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We consider causal higher order theories of relativistic viscous hydrodynamics in the
limit of one-dimensional boost-invariant expansion and study the associated dynamical
attractor. We obtain evolution equations for the inverse Reynolds number as a function of
inverse Knudsen number [1]. The solutions of these equations exhibit attractor behavior.
We compare the attractors of the second-order Müller-Israel-Stewart (MIS) [2], transient
Denicol-Niemi-Molnar-Rischke (DNMR) [3], and third-order (TO) [4] theories with the
exact solution of the Boltzmann equation in the relaxation-time approximation (RTA).

Relativistic dissipative hydrodynamics has
been applied quite successfully to explain
the collective behaviour observed in high en-
ergy heavy-ion collisions. The simplest rela-
tivistic dissipative theory, relativistic Navier-
Stokes theory, imposes instantaneous consti-
tutive relations between the dissipative flows
and their generating forces, expressed through
first-order gradients of equilibrium quantities.
This approach was found to be plagued by
acausality and instability which was rectified
in the second-order MIS theory by introduc-
ing a relaxation type equation for the dissi-
pative flows and thus turning them into inde-
pendent dynamical degrees of freedom of the
system. As discussed in [5], even the mini-
mal causal conformal theory given by MIS in-
troduces new modes called non-hydrodynamic
modes that were absent in Navier-Stokes the-
ory. These non-hydrodynamic modes are now
known to play an important role in determin-
ing the regime of applicability of hydrodynam-
ics, also known as the “hydrodynamization”
process [6]. In the present study, we will focus
on yet another interesting feature that appears
in a causal theory of relativistic hydrodynam-
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βπ a λ χ γ
MIS 4P/5 4/15 0 0 4/3

DNMR 4P/5 4/15 10/21 0 4/3
TO 4P/5 4/15 10/21 72/245 412/147

TABLE I: Coefficients for causal viscous hydrody-
namic evolution of shear stress tensor in Bjorken
flow for the three theories considered here.

ics, “the hydrodynamic attractor” [7].

In the case of longitudinal Bjorken flow ex-
pressed in Milne coordinates xµ = (τ, x, y, ηs)

[with τ =
√
t2−z2 and ηs = tanh−1(z/t)],

the evolution equation for non-vanishing shear
stress tensor component, π ≡ −τ2πηsηs , can
be written in the following generic form [1]:
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The coefficients βπ, a, λ, χ, and γ appearing
in Eq. (2) and Eq. (4) are tabulated in Table I
for the three theories studied in this work.

In terms of the normalized shear stress (in-
verse Reynolds number) π̄ ≡ π/(ε+P ) and
the rescaled time variable τ̄ ≡ τ/τπ (which is
the inverse Knudsen number for Bjorken flow),



Attractor

Other solutions

0.05 0.10 0.50 1 5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

τ

π

FIG. 1: Attractor behavior of the solutions for
the third-order theory. The two (attracting and
repulsing) fixed points at τ̄ → 0 are clearly visible.

Eq. (1) can be used to obtain the relation

π̄ = 3
(τ
τ̄

) dτ̄
dτ
− 2. (3)

Here we also used that for a conformal system
ε∝T 4 and Tτπ = 5η̄ = const. where η̄ ≡ η/s
is the specific shear viscosity. Eqs. (2) and (3)
can be combined to obtain a first-order non-
linear ordinary differential equation for π̄ that
is completely decoupled from the evolution of
the energy density [1]:(
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The solutions of Eq. (4) posses an interest-
ing feature called the “hydrodynamic attrac-
tors” as shown in Fig. 1. The initial condition
for the attractor solution is obtained by im-
posing the boundary conditions that both π̄
and dπ̄/dτ̄ remain finite as τ̄ → 0 which re-
sults in the quadratic equation γ π̄2+λ π̄−a =
0 for the initial value of π̄. One finds two solu-
tions, one of which (the positive root) is stable
and corresponds to the unique attractor solu-
tion whereas the negative root corresponds to
a repulsor. An illustration of this generic be-
havior is shown in Fig. 1 for the case of the
attractor and other solutions of Eq. (4) corre-
sponding to the third-order theory [1].

In Fig. 2, we show the attractor solutions
for π̄ for the MIS, DNMR, and third-order
theories, as well as for the exact solution of
Boltzmann equation (BE) in the relaxation-
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FIG. 2: Attractors for the MIS, DNMR, and
third-order theories, compared with the exact nu-
merical attractor of the RTA Boltzmann equation
and Navier-Stokes solution.

time approximation (RTA) [8] and the Navier-
Stokes solution. We see that of these the
MIS attractor approaches the exact attractor
most slowly, while the attractor of the third-
order theory exhibits the best agreement with
the exact RTA BE attractor [1]. This adds
to the evidence of the superior performance
of the third-order theory over different vari-
ants of second-order theories based on expan-
sions around a locally equilibrated isotropic
momentum distribution.
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