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Abstract The principle part of Einstein equations in the harmonic gauge consists
of a constrained system of 10 curved space wave equations for the components of
the space-time metric. A well-posed initial boundary value problem based upon a
new formulation of constraint-preserving boundary conditions of the Sommerfeld
type has recently been established for such systems. In this paper these boundary
conditions are recast in a geometric form. This serves as a first step toward their
application to other metric formulations of Einstein’s equations.
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It is extremely satisfying to contribute this article in acknowledgment of the im-
portant influence that Jiirgen Ehlers has had on my career. When I was a first year
graduate student at Syracuse University in the Fall of 1959, my PhD adviser Peter
Bergmann had collected an astonishing percentage of the young talent engaged
in general relativity. Besides the tenured faculty members Art Komar and Richard
Arnowitt, the postdocs and visiting scientists included Roy Kerr, Wolfgang Kundt,
Ted Newman, Roger Penrose, Asher Peres, Ivor Robinson, Englebert Schucking,
Andrej Trautman and Manfried Trumper, as well as Jiirgen. At the end of that
first year, when Bergmann called me to his office to discuss thesis research topics,
from this group of experts it was Jiirgen whom he invited to join in offering me
advice. In response to Bergmann’s opening question “So, what would you like
to work on?”, I suggested singularity structure. I had recently enjoyed reading
the nice paper by Bergmann and his former student Ray Sachs on singularities in
linearized gravitational theory, as well as the Einstein—Infeld—Hoffman paper on
the motion of singularities. Jiirgen immediately took over the conversation, “What
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is your underlying motivation?” I naively offered the possibility that singularity
structure might be used to understand elementary particles. I then received a wide
ranging lecture from Jiirgen who carefully explained the conceptual problems un-
derlying singularities even in electromagnetic theory and why the situation was
much more complicated in general relativity. At that time, a global picture of the
structure of the Schwarzschild singularity, which could not be anticipated from
linearized theory, had just emerged with the help of Kruskal’s extension of the ex-
terior spacetime. The geometric approach of classifying singularities in terms of
the incompleteness of the spacetime manifold had just begun. The important dis-
tinction between spacelike, timelike or null singularities was not yet recognized.
In the following years, an effective approach to this difficult subject slowly devel-
oped from a great deal of effort by many people. Fortunately for me, I accepted
Jiirgen’s impromptu lecture as good advice to steer clear of the subject in my
graduate research.

Also at that time, general relativity was a small field going through a renais-
sance, which was centered in the United States about Bergmann at Syracuse and
John Wheeler at Princeton. Bergmann’s research, which was focused on the quan-
tization of gravity, had led to several reformulations of Einstein’s theory in terms
of Lagrangian, phase space and Hamilton—Jacobi methods. But in all of these for-
malisms the same problems associated with dealing with nonlinearity, identifying
the proper observables and handling the constraints posed the same stumbling
blocks against a real physical understanding of quantum gravity that persist to-
day. However, there were several other current developments which would have
seminal impact on the future of the field: the Kruskal extension of Schwarzschild
spacetime, the Kerr solution, the characteristic description of gravitational radi-
ation by Bondi and Sachs, followed by Penrose’s conformal version; Penrose’s
spinor description of gravity, which later led to twistor theory; and Jiirgen’s ge-
ometric reformulation of general relativistic hydrodynamics and thermodynam-
ics, which set the standard for the ensuing transition in general relativity from
the ambiguities of a coordinate dependent, calculational approach to a geometric
approach. The discovery of quasars in the following years would bring these de-
velopments in general relativity to the attention of astrophysicists, who would be-
come a captive audience to lectures on the geometry of curved spacetimes, thanks
to Jiirgen’s help in organizing the first “Texas Meeting”.

Throughout my career I have benefited much from Jiirgen’s advice, especially
during my two sabbaticals with his group in Garching and my annual visits to
the Albert Einstein Institute, an institute which was created due to his efforts as
founding director. Through my exposure to his standards of clarity and rigor and
his emphasis on a geometric picture, Jiirgen endures as my mentor. I know that he
would much prefer to be the cause of an article of substance rather than praise, so
in that spirit I present the following discussion of the geometrical aspects of the
initial-boundary value problem (IBVP) in general relativity. Quite some time ago,
Jiirgen and his student Saskia Kind [[1] treated the spherically symmetric IBVP for
a general relativistic fluid, and they later applied the work to stellar oscillations in
collaboration with Bernd Schmidt [2]]. At that time, little was known about the
treatment of boundaries in general relativity outside of the spherically symmet-
ric case. Here I treat the vacuum problem in the absence of symmetries. In recent
work, catalyzed by interactions at the Albert Einstein Institute, the well-posedness
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of the IBVP for Einstein’s equations has been established using harmonic coor-
dinates [3]]. This puts the IBVP on the same analytic footing as the Cauchy prob-
lem, whose well-posedness was also established using harmonic coordinates in
the classic work of Choquet-Bruhat [4]. However, the geometric formulation of
the boundary conditions and boundary data for the IBVP is more complicated
than for the Cauchy problem, in which the initial data can be expressed in terms
of the intrinsic metric and extrinsic curvature of the initial Cauchy hypersurface.
In this article I will discuss these geometrical considerations which underlie the
treatment of a boundary.

In the Cauchy problem, initial data on a spacelike hypersurface .# are ex-
tended to a solution in the domain of dependence Z(.#p) (which consists of those
points whose past directed characteristics all intersect .#p). In the IBVP, data on
timelike boundary 7 transverse to .% is used to further extend the solution to the
domain of dependence (U 7).

The IBVP for Einstein’s equations has only relatively recently widespread at-
tention, when its importance to numerical relativity was pointed out [5]. The first
well-posed IBVP was achieved for a tetrad formulation of Einstein’s theory us-
ing a first differential order system which included the tetrad, the connection and
the curvature tensor as evolution fields [6]. Subsequently, a well-posed IBVP was
formulated for the harmonic formulation of Einstein’s equations as second order
wave equations for the metric [3]]. This extended the classic analytic treatment of
Choquet-Bruhat [4] to the well-posedness of the harmonic IBVP. The initial data
for the Cauchy problem has a simple description in terms of the intrinsic metric
and extrinsic curvature of .. The aim of this article is to present an interpreta-
tion of the boundary data in the IBVP in terms of the geometry of .7. This is not
only important for a clearer understanding of the nature of the gravitational IBVP
but also, from a practical point of view, for the application of boundary condi-
tions in numerical relativity. The boundary conditions developed in [3]] have been
successfully implemented in a evolution code based upon the harmonic formula-
tion of Einstein’s equations [7]. However, much of the numerical work in general
relativity is carried out using other metric formulations, e.g. the BSSN formula-
tion [8; 9], where well-posedness of the IBVP currently remains an unresolved
issue. The geometric formulation of boundary conditions for the metric presented
here is a step in that direction.

I begin with a short review of the Cauchy problem in Sect. |I} followed by a
discussion of the new difficulties presented by the IBVP and their analytic resolu-
tion using a harmonic formulation in Sects.[2]and 3] where the analytic form of the
boundary conditions is expressed in terms of partial derivatives of the harmonic
metric. In Sects. 4] and [5] these are recast in covariant form in terms of geometric
structures intrinsic to the IBVP.

1 The Cauchy problem

The initial data for the Cauchy problem can be formulated in a purely 3-dimensional
form in terms of the intrinsic metric Ay and extrinsic curvature kyy of the ini-
tial Cauchy hypersurface. Here, for notational simplicity, I will use Greek indices
rather loosely to describe either 3-dimensional or 4-dimensional objects. A major
notational complication of the IBVP arises from the 3 + 1 decomposition intrinsic
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to the Cauchy hypersurfaces and the separate 3 4+ 1 decomposition intrinsic to the
timelike boundary .7. As consistently as possible, I will use lower case letters,
e.g. hyy and kyy, for geometric objects associated with the Cauchy hypersurfaces
and upper case letters for their counterpart on the boundary. The Cauchy data are
subject to the Hamiltonian and momentum constraints

0= (3>R+(kﬁ)2—kuvkuv (= ZG#Vn“nv) (1.D)
and
0="IVy(ky —8Vkp)  (=2HyGupn?), (1.2)

where )V u 1s the covariant derivative and (3)R is the curvature scalar associated
with Ay. Subject to these constraints, the Cauchy data determine a solution of
Einstein’s equations which is unique up to a diffeomorphism (cf. [10] for an expo-
sition with many techniques common to the approach adopted here for the IBVP).

However, as already hinted by the parenthetical appearance of the Einstein
tensor Gy in and , this disembodied 3-dimensional form of the Cauchy
data hides the complexity of the underlying 4-dimensional space-time problem.
In order to evolve the data it is necessary to introduce a foliation of the spacetime
by Cauchy hypersurfaces .#;, with unit timelike normal n;,. The evolution of the
spacetime metric g,y is carried out along the flow of a timelike vector field r#
related to the normal by the lapse @ and shift B* according to

t* = ant + B+, B ny =0.

In numerical applications, the evolution is coordinatized by a time function ¢ sat-
isfying £t = 1 and ny, = —aVt, and spatial coordinates satisfying Lxi =0,
where % is the Lie derivative with respect to r*. In this 4-dimensional setting,
hyyn” = 0 and the spacetime metric is given by

g”v - _n‘unv + huv.

An additional complexity, already apparent from the arbitrariness of the dif-
feomorphism freedom in the solution, is that Einstein equations do not directly
provide a hyperbolic system of evolution equations. For that purpose, it is nec-
essary to restrict the gauge freedom. This can be accomplished by introducing
harmonic coordinates, i.e. four solutions x* = (¢,x') of the curved space scalar
wave equation (gx* = 0, so that in these coordinates the metric satisfies

1
V=8

¢ =T =gPT}js = ———=adyy"" =0, (1.3)

where YV = /—gghV.

This leads to the standard harmonic reduction of the Einstein tensor

1
EMY := GV = VY 4 SgtYV, TP, (1.4)
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whereby the harmonic conditions (I.3)) together with the vacuum Einstein equa-
tions give rise to the quasilinear system of coupled wave equations

0=2y—gE"’ = gP99,067"" + Nyv, (1.5)

where N,y represents terms which do not enter the principle part.

In the harmonic formulation, the Hamiltonian constraints are satisfied as a
consequence of the harmonic constraints provided the initial data satisfies
I'"|,—o =0 and J,I"*|;—p = 0. The harmonic conditions also determine J; and
d,f3, so that the remaining freedom in the initial gauge data reduce to |, and
BH|,—0 We return to the issue of constraint preservation in Sect.

In summary, the Cauchy data necessary for determination of a unique space-
time metric consist of gyv|,—o = 0 and 9, gyv|,—o = 0, subject to constraints. This
4-dimensional space-time version of the initial data is referred to as the thin sand-
wich formulation, as opposed to the disembodied 3-dimensional version in which
huv\ =0 =0 kuv|t=0 = 0 are prescribed. The resulting harmonic evolution is not
only unique but the solution depends continuously on the choice of initial data,
i.e. the harmonic Cauchy problem is well-posed [4].

2 Difficulties of the boundary treatment

The IBVP has quite different features than the Cauchy problem, as can be inferred
from the simple properties of the flat-space scalar wave equation

(at2_5Uala})¢:0 xiz ()C,y,Z)

in the region x < 0. For a given propagation direction &/, there will be two char-
acteristics (light rays) x' = £k't crossing the Cauchy hypersurface at ¢ = 0, but
only one characteristic with &* > 0 crossing the boundary at x = 0. As a result,
although the initial Cauchy data consist of ®|,—y and J; P|,—¢, only half as much
boundary data can be freely prescribed at x = 0, e.g the Dirichlet data d; ®|,—o, or
the Neumann data d,®P|,—o or the Sommerfeld data (J; + d;)P|,—o (based upon
the derivative in the outgoing characteristic direction). In the gravitational case,
this inability to prescribe both the metric and its normal derivative on a time-
like boundary implies that you cannot freely prescribe both the intrinsic metric of
the boundary and its extrinsic curvature. In terms of the metric components, the
most you can describe is a single quantity, e.g. the Sommerfeld data K*dy gy
where K* is an outgoing null direction. Such a Sommerfeld boundary condition
is most beneficial for numerical work since it allows discretization error to prop-
agate across the boundary (whereas Dirichlet and Neumann boundary conditions
reflect the error and trap it in the grid).

Inability to prescribe both the metric and its normal derivative, complicates
constraint enforcement on the boundary, i.e. the Hamiltonian and momentum con-
straints cannot be enforced directly because they couple the metric and its nor-
mal derivative. Instead, the approach in [3]] is to enforce the harmonic constraints
%" = 0 on the boundary and then show that this (indirectly) leads to the satisfac-
tion of the Hamiltonian and momentum constraints.
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An additional complication is that the domain of dependence of the boundary
2(7) by itself is empty. Crudely speaking, half of the past directed characteris-
tics from each interior point do not meet the boundary. The Cauchy problem is
intrinsically coupled with the boundary problem. At the intersection of .7y and
T the Cauchy data and boundary data must be prescribed in a consistent way, or
otherwise an artificial shock wave will be generated. In practice, this is hard to
implement without, for example, using an exact solution in the neighborhood of
the intersection. Moreover, the boundary in general moves relative to the Cauchy
hypersurfaces, i.e. the normal ny to the Cauchy hypersurfaces is not in general
tangent to .7 . This complicates the geometric relation between the separate 3 + 1
decompositions associated with the boundary and the Cauchy foliation.

Furthermore, the boundary does not pick out a unique outgoing null direction
at a given point (but, instead, essentially a half null cone). This complicates the
geometric formulation and interpretation of Sommerfeld boundary data. This is in
addition to the issue of a physical interpretation of the boundary data. Unless the
boundary is defined by a compact matter distribution, its very existence is phys-
ically artificial. This is the situation in numerical relativity where a finite outer
boundary is typically introduced even though the most important numerical out-
put might be the extraction of the gravitational waves that propagate to infinity.
The treatment of such an artificial boundary can introduce spurious physical ef-
fects on the extracted waveform, similar to the effects arising from initial Cauchy
data which contains spurious gravitational waves. Here I concentrate on the geo-
metrical aspects of the boundary treatment but the underlying methods can also be
used to improve the physical properties of the treatment of an isolated gravitating
system [ 1], e.g. by the construction of boundary conditions which lead to asymp-
totically vanishing reflection coefficients from a sufficiently round boundary for
increasingly large radius.

3 Strongly well-posed constraint-preserving IBVP with Sommerfeld
boundary conditions

I begin the discussion of the geometrization of the boundary data with the ana-
lytic formulation of a strongly well-posed treatment of the IBVP for the Einstein
equations in the harmonic gauge based upon [3; [12]]. The harmonic coordinates
x% = (t,x') induce a foliation of the boundary by ¢ = const surfaces ;. This foli-
ation determines a unique future-timelike vector unit 7# which is orthogonal to %,
and tangent to the boundary. Here the metric has the status of an unknown to be de-
termined by solving (I.5)), so that other metric related quantities, such as the norm
of TH, have similar status. Along with the unit spacelike normal N* which points
outward from the boundary, this leads to an orthonormal tetrad (T#,N*, Q. Q")
at each point on the boundary, where Q" is complex null vector tangent to %, with
normalization

0"0u=2, Q"Qu=0. (3.1

The tetrad is uniquely determined up to the spin-rotation freedom Q" — ¢’® QX
Uniquely associated with this tetrad (independent of the choice of Q") are the
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outgoing and ingoing null vector fields K* = T* + N* and L* = T# — N*, re-
spectively.

The outgoing null vector K* allows us to pose Sommerfeld boundary condi-
tions. In [3] it was shown that a properly constructed hierarchy of Sommerfeld
boundary conditions of the type

K*0,y?° = Sommerfeld data, "' =/—ggh" (3.2)

leads to a strongly well-posed IBVP. In addition to the continuous dependence of
the solution on the initial Cauchy data, strong well-posedness implies boundary
stability, i.e. that the solution for the metric and its derivatives can be estimated in
terms of the boundary data [[13]].

Certain components of the Sommerfeld data are unconstrained. These uncon-
strained data are picked out by the projection tensor [7]

1
vV __ SV v
Py =8+ 5LuK",

which projects a 1-form V}, into the (K, Qy, Q) subspace.
The freely prescribed Sommerfeld data g°° are the 6 components

P@PﬁK“&uyo‘ﬁ = gPc, (3.3)

where gP°Ls = 0. The remaining boundary conditions enforce the harmonic con-
straints €| 7 = 0 by expressing them in the form

V=g€" =/=gI'" = =01’

1
= 5 LK 1 — PR OuyPY PEPKM 9,y =0, (3.4)

which provide Sommerfeld conditions for the remaining L, components of K* 9, y*".

Strong well-posedness results from the hierarchical structure of the bound-
ary conditions and (3.4), i.e. the boundary conditions must form a sequence
whose Sommerfeld data only depends on prior members. An example, which
plays an important role in Sect. ] is to prescribe the unconstrained components
(3.3) in the sequence

1
EKchKuauypG = —V —84KK, (3.5)

1
(QPKO'K“ - EKPKGQ“)BN')IPG = —V —89KQ; (3.6)

- 1
(QchKu - EKpKGL#)auVOG =~V 8400, 3.7

1
<2QPQGKIJ _QPKGQ“) aﬂypo _\/TgQQQ (3-8)
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and then to add on the constrained components (3.4) in the sequence

2v/—gKuI'* = (KpLoK* + KpKsL* — Ky Qs Q!

—Kp0s0*) 9uy?° =0, (3.9)
2y/=80ul™ = (LyQok* + Kp Qs L*

—0p 060" +0p050") Auy?’ =0, (3.10)
2y/=gLyI* = (LyLoK* + Ky LoL* — Qp L Q"

—QpLs0") 9uyP° =0. 3.11)

The sequential structure is determined by the order

(KpKs), (KpQo), (QpQo): (pQs), (KpLo), (QpLo), (LpLs)

in which the components of d,, ¥*¢ enter into the Sommerfeld boundary condition
for K dy yP°.

The boundary conditions can be modified by the addition of lower
differential order terms without affecting strong well-posedness. Such terms can
be used to reduce spurious back reflections from the boundary of an isolated sys-
tem. (See [[L1]] for more details.) In addition, the boundary conditions
can also be modified in the form

' —H"(x.g)=0

to include gauge forcing terms H* corresponding to a generalized harmonic for-
mulation. Other examples of Sommerfeld boundary conditions that fit into the hi-
erarchical structure and that ensure strong well-posedness are considered in [[7;/11]

The physical content of these boundary conditions can be clarified by con-
sidering the case of a linearized wave incident on a plane boundary. The first
three pieces of free boundary data (gkk, gk, 99p) are related to the gauge free-
dom, i.e. they can be set to zero without loss of generality. The next piece of data
(go0) controls the gravitational radiation. The remaining conditions enforce the
constraints €* = 0 on the boundary. This is consistent with the physical expecta-
tion that two pieces (or one complex piece) of data are necessary to describe the
two polarization degrees of freedom of a gravitational wave. More generally, the
boundary has curvature, which necessitates additional nonzero boundary data, as
discussed out in [[L1]. In general, the curvature of the boundary combines with the
radiation modes in a way which cannot be cleanly separated. This is one of the
complications emphasized in the treatment given in [6]]. It is an issue I return to in
Sect. I next consider how to reverse engineer the above Sommerfeld boundary
conditions to clarify their geometrical content.

4 Boundary geometry
I proceed using 4-dimensional notation to describe the 3-dimensional geometrical

objects intrinsic to the boundary. At the most primitive level, these are the intrinsic
3-metric
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Hyy = guv — NuNy, 4.1)
its corresponding 3-connection Dy, and the extrinsic curvature
Huy = H VpNy. 4.2)

However, those objects are insufficient to formulate Sommerfeld boundary condi-
tions because they do not determine a unique outward null direction.

For that purpose, we introduce an evolution gauge vector field t# tangent to
the boundary. This is in analogy with what is done in a numerical evolution the
Cauchy problem but for the moment we need only define * on the boundary and
not in the interior. It is not necessary that t* be timelike but its flow must map,
in a future-directed sense, the edge %, (where the boundary intersects the initial
Cauchy hypersurface) into a smooth foliation %, of the boundary. The foliation
is parameterized by a time function ¢ satisfying %t = 1, with t = 0 on %. (Here
% represents the Lie derivative with respect to t.) In turn, along with the intrin-
sic metric of the boundary, the 2-surfaces %, determine a unit timelike normal
field tangent to the boundary according to T, = —ADyt = —AH“L’ V,t. The corre-
sponding lapse A and shift B* intrinsic to the boundary are defined according to
t* =ATH* +B*.

The intrinsic 2-metric of the boundary foliation is given by

qu = Q(va) = H,uv - TuTv

where we have again introduced a complex null vector Q* with the normalization
(3.1). The extrinsic curvature of this foliation associated with the normal T* is

Kuy = Q0 Dp T,y
This structure is sufficient to geometrize the last piece of free Sommerfeld data

qog in the hierarchy (3.53.8) by relating it to the extrinsic curvature tensors of
%, according to

1
QPQG(‘%G +Kps) = EQPQGKLL&ung - QPKGQ“a,ung =400-

Equivalently, we can express this data in terms of the optical shear ¢ of the out-
going null congruence determined by K*,

20 =0PQ0°V,Ks = qgo0. (4.3)
In linearized theory, o is the complex data for an ingoing gravitational wave inci-
dent on a plane or spherical boundary.
The free data for the first 3 Sommerfeld conditions cannot be sim-
ilarly expressed in terms of the geometry of the boundary and its tangent space.
For example, the first condition, rewritten in terms of the metric, is

1

Since K* = T* 4 N*, this contains pieces such as N°N°N*d, gy which can be
set to zero by a diffeomorphism leaving the boundary and its extrinsic curvature
intact, e.g. by introducing Gaussian normal coordinates adapted to the boundary.
A geometric formulation of these boundary conditions requires additional struc-
ture to eliminate the effect of this gauge freedom. One convenient approach is to
introduce a preferred background geometry, as described next.
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5 Introduction of a background metric associated with the initial data

Geometrization of the boundary conditions (3.5H3.7) can be accomplished by in-
troducing a background metric g, with its associated Christoffel symbols I" fw

oA . o .
anq curvature tensor R po(u- Setting fy,v =8uv —&uv> the gauge freedom in first
derivatives of the metric is then fixed relative to the background by the tensor field

o 1 o ° o
Chv =T~ =5 (V“fvngvauG—VGqu).

(In order to avoid confusion, raising and lowering of indices will only be done
with the physical metric g,y unless otherwise noted.)
The harmonic constraints are now modified to the covariant form

eGP =gt (Illpv - ﬁv) =0,
or
g (11 0) 0 =0

if a gauge forcing term HP (x, g) is included.
Einstein’s equations for fj,, reduce to the quasilinear wave system

g’°v pV ofuv = 2gmgpcclupcrvc +4Cpo(ugv))tc/lprgm
oA
—ngGR po(n8v)r —|—2V(“HV) 5.1

for which the formulation of a well-posed IBVP goes through exactly as before.
(See [[11] for details.) The null tetrad (K*,L*,Q*, Q") associated with the phys-
ical metric g,y is again defined on the boundary in terms of the foliation con-
structed by introducing an evolution field t* tangent to the boundary. This null
tetrad is then used to prescribe a hierarchical set of Sommerfeld boundary condi-
tions. In terms of f;y the analogue of (3.53.TT) take the hierarchical form

1 °
SKPKOKMY oo = dx, (5.2)
o 1 o
(QPKGK“V;L - EKPKGQ“Vu)fpc =490, (5.3)
o 1 °
(PKOK"V 4 = SKPKOLIV ) foo = qu. (5.4)
1 ° °
<2QPQGKMV;1_QPKGQHV;L> fpc =400 (5.5)
(QPQ°KH + KPKCLF — KP QO Q" — KPQ°OM)V yfos = —2KMH,,  (5.6)
(LPQOK* + KPQOL* — KPLOQM + QP QO OM) V ufpo = —20MH,,  (5.7)
(LPL°K* + QP Q°L* — QPLO Q" — QPLO QM) v wfps = —2L*H,. (5.8)
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Note that these conditions can be modified by taking linear combinations consis-
tent with the hierarchy. For example, by subtracting (5.2) we can replace (5.4)
by

o 1 o
<NPK"K“V - EKPK"N“V ,,,) foo = qn- (5.9)

The Sommerfeld boundary conditions for fpo are now in covariant
form and the geometrization the boundary conditions reduces to eliminating the
ambiguity in the choice of the background metric. We do this by extending the
evolution vector field #* to a neighborhood of the boundary. This fixes an “evo-
lution gauge” which allows us to Lie transport the initial Cauchy data into the
future.

The simplest choice is of background metric is to set

Suvli=o = guvli=0, Ly =0. (5.10)

However, higher order compatibility with the initial Cauchy data can be incorpo-
rated by setting

gcluv|t=0:gllv|t=07 zgouv:zgpv‘t=0~ (511)

A further option of (5.11) is to require that the background metric is harmonic.
This is most readily expressed in the coordinates x* = (¢,x') adopted to the evolu-
tion according to

Lr=1, ZLx=0. (5.12)

Then the densitized background metric
1 1
—go gHY —auv+buvt+ Ecuvtz‘i—gd‘uvt:;, (513)

where "V and b'/ are determined by the initial Cauchy data, satisfies the har-
monicity condition provided

i =0, =0,

bll — 781.(1”.7 bti = 7ajaij7

o — _aibti _ aiajaij7

Cti = —ajbl]d” = —aicli = algjbl]

(Here g"V, the inverse of ¢ uv- 1s used to raise indices). Other background metrics
associated with Lie transport of the initial Cauchy data could also be used.

For both the alternatives 2@ and ( . fuv = 8uv — v has homoge-
neous (vanishing) initial Cauchy data so that they provide the first approximation
to a standard iterative scheme to prove existence of solutions of the quasilinear
problem [13]]. From a practical point of view, they also automatically ensure a C!
compatibility between the initial data and boundary data, and thus in a numerical
evolution would reduce spurious high frequency waves arising at the edge %y.
Such a homogeneous version of the initial value problem can also be useful in
numerical simulations by eliminating the effect of extreme nonlinear behavior.
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In all three cases, 5.T1) and (5.13), the background ¢, is uniquely

defined by the choice of the evolutlon vector t*. This applies to any metric based
formulation of the Cauchy problem for Einstein’s equations. Note that all such
choices of t* are related by diffeomorphism, so although ¢* is a critical ingredient
it is a pure gauge object. It does not determine metric information without further
knowledge of the lapse and shift.

Given a choice of evolution vector t*, the diffeomorphism freedom in the solu-
tion to the harmonic IBVP can be completely eliminated by tying it to the adapted
coordinates determined by a specific coordinatization of .# according to (5.12).
Then the results of [[11]] guarantee the local existence of a unique solution to the
generalized harmonic equations subject to the boundary conditions (5.2H5.8).

6 Geometrical interpretation of the Sommerfeld data

A geometrical interpretation of the Sommerfeld boundary data in (5.2H5.5) can
be made by replacmg the derivatives V i fp(y in terms of derlvatlves of Ks. The

identity (V, — \Y p)Ks = Cchu = K“( wfpo — pfﬁw Gf#p) can be
used to rewrite @]) in terms of the optlcal shear of the boundary foliation,

2(0—0)=0°0%(Vp,—V,)Ks
1 o o
= EQpQGKuVufpc_QPKGQ“Vupr-:‘]QQ~ (6.1)
Analogous to (#.3)), this equates the Sommerfeld data gpgp to the shear of the
outgoing null hypersurfaces determined by the boundary foliation, relative to the

background value of the shear. Alternatively, the spin-weight dependence of this
relative shear can be removed by expressing it as the rank two symmetric tensor

~ ° 1 o
Guy = 2(0uy — 0 gy) = (QR0OY — EQuV)(Vp —V)Ks. (6.2)
The identity
o 1
VuKP(Vp =V p)KH = (VP KOK" — SKPKOVE)V / wfpor

which holds for any vector field V#, can be used to interpret the boundary data for
the leading conditions (5.2H5.4) in the hierarchy. The geodesic acceleration of K
with respect to the physical metrlc and the background metric are a* = KVV, K"

and ¢ = K¥V vK*. Thus 1 ) can be re-expressed as
. 1 :
Ku(a“—a”) = EKPKGK“V“f,m:qK, (6.3)
1
Qu(a" —a") = (OPK°K* — 2KPK"’Q“) “fpc, =40, 6.4)

1
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where the Sommerfeld data (gk,qg,qz) is related to the acceleration by the com-
ponents of

g = (a* —d"). (6.6)

Note that neither a nor ¢* are uniquely determined by our prior construction
which only defines K* in the tangent space of the boundary. However, their dif-
ference is geometrically and uniquely defined, even though either a* or " can be
individually set to zero by extending K* inside the boundary as the tangent vector
to the affinely parametrized null geodesic determined by either the connection V,

or V ,, respectively.

Equations (6.1H6.5)) show how the unconstrained Sommerfeld data can be de-
scribed in terms of geometrical objects consisting of the shear and acceleration of
the outgoing null vector K* relative to their background values. This raises the
question whether another geometrical description can be given which does not
introduce a background metric. For the shear ¢, we already saw that this was pos-
sible by using . We can investigate the case of a* by decomposing it into
the pieces a* = TVV,K* +NVV,K". The first piece TVV, K" is intrinsic to the
boundary geometry and can be expressed in terms of the extrinsic curvature of the
boundary foliation according to the components

K, TV, K* =0,
QuT VyK* = QFTY Hyy + 0F 9y logA, 6.7)
LyTYVyK* = 2TRTV

where A is the lapse intrinsic to the boundary and .}y is its extrinsic curvature.
Consequently, if we were to prescribe Dirichlet boundary conditions for the metric
then the terms NVV, K* would not enter and the data would be “boundary intrin-
sic”. No background metric would then be necessary. However, the strong well-
posedness of the IBVP has not been established for the case of Dirichlet bound-
ary conditions. Furthermore, from a practical viewpoint, homogeneous Dirichlet
boundary conditions are of the reflecting type so that, with the correct prescrip-
tion of Dirichlet boundary data, a gravitational wave could propagate across the
boundary but in numerical applications the error would be trapped in the grid.

It is the NYV,K* piece of a* which requires an extension of K* inside the
boundary. This leads to a more complicated geometric description, which depends
upon the particular way that K* is extended. For instance, a boundary defining
function @ might be introduced such that ®| 7 = 0 and N,| 7 = NV, P| 7, with
n= (g“"Vu@Vv(I))’l/z. This defines an extension of N, = nV,® to a neigh-
borhood of the boundary, where 7 plays the role of the “lapse” for the boundary
defining function. It then follows that

NYVyN, =NyN"Vylogn —V,logn = —Dylogn. (6.8)

Next, by extending T* off the boundary by the parallel transport NYV, TH =0, we
have NYV,K* = NYV,N*. Thus, by putting together the pieces and (6.8),
a” can be expressed in terms of the extrinsic curvature and the lapses A and 7.
However, this requires introducing auxiliary quantities, i.e. @ and the extension
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of the tetrad vectors N* and TH off the boundary. Consequently, it does not pro-
vide any simpler a geometrical description of the boundary data than the use of a
background metric, except for frame-based formulations, such as [6], in which the
tetrad vectors are evolution variables.

6.1 Edge data

The uniqueness of the solution to the harmonic IBVP requires the specification of
the initial values of the lapse and shift, i.e. the relation t* = an* 4 B between the
evolution vector ## and the unit timelike normal n* to the initial Cauchy hypersur-
face .#). For the pure Cauchy problem this data is pure gauge information but for
the IBVP it contains geometric information at the edge where .7} intersects the
boundary .7. This edge data is the hyperbolic angle sinh @ = n*N,, formed by the
intersection, which describes the intrinsic motion of the boundary relative to the
Cauchy foliation. The tangency of the evolution vector t* to the boundary implies
that sinh ® is related to the shift by

1
sinh® = — BHN). (6.9)

6.2 Dynamics of the boundary

The data for a linearized gravitational wave incident on a plane or spherical bound-
ary in a background Minkowski space can be prescribed in terms of the shear of
the outgoing null hypersurfaces. However, if the boundary has a more dynamical
behavior, so that its intrinsic metric and extrinsic curvature change dynamically in
time, then this description breaks down. In the generic case, such a boundary gives
rise to a dynamically changing shear even in the absence of linearized curvature.
Thus the shear must be coupled with data determining the dynamics of the bound-
ary in order to unambiguously describe the full physical or geometrical content of
the boundary data.

In the nonlinear theory, the boundary is dynamically traced out by the integral
curves of the unit vector T#. (It is also traced out by the integral curves of t#
but this description is devoid of metrical content.) Given the initial value of T,
which is supplied by the initial Cauchy and edge data, these integral curves can be
constructed in principle from the geodesic curvature

AR =TVV,TH,

(The qualification “in principle” is a reminder that the required spacetime metric
and connection are unknowns until the IBVP is solved.) However, only the normal
component of N,A* enters into determining the dynamics of the boundary. We
immediately have

T,A* =0

and, since T, = —ADyt (where A is the lapse internal to the boundary and Dy, its
internal connection), we also have

QuA* = —Q*TVD\(ADyt) = —Q*TYAD, Dyt = Q* Dy logA.
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Thus the components of A* tangential to the boundary describe the freedom cor-
responding to the lapse in the foliation of the boundary.

The essential piece of data that controls N, A* in the boundary conditions
is Lyg* = Ly (a* —a*). A straightforward calculation gives

Lug" = —2N,A* + L,NY(V, =V ,)K* — [*TYV K, (6.10)

which is independent of the extension of the tetrad vectors off the boundary. Since
the boundary conditions determine a unique solution of the IBVP, (6.10) uniquely
determines the boundary values of N,A*. Hence, the dynamical properties of the
boundary are controlled in the statement of the IBVP by the data L, ¢, although
in a very implicit manner.

7 Constraint preservation

The preservation of the harmonic constraints,
¢P = guv (I—ilpv = ﬁv) _Hp(xag) =0

follows from applying the Bianchi identities to the reduced evolution system.
Consider any formulation of Einstein’s equations for which the reduced evolution
equations E*V = 0 take the form

1
EMV .= GHY _vltgY) 4 5gﬂvvp%” +ARYgo =0, (7.1)

for some smooth coefficients AL" (x, g, dg). (This includes constraint modified ver-
sions of the generalized harmonic system). The Bianchi identity V,G*¥ = 0 then
implies a homogeneous wave equation for €',

VPV, " +RE€P — 2V, (A5P€%) = 0. (7.2)

If the boundary conditions enforce €| 7 = 0 and the initial data enforces ¢ | o, =
0,¢" | #, = 0 then the unique solution of is €P = 0. As a result, the Sommer-
feld boundary conditions in the geometrical form (6.2H6.5) along with (5.6H5.8),
which enforce €| 7 = 0, lead to a well-posed harmonic IBVP in which the con-
straints P = 0 are satisfied everywhere. In turn, implies that the Hamilto-
nian and momentum constraints G*Vn, = 0 are also satisfied.

While these Sommerfeld boundary conditions can be formally applied to any
metric formulation of the reduced Einstein equations, an independent check is
necessary to determine whether the Hamiltonian and momentum constraints are
preserved for formulations which do not explicitly contain an evolution system
of the form (7.I). An important example is the BSSN system [8; [9] which is
widely used in numerical simulations of binary black holes. In current numeri-
cal work, the boundary conditions for BSSN evolution systems are applied in a
naive, homogeneous Sommerfeld form to each evolution variable (cf. [14]). Con-
straint preservation does not hold for harmonic evolution with these naive bound-
ary conditions and cannot be expected to hold for other systems. The geometric
nature of the boundary conditions (6.2H6.5) suggest that they could be applicable
to the BSSN system, although the boundary conditions (5.6H5.8) enforcing the
harmonic constraints would undoubtedly need modification. This issue deserves
further investigation.
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8 Summary

Beginning with an analytic description of a strongly well-posed version of the
(generalized) harmonic IBVP, we have shown how the boundary conditions on the
metric may be expressed in a geometric form. The end result can be summarized
as follows. On a manifold .# with boundaries .%p and 7 meeting in an edge
A, we introduce an evolution vector field #* whose streamlines are tangent to the
boundary and provide a smooth foliation .#; of .# which intersects the boundary
in a smooth foliation %;. Although t* contains no metric information, it supplies
the essential gauge information to (i) introduce a background metric on .# by the
Lie transport of the Cauchy data gyy|,—o and -Z;gyv|—o on .#y and (ii) introduce
a null tetrad on .7 which is adapted to the foliation %;. Sommerfeld boundary
data is then prescribed for the relative acceleration g, as given in , and the
relative shear gy, as given in , of the outgoing null vector to %, (relative
to their background values). Along with the hyperbolic angle ® characterizing
the initial velocity of .7 relative to .%, this data uniquely determines a harmonic
spacetime metric (locally in time) by solving (5.1).

These boundary conditions have a hierarchical Sommerfeld form which is ben-
eficial for numerical application. Although formally they can be applied to any
metric-based evolution system, an unresolved issue is whether these boundary
conditions, or some modification, are constraint preserving for hyperbolic reduc-
tions of the Einstein equations other than harmonic.

The geometrization of the boundary conditions for the gravitational IBVP has
been presented in 4-dimensional form in which the data is prescribed in terms
of the spacetime metric and its derivatives on .%p and 7. A question of further
geometric interest is whether the data can also be presented in a disembodied 3-
dimensional form, as is possible for the Cauchy problem by prescribing the initial
data hyy and kyy intrinsic to the 3-manifold .#y. Such Cauchy data then deter-
mines a spacetime metric solving Einstein’s equations which is unique up to a
diffeomorphism. If there is such a disembodied version of the boundary data for
the IBVP in terms of the 3-manifolds .y and .7, and their intersection A, it
does not appear that it can be as simple as in the pure Cauchy problem. In the
treatment given here, the evolution vector t* plays key roles in both dealing with
the diffeomorphism freedom and describing the boundary data in geometric form.
The introduction of t* allows construction of a 4-dimensional background metric
based upon the Cauchy data. A disembodied version would at the least require
introducing t* on .7, along with the construction of a 3-dimensional background
metric on 7. I leave it as an open question whether an equivalent 3-dimensional
version can be given.
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