharge Y
of the gauge group Uy (1). Denoting S;; the matrix formed with N]% complex scalar fields, the
Lagrangian characterizing this minimal BSM extension is

L= Lop + Tr (Pil) + Tr (9,510,5) — yTr (Yp.Svog + PrSty). (3.5.1)

In eq. (3.5.1), Lgsy stands for the SM lagrangian, y is the BSM Yukawa coupling, which we
assume to be the same for all fermions, the trace sums over the SM representation indices as well
as the flavour indices, and we have decomposed v as ¢ = ¢, + g with ¢p/; = %(1 +v5). For

simplicity, we do not consider self-interactions of the scalars S;;, neither portal couplings to the

YR
SM Higgs doublet in order no to complicate the problem. Even though these scalar interactions
might result interesting from a phenomenological point of view, their impact will start being
relevant in the 321 approximation scheme. Our present concern deals with the existence of
viable UV fixed points. If one is able to achieve this task, it is then interesting to explore the
scalar sector by itself. From now on, the only scalar sector relevant in our discussion is the usual

SM Higgs potential.
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3.5.1. The p-functions

Within the model defined by the Lagrangian (3.5.1), we look for fixed points satisfying the
requirements discussed in section 3.3. We start the analysis in the 210 approximation scheme
and write the S-functions of the system (3.5.1) in terms of the quantities in eq. (1.5.3) augmented
by the new coupling o, = %.

In the following, as in section 3.4, we keep only the top-Yukawa coupling. The [-functions
will depend on the dimensions of the fermion representations d, their Casimir invariants C' and
Dynkin indices S, which are defined in general as

1
dr, = 20+1, dry, = 5P+ 1)(a+1)(p+aq+2),

1
O = Cp, = (L + 1), 0?)=033=p+q+§(p2+q2+m),

Here, ¢/ = 0,1/2,1,3/2, ... denotes the highest weight of Ry, and (p,q) (with p,q =0,1,2...)
the weights of Rs.

In the 210 approximation scheme, the S-functions are given by [105, 107, 109, 112|

17
NLO - <31 + Miar + Hiag + Graz — Doy — 3O‘t> af,
MO = < By + Myag + Haop + Gaaz — Doavy — 3O‘t> @2,
5NL0 = ( B3 + M3zaz + Hzay + Ggag — D3ay, — 40“) a3,
LO 9
0 = (9 — —al — 5%~ 16 a3 ) o,
B;O _ Tay — Flog — Fhag — Fgag) Oy, (3.5.3)

where we have included the gauge and matter contributions in the coefficients B;, M;, H;, G;
and D;, for ¢ = 1,2, 3. These coefficient are expressed in terms of dg,, dr,, Cr,, Crss SRys SRss
Y and Ny as follows. For the diagonal and mixing gauge contributions to the gauge S-functions
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we have

41 8 199

Bi= o+ ngYQdRZdR3, My = == 8Y*Ntdr,dr,,
Hy =9+ 8Y?N;Cr,dr,dp,, Gy = % +8N;Y2Crydp,dp,,
By :§—§NfSRQdR3, My = 3§5+4NfSR2dR3 (2032—&-23()) ;
Hy = 3+8N;Y?Sg,dg,, Go = 24 + 8N Sp,Crydr,,
By =14 — ngSRSdRQ, Mz = —52 + 4N Sg,dp, (2 Cr, + 10),
G3 =9+ 8NSr,Crydp,, H3 = % +8N;Y?Sp,dp,. (3.5.4)
For the Yukawa contribution to the gauge S-functions we have
27,2 L2 Lo
Dy =4N;Y dr,dgs, D2 = §4NfC’RQdRQdR3, D; = §4NfCR3dRQdRS, (3.5.5)
whereas the running of the new coupling o, is characterized by the coefficients
T =2(Ns +dg,Cr,), Fi=12Y?% F,=12Cpg,, F3 =12Ckg,. (3.5.6)

All the new contributions to the gauge couplings running are multiplied by N, meaning that
we can go back to the SM by taking the Ny — 0 limit.

Due to the simplicity of the g-functions to this order in perturbation theory, we can find
analytic solutions of the equations §;"° = ;° = §;° = 0 as functions of Y, {,p,q and N;. All
these solutions are listed in Table E.1 and can be split in two categories according to whether
they depend on the hypercharge Y or not. Those independent of Y have aj = 0.
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For the gauge couplings, the S-functions in the 321 approximation scheme are given by

1NNLO - 1NLO + |:—M1104% + M126Y10(2 — Mlg@lag — GQgOéQCYg + HHO&% + Gllag
LBI5 o, 28T 785 58
— o, — —— 10 — —— Qo — —Qi3(x
g T Ruilly Tyt T g et T g aet

3
— (Knoq + Kypan + Kisag) o + 5 (g + s — ) 05)\} 04%7

QNNLO - QNLO + |: — MQQO&% + M210z2a1 — M23a2a3 — Glgal&g — HQZOK% + GQQOK%
147 729 593
+?o¢t + Ky2a 16 — oy — Ealat — 14 a3y
1
— (K22a2 —+ KglOzl + KQgOé;g) Oéy + 5 (oq + 3 Qg — 304,\) OQ\} Oég, (357)
S0 = BN+ [—M33C¥§ + Msjazap — Magazag — Graogag — H33Oé% + G33Oé§
101 93
+30 ozt + Kgya — 80 gy — Ealat — Zogozt

— (Ks3as + Kzion + Ksoa) Oéy] ;.

For the Yukawa and quartic Higgs couplings, the S-functions are given by

131 225
NLO - gLO | {—240@ +3a3 — 120\ + (?oq + g+ 72 a3>
1187 3 23
WO&% + 5@1&2 5062 + 3@1063 + 18 QX3 — 216 Oég
o8 160
27Bt1041 -+ 2Bt2 Qo -+ 9 Bt3a§:| Qg (358)

B = 5+ [(4- V)ad+ (View + Vaos + Vi)
+ Wiai + Waai + Waai — Wisanag — Wiganas — W23042043} Yy

9 /1 2
0 = 1203 — (3a; +9an) ay + 1 (goﬁ + s+ ag) + 12 a4y — 1207

In egs. (3.5.7)—(3.5.8), we have introduced several coefficients containing the gauge and Yukawa
contributions which depend on Ny and the group representations of the SM and new vector-like
fermions. These coefficients are given in appendix F.

It is not possible to find analytic solutions for the fixed points in the 321 approximation
scheme. The system §;"°¢ = gy© = fHC = = 0 must be solved numerically, separately
for each given choice of (Ny,Y,p,q,f). No separamon between Y-independent and dependent
solutions can be established before solving the equations.
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3.5.2. Results

In order to find fixed points satisfying the conditions (1.5.1) and (1.5.2), we generate a grid in
the space spanned by the quantum numbers (Ny, ¢,Y) for three specific SU.(3) representations:
colorless (p = ¢ = 0), fundamental (p = 1,¢ = 0) and adjoint (p = ¢ = 1). For each of these
representations, we consider the following values for the number of vector-like fermions, their
isospin and hypercharge: Ny € [1,300] in steps of size 1, ¢ € [1/2,10] and Y € [0,10] both in
steps of size 1/2. This amounts to 126,000 points for each representation of SU,(3).

We highlight that for some of these representations, we can construct interaction terms with
SM particles. For instance, in the case of colorless fermions we can write operators with the
Higgs doublet and the SM leptons. In particular, we have the case of SU(2) singlets with Y = 1,
SU(2) doublets with Y = —1/2 or Y = —3/2, and SU(2) triplets with Y = —1. Calling Yy
the matrix of new Yukawa couplings, we have the following invariants

YyLpHg, YnUpHlp, YnUpeH*lp, YnLpgH, (3.5.9)

where Lj; and [ are the SM lepton doublet and singlet respectively. These four cases are
therefore considered separately. In the next subsection we discuss systematically only the BSM
Yukawa interactions, bearing in mind the particular modifications for the above cases. In the
end, the main conclusion does not change when we include (3.5.9).

Colorless vector-like fermions

Colorless vector-like fermions are the least phenomenologically restricted and therefore the most
attractive candidates for a successful extension of the SM. In the 210 approximation scheme
we find that only the Y-independent set of solutions contains fixed points fulfilling the required
conditions (o < 1, [0] < O(1)).

To set the precise bound on |f|, we plot in Figure 3.2 the largest eigenvalues of the stability
matrix M;;. For the Y-independent solutions there is a gap between 2.21 and 62.6; for the Y-
dependent solutions there are no eigenvalues less than 9.63. Accordingly, we decide to consider
fixed points with |#] < 3. In this way we probably include some fixed points that are not
within perturbation theory, but we prefer to err on this side than to miss potentially interesting
fixed points. In this way we discard all the Y-dependent fixed points since there is always an
eigenvalue which is at least of order 10.

After having applied all the criteria discussed in subsection 3.3 we find that, for any value of
the hypercharge Y, the only representations producing satisfactory candidate fixed points are
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Figure 3.2: Distribution of the largest eigenvalues Oy ax of the stability matrix associated to the colorless
models. Blue dots: eigenvalues for the Y-independent solutions: there is a gap between 2.21 and 62.6.
Red dots: eigenvalues for the Y-dependent solutions: there is no gap, the eigenvalues start around 10.

those collected, together with the corresponding eigenvalues, in Table 3.3. The eigenvalues of
the stability matrix turn out to be Y-independent as well.

0 0.200 0 0 0.300 2.04 —0.900 0.884 0 0 | Pis
0 0.213 0 0.106 0.319 2.21 1.19 0.743 0 0 | P17
0 0.179 0 0 0 —1.61 0.893 —-0.804 | 0 0 | Pig
0 0.189 0 0.0943 0 —1.70 1.15 0.697 0 0 | Pio
0 0.0137 0 0 0.0411 0.333 —0.0616 | 0.0135 0 0 | Pis
0 0.0140 0 0.0070 | 0.0420 0.341 0.0633 0.0137 0 0 | Pi7
0 0.0103 0 0 0 —0.247 | —0.0464 | 0.0103 0 0 | Pig
0 0.0105 0 0.0052 0 —0.251 0.0473 0.0104 0 0 | Pio
0 0.104 0 0 0.117 1.0833 —0.467 0.328 0 0 | Pis
0 0.108 0 0.0542 0.122 1.14 0.525 0.315 0 0 | Pi7
0 0.0827 0 0 0 —0.744 —-0.372 0.303 0 0 | Pis
0 0.0856 0 0.0428 0 —0.770 0.427 0.283 0 0 | Pig
0 0.0525 0 0 0.0472 0.530 —0.236 0.109 0 0 Pis
0 0.0543 0 0.0272 | 0.0489 0.552 0.251 0.109 0 0 | Pi7
0 0.0385 0 0 0 —0.346 —-0.173 0.0897 0 0 | Pis
0 0.0394 0 0.0197 0 —0.355 0.182 0.0896 0 0 | P
0 0.0189 0 0 0.0141 0.179 —0.0849 | 0.0179 0 0 | P
0 0.0194 0 0.0097 | 0.0146 0.185 0.0880 0.0182 0 0 | Pi7
0 0.0130 0 0 0 —0.117 | —0.0584 | 0.0130 0 0 Pis
0 0.0132 0 0.0066 0 —0.119 0.0599 0.0132 0 0 | Pio

Table 3.3: Set of fixed points and eigenvalues for colorless vector-like fermions in the 210 approximation
scheme. We highlight in green the fixed points that appear also in the 321 approximation. The labels
in the second to the last last column refer to the list in Table E.1.

The bounds on Ny and ¢ come from the behavior of the eigenvalues as functions of these
parameters. If we plot one of the eigenvalues as a function of Ny for several values of [, we
observe that it increases very fast. From Figure 3.3, we see that only models with small Ny
produce sufficiently small eigenvalues.

It is important to note that the large scaling dimensions of models with large Ny frustrate
the apparently promising strategy of increasing Ny in order to increase the NLO term in the
gauge [-functions to cancel the (Ny-independent) LO term with smaller (and therefore more
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perturbative) values of the couplings «;.
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Figure 3.3: Behaviour of a given eigenvalue |0| as a function of N for several values of ¢ in the
colorless case. The scaling dimension increases very fast with Ny, and only small values of Ny, £
produce |0] < O(1).

The above selection of the viable fixed points is confirmed by the study of their CF'T central
charges. There are 20 Y-independent fixed points with eigenvalues up to about +2. The
fixed point with least variation in the central charges is that with (N;,¢) = (1,1), having
da ~ —0.0007 and dc ~ 0.08. The one with the largest change is that with (N, ¢) = (1,1/2),
having da ~ —0.2 and dc ~ 0.8. All these fixed points (except for the one corresponding
to (Ng,0,Y) = (1,1/2,0)) pass the collider bounds test (see appendix D). There are 69 Y-
dependent fixed points with eigenvalues up to +10. None of them have positive a or ¢ with da
and dc being of O(1). They should all be discarded. These results confirm our classification of
the fixed points in Table 3.3 according to the size of their eigenvalues and the ratio p.

Now that we have isolated the candidates to study, we check whether these fixed points can
be connected to the SM via the RG flow. We note that (3 is proportional to o} and so, in
order to avoid Landau poles, o has to vanishes at all energy scales. In conclusion, although we
have perturbative fixed points, these cannot be matched to the SM because we know that ¢; is
different from zero at the TeV scale.

We then perform a similar search in the 321 approximation scheme. Here, we stick to
solutions having |#| < 1. We find that the same combinations of N; and ¢ that provide
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perturbative fixed points in the 210 case also give viable solutions here. Moreover, the solutions
turn out to be Y-independent as well.

In Table 3.4 we show the fixed point solutions satisfying the criteria in eq. (1.5.1) and
eq. (1.5.2). All the fixed points in Table 3.4 can be traced back to fixed points that were already
present in the 210 approximation scheme and listed in Table 3.3. Notice that for a given
pair (N, ), not all the fixed points in 210 persist. For those that do, the values of o* and 6
change by relatively small amount. We can then claim that the solutions given in Table 3.4 are
radiatively stable fixed points.

0 0.0096 0 0.0048 0 0.0039 | —0.244 | 0.0655 | 0.0430 | 0.0103 | O 0 0.918 0.0821
0 0.0119 0 0.0060 | 0.0343 | 0.0048 0.301 0.0813 | 0.0531 | 0.0134 | O 0 | 0.8601 0.140
0 0.0498 0 0.0259 0 0.0211 | —0.592 0.382 0.282 0.200 0 0 0.581 0.418
0 0.0567 0 0.0296 | 0.0734 | 0.0242 0.696 0.442 0.314 0.224 0 0 | 0.5012 0.499
0 0.0291 0 0.0148 0 0.0120 | —0.306 | 0.2080 0.132 0.0827 | 0O 0 0.737 0.263
0 0.0362 0 0.0184 | 0.0353 | 0.0150 0.403 0.262 0.165 0.100 0 0 0.645 0.354
0 0.0117 0 0.0059 0 0.0048 | —0.112 | 0.0804 0.052 0.0130 | O 0 0.887 0.113
0 0.0162 0 0.0081 | 0.0125 | 0.0066 0.161 0.112 0.0723 | 0.0179 | © 0 0.823 0.177

Table 3.4: Fixed points and eigenvalues for colorless vector-like fermions, in the 321 approximation
scheme. The last two columns give the values of the ratios oo and po (see 1.5.6).

Unfortunately, when we look at trajectories lying on the UV critical surface, we find again
that the coupling a; must be zero at all scales in all the models. The abelian interactions
suffer from the triviality problem and no matching to the SM is possible if asymptotic safety is
assumed. All these colorless models are therefore ruled out.

Vector-like fermions in the fundamental of SU.(3)

For the fundamental representation (p = 1 and ¢ = 0 or vice-versa) we follow the same procedure
as before and generate 126,000 models by scanning the same grid in the (N, ¢, Y) space. We
split the solutions in two families depending on whether they depend on the value of their
hypercharge Y or not. The distribution of the largest eigenvalues given in Figure 3.4 shows
that there are no fixed points with || < 52.1 for the Y-dependent solutions, whereas for the
Y-independent solutions there is a gap between 10.8 and 372.
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Figure 3.4: Distribution of the largest eigenvalues Oy of the stability matrix of the fixed points of
the SU(3) fundamental representation. Blue dots: eigenvalues for the Y-independent solutions: there
is a gap between 10.8 and 372. Red dots: eigenvalues for the Y-dependent solutions: there is no gap,
the eigenvalues start at 52.1.

Accordingly, we eliminate all Y-dependent solutions and impose the bound || < 11 for
those that are Y-independent. In this way, even more than in the preceding section, we include
models that are probably unreliable, but these can be eliminated at a later stage. For the Y-
independent solutions, we find the combinations of Ny and ¢ in Tables 3.5 and 3.6 that generate
satisfactory candidate fixed points.

This selection is confirmed by the study of the central charges for these models. Among the
49 distinct Y-independent fixed points with eigenvalues up to +10, all have positive c-function,
but 6 of them have a negative a-function (with one more being borderline acceptable). The CFT
test seems to work well here: all fixed points with reasonable scaling exponents pass it, whereas
the ones with relatively large exponents do not. An unexpected fact is that the separation
between large and small exponents seems to be around a maximum value of |f| around 3. For
these perturbative and “semi-perturbative” fixed points, we also notice that the a-function is
generically pushed toward 0 (a, < 0) whereas the ¢ function is generically shifted to larger values
(cy > 0). This is why the fixed points with negative a-function still seem to pass the c-function
test. If one considers dc instead, then for most of these fixed points dc > 1, but apparently not
for all. Finally, if one also studies the collider bounds one finds that ten more fixed points are
excluded, usually those which just barely satisfied one or both of the a and ¢ tests. The collider
bounds tests seem to be the most stringent.

When one tries to match these fixed points to the SM at low energies, it turns out that
the abelian gauge coupling «; must again be zero at all scales. None of these fixed points is
physically viable.

In the 321 approximation scheme, there exist fixed points that can be reasonably traced
back to those in the 210 approximation scheme. These solutions are shown in Table 3.7, where
we have included only fixed points with |#] < 1 in order to get small ratios p; and o;. However,
they all have at least one coupling that has to be zero at all scales, thus preventing a proper
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matching to the SM. We conclude that also all the models with the vector-like fermions in the
fundamental representation of SU.(3) cannot provide an AS extension to the SM.

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0.417 0 0 —6.67 —6.67 4.17 0 0
0 0 0.521 0 0.417 10.8 —8.33 4.00 0 0
0 0 0.176 0 0 —2.81 —2.81 1.52 0 0
0 0 0.205 0.365 0 3.84 —3.28 1.52 0 0
0 0 0.195 0 0.120 3.49 —3.12 1.51 0 0
0 0 0.232 0.413 0.143 4.83 3.72 1.55 0 0
0 0 0.0982 0 0 —1.57 —1.57 0.720 0 0
0 0 0.108 0.193 0 1.88 —1.74 0.735 0 0
0 0 0.105 0 0.0526 1.78 —1.68 0.730 0 0
0 0 0.117 0.208 0.0586 2.15 1.88 0.749 0 0
0 0 0.0600 0 0 —0.960 —0.960 0.360 0 0
0 0 0.0646 0.115 0 1.08 —1.03 0.371 0 0
0 0 0.0632 0 0.0266 1.04 —1.01 0.368 0 0
0 0 0.0683 0.121 0.0288 1.18 1.09 0.380 0 0
0 0 0.0412 | 0.0733 | 0.0150 0.689 0.660 0.184 0 0
0 0 0.0388 0 0.0141 0.632 —0.621 0.178 0 0
0 0 0.0395 | 0.0702 0 0.647 —0.632 0.180 0 0
0 0 0.0372 0 0 —0.596 —0.596 0.174 0 0
0 0 0.0221 0 0 —0.354 —0.354 | 0.0737 | O 0
0 0 0.0232 | 0.0413 0 0.376 —0.371 0.0764 | O 0
0 0 0.0229 0 0.0073 0.370 —0.366 | 0.0756 | O 0
0 0 0.0241 | 0.0428 | 0.0077 0.394 0.385 0.0784 | 0O 0
0 0 0.0114 0 0 —0.182 —0.182 | 0.0235 | O 0
0 0 0.0118 | 0.0210 0 0.191 —0.189 | 0.0235 | O 0
0 0 0.0117 0 0.0033 0.188 —0.187 | 0.0233 | O 0
0 0 0.0122 | 0.0217 | 0.0035 0.197 0.195 0.0242 | O 0
0 0 0.0033 0 0 —0.0530 | —0.0530 | 0.0022 | O 0
0 0 0.0034 | 0.0061 0 0.0550 —0.0549 | 0.0023 | 0O 0
0 0 0.0034 0 0.0009 0.0544 —0.0544 | 0.0023 | 0 0
0 0 0.0035 | 0.0063 | 0.0009 0.0566 0.0564 0.0023 | 0 0

Table 3.5: Fixed points and eigenvalues for vector-like fermions in the fundamental representation of
SU(3), in the 210 approximation scheme, with Ny = 1. We highlight in green the fixed points that
appear also in the 321 approximation scheme. The labels in the second to the last last column refer to
the list in Table E.1.

Vector-like fermions in higher representations of SU.(3)

For the adjoint representation (with p = ¢ = 1), the search over the same grid of values
for (N, ¢,Y) (and thus 126,000 further models) does not produce any fixed point within the
perturbative domain. This is true both in the 210 and in the 321 approximation scheme.
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0 0 0.176 0 0 —2.81 —2.81 1.52 0 0 P11
0 0 0.205 0.365 0 3.84 —3.28 1.52 0 0 | Puo
0 0 0.260 0 0.260 5.91 —4.16 1.59 0 0 Py
0 0 0.330 0.588 0.330 8.99 5.29 1.68 0 0 P
0 0 0.0600 0 0 —0.960 —0.960 0.360 0 0 | P11
0 0 0.0646 0.115 0 1.08 —1.03 0.371 0 0 | Pio
0 0 0.0727 0 0.0529 1.30 —1.16 0.390 0 0 Py
0 0 0.0795 0.141 0.0578 1.50 1.27 0.405 0 0 I
0 0 0.0221 0 0 —0.354 —0.354 | 0.0737 | O 0 | P11
0 0 0.0232 | 0.0413 0 0.376 —0.371 0.0764 | O 0 | Pio
0 0 0.0252 0 0.0144 0.417 —0.403 0.0810 | 0O 0 Py
0 0 0.0266 | 0.0473 | 0.0152 0.448 0.426 0.0842 | 0 0 Py
0 0 0.0033 0 0 —0.0530 | —0.0530 | 0.0022 | O 0 | P11
0 0 0.0034 | 0.0061 0 0.0550 —0.0549 | 0.0023 | O 0 | Pio
0 0 0.0036 0 0.0017 0.0587 —0.0584 | 0.0024 | © 0 Py
0 0 0.0038 | 0.0068 | 0.0018 0.0612 0.0608 0.0025 | O 0 Py
0 0 0.0600 0 0 —0.960 —0.960 0.360 0 0 | P11
0 0 0.0646 0.115 0 1.08 —1.03 0.371 0 0 | Pio
0 0 0.0882 0 0.0784 1.77 —1.41 0.423 0 0 Py
0 0 0.0985 0.175 0.0876 2.10 1.58 0.443 0 0 Pg
0 0 0.0114 0 0 —0.182 —0.182 0.0227 | 0O 0 | P11
0 0 0.0118 | 0.0210 0 0.191 —0.189 0.0235 | 0 0 | Pio
0 0 0.0143 0 0.0095 0.237 —0.229 0.0276 | O 0 Py
0 0 0.0150 | 0.0267 | 0.0100 0.252 0.241 0.0288 | 0 0 P
0 0 0.0221 0 0 —0.354 —0.354 | 0.0737 | O 0 | P11
0 0 0.0232 | 0.0413 0 0.376 —0.371 0.0764 | 0 0 | Pio
0 0 0.0335 0 0.0268 0.607 —0536 0.0987 | 0O 0 Py
0 0 0.0361 | 0.0642 | 0.0289 0.670 0.577 0.104 0 0 I
0 0 0.0033 0 0 —0.0530 —0.530 0.0022 | 0 0 | P11
0 0 0.0343 | 0.0061 0 0.0550 —0.0549 | 0.0023 | O 0 | Pio
0 0 0.0052 0 0.0038 0.0850 —0.0829 | 0.0034 | O 0 Py
0 0 0.0055 | 0.0097 | 0.0040 0.0903 0.0878 0.035 0 0 Py

Table 3.6: Same as Table 3.5, with Ny > 1.

In Figure 3.5, we show the distribution the largest eigenvalues of the stability matrix for the
210 approximation scheme. We clearly see that the eigenvalues are rather large. In fact, the
minimum eigenvalue in the Y-independent set of solutions is 1342, while in the Y-dependent
set is 426.

This problem is confirmed by the study of the central charges. For the Y-independent fixed
points we find for all fixed points da of O(1000). Similarly, the Y-dependent the fixed points
have da of O(100). Tests of the c-function confirm these results, even though the a-function
seems to be more sensitive, in the sense that it suffers greater relative change.

Again, we come up empty handed. The models with the vector-like fermions in the adjoint
representation of SU.(3) do not provide a viable AS extension to the SM. Higher SU.(3)
representations may worsen the distribution seen in Fig. 3.5. Therefore, we do not consider
them here.
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Figure 3.5: Distribution of the largest eigenvalue 6.y of the stability matrix associated to the fixed
points of the SU(3) adjoint representation. Blue: eigenvalues for the Y-independent solutions. Red:
eigenvalues for the Y-dependent solutions. In both cases, there is no gap and the distribution starts at

very large values.

A model that almost works

Having ruled out all possible candidates, one may wonder if the criteria in (1.5.1) and (1.5.2)
might be too stringent and make us miss some potentially interesting models. In the case at
hand, we can indeed find additional fixed points that naively seem to be good candidates for an
asymptotically safe extension of the SM. This is achieved if we allow for larger values of § and
relinquish the condition (1.5.2).

As an example, consider the case of colorless vector-like fermions with quantum numbers
Ny=3,¢=1/2and Y = 3/2. Its fixed points and eigenvalues are given in Table 3.8.

Table 3.8: Values of the couplings and eigenvalues at the promising fixed point for the model that
almost works (210 approximation scheme).

This example provides a very interesting (and non-trivial) extension of the SM which includes
non-trivial fixed point value for the gauge coupling oy, as well as the Yukawa coupling o,.
We see that some of the scaling exponents 6; are large and the criterion (1.5.2) is accordingly
violated. Nonetheless, let us momentarily suspend disbelief and apply the formula in (1.5.1).
We do not find any coupling frozen to zero and therefore a SM matching seems plausible. In
fact, taking the IR scale M = Mzexp(3) ~ 1.83TeV — where the SM couplings have the values
a; = 0.000795, as = 0.00257, ag = 0.00673, oy = 0.00478 — we find a good matching, with an
error of the order of per mille, see Figure 3.6.

Ignoring the large scaling exponents, this model seems to provide a very promising candidate
for an AS extension of the SM. However, it is not radiatively stable. The 321 approximation
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Figure 3.6: Evolution of the couplings with ¢ = Log[MLZ] in a logarithmic scale for the fixed point in
Table 3.8. This running provides a trajectory in the theory space connecting the fixed point and the
physics at a matching scale around 2 TeV.

scheme [-functions generate very different fixed points that cannot be easily traced back to
those in the 210 approximation scheme. This example shows us the power of our criteria used
so far. It is not just enough to find a fixed point and connect it to the IR physics. We have to
make sure that we are not violating important properties of our theory.

Five benchmark models studied in the literature

The authors of [14] find that it is possible to generate asymptotically safe extensions to the
SM in the subsystem (ao, as, ay,) of the couplings. The five benchmark models discussed in [14]
(labeled as A, B, C, D and E) are not among those in our scan because they do not include
hypercharge, top Yukawa and quartic interaction. We analyzed them separately.

The hypercharge Y can easily be added to these models. The charge Y must be larger
than a minimal value in order for the corresponding direction in the UV critical surface to be
marginally relevant. This does not change the behavior of the models.

Similar to what happens to the model in section 3.5.2, all these models have at least one
large scaling exponent (See Tab. 3.9). The large values of § imply that the fixed points are not
in the perturbative domain even though they can be connected to the SM in the IR regime. In
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fact, the fixed points in the 210 approximation scheme cannot be identified with those in the
321 approximation scheme because of their instability against radiative corrections. We can
see how the structure of the fixed points changes by comparing Table 3.9 to Table 3.10. The
eigenvalues are always large in both tables.

0 0.338 210 —1.90 0
0.129 0.116 338 —2.06 0
0.129 0.116 341 —2.08 | 0.897
0.332 0.0995 23258 —2.18 0
0.0503 | 0.0292 1499 328 —2.77

0 0.150 145193 | —2.12 0
0.0416 | 0.0057 943 45.3 =229

0 0.0067 1984 —2.11 0
0.150 0.0471 896 112 —1.78

Table 3.9: Couplings and eigenvalues for the benchmark models in [14] for the 210 approximation
scheme.

O OO O|©0 Ol Oo|o
O OO0 Ol Ol Oo|©

Table 3.10: Couplings, eigenvalues and the ratio ps for the benchmark models in [14] for the 321
approximation scheme.

If we take the fixed points in the 321 approximation scheme at their face value and try
to match them to the SM, we always encounter a coupling, «s in almost all the cases (see
Table 3.10), that is frozen to its vanishing value: the theory is trivial in the coupling ay and
it cannot be matched to the SM. In other words, the benchmark models in [14] suffer from the
same pathology of the models in our scan. Unlike those models, in this case it is a non-abelian
coupling that is trivial.

Combining more than one representation

Combining vector-like fermions in different representations (as done, for instance, in [15, 16])
provides other examples of models that almost work. In the simplest scenario, we can try to
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construct a model with two types of vector-like fermions. In that case, we duplicate the last
three terms in Eq. (3.5.1) for fermions ¢ and scalars S. We call the extra Yukawa coupling z

with, as usual,

2’2

(4m)?

and assume no mixing between the two families.

(3.5.10)

o, =

Since many of the BSM extensions attempt to describe dark matter, we take one of the
possible minimal models discussed in [124], and identify some of the vector-like fermions with
dark matter. We take Ny, vector-like fermions with quantum numbers p = ¢ = 0, £ = 2 and
Y = 0. That is, we take colorless quintuplets with no hypercharge. Additionally, we consider
3 colorless vector-like fermions in the (1,2,3/2) representation. Within the 210 approximation
scheme, for the combination (1,2,3/2) & (1,5,0), we realize that fixed points split in two
categories: fixed points that depend on the number of quintuplets Ny, and fixed points that do
not. For the latter we have that o, = 0, and the conditions to lie on the critical surface defined
by the fixed points imply that ay = 0. This feature makes the corresponding Ny,-independent
fixed points uninteresting.

Table 3.11: Values of the couplings at the fixed point of interest and eigenvalues for the model
combining 3 fields in the representation (1,2,3/2) and 8 fields in the representation (1,5,0) (210

approximation scheme).

For the Ny,-dependent fixed points, we find that in order to have o; < 1 for all couplings, the
minimum number of quintuplets should be equal to eight. Taking the minimal case of Ny, = 8§,
we find 6 fixed points, all of them having one large eigenvalue around 250. Thus, according
to our requirement about perturbation theory, these fixed points are not reliable since there is
always one 6 which is much larger than 1. This is similar to what happens in section 3.5.2.
Nevertheless, we can find a matching with the SM. The only difference with respect to the
model in section 3.5.2 is that, in the present case, two matching scales are needed—the reason
being that the large number of quintuplets makes as decrease fast so that these fields must be
decoupled at very high energies. In Figure 3.7 we show the logarithmic running of the couplings
and the two different matching scales. The quintuplets decouple at an energy scale O(10'3) TeV
(and must be considered wimpzilla dark matter [125]), the doublets at the energy scale of 1.83
TeV. All the couplings flow to the fixed point in Table 3.11
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Figure 3.7: Evolution of the couplings with ¢ for the fixed point in Table 3.11 within the 210
approximation with 3 fields in (1,2,3/2) and 8 fields in (1,5,0). This running provides a trajectory in
the theory space connecting the fixed point to a matching scale around 2 TeV passing through another
scale (for the quintuplets) at about 103 TeV.

Even though Figure 3.7 shows a nice flow of the coupling constants towards the SM, the
size of the eigenvalues implies a breakdown of perturbation theory. Indeed, the fixed point
analysed does not survive in the 321 approximation scheme. The results of this chapter reveal
us that extensions of the SM via vector-like fermion are unlikely to feature asymptotic safety.
This is certainly true under the requirements of perturbativity explained in Sec. 1.5. Beyond
perturbation theory different things might happen. Since the main obstacle for a successful
extension comes from the Landau pole in the U(1) sector of the SM, we ask ourselves how to
render g; finite at very high energies. In the next chapter we explore a different approach to
the problem. Namely, we consider the effects of gravity on the running of the SM couplings.
Substantial attention is given to the U(1) gauge coupling and the quark Yukawa couplings.
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0 0.0291 0 0.0148 0 0.0120 —0.306 0.208 0.132 0.0827 | 0O 0 0.737 0.263
0 0.0305 0 0.0155 | 0.0209 | 0.0126 0.322 0.219 0.139 0.0863 | O 0 0.719 0.281
0 0 0.0346 0 0 0 —0.748 —0.748 0.295 0 0 0 0.577 0.423
0 0 0.0355 0 0.0167 0 —0.774 0.768 0.304 0 0 0 0.559 0.441
0 0 0.0252 0 0 0 —0.501 —0.501 0.156 0 0 0 0.676 0.323
0 0 0.0258 0 0.0101 0 —0.516 0.514 0.160 0 0 0 0.664 0.336
0 0 0.0171 0 0 0 —0.315 —0.315 0.0670 0 0 0 0.771 0.228
0 0 0.0177 | 0.0358 0 0.0221 0.969 —0.329 0.290 0.0723 | 0O 0 0.758 0.242
0 0 0.0175 0 0.0058 0 —0.324 0.324 0.0717 0 0 0 0.763 0.237
0 0 0.0182 | 0.0368 | 0.0061 0.0227 0.998 0.334 0.298 0.0742 | 0 0 0.748 0.252
0 0 0.098 0 0 0 —0.170 —0.170 | 0.0223 0 0 0 0.864 0.136
0 0 0.0102 | 0.0193 0 0.0119 0.521 —0.177 0.165 0.0231 0 0 0.856 0.144
0 0 0.0101 0 0.0029 0 —0.175 0.175 0.0229 0 0 0 0.859 0.141
0 0 0.0104 | 0.0198 | 0.0030 | 0.0123 0.536 0.182 0.170 0.0237 | O 0 | 0.8505 0.149
0 0 0.0032 0 0 0 —0.0519 | —0.0519 | 0.0022 0 0 0 0.955 0.0451
0 0 0.0033 | 0.0059 0 0.0037 0.159 —0.0537 | 0.0526 | 0.0023 | O 0 0.952 0.0476
0 0 0.0032 0 0.0008 0 —0.0532 0.0532 0.0023 0 0 0 0.953 | 0.0469
0 0 0.0033 | 0.0061 | 0.0009 | 0.00038 0.1635 0.0551 0.0540 | 0.0023 | O 0 | 0.9505 | 0.0495
0 0 0.346 0 0 0 —0.748 —0.748 0.295 0 0 0 0.577 0.423
0 0 0.0381 0 0.0319 0 —0.846 0.824 0.326 0 0 0 | 0.5077 | 0.492
0 0 0.0171 0 0 0 —0.315 —0.315 0.0699 0 0 0 0.771 0.228
0 0 0.0177 | 0.0358 0 0.0221 0.969 —0.329 0.295 0.0723 | O 0 0.758 0.242
0 0 0.0187 0 0.0113 0 —0.350 0.349 0.0767 0 0 0 0.737 0.263
0 0 0.0032 0 0 0 —0.0519 | —0.0519 | 0.0022 0 0 0 0.955 0.0451
0 0 0.0033 | 0.0059 0 0.0037 0.159 —0.0537 | 0.0526 | 0.0023 | O 0 0.952 0.0476
0 0 0.0035 0 0.0016 0 —0.0570 0.0570 0.0024 0 0 0 0.948 | 0.0521
0 0 0.0036 | 0.0065 | 0.0017 | 0.0040 0.1756 0.0592 0.0579 | 0.0025 | 0O 0 0.945 0.552
0 0 0.0346 0 0 0 —0.748 —0.748 0.295 0 0 0 0.577 0.423
0 0 0.0417 0 0.0440 0 —0.950 0.913 0.359 0 0 0 0.431 0.569
0 0 0.0098 0 0 0 —0.170 —0.170 | 0.0223 0 0 0 0.864 0.136
0 0 0.0102 | 0.0193 0 0.119 0.521 —0.177 0.165 0.0231 0 0 0.856 0.144
0 0 0.0118 0 0.0081 0 0.208 —0.208 | 0.0270 0 0 0 0.819 0.181
0 0 0.0123 | 0.0237 | 0.0085 0.0147 0.641 0.218 0.200 0.0281 0 0 | 0.8062 0.194
0 0 0.0171 0 0 0 —0.315 —0.315 0.0699 0 0 0 0.771 0.228
0 0 0.0177 | 0.0358 0 0.0221 0.969 —0.329 0.290 0.0723 | 0 0 0.758 0.242
0 0 0.0226 0 0.0196 0 0.439 —0.437 | 0.0931 0 0 0 0.647 0.353
0 0 0.0033 0 0 0 —0.0519 | —0.0519 | 0.0022 0 0 0 0.955 0.0451
0 0 0.0033 | 0.0059 0 0.0037 0.159 —0.0537 | 0.0526 | 0.0023 | O 0 0.952 0.0476
0 0 0.0048 0 0.0035 0 0.0798 —0.0793 | 0.0034 0 0 0 0.914 | 0.0859
0 0 0.0050 | 0.0092 | 0.0037 | 0.0057 0.248 0.0843 0.0809 | 0.0035 | O 0 | 0.9066 | 0.0934

Table 3.7: Fixed points and eigenvalues for vector-like fermions in the fundamental representation of

SU.(3), in the 321 approximation scheme. The last two columns give the values of the ratio o and p

for ag or ag depending on which coupling is non-zero (see 1.5.6).
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Chapter 4

Gravitational Corrections to the Running
of Standard Model Couplings

The purpose of this chapter is to determine the implications of quantum gravity corrections in
the running of the Standard Model couplings. In particular, we focus on the subset of gauge
and quark Yukawa couplings. For completeness, we write here the known Lagrangian for the
quark sector of the SM

L = qriv"Dyqr + Uriy" Dyug + drin* Dydr — Y@, Hdy — Y @ Huly + hec. (4.0.1)

In this Lagrangian, H is the Higgs doublet, H is the coujugate Higgs doublet eH* (with €
the Levi-Civita symbol in two dimensions), ¢% are the quark doublets, d% the right-handed
down quarks and u’, the right-handed up quarks. The last three fields contain an additional
index labeling the specific generation, i.e., the number of copies we have for each field.
Therefore, the matrices Y, YU represent the general interaction among all the quarks present
in the SM and the Higgs doublet. Additionally, we have the covariant derivatives, which
are given in terms of the generators of each group and the corresponding quantum charges
of the fields, D,q; = (8, + LB, + LW, +i9G,)qr, Dyur = (0, + 2B, +igG,) ug,
Dydgr = (0, — LB, +igG,) dg.

4.1. General beta functions

Following the discussion started in section 2.4, we recall that, given the universality of
gravitational interactions, all the gauge couplings beta functions in the SM get modified in
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the same way. Thus, the 2-loops beta functions for the three SM gauge couplings 3; = %% are
dt
[105, 112, 113]
€
B =aq (419% 0 1) + ¢? [119899§ + 295 + 4495 — YU — gD] @ - fg) , (4.1.1)
&1 E2
€
By = ( T2 (4 ) + g2 [119% + ggg —26g5 —2(U + D)] ﬁ — fg) ) (4.1.3)

where the terms proportional to €; and €5 represent the 1 and 2-loop contributions respectively.
Thus, for example, setting € = 1 and e, = 0 we obtain the 1-loop beta functions. We have
also used the traces U = Tr(YyY,) and D = Tr(YpY;) of the up and down Yukawa matrices.
Similar equations for the gauge beta functions for a more simplified system were given (3.5.3).

Analogously, the modification of all the Yukawa beta functions will have the same form. At
very high energies, we can write the corrected beta functions for the two Yukawa matrices (Y7,
Yp) in the quark sector of the SM as [107, 112, 113]

dYU 3
By = S = [1a(8) - Gu + § (Vv = vov))] v et 20 - hvivpy)
13
+ VYV + L(YpY) + ApuYu Yy + AupYpY + BU} 3/(,(472)4 — fuYu, (4.1.4)

dYp €1
dt (47)2
+ =YY lvpy) + %(YUYJ)2 + AppYpY) + ADUYUYJ + BD} Yp

Byp =

= [%2(8) - G+ § (Yov) - Yol ) | Yo + [30vpYh)? = bvpyhvev)

(4572)4 — £,YD. (4.1.5)

In the previous expressions, we have introduced the following pure gauge 1-loop contributions

Gy = ggl + 292 +8¢3, Gp= 15291 + Zgg + 893, (4.1.6)
as well as the pure trace factor
Ya(S) = Tr <3YUYJ + 3YDY5) . (4.1.7)
On the other hand, for the 2-loops contribution we have
Avy = (Bgi + 13595 + 16g3) — 3Y2(S), (4.1.8)
Aup = 3Y2(S) — (B9i — 1595 + 1643) , (4.1.9)
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App = (4ggi + 1295 +16g3) — §Y2(9), (4.1.10)
Apy = 3Ya(S) — (Bgi — %95 + 1643) , (4.1.11)

By = =Xa($)+ (§ + 5 Nem) 91 = (F = Nam) g2 = (5* — TNem) g5
— 3919 + 59195 + 99395 + 3Ya(S), (4.1.12)

Bp = —X4(S>— (% + %Nsm) gil - (% - Nsm) gg - (% - %Nsm) g§

— 89795 + 59195 + 99395 + 3Ya(S), (4.1.13)
Xa(S) = 2Tr [3(YUYJ)2 +3(YpYh)? — §YUYJYDY5] , (4.1.14)
Yi(S) = (597 + 595 + 893)Tr (YuY))) + (3397 + §95 + 8g3)Tr (YpY3)), (4.1.15)

where N, is the number of families we have in the Standard Model. In the set of gauge and
Yukawa beta functions we have included the gravitational corrections (f,, f,). In principle, f,
and f, depend on all the relevant gravitational couplings of the theory, as we explained in Sec.
2.4. From our discussion on asymptotically safe gravity, we learned that at energies beyond
the Planck scale, the gravitational sector goes to a non-trivial fixed point, and therefore the
couplings approach a constant value. Thus, we can assume that (f,, f,) are constant beyond
M, and negligible below M. The transition between the two regimes is ignored for now, and
we believe that its particular form does not affect the global picture of the present scenario.

We transform now the Yukawa beta functions to the basis of standard Yukawa couplings
and CKM elements, in order to make a connection with the quantities studied experimentally.
We start by defining two hermitian matrices out of Yy, and Yp

My = YyY{, Mp=YpY). (4.1.16)
At a given scale p, these matrices are diagonalized by two unitary matrices VY, VP as follows

Vi My V]t = D = diagly, y2, v7), (4.1.17)
VLDMDVLDT = D2D = dlag[y?lv yga yl?]

However, at another scale p’ these matrices M are not diagonalized by same transformations
any more. Consequently, the diagonal entries will change with the energy scale. Our goal is to
find the beta-functions for the diagonal entries (or Yukawa couplings) [126, 127]. For simplicity,
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we use the label F' to represent each flavor matrix, i.e., Yp, Mp, D% V' with F = U, D. First
of all, we perturb eq. (4.1.16) as follows

VEMVET = D3 — (VF + V) (Mp + 6Mp) (VT + 6VET) = D2 + 6D (4.1.18)

Then, we write the new transformation matrix as V" = V' + 6V} = (1 4 €)V/}" which implies
that e/ = —e and Tre = 0. Keeping terms up to first order in perturbations, we obtain

VEMeVET = VEMpV e + eVEMVET + VEsMpVET = D2+ 6D2. (4.1.19)
As a result, the variation in the diagonal elements will be given by
6D% = eD% — D2e + VIS MpV = €D2% — Dxe + VI oy, V6t (4.1.20)

where we have used Eq. (4.1.16). Since the quantity eD% — D%e does not contain elements
in the diagonal, it does not contribute to §D%. Therefore, the variation of D% is given by the
diagonal elements of V' Bar, V7 16t such that the beta functions for the Yukawa couplings are

dD% _ F Ft
( - )J — (VL Bar V! )J 5is. (4.1.21)

In the previous expression there is no summation in ¢, . On the other hand, the off-diagonal
elements of € are expressed as

% A (VLFﬁMFVLFT 5t> , (4.1.22)
Y; — Y ij

where we have included a superscript F' in € since they are different for the up- and down-type

quarks. The previous expression is valid only when y? # y2. That is, in order to talk about

mixing we need to avoid degeneracy in the up (down)-Yukawa couplings. Defining the vectors

Yi = (Yu, Yes Y1), Yp = (Y, Ys» Yp), and working out Eq. (4.1.21) we get

dyi2 2 2 2 yi2 4 9 2 2
= | 20(8) = Gu) + 3 —3% YolVil s T g Ep YplViol
11 2 : 4 2 2 } : 2 2 yz'2 2
+? ; yp“/;p| +2AUin +2AUD . yp|VZ-p| +ZBU (47T)452+2fyyi7 (4.1.23)

dy? y? [ 5
d_tp = |2(Y2(S) — Gp) + 3y — 3 E Y Vil @51 + [3y, — gyi E:yf\%plz
11 LT 2 4 DA a2 2117 |2 _ Yo 2
+ B} g Yi [Vipl” + 2 ppY, +2Apu E y; [Vipl” + 2Bp (4@452 + 21y, (4.1.24)
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where we introduced the CKM matrix V;,

Vud Vus Vub
V=v/vpP= kvcd Ve Vi |- (4.1.25)
Via Vis Vi

As a consequence, some of the quantities defined before become

S)=3> y+3> v, (4.1.26)
( p

)=2[3 Zyl +3Zyp Viol?w22] (4.1.27)

i,p

Yi(S) = (151 + 195 + 843) Zy (297 + 293 + 843) Zyp. (4.1.28)

It is interesting to see that the gravitational corrections appear only in the running of the
diagonal elements of Yr, they are absent in the (—:5

* t *
(W —v))el = [—— i+ ;) Zsz Vio| Gt ——yzy] ZyQV v,
. . . 5t
(y; +vj) Zzﬁv Vi, (yl +v7) ZyﬁVwVerAUD Y +y3) ZyZV Vio| @i
(4.1.29)
(yy — y2)en, = [ (7 +v2) ny‘éz o ) ——e + ——ypygzyf‘/zz o
. o | 0t
yp+yo' Zyzv ‘/;O'+ yp+ya' ny‘/;p‘/w'+ADU +yg Zy'?‘/;p i —)62’
(4.1.30)

where ¢ # j and p # 0. The quantities ef; are useful because they help us finding the running of
the matrix Vj,. Since we can redefine the phases of the quarks in the Lagrangian, we have the
freedom of changing V' to PV () where P and () are diagonal phase matrices. Therefore, we will
have different forms of parametrizing the CKM matrix V. In order to work with quantities that
are independent of any parametrization, we study the running of |V;,|*. Using the definition of

V', and taking its infinitesimal variation, we find that
§Vip = €5V, — Viges,. (4.1.31)
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Then, the variation of |V;,|? is
8|Vipl® = €V, Vi = Vigeh Vi + €0 Vi Vip — Vige i Vi, (4.1.32)
where there is no sum neither on ¢ nor on p. Working out a bit the expression, we find that

5"/ip|2 = (Eg + Eg*)|vip|2 - (Gpr + 6pr*)|V;'p|2
+ Y (Vi Vi + e Vi Viy) = > (Vigeh, Vit + Vigehn Viy). (4.1.33)
i B#p

Since the matrices e

are antihermitian, their diagonal entries are purely imaginary. Then,
the first two terms in the previous expression vanish, and the variation of the squared CKM

elements is simply

SIVil? = SO VigVi + el ViVig) = S (Vse Vi + Visehy ). (4134)
jFi B#p

We see that we do not need to know the diagonal entries of €. The running of the CKM
elements are fully determined by Eqgs. (4.1.29) and (4.1.30). Thus, the beta functions for |V;,|?
up to two-loops are given by

d|‘/7« ’2 3 yz + y % % yz
IR D AL Dl A A
Big#i 7 5;7&2 J
Yo T Y3 oy Yo T U3 . €1
Z yp 2 J2 JBV;PV;ﬁ + Z . ygyjz'vjﬁv;'p igvip W
5.B#p 7P 3.B#p P B
—1 *
B Z y,z — y2, ( %ygyjz + <y14 + y;l) - 1?(?/1 + yj) AUD(yz + yj)) y/g‘/;ﬁ‘/;ﬁv V
B.j#i 7
5]751 J
1 1,2 2 4, .4 11 2 *
+ Z 3 | 2¥%¥st+ W, +ys) — L2+ v3)y; — Apu(ys +u3) ) uiVisVipVis Vi
ipreJp T YB
1 * )
T Z 2 _ .2 ( %yiy% + (3/;‘; + yé) - %(yp + 3/5) ADU( + yﬁ)) ]VmV 3 Vip g,
ip Yp T YB (47)
(4.1.35)

In the following, we study in detail the effects of the gravitational corrections encoded in f; and
fy, for one, two and three generations of quarks. By doing so, we will understand better how the
fixed points arise, and how the predictions come about. We start from the heaviest generation
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and then we include the lighter ones. Additionally, we focus on the one-loop expressions since
the fixed-point values appear to be in the perturbative regime. Stability checks at two loops
are done throughout the analysis of the fixed-point solutions. For the promising fixed points,
we find that there are no substantial modifications from one to two loops. The identification of
fixed points at one and two loops in the following sections translates in a modification of the
parameter f, by 2%. The conclusions in terms of relevant directions and IR predictions are
barely affected by the loop expansion. Therefore, we do not repeat the analysis at two loops in
the text. We just have in mind that our results seem to be perturbatively stable.

4.2. One generation

The one generation case is important because it is here where we see the interplay between the
two parameters f, and f,. The number of Yukawa couplings is just two, so the full set of beta
functions is composed by the gauge sector

1 41 1 19 1
Bgl 1672 6 fg g1, ﬁgz - 16 D) 6 fg gz, ng = 16 P g3 fg g3, (4.2.1)
and the Yukawa sector
Y 9 3 17 9
Bu = {5 (§y§ + 5% — o0~ 7% — 805 ) — fuve (4.2.2)
Yy 9 3 5 9
By, = 16b (Qy” * Qyt 1292 B 193 — 893 | — fy v (4.2.3)

We want now to look for non-trivial fixed points solutions for the full system. As we explained
in Chapter 1, the existence of a non-trivial UV fixed point has the potential of providing IR
predictions. Therefore, it might be possible to predict, for instance, the hierarchy present in
the top and bottom Yukawa couplings. This is in fact possible [50], and the dynamics is very
interesting. We start by noting that in order to have real fixed-point values in the gauge sector,
we need to specify the sign of f;. We can have either f, > 0 or f, < 0. In the former case, we
can have AS in the g; coupling, in the latter go and g3 can become AS. In order to choose the
sign for f, we note that the main difference between f,, and f,, lies in the U(1) contribution.
Therefore, in order to have non-degenerate y;, and v, we should have a non-vanishing value
for the g; at the fixed point. With g and g3 equal to zero at the fixed point, we have the
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following set of possible fixed-point solutions in the subsystem (v, vs, 91)

Yix =0, Ypx =0, g1+ =0, (4.2.4)
Y = 327;2fy, Ypx =0, g1+ =0, (4.2.5)
Yiw =0, yb*—\/327;2fy, g1 =0, (4.2.6)
Yiu = 167;2 Iy, Yo = 167;2 Iy, g1, =0, (4.2.7)
Yt =0, b« =0, g1x =47 %, (4.2.8)
yt*=%ﬂ\/ 111fg+2fy7 Ypx =0, g1s = 4m %, (4.2.9)
Y =0, yb*zgw%+2fy, 91*:477\/?, (4.2.10)
yt*:2m/2132€g —1-2?{1!, Z/b*=27T\/—1f293+2:{y, g1« = 4m %. (4.2.11)

We see that, for g = 0, the fixed-point solutions in the Yukawa sector have the symmetry
Ui« <> Yps- The second fixed point is studied in [48], the fifth fixed point in [49], and the last
one in [50]. Tt is the last fixed point the one we use for our discussion. It will help us explain
the mechanism that is used in the subsequent sections of this chapter. We already noticed that,
in order to have non-trivial solutions for the Yukawa couplings, we need a non-zero U(1) gauge
coupling. In particular, for the fixed-point solution in (4.2.11) we have

1

. (4.2.12)

We observe that ¢, # 0 implies y;,. > yp.. The crucial question is how v, > y,. implies the
right or approximate IR hierarchy once we follow the running down to low energies. For our
interesting fixed point, the number of irrelevant directions is equal to three, so in principle we
have three IR predictions. However, since we have two free parameters f, and f,, by simple
counting we end up with only one true prediction. (In a more general setting, where f, and
f, are determined from first principles, we actually have 3 predictions. For now, f, and f, are
adjustable). We choose the ratio between y, and y, as the quantity to be the predicted since
our goal is understand how the large splitting in the quark masses is generated. Looking for
precise matching of Yukawa couplings and masses might result in a fine-tuning problem due
the simplicity of the corrections we are considering here. Starting the flow around the fixed
point we look for values of f, and f, such that y,/y; at k = M, coincides with the experimental
value. The value of f, is determined by analysing the flow of g;. Since the beta function for this
coupling is simple, we can solve analytically the equation and choose f, such that we get the

64



correct value for g; in the IR. With the value of f, = 9.7 x 107 we find that f, = 1.19 x 10~*
generates the ratio y,/y, = 0.0217 which is close to the experimental value y;/y; = 0.0242 [51].
In Fig. 4.1 we can see the flow of the couplings. We observe that the hierarchy between y; and y,
is neither inverted nor diminished substantially along the RG flow. Therefore, we conclude that
gravity can be the source of the big gap observed in the top and bottom quark masses. Now,
we ask ourselves whether this pattern can be obtained when the other generations of quarks are
included. Once we consider more than one generation of quarks, the notion of mixing enters
the discussion. In the next section, we explore the two-generations case.

1.2F T
G % T % — ViV |

10_-‘ ‘\\ _-

0.6 T el ]
r \¢~::~ 1
L ‘~\~:‘;‘-..-

0.4 ) __

0.2} ]

0.0p T
0 20 40 60 80 100

Figure 4.1: RG trajectory emanating from the asymptotically safe fixed point (4.2.11) at one-
loop. The dashed lines correspond to the SM running, while the solid lines contain the f-
corrections.

4.3. Two generations

Here, we consider the two heaviest generations of quarks. Therefore, the set of Yukawa
couplings is composed by y; = (w,y.) and y, = (v, ys). Consequently, the 2-dimensional
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matrix characterizing the relative orientation between the bases that diagonalize Yy and Yp is

V;‘,b ‘/ts
V= ) 4.3.1
|:‘/cb ‘/cs ( )
This mixing matrix has in general 4 complex entries.  However, unitary and phase

transformations in the quark fields reduce the number of independent parameters to one real
entry. We call W this free parameter. Now, we define |Vj,|? = W such that |Vi,|? = 1 — W,
|Vip|? = 1 — W and |V,.|?> = W. Since we study the flow of the squared CKM elements, it is
useful to construct a matrix made of the squares of each entry of V

w  1-W
— 21| — . 4.3.2
Ve = [{IVil*] [1_W " } (43.2)
The 1-loop beta function for the CKM parameter W is given by
dw VitYe, o o Yty o] 1
— =-3(1—- = (y; — > (y; — : 4.3.

We see that W = 1 corresponds to the case of no mixing (V' = 1) among quarks belonging to
different generations. On the other hand, W = 0 is seen as the situation of maximal mixing.
However, in the particle physics jargon, W = 0,1 correspond both to minimal mixing, being
maximal mixing the case of W =1/2.

For the Yukawa couplings we have the following set of beta functions

17

_ Yt 9 2 3 2 3 9 9 9 9 5 )
Bu = 162 (5% + 5% (2—W)+ J¥s (1+W)+3y; — 195 =85 — 591 | = fyw (4.3.4)

_ W 9 9.3 5 2 3 9 9 5 2 5
B = 16,2 (§yb oy 2=W) 3y + gy A+ W) = 05 =895 — 501 | = fye (4.3.5)
The beta functions for the quarks of the second generation are obtained by the interchange
(t,b) <> (c,s). As it was explained in Sec. 4.2, the sign of f, is chosen such that ¢g; acquires

a non-trivial value at the fixed point. Therefore, we take here g;, = 4w %, g2+« = 0 and

g3+ = 0 as fixed-point solutions for the gauge sector. For this configuration of gauge couplings,
we look for the fixed-point solutions in the Yukawa sector. The outcome consists of two lines
of fixed points and a list of 24 isolated fixed points, see Appendix G. There are solutions with
W, = 0,1, but also non-trivial CKM configurations. In order to select the promising fixed
points, we impose certain general conditions on the solutions. First, knowing the value of f,
we look for solutions that have real couplings. This translates into conditions on f,. In some
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cases, there are no values of f, for which all the couplings in a fixed-point solution are real.
Those solutions are automatically excluded; in particular, the cases where we have a non-trivial
W,. Then, we select the cases for which y; . and v, are different from zero. Otherwise, it would
never be possible to reach y; > y. and y, > y, in the IR due to the poles in (4.3.3). Thus,
we end up with only four possibilities, namely, fixed points 1b, 1¢, 2b, 3a and the line (G.0.2).
Finally, we check whether there are actually values of f, for which y;. > y.. and yp. > ys.. It
turns out that the fixed point (1¢) is excluded, while (1b) and the line predict a y.. = 0.0747.
The flow towards the IR started around this fixed-point value produces always a y. larger than
Ye(Mpy) = 0.00293. This makes impossible a correct IR matching. Thus, we end up with only
two promising candidates. In this section, as well as in the next one, we explore the properties
of the lines of fixed points. However, these lines disappear at two loops and beyond. They are
just an artifact of the loop expansion. Therefore, they are not as interesting as the isolated
fixed points in our discussion. In Appendix H, following the results of [128, 129], we study the
relation between surfaces of fixed points (e.g., lines or planes) and RG invariants at one-loop
order.

Now, we focus on the remaining fixed-point solutions. First, we take the fixed point (2b)
that we rewrite here for convenience

23f, 2 f, [y 2 fy W
123 37 Yo i 123 3 Y 0 4 0 ( 3 6)

The analysis of the stability matrix around this fixed point tells us that one of the irrelevant
directions is aligned with the coupling y,. Being y, zero at the fixed point, it remains zero at all
energy scales. This is clearly not desired because we know that M, # 0. Therefore, we discard
this solution. On the other hand, as a promising candidate, we have the fixed point

_47r [y B 4
yt*_\/ﬁ g yayb*—\/ﬁ

for which we have the relation y2, — y2, = %gf* In order to show the power of our mechanism

_19fg +82fy7 Yex = 07 Ysx = O, W* = O, (437)

and the phenomenological viability of (4.3.7), we study the RG flow of the Yukawa couplings
and W from the fixed point to the IR. In Fig. 4.2, we can see the running of the these couplings
where the hierarchy between 1, and vy, is clear. In this case, the number of irrelevant directions
arising from the stability matrix M;; is 3. Therefore, following the discussion of Chapter 1, the
dimension of the UV safe surface is smaller than the number of couplings present in the theory.
As a consequence, we are able to predict some of the couplings in the IR. In general, the number
of predictions is equal to the number of irrelevant directions. However, since we are treating f,
and f, as unknown/free parameters in our setting, the total number of predictions is decreased
by two. Even though the number of predictions decreases, fitting the running couplings in the
IR to the experimental values is a rather non-trivial task given the large number of variables
we have.
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Figure 4.2: RG trajectory emanating from the asymptotically safe fixed point (4.3.7) in the
two-generations case.

The numerical values in the IR obtained from the running shown in Fig. 4.2 allow us to fit
the Yukawa couplings of the lightest quarks and the CKM parameter W with good accuracy.
For the CKM parameter we obtain the value Wiz = 0.9985; this should be contrasted with
the expected result W = 0.9980. Translating Yukawa couplings into tree-level masses we have
M, = 4.2GeV, M. = 1.3GeV and M; = 96MeV [51]. For the top quark we have instead
M, = 185GeV. Since our goal is to understand the implications of AS in the SM, the use
of tree-level relations is enough to observe how to set some hierarchies in the quark sector.
In terms of ratios, for the heaviest generation we have y,/y, = 0.0225. This value should be
compared with the expected result y,/y; = 0.0241. We observe here an overestimation in the
top Yukawa, although the ratio y,/y; turns out to be of the desired order of magnitude. Thus,
we conclude that our setting of matter plus gravity corrections accounts for the large splitting or
gaps present in the quark sector of the SM. The precision in the individual predictions of y; and
Yp requires richer structure; it can arise from minimal modifications of the SM itself, or extended
gravitational corrections. In any case, we know that it is already possible to generate hierarchies
in the deep UV that can be traced back to the EW physics. In the next section, we consider
the three known SM families of quarks, and the corresponding CKM mixing parameters.
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4.4. Three generations

For three generations of quarks, the CKM matrix contains only 4 physical elements. In this

work, we parametrize the entries of V' by using the four quantities X = [V4|?, Y = V%
Z = |V.|* and W = |V,4|?. Then, the matrix of the squared CKM elements takes the form
X Y 1-X-Y
Vp = [{|Vij12}} - Z W 1—Z-W . (4.4.1)

1-X-Z 1-Y-W X+Y+Z4+W-1
Working out Eq. (4.1.35), we find the beta functions for these parameters

2, .2 2 .9
o |22 - pxz + B v - )+ X - - vy - 2))
P80 L - x -2+ BBy - 2) - xa-v) - wa - x))
y3 +y? i — Yz
+y§_y§{(yi—yf)XY+2(W(1—X)+X—(1—Y)(1—Z))}
ya+ i 2 2 v Y — ye B ooy _ _ _
BB f = X=X =)+ B - - 2) - X -22) - wa - X)) ]
(4.4.2)
2 2 2 .2
= | S v - x4 x - -V 2) 4 62 - YW

n Yo + U7 {(yz? —yﬁ)((l ~“Y)(1-2)-W1A-X)-X(1-2Y) + (42 —y)Y(1-Y — W)}

y2 —y? 2

2 2 2 9
+ y;_yfj {(yi—y?)XY+t2(W(1—X)+X_ (1—Y)(1—Z))}
s d

LYt {(yi_yg)y(l—X—Y)+M(W(l—X—QY)+X— (1—Z)(1—Y))H :

2 —yp 2
(4.4.3)
2, .2 2 .2
s [ - pxz s BB -+ x - - 20 -v))

2 2 2 .2
+z§tzz2 {(yﬁ—yf)Z(l—X—ZH(ySbe)(W(l—X—zz)JrX_(1_y)(1_Z))}

+£J_Fi‘y/z {(yggytz)(uy)uZ)XW(lX)H(yfy?)ZW}

00 LOE I 0 7)) - Wl - ) = XQ - 22)) 62 - a2 - 2= W)
(4.4.4)
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aw 3 [y2+y3{

2 9
= |t oz -y B ow s x -0 -vn - 2)

2

2 2 2 .2
+z§jz%{(yg—yg)w(l—Y—W)+(beyd)((l—Y)(l—Z)—X—W(l—X—2Z))}

2 2 2 .92
-%2fj§{@3—%ﬂVZ+Q“2””Z«1—XNV+X>41_YN1_Z»}

2 2 2 .9

zétzg {(y?—y?)W(l—Z—W)Jr(thyU)((l—Y)(l—Z)—X—W(l—X—zy))H .

(4.4.5)

The standard parametrization of the quark mixing is generally given in terms of the angles 6,5,
013, o3 and 0. Using our variables, the mixing angles are written as

Y
1o = arctany/ e (4.4.6)
013 = arccosvVX +Y (4.4.7)
1-wWw-—-Z
O3 = ' —_— 4.4.8
93 arcsin X1y ( )

(X4+Y)2Z-Y(X4+Y+Z+W—-1)-X1-W-2)1-X-Y)
2 XY(1-X-Y)(1-Z-W)X+Y+Z+W-1)

0 = arccos

(4.4.9)

4.4.1. Fixed points of the CKM matrix

We know that the equations (4.4.2-4.4.5) do not admit solutions with degenerate up or down
Yukawa couplings. Therefore, for every solution we should have y; # y; (i,j = w,c,t) and
Yy # Yy (p,y = d,s,b). However, the complexity of the CKM beta functions does not allow
us to find analytic solutions for the full set of equations (i.e., gauge, Yukawa and CKM beta
function simultaneously). Then, we look for particular cases that seem more interesting and
easier to analyse. We take first the cases for which each factor inside the curly brackets in
equations (4.4.2-4.4.5) vanishes. It turns out that there are only 6 CKM configurations for
which all the CKM beta functions vanish independently of the values of the Yukawa couplings.
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These configurations for V5 correspond to the matrices

1 00 1 00 001
M3 = {0 1 0| , Mzp=1(0 0 1| , Msp =10 1 0] ,
[0 0 1] 10 1 0] |1 0 0]
[0 1 O] [0 0 1] [0 1 O]
Myz= 11 0 0] , Mz2=1|1 0 0] , My =10 01 (4.4.10)
[0 0 1] 10 1 0] |1 0 0]

We observe that these matrices also provide a faithful representation of the permutation
group of three objects. Hence, the solutions for each of these configurations will be related
by permutations. The second, third and fourth are odd permutations corresponding to
interchanging two families, whereas the other three correspond to cyclic permutations. The
matrix Moz represents the case of no mixing, where each up-type quark interacts only with the
corresponding down-type quark. In the standard terminology the other cases are also referred to
as “no mixing”, because each up-type quark interacts only with one down-type quark, although
possibly belonging to a different family.

4.4.2. Fixed-point structure of the Yukawa couplings.

We can now insert the CKM fixed-point matrices of Eq. (4.4.10) in the Yukawa beta functions.
The resulting fixed-point equations can be solved analytically, yielding 392 solutions for each
choice of V5. In order to stay away from poles in the beta functions for the CKM matrix
elements, we note that the number of zero Yukawa couplings in each solution cannot be greater
than two. Otherwise, there will always exist two vanishing Yukawa belonging to either the up y;
or down set y,. On the other hand, non-vanishing fixed-point values for the Yukawa couplings
must not exhibit degeneracies between up-type and down-type quarks. This rules out a large
number of solutions. Altogether end up with only 16 solutions for each choice of CKM matrix.
Of these, six are isolated fixed points, nine are lines of fixed points and one is a plane of fixed
points. Finally we can discard the six isolated solutions and three lines of fixed points, since
they all involve some negative squared Yukawa coupling (this is valid as long as f, > 0).

We give here the remaining seven solutions for the case Vo = Mz (X, = W, = 1,
Y, = Z, = 0). The plane solution is given by

42 32f,m?
2 2 2 2 g 2
= —(4 — 82 - — = —— 77
yu* 123( 7fg 8 fy) yc* yt* ’ ys* 41 yc* ’
42 32f,m>
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The lines of fixed points are presented in Table 4.1. The Yukawa beta functions with the mixing
matrix Vo = Mg, with (a,b,¢) # (1,2,3) are obtained from those of the case Vo = M3
by multiplying the down-type quarks with the matrix Ma_b}:. Thus, all the fixed points of the
Yukawa couplings for any Vo = M. can be obtained from the ones described in (4.4.11) and
Table 4.1 by just permuting the values of the down-type Yukawa couplings. We will therefore
not repeat them here.

1] g2, = 15:(35f, — 82f,) —a Yo, =0 Vi =
Vi = 50117, —82f)) —a Y2 =0 Vi = ”fg +a
2 | 2, = 425(23f, — 82f,) —a Y2, = 2o Y. =
Yax _%(fq'i'Squ) a yg* =0 yg* :_%"&'a
3 v = S V2. = 155 (237, —82f,) —a v =a
Yz, =0 Yo = 123(fg+82fy) a | Vi :_%_’_a
4 yg* =0 Uf* = 123 (35fg 82fy) a th* =a
yr%* =0 yg* = 123 (11fg 82fy) —a yg* - _32%”2 ta
5 yi* = 123 (35f9 82fy) —a yc* =a y752* =0
Vi, = ‘ig;,(ufj 82f,) — a yh=-25" 1a Vi =0
6 yﬁ* = 123 (23f!} 82fy) a yc* =a yf* = %
yg* - 123 (fg + 82fy) a yf* = SQfJ +a ?JE* =0

Table 4.1: Lines of fixed points in the Yukawa sector for the case Vo = Mjs3. These lines are
parametrized by some positive number a.

We now examine whether these solutions feature interesting properties from a phenomeno-
logical point of view. Since the value of f, is fixed by the running of the g;, we have the free
parameter f, that can be used to set the values of the Yukawa couplings at the fixed point. For
the lines of fixed points we also have the free parameter y;, or y.,, but we do not to impose
conditions on those quantities in order to see if they can be indirectly determined. This would
result in a lower number of free parameters. We start by demanding that y;. > Yex > Yus
and Yp. > Ysx > Yq«, because the poles in Eq. (4.4.2)-(4.4.5) imply that a “wrong” ordering at
the fixed point cannot be undone by the RG flow. Note that we do not require specific values
of the Yukawa couplings. After analyzing all the solutions in (4.4.11) and Tab. 4.1, plus their
permutations, we find that only the case with proper no-mixing (X, = 1, Y, = 0, Z, = 0,
W, = 1) produces fixed points respecting the right ordering in the couplings. In particular,
we are left with the plane (4.4.11) and the solutions 3 - 4 in Tab. 4.1. The conditions on the
ordering of Yukawa couplings at the fixed point translates in a constrained parameter space
for the quantities f, and ;. (y.«). However, for the allowed region of parameter space, we
find that the the resulting values for the couplings at the fixed point are much higher than its
corresponding values at the Planck scale. Thus, an agreement with measured quark masses
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becomes impossible due to the slow running of the Yukawa coupling. For instance, for the up
quark we have that y, . = 0.273, while at the Planck scale y,(M,;) = 5.079 x 107%. On the other
hand, we find that the CKM elements seem to remain frozen at their fixed-point value. This is
due to the low number of relevant directions. In total, there are only two relevant directions,
these basically correspond to the gauge couplings g2 and g;. The number of marginal directions
is equal to two, whereas the number of irrelevant directions sums up to nine. These irrelevant
directions mix all the Yukawa couplings and CKM elements, so we cannot conclude that one
specific coupling is irrelevant. However, the RG flow analysis shows us that the CKM remain
frozen at their fixed-point value. Therefore, we conclude that none of the fixed points arising
from Tab. 4.1 is of phenomenological interest.

In the analysis above, the beta functions of the mixing parameters were zero because the
coefficient of each term of the form y? — yj2 vanishes independently. In principle there could exist
other fixed points where these coefficients are not precisely zero but cancel one another. At such
fixed points the mixing angles could be different from n7 /2, n € R. These fixed points are harder
to find because the beta functions of the mixing parameters cannot be solved independently of
the ones of the Yukawa couplings.

Then, we adopt the following search strategy. As before, the first step is to solve the beta
functions of the gauge couplings and to retain only the fixed point g1, > 0, g2 = 0 = g3..
Then, leaving X, Y, Z, W arbitrary, we solve the beta functions of the Yukawa couplings. This
results in 64 fixed-point solutions depending parametrically on X, Y, Z, W, f, and f,. There
are always solutions containing at least one zero coupling, and only one solution with all the
Yukawa couplings non-trivial. As stated before, in order to avoid the poles in the CKM beta
functions, we note that the maximum number of zeros that we can have in each solution is equal
to two. The presence of more than two zeros will always implies that two up (or down) Yukawa
couplings are degenerate. Then, out of the 64 solutions, we isolate those having at most two
vanishing Yukawa couplings. Thus, we end up with 16 possibilities. The case with all Yukawa
couplings non-trivial has some degenerate couplings, so we ignore it. For the other 15 solutions,
we allow only the lightest generation to have a zero value at the fixed-point. Otherwise, as it
has been stated along the text, the correct ordering in the Yukawa sector cannot be achieved in
the IR. Thus, we find that there are only 3 solutions that have to be taken into account. These
3 solutions are pugged back into the CKM beta functions to obtain a system of four differential
equations with four variables, Sx vy zw (X,Y, Z, W). These new beta functions are quite involved
so it is not possible to find an analytic solution. We therefore study the system numerically.
Since f, is fixed by the running of g;, we only have f, as a free parameter. We take 4 different
values for f, that are close to the one used in the two generations case, f, ~ 2.25 x 1072, In
order to solve the system of equations, we make use of the option FindRoot in the software
Mathematica. We construct a 4-dimensional grid of 9* points around which we look for the
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roots of the CKM beta functions. Eliminating the degenerate solutions for X, Y, Z and W,
we replace back the resulting 1410 configurations in the expressions for the Yukawa couplings
y;(X,Y, Z,W). Analyzing this set of solutions for the Yukawa couplings, we realize that there
are no non-degenerate and real solutions. Thus, we conclude that it is unlikely to find fixed-
point solutions with non-trivial CKM values and real Yukawa couplings. Although we do not

possess the complete set of solutions, this analysis supports our statements on the non-existence
of CKM fixed points beyond those reported in (4.4.10) .

4.4.3. Phenomenologically viable fixed points

In the preceding sections we have assumed that the fixed-point values of two up-type or down-
type Yukawa couplings cannot be equal, in order to avoid the singularities in the beta functions
of the CKM elements. However, there might be an exception to it: fixed points with equal
up-type or down-type Yukawa coupling can be approached asymptotically, as long as one avoids
directions along which the two couplings become equal. In the following, we take this path
and look for phenomenologically interesting configurations having more than two zero Yukawa
couplings.

We assume here that y., ys, y4 and y, go to zero values in the UV along a trajectory that
avoids y. = vy, and ys = y4. That is, these couplings emanate from zero at very high energies and
flow towards their observed values in the IR in the phenomenologically viable ordering y. > v,
and ys > y4. For y, — 0,94 — 0,ys — 0,y. — 0, the set of equations simplifies greatly, allowing
analytical solutions for y;, y,, and the CKM elements. We obtain two substantially distinct group
of solutions. The first one given by the Yukawa couplings in Eq. (4.3.6), plus two possible CKM
configuration: an isolated fixed point (X, =0, Y, =1, Z, = 1, W, = 0), and a line of fixed
points (X, =1—90, Y, =9, Z, =6, W, = 1 — §) parameterized by a number § € [0, 1]. On the
other hand, the second solution corresponds to (4.3.7), and admits four different CKM sets of
fixed points, (X, =1, Y, =0,Z, =0, W, =0), (X, =0,Y, =1, Z, =0, W, =0), (X, =0,
Y,=0,Z, =1, W,=0)or (X, =0,Y,=0, Z, =0, W, = 1). From this set of outcomes,
we focus on the last case since it is the one that carries more phenomenologically interesting
properties. Thus, the matrix of squared CKM elements corresponding to the interesting fixed
point is

00 1
Vo= 10 1 0]. (4.4.12)
100

In Fig. 4.3, we show the running of the Yukawa couplings down to the IR starting from very
high energies. This running results in values that match y,(kr) = 0.024, y.(kir) = 0.0073,
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ys(kr) = 5.5 x 1074 yu(kr) = 1.2 x 1075, yg(kr) = 2.7 x 107° with kr = 173 GeV with
a percentage error of around 1% [51]; only y,(kir) = 1.07 turns out to be much larger than
the expected result, y;(kr) = 0.994. These values for the Yukawa couplings correspond to the
tree-level masses M; = 186GeV, M, = 4.2GeV, M, = 1.3GeV, M, = 96MeV, M,; = 4.7TMeV,
M, = 2.1MeV. Regarding the ratio between the top and bottom Yukawa couplings we have
yp/ys = 0.0225. Once again, we find a ratio close to the experimental value y,/y, = 0.0242. The
overestimation of the top mass was already seen in the two-generations case. What is important
here is the generation of the gap between the top and bottom Yukawa couplings. As explained
before, a better estimation of the masses require extended versions of the corrections considered

here.
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Figure 4.3: Running of the full set of Yukawa couplings from the far UV to EW scale in the
case of three generations of quarks.

It is worth noting the particular behavior of y,. Its flow appears to be determined by a
non-trivial fixed point. However, a closer look actually reveals a slow running towards zero. It
is also important to note the crossing of y. and y,, which is compatible with the pole-structure
in the beta functions that only excludes equality of up-type or down-type quarks, respectively.
The RG flow of the CKM elements is shown in Fig. 4.4. Their very slow running follows from
tiny prefactors in their beta functions. For these couplings we can also obtain IR predictions.
Our computations tell us that X = 0.93262, Y = 0.05053, Z = 0.05035, W = 0.94962; while
the global fit for the measurements indicate that X = 0.94957, Y = 0.05041, Z = 0.05035,
W = 0.94788. The agreement of these predictions is within a few per cent. However, the
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CKM parameters are known with a precision or order 10~ and hence the matching has to be
improved. In particular, if we use our predicted values for X, Y, Z and W to compute the
remaining CKM elements, such as V,,, Vi, Vig, Vis and Vj,, we obtain clearly wrong results.
This is therefore a point that needs better numerical techniques and/or an extended theoretical

treatment.
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Figure 4.4: RG flow of the CKM elements in the case of y, — 0,y — 0,ys — 0,y. — 0 in the
far UV.

We conclude by making some remarks on the general effects of quantum gravity in the
evolution of the SM couplings. First, we observe that the generalization of [50] is possible.
That is, we can have an AS version of the SM in which the non-trivial fixed-point structure
generates an interesting pattern in the quark Yukawa sector at low energies. In particular, we
are able to account for the gap in the masses of the heaviest generation of quarks, even though
the precise numbers need further investigation. Moreover, we succeed in accommodating the
remaining couplings in agreement with IR values, thus connecting the EW physics of the SM
with an AS behavior in the UV. The flavor-blind gravitational corrections of gravity certainly
cannot explain the full structure of the Yukawa couplings, but it motivates future studies in
this direction. We already know that this universal modification creates the first hierarchy in
the quark sector. Then, we might just need to include little modifications in order to arrive
at a more predictive situation in which the UV behavior of the theory determines the, a priori
arbitrary, structure seen in the SM at low energies.
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Conclusions

Asymptotically Safe theories, unlike ordinary field theories, generally depends on fewer free
parameters. Therefore, we can take Asymptotic Safety as a guiding principle to construct
fundamental theories of nature. As such, we have attempted to continue the line of recent studies
on Gauge-Yukawa systems, as welll as gravity-matter dynamics. The mechanism generating non-
trivial fixed points in these two approaches is very distinct in nature. The first one deals with
physics from the the electroweak scale up to the Planck scale. It also relies on perturbation
theory and the fixed points arise from the balance between two-loops and one-loop terms in
the gauge beta functions. Instead, the second mechanism deals with Planck scale physics and
beyond.

In the case of physics below the Planck scale, that is, without the inclusion of gravity, we
scan matter extensions in order to render the gauge couplings UV finite. In particular, the
evolution of the U(1) gauge coupling was expected to become asymptotically safe. A systematic
search of possible extensions of the SM based on vector-like fermions charged under the SM
groups, carrying various representations and coming in several copies (generations) shows that
there are no fixed points in the [-functions that satisfy the minimal criteria to make them
perturbatively stable and therefore physical. In other words, the presence of a large number
of vector-like fermions make the loop coefficients of the beta functions large, which turns the
models into highly non-perturbative.

We conclude that it is not possible, at least within the models we have studied, to extend the
SM up to arbitrarily high energies in perturbation theory. This result might indicate that the
search must be enlarged to include models with BSM fields more complicated than vector-like
fermions. However, since vector-like fermions are actually just a proxy for more general matter
fields, this does not seem as a promising line of inquiry. Another possibility is to embed the SM
gauge groups in a larger group before AS becomes manifest [13].
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A completely different possibility is that the Landau pole is cured by gravity. In this scenario,
we take into account the absence of new discoveries in the current particle colliders. That is, we
assume that there are no new degrees of freedom from the electroweak scale up to the Planck
scale. If there is nothing between these two energy scales, we can in principle observe the imprint
of gravity in the SM couplings at low energies. In fact, the modifications of the running in the
SM couplings can be used to remove the Landau pole in the U(1) sector. Moreover, it also
gives us extra information that is not known a priori from the usual formulation of the SM. For
the parametrized gravitational corrections that we considered in this thesis, we learned how the
gravitational effects come into play. The introduction of non-trivial fixed points in the quark
Yukawa sector of the theory opens the door for interesting low energy predictions. In particular,
we saw that the generation of a gap between the heaviest quarks is possible while keeping the
other couplings free. Even though the we are not able to explain all the details in the mass
pattern of the quark sector, we can appreciate the power of Asymptotic Safety. Thus, following
the lines written above, we can use Asymptotic Safety as a guiding principle in constructing
fundamental theories of nature.
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Appendix A

Weyl calculus

In this appendix, we describe how to write Weyl-invariant quantities in order to understand the
construction of the functional integral in the full gravity case of section 2.3. The way to preserve
background Weyl invariance in quantum field theory has been studied in [130, 131, 132, 133, 134].
In [135] this relied on the existence of a scalar field x called the dilaton. Here we do not need to
appeal to the existence of an additional degree of freedom, but use instead the inverse square

root of the conformal factor of the background metric y = e 7. It transforms under Weyl

transformations as

IX = —€x . (A.0.1)
Hence, it can be identified with the background value of a dilaton. We can use Y to construct a
pure-gauge abelian gauge field x, = —x 19, Y = 0,0, transforming under Weyl transformations
as

Oky = Op€ . (A.0.2)

Let ?M be the covariant derivative with respect to the Levi-Civita connection of the metric g
and V,, be the covariant derivative with respect to the Levi-Civita connection of the metric g.
They are related by
F;/\u = FMAV — 62/@ — 63/@ + gW/f’\ . (A.0.3)
The connection coefficients I are invariant under background Weyl transformations, as is obvious
since the metric ¢ is. We say that a tensor ¢ has weight « if it transforms under background
Weyl transformation as

ot =aet . (A.0.4)

(Here we do not write tensor indices, as they are the same on both sides of the equation.) For
example, the background metric has weight 2, as does the fluctuation hf;y. For any tensor ¢ of
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weight «, we define the Weyl-covariant derivative as
Dyt =Vt — aryt . (A.0.5)
It is a tensor with the same weight as . We note in particular the special cases

Dyguw =0 ; D,x = 0. (A.0.6)

The fields ¢ and w transform inhomogeneously and therefore have to be treated separatel. Their
Weyl-covariant derivatives are defined as

D,og =0,06 —k,=0; Dyw = 0w + k) (A.0.7)

and are invariant (reflecting the absence of a homogeneous term in their transformation).
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Appendix B

The Local Exact Renormalization Group
Equation

In this Appendix, we derive a renormalization group equation for theories containing an z-
dependent scale k. We derive such an equation for a general field ¢ such that the result can
be applied to any theory. In particular, the equation would be valid for CORE gravity and full
gravity taking into account the fact that the gauge-fixing and ghost term do not contain any k
dependence. We start with the generating functional of connected Green functions

eMilh) = / (D) Eap| — S(6) — ASy(9) + / dz (jo) | (B.0.1)

The EAA (77) is therefore a functional of k. We can calculate the variation of 'y under an
infinitesimal change in the cutoff function. As usual one starts from varying Wj, to obtain

SW, SAS LR
/51{5—]{’“ = — </6k: 5k’“> - ——T <¢¢>/ 51:’ (B.0.2)

where we use the notation 5 5
/5k% _/dxék(x)dk(x) :

The calculation then follows closely the derivation of the Wetterich equation, except for the fact

that 0k remains inside the traces. One obtains

2
/5k5rk _lp (5 L +7zk> /6!{:5Rk (B.0.3)

0pd¢
Since 0k is arbitrary, we obtain a local flow equation giving W(a:k) by simply removing the integrals
and the factors ok from both sides. In the case when k is constant the functional derivatives
reduce to ordinary derivatives and the local ERGE reduces to the standard ERGE.

92



In the case of gravity, the flow equation would read
STy 1 5T, L OR,
k2 ok ok —F
1 82T - Ry 1 82T, - SRy

2 -1
—Tr ( oL +Rk) /5k@+... . (B.0.4)

0C*0C ok

In the first line we have written the equation in terms of the “superfield” ¢ = (hzw w,Cr,C,) and
Ry is a block-diagonal matrix. In the second line the supertrace has been expanded, neglecting

off-diagonal terms, which are denoted by the ellipses.
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Appendix C

Analysis of marginal couplings

Here we prove the statement, made in Section 1.3, that when the marginal couplings are
associated to vanishing gauge couplings, the behavior of the flow at quadratic order is determined
by the coefficients Pj;.

The general form of the gauge S-functions is
Bi = (A" + Bja, + Cj ) of, (C.0.1)

where A’, B! and C?, represent the one, two and three-loops coefficients. Their contribution to
the stability matrix is given by

Mij:? = (Bi+2Ci %) a}? + 2(A + Bla} + Clia
@

ar ’I rs ’I é

O/

We see that if of = 0, the row ¢ will have zeros in all the entries. This does not happen for the
Yukawa interactions, whose NLO [-functions have the form Sy, = (Dla, + F'.a,a,)a;. Then,
the contribution to the stability matrix reads

M. 9Py,

() = (Dl + 2F1 *) 2 + (DZO[* + F’IZ‘S T 9)5ij7 (COB)
(909-

]'rr

Oé

where we see that if o] = 0, the last piece will be in general different from zero. Consequently,
we do not have a row of zeros. The fact of having rows of zeros implies that detM = 0. Thus,
the matrix M is singular and there exist vectors x such that Ax = 0x. As a result, M has the
eigenvalue A = 0 with multiplicity given by the number of zero rows.

Suppose we have a fixed point with two gauge couplings equal to zero. Then the stability
matrix will have two zero rows, that we can assume to be the last two. This implies that
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the n — 2 eigenvectors corresponding to \; # 0 have the form V' = [V/ V], .
The eigenvectors for A = 0 lie in a 2-dimensional plane.
these vectors, and we can take them to have the form V! =

V= [V VoV, 0, V.

L Vi, 0,0].

There is a freedom in choosing
{anl anl anl anl O]

1 » V2 sty ¥m—29 Ym—1"Y]
Moreover, the entries V"', V" can be taken to be positive

without loss of generality. Thus, the transformation matrix constructed with the eigenvectors

of M takes the form

This implies that

ai,1
az,1

(n-2,1
0
0

where we have labelled a; ; the non-zero entries and we have called b = 1/V,"
when we compute the form of the new variables z; = Siglyj = Si;l(ocj —

ai,2
az.2

an—-22

0
0

n—2
Vl

n—2
V2

Vi
0
0

a1,n—2
a2.n—2

(n—2,n—2

0
0

el
vl

a1n—1
azn—1

(n—2,n—1
b
0

Q1n
a2.n

an—2n

0

Cc

(C.0.4)

(C.0.5)

', ¢c=1/V". Now,

%), we observe that

two of the new coordinates are just proportional to the asymptotically free variables, namely

Zn-1=b-Yp_1=b-an_1, 2, = c Y, = c-,. This result has an important effect in the analysis.

For the gauge [-functions,
0°5;

Oy, or

gk —

+2(A"+ Blal +

=200 +2(BL +2

Ct ot

7 * %
Crsaras

Jgr—rTr

which in the case of the AF couplings reduces to

Pije = 2 (A" + Bjag +

) 0ijOik

7 * ok
CTSCYTO(S) §”5m .

) o, + 2 (B + 20«

) ;i

(C.0.6)

(C.0.7)

We conclude that in order to know if a marginal coupling is relevant or irrelevant we need
only check the sign of Py;. If Py; < 0, the coupling is marginally relevant. If P;; > 0, the

coupling is marginally irrelevant.
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Appendix D

Conformal field theory and central charges

The CFT at a given fixed point is characterized by two local functions: ¢ and a. We refer to
them collectively as central charges or CFT functions. They appear in the matrix element of
the trace of the energy-momentum tensor of the theory as <T[j) =cW?—aFE;+---, where W
is the Weyl tensor, F, is the Euler density, and ellipses denote operators constructed from the
fields in the theory. A function related to the CFT function a, often denoted a, was proven to
be monotonically decreasing following the RG flow from a UV fixed point to an IR one [92, 94].
In fact, the RG flow of the a-function is related to the dynamics by means of the S-functions of
the theory; it is given by .

MS—Z = —Xz‘jﬁiﬂj, (D.0.1)
where x;; is known as the Zamolodchikov metric. Evaluated at a fixed point, a reduces to the
a-function.

In all of the models studied in this paper there is only a UV fixed point present, whereas
dynamics in the IR is not known. Nevertheless, central charges of the UV fixed points can still
be used to test whether the fixed points are reliable.

In any CFT, both a and ¢ have to be positive, and their ratio has to satisfy the so-called
collider bounds [136], namely

a 31
S_
1

< — . D.0.2
rFp 18 ( )

Wl =
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In perturbation theory, central charges are expanded in series

& a<2>

Qo= ape D.0.3

a CLf + — (471')2 ( ) + ( )
e

c = Cfree+ (471‘)4 (DO4)

and since free-field theory contributions are positive [137],

1 nsg+11/2n, +62n,

a ree — D.0.5

a“ (47)2 360 (D-05)
1 1/6ng+ ny, +2n,

ree D.O.G

“ (47)2 20 (D-06)

(ns, ny, and n, referring to scalar, Weyl and vector degrees of freedom, respectively), the
positivity of the CFT functions is ensured in perturbation theory.

There is a correlation between critical exponents and the change in central charges, which
for the a-function can be explained as follows. At the fixed point we have,

1
@ =" = g+ > bixggof (14 Aiaf) (D.0.7)

where 7 runs over simple gauge groups, by = By, by = — By, b3 = — B3 are the one-loop coefficients
of the gauge beta functions, and x4, and A; are components of the Zamolodchikov metric, see
[122]. One-loop critical exponent follows from 3; = +B;a? (+ for the group U(1), — otherwise),
and reads 0'F = 2b;,a;. Then,

a* 1

— Qfree 1L *
Sa = — 01y (14 A;at) D.0.8
0= T o e 3 0 a1+ A (D08

which explains the correlation.
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Appendix E

All the fixed points in the 210
approximation scheme

In Table E.1 we list all the distinct zeroes of the S-functions in the 210 approximation scheme
for all the models discussed in the text and for the SM. There are altogether 32 zeroes, with the
Gaussian fixed point appearing with multiplicity four (this is the reason for missing fixed point
Py, Py, P3p, which are copies of P).

The column labelled by N; = 0 contains the values of a7, a3, a3, a; for the matter content
of the SM (the coupling a; does not appear in the SM). In this case the fixed points all come
in pairs. When N; # 0 this degeneracy is lifted and all the fixed points are different.

Note that the fixed points can be roughly divided in two classes. The fixed points with
o = 0 have coordinates o independent of Y. The remaining fixed points have coordinates
that in general depend on all the quantum numbers.
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0 0 0 0 0 (0,0,0,0)

0 as(pmal) | a5pa.0) 0 oy (.0 0) 057~ 3§698 -0)

0 as(pat) | a3@al) | oimat) | oyl (0, 3533, ~ 137 1111

0 a3 (p,q, L) a3(p, g, ) 0 0 0,?,—@,0

0 ai(pa0) | aimal) | ojpad) 0 (0, 3317, —at, %1)
ai(p,q, YY) | ab(p,q,0,Y) | of(p,q,¢,Y) 0 a;(p,q,ﬁ, Y) §357, §§4%, ey )
ai(p,q,6,Y) | a5(p,q,8,Y) | a3(p,q,8,Y) | af(p,q,8,Y) | aj(p,q,0,Y) (_ }421%??37 12%1537 284306 144221753)

0 0 a;(p,q,f) af(p,q,f) Ol;(p, qil) (any_%v_ﬁ)

0 0 o3 (p, g, f) 0 azj(p,q,l) (0,0, —%,O)

0 0 o (p, g, ¢) o (p, q,£) 0 (0,0,— 2, — &

0 0 a3 (p, 4, £) 0 0 (0,0,—%,0)
a’{(qu,ﬂ Y) 0 Oé}:(lhq,ﬂ Y) 0 a;(p,q,ﬁ, Y) (—%,0,—61,%3)
aj(p, g, 4,Y) 0 a3(p,q,6,Y) | af(p,q,6,Y) | ay(p,q,6Y) ( 176286467 0, — 14628847’ 196980477)
a:{ (p>QaZ7 Y) 0 0‘3(1’7%[7 Y) 0 0 ( 332’07 _éggg
ai(p,q,4,Y) 0 a3(p,q,6,Y) | af(p,q,tY) 0 ( 176286467 ,0,— 14628847 )’ 196980477)

0 a3(p,q,¢) 0 0 ay(p, g, ) (©, 5,0,0)

0 a5 (p,q, ) 0 apat) | aypaf) (0,&,0, )

0 a3 (p, g, £) 0 0 0 (0,22,0,0)

0 a3 (p, g, ) 0 af(p,q,¢) 0 (o, §—§ 0,2)
at(p,q,6,Y) 0 0 0 0 fig 0,0,0)
O‘I(z’ﬂb& Y) 0 0 a:(pvqalv Y) 0 ( ;"%i 0,0, _%)

o (p,q,L,Y) 0 0 af(p,q,L,Y) a;(p,q,é, Y) ( :i 0,0, 3293)

ai(p, g, L,Y) 0 0 0 a;(p, 4,0,Y) (}? ,0,0, 0)
af(p,q,4,Y) | o5(p,q,L,Y) 0 0 a;(p,q,é, Y) ( ég o i22§,0,0)

a1 (p,a,6,Y) | a5(p.g, L) 0 i (p,a, ,Y) | ay(pa,6Y) (— 33569, 6370 285¢0
af(p,q,4,Y) | o5(p,q,L,Y) 0 0 0 ( &gGé’f 970,0)

i (p,a,6Y) | a3(p,q,0,Y) 0 o (p,,6,Y) 0 (~ 23569, %7, %2;;%1699)
ai(p, g, 0,Y) | ab(p,q,0,Y) | of(p,q,¢,Y) 0 0 ( ;2 5’; T AR )
aj(p, g 4,Y) | a3(pq,6Y) | o3(p,g,4,Y) | ap(p, g t,Y) 0 ( }421;?227 1?1%15‘«:7 284‘3’)6’ 14422175%)

Table E.1: Only the highlighted fixed points appear in the tables in the main text. The column Ny =0
contains the values for the SM.
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Appendix F

Coefficients of the f-functions in the 321
expansion

The S-function in egs. (3.5.7)—(3.5.9) contain a number of coefficients that we collect in this
appendix. The BSM fermions enter in the running of a; via the coefficients

By = Y?Nydp,dr,, B = Sr,Nsdr,, Bz = Sp,Nsdp,. (F.0.1)
For the BSM Yukawa coupling, besides the terms in Eq. (3.5.6), we have the coefficients
1
V::—Nf+3AQ@bmﬁ, Vi =2 (8 Ny + 5dg,dr,)Y?,
8Ny + 5 dp,dr,)Ch,, Vs = 2 (8 Ny + 5dpydn,)Ch,

211 40
?r—ﬁYz EJﬂNm&d&)Y, Wiy = 12Y?C,,

2 6CR, +

3 3 NfSRQdR?,) CRQ, W23 == 12 CRQCR?’,

e
( 257 40
e

40
154 — 6Ch3+—E;AQSﬁ¢hb>(h@ Wis = 12Y?Ch,. (F.0.2)
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The gauge [-functions get more contributions. These are split in two classes:
contributions:
Ky =6Y?N3dg,dg, + TY*N7dy, dj K11 = 6Y*N7dp,d
yl — f@R2 Rs + f R3» 11 = fU@R2UR3,
K1y = 6Y?Cg,NidR,dp,, K13 = 6Y?Cr,NidR,dp,,
7
Kys =2Cgr,Njdp,dr, + gCRQN]%d%QdQRB, Koy =2Y?Cg,NjdR,dg,,
Kay = 16 CryNjdp,dp, +2Ch,Njdp,dg,, Kas = 2CR,CryNjdp,dps,
3 7 3
K3 = XCR3N§Z’dR2ng + éCRgN]%d Ldz., Ks = Z1f2cJRgJ\f]%cszole,
3 3
Kss = 9Cp,Njdp,dp, + ZC%%NJ%dRQdRB K3y = ZCR2C’R3NJ%dRQdR3,
and the gauge contributions, which contain the diagonal terms
388613 4405 463
My = ——N;Y%dp,dp, + ——N;Y*dp,d
" 2502 | 162 M1 “ReChs T mgm N AR R
88
—{—4ny ngng, + 9 NfYGd dR3’
324953 13411 533
Mz = — o 51 NfSdeRg + =5 NrCr, Srydry — AN;C%, SrydR,
632
27 NfSde CRQNfSRQdR37
6242 322
Mss = 65+ TNfSRngg 3 NfCRgngdRQ — 4NfC]2~23SR3dR2
316 88
_? fSRSd CRngSRSdRza
as well as mixed coefficients
205 274
My = Ty SCR2NfY dpr,dR,, Mz = o7 + 8CR3NfY4dR2dR37
291
My = 6 + 32 YQNfSRQdR3 8Y20R2NfSR2dR3,
Mys = 78+ 32 CR3NfSR2dR3 — SCRQCR3NfSR2dR3,
154
My = — +48 YQ]\ff,S'RSdR2 — 8Y20R3NfSR3dR2,
Msy = 42+ 48 CR2NfSR3dRQ — 8CR2CR3NfSR3dR2,
2
Gog = 2+ 8CRQCRstY2dRQdR3, Gi3 = g + 83/20]«33.7\/}5']«3261337
1
Gl = Z + SYQCRQNfSRSdRQ,
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Has

G2

Hss

Gi33

1315 + 245
32 9

—§C N2Y2Sgp dp,d>
9 Rao f RoURyURS,

178 968
198 + 70R3ny2dR2dR3 —4 Cl%ostYQdRQdR?) B 7NfSR3dR2

27
—§C N2 QS 2
9 R3 fY R3dR2dR37
5597 23 463
288 + Fnyzngng + ?YZNfSR2dR3 + 4NfY4SR2dR3
88
+—N}%Y4SR2dR2d%3,

9
178 88
162 + YCRstSdeRg — 4012%3NfSRQdR3 — ENfSRSdl%

23
CRQNfY2dR2dRS — 40%2ny2dR2dR3 + ?NfSRQngj

88
—KCRSN]%SRQSRSdRQng,

2615 121 463
T08 T a7 MY dradr, + =7V NySrydr, + ANY Spydr,
88

109 245
T — 11NfSR2dR3 + ?CRQNfSR3dR2 — 4012%2NfSR3dR2

88
_KCRQN‘?SRQSR?,dRQdR?,? (F.0.6)
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Appendix G

Complete set of fixed points for two
generations of quarks

Lines of fixed points

The lines of fixed points are parametrized by the coupling y?,. The first one corresponds to the
proper no-mixing case

,  l40fm*  8f,m? 9 s 32f,m

yc* 123 3 - yt*’ ys* 41 yt* Y
44f 7% 8f,m?
2 g Y 2
_ n _ W, =0. G.0.1
Yp « 123 3 Yt s 0 ( 0 )

The second one has completely the opposite configuration for the CKM matrix

140f, 7%  8f,m? 32f,m2
2 _ g Y .2 2 — _ g 2
yc* - 123 + 3 yt*? yb* 41 yt* 9
44f,m%  8f,m>
2 g Y 2
= — W,=1. G.0.2
ys* 123 3 yt*’ ( )

We see that solution (G.0.2) is obtained from (G.0.1) by permuting y,. <> Ys.. Similartly,
the solutions of the table in the next page are related by permutations. For all the groups of
solutions, we can take the fixed points a and b as representatives, and obtain ¢ and d by the
simultaneous permutations y;. <> Ye. and yp. <> ys.. Moreover, for the groups 1 — 4 we can
relate solutions with 0 and 1 by permuting either ;. <> Y« OF Y4 <> Yex. These relations arise
from the symmetries in the beta functions once we use any of the particular values of W, given
in the last column of the following table.
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ol Tl10e — "[7f89evT — ef coe1/N = 4 pue fzLi10e — "L vive + ef 1hLe/S = s Aq woatS exe .« pue s s1001 oxenbs oy,
T = () = "W pue ,uOf m = "0 syutod poxy Surdnos o8nes oY) 10§ 103908 RMENILL oY) Ul suornjos jutod poxi :1°5) d[qe],

LSLEREL | (a—Yore + O 1e—) L | px (a+ Yore+ 1e-) B | v (Yes + fe9) LoE 0
SASLLIET | w (Y opg + O Te—) BT | e (o — fope + O 1e—) 2L | qu (g + Ofgg) L0 0
OUEROSL | w (4= oz + O 1g—) LU | g (4 + Yope + O To-) L 0 2 (/g8 + O qg) L1
Tﬁﬁ%ﬁ% 2t (44 fovg + °f1e—) “5* | g (4 —"fovg + *f1e—) ‘G 0 2 ("8 + °fc9) 45t
J|¢]JH mmmm - Aw 78 + m\ er—) MMH 0 2 (5 — Yoz + mﬁ 18) 22 o4 " @ + Mx 7T + m\ %v Fw:
ﬁl (Mg +fev—) “or ) w ) gL (s M&wm._.mb voﬂ (s — \wwm._.mp vo%
ﬁl 0 mkﬁaxmw._.mxmwlv” 2 (s —"opz + "f18 vo% L (s + oz + °f18 vo%
T 0 2 ("fes + °fev—) 5 L (s + ove + °f18) “§t | 2 (s — "fovg + °f18) *F

I 2 (fes + ofrr) ¥L A - E%EBQP 0

0 Lo - z A@% +f17) B 2 ("fe8 + ffcg) EL 0

I Lo — 2 (Yfeg+ of1r) EL 0 o ("2 + Bfce) B

0 S%J;\:v gl L 0 o (78 + O cg) EL

I 0 A@%tb: ) 52 (o +) & 0

0 L (fes+ of61—) 52 0 (e + ) & 0

T L (fes+ °f61—) 52 0 0 LYo+ )&

0 0 2 (*fzg + fe1—) 92 0 (g + )&

I L (feg+0f—) £t 0 2 ("8 + Of¢g) Bt 0

0 0 L (Yfeg+ f—) &L & (fz8 + Ofeg) EL 0

I 0 o (fgg + Of—) L 0 ("2 + Ofeg) B

0 o (feg+ of—) £l 0 0 2 (Yfeg + feg) EL

I A@Nﬁ@ﬁ ) 5t 0 & (fzs +f1r) 2O 5

0 0 2 (feg+ Ofgr—) L 2 ("fz8 + of11) EL Lo L

1 0 2 (g8 + ofgr—) EL Lo 2 (feg+ bf11) EL

0 2 ("fee + Ofe1—) L 0 e 2 ("fzg + of11) EL
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Appendix H

Surfaces of fixed points and 1-loop RG
invariants

In this Appendix, we discuss the relation between the existence of surfaces of fixed points and
RG invariants along the flow. In particular, we will see how the existence of surfaces of fixed
points can help us finding the 1-loop RG invariants in the quark Yukawa system of the Standard
Model. We start by mentioning previous results on RG and flavor invariants. Being, Y and
Yp the up - and down - Yukawa matrices, it is easy to show that the following two quantities
are invariant along the RG flow [128, 129]

TT’(MUMD)

O = et M) 1O Tr((MyMp) ™) (det(MyMp))'"?, (H.0.1)

where My = YUYJ and Mp = YDYg. In the diagonalized basis, we have

2,2 2

Yiy |vip’ 2/3 -2 -2 2

Iny = E £ Iy = (YeYeyupysya)? g v 2y 2| Vil (H.0.2)
W yyeyaysva) Y

These are invariants for the flow in the 10-dimensional space of the Yukawas and the CKM

elements X, Y, Z, W. If we evaluate X, Y, Z, W at a fixed point, I(;y and I(;) are invariant

for the flow in the 6-dimensional space of the Yukawa couplings only.

For instance, when the mixing matrix is equal to the identity (X =1,Y =0, Z =0, W = 1),
the invariants in (H.0.2) become

1 1 1

(Yivs + y2y2 + yoy3)
2,,2 + 27,2 + 2,,2
yt yb ycys yuyd

, Iy = y%%%%wQB(
(YeYeYupysya)?/® @ = )

Iny = ) . (H.0.3)
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However one can show that each term in these sums is an invariant by itself:

Y2y3 U — y2y2 U — Yiy;

1= 3 2 — 3 3 — . (HO4)
YtYcYvYs YtYuYpYd YeYuYsYd

Let us see now how we can obtain these invariants when we know the surface of fixed points .

For any of the 6 particular CKM configurations we have considered, and the gauge fixed
point (g1 = \/96f,m2/41, g» = 0, g3 = 0), the structure of the Yukawa beta functions at one
loop take the form

Byz = yih(yi), (M.0.5)

where h; are linear functions of the couplings yi. Surfaces of fixed points arise when at least
one of these functions h; are not independent. When looking for non-trivial fixed points, we
have to solve the system of equations h; = 0. Thus, when the h;’s are linearly dependent we
have infinitely many solutions. Hence the appearance of surfaces of fixed points.

In general, an RG invariant is a quantity [ that satisfies d%[ = 0. In terms of the beta

functions of the couplings

We take for the moment the case of n couplings y;. Then, if there are some dependent function
hj, let us say h,—1 and h,, we have that

n—2 n—2

Consequently, eq. (H.0.6) becomes

[\

1

<.
Il

Since by assumption the n — 2 functions h; are linearly independent, each of their coefficients
must vanish separately. This means that any function of the variable
Rl R U
(Yo

W= -2 : . H.0.9
y?L—ly'IQ‘L ( )

is an RG invariant.

For example, in the case considered above (X =1,Y =0, Z =0, W = 1) we have the linear
relations

he = hy +ha— hy, he = hy + ha — hs. (H.0.10)
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or A, =1, A4,=-1, A, =0,A,=1,B, =1, B,=0, B,=—1, B—d =1, so we see that W
coincides with (U;)2. (Obviously any function of an invariant is an invariant).

But we can also write
hi =hy+hg—hy, he=hy+ hg— hg, (H.0.11)

and
hy =hy +hg—hy, he=hy+ hg— hs. (H.0.12)

which are obtained from the previous linear relation by the permutations (u <> ¢, d <> s) and
(u <> t, d <> b). These give rise to the invariants Uy and Us.

So we see that the surfaces of FPs and the one-loop invariants both originate from linear
relations between the beta functions. If we allow one coupling to be zero, the number of
equations decrease and then we will have only one linear relation. As a result, we obtain a line
of fixed points.
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