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Abstract In order to unravel the origin of the nucleon spin,
one has to study in detail the question of orbital angular
momentum, and in particular the reference point about which
it is defined. With this in mind, we review the concept of rel-
ativistic center of mass, generalize the discussion to the case
of asymmetric energy-momentum tensors, and establish the
link with the light-front formalism. We find that the p-wave
in the Dirac plane-wave solutions arises from a relativistic
quantum-mechanical effect which forces the canonical refer-
ence point to depend on the observer. This explains why lon-
gitudinal spin is much simpler to study than transverse spin.
It is also the reason behind the observation of induced shifts
and distortions in the parton distributions defined within the
light-front formalism.

1 Introduction

One usually expects to recover ordinary quantum mechan-
ics from quantum field theory (QFT) by considering the
non-relativistic limit. While position is considered to be an
observable in quantum mechanics, it is demoted to a mere
parameter in QFT. How can one then recover a position oper-
ator in the non-relativistic limit?

The absence of a position operator in QFT is usually
explained by the fact that a particle with massm can at best be
localized over distances of the order of the associated reduced
Compton wavelength λ̄C = h̄/mc. If one tries to localize a
particle over shorter distances, energies larger than mc2 have
to be involved, with the risk of creating additional particles
in the system. Consequently, the concept of position for a
single particle has to be abandoned in QFT.

The energy-momentum tensor (EMT) of a system can
however always be used to define the concept of center of
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inertia.1 For a non-relativistic particle, it should coincide
with the actual position of the particle. In QFT, the center
of inertia may be considered as the closest we can get to a
definition of position observable. Systems with non-zero spin
are however delicate, since in that case it seems impossible
to find a Lorentz covariant definition for the center of inertia
leading to commuting coordinates [1].

In QFT, the questions involving position are often sim-
ply ignored or avoided. Contrary to the electroweak sec-
tor of the standard model, the elementary constituents of
quantum chromodynamics never show up in the spectrum
of asymptotic states. In other words, experiments can only
detect bound states of quarks and gluons. Understanding the
origin of the nucleon spin becomes therefore a natural fun-
damental question to investigate. In particular, since orbital
angular momentum is defined relative to a reference point, the
problem of nucleon localization cannot be avoided. Despite
intense efforts invested in the decomposition of the nucleon
spin [2], we feel that this problem has so far been insuffi-
ciently treated in the literature.

The present work aims at filling this gap. We start with
a reminder of the definition of various contributions to the
Poincaré generators in Sect. 2. Then we review in Sects. 3 and
4 the concept of center of inertia assuming as usual that the
EMT is symmetric. We generalize in Sect. 5 this discussion
to the more general case of systems with intrinsic angular
momentum naturally characterized by an asymmetric EMT,
and establish in Sect. 7 the connection with the light-front
formalism widely used to investigate the internal structure
of the nucleon. To keep the presentation simple, we work at
the level of classical fields in flat spacetime, but the quantum
version proceeds analogously,2 as explained in detail in [1,3–

1 By inertia we mean inertial mass, i.e. the system’s resistance to being
accelerated by a force.
2 Typically, forthcoming results can be taken as applying to the quan-
tum theory, provided simple technical adjustments are made. For exam-
ple, Noether currents and charges become operator-valued distributions
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5]. We will also use for convenience the natural units h̄ =
c = 1.

2 Poincaré generators

The Noether currents associated with the Poincaré invari-
ance of a relativistic theory consist in Tμν(x) for spacetime
translations, and Mμαβ(x) = −Mμβα(x) for Lorentz trans-
formations. At the classical level, they are mere functionals
of the classical fields depending on the space-time coordi-
nates xμ, and are understood to be evaluated for a solution
of the classical field equations.

As a consequence of Noether’s theorem, these currents are
conserved

∂μT
μν(x) = 0, ∂μM

μαβ(x) = 0, (1)

and transform as rank-2 and 3 Lorentz tensors, respectively.
The 10 generators of Poincaré transformations are obtained
by integrating the current densities over a spacelike hyper-
surface

Pμ ≡
∫

d3x T 0μ(x), Jαβ ≡
∫

d3x M0αβ(x). (2)

These Noether charges are interpreted as the total four-
momentum and generalized angular momentum (AM) of the
system. Assuming as usual that surface terms at spatial infin-
ity do not contribute, one can show that these generators are
time-independent and transform as rank-1 and 2 Lorentz ten-
sors, respectively.

2.1 External and internal parts

The generalized AM Jαβ is defined relative to the origin
O of the coordinate system. Like in Newtonian mechanics,
one can also consider the generalized AM defined relative
to another reference point (or pivot). Denoting by Xμ(x0)

the function describing the worldline of a generic reference
point parametrized by the time coordinate x0 in the Lorentz
frame S, the generalized AM

Jαβ = Lαβ
X (x0) + Sαβ

X (x0) (3)

can be decomposed into an external part which depends
explicitly on the coordinates of the reference point

Lαβ
X (x0) ≡ Xα(x0)Pβ − Xβ(x0)Pα, (4)

Footnote 2 continued
acting on a Hilbert space, and classical products AB are replaced by
symmetric products 1

2 (AB + BA) of the corresponding operators.

and an internal part

Sαβ
X (x0) ≡ Jαβ − Lαβ

X (x0) (5)

which represents the generalized AM about the new refer-
ence point. When the reference point coincides with the ori-
gin, one naturally gets Jαβ = Sαβ

O . While we keep here X
totally general, we will see later that particular choices for
the reference point beside the origin, like e.g. the center of
inertia, play a particular role.

Setting β = 0 in Eq. (5) allows us to express the coordi-
nates of the reference point as3

Xμ(x0) = x0 Pμ

P0 + Jμ0 − Sμ0
X (x0)

P0 , (6)

where we used the relation X0(x0) = x0 resulting from our
choice of parametrization for the reference worldline in terms
of the time coordinate x0.

When we consider the time derivative of this expression,
we obtain4

Ẋμ(x0) = Pμ

P0 − Ṡμ0
X (x0)

P0 , (7)

where we denoted the derivative of a function of a single
variable by a dot. This shows that whenever the velocity of the
reference point and the momentum are not parallel Ẋμ(x0) �∝
Pμ, there is a transfer of generalized AM between external
and internal parts Ṡμ0

X (x0) = −L̇μ0
X (x0) �= 0.

If one changes the reference point from Xμ(x0) to
X̃μ(x0) = Xμ(x0) + Qμ(x0), the corresponding general-
ized internal AM are related as follows

Sαβ
X (x0) = Sαβ

X̃
(x0) + Qα(x0)Pβ − Qβ(x0)Pα, (8)

and the shift Qμ(x0) can be expressed as

Qμ(x0) = Sμ0
X (x0) − Sμ0

X̃
(x0)

P0 . (9)

We naturally have Q0(x0) = 0 since Xμ(x0) and X̃μ(x0)

represent two simultaneous positions in S.

2.2 Boost and rotation generators

Just like the 6 independent components of the electromag-
netic tensor Fμν(x) = −Fνμ(x) can be expressed in some
Lorentz frame S in terms of an electric vector F0i (x) =
−Ei (x) and a magnetic vector Fi j (x) = −εi jk Bk(x), the 6

3 We restrict ourselves to the case of massive systems for which the
evaluation of P0 leads to a strictly positive number. In the quantum
theory, 1/P0 has to be understood as the inverse energy operator (P0)−1

whose eigenvalue when acting on an energy eigenstate coincides with
the inverse of the energy eigenvalue.
4 To get the four-velocity, one has to multiply this expression by the
Lorentz boost factor γ = P0/M , where M is the mass of the system.
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independent components of the generalized AM tensor can
be expressed in terms of two spatial vectors

J 0i = Ki , J i j = εi jk J k, (10)

which generate boosts and rotations of the system, respec-
tively. Under boosts, the two vectors K and J get mixed
with each other, indicating that their definition depends on
the observer.

A more covariant definition of boost and rotation genera-
tors requires the introduction of an object that specifies the
observer independently of the frame. Choosing the spatial
axes to be parallel in all inertial frames, any observer can
be identified by a timelike unit four-vector5 uμ (taken to be
constant in flat spacetime) which represents its four-velocity
relative to some Lorentz frameS. The generalized AM tensor
can then be written as

Jαβ = −K α
u u

β + K β
u u

α − εαβμν Juμuν, (11)

where we used the convention ε0123 = +1 and defined the
four-vectors6

Kμ
u ≡ −Jμνuν and Jμ

u ≡ 1
2 εμαβλ Jαβuλ. (12)

These two four-vectors are orthogonal to uμ and are hence
spacelike. In the observer’s frame Su , the four-velocity
reduces to its canonical form uμ = (1, 0) and we get

Kμ
u

Su= (0, K ), Jμ
u

Su= (0, J). (13)

This shows that the four-vectors Kμ
u and Jμ

u represent in a
covariant way the boost and rotation generators as defined
by an observer with four-velocity uμ relative to the Lorentz
frame S.

Under a change of observer, the covariant boost and rota-
tion generators get mixed with each other

Kμ
v = Kμ

u (u · v) − uμ(K · v) + εμναβvν Jαuβ, (14)

Jμ
v = Jμ

u (u · v) − uμ(J · v) − εμναβvνKαuβ. (15)

In particular, we find in the Su frame

K 0
v = K · v, K v = Kv0 + (v × J), (16)

5 More explicitly, this unit four-vector is the timelike vierbein whose
components are uμ = Λ

μ
0, where Λ is the Lorentz transformation

relating Su to S.
6 One might be worried about the change in the spatial integration for
the generators defined relative toSu . However, it follows from Noether’s
theorem that the Poincaré generators transform as ordinary Lorentz
tensors, and therefore do not depend on how the spatial integrations are
performed.

J 0
v = J · v, Jv = Jv0 − (v × K ). (17)

Choosing to parametrize the reference worldline Xμ(τu)

in terms of the Lorentz-invariant expression for the observer’s
time coordinate τu = Xμ(τu)uμ, the covariant boost gener-
ators

Kμ
u = Kμ

LXu
(τu) + Kμ

SXu
(τu) (18)

can be further decomposed into external and internal parts

Kμ
LXu

(τu) ≡ −Lμν
X (τu)uν = −Xμ(τu) (P · u) + τu Pμ,

(19)

Kμ
SXu

(τu) ≡ −Sμν
X (τu)uν, (20)

and we can express the coordinates of the reference point as

Xμ(τu) = τu
Pμ

P · u +
[
Jμν − Sμν

X (τu)
]
uν

P · u . (21)

Similarly, for the covariant rotation generators we have

Jμ
u = Lμ

Xu(τu) + Sμ
Xu(τu) (22)

with

Lμ
Xu(τu) ≡ 1

2 εμαβλLXαβ(τu)uλ = εμαβλXα(τu)Pβuλ,

(23)

Sμ
Xu(τu) ≡ 1

2 εμαβλSXαβ(τu)uλ. (24)

2.3 Center-of-mass frame

Among all the Lorentz frames, the center-of-mass (CM)
frame S� defined as the frame where the system is at rest,
is special because its four-velocity relative to some Lorentz
frame S is expressed directly in terms of the translation
generators uμ

� = Pμ/M with M = √
P2. Physical quan-

tities defined in S� are proper to the system in the sense
that they can be expressed in a covariant way using only
the Poincaré generators. For example, the Lorentz invariant

quantity M = P · u�
S�= P0 coincides in the CM frame

with the energy or inertia of the system. In other words, M
represents the proper inertia of the system, explaining why
it is usually called the (invariant) mass of the system in the
literature.

Using uμ
� = Pμ/M in Eq. (23) shows that the proper AM

is purely internal Jμ
� = Sμ

� , and hence does not depend on
the choice of the reference point. It is called the spin of the
system, and is proportional to the Pauli–Lubański pseudo-
vector Wμ = MSμ

� defined as

Wμ ≡ 1
2 εμαβλ Jαβ Pλ. (25)
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Moreover, by a suitable choice of the reference point, we
can make the proper boost generators purely external. This
reference point, called the center of mass of the system, is
readily obtained from Eq. (21) by setting Eq. (20) to zero

Rμ
� (τ ) ≡ τ

Pμ

M
− Kμ

�

M
, (26)

where τ = Rμ
� Pμ/M is the proper time of the system. The

time-dependent term cancels out in the expression for the
external part of the generalized AM (4), and so the center
of mass defines a time-independent decomposition of the
generalized AM tensor into external and internal parts. In
particular, the proper boost generators Kμ

� = −MRμ
� (0) can

be interpreted as giving (up to a sign) the mass dipole moment
of the system at the initial proper time τ = 0.

2.4 Composite systems

Composite systems may consist of several types of con-
stituents. For example, hadrons are bound states made of
quarks and gluons. In this case, one can naturally split the
total currents into partial currents associated with the differ-
ent constituent types

Tμν(x) =
∑
a

Tμν
a (x), Mμαβ(x) =

∑
a

Mμαβ
a (x). (27)

Unlike the total currents, the partial ones are in general not
conserved, and so the corresponding charges usually depend
on time

Pμ
a (x0) ≡

∫
d3x T 0μ

a (x), Jαβ
a (x0) ≡

∫
d3x M0αβ

a (x).

(28)

The partial generalized AM can naturally be decomposed
into external and internal parts

Jαβ
a (x0) = Lαβ

Xa(x
0) + Sαβ

Xa(x
0), (29)

where

Lαβ
Xa(x

0) ≡ Xα(x0)Pβ
a (x0) − Xβ(x0)Pα

a (x0), (30)

Sαβ
Xa(x

0) ≡ Jαβ
a (x0) − Lαβ

Xa(x
0). (31)

These satisfy

Lαβ
X (x0) =

∑
a

Lαβ
Xa(x

0), Sαβ
X (x0) =

∑
a

Sαβ
Xa(x

0), (32)

and can be interpreted as the contributions from constituent
type a to the external and internal parts of the generalized
total AM.

The partial generalized AM can also be written in terms
of partial covariant generators

Jαβ
a (x0) = −K α

a,u(x
0)uβ + K β

a,u(x
0)uα

−εαβμν Ja,uμ(x0)uν, (33)

where

Kμ
a,u(x

0) ≡ −Jμν
a (x0)uν,

Jμ
a,u(x

0) ≡ 1
2 εμαβλ Ja,αβ(x0)uλ (34)

satisfy

Kμ
u =

∑
a

Kμ
a,u(x

0), Jμ
u =

∑
a

Jμ
a,u(x

0). (35)

These can then be interpreted as the contribution from con-
stituent type a to the covariant generators of boosts and rota-
tions.

3 Center of inertia

A natural choice for the reference point is the center of inertia,
which is the relativistic generalization of the familiar concept
of center of mass appearing in Newtonian Mechanics. Since
the inertial mass is given by the energy in a relativistic theory,
the center of inertia is determined by the EMT.

The energy dipole moment of the system in some Lorentz
frame S is given by

Dμ(x0) =
∫

d3x xμT 00(x). (36)

The center of inertia is defined as the point where the inertia
of the whole system P0 = ∫

d3x T 00(x) can be concentrated
without changing the energy dipole moment. Its position is
then given by [1,3,6,7]

Rμ(x0) = Dμ(x0)

P0 . (37)

In particular, one finds that R0(x0) = x0 which means that
the component R0 represents the time x0 at which the center
of inertia is determined.

In general, the center of inertia is not at rest inS. Assuming
as usual that surface terms at spatial infinity do not contribute,
the velocity of the center of inertia can be expressed as

Ṙμ(x0) = J μ(x0)

P0 , (38)

whereJ μ(x0) = ∫
d3x Tμ0(x) is the energy current. Unlike

the four-momentum Pμ = ∫
d3x T 0μ(x), the energy current

can in general be time-dependent. This means that the center
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of inertia does not necessarily move along a straight line with
constant velocity.

3.1 Generalized orbital angular momentum

From the EMT, one can also define an orbital (or convective)
tensor

Mμαβ
orb (x) ≡ xαTμβ(x) − xβTμα(x), (39)

whose four-divergence is given by

∂μM
μαβ
orb (x) = T [αβ](x) (40)

with T [αβ] = T αβ − T βα . The corresponding charge

Mαβ
orb(x

0) =
∫

d3x M0αβ
orb (x)

=
∫

d3x
[
xαT 0β(x) − xβT 0α(x)

]
(41)

will be called the generalized orbital angular momentum
(OAM) since its purely spatial components represent the total
OAM of the system

Mi j
orb(x

0) =
∫

d3x
[
xi T 0 j (x) − x j T 0i (x)

]
. (42)

For the other components, we find

Mμ0
orb(x

0) = Rμ(x0)P0 − x0Pμ, (43)

so that the position of the center of inertia can be expressed
as

Rμ(x0) = x0 Pμ

P0 + Mμ0
orb(x

0)

P0 (44)

and the velocity as

Ṙμ(x0) = Pμ

P0 + Ṁμ0
orb(x

0)

P0 . (45)

The same expression can be obtained from Eq. (38) by writ-
ing the energy current as J μ(x0) = Pμ + ∫

d3x T [μ0](x)
and using Eq. (40). Note that unlike (38), the expression for
the velocity in Eq. (45) does not rely on the assumption that
surface terms vanish.

3.2 Alternative definition

Let Xμ(x0) denote the position of some reference point at the
time x0. Similarly to Eq. (5), the internal generalized OAM
can be defined as

�
αβ
X (x0) ≡ Mαβ

orb(x
0) − Xα(x0)Pβ + Xβ(x0)Pα

=
∫

d3x

[
(xα − Xα(x0)) T 0β(x)

−(xβ − Xβ(x0)) T 0α(x)

]
. (46)

In particular, �μ0
X represents the energy dipole moment about

the reference point

�
μ0
X (x0) =

∫
d3x (xμ − Xμ(x0)) T 00(x), (47)

and �
μ0
X /P0 gives the shift of the center of inertia relative to

the reference point

�
μ0
X (x0)

P0 = Rμ(x0) − Xμ(x0). (48)

This means that the center of inertia can alternatively be
defined by the condition

�
μ0
R (x0) = 0. (49)

Indeed, by construction the center of inertia is the reference
point about which the energy dipole moment vanishes. In
other words, it is the point for which orbital boost generators
are purely external, as already expressed by Eq. (43). In prac-
tice we will omit the label R whenever the center of inertia
is chosen as reference point.

3.3 Centroids

Is is clear from the definition (37) that the position of the
center of inertia does not transform as a Lorentz four-vector.
This is also clearly illustrated by Møller’s famous example
[3,6], see Fig. 1. Consider an homogeneous sphere rotating
about some axis in the CM frameS�. By symmetry, the center
of inertia necessarily lies on the rotation axis. Consider now
another frame S moving with constant velocity in a direction
orthogonal to the rotation axis. From the perspective of S,
symmetrical points with respect to the rotation axis do not
move with the same speed anymore, and hence are attributed
different inertias. As a result, the center of inertia determined
by S is shifted in a direction orthogonal to both the rotation
axis and the relative velocity between S� and S. This means
that the actual center of inertia, i.e. the representative point
and not only its coordinates, depends on the observer. It can-
not be in general identified with a physical point inside the
body.

A covariant definition of the center of inertia can be
obtained if one keeps track of the (inertial) observer with
respect to which it is defined. The covariant energy dipole
moment defined by some observer with four-velocity uμ rel-
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Rest frame Moving frame

Center of mass

Center of inertia

Fig. 1 For a spinning homogeneous sphere at rest, center of mass and
center of inertia coincide with each other. When the sphere is moving in
a direction orthogonal to its spin, the center of inertia moves away from
the center of mass. The representation is purely schematic and does not
take into account Lorentz contraction factors

ative to S is given by

Dμ
u (τu) =

∫
d3
ux x

μT αβ(x)uαuβ, (50)

where d3
ux ≡ d4x δ(x ·u−τu) and τu are the Lorentz-invariant

expressions for the volume measure and time coordinate
defined by the observer. Since by construction Dμ

u (τu) is a
Lorentz four-vector, it can be used to define the coordinates
of a physical point, referred to as centroid in the following

Rμ
u (τu) ≡ Dμ

u (τu)

P · u , (51)

where P · u = ∫
d3
ux T

αβ(x)uαuβ represents the Lorentz-
invariant inertia defined by the observer. In particular, one has
Rμ
u (τu)uμ = τu which indicates that the centroid worldline is

parametrized by the observer’s time coordinate. In a general
Lorentz frame S, the centroid determined by Eq. (51) and the
center of inertia determined by Eq. (37) are usually different.
They coincide however in the observer’s frame Su where the
four-velocity reduces to uμ = (1, 0). This shows that the
centroid represents in a covariant way the center of inertia
defined by some observer. It is in this sense the Lorentz-
invariant extension [2,8] of the concept of center of inertia.

Similarly, the covariant generalized OAM tensor is defined
as

Mαβ
orb,u(τu) ≡

∫
d3
ux Mμαβ

orb (x)uμ. (52)

By contraction with the four-velocity, we find that

Rμ
u (τu) = τu

Pμ

P · u + Mμν
orb,u(τu)uν

P · u . (53)

The covariant internal OAM defined by the centroid reads

�αβ
u (τu) ≡ Mαβ

orb,u(τu) − Rα
u (τu)P

β + Rβ
u (τu)P

α (54)

and provides an alternative definition of the centroid

�αβ
u (τu)uβ = 0. (55)

4 Symmetric energy-momentum tensor

In relativistic mechanics, one often assumes that the gener-
alized total AM current has a pure orbital form [9]

Mμαβ(x)
!= Mμαβ

orb (x) = xαTμβ(x) − xβTμα(x). (56)

Two important consequences can then be derived from the
conservation of this tensor:

(i) The EMT must be symmetric7

0 = ∂μM
μαβ(x) = T [αβ](x). (57)

The energy current coincides therefore with the four-
momentum J μ(x0) = Pμ and transforms as a time-
independent Lorentz four-vector.

(ii) The generalized OAM is a time-independent Lorentz
tensor

Mαβ
orb(x

0) = Mαβ
orb,u(τu) = Jαβ (58)

identified with the generators of Lorentz transforma-
tions.

In the following, we discuss in some detail the implications
for the center of inertia.

4.1 Relativistic center-of-mass theorem

As one can see from Eq. (44), the conservation of the gener-
alized OAM tensor forces the center of inertia to move along
a straight line with constant velocity

Rμ(x0) = x0 Pμ

P0 + Yμ with Yμ = Jμ0

P0 , (59)

In particular, Yμ = Rμ(0) represents the position of the cen-
ter of inertia at the initial time. While the generators of time
translations H = P0, spatial translations P and rotations J
give the energy, linear and angular momentum of the sys-
tem, the generators of boosts K give the initial energy dipole
moment of the system

K = −Y P0, (60)

and hence determine the initial position of the center of iner-
tia.

7 It is also quite common to find the reverse argument in the literature.
Assuming that the EMT is symmetric, one deduces that the correspond-
ing orbital tensor must be conserved. The latter is then identified with
the generalized total AM tensor.
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Differentiating Eq. (59) with respect to time shows that

Pμ = P0 Ṙμ(x0) (61)

which is nothing but the relativistic version of the CM theo-
rem. Moreover, one obtains the relativistic version of König’s
first theorem

Jαβ = Rα(x0)
[
P0 Ṙβ(x0)

]
− Rβ(x0)

[
P0 Ṙα(x0)

]
+ Sαβ,

(62)

when the generalized AM is decomposed into external and
internal contributions.

Actually, the conservation of the generalized OAM tensor
forces all the centroids to move along a straight line

Rμ
u (τu) = τu

Pμ

P · u + Yμ
u with Yμ

u = Jμνuν

P · u . (63)

In order to determine the position of the centroid at some
fixed time in S, we need to parametrize the correspond-
ing worldline in terms of the time coordinate x0 instead
of the observer’s time coordinate τu . Since by definition
x0 = R0

u(τu), we find

x0 = τu
P0

P · u + Y 0
u (64)

which shows that the two time coordinates are related by a
time dilation factorγu = P0/(P ·u) and a constant termY 0

u =
J 0μuν/(P · u) = −γu(Y · u) accounting for the relativity of
simultaneity. Eliminating τu in Eq. (63) in favor of x0 leads
to

Xμ
u (x0) ≡ Rμ

u (τu(x
0)) =

(
x0 − Y 0

u

) Pμ

P0 + Yμ
u . (65)

Since the centroid worldline is parametrized in terms of the
time coordinate x0, it is not surprising that manifest Lorentz
covariance is lost. This equation indicates two things: (i) the
dependence of Xμ

u on the four-velocity uμ shows explicitly
that the definition of a centroid is observer-dependent, and (ii)
all the simultaneous centroids move along parallel straight
lines with the same constant velocity.

Because of the special role played by the CM frame S�, let
us consider the corresponding centroid. Using uμ

� = Pμ/M
in Eq. (63), we find that the position in S of the proper cen-
troid is given by

Rμ
� (τ ) = τ

Pμ

M
+ Yμ

� with Yμ
� = Jμν Pν

M2 . (66)

This expression coincides with Eq. (26) since Yμ
� =

−Kμ
� /M , showing that the CM is nothing but the proper

centroid.

4.2 Supplementary spin condition

The inertial motion of the centroids (65) implies that the
corresponding external and internal parts of the generalized
AM tensor are separately time-independent

Lαβ
u = Xα

u (x0)Pβ − Xβ
u (x0)Pα = Y α

u Pβ − Y β
u Pα,

Sαβ
u = Jαβ − Lαβ

u . (67)

When the generalized AM tensor is purely orbital, the internal
part reads Sαβ

u = �
αβ
u . Choosing the centroid as the reference

point leads then to the equation

Sαβ
u uβ = 0, (68)

which is known in the literature of classical spinning bod-
ies under the name of supplementary spin condition (SSC),
see e.g. [10] and references therein. In particular, choosing
the CM as the reference point corresponds to imposing the
Tulczyjew-Dixon SSC Sαβ

� Pβ = 0 [10–12].
One can think of a SSC as the requirement that covariant

boost generators do not contribute to the internal part of the
generalized AM. Accordingly, we can write

Sαβ
u = −εαβμνSuμuν (69)

owing to Eq. (11). In other words, the tensor Sαβ
u represents

the internal AM of the system defined by an observer with
four-velocity uμ relative to S. Working out explicitly the
expression for Sαβ

u in Eq. (67) with the centroid given by
Eq. (63), we find that it is related to the Pauli–Lubański
pseudo-vector as follows

Sαβ
u = −εαβμνWμuν

P · u . (70)

The internal AM defined by an observer with four-velocity
uμ is then given by

Sμ
u = (δμ

ν − uμuν)
W ν

P · u . (71)

For uμ
� = Pμ/M , we naturally recover Jμ

� = Sμ
� = Wμ/M .

4.3 Transverse shifts

Using Eqs. (9) and (21), one can see that the two conserved
quantities Lμ0

u /P0 and Sμ0
u /P0 respectively represent the

initial position of the centroid and the shift of the center of
inertia relative to it

Xμ
u (0) = Lμ0

u

P0 , Qμ
u ≡ Rμ(x0) − Xμ

u (x0) = Sμ0
u

P0 . (72)
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Combined with Eq. (70) for the internal AM, we get

Qμ
u = −εμ0αβWαuβ

P0(P · u)
(73)

which shows that the shift in S is spatial and transverse to
both W and u.

More generally, one can consider the shift8 between any
two centroids at any fixed time x0

Qμ
uv ≡ Xμ

u (x0)− Xμ
v (x0) = Sμ0

v − Sμ0
u

P0 = Qμ
v − Qμ

u . (74)

This shift can also be written as

Qμ
uv = −εμ0αβWαVβ

(P0)2 , (75)

which shows that Qμ
uv is spacelike and orthogonal to both the

Pauli–Lubański pseudo-vector Wμ and the relative velocity
four-vector Vμ ≡ γvv

μ − γuuμ.

4.4 Møller’s disk

Instead of looking at the position of the centroids at some
fixed time in S, we can look at their position at some fixed
proper time τ . A contraction of Eq. (63) with uμ

� allows us
to relate the parameter τu with the proper time τ

τ = τu
M

P · u + Yu · P
M

, (76)

leading to

X̃μ
u (τ ) ≡ Rμ

u (τu(τ )) =
(

τ − Yu · P
M

)
Pμ

M
+ Yμ

u . (77)

This clearly shows that all the centroids have the same four-
velocity uμ

� .
For the proper shift of a centroid relative to the CM Q̃μ

u ≡
X̃μ
u (τ ) − Rμ

� (τ ), we find that it is given by

Q̃μ
u = − Sμν

u Pν

M2 = Sμν
� uν

P · u = −εμναβuνS�αPβ

M(P · u)
. (78)

In other words, the CM is a center of inertia in all Lorentz
frames only when the spin of the system vanishes Jμ

� = Sμ
� =

0. When the latter is nonzero, the proper shift is orthogonal
to Pμ, uμ and Sμ

� , and therefore is the same in both the

8 Recently, the importance of these transverse shifts or “side jumps”
for the Lorentz invariance has been stressed in the context of the chiral
kinetic theory [13,14].

observer’s frame Su and the CM frame S�. In the CM frame,
our expression (78) reduces to [3,6]

Q̃u
S�= −v × S0

M
, (79)

where v = u/u0 is the velocity of the observer relative to S�,

and the spin is given by Sμ
�

S�= (0, S0). By varying the relative
velocity v, we obtain the position of all the centroids relative
to the CM. They form the so-called Møller disk [3,6], which
is orthogonal to the spin of the system S0, has radius

RMøller = |S0|
M

, (80)

and whose geometric center coincides with the CM. The disk
is at rest in S� and moves as a rigid body with constant veloc-
ity in any other frame S. Note that Møller’s disk is an open
set since |v| < 1 for massive observers.

Møller’s disk plays an important role for extended bodies
because it provides a lower bound on the dimensions of a
classical system. If one assumes that (i) the energy density
in the convex spherical hull of the system is positive in any
frame and (ii) the AM is purely orbital, then Møller’s disk lies
fully inside the convex spherical hull [3,6,10]. In other words,
a classical system with spin |S0| and mass M necessarily has
a typical radial dimension r larger than Møller’s radius

r >
|S0|
M

. (81)

This is a purely relativistic effect. Indeed, reinstating the fac-
tor of 1/c in the above expression shows that the lower bound
vanishes in the non-relativistic limit c → ∞. The appearance
of Møller’s radius in a relativistic theory can also be under-
stood somewhat intuitively. If we imagine that the mass M of
an extended body can be concentrated at one of its physical
points P , the spin of the system will then be given by the rota-
tion of P about the axis parallel to S0 passing through the CM.
Denoting the distance between P and the rotation axis by r
and the angular velocity by ω, one finds that |S0| = Mωr2.
Relativity imposes that the velocity of P cannot exceed the
speed of light ωr ≤ c. It then follows that r must be larger
than Møller’s radius.

5 Asymmetric energy-momentum tensor

In the literature, it is often claimed that the fundamental EMT
must be symmetric. This claim is essentially based on two
arguments: (i) in General Relativity the gravitational EMT
of matter, defined as the source of the gravitational field,
appears to be symmetric, and (ii) conservation of the orbital
tensor forces the EMT to be symmetric [9]. These arguments
are however by no means actual proofs [15].
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General Relativity does not require the fundamental EMT
to be symmetric, but simply indicates that only a symmetric
part of it couples to gravitation. Note also that the symmetry
of this gravitational part follows from the assumption that
the torsion of spacetime vanishes. When the latter condi-
tion is relaxed, the gravitational EMT turns out in general
to be asymmetric [16]. Regarding the second argument, the
assumption that the orbital tensor is conserved comes from
Classical Mechanics, where there exists only one form of
AM. As soon as one introduces the intrinsic AM of Quantum
Mechanics, which is a new form of AM, there is no reason to
maintain this assumption. In conclusion, we do not see any
fundamental reason for requiring the EMT to be symmetric.

In field theory, the generic Lorentz transformation law of
a multicomponent relativistic field reads in the active view-
point

φ(x) 	→ φ′(x) = M[Λ] φ(Λ−1x), (82)

where M[Λ] is a matrix acting on the field components. It
then follows from the canonical formalism that the associated
conserved current naturally receives two contributions

Mμαβ(x) = Mμαβ
orb (x) + Mμαβ

int (x). (83)

Beside the orbital (or extrinsic) tensor associated with the
transformation of the point, there is an intrinsic tensor
Mμαβ

int = −Mμβα
int associated with the mixing of the field

components.
From the conservation of Mμαβ(x), one concludes that

the asymmetry of the EMT is related to the non-conservation
of the intrinsic tensor [16–19]

T [αβ](x) = ∂μM
μαβ
orb (x) = −∂μM

μαβ
int (x). (84)

Focusing on the spatial currents αβ = i j , this means that
orbital and intrinsic AM are not separately conserved in gen-
eral. They can be converted into each other owing to spin-
orbit couplings, leading to an asymmetric EMT. This phe-
nomenon is illustrated by e.g. the Einstein-de Haas effect
[20,21] routinely used to measure the gyromagnetic ratio of
atoms and molecules [22].

Because of the non-conservation of the orbital tensor
∂μM

μαβ
orb (x) �= 0, the results of Sect. 4 should not be expected

to hold in general anymore. In particular, the centroids are
not forced to move along straight lines with constant velocity,
so that there can be an exchange of generalized AM between
the external and internal parts. This is annoying since it jeop-
ardizes the usefulness of the concept of center of inertia in
field theory, and hence the clear connection with classical
mechanics.

5.1 Belinfante–Rosenfeld procedure

There exists a freedom in the definition of the EMT and
the generalized AM tensor. Starting from some couple
Tμν(x), Mμαβ(x) a whole family of alternative couples can
be defined by

Tμν
G (x) = Tμν(x) + ∂λG

λμν(x), (85)

Mμαβ
G (x) = Mμαβ(x) + ∂λ[xαGλμβ(x) − xβGλμα(x)],

(86)

where the superpotential is required to satisfy a symmetry
property G[λμ]ν(x) = 0, so that the new tensors remain
conserved and lead to the same Poincaré generators as the
original ones, provided that surface terms vanish at spatial
infinity

Pμ =
∫

d3
ux T

λμ
G (x)uλ =

∫
d3
ux T

λμ(x)uλ, (87)

Jαβ =
∫

d3
ux Mμαβ

G (x)uμ =
∫

d3
ux Mμαβ(x)uμ. (88)

The effect of the superpotential consists therefore in a mere
relocalization of the linear and angular momentum distribu-
tions [16]. In particular, we observe that the superpotential
operates a transfer between orbital and intrinsic tensors

Mμαβ
G,orb(x) = Mμαβ

orb (x) + [xα∂λG
λμβ(x) − xβ∂λG

λμα(x)],
(89)

Mμαβ
G,int(x) = Mμαβ

int (x) − Gμ[αβ](x), (90)

and therefore shifts the position of the centroids by

Qμ
G,u(τu) ≡ Rμ

G,u(τu) − Rμ
u (τu)

= − 1

P · u
∫

d3
ux G

μαβ(x)uαuβ. (91)

Belinfante and Rosenfeld [23–25] noticed that the new
intrinsic part can be set to zero using the particular choice

Gλμν
Bel (x) = 1

2

[
Mλμν

int (x) + Mμνλ
int (x) + Mνμλ

int (x)
]
. (92)

Since the Belinfante–Rosenfeld generalized AM tensor is by
construction purely orbital

Mμαβ
Bel (x) = xαTμβ

Bel (x) − xβTμα
Bel (x), (93)

we fall back to the case studied in Sect. 4. In particu-
lar, it follows from the conservation of the Belinfante–
Rosenfeld generalized AM tensor ∂μM

μαβ
Bel (x) = 0 that the

Belinfante–Rosenfeld EMT is symmetric T [αβ]
Bel (x) = 0, and

the Belinfante–Rosenfeld centroids move along straight lines
with constant velocity as given by Eq. (63)
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Rμ
Bel,u(τu) = τu

Pμ

P · u + Yμ
u with Yμ

u = Jμνuν

P · u . (94)

Because of its symmetry, the Belinfante–Rosenfeld EMT
is often considered in the literature to be more fundamental
than the canonical one. We disagree with this point of view
for several reasons. The first reason is that, as argued above,
there does not exist any fundamental reason which requires
the EMT to be symmetric. Second, the relocalization of lin-
ear and angular momentum distributions in the Belinfante–
Rosenfeld procedure is totally ad hoc and does not follow
from a canonical approach. The last reason is also the most
important one. The Belinfante–Rosenfeld procedure is com-
patible with General Relativity, because the assumed covari-
ance under diffeomorphisms implies that only the charges
(i.e. integrated current densities) can be considered as physi-
cal. In other words, the relocalization of the linear and angu-
lar momentum distributions is considered to be unphysical
and hence harmless. Orbital and intrinsic forms of AM seem
therefore indistinguishable in the context of general relativity.
This is at odds with quantum mechanics, where orbital and
intrinsic forms of AM are fundamentally different and dis-
tinguishable, as confirmed by numerous experiments. Linear
and angular momentum distributions cannot be relocalized
at will. In our view, the Belinfante–Rosenfeld procedure cor-
responds actually to an effective description of the system,
where the intrinsic contribution is mimicked by a modifica-
tion of the distribution of energy and momentum. For further
discussions about canonical and Belinfante–Rosenfeld ten-
sors, see [2].

5.2 Intrinsic energy dipole moment

It follows from Eq. (83) that the generalized AM tensor can
be covariantly decomposed as

Jαβ = Mαβ
orb,u(τu) + Mαβ

int,u(τu), (95)

where the separate orbital and intrinsic contributions are
in general time-dependent. The Belinfante–Rosenfeld cen-
troids are therefore shifted from the original ones

Rμ
Bel,u(τu) = Rμ

u (τu) + Qμ
int,u(τu) (96)

by a term depending on the intrinsic part9

Qμ
int,u(τu) = Mμν

int,u(τu)uν

P · u . (97)

Accordingly, the quantity

Dμ
int,u(τu) ≡ Mμν

int,u(τu)uν = −Kμ
int,u(τu) (98)

9 For this reason, the Belinfante–Rosenfeld CM Rμ
Bel,� has been coined

“center of mass and spin” by Medina and Stephany [26–28].

can be interpreted as an intrinsic covariant energy dipole
moment. Like spin, it is an intrinsic property of elemen-
tary particles. Its time dependence indicates that, just like
AM, some energy dipole moment can be exchanged between
orbital and intrinsic parts. It is because of this exchange that
the relativistic CM theorem does not hold in general. Since
the covariant centroid velocity is given by

Ṙμ
u (τu) = J μ

u (τu)

P · u , (99)

this amounts to say that the covariant energy current
J μ
u (τu) ≡ ∫

d3
ux T

μν(x)uν is in general time-dependent.

5.3 Intrinsic spin conjecture

Instead of following the Belinfante–Rosenfeld procedure and

demanding that the new intrinsic tensor vanishes Mμαβ
G,int(x)

!=
0, we observe from Eq. (96) that we can impose a weaker
condition to recover the validity of the relativistic CM the-
orem. We simply require that all the intrinsic energy dipole
moments must vanish

Dμ
int,u(τu) =

∫
d3
ux Mλμν

int (x)uλuν
!= 0, ∀ uμ timelike.

(100)

Combined with the antisymmetry in the last two indices
Mμ[αβ]

int = 0, this amounts to requiring the intrinsic tensor
to be totally antisymmetric, and hence expressible in terms
of a sole pseudo-vector Aλ(x) ≡ 1

3! ελμαβ Mμαβ
int (x) as fol-

lows

Mμαβ
int (x)

!= εμαβλ Aλ(x). (101)

For example, the pseudo-vector is related to the axial-vector
bilinear Aμ

1/2(x) = 1
2 ψ(x)γ μγ5ψ(x) in Dirac theory, and to

the Chern–Simons current Aμ
1 (x) = − 1

3 εμναβ Aν(x)Fαβ(x)
in Maxwell theory.10 We will refer to the condition in
Eq. (101) as the intrinsic spin conjecture (ISC), since it
enforces the intrinsic part to contribute to the rotation gener-
ators only

Kμ
int,u(τu) = 0, Jμ

int,u(τu) = (
δμ
ν − uμuν

)
sν
u (τu) (102)

with sμ
u (τu) = ∫

d3
ux Aμ(x). In other words, elementary par-

ticles are characterized by some intrinsic AM but no intrinsic
energy dipole moment11 [32].

10 For a gauge-invariant formulation, see [29].
11 For a discussion about particles with non-vanishing intrinsic energy
dipole moment, see [30,31].
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Differentiating Eq. (84) and using the antisymmetry of the
intrinsic tensor in its first two indices implies that the EMT
satisfies another conservation law

∂νT
μν(x) = 0 (103)

beside the usual one ∂μTμν(x) = 0. Clearly, this condition
is fulfilled when the EMT is symmetric, but it is not a nec-
essary requirement. It follows from this new conservation
law that the covariant energy current is time-independent
J̇ μ
u (τu) = 0, confirming that the relativistic CM theorem

holds, see Eq. (99).
The validity of the CM theorem is sufficient to recover the

results obtained in Sects. 4.2–4.4. The only difference is that
now the internal part can be further decomposed as follows

Sαβ
X (τu) = �

αβ
Xu(τu) + sαβ

u (τu), (104)

where the orbital and intrinsic contributions are given by

�
αβ
Xu(τu) =

∫
d3
ux

[
(xα − Xα(τu)) T

μβ(x)

−(xβ − Xβ(τu)) T
μα(x)

]
uμ, (105)

sαβ
u (τu) =

∫
d3
ux Mμαβ

int (x)uμ = −εαβμνsuμ(τu)uν . (106)

For later convenience, we left open the possibility to use a
reference point Xμ(τu) different from the centroid Rμ

u (τu).
Because of the ISC we have the relation sαβ

u (τu)uβ = 0, and
so the shift of the centroid relative to the reference point is
simply given by

Rμ
u (τu) − Xμ(τu) = Sμν

X (τu)uν

P · u = �
μν
Xu(τu)uν

P · u . (107)

Moreover, if Xμ
v (τu) is the centroid defined by some observer

with four-velocity vμ relative to the Lorentz frame S, we can
write

�αβ
vu (τu)vβ = εαβμνvβsuμ(τu)uν, (108)

since the SSC Sαβ
v vβ = 0 (68) is satisfied by definition of

the centroid.

5.4 Elementary particles

A free elementary particle has by definition no internal struc-
ture and is usually pictured as a pointlike object. Where
is this point located? It is often thought that the answer
is either the center of inertia or the reference point, but
the correct one is the CM, because it is the only physical
point (i.e. with components transforming as a Lorentz four-
vector) unambiguously defined by the system. In the CM

frame, there is no ambiguity since the particle is at rest and
the CM coincides with the center of inertia. Moreover, the
AM is purely internal and hence independent of the refer-
ence point. In this frame, we therefore expect that the EMT

takes the form Tμν(x)
S�= η0μη0ν δ(4)(x − R�(τ )), where

ημν = diag(+1,−1,−1,−1) is the Minkowski metric, lead-

ing to �
αβ
� (x0)

S�= 0 and hence Jμ
�

S�= sμ
� (x0).

The situation is more complicated for a moving parti-
cle. Indeed, the canonical description of a moving state is
obtained from a rotationless boost applied to a state at rest
[33]. Since the definition of rotationless boosts depends on
the observer, one may expect that the reference point nat-
urally associated with this moving state (hereafter called
canonical reference point) will be observer-dependent.12 The
naive guess would be that the canonical reference point
Rμ(x0) does coincide with the center of inertia Rμ(x0). A
careful calculation shows that it lies in fact somewhere in
between the center of inertia and the CM, see Appendix B. As
a result, the internal AM will receive in general both orbital
and intrinsic contributions Sμ

R = �
μ

R(x0) + sμ(x0), because
the canonical reference point appears to be shifted sideways
relative to the CM when polarization is not aligned with
momentum. This simple phenomenon explains why the lon-
gitudinal spin decomposition is frame-independent whereas
the transverse spin decomposition is not. It can be illustrated
with the example of a Dirac particle.

A free elementary spin- 1
2 particle with mass m, momen-

tum p, energy E = √
p2 + m2, and canonical polarization

s =↑,↓ can be described by the positive-energy Dirac spinor

ψ p,s(x) = u( p, s) e−i p·x . (109)

In the standard representation with spin quantization axis
along the z-direction, the momentum-space spinor reads

u( p, s) = √
E + m

(
χs

p·σ
E+m χs

)
with χ↑ =

(
1
0

)
, χ↓ =

(
0
1

)
.

(110)

It contains13 both an s-wave (upper two components) and a
p-wave (lower two components). The AM sum rule reads

1

2
= 1

2E
u( p,↑)

12 Thomas precession can then be understood as a pure kinematic effect
arising from a continuous change of canonical reference point [6,34,35].
13 In the language of first quantization, the upper and lower compo-
nents of the Dirac spinor are simultaneous eigenstates of the longi-
tudinal intrinsic AM operator Ŝz = 1

2 γ 3γ5 and orbital AM operator

L̂ z = γ 0
(
pR

∂
∂pR

− pL
∂

∂pL

)
. For a state with polarization s =↑ corre-

sponding to the eigenvalue of total AM jz = + 1
2 , the upper components

have eigenvalues sz = + 1
2 and lz = 0, and the lower components lead

to a superposition of sz = + 1
2 and lz = 0 with sz = − 1

2 and lz = +1.
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×
[

1

2
γ 3γ5 + γ 0

(
pR

∂

∂pR
− pL

∂

∂pL

)]
u( p,↑),

(111)

where pR,L = p1±i p2. The first term represents the intrinsic
contribution and the second term represents the OAM con-
tribution defined relative to the canonical reference point,
which is set at the origin of the coordinate system so that
the external AM vanishes. In the rest frame of the particle
p = 0, the p-wave vanishes and the AM is purely intrinsic.
When the particle is moving p �= 0, the p-wave sets in and
provides the orbital contribution to the AM. As the momen-
tum increases, the contribution from the p-wave becomes
more and more important, and ultimately reaches the same
weight as the s-wave in the ultrarelativistic limit | p| → ∞.
As long as the momentum remains parallel to spin, the AM
will be purely intrinsic because the orbital contribution of
the p-wave vanishes (this corresponds to l = 1 but lz = 0).
As soon as the momentum develops a component orthogonal
to spin, the intrinsic contribution decreases and is compen-
sated by an increase of the orbital contribution. In the limit of
infinitely large transverse momentum, the intrinsic contribu-
tion vanishes (or better averages out between s and p-waves)
so that the AM becomes purely orbital. In this ultrarelativis-
tic limit, the value 1

2 for the AM arises from the average
of an s-wave and a p-wave with equal weight. This gen-
eralizes straightforwardly to spin- j particles with maximal
polarization orthogonal to momentum, where the AM in the
ultrarelativistic regime arises from the average of 2 j partial
waves with equal weight 1

2 jmax+1

∑2 jmax
lmax=0 lmax = jmax, with

lmax and jmax denoting the maximal projections of orbital
and total AM along the quantization axis, respectively.

Why does the canonical reference point depend in gen-
eral on the observer? The reason is simply because we are
considering eigenstates with a fixed (quantized) eigenvalue
of the internal AM.

We have seen that Jαβ behaves as an antisymmetric rank-
2 Lorentz tensor. It then follows that, like for the components
of the electromagnetic field, the value of J z will depend on
the frame, see Eq. (17). There is no way to preserve in gen-
eral the value of J z under a canonical boost. Unlike Jαβ , the
external and internal parts need not transform individually
as antisymmetric rank-2 Lorentz tensors. They will behave
as Lorentz tensors only if the coordinates of the reference
point Xμ transform as a Lorentz four-vector, i.e. only when
the reference point is a physical point that does not depend
on the observer. If we choose a reference point whose com-
ponents do not transform as a Lorentz four-vector, i.e. whose
definition depends on observer like e.g. the center of inertia,
there is a possibility to preserve the value of the internal AM.

The canonical reference point Rμ, derived in Appendix
B, is precisely the one for which the internal AM SzR stays
constant under a canonical Lorentz transformation from the

rest frame. In the rest frame, the canonical reference point
coincides with the CM. When the momentum of the system is
increased by a canonical boost, the canonical reference point
shifts away from the CM and generate an additional OAM
contribution which ensures that the internal AM SzR remains
the same in any frame. In other words, the appearance of a
p-wave in the Dirac plane-wave solutions can be understood
as a relativistic quantum-mechanical effect.

Usually, one identifies for convenience the origin O of
the coordinate system with the canonical reference point R
to get rid of the external AM contribution represented by the
first term on the right-hand side of Eq. (198). This amounts
to identifying the total AM with the internal part J z = SzO =
SzR. In the above discussion, it was essential to distinguish
total AM from the internal part, since otherwise one would
have concluded that the origin gets shifted under Lorentz
boosts!

6 Recap of the generalized angular momentum
decomposition

As we have seen, the generalized AM can be decomposed
in several ways. In order to clarify the global picture and
the terminology, we pause for a moment and summarize the
general structure of this decomposition.

(1) By choosing an observer, the generalized AM can be
decomposed into boost and angular momentum contri-
butions.

(2) By choosing a reference point (or pivot), boosts and AM
can further be decomposed into external (or translation-
dependent) and internal (or translation-independent)
contributions.

(3) Boosts are purely orbital (or extrinsic), whereas AM
receives both orbital and intrinsic contributions.

(4) When the system consists of several types of con-
stituents, all the above contributions can further be
decomposed according to the constituent types.

We also summarize the terminology

(1) The spin of a system is the AM defined by an observer
sitting in the CM frame. It is purely internal and decom-
poses into orbital and intrinsic contributions when seen
from a generic Lorentz frame.

(2) The center of mass is the particular reference point for
which boosts defined by an observer sitting in the CM
frame become purely external. It coincides with the cen-
ter of inertia (or energy) in the CM frame.

(3) The canonical reference point is the pivot about which
the internal AM remains constant under canonical
boosts.
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7 Light-front formalism

Dirac showed that there exist several forms in which rel-
ativistic dynamics can be formulated [36]. So far, we have
considered the so-called instant form, which is naturally asso-
ciated with massive observers. In the context of high-energy
physics, where mass effects can often be neglected, it is the
so-called front form that appears to be more useful [37].

The covariant formulation used in this paper allows us to
easily transpose the results obtained in instant form to the
light-front (LF) formalism. In the covariant formulation of
instant form, an observer is characterized by a timelike unit
four-vector uμ representing its four-velocity relative to the
Lorentz frame S. In the covariant formulation of front form
we obtain the same expressions, but this time an observer
will be characterized by a lightlike four-vector nμ [38]. In
some sense, using the front form of dynamics amounts to
adopting the point of view of a massless observer, formalizing
therefore Einstein’s thought experiment of riding a photon.
Note that instant and front forms coincide in the infinite-
momentum frame since

lim|u|→∞
uμ

u0 ∝ nμ with u0 =
√
u2 + 1. (112)

7.1 Light-front components

For later convenience, we introduce the dual lightlike four-
vector n̄μ satisfying by definition n̄ ·n = 1. The two lightlike
four-vectors can then be used to perform the Sudakov decom-
position of any four-vector

aμ = a+n̄μ + a−nμ + aμ
⊥, (113)

where the LF components are defined as a+ ≡ a · n and
a− ≡ a · n̄, and the transverse components by aμ

⊥ ≡ η
μν
⊥ aν

with the transverse projector η
μν
⊥ = ημν − nμn̄ν − n̄μnν .

The scalar product of two four-vectors can be written as

a · b = a+b− + a−b+ + a⊥ · b⊥. (114)

In the particular case of four-position and four-momentum,
we find x · P = x+P− + x−P+ + x⊥ · P⊥. If we choose x+
to the represent the LF time coordinate, then the LF energy
component is represented by P−, whereas the LF (longitudi-
nal) components of position and momentum are represented
by x− and P+, respectively. Note that for a massive system,
we have P± > 0.

In the LF formalism, the generalized AM tensor can be
written as

Jαβ = −K α
n n̄

β + K β
n n̄

α − εαβμν Jnμnν, (115)

where the covariant LF boost and rotation generators are
defined by

Kμ
n ≡ −Jμνnν and Jμ

n ≡ 1
2 εμαβλ Jαβ n̄λ. (116)

In particular, we have K+
n = 0 and J−

n = 0.
The LF operators can naturally be expressed in terms of

the standard ones in instant form. We can write in general

nμ = (1, n)Λ, n̄μ = (1,−n)/2Λ (117)

with n a unit vector representing in the Lorentz frame S the
direction of motion of the massless observer,14 and Λ some
nonzero scaling factor. The LF longitudinal momentum and
energy are then given by

P+ = (P0 − P · n)Λ, P− = (P0 + P · n)/2Λ. (118)

The transverse momentum components Pi⊥ are obviously
the same in both instant and front forms. The covariant LF
Lorentz generators correspond to particular combinations of
covariant instant form boost and rotation generators

Kμ
n = Kμ

u (u · n) − uμ(Ku · n) + εμναβnν Juαuβ, (119)

Jμ
n = Jμ

u (u · n̄) − uμ(Ju · n̄) − εμναβ n̄νKuαuβ. (120)

Note that in the Su frame, the longitudinal components in
both forms are simply proportional to each other

K−
n

Su= K · n, J+
n

Su= −J · n, (121)

whereas the transverse components get mixed

K n⊥
Su= [K⊥ + (n × J)⊥] Λ,

Jn⊥
Su= [J⊥ + (n × K )⊥] /2Λ. (122)

7.2 Center of light-front momentum

Substituting uμ by nμ in Eq. (50), we see that the role of
inertia in the LF formalism is taken over by the LF momen-
tum. The coordinates of the LF centroid (or center of LF
momentum) are then defined by15

Rμ
n (x+) = 1

P+

∫
d3
nx x

μT++(x). (123)

14 In practice, one usually makes the canonical choice n = −ez corre-
sponding to the viewpoint of a photon moving along the −z direction.
15 One could also in principle define the center of LF energy Rμ

n̄ (x+) =
1
P−

∫
d3
nx x

μT+−(x), which is less interesting because P− does not
leave the LF hyperplane x+ = 0 invariant, unlike P+.
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Provided that the ISC holds, the LF centroid moves along a
straight line with constant LF velocity

Rμ
n (x+) = x+ Pμ

P+ + Yμ
n with Yμ

n = Jμ+

P+ . (124)

Looking at the μ = 0 component allows us to relate the LF
time coordinate with the ordinary time coordinate in S

x0 = x+ P0

P+ + Y 0
n (125)

and to reparametrize the LF centroid worldline as follows

Xμ
n (x0) ≡ Rμ

n (x+(x0)) =
(
x0 − Y 0

n

) Pμ

P0 + Yμ
n . (126)

This shows that the LF centroid moves along a line parallel
to the instant form centroids with the same constant velocity.

7.3 Møller’s circle

One can naturally also express the LF time coordinate in
terms of the proper time τ

τ = x+ M

P+ + Yn · P
M

. (127)

The LF centroid worldline then reads

X̃μ
n (τ ) ≡ Rμ

n (x+(τ )) =
(

τ − Yn · P
M

)
Pμ

M
+ Yμ

n , (128)

and appears to be shifted relative to the CM by

Q̃μ
n ≡ X̃μ

n (τ ) − Rμ
� (τ ) = − Sμν

n Pν

M2 = Sμ+
�

P+

= −εμαβ+S�αPβ

MP+ . (129)

Note that the shift is manifestly independent of the scal-
ing factor Λ, since both the numerator and the denominator
involve the same number of contractions with nμ. In the CM
frame, the shift reduces to

Q̃n
S�= −n × S0

M
. (130)

Since n is a unit vector, we see that the set of all LF centroids
forms a circle corresponding to the boundary of Møller’s disk.
This is in line with the interpretation of the LF formalism as
corresponding to the viewpoint of massless observers, i.e.
observers moving at the speed of light.

7.4 Impact-parameter distributions

The LF formalism is well suited to study the internal struc-
ture of the nucleon, see e.g. [37,39–41]. In particular, non-
perturbative correlation functions extracted from deeply vir-

tual Compton scattering experiments, known as generalized
parton distributions (GPDs), have attracted a lot of attention
in the last two decades [42–44]. The reason for this is because
GPDs were shown to give access to the EMT and hence to the
AM content of the nucleon [45], and to provide tomographic
pictures of the internal structure in impact-parameter space
[46,47]. One can even map out the distribution of AM in
impact-parameter space [48].

It has been observed that the impact-parameter distribu-
tions (IPDs) get distorted whenever the state is transversely
polarized [47,49,50]. These distortions are understood as
originating from a relativistic artifact of the LF formalism
associated with the internal OAM of quarks and gluons inside
the target. When the target is a charged elementary particle,
there is no substructure at leading order in QED. The internal
OAM must therefore vanish at that order, leading immedi-
ately to an unambiguous definition of the natural values for
the electromagnetic moments [51]. In particular, we found
that the gyromagnetic ratio of elementary particles is given
by g = 2 at tree level for any spin.

Using the following general parametrization for the matrix
elements of the Belinfante–Rosenfeld EMT in a spin- 1

2 state

〈p′,S′|Tμν
q (0)|p,S〉

= u(p′,S′)
[
P{μγ ν}

2
Aq(Δ

2) + P{μiσν}λΔλ

4M
Bq(Δ

2)

+ΔμΔν − ημνΔ2

M
Cq(Δ

2) + MημνC̄q(Δ
2)

]
u(p,S),

(131)

where a{μbν} = aμbν + aνbμ and with P = p′+p
2 the

average momentum, Δ = p′ − p the momentum transfer,
M the mass, and S (S′) the initial (final) polarization four-
vector of the state, Ji derived in the seminal paper [45] a
relation between the quark contribution to internal AM and
the energy-momentum form factors

Jq = 1
2

[
Aq(0) + Bq(0)

]
. (132)

Moreover, he showed that these energy-momentum form fac-
tors can be expressed in terms of twist-2 quark vector GPDs

Aq(0) =
∫

dx xHq(x, 0, 0),

Bq(0) =
∫

dx xEq(x, 0, 0), (133)

where x is the fraction of LF momentum carried by the quark.
For a recent review of the GPD phenomenology, see [52].

Burkardt investigated in Ref. [53] the relation between
AM and transverse distortions of IPDs. Focusing on the
“good” LF component of the Belinfante–Rosenfeld quark
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EMT, he found for a nucleon at rest with transverse polariza-
tion

〈ψ |
∫

d3
nx x

i⊥T++
q (x)|ψ〉∣∣x+=0

S�= N ε
i j
⊥S j

⊥ Jq P
+, (134)

where ε
i j
⊥ ≡ εi j+− and N is a normalization factor

depending on the wave packet |ψ〉. A similar result was
obtained using a tower of twist-2 operators generalizing
the Belinfante–Rosenfeld AM density [54] or the Pauli–
Lubański pseudo-vector [55]. In his derivation, Burkardt
insisted on the fact that |ψ〉 must be a delocalized state
centered around the origin. Indeed, if one uses the stan-
dard transversely polarized LF state localized at the LF cen-
troid, one would find 1

2 Bq(0) instead of Jq on the RHS of
Eq. (134). Based on the Melosh-Wigner rotation relating
canonical polarizations in instant and front forms [56–58],
Burkardt argued that the LF wave packet of a transversely
polarized spin- 1

2 state must be shifted sideways by half a
Compton wavelength relative to the instant form one. This
shift adds a contribution proportional to 1

2 Aq(0), leading then
to Eq. (134).

The distortions of the IPDs in the LF formalism and their
relation to AM can be more easily understood based on the
results obtained in the previous sections. We will work at a
fixed LF time x+ = 0 and drop all references to it in the
following for convenience. Let us write the quark LF boost
generators as the following telescoping series

Jμ+
q =

(
Rμ
qn − Rμ

n

)
P+
q +(

Rμ
n − Xμ

�

)
P+
q +Xμ

� P+
q , (135)

where Rμ
qn , Rμ

n and Xμ
� are the positions at x+ = 0 of the

LF centroid of the quark subsystem, the LF centroid of the
whole system, and the CM of the whole system, respectively.
The first term of this series can be expressed as

(
Rμ
qn − Rμ

n

)
P+
q =

∫
d3
nx

(
xμ − Rμ

n

)
T++
q (x), (136)

and represents the LF dipole moment of the quark subsystem
relative to the LF centroid. Focusing on the transverse LF
components μ = i , we get(

Ri
qn⊥ − Ri

n⊥
)
P+
q

=
∫

d2b⊥ bi⊥
∫

dx−T++
q (x−, b⊥ + Rn⊥), (137)

where b⊥ is the usual impact-parameter variable defined as
the transverse position relative to the LF centroid.

The “position” of a system is usually identified with that
of the canonical reference point,16 see Appendix B. In the LF

16 We used the word position with quotation marks because its defini-
tion depends on the observer, and therefore does not represent the actual

formalism, the canonical reference point coincides with the
LF centroid. If we set the origin of the coordinate system at
the LF centroid, the last two terms in Eq. (135) cancel each
other and we are left with the first one. This term provides the
LF dipole moment associated with the distortions of the IPDs,
and reads in terms of the energy-momentum form factors [47]
〈(
Ri
qn⊥ − Ri

n⊥
)
P+
q

〉
= −ε

i j
⊥S j

⊥
Bq(0)

2M
P+. (138)

In instant form, the canonical reference point coincides in the
rest frame with the CM. If we set the origin of the coordinate
system at the CM, only the last term in Eq. (135) vanishes.
Beside the contribution (138), we have another one which
takes into account the shift between the LF centroid and the
CM. Focusing on the transverse LF components, we find
(
Ri
n⊥ − Xi

�⊥
) S�= −ε

i j
⊥S j

⊥
|S0|
M

(139)

using Eq. (130). For a spin- 1
2 state we have |S0| = 1

2 , giving
the shift by half a Compton wavelength between instant and
front forms advocated by Burkardt. It simply arises from the
dependence of the canonical reference point on the observer.
We do not need to invoke Melosh-Wigner rotation effects17

and delocalized wave packets. Now since 〈P+
q 〉 = Aq(0)P+,

we finally get
〈(
Ri
n⊥ − Xi

�⊥
)
P+
q

〉 S�= −ε
i j
⊥S j

⊥
Aq(0)

2M
P+. (140)

Gathering all the contributions, we find that in the rest
frame with the CM sitting at the origin of the coordinate
system

〈J i+q 〉 S�= −ε
i j
⊥S j

⊥ Jq
P+

M
, (141)

which agrees with Eq. (134). In the RHS, we used the
fact that the combination of energy-momentum form fac-
tors 1

2

[
Aq(0) + Bq(0)

]
is precisely the one giving the quark

contribution to the nucleon spin Jq (132).

7.5 Interpretation of Ji’s relation

Twenty years ago, Ji looked for a Lorentz-invariant spin sum
rule. For a spin- 1

2 state, he wrote [61]

1

2
=

∑
a

〈p,S|S · Wa(0)|p,S〉 , (142)

Footnote 16 continued
position of the system which should better be identified with that of the
CM, see Sect. 5.4.
17 Melosh–Wigner rotation effects and dependence of the canonical
reference point on the observer are however related as they both arise
from the use of a particular subset of Lorentz transformations in the
definition of moving states [33]. This provides a new perspective on the
origin of model relations among various parton distributions and OAM
[59,60].
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where the Pauli–Lubański pseudo-vectorWμ = ∑
a Wμ

a (x0)

has been decomposed into contributions associated with the
various types of constituents. Choosing the z-axis along the
momentum of the system and the longitudinal polarization
S ‖ p, he obtained the helicity sum rule

1

2
=

∑
a

〈p,+ 1
2 |J za (0)|p,+ 1

2 〉. (143)

In particular, the quark contribution to the nucleon spin is
defined as

Jq =
〈
p,+ 1

2 |J zq (0)|p,+ 1
2

〉
, (144)

and can be expressed in terms of the energy-momentum form
factors as in Eq. (132). This matrix element is valid for any
momentum p as long as one considers longitudinal polariza-
tion.

Reading Eq. (134) backwards suggests another interpre-
tation of Ji’s relation (132) in terms of transverse polariza-
tion instead of longitudinal polarization [53,55]. It can be
regarded as the sum of two contributions: a term 1

2 Bq(0)

arising from the distortion of the IPD in the LF formalism
when the state is transversely polarized, supplemented by a
term 1

2 Aq(0) arising from an overall transverse shift when
going from transversely polarized states at rest in instant
form to front form. Pushing the interpretation further, it
has even been suggested [53–55] that the GPD combination
Jq(x) ≡ x

2

[
Hq(x, 0, 0) + Eq(x, 0, 0)

]
should be regarded

as the distribution of quark internal AM in x-space for a
transversely polarized target. This simple partonic interpre-
tation is however not well founded [2,62], one of the reasons
being that although the quantity Jq appears on the RHS of
Eq. (134), the LHS corresponds actually to the matrix ele-
ment of the transverse LF boost generators at x+ = 0 and
not the transverse AM as one would naively expect [63,64].
Moreover, we note that Eq. (134) provides a relation between
boost generators and spin only at the level of matrix elements.
Since interpretations made at the level of matrix elements
may be misleading [65], one should first determine whether
this relation remains valid at the operator level. We doubt this
is possible because the dependence on the momentum frac-
tion x , being obtained through a non-local operator, cannot
unambiguously be related to Ji’s AM [62,66,67].

Ji et al. [68,69] tried to justify the above alternative inter-
pretation of Ji’s relation starting from the quark contribution
to the Pauli–Lubański pseudo-vector

Wμ
q (x+) ≡ 1

2 εμαβλ Jqαβ(x+)Pλ. (145)

To do so, they discarded by hand an annoying term involv-
ing the C̄q(0) energy-momentum form factor, motivated by

the fact that
∑

a C̄a(Δ
2) = 0 as a consequence of the con-

servation of the EMT. This is obviously not an acceptable
argument when quark and gluon contributions are considered
separately. The annoying term has been derived explicitly in
both instant and front forms, and shown to depend on the
observer [70–72].

Once again, we can easily understand the above observa-
tions based on the results obtained in the previous sections.
The quark contribution to the generalized AM tensor at a
fixed LF time can be written as

Jαβ
q (x+) = Xα

� (x+)Pβ
q (x+) − Xβ

� (x+)Pα
q (x+) + Sαβ

q,�(x
+).

(146)

The quark contribution to the Pauli–Lubański pseudo-vector
introduced by Ji, Xiong and Yuan then reads

Wμ
q (x+) = εμαβλX�α(x+)Pqβ(x+)Pλ

+ 1
2 εμαβλSq,�αβ(x+)Pλ. (147)

Because of the first term on the RHS, we see that Wμ
q (x+)

does not represent in general the quark contribution to the
nucleon spin despite the fact that

∑
a Wμ

a (x+) = Wμ. When
summed over all quark and gluons contributions, this first
term does however vanish owing to energy-momentum con-
servation

∑
a Pμ

a (x+) = Pμ. At the initial LF time x+ = 0,
we get

〈Wμ
q 〉 = εμαβλ〈X�αPqβ〉Pλ + 〈Jμ

q 〉. (148)

Treating with care the matrix elements as explained in
Appendix B, we find using the parametrization (131) that
the first term on the RHS is precisely the annoying one pro-
portional to C̄q(0). Since this term is external, it depends on
the choice of origin. Setting as usual the origin at the canon-
ical reference point explains the observer dependence found
in [70–72]. Clearly, the only proper ways to get rid of the
annoying term is to either restrict ourselves to the longitu-
dinal component like Ji did originally [61], or set the origin
at the CM of the system. Note that based on Eq. (146), one
can also easily understand the frame dependence of the trans-
verse AM decomposition obtained in instant form by Leader
[2,73].

8 Conclusions

Motivated by the question of orbital angular momentum in
hadronic physics, we reviewed the concept of relativistic cen-
ter of mass in field theory. We extended the discussion to
asymmetric energy-momentum tensors and the light-front
formalism which constitute the most suitable framework to
study the nucleon internal structure.
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We found that the canonical reference point with respect
to which orbital angular momentum is defined in field theory
depends on the observer. This dependence arises because
of the quantization of angular momentum in a relativistic
theory, and provides a simple explanation for the presence
of a p-wave in the plane-wave solutions to Dirac equation. It
clarifies the difference between longitudinal and transverse
spin sum rules, and the origin of various induced shifts and
distortions observed in the distributions defined within the
light-front formalism.

The results presented in this work are expected to provide
a new perspective on various phenomena like e.g. Thomas
precession, Zitterbewegung, and other effects associated with
relativistic spin-orbit coupling.
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A Poincaré algebra

The generators Pμ and Jαβ satisfy the Poincaré algebra
defined by the following set of (equal-time) Poisson brack-
ets18 [74]

{Pμ, Pν}PB = 0, (149)

{Pμ, Jαβ}PB = ημαPβ − ημβ Pα, (150)

{Jμν, Jαβ}PB = ημα Jβν − ημβ Jαν + ηνα Jμβ − ηνβ Jμα.

(151)

The first bracket indicates the four-momentum is invariant
under spacetime translations. In particular, it is conserved
in the sense that it does not depend on time. The other two
brackets enforce the components of Pμ to transform as a
Lorentz four-vector and the components of Jαβ to trans-
form an (antisymmetric) rank-2 Lorentz tensor. Contracting
Eqs. (149) and (150) with Pμ shows that P2 has vanish-
ing Poisson bracket with all the Poincaré generators, and can
therefore be used as a frame-independent label of the system.

18 Since at the classical level the generators are functionals of the fields,
the Poisson brackets of two generators are defined as {A, B}PB =∫

d3x
∑

a

[
δA

δφa (x)
δB

δπa (x)
− δA

δπa (x)
δB

δφa (x)

]
, where πa(x) is the conjugate

field of φa(x). In the quantum theory, Poisson brackets are replaced by
the standard commutators {A, B}PB 	→ 1

i [A, B].

The Poincaré algebra becomes more transparent when
expressed in terms of the generators defined in some Lorentz
frame S. Denoting by H = P0 the Hamiltonian of the sys-
tem, one finds that

{Pi , H}PB = 0, {J i , H}PB = 0, {Ki , H}PB = −Pi . (152)

Since the Poincaré generators are time-independent, these
relations indicate that only the boost generators involve the
time coordinate explicitly owing to

0 = K̇ i = {Ki , H}PB + ∂t K
i (153)

with K̇ i = dKi/dt . At the same time, the relations (152)
indicate that the energy of the system is invariant under trans-
lations and rotations, but gets mixed up with momentum
under boosts.

One gets also from the Poincaré algebra

{Pi , J j }PB = εi jk Pk,

{J i , J j }PB = εi jk J k,

{Ki , J j }PB = εi jk K k (154)

that P , J and K transform as ordinary three-vectors under
rotations. Moreover, these relations tell us that total AM
depends explicitly on the coordinates of some particular point
owing to

0 = dJ i/dx j = −{J i , P j }PB + ∇ j J i , (155)

and gets mixed up with boosts under boosts. Total AM con-
tains OAM which is defined with respect to a pivot, and so
explicitly depends on the coordinates X of the latter. In prac-
tice, the pivot is identified with the origin of the coordinate
system X = 0, see Eq. (39). One therefore omits to write this
dependence and identifies x with the position relative to the
pivot. Under an active translation generated by the Poisson
brackets, the system is translated by an infinitesimal amount,
but the pivot remains at the origin. This changes the total
AM and explains the nonvanishing of {J i , P j }PB. The latter
can however be compensated by an infinitesimal translation
of the pivot represented by the term ∇ j J i . In other words,
Eq. (155) expresses the invariance of total AM when both
the system and the pivot are translated.

The last set obtained from the Poincaré algebra reads

{Pi , P j }PB = 0,

{Ki , P j }PB = −δi j H,

{Ki , K j }PB = −εi jk J k . (156)

These relations indicate that contrary to momentum, boosts
do also depend explicitly on the coordinate of some particular
point. Moreover, they confirm that boosts mix momentum
with energy, and boosts with rotations.
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A.1 Poincaré generators relative to a generic frame

The previous discussion about the Poincaré generators can
be done in a more covariant way. Note that the object uμ

introduced in Sect. 2.2 is an auxiliary four-vector, in the
sense that it transforms as a four-vector under a change of
reference frame S (passive transformation), but has vanish-
ing Poisson brackets with all Poincaré generators (active
transformation).

Just like the generators of Lorentz transformations (11)
can be decomposed into generators of boosts and rotations
relative to Su , the four-momentum can be decomposed into
Hamiltonian and momentum operators

Pμ = Huu
μ + Pμ

u , (157)

where Hu ≡ P · u and Pμ
u ≡ Δ

μν
u Pν with the projector

Δ
μν
u ≡ ημν − uμuν . In terms of these covariant generators,

the Poincaré algebra reads

{Hu, P
μ
u }PB = 0, {Pμ

u , Pν
u }PB = 0,

{Hu, J
μ
u }PB = 0, {Aμ

u , J ν
u }PB = −εμναβ Auαuβ with Aμ

u = Pμ
u , Kμ

u , Jμ
u ,

{Hu, K
μ
u }PB = Pμ

u , {Pμ
u , K ν

u }PB = −Δμν
u Hu,

{Kμ
u , K ν

u }PB = εμναβ Juαuβ.

(158)

Among all the possible Lorentz frames Su , a special role
is played by the system rest frameS�. This frame is identified
by the four-velocity uμ

� = pμ/m, withm the proper mass and
pμ the four-momentum obtained from the evaluation of the
spacetime translation generators Pμ for the particular field
configuration describing the system.19 In particular, we have

mK � = p0K + ( p × J), m J� = p0 J − ( p × K ), (159)

which are naturally reminiscent of the Lorentz transforma-
tion laws for the electric and magnetic fields. Note that
because of {Ki , P j }PB = −δi j H , it is possible to set the field
evaluation of the boost generators to zero through a suitable
translation. Denoting the field evaluation of the generators
by the corresponding lower case letters, we get

mk� = p × j , m j� = p0 j . (160)

We therefore find that A ≡ mk� is nothing but the (relativis-
tic version of the) Laplace–Runge–Lenz vector of Classical
Mechanics in absence of external forces.

19 In the quantum theory, pμ corresponds to the expectation value of
the four-momentum operator Pμ.

A.2 Poincaré generators relative to the instantaneous rest
frame

Instead of working with an auxiliary four-vector uμ, we can
use the generators of spacetime translations Pμ to define

Nμ ≡ −Jμν Pν, Wμ ≡ 1
2 εμαβλ Jαβ Pλ, (161)

whereWμ is the standard Pauli–Lubański pseudo-vector, and
therefore write

Jαβ P2 = −NαPβ + Nβ Pα − εαβμνWμPν . (162)

Clearly, Nμ and Wμ are both orthogonal to Pμ.
Unlike Kμ

� = −Jμν pν/m and Jμ
� = 1

2 εμαβλ Jαβ pλ/m,
the objects Nμ and Wμ behave as four-vectors under active
Lorentz transformations generated by the Poisson brackets

{Aμ, Jαβ}PB = ημαAβ − ημβ Aα with Aμ = Nμ,Wμ.

(163)

They satisfy

{Wμ, Pν }PB = 0, {Wμ,W ν }PB = −εμναβWα Pβ ,

{Nμ, Pν }PB = ημνM2 − PμPν , {Wμ, Nν }PB = W ν Pμ,

{Nμ, Nν }PB = JμνM2.

(164)

In particular, it is readily seen thatW 2 (like P2) has vanishing
Poisson brackets with all the Poincaré generators. The first
two relations are simple to interpret. They indicate that the
relativistic spin Sμ = Wμ/

√
P2 is independent of the choice

of origin, and obeys standard commutation relations for AM
only in the rest frame.

The difference between the algebras (158) and (164)
appears in the Poisson brackets {Wμ, N ν}PB �∝ {Jμ

� , K ν
� }PB

and {Nμ, N ν}PB �∝ {Kμ
� , K ν

� }PB. This can be understood
by the fact that Kμ

� and Jμ
� represent the boost and rotation

generators relative to the rest frame of the system determined
prior any active Poincaré transformation, whereas Nμ/

√
P2

andWμ/
√
P2 represent the boost and rotation generators rel-

ative to the rest frame of the system at the moment of their
action. Since active boosts change the frame in which the
system is at rest, subsequent Nμ and Wμ do not coincide
anymore with mKμ

� and mJμ
� .
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A.3 Algebra of the covariant position, orbital and spin
angular momentum

In Sect. 3, we found that the position of the center of iner-
tia, and the associated external and internal parts of AM are
constructed from the Poincaré generators as follows

R(x0) = (x0P − K )/H,

L = −(K × P)/H,

S = J + (K × P)/H. (165)

They all transform as ordinary three-vectors under rotations

{Ai , J j }PB = εi jk Ak with Ai = Ri , Li , Si , (166)

and satisfy familiar Poisson brackets with energy

{Ri , H}PB = Pi/H, {Li , H}PB = 0, {Si , H}PB = 0,

(167)

and momentum

{Ri , P j }PB = δi j ,

{Li , P j }PB = εi jk Pk,

{Si , P j }PB = 0. (168)

The remaining Poisson brackets [4]

{Ri , R j }PB = −εi jk Sk/H2,

{Ri , L j }PB = εi jk Rk − (δi jδkl − δikδ jl)PkSl/H2,

{Ri , S j }PB = (δi jδkl − δikδ jl)Pk Sl/H2,

{Li , L j }PB = εi jk Lk − εi jk Pk(P · S)/H2,

{Li , S j }PB = εi jk Pk(P · S)/H2,

{Si , S j }PB = εi jk Sk − εi jk Pk(P · S)/H2,

(169)

differ from the familiar ones by terms proportional to Si/H2.
In the nonrelativistic limit, the contribution of these terms
vanishes as one can easily see by reinstating the factors of c
in the above expressions. They can therefore be understood
as relativistic corrections. Note also that in the system rest
frame, all the relativistic corrections disappear except for
{Ri , R j }PB.

For the corresponding covariant quantities defined by an
observer in Su , we have

Xμ
u (x0) = (x0Pμ−Kμ

u )/Hu , Lμ
u = −εμαβλKuαPuβuλ/Hu ,

Sμ
u = Jμ

u + εμαβλKuαPuβuλ/Hu .

(170)

They satisfy the following Poisson brackets with the covari-
ant energy

{Xμ
u , Hu}PB = Pμ

u /Hu,

{Lμ
u , Hu}PB = 0,

{Sμ
u , Hu}PB = 0, (171)

and the covariant momentum

{Xμ
u , Pν

u }PB = −Δμν
u ,

{Lμ
u , Pν

u }PB = −εμναβ Puαuβ,

{Sμ
u , Pν

u }PB = 0. (172)

The remaining Poisson brackets read

{Xμ
u , Xν

u}PB = εμναβ Suαuβ/H2
u ,

{Xμ
u , Lν

u}PB = −εμναβXuαuβ

−
(

Δμν
u Δαβ

u − Δμα
u Δνβ

u

)
PuαSuβ/H2

u ,

{Xμ
u , Sν

u }PB =
(

Δμν
u Δαβ

u − Δμα
u Δνβ

u

)
PuαSuβ/H2

u ,

{Lμ
u , Lν

u}PB =−εμναβLuαuβ − εμναβ Puαuβ(Pu · Su)/H2
u ,

{Lμ
u , Sν

u }PB = εμναβ Puαuβ(Pu · Su)/H2
u ,

{Sμ
u , Sν

u }PB = −εμναβ Suαuβ − εμναβ Puαuβ(Pu · Su)/H2
u .

(173)

For the instantaneous CM operator Rμ(τ) = τ Pμ/M −
Nμ/M2, we find

{Rμ, Pν}PB = −ημν + PμPν/M2,

{Rμ, Rν}PB = Jμν/M2, {Rμ,W ν}PB = WμPν/M2.

(174)

It follows from Eq. (163) that Rμ(τ) transforms as a Lorentz
four-vector

{Rμ, Jαβ}PB = ημαRβ − ημβ Rα. (175)

A.4 Light-front form

Using the notations BL = J+−, Bi⊥ = J+i , JL = 1
2 ε

i j
⊥ J i j

and J i⊥ = ε
i j
⊥ J− j for the LF boost and rotation generators

introduced in Sect. 7.1, the Poincaré algebra reads

{Pi⊥, P+}PB = 0, {Bi⊥, P+}PB = 0, {JL , P+}PB = 0,

(176)

{Pi⊥, P j
⊥}PB = 0, {Pi⊥,B j

⊥}PB = δ
i j
⊥ P+, {Bi⊥,B j

⊥}PB = 0,

(177)

{JL , Pi⊥}PB = ε
i j
⊥ P j

⊥, {JL ,Bi⊥}PB = ε
i j
⊥B j

⊥, (178)

and
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{Pi⊥, P−}PB = 0, {Bi⊥, P−}PB = −Pi⊥, {JL , P−}PB = 0, (179)

{Pi⊥,J j
⊥}PB = ε

i j
⊥ P−, {J i⊥,J j

⊥}PB = 0, {BL , P±}PB = ±P±, (180)

{P+, P−}PB = 0, {P+,J i⊥}PB = ε
i j
⊥ P j

⊥, {P−,J i⊥}PB = 0, (181)

{BL , Pi⊥}PB = 0, {BL ,Bi⊥}PB = Bi⊥, {BL ,JL}PB = 0, (182)

{Bi⊥,J j
⊥}PB = −δ

i j
⊥JL + ε

i j
⊥BL , {JL ,J i⊥}PB = ε

i j
⊥J j

⊥, {BL ,J i⊥}PB = −J i⊥. (183)

We see that the first set forms a two-dimensional Galilean
subgroup where the LF momentum plays the role of a non-
relativistic “mass” in the transverse plane [75–77].

In terms of the transverse LF position R⊥ = (x+P⊥ −
B⊥)/P+, we have

{Ri⊥, P+}PB = 0, {Ri⊥, P j
⊥}PB = δ

i j
⊥ , {Ri⊥,B j

⊥}PB = x+δ
i j
⊥ ,

(184)

{JL , Ri⊥}PB = ε
i j
⊥ R j

⊥, {Ri⊥, R j
⊥}PB = 0, (185)

and for the longitudinal LF position R− = (x+P− −
BL)/P+, we have

{R−, P+}PB = −1, {R−, Pi⊥}PB = 0, {R−,Bi⊥}PB = Ri⊥, (186)

{JL , R−}PB = 0, {R−, Ri⊥}PB = 0. (187)

The other Poisson brackets read

{Ri⊥, P−}PB = Pi⊥
P+ , {BL , Ri⊥}PB = −x+ Pi⊥

P+ , (188)

{Ri⊥,J j
⊥}PB = −Ri⊥ε

jk
⊥

Pk⊥
P+ + δ

i j
⊥
JL

P+ + ε
i j
⊥ R−, (189)

{R−, P−}PB = P−

P+ , {BL , R−}PB = −x+ P−

P+ − R−,

(190)

{R−,J i⊥}PB = −R−ε
i j
⊥

P j
⊥

P+ + J i⊥
P+ . (191)

B Canonical reference point

When it comes to evaluating matrix elements of OAM in a
quantum theory, one has to be careful with the treatment of the
position variable [2,78]. The problem is that OAM requires
the knowledge of both position and momentum, explaining
why a standard plane-wave approach fails. One solution is
to consider wave packets [78], but the price to pay is that
calculations usually become quite lengthy and cumbersome.
In particular, one has to identify and remove the part associ-
ated with the structure of the wave packet, which we are not
interested in. An equivalent and much simpler solution is to
use the Wigner-Weyl representation [79].

Consider the matrix element of an operator O in some
state |ψ〉 normalized as 〈ψ |ψ〉 = 1. It can conveniently be
written in the form

〈O〉ψ = 〈ψ |O|ψ〉 = Tr[Oρψ ] (192)

with the density operator ρψ = |ψ〉〈ψ |. A closed system with
mass M , average position R(x0) and momentum P defined
in the Wigner sense at some timeR0(x0) = x0 is represented
by the following relativistic phase-space operator20

ρR,P (x0) ≡
∫

d3Δ

(2π)3 2
√
p0 p′0 e−iΔ·R |P − Δ

2 〉〈P + Δ
2 |,

(193)

where the four-vectors P = p′+p
2 and Δ = p′ − p satisfy

the constraints P · Δ = 0 and P2 + Δ2

4 = M2 which arise
from the mass shell conditions. A similar operator can be
introduced within the LF formalism [83,84].

The phase-space operator is properly normalized
Tr[ρR,P ] = 1, and plane waves are recovered by averag-
ing over R
∫

d3R
(2π)3δ(3)(0)

ρR,P (x0) = |P〉〈P|
〈P|P〉 . (194)

Note that the time dependence drops out because the integral
over R imposes Δ = 0. Defining “position” states at some
time r0(x0) = x0 as

|r〉 ≡
∫

d3 p

(2π)3
√

2p0
eip·r |p〉 (195)

with normalization 〈r ′|r〉 = δ(3)(r ′ − r), the phase-space
operator (193) can alternatively be expressed as

ρR,P (x0) =
∫

d3Z e−i P·Z |R + Z
2 〉〈R − Z

2 | (196)

20 Note that our normalization factor 2
√
p0 p′0 is consistent with other

works. When one neglects relativistic recoil corrections like in [80,81],
it reduces to 2M . If one works in the Breit frame P = 0 like in [82], it
reduces to 2P0.
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with Z0 = 0. If we average over P , we recover the “spatial”
density operator

∫
d3P

(2π)3δ(3)(0)
ρR,P (x0) = |R〉〈R|

〈R|R〉 . (197)

Let us now consider the matrix elements of the OAM
operator J iorb = εi jk

∫
d3x x j T 0k(x). After some standard

manipulations [2], we find

〈J iorb〉R,P (x0)

= εi jk

{
−i

∂

∂Δ j

[
eiΔ·R

〈
P + Δ

2 |T 0k(0)|P − Δ
2

〉
2
√
p0 p′0

]}

Δ=0

= εi jkR j (x0)Pk + εi jk

2E

[
−i

∂

∂Δ j

〈
P + Δ

2 |T 0k(0)|P − Δ
2

〉]
Δ=0

,

(198)

where E = P0|Δ=0 =
√
P2 + M2. These two terms repre-

sent the external and internal parts of the OAM defined by
the canonical reference point R(x0). In practice, one usually
works at a fixed initial time x0 = 0 and sets the origin at the
initial average position of the system R(0) = 0.

In order to determine where this canonical reference point
is situated, we consider the matrix elements of the operator
Ri (x0) = 1

P0

∫
d3x xi T 00(x) giving the position of the cen-

ter of inertia. After some algebra, we find

〈Ri 〉R,P (x0) = Ri (x0)

+ 1

2E2

[
−i

∂

∂Δi

〈
P + Δ

2 |T 00(0)|P − Δ
2

〉]
Δ=0

.

(199)

For a closed spin- 1
2 system, we can use the parametriza-

tion (131) with A(0) = 1 and B(0) = C̄(0) = 0 which arise
from the conservation of total linear and angular momenta
[2]. We then get

〈Ri 〉R,P (x0) − R j (x0)

= 1

2E

{
−i

∂

∂Δ j

[
u(p′,S′)γ 0u(p,S)

]}
Δ=0

= εi jk P jSk

2E(E + M)
, (200)

where we used the generic expression for the Dirac bilinear
derived in [85]. The shift between the center of inertia and
the CM being given by Eq. (78)

〈Ri 〉R,P (x0) − 〈Xi
�〉R,P (x0) = εi jk P jSk

2ME
, (201)

we conclude that the canonical reference point R is situated
on the segment joining the center of inertia to the CM. In
the Breit frame P = 0, which corresponds to the average

CM frame, the canonical reference point coincides with both
the center of inertia and the CM. In the infinite-momentum
frame |P | → ∞, the canonical reference point coincides
with the center of inertia and is half a Compton wavelength
away from the CM. Between these two limiting frames, all
three points differ.

Within the LF formalism, one usually works in the sym-
metric frame P⊥ = 0⊥. Using again the results of [85], we
find that the canonical reference point will always coincide
with the center of LF momentum in the transverse plane

〈Ri⊥〉R,P (x+) − Ri⊥(x+)

= 1

2P+

{
−i

∂

∂Δi⊥

[
uLF(p′,S′)γ +uLF(p,S)

]}

Δ=0

= 0, (202)

in agreement with the discussion in [47] based on the Galilean
subgroup (176)–(178).
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