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Abstract. Skyrmions are spiral structures observed in thin films of certain
magnetic materials (Uchida et al 2006 Science 311 359-61). Of the phases
allowed by the crystalline symmetries of these materials (Yi et al 2009 Phys.
Rev. B 80 054416), only the hexagonally packed phases (SC;) have been
observed. Here the melting of the SC;, phase is investigated using Monte Carlo
simulations. In addition to the usual measure of skyrmion density, chiral charge,
a morphological measure is considered. In doing so it is shown that the low-
temperature reduction in chiral charge is associated with a change in skyrmion
profiles rather than skyrmion destruction. At higher temperatures, the loss of
six-fold symmetry is associated with the appearance of elongated skyrmions that
disrupt the hexagonal packing.
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1. Introduction

Following early work by Pauli, a variety of nonlinear sigma models were suggested as models
for baryons [3-5]. One of the first soluble models was found by Skyrme who considered
rotational variables [6], and the resultant unit field spiral solitons are referred to as skyrmions.
Two-dimensional skyrmions appeared as the fundamental excitation from a spin-polarized two-
dimensional electron gas. It was suggested that defects could localize skyrmions, giving rise to
the fractional quantum Hall effect (QHE) [7-9]. Observations in GaAs quantum well systems
using NMR [10] and magnetoabsorption spectroscopy [11] confirmed the presence of quasi-
particles with charges consistent with theoretical predictions. More recently, measurements have
been made in GaAs using NMR relaxation [12], spin wave absorption [13] and microwave
absorption [14], which are consistent with the presence of a predicted skyrmion lattice [15].
Skyrmions were first proposed as a possible magnetic spin texture by Bogdanov and Hubert,
who showed that Dzyaloshinskii—-Morya exchange terms could lead to stabilization of skyrmion
crystals in chiral magnets [16—18]. Recently, real space measurements of the two-dimensional
analogue of these spiral structures have been made at low temperature in thin films of
FesCogsSi [1, 19] and close to room temperature in FeGe [20], along with the measurement of
spin torque effects at very low current densities [21]; these measurements have ignited interest
in skyrmions as a possible candidate for magnetic storage [22].

In two dimensions, skyrmions exist as a vortex structure modulated by a changing
perpendicular component. Consider a field of unit length §(X) with X two dimensional and §(X)
taking the usual polar representation®. Away from an isolated skyrmion, the field is described
by the zenith angle & = 7. Taking radial coordinates (p, ) for X, a skyrmion can be described
as a vortex in the azimuthal angle ¢ (p, ¥) = ¥ — /2 modulated by a radial varying zenith
angle 6(p, ¥) = 6(p) such that #(0) = 0 and 8(R) = 7. An example of close-packed skyrmions
projected into the plane is shown in figure 1(c), where gray (black) arrows indicate spins with
the perpendicular component pointing up (down). For such an excitation to be stable, one
requires a Hamiltonian with either fourth-order derivatives of the field [6] or terms lacking
inversion symmetry [16]. Lack of inversion symmetry can be found in a variety of crystal

3 The zenith measured with respect to the z direction perpendicular to the plane.
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Figure 1. Projection of spins into the x—y plane; black arrows indicate that s; > 0
while gray arrows indicate s; < 0. (A) Helix state; (B) SC; skyrmion; (C) SC,
skyrmion; and (D) SC, skyrmion.

structures, in particular B20 crystal compounds with crystallographic point group 23,* in which
Dzyaloshinskii—-Morya coupling is present. Yi et al [2] calculated the 7 = O phase diagram as
a function of external magnetic field and anisotropy for such a two-dimensional magnet using
Monte-Carlo simulation.

Five different states were identified: the high-field saturated ferromagnetic phase, a helical
state (figure 1(a)) and three chiral states. The chiral crystal states were labeled according to their
rotational symmetries: SC; (figure 1(b)) has a two-fold rotational symmetry, SC, (figure 1(d))
shows a four-fold symmetry and SC;, (figure 1(c)) a six-fold symmetry’. In what follows, we
restrict our attention to the SCy-type skyrmions.

Analytically, the ground state properties of this two-dimensional case have been studied
using a Landau—Ginzburg formalism [23]. The nature of the phase transition has already
been investigated using combinatorics [24]. Here the authors considered the striped helical
state structure shown in figure 1(a) as the ground state. In the presence of an external field
perpendicular to the plane of the sample, one direction of perpendicular magnetization is
favored. Since the stripe period is fixed by the ratio of Dzyaloshinskii-Morya and ferromagnetic
exchange coupling, spins reverse inside stripes anti-aligned with the field, breaking the
remaining anti-aligned areas into finite length stripes. Unlike the one-dimensional periodicity of
the ground state (giving zero chiral density), the ends of the terminating stripes form a ‘meron’: a
chiral half spiral. The skyrmion crystal state SC;, shown in figure 1(c) is the state with maximum
possible meron density. By considering the merons as particles with chiral charge, a free energy
can be written and a qualitatively correct B—T phase diagram produced. While the assumptions
of this model are reasonable at low temperature, the possibility of skyrmion profiles changing
with temperature cannot be described. One expects that as temperature is increased, thermal
fluctuations will dominate and the particle description will no longer be valid.

4 In Hermann Mauguin notation.
3> This notation should not be confused with the notation of some authors in which skyrmion states are labeled as

either SkX or SkG, referring to whether the system has formed a close-packed skyrmion crystal (SkX) or consists
of spatially isolated skyrmions (SkG).
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Current Monte Carlo simulations have focused on obtaining phase diagrams, with phases
identified according to symmetry properties and chiral density [2, 19]. As a system with textured
phase, close-packed skyrmions represent three types of order: a net chiral charge, a six-fold
symmetry and a net magnetization. Here we use Monte Carlo simulations to investigate the
melting of the SC;, phase, focusing on the mechanism through which these various orders are
destroyed.

2. Theory and method

Typical magnetic skyrmions have diameters of hundreds of angstroms and so atomic scale
modeling would be exceptionally demanding computationally. Instead we use a discretized
version of the phenomenological continuum model proposed by Bak and Jensen [25], first
introduced to explain observations of helical structure in MnSi [26-28] and FeGe [29]; the
model has since been adapted to a discrete lattice by Yi ef al [2] and we begin with their
Hamiltonian. In two dimensions and in our notation, it reads

E=—J/2) 55— K/2) (Gi % Gisat = 5i—ap)) - %+ i X Giaay — 5imas)) - H)

(i, )

+ Z H-5+A Z((zf)“ + GO+ GHH + A, Z(s,.xs;;afc +575)05)- (1)

For brevity we use single subscripts to represent locations on a two-dimensional square lattice
with lattice constant a. The 5; are dimensionless spins at the vertices of this lattice representing
the average magnetization of a small volume V; =a x a x t centered on vertex i, with ¢ the
thickness of the film. 5;,,; and s;_,; represent the closest spins to s; in the x direction (with
analogous notation in the y direction) and ZU’ j indicates a sum over all pairs of nearest
neighbors. K is the strength of the Dzyaloshinskii-Morya exchange coupling, the sign of
which determines the handedness of the skyrmions; J is the strength of the isotropic exchange
coupling; H is the strength of the applied magnetic field and A; and A, are anisotropies. The
ratio of exchange to Dzyaloshinskii—-Morya strength determines the periodicity of the skyrmion
lattice as P = da where d is [2, 19]

-1
d=2m (arctan <Mi)> . )
4J+ A,

Since the computation time to complete a Monte Carlo step scales with the number of spins,
simulating large systems is typically associated with long computation times. In order to
decrease this computation time, GPU parallel programming is employed. The Hamiltonian
includes only short-range interactions so a parallel checkerboard-type algorithm similar to those
described by Weigel and Yavorskii [30, 31] is used.

2.1. Ground state packing

In order to relate the results of simulations performed on finite lattices to those expected for
infinite systems, one exploits scaling relations between a set of universal scaling functions given
as a function of an adjusted temperature L'/*T, "' (T — T.). For modulated phases this involves
selecting an appropriate order parameter and then selecting scaling sizes restricted to multiples
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Table 1. Parameters used in the Monte Carlo simulation.

Parameter  Value

K/J 2.45
AT 0.5
As) ~0.25

Y d
000 "
._‘ . V3d
o000 "“
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Figure 2. Left: unit cells that span a plane with hexagonal symmetry; right: the
dimensions of a rectangular unit cell that can be used to tile a finite system with
periodic boundary conditions.

of some appropriate unit cell. Such a procedure has been successful in calculating critical
exponents for striped and anti-ferromagnetic Ising systems [32] (interestingly the resulting
parameters do not belong to any known universality class). As a first step toward achieving
a comparable framework for skyrmions, we focus here on a qualitative description of the
dynamics and describe how various measures of the skyrmion phase evolve. We also comment
on the challenge of defining a unit cell for phases with P6 symmetry.

For a hexagonal array with spacing d and axes in the [1,0] and [1, +/3] directions,
one expects elements separated by vectors +(d, 0), +(d/2, v/3/2) and +(d/2, —/3/2) to
have the same value. On a square lattice, +£(d/2, v/3d/2) and +(d/2, —/3d/2) are non-
integer and hence do not correspond to lattice sites. In order to select a value for d that
favors hexagonal packing, we select the value of d for which £(d, 0), £(d/2, «/§/2) and
+(d /2, —/3/2) are as close to integer values as possible. Considering sizes less than ten (to
keep computation times acceptable), the best choice is d = 6. This value has been considered
in previous simulations [2, 19]. Parameters used are given in table 1, where dimensionless
quantities are given by normalizing against J. In what follows, temperature and energy will be
given as 7 = (kgT')/J and energy as £ = E/J. The magnetic field is fixed at H/J = 1.875 to
ensure that at 7 = 0 the system forms close-packed skyrmions. With this choice of parameters,
one lattice spacing in the discretized model represents between 3 and 15 nm.

Some care should be taken when choosing the finite dimension (L) of the spin lattice for
these calculations. For skyrmions the ground state is periodic, consisting of hexagonally close-
packed skyrmions; hence the repeated unit cell of the crystal lattice is not square. In order to
tile a pattern with six-fold symmetry, one usually selects a unit cell that is a parallelogram
defined by the vectors v; = (d, 0) and v, = (d/2, V3d /2), where d is the spacing between six-
fold symmetry axes (in this case skyrmion cores). The resulting parallelogram is indicated in
figure 2. This parallelogram unit cell is space filling and can be used to cover an infinite plane.
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Figure 3. Log plot of M(L,6,6+/3) showing the minimum at L =42. This
minimum corresponds to the tiling that best minimizes finite size effects
introduced by periodic boundary conditions.

Our simulation uses a square lattice spanning a finite region with periodic boundary
conditions. In order to tile a space with periodicity in the x and y directions, we select a
rectangle to act as the unit cell, also shown in figure 2. This unit cell is then a rectangle with
width d; = d and height d, = v/3d. The above parameters for which d = 6 correspond to a unit
cell of dimensions 6 x 10.3923. If one picks a system size with periodic boundary conditions
and length as multiples of d, the resultant state will be influenced in one direction by the forced
periodicity. When deciding the system size, one should attempt to find a system size that is a
multiple of d; and d,. With d, irrational, this is not possible. Instead we consider the two lengths
that define the unit cell d; =6 and d, = 6+/3. In order to measure the amount of mismatch
between the system size L and the unit cell, we define a function

M(L,d,,d,) =min(L —d,|L/d,],d,—L+d,|L/d,])
+min(L —d,|L/d\|,d, — L+d,|L/d,]), 3)

where each term in equation (3) is a measure of how far L is from an exact multiple of d; or d5.
In the case of the hexagonal skyrmion lattice where d, is irrational and L is restricted to be an
integer, the minima are not known a priori. In order to select a reasonable size, M (L, 6, 6J§)
was calculated for L € [1, 100]. As shown in figure 3, the minimum value is found to be L = 42.

2.2. Analysis

The close-packed skyrmion ground state consists of two types of order, a chiral charge
associated with the creation of spiral structures and a long-range order associated with the
hexagonal packing. In addition to the skyrmion crystal order, the system has a net magnetization
in response to the applied magnetic field.

Two techniques are employed in order to measure the number of skyrmions in a state. The
first is to consider the topological charge Q of a skyrmion, which is the sum of the local chiral
charge over the area of a single skyrmion [24]. The charge density is the discretized form of the
continuum expression

1 - - -
X=1= / d*x 5 - (3,5 x 9,5), 4
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giving

Xi = S:l : ((§i+afc - Ei—afc) X (§i+a)7 - 3:i—aﬁ))- (5)

4 a?

The chiral charge is then x = N~! > xi- We are aware of an earlier discretization of chiral
charge, which we discuss in the appendix. In order to define the charge Q of a skyrmion, we
calculate the total charge of the ground state and divide by the number of skyrmions. Assuming
that the skyrmion charge is constant with changing 7 and that phase transition occurs via
changing skyrmion density (i.e. destruction of skyrmions), one could calculate the number of
skyrmions at any finite temperature by dividing the total charge by Q. This method of counting
skyrmions assumes that the skyrmion charge remains constant (i.e. the skyrmion profile is not
temperature dependent). In order to scrutinize this assumption, we define a second measure of
skyrmion number that does not assume constant charge. Since the core of a skyrmion points
against the applied magnetic field, one can binarize a state by applying ©(1/2(s; -z +1) — T})
(O is the Heaviside Theta function), where 7; is some threshold between zero and one. In doing
so one identifies spins with ; - Z anti-parallel to the magnetic field as skyrmion cores. One can
then calculate the connected components of the resultant state. To do this the eight nearest and
next-nearest neighbors to a given spin are considered connected if they are equal. Counting the
total number of connected components gives a measure of the skyrmion number. This measure
of skyrmion number assumes that skyrmion cores align anti-parallel to the applied field. While
both orientations carry the same Dzyaloshinskii—-Morya coupling energy, cores aligning with
the field possess a higher Zeeman energy cost (since the core occupies less area than the outside
of the skyrmion), so a state of close-packed skyrmions oriented with cores aligned with the field
is not favored. The possibility of mixed cores (some parallel, some anti-parallel) has an energy
cost due to exchange coupling at the boundary between skyrmions. For sufficiently strong two-
site anisotropy, this can be overcome leading to the states shown in figures 1(b) and (d) [2]. The
possibility of mixed cores may increase near the transition, especially in finite systems or near
defects, but was not observed in the cases studied here. By comparing these two measures of
skyrmion number, one can distinguish between reduction of topological charge due to skyrmion
destruction and alteration of the skyrmion profile.
In order to examine the long-range order of a state, the Fourier transform Sk

Z sjexp(ik - j) 1s taken. When the system is close packed, |Sk| will have six satellite peaks
Correspondmg to the hexagonal symmetry of the ground state.

3. Results

For each system size to be investigated, the ground state is first calculated by starting the system
in a random configuration and then reducing the temperature to zero over 10’ MC steps. The
ground state for L =42 is shown in figure 4 along with the intensity profile of the Fourier
transform |Sk| By selecting the system size L to match the dimensions of the rectangular unit
cell described above, it is possible to fit an integer number of unit cells into the square array.
Here the Fourier transform shows a slight deviation from a perfectly hexagonal packing, which
we discuss in section 4. For finite temperature results, the system is evaluated at a constant
temperature starting from the ground state with the first 107 MC steps disregarded to allow
the system to equilibrate. An ensemble of 100 states is calculated and 280 MC steps are taken
between subsequent states to ensure that each state is selected independently. In figure 5 four
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Figure 4. Ground state spin configuration (top) and intensity of the Fourier
transform (bottom) showing peaks characteristic of the six-fold translational
symmetry of the hexagonal lattice.

M Chiral Charge
1.
! 075
= 0.5
e Z0.25) °,
TS 0L
5. 10. 15, 0. 5. 10. 15.
kgTJ ™! kgTJ ™!
Cone Angle Energy Variance
s 1028 Gile PP e
=107 L4 .," - -
3'_:, 0.6 ”dz !
o8] e, 0.
0. 5. 10. 15. 0. 5. 10. 15
kgTd™! kgTJ ™!

Figure 5. Clockwise from top left: perpendicular magnetization, chiral charge,
cone angle and energy variance.
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Figure 6. Two measures of skyrmion packing as a function of temperature: the
connected reversed components (gray circles) and the ratio of total chiral charge
to the charge of one skyrmion in the ground state (x)/Q (black circles).

order parameters of the system are shown: the magnetization M, = |[N~'Y_.5; - Z|; the cone
angle (6; — 7 /2)?; the chiral charge x normalized against its ground state value; and the energy
variance var(€). The persistence of the magnetic response at temperatures greater than those
required for the destruction of chiral order is seen through the magnetization M, and the
cone angle. The loss of chiral structure occurs around 7 = 3, but the elevated cone angle and
magnetic order persist at approximately 7 = 8. The energy variance is double peaked, indicating
two broad transitions. At high temperatures, the entropy dominates and there is no order. Below
T = 10 there exists a region in which the cone angle increases from its high-temperature value
giving rise to a non-zero magnetization. The external field ensures that as the temperature is
decreased, the magnetization increases. The broad 7 = 10 peak in the energy variance reflects
the very gradual decay of magnetic response expected in the presence of an applied field;
magnetic order is a single-site property and so it can persist at higher temperatures with a
symmetry breaking field. Below approximately 7 = 2.5, there is a transition into the skyrmion
state characterized by the sharp increase in the strength of the chiral charge. Since the creation
of skyrmions prevents the system reaching saturation, we note that the magnetization remains
well below the saturation value.

3.1. Loss of six-fold order

In order to examine the loss of long-range order, we focus on the low-temperature regime.
In figure 6 the skyrmion number is calculated using the total chiral charge and the method
of counting cores described previously. While the chiral measure is reduced at all finite
temperatures, the number of reversed regions remains constant below about 7 = 0.3. This
suggests that the initial loss of chiral charge is due to thermal distortion of the skyrmion profiles
rather than destruction of the skyrmions themselves. In figure 7 an example state from ensembles
at different temperatures is shown along with |S;|, between 7 = 0.1 and 2.5. At 7 = 0.4 the
strong six-fold symmetry is compromised with peaks beginning to smear together. At 7 = 0.5
the peaks have smeared into a circle, indicating that while a dominant length scale still exists
six-fold translational symmetry is lost. At this temperature one can simultaneously observe the
appearance of elongated regions of reversed magnetization. As temperature is further increased,
any order in the perpendicular components of 5; is destroyed. An enlarged example of a state
at 7 =0.5 is shown in figure 8. In addition to the perpendicular magnetic order, in-plane
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B oa

-1 0 1
Figure 7. Perpendicular components of s; and Fourier intensity |3‘k| near the
phase transition. Since the central (k = 0) Fourier peak is significantly larger
than the satellite peaks at finite temperature, it is removed to give contrast. The
Fourier plots then have their colors scaled with green representing zeros and red
representing the maximum value. Perpendicular components of s; are colored
according to the legend above. Left column from top: 7 = 0.1, 0.2, 0.35 and
0.4; right column from top: 7 = 0.5, 0.8, 1.2 and 2.5.

magnetic order is shown as arrows. In addition to disrupting the close packing of skyrmions,
these extended structures also reduce the chiral density described in equation (5). To illustrate
this, in figure 9 the longest of extended regions shown in figure 8 is replotted with information
about perpendicular order omitted. Color is used to indicate areas of highest chiral density, blue
represents areas of low density and red indicates areas of high density. Here only the ends of the
structure contribute significantly.

4. Effects of distorted packing

While the difficulty associated with finite size effects was minimized by considering the
dimensions of the ground state unit cells, it is not possible to achieve perfect hexagonal packing.
In addition, the presence of the low-temperature (below 7 = 0.3) distortion of the skyrmion
profile and the appearance of elongated regions might indicate a change of the dominant
length scale. In order to investigate the effects of imperfect packing, several other comparable
system sizes were investigated for 7 = 0.2 and 0.4. The resulting energies are given in table 2,
where it is seen that at finite temperature the change in energy due to finite size effects is not
significant.
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Figure 8. An example of the elongated structures associated with the destruction
of long-range order at 7 = 0.5. Here the perpendicular components of the spins
are represented by color as in figure 7; in addition, for spins parallel to the plane
their direction is indicated with arrows.

Figure 9. An example of the elongated structures associated with the destruction
of long-range order at 7 = 0.5. Spins parallel to the plane have their direction
indicated with arrows. Areas of high chiral density are indicated in red.

Table 2. Ensemble energies for (£) at 7 = 0.2 and 0.4.
L (ENT =02 (EXT=0.4)

39  —2.31898 —2.14408
42 =2.32090 —2.14087
45 —2.32448 —2.13814
48 —2.31905 —2.138 81

(|§k|) was also calculated and the results are shown in figure 10. If the spacing between
skyrmions or skyrmion packing was to change with temperature, one expects that a small
increase in system size might alter the stability of six-fold ordering near the phase transition.
Systems with size L equal to 45 or 48 show the same general trend in which the six-fold order
is destroyed leaving peaks in the [1, 1] and [—1, 1] directions. For L = 39 the system does not
form six-fold packing. This strong size effect emphasizes the importance of a judicious choice of
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L=39 L=42 L=45 L=48

L=39 L=42 L=45 L=48

Figure 10. (|3’k|) as a function of size for 7 = 0.2 (top) and 7 = 0.4 (bottom).
The plots are colored as in figure 7.

system size. Even in the presence of this strong size effect, L = 39 (and the two larger systems)
displays the same general morphological properties, a temperature-driven reduction in skyrmion
density associated with the appearance of elongated structures. While the lack of atomic scale
modeling means that our theory is likely not valid exactly at the phase transition, the qualitative
description of the phase description given here is valid.

5. Conclusions and comments

We have shown that since the chiral density changes smoothly over a large temperature range,
it does not capture all of the information about the melting process from the SC;, phase in chiral
magnets. The Fourier intensity and the reversed connected components of the system reveal a
low-temperature reduction in the chiral charge due to thermal distortion of the skyrmion profiles.
At higher temperatures there is a sharp loss of six-fold order associated with the creation of
elongated structures that disrupt ordering. Only the ends of these structures contribute to the
chiral charge, further reducing the chiral density. In addition, it has been shown that the nature
of hexagonal close packing means that while any choice of simulation size will introduce finite
size effects, a judicious choice of system size can help alleviate these effects.

Here the authors have limited the scope of investigation to a single choice of applied field;
however, the techniques presented might offer insight for a wide variety of fields. Specifically,
there is the possibility that at higher fields the relative strength ) . H -5; might suppress the
creation of extended regions of reversed magnetization. There exists also the possibility of
analyzing the zero-field ground state as stripes of alternating connected regions of perpendicular
spins pointing in the positive and negative z direction, represented as @ (1/2(+£s; - z+1) — T;).
Similarly the SC; and SC, phases might be analyzed as checkerboard alternating cores.

As discussed in section 2.1, parameters were chosen to provide skyrmion diameters of
the order of tens of nanometers in order to correspond to observations of skyrmion orderings
made on FeCoSi (~90nm [1]) and FeGe (~70 nm [29]). Real space measurements of chiral
structures are performed using Lorentz TEM and quantitative phase information is extracted
by inverting the transport of intensity equation [1, 19, 33]. In this case calculating the skyrmion
density is analogous to the measure of counting cores discussed in section 2.2. Chiral ordering is
also associated with the anomalous QHE [2, 34, 35] and so measurements of skyrmion density
based on Hall conductivity are likely to measure the chiral charge, which we have discussed in
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Chiral Charge Comparison
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Figure A.1. Comparison of the two discretization schemes for chiral charge.

figures 5 and 6. The differing densities calculated from skyrmion counting and the chiral charge
may have important implications for the interpretation of QHE measurements on quasi-two-
dimensional skyrmion forming systems.

Small skyrmion-like structures can exist close to the atomic scale (see e.g. [36]); however,
these are not described by our model. Instead, we model systems that support skyrmion textures
on the length scales discussed above. These have dimensions of the order of tens of nanometers
and it is therefore unlikely that isolated atomic level defects will have significant effects. In real
systems the influence of the underlying lattice seems to be small (see e.g. [37]). We cannot rule
out the possibility of pinning of skyrmion cores, however, which may be well localized. Defects
that lead to pinning could also break rotational symmetry. Rotational symmetry breaking terms
are included in our Hamiltonian (A; and A, anisotropy terms in equation (1)). Numerically,
these terms are kept small in order to avoid the unphysical SC, phase described in the
introduction.
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Appendix. Comparison of chiral discretization

In our work here we have used a simple lattice derivative to evaluate the continuum expression
given in equation (4). Berg and Liischer [38] have defined an alternative discretization, in which
the expression is given for a new set of sites equidistant from the original lattice vertices.
Denoting sites on this new lattice i the definition is

1 . - - - - o - . - - - N
Xis = 7 (sign(sy - (52 X §3)) A(s1, 82, 53) — sign(sy - (s3 X 54)) A(51, 53, 54)) , (A.1)
where 51, 5,, 53 and 54 are the four spins adjacent to i * (in canonical order) and A (51, 55, 53) is the

area of the spherical triangle defined by its three arguments. In figure A.1 we show the results of
calculating the chiral charge using the expressions in equations (5) and (A.1) normalized against
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their ground state values. Here we observe that both discretization schemes give qualitatively
the same results.
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