
Unitarity with Closed Timelike Curves

Lorenzo Cornalba

Dipartimento di Fisica & INFN, Universitá di Roma “Tor Vergata”, Via della Ricerca
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Abstract. We conjecture that, in certain cases, quantum dynamics is consistent in the
presence of closed timelike curves. We consider time dependent orbifolds of three dimensional
Minkowski space describing, in the limit of large AdS radius, BTZ black holes inside the horizon.
Although perturbative unitarity fails, we show that, for discrete values of the gravitational
coupling, particle propagation is consistent with unitarity. This quantization corresponds to
the quantization of the black hole angular momentum. We perform the computation at very
low energies, where string effects are irrelevant and interactions are dominated by graviton
exchange in the eikonal regime.

One of the outstanding difficulties of the AdS/CFT correspondence [1] is to understand
physics in the bulk of the AdS space in terms of CFT data. In particular, understanding the
space–time causal structure of black holes is still a fundamental problem from the view point
of the duality. The AdS3/CFT2 case is one of the best studied examples of the duality, with
extremal black hole geometries given by the BTZ metric [2, 3]

ds2 = −N2dt2 + N−2dr2 + r2 (dφ − Nφdt)2 , (1)

where

N =
1

�r

(
r2 − r 2

+

)
, Nφ =

1

�

r 2
+

r2
.

The AdS3 radius is given by �, and r+ is the position of the horizon determining the mass and
the angular momentum of the black hole

Mbh =
πM

4

(
2r 2

+

�2
+ 1

)
, J =

πM

2

r 2
+

�
,

in terms of the three–dimensional Planck mass1 M .
In the dual CFT2 description, these black holes correspond to states with [4]

L0 + L̃0 = �Mbh, L0 − L̃0 = J,

where L0, L̃0 are the Virasoro zero modes. For a supersymmetric theory the spin eigenvalue J
is naturally quantized in half integral units

2J ∈ Z . (2)

1 For notational convenience, we normalize the Planck mass in terms of the Newton constant G as M
−1 = 2πG.
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On the other hand, from a purely gravitational view point, the quantization of the angular
momentum is rather mysterious. Classically, J is a continuous parameter, and the usual
arguments leading to (2) rely on the asymptotic symmetries of quantum gravity on AdS3 [5],
and therefore implicitly on the existence of a dual CFT2.

A basic property of the BTZ black holes is the existence of closed causal curves (CCC’s) in
the geometry. Therefore, if we ignore the dual CFT description, we naively expect that quantum
gravity in the BTZ geometry violates unitarity. By studying quantum field theory in the flat
space limit � → ∞ of the BTZ geometry, we shall show that the quantization condition (2) can
be obtained by demanding that quantum propagation of fields is consistent with unitarity, even
in the presence of CCC’s. More specifically, we will consider corrections to free propagation of
scalar fields due to interactions with particles winding around the closed timelike direction, as
shown in Figure 1.

Figure 1. Leading correction to the free
propagation of a scalar field due to gravitational
interactions with virtual particles winding closed
causal curves.

Figure 2. Penrose diagram of the extremal BTZ
black hole (a). The shaded area represents the
region behind the chronological singularity, where
closed causal curves are present. In the limit
� → ∞, J fixed, one focuses on the region inside
the black hole horizon and obtains a flat space
orbifold with Penrose diagram (b).

Let us recall the Penrose diagram of the extremal BTZ black hole given in Figure 2a. In the
flat space � → ∞ limit, keeping the energy scale

E =
�

(2πr+)2

fixed, the region inside the black hole horizon becomes an orbifold of flat Minkowski space
M

3/eκ, introduced in [7]. Choosing coordinates x±, x on M
3, such that the metric is

ds2 = −2dx+dx− + dx2 ,

the orbifold generator κ is the Killing vector

κ = i
(
L+x + E−1K−

)
= − (

x−∂x + x∂+

)
+ E−1∂− ,

where Lab, Ka are, respectively, the generators of Lorentz transformations and translations,
and where E parameterizes inequivalent orbifolds.
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Figure 3. Correction to the free scalar propagator due to interactions. The conserved momenta p±

flow through the diagram, whereas λ, λ′ are the off–shell mass squared of the external legs.

Under a change of coordinates the metric can be written as

ds2 = −2dy+dy− + 2Ey
(
dy−

)2
+ dy2 (3)

and the Killing vector as

κ =
1

E

∂

∂y−
.

The direction y− is therefore compact with period

y− ∼ y− +
1

E
.

This geometry focuses on the region inside the horizon of the extremal BTZ black hole as
seen in figure 2b. The quantization of the BTZ black hole angular momentum (2) becomes, in
the flat space limit, the condition

2J =
M

4πE
∈ Z . (4)

In this case, on the other hand, one cannot justify this quantization condition with arguments
relying on asymptotic symmetries and on the existence of a dual CFT. In fact, the Minkowski
space orbifold just described focuses on the region inside the horizons, and the asymptotic AdS
boundary is no longer part of the geometry.

We will derive the quantization condition (4) purely within the framework of quantum field
theory in the presence of gravitational interactions. From this perspective, (4) is obtained by
requiring unitarity in the space M

3/eκ, which possess CCC’s. Hence we see that unitarity in
the presence of CCC’s is related to charge quantization in dual descriptions of the system. The
mechanics that protects chronology is rather different than that proposed by Hawking [8], which
is based on a large backreaction due to UV effects.

To investigate the possible restoration of unitarity, we shall study the two–point function
Γp+,p− (λ, λ′) of a scalar field as represented in Figure 3. The external states Vλ,p+,p−, which are
invariant under the action of the orbifold group Ω = eκ, are labelled by the mass squared λ and
by the conserved momenta p±, conjugate to the Killing vectors ∂y± . They are given explicitly
by the wave functions

Vλ,p+,p−(x) =
1

|p+|
∫

dk e i(p+x++k−x−+kx) × (5)

× exp
i

2Ep 2
+

[
(2p+p− − λ) k − k3

3

]
, (6)

where k− = (k2 + λ)/(2p+). The full propagator becomes

16π2E (λ + iε) δ
(
λ − λ′

)
+ Γp+,p−

(
λ, λ′

)
. (7)
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Figure 4. Scalar propagator for a particle winding w times the compact y− direction. The incoming
and outgoing momenta are related by the action of the orbifold generator and the usual propagator is
multiplied by a momentum dependent phase.

Stable particle states will exist provided the reality condition

Γ �
p+,p−

(
λ, λ′

)
= Γp+,p−

(
λ′, λ

)
(8)

is satisfied. In particular we shall consider the specific kinematics with p− ∈ 2πEZ fixed,
λ = λ′ = 0 and p+ → 0. The computation that follows is largely independent on the details
of the underlying theory because gravitational interactions will be dominant in the specific
kinematic regime just described [9].

A key ingredient in the computation is the propagator, which is simply given by the method
of images. Denoting the Feynman propagator in the covering space by ∆ (x,x′), we can write
the full propagator as a sum

〈
Φ (x) Φ

(
x′

)〉
=

∑
w∈Z

∆
(
Ωwx,x′

)
.

The summand ∆ (Ωwx,x′) can then be written symmetrically as

∫
d3q

(2π)3
−i

q2 + m2 − iε
e

i
E

“
wq−+

w3

24
q+

”
φΩ−w/2q

(x) φ �
Ωw/2q

(
x′

)
,

so that, in Fourier space, a scalar propagator is labeled by a momentum q and a winding
number w. The propagator itself is given by

−i

q2 + m2 − iε
e

i
E

“
wq−+

w3

24
q+

”
.

Moreover, as we move along the propagator, the momentum gets transformed under the action
of the orbifold group element Ω−w. Therefore, the incoming momentum along the line is Ωw/2q

and the outgoing one is Ω−w/2q, as shown in Figure 4.
We will compute the first non–trivial contribution to Γp+,p− (λ′, λ) arising from the graph

5. The only propagator with non–vanishing winding number w is the loop propagator, which
probes the non–causal structure of space–time. The bubble in the graph represents the four–
point interaction in the parent theory on M

3 to all orders in the couplings. In the limit of
p+ → 0, we will only need control over the parent four–point amplitude in the eikonal kinematical
regime, where resummation techniques are known and where general arguments indicate that
interactions are dominated by graviton exchange. The full eikonal amplitude for spin–2 exchange
reads [10, 11, 12]

1 + iA � −4iM
s2

tM2 + s2 − iε
,

with poles in the physical region placed at

s, u = ± (
M

√−t + iε
)

. (9)

352



��

�

Figure 5. Leading contribution to the two–point function Γp+,p
−

(λ, λ′). The loop momentum has
non–vanishing winding number w, whereas the blob A represents the four–point amplitude in the parent
theory to all orders in the coupling constants.

We shall assume that the amplitude A has poles given by (9) also in the off–shell regime needed
for the computation.

In the limit considered the two–point amplitude can be written as

Γp+,p− (0, 0) �
∑
w �=0

(
cw Γ+

w + c �
w Γ−

w

)
,

where cw is a constant and where

Γ±
w =

∫
ds

2πi

e±
i
4

w2

pE
s

|w| s − 4pp− + iε
A

(
s, t = −4p2, u = s − 8pp−

|w|
)

. (10)

The constant p is given by p =
√

2p+p−. The reality condition (8) is satisfied if

(
Γ+

w

)�
= Γ−

w (11)

holds for each value of w. The amplitude Γ±
w is given by the contribution of the poles of the

integrand in the upper (lower) complex s–plane, as shown in Figure 6. The reality condition

−M
√−t

4pp−
|w| u = −M

√−t

M
√−t u = M

√−t

Figure 6. Poles of the integrand in equation (10) in the s–plane. The pole denoted with a dot comes
from the winding propagator, whereas the poles marked with a cross come from the eikonal amplitude
A.
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(11) becomes

−e i w2M
2E F+ + e−i w2M

2E F− = Aon−shell , (12)

where F± are real and are related to the residues of A at the eikonal poles, and where Aon−shell

is the amplitude at the winding propagator pole. In order for (12) to be satisfied for all values

of w, we must have that e i M
2E = 1 and therefore that

M

2E
∈ 2π Z ,

which is the quantization condition (4). In this case, we have the additional requirement on
the residues F− − F+ = Aon−shell.

We have shown that, using limited information regarding the behavior of the gravitational
interaction, we can recover the quantisation condition of the BTZ black hole angular momentum.
Only for these discrete values is the theory unitary, even in the presence of closed causal curves.
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