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Abstract

A general method is developed which allows the calculation
of the asymptotic behavior of Feynman integrals in the
limit of several large scales., It is employed to deter-
mine the asymptotic behavior of various parton amplitudes.

We make use of the parametric representation of Feynman
integrals. Topological formulae for the various parametric
functions of the parametric representation are derived.
The asymptotic behavior is discussed within the general
context of singularities of Feynman integrals set by the
Landau equations, It is shown how the asymptotic behavior
of a Feynman integral can be calculated systematically in
the 1imit of several independent large scales with the
aid of a multiple Mellin transform of its parametric re-
presentation. In order to calculate the asymptotic be-
havior the parameter space has to be sliced. A general
algorithm is presented.

We report the results of an explicit calculation of the
leading asymptotic behavior of the quark form factor in QCD
in the limit of a large virtual mass of the photon up to
C?(cxg). In contrast to previous investigations we regul-
arize infrared singularities by keeping either one, or both
quarks off shell, or both qQuarks on shell. Our final re-
sult is represented by the beginning of an exponential series.
We determine the asymptotic behavior of the deep inelastic
leptoproduction structure functions in the quasielastic re-
gion in the leading double logarithmic approximation. Finally
we investigate the end-point singularities of the hard scatter-
ing amplitude of the pion’s electromagnetic form factor. We
calculate the leading double logarithmic corrections to the
hard scattering amplitude up to two loop order.
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Einleitung

In den letzten Jahren haben sich die Hinweise darauf,
daB die starke Wechselwirkung durch die Quantenchromo-
dynamik (QCD) angemessen beschrieben wird, stark ver-
dichtet.'B;fhichtstbrungstheoretische Methoden gegen-
wdrtig noch in der Entwicklung begriffen sind, beruht
diese Evidenz hauptsdchlich auf den Voraussagen der
perturbativen QCD. Der Anwendungsbereich perturbativer
Methoden ist aufgrund der asymptotischen Freiheit der
QCD auf solche Streuprozesse beschrankt, in denen min-
destens ein groBer Impulsiibertrag auftritt. Diese Tat-
sache hat weitreichende Konsequenzen.

Wegen des groBen Impulsiibertrages konnen szamtliche
Quarkmassen vernachlissigt werden. Daher treten verschie-
dene Arten von Singularitdten auf. Kiirzen sich die durch
das Verschwinden der Gluonenmasse verursachten Singu-
laritédten im allgemeinen aus den Ubergangswahrscheinlich-
keiten heraus, so gilt dies nicht fiir die durch das Ver-
schwinden der Quarkmassen hervorgerufenen kollinearen
Singularitédten. Dies erfordert eine Reorganisation der
Storungsreihe. Flir eine groBSe Klasse von Streuprozessen
konnte in Analogie zur Losung der Renormierungsgruppen-
gleichung (RGE) gezeigt werden, daB solch eine Reorgani-
sation tatséchlich durchfilhrbar ist [EL 79] . Sie be-
steht in einer Aufsummation der kollinearen Singularititen
iiber alle Ordnungen von o, , der Kopplungskonstanten der
starken Wechselwirkung.

Hangt ein Prozess von mehreren unabhingigen groBen Im-
pulsiibertrédgen ab, so treten zuszdtzliche Singularitdaten
auf, Bekannte Beispiele sind die Partonenverteilungen an
den Grenzen des erlaubten Phasenraumes oder der Drell-Yan-
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ProzeB in der Region C?_L<< Ql . In solchen Regionen sind
daher weitergehende Summationen notig. Die Vorschlige,
wie solche Summationen vorgenommen werden konnen, die in
der Literatur zu finden sind, haben oft einen ad hoc Cha-
rakter und die Begriindungen sind hdufig unvollstandig,
80 daB verschiedene dieser Vorschlédge nicht konsistent
untereinander sind [PA 79, DO 80b, FR 82] .

Angesichts der Schwierigkeiten, die ein Beweis der
Summierbarkeit solcher Singularitdten in allen Ordnungen
von «¢ aufgibt, ist es wichtig,die priazise Form der Singu-
laritédten in niedrigen Ordnungen zu kennen. Zu diesem
Zweck benotigt man eine effektive Technik, die es erlaubt,
solche Singularitéten aus Feynman-Integralen (FI) zu iso-
lieren., Die Entwicklung solch einer Technik ist das Ziel
der vorliegenden Arbeit,

Grundlage bilden die Methoden zur Bestimmung des asym-
ptotischen Verhaltens eines FI , wie sie zu Beginn der
sechziger Jahre zur Untersuchung des Reggeverhaltens in
der Feldtheorie entwickelt und eingesetzt worden sind
[ ED 66, PO 80 J . Der Anwendungsbereich dieser Methoden
ist auf Prozesse beschrankt, in denen ein einziger grofBer
Impulsiibertrag auftritt. Wir werden diese Methode so ver-
allgemeinern, daB auch das asymptotische Verhalten eines
FI im Limes mehrer groBer unabhingiger Impulsiibertrage
berechnet werden kann,

Ausgangspunkt unserer Untersuchungen ist die Form des
FI , die man nach Ausfiihrung der invarianten Integration
eérhédlt, die sogenannte parametrische Darstellung. Im
ersten Kapitel werden wir topologische Regeln ableiten,
mit deren Hilfe die parametrische Darstellung eines FI
direkt aus dem Feynman-Graphen bestimmt werden kann, ohne






daB die invariante Integration explizit ausgefiihrt werden
muB. Das zweite Kapitel enthdlt einen Uberblick iiber die
Singularitaten von FI, Ziel dieses Kapitels ist es, einen
Zusammenhang zwischen Massensingularitaten und asymptotischen
Singularitédten herzustellen, sowie allgemein zu erlédutern,
welche Teilregionen des Integrationsraumes der parametrischen
Derstellung eines FI fiir die beiden genannten Arten von
Singularitdten verantwortlich sind. Im Kapitel 3 wird ge-
zeigt werden, wie man die asymptotische Entwicklung eines

FI systematisch mittels einer Mellin-Transformation be-
stimmt. Dies geschieht zuerst fiir den Fall von zwei grofBen
Impulsiibertrdgen und wird anschlieBend auf den Fall von drei
und mehreren grofBen Impulsiibertrédgen verallgemeinert. Das
letzte Kapitel des Teils A, Kapitel 4, enthdlt die Beschrei-
bung einer Methode, die es erlaubt, das Integrationsgebiet
systematisch zum Zweck der Berechnung des asymptotischen
Verhaltens zu zerlegen.,

Im Teil B berichten wir iiber die Resultate, die mit der Tech-

nik,die in Teil A beschrieben wird, fir das asymptotische
Verhalten

a. des Sudakov-Formfaktors (Kapitel 5)

b, der tiefinelastischen Streuung in der quasielastischen
Region (Kapitel 6)

C. des Formfaktors des Pions in der Endpunktregion
(Kapitel 7)

berechnet wurden.

Im Teil A wird weitestgehend auf die Illustration der
einzelnen Schritte zur Berechnung des asymptotischen Ver-
haltens durch Beispiele verzichtet., Statt dessen fiihren
wir sdmtliche Schritte nacheinander fiir zwei Graphen der
Prozesse aus Kapitel 5 und 7 in Kapitel 8 und 9 vor.






Teil A Allgemeine Methode

1 Parametrische Darstellung von FI

Die Berechnung eines Feynman-Graphen erfolgt gewChnlich in
mehreren Schritten.Nach Wahl der unabhingigen Integrations-
impulse wird der Impuls jeder einzelnen Linie des Graphen
ermittelt und der entsprechende analytische Ausdruck nach
den bekannten Feynman-Regeln niedergeschrieben. Im An-
schluB8 daran werden die Nenner der einzelnen Propagatoren
durch Einfilhrung eines Feynman-ParameterS'gggz aﬁ fiir
jede Linie mittels der bekannten Feynmanschen Identitat
zu einem Integral kombiniert, dessen Integrand nur noch
einen einzigen Nenner aufweist. Dann werden die inneren
Impulse so transformiert, daB der Nenner ein reinquadra-
tischer Ausdruck wird, und die invariante Integration liber
die inneren Impulse ausgefiihrt. Daduch gelangt man zu der
sogenannten parametrischen Darstellung des FI. Zum SchluB

bleibt noch iiber die einzelnen FP zu integrieren.

Die Analyse des asymptotischen Verhaltens eines FI 1&a8t
sich prinzipiell sowohl vor als auch nach der invarianten
Integration durchfilhren. Da in der Regel eine Vielzahl von
Graphen zu analysieren ist, spielt dabei der notwendige
Aufwand eine wesentliche Rolle., Im ersten Fall ist es
offensichtlich wichtig, die unabhdnigen Impulse geeignet
zu wdhlen (siehe z.B. [:SU 561 ). Diese Methode erweist
gich dann als vorteilhaft, wenn die Impulsfliisse, von
denen das asymptotische Verhalten herriihrt,bekannt sind.
Sind diese jedoch erst zu bestimmen, so ist die zweite
Methode vorzuziehen (siehe z.B. [HA 74] ). In dieser
Arbeit werden wir ausschlieBlich den zweiten Weg wéhlen.

Sind zur exakten Brechnung von FI in der 1-Schleifen-
ndherung noch sémtliche oben genannten Schritte fiir einen






Graphen ohne weiteres explizit ausfiihrbar, so ist dieses
Verfahren bereits in der 2-Schleifennéherung duBerst mijh-
sam. Allerdings ist es auch gar nicht notwendig, fiir einen
bestimmten Graphen alle einzelnen Schritte explizit aus-~
zufihren., Vielmehr 148t sich die parametrische Darstellung
eines FI mittels der sogenannten topologischen Formeln
direkt aus dem Graphen ablesen. Diese Methode besitzt
nicht nur fiir die exakte Berechnung von FI eine groB3e Be-~
deutung, sie ist auch Ausgangspunkt fiir die Bestimmung des |
asymptotischen Verhaltens. Aus diesem Grunde werden wir
diese Methode im vorliegenden Kapitel im Detail ent-
wickeln.,

Historisch wurde die allgemeine Form eimes FI zuerst
von Chisholm [CH 52] abgeleitet. Die parametrische
Integraldarstellung entwickelten Nambu [NA 57a, 58]
und Nakanishi [NA 57b] . Allgemeine Regeln zur Berech-
nung der darin auftretenden parametrischen Funktionen
wurden von Symanzik [ SY 58] angegeben. Diese Regeln
sind sp&dter von verschiedenen Autoren erganzt worden,
Eine gute Ubersicht liefert [NA 71] . Besondere Er-
wahnung verdient die Arbeit von Shimamoto [SH 62 ] ’
der als erster topologische Formeln fiir die parametrischen
Funktionen unter Ausnutzung von Resultaten der Graphen-
theorie ableitete.

Im ersten Abschnitt dieses Kapitels werden wir eine
Reihe von grundlegenden Begriffen der Graphentheorie
einfiihren, die in den darauf folgenden Abschnitten zur
Herleitung der topologischen Formeln der parametrischen
Funktionen bendtigt werden (Abschnitt 1.3). Die allgemeine
Form des FI wird der Einfachheit halber zunichst nur fiir
eine rein skalare Theorie abgeleitet.(Abschnitt 1.2). Die
Erweiterung auf Theorien mit Feldern beliebigen Spins er-
folgt in Abschnitt 1.4 ., Wir werden uns in diesem Kapitel






auf die Darstellung von Standardmethoden beschrianken und
nicht auf Verfeinerungen [KI 62, AL 70, CV T4a,b, TR 74,
PO 82] eingehen.

1.1 Einige Begriffe aus der Graphentheorie

Unter einem Graph '@} ist ein Triplet aus

i, einer Menge von n Kanten {84,u-, en}
ii. einer Menge von v Vertizes {v,,,..., VV}
iii. einer Abbildung, die jeder Kante genau zwei Vertizes
zuordnet,

zu verstehen. Im Zusammenhang mit Feynman-Graphen ist es
sinnvoll, jeder Kante eine Richtung zuzuordnen. Ein solcher
Graph heiBt gerichteter Graph. Ein zusammenhingender Graph
ist ein Graph, bei dem jedes Paar von Vertizes durch Kanten-
ziige verbunden werden kann, Zur Analyse von FI reicht die
Betrachtung von zusammenhéngenden Graphen aus, Durch Ein-
schrénkung der Abbildung zwischen Kanten und Vertizes auf
eine Untermenge von beiden bekommt man einen Teilgraphen

'JC c ‘% . Da isolierte Vertizes keine Bedeutung haben, ist
ein Teilgraph ﬂ( vollkommen durch die Angabe seiner Kanten
festgelegt. Aus diesem Grunde werden wir nicht zwischen einem
Teilgraphen und der Menge seiner Kanten unterscheiden.

Sind zwei Teilgraphen Y, ¢ % und an_g g« gegeben,
80 lassen sich daraus folgende neue Graphen konstruieren:

i, M.,U 'Je,_ (%, n J{z) die Vereinigung (Durchschnitt)
zweier Teilgraphen ist durch die Vereinigung (Durch-
schnitt) ihrer Kanten bestimmt

Falls zusitzlich &, ¢ &, gilt, so ist
ii, g{l- qu durch die Kantenmenge W&fﬁﬂz gegeben und
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iii. gZQ / 964 bekommt man durch Zusammenziehen simt-
licher Vertizes aus 261 Zu einem einzigen Vertex., In
diesem Falle spricht man auch von einer Kontraktion
des Teilgraphen 984 .

Ein Pfad ist eine geordnete Menge von Kanten, die so
gewdhlt wird, daB

i. aufeinanderfolgende Kanten Jeweils einen Vertex
gemeinsam haben,
ii. die Vertizes ansonsten verschieden sind.

Ein geschlossener Pfad heiBt Schleife ¢f . Jeder Schleife
wird eine Orientierung zugeordnet., Wir nennen eine Kante,
die zu mindestens einer (keiner) Schleife gehort, eine
innere (duBere) Kante. Falls nichts anderes gesagt wird,
verstehen wir unter einer Kante immer eine innere Kante.
Die Schleifen i%' eines Graphen é% werden algebraisch
durch die Schleifenmatrix 13 charakterisiert, Ihre Ele-
mente b/d' : <B)"5 sind folgendermaBen bestimmt:

+1 falls é%<5 1@ und Orientierungen gleich
={ -1 falls @5 C 1& und Orientierungen verschieden
0 falls & ¢ X . (1.1.1)

0;;

Offensichtlich sind nicht alle Zeilen der Schleifenmatrix
B linear unabhédngig. Ein System linear unabhéngiger

Zeilen definiert eine Menge von fundamentalen Schleifen,

Die, zugehdrige Teilmatrix von ,8 9 bezeichnen wir mit

8l .

Die Anzahl der fundamentaien Schleifen sei L . PFiir einen
zZusammenhéngenden Graphen ist L mit n , der Anzahl der
Kanten, und mit v , der Anzahl der Vertizes, durch die
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Eulersche Relation

L=n-v+1 (1.1.2)

verkniipft.

Zu jeder Schleife 56; eines fundamentalen Systems gibt
es eine nichtleere Menge von Kanten (; mit der Eigenschaft,
daB ihre Elemente nicht in einer weiteren fundamentalen Schlei-
fe ;fa‘ , g’{i auftreten, Die Elemente von A; bilden einen

Pfad. Der Einfachheit halber werden wir die Orientierung

der Kanten aus A; immer so widhlen, daB sie mit der Orien-

tierung der entsprechenden Schleife zusammenfallen.

Ein Baum 3’ ist ein Teilgraph, der samtliche Vertizes
von %' umfasgst, zusammenhéngend ist und keine Schleifen
enthédlt. Er 1&a8t sich folgendermaBen aus g' konstruieren:
Man zerschneide nacheinander eine Reihe von Kanten, so daB
im dabei Jjeweils entstehenden Teilgraphen die Anzahl der
fundamentalen Schleifen um jeweils Eins gegeniiber dem Vor-
génger verringert ist. Dies 148t sich gerade [ -mal durch-
fihren., Daher ist die Anzahl der Kanten eines Baumes gleich
n-L . Unter einem Kobaum J * ist der Teilgraph 3’:%3’
zu verstehen. In einem Feynman-Graphen wird jeder Kante
ein FP d; zugeordnet. Wir werden spidter zur Formulierung
der topologischen Formeln den Begriff des Kobaumproduktes

. »
X(J") venstigen. Zu einem Kobaum J {e‘.q R <9,',_} ge-
hort das Kobaumprodukt
Y3
XT7) = diyn . By (1.1.3)

Falls man das oben angegebene Verfahren zur Konstruktion
eines Baumes vor dem letzten Schritt abbricht, so bekommt
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0
man einen Pseudobaum 3’ . Ein Pseudobaum j‘ enthslt
genau eine Schleife. Er 148t sich als die Verelnlgung elnes
Baumes J mit einer Kante € & (‘% §”) darstellen T Jve .

Durch Entfernen einer Kante €¢ J erhdlt man aus oJ einen
2-Baum J j’ € oder allgemeiner durch Entfernen von K
Kanten einen K -Baum T’ o« In Analogie zur Definition des
Kobaume (Kobaumproduktes) ergibt sich die Definition eines
K -Kobaumes T " ( k -Kobaumproduktes Rffﬂ'k“)) zZu

ke k kw
RS 24 e R R T R L T
1 "Lok
Im Zusammenhang mit den topologischen Formeln wird ein
weiterer Begriff benstigt. Ein Schnitt ¥ bezeichne eine
minimale Menge von Kanten, so daB g- ¥ nicht zusammen-

+). Ahnlich wie bereits den Schleifen, so

hédngend ist
wird auch den Schnitten eine Orientierung und eine Schnitt-
matrix @ 2zugeordnet. Die Elemente 9"5=<Q>fa' der Schnitt-

matrix (@ sind definiert als

+1 falls € € \9,' und Orientierung gleich
qi5 = -1 falls & e €; und Orientierung verschieden
0 falls ¢; § £/ . (1.1.4)

Fir einen beliebigen Schnitt E% und eine beliebige
Schleife a‘gk lassen sich die Kanten des Graphen a‘ekn €
zu Paaren mit jeweils gegensidtzlicher Orientierung zusammen-
fassen., Daher gilt

Z’q;,' bi; * O (1.1.52)

[

(

+>In der englischsprachigen Literatur findet man durchgehend
den Begriff "Cut set". Wir verwenden nicht seine direkte Uber-
setzung "Schnittmenge", wie sie teilweise in der deutsch-

sprachigen Literatur auftaucht, da dieser Begriff im allge-
meinen eine andere Bedeutung hat.
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oder in kompakter Schreibweise mit der Transponierten ZBT

Q- 3" -0 (1.1.5b)

Zu elnem gegebenen T c % g€ibt es genau elnen Schnitt ¢ 5
der ‘enf}' » 4 erfiillt. Umgekehrt bezelchne y(@) die
Menge aller 2-Biume % , die 'CHJ = ¢ erfullen, und JC € )
die entsprechende Menge von 2-Kobiumen ?' o .

Als Schnittprodukt Rf(f) definiert man die Summe aller
2-Kobaumprodukte

X(€):=)  X(r*) (1.1.6)

rire Y2%c¢)
mit.le?ﬁfe) Offensichtlich 148t sich ein Schnittprodukt
auch als

X(2)=d.. aﬂ,K(ZX(iT)> SX(T) 6 e (11
B Yege |
ausdriicken. Hierbei bezeichne . bzw, R einen der beiden

Teile des Graphen % sdie nach Entfernen der Kanten von €
ibrigbleiben.

1.2 Parametrische Darstellung eines FI einer skalaren
Theorie

In diesem Abschnitt werden wir die allgemeine Form der
parametrischen Darstellung eines FI, das dem Graphen einer
rein' skalaren Theorie entspricht, ableiten. Aus den bekannten
Feynman-Regeln ergibt sich fiir einen beliebigen Graphen
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ein Ausdruck, der proportional zu

n
_(dke [ dke ,/\f 1 o (1.2.1)
L fwr}"' f(z;,»)”‘ L1 (g-mf e
;v

ist, L ist, wie bereits im Abschnitt 1.1, die Anzahl der
unabhéngigen Schleifen, N die Anzahl der Kanten, d.h. der
Propagatoren, und d ist die Anzahl der Dimensionen des
Minkowskiraumes., Die q; setzen sich aus einer Linearkombi-
nation 2’4 der duBeren Impulse p; des Graphen und einer
Linearkombination ky der Integrationsimpulse k} zu-
sammen

q; = [a' t k,' (1.2.2)
Da zu jedem Integrationsimpuls ein endlicher Impuls addiert
werden kann, sind die [% auch nach Wahl der fundamentalen
Schleifen nicht eindeutig festgelegt. Wie aus dem Folgen-

den hervorgehen wird, ist I selbstverstindlich unab-

hangig von der Wahl der Integrationsimpulse.

(1.2.1) wird zuniachst mit Hilfe der Feynmanschen Iden-
titdt

[ ﬁa'ﬁ]"r FC”')f[o/v‘] ﬁ"ﬂ' [Zh' & a»]_nl (1.2.3)
jor ! 3 ja ) Sion 178
in
p) " :
N Y 4 O/_k” o ki =h (1.2.
L=t )of[Mﬂ res) Jeanf ™ J cam)” fe2)

mit

~ . 2 2 (1.2.5
(fj-gg’(i(%"mi*’é’) )
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und

h = gl qj" (1-2.6)
umge formt. [oyd:’ steht als Abklirzung von

[alo«]=d°‘4--. old, 5(;";,,(4.4) (1.2.7)

Wegen der ¢ -Funktion in (1.2.7) sind die Integrations-
grenzen durch of %0 vollkommen bestimmt. Insbesondere gilt,
daB aus of;*7 fiir alle k¥/ o, O folgt.

A
Nach Einfiihrung des Vektors K (K , £ ) , dessen L
( ", n ) Komponenten wiederum aus den Impulsvektoren
k; ( ka' , ﬁa ) gebildet werden, schreibt sich W

als

a 2
o= X dChi-mi +ier)
)

rk Be Z By k + 2k B 2 2

(1.2.8)

Z ist eine nxhn Diagonalmatrix, bei der das /-te
Diagonalelement gleich 4, ist

<Z >".1' = &!5 o (Keine Summation) (1.2.9)
35 ist die in Abschnitt 1.1 eingefiihrte Schleifenmatrix.
Solange sich die Schleifenmatrix auf den gesamten Graphen
bezieht, unterdriicken wir den Index g« . Ihre Trans-

-

:
ponierte Bf ilberfithrt k in k

l<~= B; k (1.2.10)

Um die Integration in (1.2.4) ausfiihren zu konnen, eliminieren
wir zuerst den Term aus (1.2.8), der linear in Kk ist.
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Dies leistet eine Transformation

k- k' - H-4/3_f2£ (1.2.11)
in der

y
H =73;Z /?; (1.2.12)

ist. Wir setzen dabei voraus, das cj'so gewéhlt werden kann,
daB die dK,:. dk_Integration konvergent ist, so daB wir

unsg iiber zusdtzliche Oberflachenterme [JA 76] keine Ge-
danken machen brauchen. Mit (1.2.11) erhdlt man

1 2' ]
W= Za(dczé‘ma'zf-le;)
(

- .o (1.2.13)
+tk"A k" -X'R X

mit

X=8;Z2X (1.2.14)

Nach einer Rotation mit einer orthogonalen Matrix ¢2 ’
' h
k=R k (1.2.15)

die H diagonalisiert,

R'aR-7" diagonal (1.2.16)
erhédlt man schlieBlich
L, 112 v
W2 ki oa, + Da)/C() (1.2.17)
e .

] "

wobei die d;, die Elemente von /7 sind,



"
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L ]
C(a) =olet Fffﬁau
i1

und
L T 4
2 -1,
DG )=C) ) 4 (4 mPeie.) - X 87X
Wegen det R+ ist die Jacobideterminante der Trans-

formation von Kk nach k' gleich 7

]
Die k& ~-Integrationen kénnen nun durch sukzessive

Anwendung der Identitat [HO 73]

L7

.o -n'e ld
d(k M) (-4) P(n-d/.‘l)(Mg)" 2

& ir C(n')

CQN

ausge fiihrt werden. Das Resultat lautet

"

?w LP-2A+e
d; C(«)
I- Kf"fp)ﬁ_'da] .4 ") Dee)?
mit
)J/ZJL
p:p+Lé
p=hn-2L
und

(1

(1.

(1.

(1.

(1.

(1

(1

'2.18)

2.19)

2.21)

2.22)

2.23a)

«2.23b)

e2.24)
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1.3 Topologische Formeln

Wie man aus (1.2.21) ersieht, reduziert sich die Be-
rechnung einer parametrischen Darstellung eines Graphen
in der Hauptsache auf die Berechnung der parametrischen
Funktionen ¢ () und OD(«) . Dieses Problem wird wesent-
lich durch die topologischen Formeln vereinfacht, die in
diesem Abschnitt abgeleitet werden. Eine direkte Konse-
quenz der topologischen Formeln ist die Unabhéngigkeit
der Funktionen C(O() und Z)G()von der Wahl der fundamentalen
Schleifen in (1.2.1).

Vorweg filhren wir einige Bezeichnungen ein. Es sei /M
eine Matrix der Ordnung q x b . I, ( }v ) bezeichne
eine Teilmenge der ganzen Zahlen von 7 bis o ( b )
mit ¢ ( V ) Elementen. Dann ist mit M(1,, }V)die_
Jenige Teilmatrix von M gemeint, die nur die durch

Ly ' }v ) gegebenen Zeilen (Spalten) umfasst. Falls

o< b so ist ﬁ1(3a)durch

ﬁq(’}a ) = ﬁ1 (I}, }a ) (1.3.1)

definiert, Um die Teilmatrix von M zu kennzeichnen, die

sich durch Entfernen der / -ten Zeile aus M ergibt,
verwenden wir das Symbol M._: .
1e3.1 Topologische Formel fiir G’[O‘)

Ausgangspunkt der folgenden Uberlegungen ist der Satz
von Cauchy-Binet, der die Berechnung der Determinante einesg
Produktes von Matrizen erlaubt. Es sei

M= M,... M, (1.3.2)
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ein solches Produkt aus Matrizen M ,~/'1~v N der Ordnung
k;_,,x K; E k,'k,,=k, K; 3 k . Dann gilt

det M. 5 det M() et MChd, 1l )
T e (1.3.3)

det M,.C} b )det My (Y, 100 )

Die Summation erstreckt sich jeweils iiber alle voneinander
verschiedenen Untermengen '}k s /=4 .., n der Menge der
ganzen Zahlen von ‘1 bisg k; « Zum Beweis dieses Satzes
sei auf die Literatur verwiesen [ AI 69] .

Da Z eine Diagonalmatrix ist, 148t sich die parametrische
Funktion §(«) mit (1.3.3) als

2
Ce)=2 (det B,(1.) u, .. &, | (1.3.4)

1 '
ILz{’/,’...),L}

ausdriicken.

Zur weiteren Auswertung von (1.3.4) musg det B;(L_)be-
stimmt werden. Dazu mache man sich folgendes klar. Durch
Kontraktion eineér Kante 8k<3‘g’ geht eine beliebige Schleife
aus % entweder wieder in eine Schleife in %/Ck liber
(a), oder aber sie zerfallt in %/€, in zwei Schleifen
mit einem gemeinsamen Vertex (b). Ist (a) fiir alle funda-
mentalen Schleifen erfiillt, so gilt, daB die Matrix, die
aus 8; durch Entfernen der Spalte Kk entsteht, gleich

lee“ ist, falls in 'gr/ék ein entsprechendes System
fundamentaler Schleifen gewahlt wird., Falls (a) nicht fiir
alle fundamentalen Schleifen erfiillt ist, so ist die
Matrix, die aus §B; durch Entfernen der ng}te K ent-
steht, dqurch elementare Umformungen aus B, zu erhalten.
Die Elemente der Menge I, bilden den Teilgraphen I, ,
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Um det@;(lh)zu bekommen, miissen alle Kanten deg Graphen
-1, kontrahiert werden. Deshalb gilt

/(- L
[det B,(I )| = |det Bf(qr)/ (1.3.5)

Enthédlt %'IL eine oder mehrere Schleifen, so gibt es in

/( -I,,) hochstens L -7 fundamentale Schleifen, also
ist det @ " O . Ist §-I, hingegen ein Baum, so
bilden die Kanten von %/(g I:. ) gerade ein System von
Teilgraphen A. . In diesem Falle ist /detB‘gm?'z")/ =1,
Deher ist

+1 falls I,_ Kobaum ist

/detB,(k)I={‘05&mt . (1.3.6)

Mit diesem Resultat 1#8t sich (1.3.4) als

Gla)=J  xcr*) (1.3.7)
I

schreiben. Damit haben wir eine topologische Formel ge-
funden, die es erlaubt,,d[o;/) direkt aus dem zugrundesw
liegenden Graphen abzulesen.

An dieser Stelle mdchten wir kurgz einige charakteri-
stische Eigenschaften der parametrischen Funktion )
auffiilhren. Aus der Konstruktionsvorschrift (1.3.7) geht
hervor, das C(d) ein homogenes Polynom der Ordnuhg L
in den FP o ist. Uber den gesamten Parameterraum gilt
GIGA)), O . Die hichste Potenz, mit der ein einzelner FP
auftreten kann, ist Eins,
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Eine Eigenschaft, von der in den folgenden Kapiteln
héufiger Gebrauch gemacht werden wird, ist das Verhalten
der parametrischen C-Funktion unter Dilatation der FP
eines Teilgraphen Cf . Falls die Parameter eines ver-
bundenen Teilgraphen .)0 mit einem Parameter ¢ skaliert
werden, so verhélt sich( (o) wie [ZA 65]

(4) = ' ' C. (1.3.8)
Gla) - g PR N
Dabei gibt [ (¥)die Anzahl der fundamentalen Schleifen von
an, h(¥) die Anzahl der Kanten und C'j(d)'ist gleich

VDY Go(#)... C’%,MG‘) der ) (1.3.9)

Die Summation in (1.3.9) geht iiber alle Moglichkeiten,
den Teilgraphen f in d’#”/ zusammenhédngende Teilgraphen ‘:f
zu zerlegen. Alle externen Vertizes von J werden als
zu f gehorig betrachtet.Q&z&j), =, 4+1 ist die
parametrische C-Funktion des | -ten Teilgraphen., Falls

:f; keine Schleife enthilt, wird Cy("‘)= 1 gesetzt.
77-dqur ist das Produkt der FP der éeschnittenen Kanten
undeai)schlieBlich ist die parametrische C-Funktion des
Graphen, den man aus nach Zerschneiden von..f und
Kontraktion der f, bekommt. Insbesondere fiir 4'-0 gilt

Co (4) = abo(a‘ ) C/”;%/y
Wie man aus (1.3.8) abliest, verschwindet {'(s4) solange
nicht, wie § keine Schleife enthalt ({,G)#( ). Zum
Beweis von (1.3.8) hat man die Summe iiber simtliche
Biume von ‘@r in (1.3%.7) so aufzuspalten, daB sich die

4, -te Teilsumme iiber alle diejenigen Bégme erstreckt,
die die Bedingung erfiillen, dag Jn¥ ¢ 4 +1)-Baum ist.
Dann ist diese Teilsumme homogen vom Grade L($)+j ,

(4 ) (1.3.10)
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sollte also gerade Ca‘ () (1.3.9) liefern. Jeder Baum, der
zur 4 -ten Teilsumme beitrégt, zerlegt ¥ in genau

(/j +1) Teile, wobei ein Teil durchaus auch aus einem ein-
zelnen Vertex bestehen kann. Daher entspricht ersteng
Jedem Baum awys der A ~ten Teilsumme genau ein Baum, der
zu (/ﬂ‘(d) beitrigt sund umgekehrt und zweitens sind auch
deren Beitrige gleich.

Ist eine feste Kante €x Vvorgegeben, so 1&Bt sich
(1.3.7) folgendermaBen aufspalten

Gla)= ) X (7") +2x(’f“) (1.3.11)
g'*SGk 0’”58“ .
Daraus folgt

_g_g%)=?4;zx(:r*) (1.3.12)

9 e

Zu jedem Kobaum :T*SEk ld8t sich ein Pseudobaum .Toﬂ J'Uek
konstruieren, der eine Schleife ,‘Eaek enthédlt, und
umgekehrt gibt es zu jeder Schleife Y 5€, eine Menge
von Kobdumen I3 ¢, , so dasB

0
53_?‘) =£Z ng (d) (1.3.13)

Weiterhin gilt

A C’(a(k=0)-§ X (¢) (1.3.14)

€ae, .
Zum Beweis geht man von
di Cleys0) = A, ZX(?*) (1.3.15)

Yge.
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a 2
aus. Zu jedem VY 3,€k gibt es genau einen 2-Baum J = J -&, .
Dazu gibt es wiederum genau einen Schnitt n(i-e)p.. un-
gekehrt ist das Schnittprodukt X (¢ ) zu Y 3¢, eine
Summe von 2-Kobaumprodukten, so dasB T%JBk ein Baum ist,
also in der Summe von (1.,3.15) enthalten ist. Da

C(d)w,éf.;’{?q(o‘) + QG = 0) (1.3.16)

flir einen beliebigen Parsmeter X; y l8Bt sich mit (1.3.13)
und (1.3.14) auch

Clat)= of; Zd?w(ﬂ(n;{ ST xce) (1.3.17)
£3¢; " Pae

schreiben. Diese Relation werden wir im folgenden benstigen.

163.2 Topologische Formel fiir ZDCd)

Wir wenden uns nun der Ableitung einer topologischen
Formel fur die parametrische Funktion)(e.)zu. Zuerst
werden wir die sogenannte Schleifendarstellung herleiten,
aus der sich dann die in der Praxis wichtige Schnittdar-

stellung ergibt.

-1
Gesucht wird eine topologische Formel fir H . Mix
bezeichne den Kofaktor des Elements < /7,

<A, =1 R (1.3.18)
Ik q(d) glk '

d.h, die Determinante der Teilmatrix, die aus /& durch

Entfernen der i -ten Zeile und der é’—ten Spalte hervor-

geht, multipliziert mit(¥4f* . In der Netzwerktheorie

[ on 71 ] taucht die Matrix H unter der Bezeichnung
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Schleifen-Impedanz~-Matrix auf. Dort spielen die FP die
Rolle von Ohmschen Widerstdnden.

Te36241 Schleifendarstellung von D)

-1
Wir betrachten zuerst die Diagonalelemente vond(d) H ’

H:; « Mit der zu Beginn dieses Abschnitts eingefiinhrten
Notation gilt
-
. =a’el‘{C73;)-; 2((Ry).,) )2 (1.3.19)

Da nun nach geeigneter Wahl eines Systems fundamentaler
Schleifen in %'A,’

(By).; = /3,?-4" (1.3.20)

ist, was sich durch Konstruktion der rechten Seite von
(1.3.,20) sofort einsehen l&8t, folgt wie schon (1.3.7)

o
A. = 2 X(T) (1.3.21)
T C(%.A;) i ~ ¥ o
Durch Vereinigung von J * (% -4; oJ mit A4; entsteht
zu jedem J = ein Pseudobaum J:Jv 4 in mit Schleife

X0 4; . Ungekehrt gibt es aber auch zu jeder Schleife
XL 24; eine Menge von T’ (% -4;), so daB sich anstelle
von (1.3.21)

H., =D Gyp () (1.3.22)
¥ o (%/,‘E
schreiben 1&gt,
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Flir die Nichtdiagonalelemente /70', /¥g 148t sich #hn-
lich zu (1.3.19)

;'+3' \T
By = 0" det{(8); 2(08,).;)"] (1.3.2)
ansetzen. Anwendung des Satzes von Cauchy-Binet liefert

Fl"d = (- 4)"*aIZdet(8,»(IL,, )),; detCBf(I_,))_d, Ay Ay

(1.3.24)

! ’
IL"’ » {'4,...) IL"’}

Durch Kombination von (1.3.20) und (1.3.6) sieht man, da8

det (B}(I.q)).;’{t? feile Log Kobawa in -4 (1.3.25)

0 sonst

Also gibt I,y in (1.3.24) nur dann einen nichtverschwin-
denden Beitrag, falls es sowohl Kobaum in -4, , als auch
in @-Ag’ ist. Das Vorzeichen 1aBt sich durch Ausschreiben
der Matrix B ermitteln (siehe z.B. [cn 71.] ), =0
daB schlieflich mit den gleichen Argumenten, die von
(1.3.21) zu (1.3.22) gefiihrt haben ,

.- 2 dg/g(a) (1.3.26)
£54:,4;
folgt. Das positive Vorzeichen gilt, falls die Orientie-
rung von £ 8o gewédhlt werden kann, daB sie sowohl mit
der Orientierung von 4; als auch mit derjenigen von zﬂi
libereinstimmt, ansonsten ist das negative Vorzeichen zu

wdhlen,

Der Ausdruck, der in O (A ) eingeht, lautet mit (1.3.22)
und (1.3,26)
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T\ .2 (1.3.27

X AX gdg/z(d) ;LZ rXXﬂ +Z X, )

Yot T ger .

wobei X; die /~-te Komponente des in (1.2.14) eingefiihr-
ten Vektors X 1ist

X; =< 8,» 210 R (1.3.28)

Fiir eine fundamentale Schleife iﬁ reduziert sich die
geschweifte Klammer in (1.3.27) auf )QA', wdhrend sie fiir
eine nichtfundamentale Schleife ;f den Wert (':f ‘tggl)z
annimmt. Mit dem Schleifenvektor ¢ﬁ 4,8

/C)x = Z:e -"-Lo(,'[,' (1.3.29)
8eé ’

wobei das Vorzeichen durch die Orientierung von &€ be-
zliglich L festgelegt ist,( ﬁz «: X, falls 4 eine fun-
damentale Schleife ist) schreibt sich daher die para-
metrische D-Funktion zu

DE)=G@) D d(f-mviey)- DGy @R (1330
ﬂ'=4 £ N

Dies ist die Schleifendarstellung der D-Funktion. In
vielen praktischen Anwendungen erweist es sich als Nach-
teil, daB8 die Abhéngigkeit von den &duBeren Impulsen P
des Graphen nur iiber den Umweg der é% zu berechnen ist.
Dieser Umweg 1dB8t sich bei der Schnittdarstellung ver-
meiden.




@
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1.3.2.2 Schnittdarstellung von 29&%)

In der Graphentheorie sind Schleifen und Schnitte zu-
einander dual. Es ist daher zu erwarten, daB an die Stelle
der Summe iiber alle Schleifen in (1.3.30) eine Summe iiber
alle Schnitte treten kann. Solch eine Darstellung von D (a)
heift Schnittdarstellung,

Zur Ableltung dieser Darstellung driicken wir die Schlei-
fenimpulse /1 durch die Elemente der Schleifenmatrix
b/{ aus., Damit wird

D(d)--d(d)z,,(a('m'-/é’r) t Z% 40 [¢es- ol Z W@u]

4=
(1.3.31)
QZ [’Za(a( ZU?/‘? (of)be b%

é,6, c%

ch .

Betrachten wir zundchst den Koeffizienten von @'4',
l# 3 » Fir diesen Koeffizienten gilt

414, Zbe,bed 2 xer)

ycguﬁ (1.3.32)

2
NJ“C J CER e
Belde Summen umfassen die g€leichen Elemente da es zu jedem

[)’ e O’QZ'&), ,¢; @ € einen Pseudobaum 3 J 09 veé/ gibt,
der in %/f,_ y €6 C ,‘ZL Baum ist und umgekehrt. Im
Durchschnitt von PK und £, 1liegen gerade € und €, .
Daher folgt aus (1.1.5a)



"
2
— .
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q u: blj t Guy be: » O

oder

Gui Gui = = by be

(1.3.33)

Damit ist (1.3.32) gezeigt.

2
Der Koeffizient von Z: wird aufgrund von (1.3.17) zu
éZ’ X(C€) . Dies ergibt zusammen die Schnittdarstellung
9e;

2
D)= -G’G‘);Ja{m;- ey ) * gz‘%)((f,) 7% (1.3.34)

mit

I (1.3.35)

Da ein Sechnitt €; den Graphen g' in zwei Hdlften teilt ,
ist f@, gerade die Summe der externen Impulse, die in
eine dieser H&dlften flieBt. Welche der Hdlften gewdhlt
wird ,spielt wegen der Erhaltung des Impulses keine Rolle.

Ahnlich wie schon fiir die parametrische C-Funktion, so
lassen sich auch fiir die parametrische D-Funktion topo-
logische Regeln zur Berechnung des (L(f)+ Kk )-ten Koeffi-
zienten einer Entwicklung beziiglich des Homogenitédtsgrades
des Teilgraphen \f angeben, Skaliert man szmtliche FP
des Teilgraphen J’ mit einem Parameter 8, 80 gilt [TZA 65]

> X(8)R = ptt¥ e (1.3.36)
ezc'% et S 2 o) o
/ q°
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mit
N\

@o,w=Zd$c4>...__dﬁﬂa> /]y, D) (1.3.37)

06 (,() wird in der gleichen Weise wie schona'fd)konstru-
iert, Beim Beweis von (1,3.36) wird (1.1.7) in die linke
Seite von (1.3,.36) eingesetzt, die Summe iiber alle Schnitte
in solche Schnitte eingeteilt, die ¢P schneiden bzw,
zusammenhéngend lassen und (1.3.8) ausgenutzt.

1.4 Spin

Bisher haben wir uns auf Feynman-Graphen beschrankt, in
denen ausschlieBlich Kanten auftraten, die Felder mit

Spin O beschrieben, In diesem Abschnitt werden wir zeigen,
wie die gefundenen Regeln verallgemeinert werden miissen,
um auch eine Beschreibung von Teilchen mit nichtverschwin-
dendem Spin zuzulassen.

Ein FI, in dem ein Polynom der inneren Impulse 4; im
Zahler auftritt, ist eine Linearkombination von Termen der

Form
4]
I{My o (A TY Qb - G (1o0.1)
2 2. B G A4 o .
Czil\) (277) 3.31 qu _m{, + '67 ) 1
Wir nehmen an, daB8 der Impuls qd g%-mal im Zghler auf-

tritt. In der Spinorelektrodynamik (Peynman-Eichung) ist
.% hochstens Eins, in anderen Theorien wie skalarer
Elektrodynamik oder in nichtabelschen Eichtheorien kann

$ auch gréBer als Eins sein, Wie (1.4.1) andeutet,
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beschréanken wir uns auf kovariante Eichungen.

Zur Berechnung von (1.4.,1) wird dieser Ausdruck zu-
ndchst so umgeformt, daB man die Integration wie in
(1.2.1) ausfilhren kann, Dazu wird fir jede Kante ¢/ mit

% ¥O ein sogenannter Hilfsimpuls Q; eingefiihrt, so
daB durch diese Kante nicht mehr der Impuls g9 » sondern
qé+<% flieBt. Dies ist entweder durch Uberlagerung der
externen Impulse zu erreichen, oder, falls keine &@uBere
Kante zur Verfiigung steht, durch Einfiligen fiktiver HuBerer
Kanten. Der Impuls Gy tritt am Anfangsvertex der j -ten
Kante in den Graphen ein, und er verlidBt ihn wieder am
Endvertex der gleichen Kante,

Der entscheidende Schritt in der Reduktion von (1.4.1)
auf (1.2.1) geht auf eine Idee von Karplus und Kroll
[;KA 49 ] zurlick., Diese Autoren filhren einen Operator

o0
V. 0
D, =5 |dt =, (1.4.2)
4 lm{; 390,‘ 400

ein, der die Eigenschaft hat, daB

zh ’ "71' qy/
Q l((q'+a')'£‘ +/%) = 2 2 7 (10403)
h o (g, -m; +ie ) ?
G -my *iEs .
Ist in (1.4.1) S"GA fiilr alle 7’ , 80 ersetzt man jeden

Kantenimpuls im Zshler von (1.4.1) durch einen ;D-
Operator , der vor das Integral gezogen wird., Das ver-
bleibende Integral kann dann wie in der rein skalaren
Theorie ausgefiilhrt werden, so daB nur noch die Wirkung
des Produktes von &D -Operatoren auf das Resultat
(1.2.20) zu berechnen bleibt,
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Tritt im Zahler des Integranden von (1.4.1) ein Impuls

qz mehrfach auf, d.h. ist %,> 41 , so reicht es nicht
aus, einfach th entsprechend oft anzuwenden, da qu
nicht mit qi vertauscht. Vielmehr muB man eine geeigne-
te Verallgemeinerung des Karplus-Kroll-Operators suchen.
Solch eine Verallgemeinerung wird in Anhang A vorgenommen
und es wird dort damit der Ausdruck (1.4.1) berechnet.
An dieger Stelle mochten wir nur das Resultat angeben

A n 'ryé.-'f ~'2+6 e
1=K f[a’o«_] {77 F"‘;;) } Gea) " pear
o (=4 1
G (1.4.4)
S res-6 ) D) [ ]
{ G G (4 JI ):'ﬂ'ﬂ T M8 16 kowTR.

Die Notation ist [CO 73] entlehnt, Unter einer Kon-
traktion verstehen wir die Substitution

1 _
K/;,L >;/j,m _’\i %/:,cm,m /Q/,,’ (1.4.5)

mit
4 a(;z; G/?/,QC") falls /' 0/
se,
Qllo! :G';‘a‘)_‘:—‘, , ¢ (10406)
4 d; S7 tX(¥) falls 1 ¥
£3e,',‘ol o

Im Falle / ¢ 5 trégt ein Schnittprodukt X(E€) mit posi-
tivem Vorzeichen bei, falls die Kanten €; und & beziig-
lich der beiden durch ¢ gebildeten Teilgraphen ver-
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schieden orientiert sind,und mit negativem Vorzeichen,
falls sie gleich orientiert sind., Die Klammer [ Jg'kaprk‘
in (1.4.4) steht fiir die Summe iiber alle Augdriicke, die
man durch Ausfilhren von & Kontraktionen aus @Zk@ﬂn_ggs,
bekommen kann. Im Unterschied zur Schnittdars{ellung vo}f
D(4) , tragen zur Summe der Schnittprodukte X(¥€) in
(1.4.6) fiir i#4  auch solche Schnitte bei, deren Schnitt-
impuls ﬁ@ verschwindet, weil eine der beiden H&dlften, in
die € den Graphen zerteilt, keine ZuBere Linie enthilt.
C[o() @,, ist ein Polynom in o; . Wie im Anhang A ge-
zeigt wird, berechnen sich die Kantenimpulse ?’ nach

1 »)
Ef 7 X (€) (1.4.7)
K 0‘5%)@9% ¢

Da den Impulsen U' bei der Analyse des asymptotischen
Verhaltens eines FI eine besondere Bedeutung zufdllt,
mochten wir einige ihrer Eigenschaften kurz niher er-
lautern. Den Ausgangspunkt bildet die Relation

¥ vt @CO(A)/C/M)) (1.4.8)
i 24 04
die leicht durch Vergleich der. Schnittdarstellung (1.3.34)
von D(@4)mit (1.4.7) abzuleiten ist. Durch Einsetzen
der Schleifendarstellung (1.3.30) von OD(#) in (1.4.8)
erhdlt man eine solche fiir 7

¥ - 4, -(fg C%/-f(“’@ )/ Ca) (1.4.9)
L3e,

Aus (1.2.19) und (1.4.8) folgt die wichtige Beziehung
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T -1
y/'fa'-<73f/? BfZAZ)j (1.4.10)
Daraus wird ersichtlich, daB der Kantenimpuls ?' ge-
rade derjenige Anteil des inneren Impulses qy ist,
der nicht von dem geshifteten Integrationsimpuls k;

abhingt

T }
C],'=(8f k>a' +>j (1.4.11)

Deshalb erfiillen die ‘g an jedem Vertex die Impulser-
haltung. In der Theorie der elektrischen Netzwerke gibt
Vg den Strom an, der durch die Kante €; flieB8t. Der
Impulserhaltung entspricht das 1. Kirchhoffsche Gesetz.
Falls der dominante ImpulsfluB eines Graphen dadurch ge-
kennzeichnet ist, daB die Integrationsimpulse kf klein
gegeniiber irgendwelchen grofen duBeren Impulsen sind, so
beschreiben die ﬁ' den Weg der grofBlen duBeren Impulse

durch den Graphen [ HA 74]
Aufgrund der Beziehung (1.2.17) fiir ¢/ bekommt man

durch Einsetzen von (1.4.11) in (1.2.5) eine weitere Dar-
stellung fiir OC4)

D(a) = C’(d)Za( ( m,+,er) (1.4.12)

"1 ’

Die Identitédt

N
é;éf’d'

die filir jede Schleife L erfillt ist, entspricht dem

(1.4.13)



@
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2. Kirchhoffschen Gesetz. Sie vervollstiandigt die Analogie
zu den elektrischen Netzwerken. Man erhilt (1.4.13)

durch Vergleich der linearen Terme in kf , dem Inte-
grationsimpuls der Schleife afi , in (1.2.17) und (1.2.5).

Die Beziehung

Q D(A)) - 5/“1 2
]

9.43- q(«) Ty oties (1.4.14)

folgt wegen
n

20 4 ‘ﬁ{i Y. = O (1.4.15)

i

direkt aus (1.4.12). Zur Ableitung von (1.4.15) wird die
Schleifendarstellung von 77 benutzt

9 (d "f("‘) 73 (1.4.16)
6’«%‘ 195,94 Glh)

Man setzt (1.4.16) in die linke Seite von (1.4.15) ein, ver-
tauscht die Summen und nutzt (1.4.13) aus.

Haufig werden die )‘ auch als eine spezielle, ag-ab-
hédngige Wahl der 25 interpretiert, die so getroffen wurde,
daB gerade (1.4.13) erfiillt ist. Mit anderen Worten,
diese Wahl der é,’ macht das Shiften iliberfliissig. Fiir
diese Wahl reduziert sich die Schleifendarstellung (1.3.30)
gerade auf (1.4,12).
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2. Singularitdten von Feynman-Integralen

Im Limes groBer Impulsiibertridge wachsen FI typischer-
weige liber Jede Grenze. Daher ist die Bestimmung des asymp-
totischen Verhaltens eines FI in den weiteren Rahmen der
Untersuchung seiner analytischen Eigenschaften einzuordnen.
Um die entsprechenden Singularitdten von solchen zu unter-
scheiden, die im asymptotischen Limes keine Rolle spielen,
werden wir sie asymptotische Singularitdten nennen.

Der Untersuchung der analytischen Eigenschaften von
Streuamplituden ist in den sechziger Jahren viel Aufmerk-
samkeit geschenkt worden. Man erhoffte sich damals n&dhere
Aufschliisse iliber die analytische Struktur der Streumatrix
stark wechselwirkender Teilchen durch die Analyse von
Greenschen Funktionen in der Storungstheorie zu gewinnen.
Zwar ist dieses Programm fiir die storungstheoretische QCD
ohne direkte Bedeutung, so bilden doch die in die ana-
lytischen Eigenschaften von FI gewonnenen Einsichten
eine wichtige Grundlage zur Untersuchung des asymptotischen
Verhaltens in der perturbativen QCD.

Das Hauptinteresse dieser dlteren Untersuchungen galt
der Bestimmung der Lage der Singularitdten von FI in dem
durch die &duBeren Impulsvariablen gebildeten komplexen
Raum. Singularitdten auf der reellen Achse des physikali-
schen Blattes charakterisieren bekanntlich Schwellen fiir
die Produktion neuer Teilchen. Im Gegensatz dazu werden
bei der Untersuchung des asymptotischen Verhaltens die
duBeren Impulse festgehalten bzw. gegen Unendlich ge-
schickt.

In den ersten drei Abschnitten dieses Kapitels werden
wir die Bedingungen untersuchen, unter denen ein allge-
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meines Integral (2.1) als auch insbesondere ein FI (2.2,2,3)
singulér werden kann., Ein spezieller Typ solch einer Sin-
gularitdt entsteht, falls die Massen eines FI verschwinden.,
Diesen Massensingularitdten ist der Abschnitt 2.4 ge-
widmet. Im Abschnitt 2.5 werden wir uns schlieBlich dem
eigentlichen Gegenstand dieser Arbeit zuwenden, den asym-
ptotischen Singularitédten. Wir werden verschiedene Aspekte
der Berechnung dieser Singularitdten im Detail unter-
suchen.

2.1 Singularitédten von Integralen

FI fallen in die Klasse von Funktionen ftg?), die als
Integral

£(6)- dfdu F(u, €) (2.1.1)

einer Funktion F(U, f) entlang des Weges CI darstell-
bar sind.Um AufschluB iber die Singularitdten von FI zu
gewinnen, ist es daher sinnvoll, zundchst nach den Bedin-
gungen zu fragen, unter denen f(§7 singular werden kann.

Die Untersuchung solcher Funktionen geht auf Hadamard
[ HA 98 J zuriick. Seine Resultate wurden zur Analyse von
FI zuerst in einer Arbeit von Eden im Jahre 1952 einge-
setzt [ED 52] . Die Form der Landau-Gleichungen, wie
wir sie benutzen werden, wurde von Polkinghorne und
Screaton 1959 angegeben [PO 60 ] . Eine Ubersicht iiber
die Fiille der daran ankniipfenden Arbeiten liefert [ED 66] .

Es ist klar, daB f(f) nicht singular werden kann, so-
lange f(u, §) entlang des Integrationsweges & regullr
ist. Bewegt man sich mit S? aus dem Gebiet heraus, in
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dem 7‘—(0, §), ve 4’ regulédr ist, so ist dies gleichbe-
deutend damit, daB sich eine Singularitat von.7TOh§)auf

cj zubewegt. LadBt sich nun der Integrationsweg q’ SO
deformieren, daB er diese Singularitit meidet, ohne sich
iber sie hinweg zu bewegen, so bleibt f(f) regulédr. Eine
Singularitat von~f12§) kann bloB8 dann auftreten, wenn
dies nicht mehr mdglich ist. Das tritt ein, falls entweder

i. Bine Singularit#t von #(v,f) mit einem Endpunkt des
Integrationsweges 47 zusammenfdllt (Endpunkt-Singu-
laritidt)

oder

ii. Zwei Singularitdten von 7(u,§), von verschiedenen
Seiten des Weges ( kommend, so zusammentre ffen,
daB8 sich durch Deformation von ¢ das Auftauchen
einer Singularitidt auf diesem Weg nicht verhindern
148t (Pinch-Singularitat).

Ein Beispiel mag dies verdeutlichen

f(§)'4fdu(uz-§) (2.1.2)

Der Integrand hat fiiru: 4/?7 und (- - y?’ Pole, die bei §=O
zusammenfallen, Der Punkt v=( 1liegt jedoch nicht auf
dem Integrationsweg, so daB man fﬁr‘§=(7 keine Pinch-
Singularitdt erwartet. Endpunkt-Singularitaten sollten
fﬁr‘§=4 undf=46auftreten. Explizite Integration ergibt

$(8)s 2 g A+ ) (4 - J§) o1
NN DIy

Tatsdchlich hat f(f) fir f=// und§=46’ logarithmische Ver-
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zweigungspunkte und ist fiir §'O regulédr. Das letztere

gilt allerdings nur fiir das "Hauptblatt" der von (2.1.3)
definierten Riemannschen Fliche. Auf allen anderen Blattern
befindet sich im Punkt\f:C)ein Verzweigungspunkt. Diese
Tatsache steht in viélliger Ubereinstimmung mit ii. .

N l_u

NV

P

T T 1

Abb. 2,1 Integrationsweg von (2.1.2)

N lﬁ

- BN P

Abb,., 2.2 Integrationsweg der analytischen
Fortsetzung von (2.1,.2)

Die analytische Fortsetzung der durch (2.1.2) definierten
Funktion auf das ndchste Blatt durch {iberschreiten des

Schnittes von f(f) zwischen §= 7 und§= 16 macht es
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notwendig, den Integrationsweg wie in Abb, 2.2 gezeigt zu
deformieren. Deshalb sind nach Uberschreiten des Schnittes
die Bedingungen fiir eine Pinch-Singularitat erfiillt.

2.2 Die LandaurGleichungen

Zur Analyse der Singularitéten eines FI reicht es aus,
sich auf eine rein skalare Theorie zu beschréanken, Da-
her tritt (1.2.21) an die Stelle von (2.1.1). Es gilt
also die Singhlaritéten des Ausdrucks

, {- 67(3)-2+e
I=|[d ~ (2.2.1)

zu bestimmen. Dazu miissen die Uberlegungen, die im letzten
Abschnitt fiir ein einfaches Integral angestellt wurden,
auf Mehrfachintegrale erweitert werden.

Die Verallgemeinerung der Bedingungen i, und ii. ist ip
EA.59,P0 60] vorgenommen worden, Eine mathematisch ein-
wandfreie Behandlung erfordert den Einsatz von Methoden
der algebraischen Topologie [?FO 65,HW 66_] . Man gelangt
dazu, daB jeweils eine der beiden Bedingungen i, und ii.
fir jede einzelne Integration des Mehrfachintegrals er-
fillt sein muB.

Um (2.1.4) in die Form eines gewShnlichen Mehrfachinte-
grals zu bringen,wird die é?-FunktiQn aus [go]durch Aus-
fiilhrung der k'-ten Integration eliminiert., Daher tritt
an die Stelle der Funktion [)(«)(({(x)) die Funktion Dl(d)
(C;’?d)), die durch Einsetzen von

- (2.2.2)
O(K' 7-0(4 a-. = 0("
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inD) (GC4)) entsteht . Die Bedingungen i. und ii. sind
damit dquivalent zu der Forderung, dasB

D) /d ) =0 (2.2.3)

, /
ist und auBerdem fiir jeden Parameter A: , /#k entweder
i. d; =0  oder Ay = O
oder (2.2.4)

i1, 9% (D/CA)/C/CA)) =0

erfiillt ist, Die erste Bedingung ldB8t sich in der Form mk,'CD
nur fiir eine einzige Teilintegration Kk erfiillen und

fir den entsprechenden FP gilt dann ., %0 . Da nun aber
gerade dieser Parameter o, von vornhereim ausintegriert
werden kann, reicht es aus,sich auf Endpunkt-Singularititen
zu beschrédnken, die von unteren Endpunkten herriihren,

d.h., ksk' . Ist hingegen die zweite Bedingung erfiillt,

so muB zusédtzlich gefordert werden, daB die entsprechenden
zugammenfdallenden Singularititen den Intégrationsweg auch
tatsdchlich "pinchen",

Diese Bedingungen lassen sich in eine symmetrische Form
bringen. Es gilt

55, (0/cw) 2 com/ce) -2 Deo/cer) (e

Multipliziert man nun (2.2,5) mit d; , summiert iiber alle
| £k und nutzt aus, daB8 D)/ (#) eine homogene Funktion vom
Grade 1 ist

D) /G ca) Z,,(, 92' (D@‘)/G’Car)) (2.2.6)

:"4
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so folgt mit (2,2,3)

Z”‘ Ju: (O(A)/GCA)) 9:{9‘( [D(,o/c,“(d)) (2.2,7)

1 Fk

Damit erh&lt man schlieBlich die symmetrische Form der
Landau-Gleichungen

A; 6%; (D(d)/d(,ﬁ):O (=7 ...,h (2.2.8)

Aufgrund der Relation (1.4,14) lautet eine alternative
Formulierung

o(;(%z-rh;l)=0 re Ay, D (2.2.9)

Ein Punkt ;( im A -Perameterraum, in dem (2.2.8,9) er-
fullt ist, werden wir einen Pinch-Singuliren-Punkt (PSP)
nennen. Die Forderung, dasd&)/G(«)an eéinem PSP verschwindet,
braucht nicht zussatzlich zu (2.2, 8,9) gestellt werden. Sie
ist automatisch fiir jede Losung wegen (2.2.6) erfiillt.

Auch die Forderung nach "Pinchen" des Integrationsweges
kann entfallen. Wie bereits im vorausgehenden Beispiel
gezeigt wurde, konnen zwei zusammenfallende Singulari-~
tédten, die jedoch keine Pinch-Singularitidten sind, durch
Wechsel des Blattes auf dem‘foD bzw. hier I , betrachtet
wird, zu Pinch-Singularitdten werden, Der Preis dafiir ist,
dagB I' aufgefasst als Funktion der Skalarprodukte der
duBeren Impulse in die komplexe Ebene fortgesetzt werden
muB, Solch eine Fortsetzung ist dquivalent dazu, daB man
anstelle des Weges C’ sémtliche Wege im komplexen

o -Parameterraum zuldBt, die die Endpunkte von ¢ mit-
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einander verbinden. Daher "pincht" jedes Paar von zusammen-
fallenden Singularititen immer irgendeinen dieser Wege. Eine
Konsequenz der Fortsetzung ist, daB die Parameter &§ nicht
mehr unbedingt reell sein miissen und auch nicht

mehr unbedingt(9<é§<‘7 erfiillen.

Einige der FP sind dadurch ausgezeichnet, daB sie an
einem PSP verschwinden. Wir bezeichnen die Menge der ent-
sprechenden Kanten mit § . Es ist iiblich,eine Lo sung
von (2.2.8,9) durch einen sogenannten reduzierten GraphenCR
zu beschreiben., Man bekommt solch einen reduzierten Graphen
aus % durch Kontraktion sdmtlicher Kanten € é tf ’ ’
VE \%/bo . Wegen (2.2.9) liegen alle Kantenimpulse von
R im PSP auf der Massenschale.

2.3 Singularititen auf dem physikalischen Blatt

Einedetaillierte'Untersuchung der analytischen Eigenschaf-
ten eines FI, wie sie beipsielsweise im Zusammenhang mit
dem Beweis der Giiltigkeit von Dispersionsrelationen be-
notigt wird, ist im allgemeinen sehr kompliziert. Die Be-
schréankung auf Singularitidten im physikalischen Bereich
bringt wesentliche Vereinfachungen mit sich.

__l

Der relevante Zweig der durch I definierten Funktion
wird duch die Feynmansche ;e&~Vorschrift festgelegt.
Diese fordert, daB samtliche Skalarprodukte der &HuBeren
Impulse strikt reell 8ind, fiir die Massen wirdrn%izi ge-
setzt und die reelle und positive GroBe €r gegen Null
geschickt. Solange &; #O , ist das FI fiir Integrationen
entlang der reellen . ~Achsen wohl definiert und es ist
keine Deformation der Integrationswege notig,um .I, einen
Sinn zu verleihen. Daher sind die Qj reell, erfiillen
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A; » O (2.3.1)

[avd
und fiir die Kantenimpulse am PSP K'gilt
. A~ 98

\ﬂ : }/- (2.3.,2)

]

Die Einschrénkung auf den physikalischen Bereich er-
laubt es nicht mehr, die Uberpriifung,ob zwei zusammen-
fallende Singularitidten auch tatszchlich Pinch-Singulari-
tédten sind,ohne weiteres zu iibergehen. DaB dies dennoch
fir Losungen der Landau-Gleichungen, die (2.3,1,2) erfiillen,
geschehen kann, ist von Coleman und Norton LCO 65]
bewiesen worden. Dariiber hinaus ist in [CO 65~] gezeigt
worden, daB der reduzierte Graph einem physikalischen
StreuprozeB entspricht, bei dem Jeder Vertex eine Punkt-
wechselwirkung beschreibt.

Bed dem Beweis, daB jede reelle Losung der Landau-
Gleichungen  auch tatsdachlich zu einer Pinch-Singularitit
auf der reellen Achse des physikalischen Blattes fihrt,
spielt die Feynmansche /é%-Vorschrift eine wesentliche
Rolle. Fiir endliches €z ist die physikalische Region frei
von Singularitdten. Wir gehen davon aus, daB bereits iiber
alle Endpunktsingularitdten integriert wurde, so daB
wir 0,B.d.A. S« @ annehmen konnen. Daher 148t sich fiir 0&()/4'(0()

2
C’D((:)) =.?:./ Z S Ad Ao, + 0C4 A) rieg (2.3.3)

Aoy = o - o (2.3.4)
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2
schreiben.fa(w)/da())/go{; Qo(o'ist eine reelle, symmetrische

Matrix, die durch eine orthogonale Transformation dig-
gonalisiert werden kann, FallsZXB) durch die transformieré
ten Parameter ausgedriickt wird, so ist es einfach zu sehen,
daB sich die Nullstellen von((4) im Limes &z >0 dem

Punkt 4 von verschiedenen Seiten her nzhern, aﬁ also
ein PSP ist. Auf den pathologischen Fall, dasB einige der
Eigenwerte vona(D(ul)/C(.())/ELc 90( verschwinden, soll hier nicht
ndher eingegangen werden [bo 65]

Offensichtlich liefern die Landau-Gleichungen blo8 ein
notwendiges Kriterium fiir das Auftreten einer Singulari-
tédt. Um AufschluB dariiber zu erhalten, ob tatsichlich eine
Singularitédt vorliegt wund von welcher Art sie ist, mus
man die Integration in der Nzhe des PSP explizit ausfiihren.
Wir betrachten hier den Fall, daB eine sogenannte nor-
male TLdsung_ [KI 62J der Landau-Gleichungen vorliegt.
Normale Ldsungen gind dadurch gekennzeichnet, daB der
entsprechende PSP ein isolierter Punkt im o -Parameter-
raum ist. Im allgemeinen konnen an einem PSP die &duBeren
Impulse eines FI nicht frei variieren, sondern sie miissen
auf einer "singuldren" Flidche liegen. Wir nehmen an,
daB die Impulse ,0; auf solch einer Fliche gleich,ﬁi
sind. Die Lage des PSP ist dann eine Funktion der /i.

A= & (Rrrmic) (2.3.5)

Im Unterschied zu den normalen Losungen stehen die
pathologischen Losungen bei denen einer oder auch
mehrere der FP beliebige Werte annehmen kdnnen. Normale
Losungen fiihren gewohnlich zu Schwellensingularit&ten,
wadhrend pathologische Losungen im Zusammenhang mit den
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asymptotischen Singularitidten, auf die im nichsten |
Abschnitt ndher eingegangen werden wird, eine Rolle spielen.

Wir gehen davon aus, daB der Teilgraph é? aus /M Kanten
bestehe. Zur Isolation der Endpunkt-Singularitdten wird eine
Transformation

m
A= g,,(‘, [= e m ‘_244, = (2.3.6a)

vorgenommen., Die Jacobideterminante dieser Transformation
ist
Cdy, - :
I, g SC- Zv‘ ) (2.3.6b)
A, . ,Am,g)

Damit ist der PSP duchg-O und c(;-g;,;':vmcharakterisiert. Unter
der Transformation (2.3.6) verhalten sich die parametrischen
FunktionenG@)und O )wie

aw - 34 Gce g, x)

. O .
0+ ¢4 Seg, 2

Y (2.3.7)

Falls in G“(Q,J;, ") 8’0 gesetzt wird, so faktorisiert das
Resultat nach (1.3.10) in

A e3e
q/yfd)dﬁ( ) (2.3.8)
Ehnlich wie schonD[o()/C/(o‘)ln (2.3, 3) entwickelt wurde, so
entwickeln wir hier .D(g d; o()umo( o( und p . Der fiihrende

Term D ist gleich

/O-" (S,I,-] 4)* D,;&P (/)ozﬁspg 2 Z D)A'( 44 229

/0””*4 7 ¢6p
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N Unnd
Z)¢SP ist eine Funktion von 2} und A , die fiir 2+ ver-
schwindet. Da die Singularitdt blo8 von einer endlichen

Umgebung um den PSP herrithrt, konnen die Integrations-

intervalle beliebig erweitert werden, solange nur das
resultierende Integral existiert, ohne daB das singulire
Verhalten beeinfluBt wird. Deshalb entspricht der Singu-
laritdt des FI 7' (2.2.1) am betrachteten PSP gerade das

Verhalten des Ausdrucks

0 L 4-LCE(2-€) - "
[ Jdsy 0] [ds,, . dd,
o 0 - 00

5 -2 ~
. (C,}CJ) da(&‘;))P ; N

Integration von (2.3.10) ergibt

(2.3.10)

p-are n-m-1
dﬂ(o?) CJ 2r ) [l -LCD(2-¢)) .
det (90( 90( O)PSP)
(2.3.11)
-m+L(8)(2-c) =

. - - sz. (N ’\J-
[dd,.n] Co@) ((52-) ) L
I I (93 PSP /3 0
mit dem asymptotischen Index

N_ ~ 4
kK=p-20-m-1)-m +L(£)(2-€) (2.3.12)
(2.3.11) gilt, falls k>Oist., Dies 1aBt sich prinzipiell
immer durch eine geeignete Wahl von & erreichen. Ist

e,'vrg /<<O und ganzzahlig, so treten im Limes € +0 zu-

sdtzliche Logarithmen von DPsP auf. Da m-= n(¥) ist,

1ldBt sich k auch als

§/=£n6ﬂ)-62-e)L(ﬂ) +é (2.3.13)
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ausgdriicken. Demit haben wir eine Zahl ge funden, die

65 gestattet, die Starke einer Singularitat direkt aus
den reduzierten Graphen abzulesen, Fir pathologische

Losungen der Landau-Gleichungen erhsht sich &f um die
Anzahl der freien Parameter. Es ist also zu erwarten,

daB solche Losungen AnlaB zu stirkeren Singularitdaten

geben,

2.4 Massensingularitaten

In vielen Fdllen ist die Untersuchung des agsymptotischen
Verhaltens eines FI im Limes groler Impulsiibertrige aqui-
valent zur Untersuchung seines Verhaltens im Limes, der
durch das Verschwinden einiger Massen charakterisiert ist.
Im zweiten Fall treten typischerweise sogenannte Massen-
singularitdten auf, DaB Massensingularitdaten als eine Form
der ‘asymptotischen Singularititen aufgefaBt werden konnen,
188t sich leicht durch eine Dimensionsanalyse der para-
metrischen FunktionZ)G&)einsehen. Da Massensingularititen
in der Literatur griindlich untersucht worden sind, mbchten
wir hier einige der Resultate, soweit sie fiir unsere Ziel-
setzung von Interesse sind, zZusammenfassen.

Wir haben bereits im vorausgehenden Abschnitt darauf hin-
gewiesen, daB Massensingularititen mit pathologischen
Losungen der Landau-Gleichungen im Zusammenhang stehen.
Pathologische Losungen der Landau-Gleichungen zeichnen
sich dadurch aus, daB die entsprechenden PSP nicht iso-
lierte Punkte s&ind, sondern Hyperflachen im A -Parameter-
raum bilden. In vielen Fillen tritt solch eine Entartung
gerade dann auf, wenn einige der Massen verschwinden.

Eine allgemeine Untersuchung der -pathologischen Losungen
ist leider sehr kompliziert und eine vollsténdige Klassi-
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fizierung erscheint aussichtslos., Daher werden wir uns
hier mit dem einfachsten Fall begniigen. Wie sich in der
Praxis herausgestellt hat, deckt dieser einfache Typ eine
Fille von physikalisch interessanten Fillen ab.

Wir werden hier bloB8 den Typ von pathologischen Lig-
sungen untersuchen, der dadurch gekennzeichnet ist, daB
alle FP die zu Kanten des reduzierten Graphen H gehoren ,
beliebige Werte annehmen konnen, die lediglich durch die
é?-Funktion aus [bﬁ#J eingeschréankt werden, Im Gegen-
satz dazu steht die Form der Losungen der Landau-Gleichungen
wie sie in Abschnitt 2.5.5 vorgestellt werden wird. Die
allgemeinen Bedingungen fiir das Auftreten solch einer Massen-
singularitdt lassen sich leicht ableiten.

Dazu betrachte man den reduzierten Graphen J?, . 32. be-
stehe aus verschiedenen irreduziblen Teilgraphen leg .
/3-4y«,8,die Jeweils nur durch einen einzigen Vertex mit
dem ilibrigen Graphen verbunden sind. Falls & zusammen-
héngend ist, so hat der reduzierte Graph eine Struktur
wie sie in- Abb.2.3 gezeigt wird.

Die Kantenimpulse &f der irreduziblen Komponenten j%p
haben die Eigenschaft, nicht von den ¢ -Parametern der
Kanten aus Rg' , ﬁl#ﬁ abhingig zu sein. Innerhalb eines
irreduziblen Teilgraphen 32/3 sind genau LC\ﬂdeer Kanten-
impulse linear unabhangig. Samtliche iibrigen Y7 lassen
sich aufgrund der Impulserhaltung als Linearkombinationen
dieser unabhédngigen Impulse und der &HuBeren Impulse n, mit
konstanten Koeffizienten darstellen., Damit kann gezeigt
werden EKI 76] y daB dann und nur dann eine Losung der
Landau-Gleichungen vorliegt, falls

h’?:2= 0 \7// s J?_ (2.4.1)
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Abb,.2.3 Struktur des reduzierten Graphen

und

p/s’_ ¢ pﬁo' = O (2.4.2)

erflillt sind. Mit anderen Worten, alle externen Impulse

einer irreduziblen Komponente miissen parallel zu eiggm
lichtartigen Vektor sein. Der asymptotische Index K der
vorliegenden Singularitédt berechnet sich mittels einer Transg-
formation (2.3.6) als

A

k+k+ elLCR)

(2.4.3)
k=nCR)-2LCA)

Dies gilt fiir eine rein skalare Theorie. In einer Spinor-
theorie gibt (2.4.3) lediglich eine obere Grenze an,
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Der Wert (2.4.3) des asymptotischen Index gilt fiir den
Fall, daBZMB)vﬁe.g“v)*q verschwindet. Es ist jedoch auch
moglich, daB U) starker gegen Null geht [KI 76,77] .
In solch einem Fall kann K einem groBeren Wert annehmen.
Dies héngt demit zusammen, daB an die Stelle der linearen
Transformation (2.3%.6) natiirlich auch eine nichtlineare

Transformation treten kann.

Abb.2.4 Graph, dessen Massensingularitdten im Text
diskutiert werden

Wir mochten dies hier am Beispiel des in Abb.2.4 ge-
zeigten Graphen der Quantenelektrodynamik darstellen. Die
durchgezogenen Linien reprédsentieren Fermionen der Masse
m , die geschlangelten Linien masselose Photonen. Die
mit 31' bezeichnete Blase enthalte nur Photonen. Offen-
sichtlich erfiillt g/( '5W) sédmtliche Bedingungen, die an
einen reduzierten Graphen gestellt werden miissen, der die
Landau-Gleichungen 1ost, Wir haben die fermionischen
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Kanten in drei Mengen #, 3, § aufgeteilt. Lassen wir
einmal die Moglichkeit, da8 S Schleifen enthalte auger
acht, so folgt aus (2.4.3),da8 k genau dann seinen
groBten Wert annimmt, wenn gerade sdmtliche Fermionkanten
kontrahiert werden. Da der entsprechende asymptotische
Index (2.4.3) in jedem Falle negativ (€ =O ) ist, fol-
gert man, daB das Verschwinden vond (o) wie & nicht aus-
reicht, um eine Singularit&dt zu erzeugen. Durch eine nicht-
lineare Transformation kann nun erreicht werden, daB Ddx.)
stdrkel als ¢ &egen Null geht, Im Hinblick auf unser
Interesse an vollstandig masselosen Theorien, werden wir
hier solch eine nichtlineare Transformation als Uberla-
gerung zweler linearer Transformationen ausfiihren.

Zunéchst 188t sich jeder Kantenimpuls aus A und & als

/
K =P+ ¥ GeH (2.4.43)

!

Ve p'+ ¥ ¢e B (2.4.4D)

/
schrelben, wobei Y eine Linearkombination von k’ ’

]

e, e R’ ist. Damit nimmt D(&)die Gestalt

06 = G { (S m’) 125 u o o ST 12

een @en eeﬁ
(2.4.5)

/!
N PP ) 4 Y t,/,- 2 ]

[7¢5 3 G’Z.IR' elgc A, ( m )
an, Wir kontrahieren nun die XKanten von Fu ¢ wund von B8u(
nacheinander, d.h, wir skalieren sdmtliche FP aus Hov
(Bud ) mit 85 (8g) wie in (2.3.6). Das hat zur Folge,
daB
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85 Gefl
s~ {88 %e (2.4.6)
$a8p CC€ ¢
o eeR
und

v 8Pt 8ap + Onss) seR (2.4.7)

ist. Setzt man diese Beziehungen in Da‘)ein, 80 erhalt man

DCA) = Cl4) {(ggz J;C/on-mi) > ,(;J(:’g
IGR (2.4.8)

+P20(8r:) +/JP,U(§/; 83/ f/D’QO'(S,;) v?

Unterwerfen wir nun die Parameter SA und.\gB selbst einer
Transformation (2.3.6) mit einem Parameter & , so ist
klar, daB D(d)"‘g 2 ist, falls nur die externen Impulse p,p/

2 2

:m
/DQ 2 (20409)
prem

erfiillen. Angemerkt sei, daB die Transformation mit @
eine nichtlineare Transformation ist. Der asymptotische
Index wird

Ao
/<=2(n(?7-(.’2-e)L(g))-np-nB - 2N, (2.4.10)
Er ist nicht mehr in jedem Falle negativ. Der wesentliche
Unterschied zum vorher untersuchten allgemeinen Fall ist
die zusdtliche Forderung (2.4.9). Die allgemeinen Be-
dingungen,unter denen sélch eine "Verstadrkung" einer
Singularitdt auftreten kann, findet man in [KI 77] .
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Es ist klar, daB in einer masselosen Theorie mit ex-
ternen Impulsen auf der Massenschale

DCa)~3n 8 (2.4.11)

gilt. Hier liegen also wieder die zu Anfang untersuchten
Verhdltnisse vor, so daB das Verschwinden von ¥noder &g
alleine ausreicht, um eine Singularitiat zu erzeugen.

Selbstverstidndlich lassen sich Massensingularitdaten
auch direkt in k’-Raum unter suchen, ohne erst FP einzu-
filhren [ST 78] . Dies hat einerseits den Vorteil einer
anschaulicheren Interpretation der Singularitdten, erlaubt
aber andererseits nicht mehr eine systematische Berech-
nung im Limes mehrerer groBer Impulsiibertrédge, wie wir
sie beabsichtigen.

Man unterscheidet im allgemeinen zwischen sogenannten
infraroten und kollinearen Divergenzen. Unter einer kol-
linearen Divergenz [EL 79] ist eine Massensingularitit
zu verstehen, die von einer Region des Phasenraumes her-
rihrt, in der einige Impulse lichtartig werden, jedoch
kein Impuls komponentenweise verschwindet. Das Auftreten
von Infrarotdivergenzen hingegen ist an das komponenten-
weise Verschwinden des Impulses eines strikt masselosgen
Teilchens gekniipft. Lassen wir in unseren Beigpiel DblosB

25 ( 82 ) gegen Null streben, so haben wir es, falls

p f)/ ) lichtartig ist, mit einer kollinearen Diver-
genz zu tun. Gehen hingegen sowohl gy als auch Jg gegen
Null, so liegt eine Infrarotdivergenz vor.

Die Infrarotdivergenzen der Quantenelektrodynamik, die
durch das Verschwinden der Photonenmasse hervorgerufen
werden, sind in der Literatur ausfiihrlich untersucht
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worden. Bereits im Jahre 1937 konnten Bloch und Nordsieck
[ BL 37 J zeigen, daB sich die Divergenzen von virtuellen
und reellen Korrekturen so organisieren lassen, daB man

zu physikalischen Wirkungsquerschnitten gelangt, die frei
von Infrarotdivergenzen sind., Ihre Argumentation ist in

[ vE 61,8BT 67,6R 73 ] vervollstandigt worden.

Tie Kiirzung von reellen und virtuellen Infrarotdivergen-
zen ist eine Konsequenz des allgemeinen Theorems, das die
Namen von Kinoshita,Lee und Nauenberg trégt[KI 62,1E 63,81]
Danach ist eine Ubergangswahrscheinlichkeit endlich, falls
liber alle entarteten Eingangs- und Ausgangszustidnde sum-
miert wird. Damit ist auch eine Vorschrift gefunden, die
es erlaubt,Ubergangswahrscheinlichkeiten zu definieren,
die im Limes verschwindender Elektronenmasse endlich
bleiben.

Es hat in den letzten Jahren nicht an Versuchen gefehlt,
das Verstédndnis der Massensingularitdten in der QCD auf
ein @hnliches Niveau zu heben. Trotz erheblicher Fort-
schritte konnte dieses Programm bisher nicht abgeschlossen
werden. Insbesondere wurde gezeigt, daB in Reaktionen mit.
zweli Quarks im Eingangskanal, falls iiber die Farbe ge-
mitteltlwird, keine vollstandige Kiirzung der Infrarot-
singularitdten & la Bloch-Nordsieck eintritt [DO 80a,

LI 81] . '

2.5 Asymptotische Singularitidten

Im letzten Abschnitt haben wir die Massensingularitédten
als eine besonders ausgezeichnete Art der asymptotischen
Singularitdten untersucht. Als Maseensingularitiat faBt
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man im allgemeinen solche Singularitdten auf, deren Auf-
treten nicht daran gebunden ist, daB die &uBeren Impulse

des Graphen besondere Bedingungen erfiillen, abgesehen da-
von, daB einige eventuell auf der Massenschale liegen miissen
[ KI 62 ]. In diesem Abschnitt nun méchten wir uns der
Situation zuwenden, in der einige der Skalarprodukte der
duBeren Impulse sehr groB werden.

Zunéchst werden wir unsere Betrachtungen auf eine rein
skalare Theorie beschrinken. Es sei daran erinnert, dag
ein Graph mit € &uBeren Vertizes hdchstens von e(e-1)/2
unabhéngigen Skalarprodukten S€;:/% @, 4 %-,®-1) abhéngen
kann, Die Abhéngigkeit eines FI von diesen Skalarprodukten
wird ausschlieBlich durch die parametrische D-Funktion her-
vorgerufen, Wir werden von hier an, so wie es auch in der
storungstheoretischen QCD iiblich ist, sdmtliche internen
Massen vernachlidssigen. Dann ist D(o() von der Form

D)= 27 hyyCa) sy (2.5.1)

Im asymptotischen Limes,der durch einen einzigen groBen
Impul siibertrag charakterisiert wird, streben eine Reihe
von Skalarprodukten 6/5 gleichméBig gegen Unendlich.,
Um diese Skalarprodukte von den restlichen zu unterscheiden,
nennen wir die Menge der Paare (i,4), fiir die §; gros3
wird 4 . Die Anndherung an Unendlich werde durch die
Variable Q% kontrolliert, d.h.

2
Siy * Q SA,,, Chyle S (2.5.2)

und g"a' C:',g’)é‘v@‘ sowie S’,’a' (',}9')¢‘(ﬁ' bleiben endlich.
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Spater werden wir auch den Limes untersuchen, bei dem
mehrere Impulsiibertridge unabhingig voneinander gegen Un-
endlich gehen. Haufig ist es sinnvoll,den asymptotischen
Limes durch die Wahl eines Bezugssystems zu re-

alisieren und alle § (%d)¢oéL explizit verschwinden

zu lassen. Besonders libersichtlich ist eine Zerlegung der
Impulse nach den lichtartigen Vektoren /O und dem
darauf orthogonalen Vektor p,, ( siehe Anhang B ),

2,541 Regularisierung

Mit (2,5.2) wira DCa)

0 =@ heo+ 57 4o S ] (2.5.5

Cri)E R Q

wobei

hCd =2 hca)é (2.5

Grileh
ist. Setzen wir (2.5.3) in (2.2.1) ein und vernachlissigen
im Limes Qp‘—>oo einmal die Terme S’,",' /CQQ, 80 bekommen wir

im I'=@)F1’ (2:9:2)
QR o0
mit

, £ 2+6 -p
I =f[d0‘3 G a? ha? (2.5.6)

2
Die Vernachlédssigung der Terme Sﬁa&? in (2.5.2) ist ohne

weiteres gerechtfertigt, solange das Integral . endlich ist.
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I” kann jedoch singuldr werden, falls ( () und/oder h ()
innerhaldb des Integrationsbereichs verschwinden. CY&) ver-
schwindet nur dann, wenn die Parameter eines Teilgraphen
¥ mitL()#0O gegen Null gehen, Aus (1.3,8,9) und
(1.3.36) folgt, daB, falls(j&%)'verschwindet, auch h ()
mit mindestens gleicher Stidrke verschwindet. Daher reicht
es aus, sich auf das Verschwinden von h(4) zu konzen-
trieren. Wie (1.3.36) zeigt, verschwindet h(«), falls die
Parameter eines Teilgraphen 57 mit \g gegen Null gehen
mindestens wie ¢ ', Fiihrt ein Verschwinden von h(«)wie
SLG”, jedoch nicht stdrker, zu einer Singularitdt, so
geschieht dies in jedem Fall unabhingig von den externen
Impulsen also auch schon vor Vernachldssigung der Terme
SU/QQ . Dann haben wir eine Ultraviolettdivergenz vor
uns. Wir nehmen durchweg an, daB wir es mit"off-shell™"
renormierten FI zu tun haben und werden Ultraviolett-
divergenzen keine Beachtung schenken,

. . . Ly
Fiilhrt das Verschwinden von h{&) stirker als § 2zu einer

Singularitdat in (2.5.6),s0 gibt es prinzipiell zwei
Méglichkeiten, 51e Zu regularisieren. Entweder setzen wir
die Terme 3 /22 nicht von vornherein gleich Null, nehmen
sber e=0 (off-shell Regularisierung), oder aber wir
wdhlen € <O, setzen S};/Q?l O und filhren zum SchluB8 den
Limes€~0 aus (dimensionale Regularisierung) [GA 73,
MA 75] . Eine flilhrende Singularit&dt, die sich in der
off-shell Regularisierung in der Form

I"N (Q“)k 1037(622) (2.5.7a)

zeigt, nimmt mit der dimensionalen Regularisierung die

Form

o 1
~ ———q o> O (2.5.7b)
(oe +k)
an, wobei G eine reelle Zahl ist. Dieser Zusammenhang
wird in Kapitel 3 offenbar werden. Vom praktischen Stand-
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punkt aus 1ist zur Berechnung des asymptotischen Verhal-
tens in der Regel die Methode der dimensionalen Regulari-
sierung gegeniiber der off-shell Regularisierung vorzu-
ziehen. Wie (2.5.7b) jedoch zeigt, ist sie nur fiir solche
Singularitdaten sinnvoll einzusetzen, fiir die kK« O ist,

da fir K > O der Limes € + (0. nicht ausgefiihrt werden
kann,

Ist k= und wird die dimensionale Regularisierung gewihlt,
so fiinrt ein Verhalten von I wie & -9 im Limes €9 Q zu-
sammen mit dem Faktor [Q ) Pin (2.5. 5) dazu, daB der loga-~
rithmisch filhrende Term wie ((osa ) geht, was man auch
von (2.5.7a) erwartet. Daher ist, was das Abzdhlen der

Logarlthmen betrifft, eine Singularitat <§ aquivalent 2zu

log Q

2.5.2 Skalierungsmengen

Wie im letzten Abschnitt festgestellt wurde, ist die
Berechnung des asymptotischen Verhaltens von T’ aqui-
valent zur Bestlmmung der Singularitéaten von I Im
allgemeinen ist I ein kompliziertes Integral, das nicht
explizit ausgefiihrt werden kann. Offenbar ist dies aber
auch gar nicht notwendig. Zu diesem Zweck reicht schon
die Integration iliber eine kleine Umgebung der Hyperflache
aus, auf der h (d) verschwindet [?O 63, FE 63.]

Tragen die Quadrate der einzelnen Schnlttlmpuleefjaus
(1.%.34) zu h(4) mit jeweils gleichem Vorzeichen bel,
so kann h (4 ) nur dann Null werden, wenn eine Reihe von
FP gemeinsam verschwindet, Der Fall, daB die Vorzeichen
unterschiedlich sind, wird spédter unter die Lupe genommen
werden. Wir nenne solch eine Menge von Parametern eine
Skalierungsmenge (SM) ¥ . Selbstverstsndlich ist jede
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Obermenge einer SM selbst ebenfalls wieder eine SM. In

der Literatur findet man fiir minimale SM, die keine Schlei-
fen enthalten, Bezeichnungen wie "d-lines" [HA 63,64]

oder auch "t-path" [ TI 63 |. SM mit Schleifen werden

auch "singular configurations" genannt [TI 63 ,PO 80] .

Da sich diese Bezeichnungen auf spezielle Prozesse beziehen,
werden wir sie hier nicht benutzen.

Um das Integral .I” in einer Umgebung der Hyperfldache
zu untersuchen, auf der die Parameter von :F verschwinden,
fiihren wir eine Skalierung wie in (2.3.6) aus. Wie be-
reits festgestellt wurde, kann eine Singularitéat, die
nicht eine Ultraviolettsingularitsat ist, nur dann auf- -
treten, falls h(#)stdrker als 3L(y)gegen Null strebt.
Dazu ist es offensichtlich notwendig, daB QQ’_';&CDOC,:)/OQ)
(siehe (1.3.36)) verschwindet. Mit anderen Worten, die
parametrische D~Funktion des Graphen L?/jo muf unab-
hédngig von CQQ sein. Da wir bereits alle Skalarprodukte,
die nicht aus /& sind, explizit gleich Null gesetzt ha-
ben, bedeutet diese Forderung nichts anderes, als daB
der reduzierte Graph%/f in 1-vertex-irreduzible Kom-
ponenten zu zerfallen hat, so daB fiir alle externen Im-
pulse Pz, einer Komponente G /s’;’/;?,')¢ﬂ gilt. Dies
ist genau die gleiche Bedingung, wie sie schon fiir das
Auftreten einer Massensingularitat in 2.4 abgeleitet wur-
de. Ist insbesondere ¢V verbunden, so ist der reduzierte
Graph von der in Abb.2.3 dargestellten Form.

Nehmen wir einmal an, daB

s -
hs) = SL( . /o(oﬁ,'g) (2.5.8)

und
Ly) - )
G(4)= ¢ CCi58) (2.5.9)



L




«60=

N

ist, so ergibt sich als asymptotischer Index k der

schon bekannte Ausdruck (2.4.3). In (2.5.8,9) steht o'
sowohl fiir die transformierten Parameter o; , als

auch fir diejenigen Parameter, die keiner Transformation
unterworfen wurden., Um die Stdrke einer SM zu charakteri-
sieren, wird in [HA 64] die effektive Lange Meye ein-
ge fiihrt

Mess = N(EL) - 2LCY) (2.5.10)

Damit wird

K 2 p=m,e (2.5.11)

Ist P <Mess, s0 liegt keine Singularitét vor, ist/:)=m@H ’
so handelt es sich um eine logarithmische Singularitat
und im FalleP>Mgy;haben wir es mit einer sogenannten
"power-law" Singularitit zu tun. Ein wichtiger Schritt
zur Berechnung des asymptotischen Verhaltens eines FI

ist selbstverstdndlich die Bestimmung der SM. Wir werden
uns im Rahmen dieser Arbeit ausschlieBlich auf den fiih-
renden Term mit groBtem Kk Dbeschranken. Daher reicht

es aus, sémtliche SM minimaler effektiver Ldnge (MSM)

zu bestimmen. Kann der asymptotische Limes dadurch reali-
slert werden, daB jeder exteren Impuls als Linearkom-
bination der Impulse pP: dargestellt wird, so besteht
Jeder reduzierte Graph aus zwei irreduziblen Komponenten.
In diesem Fall werden die MSM durch verbundene.Graphen
dargestellt. Hat man einmal eine MSM gefunden, so ist es
haufig leicht, gofort weitere anzugeben. Alle verbundenen
Graphen, die aus einer MSM ¥ durch Hinzufiigen von zwei
Kanten entstehen, so daB die Anzahl der Schleifen um Eins
steigt, sind ebenfalls wieder MSM,
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Zur Berechnung der Singularitat setzen wir (2.5.8)
und (2.5.9) in (2.5.6) ein, approximieren hGi¢) (GCalg))
durch h(a,0) (GJ(4,0)), integrieren iiber ein Inter-:
vall O <g8<d& und betrachten nur den singuldren Anteil.
Ist K=0O so erhdlt man mit der dimensionalen Regulari-
sierung
p-2re

T G(4.0) . (2.5.12)

4 1
LG/ 9)e ﬂd‘”;ﬁd"‘] hslo)r

-
- L]

mit

[di] - di,...di, SCT, ». b by - 1) (2.5.13a)
und

EO’I;J’d"mM O/O‘ncr(ﬂ‘mﬂf-..wa(n-’/) (2.5.13Db)

Selbstverstdndlich muB das verbleibende Integral, das
die Singularitét in (2,5.12) multipliziert, keinesfalls
endlich sein, Im allgemeinen gibt es mehrere SM, dielv(a)
verschwinden lassen, und es kdnnen mehrere unabhingige
Skalierungen ausge filhrt werden. Der gleiche Parameter
kann natiirlich auch mehrmals skaliert werden. Allerdings
konnen wegen der & -Funktion in (2.5.13a) nicht simtliche
Parameter einer SM ein zweites mal skaliert werden., Wir
nennen eine Reihe von SM, deren Skalierungen nachein-
ander ausgefiihrt werden kdonnen, eine Sequenz. Da wir
uns lediglich fiir filhrende Beitrdge interessieren, sind
sémtliche SM einer Sequenz MSM. Ist es aufgrund der Ein-
schriankungen durch die & -Funktionen nicht mdglich,eine
gegebene Sequenz um eine weitere SM zu erweitern, so nen-
nen wir sie vollsténdig., Die Konstruktion solcher voll-
stédndiger Sequenzen ist der Gegenstand des Kapitels 4 .
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Ist die SM der in (2.5,12) ausintegrierten Skalierung

Teil einer nichttrivialen Sequenz, 80 charakterisieren
die Punkte in (2.5.12) logarithmisch nichtfiihrende Terme.
Beschréankt man sich auf die Berechnung der filhrenden
Logarithmen, so spielt, wie aus (2.5.12) ersichtlich

ist, die obere Integrationsgrenze & keine Rolle.
Mochte man hingegen auch nichtfiihrende Beitrdge berechnen,
80 mul die obere Integrationsgrenze, die allgemein eine
Funktion der d/ ist, beriicksichtigt werden.

Falls wir unsere bisherigen Uberlegungen auch auf Theo-
rien mit Feldern mit nichtverschwindenden Spin ausweiten
wollen, so miissen wir anstelle des Integrals (2,2,1)
ein Integral der Form (1.4.4) untersuchen. Ein Term mit
© Kontraktionen triagt wie

&€

C/(a()_-2+ - Q 7

- K, . K 4 (2.5.14)
(D&) /Gex ))P 7 6526 rery - i,

I Lf[o/d‘]

o

bei. Wir haben der Einfachheit halber die Indizes will-
kiirlich gewdhlt. Die bisher gezogenen Schliisse miissen
lediglich insofern geéndert werden, wie sie das Verhalten
des Integranden von (2,5,14) bei Skalierung der Parameter
einer SM betreffen. Der fiihrende Term der Kantenimpulse
ff bleibt bei einer Skalierung entweder konstant oder
er verschwindet wie e}ne Potenz von g . Die Kﬁd hingegen
verhalten sich wie § , falls es eine Schleife Lcd
gibt mit &, ¢ ¢ £ . Liegen eine oder auch beide der
Kanten €:, €y nicht auf solch einer Schleife, so bleibt
der fiihrende Term von Q;j konstant. Daher muB, falls
G=0ist, eine SM, die das (2.5.14) entsprechende FI
einer skalaren Theorie singuldr macht,nicht unbedingt
auch zu einer Singularitdt in (2,5.14) fihren. Eine Ent-
scheidung dariiber erfordert die Untersuchung der }f .
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Ist 6 #0 , so muB, abgesehen vom EinfluB der 7, die
effektive Lénge einer SM um © gteigen, damit sie eine
Singularitdt gleicher Stirke verursacht,wie fiir ein ska-
lares FI, es sei denn, diese Unterdriickung wird teil-
weise durch die ?%j kompensiert.

.An einem PSP der bisher betrachteten Art wird jeder
Kantenimpuls &7 des reduzierten Graphen parallel zu
einem der externen Impulse. Lassen sich samtliche ex-
ternen Impulse als Linearkombinationen von p, und p
ausdriicken, so ist der Tensor im Integranden von
(2.5.14) im wesentlichen ein Produkt aus diesen Vektoren.
Im allgemeinen wird der Tensor im Zdhler des Integranden
von (2.5.14) mit einem numerischen Tensor kontrahiert,
der ein Produkt aus metrischen Tensoren gpv und Dirac=-
Matrizen Xp ist. Daher ist es in vielen Fdllen vorteil-

haft, eine Lichtkegelbasis zu wihlen ( siehe Anhang B) .

2¢5.3 "Disconnected Scalings"

An dieser Stelle ist es ndtig, einen Punkt zu kliren,
Uiber den nicht nur in der #dlteren Literatur einige Ver-
wirrung herrscht [ME 64,GR 65a,HA 65,P0 80 ] . Hat man
einmal eine Singularitédt wie in (2.5,12) isoliert, so
mag man versucht sein, als ndchstes eine Singularitat
zu isolieren, die einer MSM von HZQJCL)entspricht. Solch
eine MSM muB natiirlich nicht unbedingt auch eine MSM
von h()) sein. Ist es ein allgemeines Kennzeichen der
MSM von h(s)ydurch verbundene Graphen dargestellt zu werden,
so trifft dies fiir eine MSM vonl;GCCD)nicht mehr zu.,
Solche SM sind daher unter der Bezeichnung "disconnected
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scalings" bekannt. Isoliert man die einem "discon-

nected scaling" entsprechende Singularitédt dees Integrals
(2.5.12) auf die gleiche Weise, wie schon (2.5.12) selbst
gewonnen wurde, so ist das Resultat im allgemeinen un-
brauchbar. Der Grund ist, daB nun die vernachlédssigten
Anteile nicht mehr nichtfiihrend sind.

Dieser Sachverhalt 148t sich an folgendem Beispiel ein-
sehen. ¢, sei der Parameter der Skalierung einer SM é?
undh (o, y§1)sel durch

lf;(a', 3,) = };(o«’) + ¢, h-(a") (2.5.15)

gegeben, Es existiere eine zweite SM éF mit Parameter
2, , die zwar }7@1 , jedoch nicht h(d)zum Verschwinden
bringe. Der Einfachheit halber sei L(.ﬂ):/_[;-f’d:O. Dann
ist )

h(z) =g, l;CA,'g,,gz) (2.5.16)
mit

/ - .
hCA) 84) g‘,)egQACA) + gqh(d) . (205.17)
Es ist klar, daB wir hier den Ausdruck}ia)&,$Jnicht mehr
einfach um =0 und ¢,= O entwickeln konnen, wie es bei
der Ableitung von (2.5.12) mit b (s, ¢ ) geschah.

Es ist daher falsch,die Singularitdten zu isolieren,
indem abwechselnd skaliert wird und das Integral wie
beschrieben approximiert wird. Vielmehr miissen zuerst
alle Skalierungen der SM einer vollstédndigen Sequenz aus-
gefilhrt werden, erst dann darf das Integral approximiert
werden. Eine Sequenz bricht ab, falls das Integral von
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h(4') iber dd am PSP endlich ist. Haben wir es bei-
spielsweise mit einer vollstindigen Sequenz zu tun, fir
deren SM 5& jeweils L(¥,)=0 ist, so wird

h(a)s g (h () + 0Cg.)) (2.5.18)

In diesem Ausdruck diirfen wir ohne Gefahr in der Klam-

mer ¢, =(setzen. Das Auftreten von "disconnected scalings"
muB daher als eine Konsequenz der fehlerhaften Approxi-
mation des Integrals I’ betrachtet werden.

2:5.4 Nichtlineare Skalierungen

Bisher sind wir davon ausgegangen, daB man mit einer
linearen Skalierung wie (2.3.6) eine Singularitat kor-
rekt isoliert. Wie wir jedoch schon im Abschnitt 2.4 ge-
sehen haben, kann es unter Umstdnden auch notwendig wer-
den,eine nichtlineare Skalierung auszufiihren. Im folgen-
den mochten wir zeigen, daB zur Isolation des asymptoti-
schen Verhaltens einer villig masselosen Theorie, line-~
are Transformationen bzw. deren Uberlagerungen vollig aus-
reichen, '

Wir gehen davon aus, daB die FP Xy ,. 409 Ay €ine
SM 57 bilden. Dann lautet die allgemeine Form einer
nichtlinearen Skalierung

\ 7 )
0(; = g I 0‘,’ /1 = 4) veey m (205019)

Die Exponenten V; seien so gewahlt, da8

m;h{)/l.} -.'7 (2.5.20)
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Normieren wir die X, auf

& 2
(A vy
A = 1 (2.5.21)
=4 ,
80 wird die Jacobideterminante der Transformation
(2.5.19,20,21) gerade

OCh, ..., dm) é:':v,-// %, %,
Q(Al A g) ) g 5(“4 +.. r K, - 4) (2.5,22)
1y ) m,

Wegen der Bedingung (2.5.20) verschwindet die Jacobi-
determinante einer nichtlinearen Skalierung einer vor-
gegebenen SM immer stédrker als die einer linearen Ska-
lierung. Daher kann eine nichtlineare Skalierung nur
dann eine gleich starke oder auch starkere Singularitat
im Vergléich mit einer linearen Skalierung verursachen,
falls die Funktlon.F)Cx) fiir die nichtlineare Skalierung
starker verschwindet, als dies fiir eine lineare Skalierung
eéintreten kann. Solch ein Fall 148t sich einfach durch
Uberlagerung mehrerer linearer Skalierungen konstruieren.
Sind beispielsweise zwei SM E? und t? vorgegeben mit

‘f f)bo ¥¢ so diirfte im allgemelnen eine nichtline-
are Skallerung mit

- Y22 falls @ & (%o )

- Y; = 41 sonst
h (#) stérker verschwinden lassen, als wennv: = - fiir
alle Kanten aus :gLJS% gewdhlt wird, Dieser Fall wurde
bereits im Abschnitt 2.4 vorgefithrt. Hier méchten wir
nun zeigen, dafB sich umgekehrt jede nichtlineare Skalierung ,
die h (a) stédrker gegen Null gehen 18t, als eine entsprech-
ende lineare Skalierung, als solch eine Uberlagerung dar-
stellen 1laBt.,
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Der Einfachheit halber setzen wir voraus, da8 f yeij-
ne Schleifen enthalte, zusammenhingend ist und h(« )bei
linearer Skalierung von ¥ wie & verschwindet. Wir
nehmen an, daf3 e1ne nichtlineare Skalierung vorliege,
le})Cﬂ)Wle g gegen Null gehen lasse und daB sich
in zwei Teilgraphen zerlegen lasse, so daB alle Kanten
aus ¥ mit ¢ und alle Kanten aus 31 mit 8 gehen.
Skalieren wir zunichst die Parameter aus &; .. Dann
verhalt sich h(4)wie

h(a)s heat) » ¢ heal g (2.5.23)
h() ) ist die h -Funktion des Graphen g/ﬁ’. Nun zerlegen
wir d% in einen belleblgen zusammenhangenden Teilgraphen
Jé und das Komplement:f g, - 52 . Werden s@mtliche
Kanten aus S% ( g% ) mit ¢ ( &3 ) linear skaliert,
so muB sich h) wie

- ) 2 2
h(4'): Qg 8a h.Ca)+8n hy(a) s Q5 hyCa) #... (2.5.24)

verhalten, d.h, es sind keine Terme erlaubt, die linear
in &, oder ge sind. Anderenfalls kann h (4 ) nicht
quadratlsch verschwinden., Gibt es eine Zerlegung von

1574 in f und fFﬂ » 80 daBh, (4)+ hy (4')= (), so ist die vor-
liegende nichtlineare Skallerung als Uberlagerung der
linearen Skalierungen von ;P ¢ EP und :? U t&' darstell-
bar, Die Tatsache, daB die llnearen Terme in gg bzw. S
fir beliebige Zerlegungen verschwinden miissen, laBt sich
mit den topologischen Regeln von (1.3%.34) folgendermafBen
ausdriicken., Falls dﬁ ( 92 ) in zwei zusammenhéngende
Teile zerschnitten wird und anschlieBend alle Kanten
von §£ kontrahiert werden, so muB die Q2 Abhangigkeit
des resultierenden Graphen verschwinden. Diese Bedingung
kann aber nur dann erfiillt werden, falls S& aus zwei zu-
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sammenhéngenden Teilen besteht, so daB die Kontraktion
schon eines dieser Teile ausreicht, um den resultierenden
Graphen unabhidngig von Q2 Zzu machen, Diese beiden Teile
erfullen aber gerade die Bedingungen, die oben an :f”

und :P gestellt wurden. Damit ist gezeigt,dal die vor-
gegebene nichtlineare Skallerung eine Uberlagerung der
linearen Skalierungen von f u\f undff ufflst Unter Zu-
hilfenahme der topologlschen Regeln zur Konstruktion von
(1.3.34) 148t sich die présentierte Argumentation ver-

allgemeinern.

2.5.5 "Pinch"~Singularitiaten

Im Abschnitt 2.5.2 wurde ausdriicklich vorausgesetzt,
daB die Quadrate sidmtlicher Schnittimpulse ﬁ% zu h (o)
mit gleichen Vorzeichen beitragen. In diesem Abschnitt
werden wir die Folgen erortern, die eintreten, falls
diese Voraussetzung verletzt wird., Wir mdchten dies an
einem einfachen Beispiel durchfiihren [?O 63,71 63 |

Wir betrachten den sogenannten Regge-Limes, & » oo
und t fest, eines Graphen, der zu der Vier-Punkt-
Funktion in einer rein skalaren Theorie beitrédgt. S
und t sind die bekannten Mandelstam-Variablen. Aufgrund
der Relation

s+t+u=0 (2.5.25)

muB die dritte Mandelstam-Variable

Uwr-$ (2.5.26)
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erflillen, Als Beispiel haben wir den in Abb.2.5 gezeigten
Graphen ausgewszhlt. Die externen Impulse erfiillen

Ap.p. =S

(2.5.27)

Die D-Funktion dieses Graphen ist

~ / / / / .

Vit)-ld, bydg dy + dyAydhg o, ] s

C o, (2.5.28)
4 L0<4ﬂ(;1 V{g o(tf + 0(,,0{2 0{3 V{QJU t 0(.{‘)
Dies wird mit (2.5.26) zu

D)= Chydgdr da ) (dyhy ~dAade) s + OCE) (2.5.29)

Im Gegensatz zu den in 2.5.2 betrachteten D-Funktionen
kann (2.5.29) auch auBerhalb der Region verschwinden,
in der einige FP gleich Null sind. Beispielsweise falls

dfg = %y (2.5.30)

/
a
ist. (2.5.30) reprédsentiert eine Ldsung der Landau-Glei-
chungen, Es ist aufschluBreich,die Impulsfliisse am

vorliegenden PSP zu studieren.

In der Sprache der elektrischen Netzwerke besagt
(2.5.30), daB die Potentiale an den Punkten /9 und 23
in Abb.2.5 libereinstimmen., Daher flieBt an einem PSP
durch die Kanten &,,8,,¢,,€, (€3,6,€,€,+ ) ausschlieBlich
der Impuls 0, ( L.), widhrend die Kantenimpulse von
€s und €; verschwinden,



)
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Abb., 2.5 Ein Graph, der eine "Pinch"-Singularitiat
aufweist

Ein analoger Mechanismus ist filir die als "Landshoff-
Pinch"-Singularitédten [iA 73,CV 74a3] bekannte Abwei-
chung des asymptotischen Verhalten der elastischen
pp-Streuung im "Large-Angle"-Limes von den Regeln des
" Dimensional Counting" [BR T3 ,MA 73Jverantwortlich.

LBt sich der zu untersuchende asymptotische Limes
so realisieren, daB sdmtliche externen Impulse des je-
weiligen Graphen Linearkombinationen der Impulse er:
sind, so spielen "Pinch"-Singularitsdten keine Rolle,
falls diese Impulse an mindestens einem externen Vertex
gleichzeitg auftreten [CO 73] o« Es8 muB also fiir min-

. a 2

destens einen externen Vertex /J; ~ gelten.
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3. Asymptotische Entwicklung durch Mellin-
Trangsformation

In 2.5 haben wir die Singularitdten eines FI in einen
Limes untersucht, bei dem ein Teil der Skalarprodukte S/
(L) € S der suBeren Impulse mit Q° gegen Unendlich
glngen, wahrend alle librigen Skalarprodukte festgehalten
wurden. Diese Form des Limes behandelt alle groBen Skalar-
produkte §; ¢jj)e A auf gleichem Niveau. Sie berlicksichtigt
nicht die relativen Unterschiede der einzelnen Skalar-
produkte. Lassen wir beipsielsweise die beiden Invarianten
S und [ gemeinsam gegen Unendlich gehen, so gibt
es in der logarithmisch fiihrenden Ndherung keinen Unter-
schied zwischen /[og s und  fog T . Dieser Unterschied
wird aber wichtig, falls wir z.B. & ¢ werden lassen,
es also zwel groBe, voneinander unabhdngige Impulsiiber-
trédge gibt. Offensichtlich reicht die in 2,5 vorgestellte
Methode nicht aus, um die Singularitidten eines FI im
Limes mehrerer unabhidngiger groBer Impulsiibertrige zu
bestimmen. Es ist das Ziel dieses Kapitels zu zeigen,
wie das asymptotische Verhalten eines FI im Limes mehrer
groBer Impulsiibertrédge mit Hilfe einer mehrfachen Mellin-
Transformation bestimmt werden kann.

Die Niitzlichkeit der Mellin-Transformation zur Berech-
nung des asymptotischen Verhaltens eines FI im Limes
eines einzigen groBen Impulsiibertrages, falls nicht
zusdtzlich wie in Kapitel 2 die dimensionale Regulari-
sierung eingesetzt wird, wurde zuerst von Bjorken und Wu
erkannt [BJ 63 ] . Ihre Methode wird ausfilhrlich in
[ ED 661und [PO 80] dargestellt. Eine doppelte Mellin-
Transformation ist zur Berechnung eines FI zuerst von
Polkinghorne [?O 64] benutzt worden.
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Im Gegensatz zu diesen Arbeiten aus den sechzigen Jahren
steht im Mittelpunkt der Arbeiten[BE 74,77,78a,79] und ;
[ CA 80,81 J die Entwicklung einer allgemeinen Methode |
Zur gystematischen Berechnung des asymptotischen Verhaltens
eines FI, Kernstiick solch einer Methode ist immer eine
Zerlegung des o -Integrationsgebietes in Sektoren und
eine Transformation der FP, so daB der Teil des Integranden ,
der nach Faktorisierung der transformierten Parameter ver-
bleibt, die den Integranden als Ganzes multiplizieren,
eine Taylorentwicklung mit nichtverschwindendem ersten
Glied in dem betrachteten Sektor besitzt. In den erwihn-
ten Arbeiten wird das Integrationsgebiet in sogenannte
Hepp-Sektoren zerlegt

A < d; . < d
1 A n

’

wobei iy, ..., /, eine Permutation der Zahlen von 7
bis pn ist. In diesem Sektor werden dann entsprechend

0‘,"( /3h /3k
mit O« /3 < 1 , i=4,...,h-4 neue Variablen eingefiihrt,
Inwiefern diese Zerlegung die geforderte Eigenschaft
aufweist, hédngt ganz von den parametrischen Funktionen
ab, In [BE 78a] wird ein Polynom derart, daB es in
Jedem Hepp-Sektor die beschriebene Eigenschaft aufweist,
FINE genannt. So sind beipsielsweise o, + A, ,Of,,o(,+o(,,o(3+daq{3
FINE Polynome, wihrend of,*# f,o, im Sektor dy < dy < oy
gleich ﬁ3ﬁQQ@+ﬁQ)ist, also nicht FINE ist. Die para-
metrische C~Funktion ist immer FINE., Dies ist der Grund
daflir, daB Hepp-Sektoren die angemessene Zerlegung zur
Untersuchung von Ultraviolettsingularitéten sind | HE 66 | .
In [BE 74] wird gezeigt, wie im Limes eines einzigen
groBen Impulsiibertrages eine asymptotische Entwicklung
mittels einer einfachen Mellin-Transformation systematisch
bestimmt werden kann, falls D(«) FINE ist. Ist OC4)nicht
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FINE, so ist eine Aufspaltung in ein Produkt aus Poly-
nomen, die FINE sind, durch eine mehrfache Mellin-Trans-
formation mdglich [ BE 78a,CA 80,81 ] .

Unsere Methode unterscheidet sich in zweifacher Hin-
sicht von E BE 74,77,78a,79,CA 80,81 ] . Erstens wdhlen wir
die Aufspaltung des o -Integrationsgebietes von vorn-
herein so, daB8 der faktorisierte Teil des Integranden
immer eine Taylorentwicklung mit nichtverschwindendem
ersten Glied hat. Wie dies systematisch geschehen kann
wird in Kapitel 4 gezeigt. Daher spielt bei unserer
Methode die FINE-Eigenschaft keine Rolle. Zweitens setzen
wir die mehrfache Mellin-Transformation ein, um das asymp-
totische Verhalten im Limes mehrerer groBSer Impulsiiber-
trédge zu findenm,

Wie mit einer einfachen Mellin-Transformation auch eine
exakte Berechnung eines FI durchgefiihrt werden kann, ist
in [ KA 81 ] gezeigt worden.

Wir werden unsere Darstellung in Abschnitt 3.1 mit einer
Einfiihrung der Mellin-Transformation beginnen. Daran
anschlieBend prédsentieren wir ein Beispiel (3.2), das
illustriert, wie die Koeffizienten einer asymptotischen
Entwicklung mittels einer einfachen Mellin-Transformation
berechnet werden konnen., In 3.3 werden wir uns dem asymp-
totischen Verhalten eines FI im Limes zweier grofSer
Impulsiibertrédge zuwenden. Verallgemeinerungen auf drei
und mehrere Impulsiibertrége werden in 3.4 und 3.5 vor-
genommen,

361 Die Mellin-~Transformation

In diesem Abschnitt werden wir die Mellin-Transfor-
mation einfiihren, Die Mellin-Transformation.P4T{;f} einer
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Funktion f(y) ist durch

MT{f}=fo:/y y-Mf(y) (3.1.1)

definiert. Das Integral (3.1.1) konvergiere im Streifen
A<Rel< B |, un MT[f] zu invertieren,gehen wir von dem

Integral
'R

6+;

- A L _

MT[f}'Qﬁ;~[ny MT{ 5] J<X‘/3 (3.1.2)
X-/R

aus. Die Integrationskontur verlaufe parallel zur ima-
gindren Achse, Aufgrund der Konvergenz von (3.1.1) kann
die dy-Integration mit der @/-Integration vertauscht
werden, so daB

_ O ¢
M{s) - 3 [ 56 (F) S (3.1.3
o

Lassen wir nun R gegen Unendlich gehen und nutzen
die Relation [LI 66 |

[im —$Ih Rx_ 5 560 (3.1.4)
R = 00 X
aus, so erhalten wir die Inversionsformel der Mellin-
Transformation
éh'oo

J‘(\/Fﬁz‘% Yz MT{ £} d<y< [ (3.1.5)

e :
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3.2 Beipsiel

In diesem Abschnitt mochten wir an einem Beispiel
[ DA 78 ] vorfihren, wie mit Hilfe der Mellin-Trans-
formation eine asymptotische Entwicklung bestimmt werden
kann.

)'/D

Es sei
(3.2.1)

§(§)= (1+¢

Diese Funktion 148t sich bekanntlich fiir kleine ¢ in

einer Reihe

o0
1 1 Plp+n) , 0
:F(‘L:)=Z';l P(P> (-6) lel< 1 (3.2.2a)
neo
und fiir groBe ( in
1 1Sy (Qotn) 7 13"
c): 7 - () el 1 .2.
JC((,) C/th':on, P(P)(z-) ) (3.2.2D)

entwickeln., Wir haben also eine aufsteigende (3.2,2a)
und eine absteigende (3.2.2b) asymptotische Entwicklung.,

Als Mellin-Transformation von f(é)erhélt man

oo
MT{f}’fo/? Z‘NCM?}'P (3.2.3)

Dieses Integral ist fiir kleine ¢ konvergent, falls
f'?CZund an der oberen Grenze konvergiert es, falls
ﬁ-/o <0 . (3.2.3) ist gerade eine Eulersche ﬂ-Funktion
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- [CEI(p-2)
/ T e <
M {f} e (3.2.4)

Da (3.2.3) im Streifen O<£<L konvergiert, ist MT {57
dort auch analytisch. AuBerhalb dieses Bereichs hat MT{f]
Pole auf der reellen Achse und zwar fiir £:0,-7,-2 .. una
0-p ~01,2,.. (siehe Abb. 3.1)

T

KA AR H—H—K—K
v =2 410

@

e D e ok .

Abb, 3.1 Analytische Struktur von MT{f}

In Abb. 3.1 haben wir mit ¢ die Kontur bezeichnet,
entlang der in (3.1.2) integriert wird. Wihlen wir zu-
erst /t/< 1 . Dann kénnen wir C entlang eines Kreis-
bogens im Unendlichen in der linken Halbebene schlieBen.
Daher ist f gleich der Summe der Residuen der Eulerschen
/3 ~Funktion an den Polen /£:8-%-2 .. . Bekanntlich hat
[{f) am Pol Z+-n das Residuum C-47h/n/, so daB die Summe
der Residuen der /3 -Funktion genau (3.2.2a) ergibt. Auf
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analoge Weise 1#8t sich auch (3.2.2b) fir /¢/ >7 ab-
leiten. In diesem Fall ist G’ in der rechten Halbebene
zu schlieBen. Jeder Pol in der X -Ebene reprasentiert
also einen Term der asymptotischen Entwicklung von_f(%,),
und die Pole der aufsteigenden und der absteigenden
asymptotischen Entwicklung sind durch die Kontour
voneinander getrennt.,

Durch einfache Modifikation von f(%) 158t sich eine
der beiden Serien von Polen zum Verschwinden bringen.
Ist man beispielsweise nur an der aufsteigenden Ent-
wicklung (3.2.2a) interessiert, so kann man f(F) fir
It/>4 einfach gleich Null setzen. Damit konvergiert das
Integral (3.2.3) in der Halbebene £ >(C . Von diesem
Trick werden wir im n&chsten Abschnitt ausfiihrlich
Gebrauch machen.

3.3 Mellin-Transformation eines Feynman-Integrals

Wir wenden uns nun unserem eigentlichen Ziel zu, der
asymptotischen Entwicklung eines FI. Dieses Problem unter-
scheidet sich von dem vorausgehenden Beispiel insofern,
als daB nach Ausfiihrung der Mellin-Transformation noch
die K -Integration verbleibt., In der Regel sind erst
nach vollstandiger Integration sédmtliche Pole in der
{ -Ebene bekannt. Dies wollen wir ja aber gerade umgehen.
Da wir nur am fiihrenden Term der asymptotischen Entwik-
klung interessiert sind, reicht es vollig aus sich auf
den filhrenden Pol in der £ -Ebene zu beschrianken. 2Zur
Isolation dieses Poles kann wieder die Skalierungstechnik
aus 2.5 eingesetzt werden,
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In diesem Abschnitt werden wir uns mit der Situation be-
schédftigen, in der zwei groBe Impulsiibertrige vorliegen.
Mehr als zwei groBe Impulsiibertrige sind der Gegenstand
der folgenden Abschnitte. Haben wir es nur mit zwei
groBen Impulsiibertrsgen zu tun, so hat das FI T’ einer
reinen skalaren Theorie die Gestalt

I"=ﬁdo«1 Cin)® " Dleay? (3.3.1)
mit
D'(a) = h(¢)+‘c‘3(m) (3.3.2)

T ist das Verhdltnis der beiden groBen Impulsiibertrige.
Unser Interesse gilt dem Limes /t/<< 7 , Um aus der Mellin-
Transformation von (3.3.1) solche Pole zu eliminieren, die
fir das Verhalten von (3.3.1) fir groBe T ([T/>1 ) ver-
antwortlich sind, fiihren wir einen Cutoff ¢ ein, 00y 3 > 1.
Dieser Cutoff wird nach Inversion der Mellin-Transformation
gegen Null geschickt. Damit schreibt sich die Mellin-
Transformation von (3.3.1) zu

MT{I”} =fd*r rwﬁdon] C'(a)'gwe(h(as) +?:3(a‘)) P (3.3.3)

°

Wir fiihren zundchst alle Manipulationen in einem Ge-
biet der £ -Ebene aus, das frei von Singularititen ist.
Daher diirfen o - und < -Integration ohne Gefahr ver-
tauscht werden. Eine Transformation der ?’-Integrals

1+ u h(a)/gl) (3.3.4)
44+ 1/
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fihrt auf

L) n

MT{r'} =ﬂ‘0/,,] cu)’

@-p -£
hCal (%a>+oha» :

-RtE

5 pon (3.3.5)

A 2-7
. __tg)
5(at ‘ [9 ﬂgzg+c/h(d)

Bevor wir die analytischen Eigenschaften des Ausdrucks
(3.,%3.5) ndher untersuchen, mdchten wir kurz auf die In-
version von (3.3.3) eingehen. Formal wird (3.3.3) durch

I”= 2—0/21'7]— c“'z MT[I”} (3.3.6)
11
¢

invertiert. Wie in (3.1.2), so verlauft die Kontur C auch
hier parallel zur imagindren Achse in einem Gebiet der

f -Ebene, in dem (3.3.3) konvergiert. Da /7/<7, kann
die Kontur ¢ in der linken Halbebene geschlossen werden.
Daher ist I” gleich der Summe aller Residuen der Pole

von T—lf4T{I"}, die links von ¢ liegen. Liegt ein
n-facher Pol an der Stellse 2'20 vor

MT{I"} ='('z.4£o)n (3.3.7)

so ergibt die Inversion

-1 4,
' (legd) () (5.5.8)

L]

Beim Ubergang von (3.3.7) zu (3.3.8) wurden alle logarith-
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misch nichtfiihrende Beitrdge vernachlédssigt. Da sdmt-
liche Pole von (3.3%.5) auf der reellen Achse liegen,

wird der fihrende Beitrag durch diejenigen Pole bestimmt,
die zuerst getroffen werden, wenn 67 nach links verscho-
ben wird, und wie (3.3.8) zeigt, wird der Beitrag eines
n-fachen Poles von einem (n=-1)-fachen Logarithmus be-
gleitet,

Wir untersuchen nun das Integrationsgebiet von (3.3.5) auf
mogliche Regionen, die 2zu Singularitdaten in der ,€-Ebe-
ne filhren kdonnen. Beginnen wir mit der Region t~7 . In
dieser Region kann nur das Verschwinden der eckigen Klam-
mer des Integranden von (3.3.5) Singularitdten hervor-~
rufen., Da U ¥O , erfordert dies, daB h(4) ebenfalls
verschwindet. Verschwinden (4-t) und hC«) gleichzeitig
wie @ , 80 verhdlt sich. der Integrand wie ¢ ¢ . Daher
filhrt die Region ¢ ®7 zu keiner Singularitat. Anders die
Region t= O . Die Integration iiber eine kleine Umgebung
um {: O fiihrt unabhingig von h(4) und ?(o()zu einer Serie
von Polen fiir [;0}-4).2, . Diese Pole haben aber
offensichtlich nichts mit dem mdglichen singularen Ver-
halten von I” im Limes T+0 zu tun. Sie ergeben sich als
eine natiirliche Konsequenz der Definition der Mellin-
Transformation. Fiir den fiihrenden Beitrag zu I ist
hochstens der Pol an der Stelle /=0 von Interesse.

Wir haben also mit der Transformation (3.3.4) erreicht,
daB Pole, die mit einem singuldren Verhalten von I’
assoziiert werden miissen, ausschlieBlich durch die
A -Integration induziert werden konnen. Solche Pole
treten auf, fallsh(4) und/oder ﬁo(a‘) verschwinden. Das
Verschwinden vonxg&#)alleine reicht, wie man aus (3.3.5)
ersieht, nicht aus, um einen Pol zu induzieren. Es muB in
jedem Fall h(4) verschwinden. Dazu sei es notwendig,eine
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Skalierung einer SM der effektiven Linge Mege auszu-
fiihren. Verschwindet&%éﬂ nicht mit dem Skalierungspara-
meter }9 , 80 tritt in der ¢/ -Ebene an der Stelle

&‘P'mm +€(LC@)-L(3”)) (3.3.9)

ein einfacher Pol auf. Dieser Pol kann auf die gleiche
Weise isoliert werden, wie schon im letzten Kapitel
der Ausdruck (2.5.12) gewonnen wurde.

Wie man aus (3.3.9) ersieht, filhrt die dimensionale
Regularisierung zu einer Verschiebung der Position des
Poles um einen Betrag <2(Z(g)-L(f). Man wird also nach
der Ausfiihrung mehrerer SM, die h()zum Verschwinden
bringen, eine Reihe von Polen antreffen, die auf der
reellen Achse von &,:P-mey +€ LC%) bis €,=/J-m,,, +E ver-
teilt liegen. Der Beitrag dieser Pole zum Verhalten von

I” wird genauso gezidhlt,als ldge der entsprechende
mehrfache Pol vor, der sich im Limes &~ O. ergibt.

Wir werden den Limes & O. jedoch nicht vor Inversion
von MT{1"] ausfiinren. Dies hat h&ufig den Vorteil, daB
die dimensionale Regularisierung auch eine logarithmische
Singularitédt, wie beispielsweise in (3.3.8) effektiv
regularisiert. Liegen in dexr 7/ -Evene beispielsweise

die beiden Pole

[ 1 4
MTir'} - 7 7-¢ (3.3.10)
vor, so liefert die Inversion

T - _16 1-¢°¢) (3.3.11)
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Lassen wir nun € 3 O_ gehen, so ist

[

I=-logY (3.3.12)
Dieses Resultat bekommt man natiirlich auch, falls man
zuerst € in (3.3.10) gegen Null schickt. (3.3.11) er-
6ffnet jedoch eine weitere Moglichkeit, nzamlich zuerst
T » O auszufilhren. Dann tritt an die Stelle von (3.3.12)

1 4
I =-z (3.3.13)

Verschwindet 9(&) ebenfalls, so haben wir es mit einer
Massensingularitdt zu tun, die unabhéngig von 7 auf-
tritt, wie sie schon in 2.5 behandelt wurde. Damit haben
wir s@émtliche Singularitéten des Integrals (3.3.5) klas-
sifiziert., Das Ergebnis ist noch einmal in Tab.3.1 zZu-
sammenge faft.’

Wegen (3.3.9) liegen simtliche Pole von (3.3.5) auf
der reellen Achse und das Gebtet 7?6’]),,0 ist frei von Polen.
Lassen wir ( gegen Null gehen, so treten auch in der Halb-
ebene 7?@[)/.7 Pole auf. Wie wir allerdings wissen, spielen
diese Pole keine Rolle flir <<, Um (3.3.5) zu verein-
fachen, laseen wir v 1in der eckigen Klammer gegen Null
gehen und schreiben

Typ der SM Induziérter
_JZ{QJ h (o) Pol
C () G(4)

~s 4 ~ 8 /,/(»Z'[o)
~ 8 ~ 8 4'/4€o

Tab.3.1
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_po pr2te [ pes. g9
M/{r}:ﬂddldm {/f;”(ﬁ) .

heo P
A

e (vh(4)+4C0)
Die Notation {,}R' soll daran erinnern, daB die Pole des

Ausdrucks, der in der Klemmer steht, in der 2 -Evene
unwirksam sind.

(3.3.14)

Natiirlich miissen auch hier, wie schon 'in 2,5 angedeutet
wurde,im allgemeinen mehrere Skalierungen nacheinander
ausge filhrt werden. Im Unterschied zu 2.5 haben wir es
hier aber mit zwei unterschiedlichen Typen von SM zu
tun, solchen, die bloB h() ( Typ h ) und solchen, die
sowohl h(#4) als auch ﬁ(d) (Typ g,h) zum Verschwinden
bringen. Nur SM vom Typ h fiilhren zu Polen in der
,Z -Ebene, Die MSM beider Typen weisen im allgemeinen
unterschiedliche effektive Lingen auf. Wir bﬁzeichneﬁ
die Lénge einer MSM vom Typ h ( g,h ) mit mesy ( me_g; )
In einer Sequenz konnen beide Typen von MSM beliebig
kombiniert werden. Ist P>Megs ,d.he liegt der fiihrende
Pol fo rechts vom Ursprung, so muB jede Sequenz mindes-
tens eine SM vom Typ h enthalten,um einen fiihrenden
Beitrag zu lie fern. Falls /O=h*7¢;:JI ist, so braucht dies

nicht zu sein.

Eine weitere Komplikation tritt ein, falls beispiels-
weise zwei SM 33 und 32 von Typ h mit Parametern

g4 und €,
hCAd= ¢, ¢. hCa') (3.3.15)

die parametrische Funktion cXCA) wie
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%Cﬁ% @4%45"71*@2 %af") (3.3.16)

gskalieren. In solch einem Fall konnen die entsprechenden
Singularitdten nicht sofort mit der in 2.5 beschriebenen
Methode isoliert werden, Vielmehr miissen die Skalierungs-
paramet&r 84 und ¢, selbst erst einer Skalierung unter-
worfen werden. Wir bezeichnen den entsprechenden Skalie-
rungsparameter mit @  und nennen solch eime Skalierung
eine G -Transformation. Eine @ -Transformation ist
eine in der Regel nichtlineare Skalierung,unter der die
Funktionen%dl) und h (4) mit ver%chiedenen Potenzen ver-
schwinden, Bezeichnen wir mit éLund é; die Positionen
der Pole beider SM, so liefert die Integration iiber den
Bereich G~ (O einen Pol an der Stelle 4=/, 4+4 . Mit
anderen Worten, die Notwendigkeit einer @ -Transformation
setzt die Korrespondenz zwischen der effektiven Lange einer
MSM des Typs h und der Position des filhrenden Poles, wie
sie von (3.3.9) angegeben wird, auBer Kraft. Die skalierten
Q -Parameter &, und G, konnen nicht mehr gemeinsam
verschwinden, Wir erhalten daher im vorliegenden Bei-
spiel nach der b -Transformation zwei unabhiangige Se-
quenzen, die beide 330 i; , jedoch jeweils nur ent-
weder Sa oder 31 enthalten.

Allgemein sind G -Transformationen immer dann not-
wendig, wenn der Teil der Funktion (4), der nach der
Faktorisierung der Skalierungsparameter der SM vom Typ g,h
verbleibt, am PSP verschwindet. In der Regel miissen in
solch einem Fall mehrere G0 -Transformationen ausge-
fiihrt werden. Haufig lassen sich o -Transformationen
vermeiden, indem man einen weiteren unabhangigen Impuls-
iibertrag einfiilhrt (siehe die folgenden Abschnitte). Wir
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werden im folgenden davon ausgehen, daB die unabhédngigen
Impulsiibertrdge so gewsdhlt wurden, daB o -Transformationen
nicht erforderlich sind.

Hat man einmal die fiihrenden Singularitédten einer voll-
stdndigen Sequenz isoliert, so kann das verbleibende In-
tegral hochstens noch nichtfiihrende Singularitdten ent-
halten., Insbesondere kann das Verschwinden von 1(4') al-
leine keine fiihrende Singularitédt hervorrufen. Fir @ =09
tritt @,CA’) mit der Potenz m:” -pP auf. Gibt es eine
SM der effektiven Lange me@f , die §Cd') zum Verschwin-
den bringt, so ergibt sich der asymptotische Index

h
K=P = Cmess + méf;t ) (3317
b
Da die effektive Liange der MSM vom Typ g,h /W?%}f der
ausge filhrten Sequenz

h
y‘ne?:; < m?ff+ mz;f (3.3.18)

erfiillt, kann die durch das Verschwinden von -C)ﬂ)mbgliche

Singularitédt nicht fiihrend sein. (3.3.18) ist eine Kon-

sequenz der Vollsténdigkeit der Sequenz. Ware (3.3.18)

nicht erfiillt, so lieBe sich in jedem Fall noch eine

Skalierung vom Typ g,h ausfiihren. Ist der asymptotische

Index der MSM der Sequenz, die vom Typ g,h sind, gleich

Null, so existiert der Limes @ - (. des verbleibenden

Integrals.

3.4 Doppelte Mellin-Transformation

In diesem Abschnitt werden wir die Methode zur Berech-
nung des asymptotischen Verhaltens eines FI von zwei
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groBen Impulsiibertridgen auf drei erweitern. Wir werden
dabei von einer doppelten Mellin-Transformation Gebrauch
machen.

Im Limes von drei groBen unabhéngigen Impulsilivertrzgen
treten die Variablen T, und ¢, an die Stelle von ¢ .
Wir definieren die "abgeschnittene" Mellin-Transformation
einer Funktion {(¢,,%,) durch

4/(/4 54.4 1 [1-4
O R
0

0

O<u, <1 =42 .
Die Cutoffs (; sorgen dafiir, daB Mr[f] keine Singu-
laritdten aus dem Integrationsbereich grofer T} ent-

h&lt,

3ehat 0’(4)=h(a<)+ag,fx)+za?«,a)

"
Die spezielle Form des Integrals I (3.3.1) fUr drei

groBe Impulsiibertrdge wird durch die parametrigche Funk-
tion led ) bestimmt. Im einfachsten Fall hat D (o) aie
Gestalt

D/(x)ﬁw(»s) +z434(o<>+32 ?20‘) (3.4.2)

Wir setzen (3.4.2) und (3.3.1) in (3.4.1) ein wund fiihren
eine zu (3,3,4) analoge Transformation aus, mit dem Re-
sultat

- 5-44€
[ . i) _h) e e
MT{1'"] oﬁ’dod Cla) o ﬁM)@(UAW)*%W ¢
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t, ta G, (4) g C4)

' Ull’deUH(J/gCA)

i prb”
thg, (4)

1 - Jos

L U,,")(di) +%4('()

r /5_52,7
t2 qa(4)

no

{,,_

(UA hia)+ ‘Jo %4)) (U(; h(d)*‘ﬁg(l‘))j

(3.4.3)

Dieses Integral kann man auf die gleiche Weise,wie es be-

reits mit dem Integral (3.3.5) geschehen ist, auf Regi-

onen hin untersuchen, die zu Singularitdten in der

,ﬁ -Ebene flihren, Wir verzichten darauf, dies hier in
Das Resultat ist in

allen Einzelheiten vorzufiihren.

Tab.3.2 zusammengefaBt

Iyp der S Induzierter
CquCa) | gaC4) hca) Fol
1CA) (4) ()
~ ~ A ~ g 1/(0,+ £, - Y4a0)
~ § ~ 1 ~S 1/, 4,)
~ 1 ~ 8~ 1/ t)
~ 8 ~ 8 ~ 8 "
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Wiederum muB3 in jedem Falle ‘ﬁ(k) verschwinden,und die
tq)fl-lntegration ist uninteressant. Die Position der
Pole Laso, o, f,, und der Wert von /, berechnen sich
nach (3.3.9). LBt man die Cutoffs o; unter dem Inte-
gral in (3.4.3) verschwinden, so erh#lt man den handlich-

eren Ausdruck

o ) ’ /3'-24-& _E( _3_;-41_'_;5&.)_}
fr{r'} - Jrda1 ¢t Trcs
Z‘L[g'v

(3.4.4)
h(d
(v, h(a4) +(3 (00) (Uzh(q)fg (o«))

L) ee,) -

Die doppelte Mellin-Transformation (3.4.1) wird durch

dly [dl, -, "%
f(aq, a5 Jagr U+ L MT{f} (3.4.5)

G4 2
invertiert. Die Integrationskonturen G?)/= 7,4 verlau-

fen rechts von allen Polen von MT {f} y barallel zu
den imagin&ren Achsen mit -0 < 2f €+00 . Samtliche
Pole des Ausdrucks (3.4.4), den es zu invertieren gilt,
liegen auf den reellen Achsen. Es ist daher sinnvoll,
ihre Positionen in einer Re £,,Re £ Evene darzustellen.
Dies wird fiir die nach Tabelle 3.2 moglichen Pole in
Abb.3.2 gezeigt. Die Position der Integrationskonturen
wird durch einen Punkt in der schraffierten Region
fixiert. Selbstverstidndlich kann man die Lage innerhalb
dieser Region beliebig verdndern, ohne daB sich der Wert
von (3.4.5) dndert, solange nur ihre Grenzen nicht be-
riihrt werden., Zur Berechnung von (3%.4.5) schlieBt man
beispielsweise zuerst die Z1-Kontur in der linken
komplexen Halbebene., AnschlieBend wird das gleiche
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120

Abb.3.2 Position der Pole aus Tab.3.2

fliir die é;-Integration durchge fiihrt, Deshalb bekommt

man nur von denjenigen Punkten der Re Z,,'Re Z_,,_—Ebene
Beitrdge zu (3.4.5), in denen mindestens ein /,-Pol

und ein ZL-Pol zusammenfallen. Der Beitrag des doppel-
ten Pols im Punkt ¢ ist gerade ein Produkt von ein-
zelnen Termen der Form (3.3.8). Eine wichtige Einschrink-
ung an die Beitr&dge der doppelten Pole in A und B
folgt aus der relativen GréBe von ¢, und ¢, . Ist
beipsielsweise T,> C, ( G, >, ), so liefern die

in 8 ( [ ) zusammenfallenden Pole keinen Beitrag.
Der Grund ist, daB nach der J/, ( ,Bl )-Integration, falls
Tot, ( %>t, ) ist, die Ga (G,, )-Kontur in der
rechten Halbebene geschlossen werden muB., In dieser
Halbebene istP1T{'Iﬂ} aber analytisch, so daB der Bei-

trag von 8 ( H ) verschwindet.



—————— _— . =  — = —
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Zur Illustration nehmen wir einmal an, daB sich ﬁ77’{I']
in der Umgebung von B wie

" 1
N R vy e W ALY (30426

verhdlt, n, und Ny, seien ganze Zahlen. %('4)[;) gei an
der Stelle ffﬁm, [2, [w-[wanalytisch. Denn erhslt I
wegen

A .2 [ NT_4
(L-4,)"  Tn) (M) L1, (3.4.7)

den Beitrag

y 1 Ny=1 M1z~
7 ) 9
) MCn,s) (977 ) (Wm > |

dfg z—'[‘ e L Q;(jn [z>

o ' 1 2 u
AP ok (6,46)(84 4, - L)

Vernachlédssigen wir einmal logarithmisch nichtfilhrende

(3.4.8)

Terme, so ergibt dies

n/m'/’ (3-409)

L F(:u f(r:m) "’uo( ) (103 gﬂ) (j‘i) 3l b 40O T)

U} ®
In analoger Weise berechnet man I im entarteten Fall,

in dem die Punkte A, 3 wund ¢ zusammenfallen.

5402 DAY hG)+ 5.8 ¢ €, T Jad’
U U

Es ist keinesfalls so, daB die parametrische D=-Funk-
tion immer die Gestalt (3.4.2) aufweisen muB., Prin-
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zipiell kann auch ein gemischter Term (,{, erscheinen.
Wir untersuchen zunédchst den Fall, daB der Term linear
in T, fehlt

O‘(‘A')J’)Cd)f'@%(ﬂ‘) *'(:,2\2 %/m(") (3.4.10)

"

Die Mellin-Transformation des Integrals 1 mit (3.4.10)
ist

~ C),,'
pare 1) g, E
N4 2
(U4h(A)+z,,(p()) ’(02?4004—%”(4))

g

MT{T'} = [Tda] GC4)

- -

4 0,1
fo(t, ¢, 4. £, G (a)
; ; (v, h(4) + %(,()) |

1 oA ~ .
fo/tztez 1 - t, Qg (£) (3.4.11)
7ty 2 %ﬂag +?7”M) |

l—

P

PR PAC (4_ t1q,(a)

* Uy al,l,fdh%m(,s) (QAACAU) 7"34(:!))

Samtliche SM, die Singularitdten hervorrufen konnen, sind
in Tab.3.3 aufgelistet.

Der doppelte Pol 4/(44’[,44)(/2'44:1), der durch eine SM
vom Typ h,¢%, hervorgerufen wird, verdient einen be-
sonderen Kommentar. Der Pol 7/(/,- (,,,)wird durch das Ver-
schwinden von h(4) und fj,,(d)unabh'angig von &, und (, her-



Ly




Typ der SM
e &) m%@
G C4) G &)
4 ~ 1
~ ~ 8
~ § ~ &
Tab.3.3
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~ 8

1/¢,

1100, 1,
4/(€g ° 5’042)([/ .442)

e e ey

Induzierter

Pol

vorgerufen, Gleichzeitig mith(%)1nui@ﬂ?)kdnnen aber

auch T,

und (1-t,) gegen Null gehen, so daB der Pol

1/(-1,,,)von einem zweiten Pol1/({,-£,,, ) begleitet wird .

In der gleichen Weise,

suchten Fidllen die Cutoffs

haben gehen lassen, so konnen wir auch hier

wie wir in den bereits

unter-

teilweise gegen Null

in den eckigen Klammern gleich Null setzen. Die ge-
schweifte Klammer bedarf jedoch besonderer Aufmerksam-
keit, Nimmt man in dieser Klammer keine Vernachlédssigungen

vor,

so ist das

tq)taflntegral als hypergeometrische
Funktion ausfiihrbar. Einige Eigenschaften der hypergeo-

metrischen Funktion haben wir im Anhang C Zusammenge -

stellt.,

MT {1’} ﬂ_c/a(] G {

Q.'l
0 PCL,) h&) (u,h(/.)‘f-q,(/())

F(p f) (/3-52/ ]

I (p)

L,

R

(3.4.12)

(UQC% CA) +U, MA))+ jﬂa )) +(/2)/9 /0/ 2)
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mit

B qm(aﬂ
ul(u ha) + % Cas)) Yra () (3.4.13)

Wirde man in (3.4.13) ¢, gegen Mill schicken, so wiirde
die hypergeometrische Funktion in (3.4.12) singulidr wer-
den wie FC&-[&) . Da der urspriingliche Ausdruck (3.4.11)
Jedoch keine Singularitdat dieser Art besitzt, ist dies
nicht erlaubt. Um die 2 - Abh&ngigkeit, die in der hyper-
geometrischen Funktion steckt,explizit ausschreiben zu
konnen, wendet man die Transformation (C.4) an. Nun kann
in den transformierten hypergeometrischen Funktionen z="1
gesetzt werden, so daB

A ~ [-A—
MT{T' D [rda) Gear ™ T oo™

[+

P(p) (3.4.14)

{{F(/D Z, )] /"(f)/"’(z -4,) ((/,,/q(x)#f} (A))
(U (g/ (A)f'(/,,h(nﬂ)) +7,,2(,<))

G L 1
{lo-80] PO el ) 0, j7
(U (3 ,CA) + U h(a)) +?42(,<))

Ist QZZZ7Q(££,SO kann der zweite Term in der geschweiften
Klammer vernachlédssigt werden. Flir das filhrende Verhalten

—
von 1 besitzt er nur entlang der Gerade /Q@&Jef Zg eine
Bedeutung. Solange entlang dieser Geraden keine weiteren
Pole auftreten, die nicht die geschweifte Klammer als

Ganzes multiplizieren, so heben sich die scheinbaren
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Singularitdaten beider Funktionen F(ﬂ'él) und/211'é2)ge-
genseitig auf. Anders jedoch, falls nach Isolation der
durch eine SM von Typ/yg,verursachten Singularitat der
erste Term in der geschweiften Klammer m1t4ﬁf ém)und

der zweite mit AV Zmnmultlpllzlert werden. Dann liefert

die Beziehung

4 Vi f )
el s o / 7 (3.4.15)

[4 [ ‘ga-{04l / [04.’1 [ [042 [,, [041

genau das in Tab. 3.3 angegebene Verhalten. Da jeder

Pol in Zz wie in (3.4.15) von einem Pol in /, begleitet
wird, liegen in der Region Qcé;>ﬁ51; keine filhrenden
Pole. Daher ist der fiihrende Term unabhingig von Ug

5.4.5  Da:hW+E, %Os)mzf,(gmu %G‘)

Lassen wir schlieBlich auch die Annahme fallen, daB der
/
Term, der linear in Z& ist, aus O(«)verschwindet, so ist

D/(AP h(a)+ L, %(a )+ G, 72 (4)+ 6, L, ?49 (4) (3.4.16)

I L[]
Die Mellin-Transformation von I mit (%3.4.16) hat die
gleiche Form wie (3.4.3). Die geschweifte Klammer im In-
tegranden von (3.4.3) ist allerdings durch

P
{4- tﬂtzz} ' (3.4.17)

zu ersetzen, wobei 2 durch

L Gu0qala) - 9 ) (3.4.18)
((/,,l’wo&n%(ac))[u,_h(a) 72(“))

definiert ist. Die SM und die entsprechenden Pole sind
in Tab.3.4 aufgelistet.
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Typ der SM

Induzierter
B Pol

%4.1.%_2 9 2 (&) Ga Cd ) hi=)
G (4) G (4) G (4) G ()

~ ~ 1 ~ 1 ~ 9 7/(54*[2'[420)

~q |~ 9 ~ A ~ ¢ 1/(4,-4,,)

1 ~ ~ 9 A/l Y1)
S e e A R N A RV s T IR TT X
~8 | ~9 | ~8 | ~g 1/ L

Tab.3.4

;1
l
|
i
!

Auf die gleiche Weise wie schon fir (3.4.4) und (3.4.11)
bekommt man fir (%.4.16)

" are fres 00 0a) ]
Mr{r'} cﬁd"] Ge { ’ ries) ]73

ﬂdf‘ﬂz'ﬁ

fﬂﬁf,)F(la)"“”—*ngiz“‘iﬁ' BN
(UA h&) +34(¢)) (Uah(4)+ %2(4)) |

(3.4.19)

.7:([47’62)/3; 2')

Dieser Ausdruck ist brauchbar solange [2 /< 1 . Nach Iso-
lation eines Poles vom Typ h , wird in (3.4.19) z = A
Ware Qt(ﬁ'[,,-fz) <0 , so wirde die hypergeometrische
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Funktion weitere Pole induzieren. In der N&dhe eines
Poles vom Typ h gilt jedoch immer /?é’(ﬁ'[/a‘/;zho . Haben
wir es mit einer SM vom Typ l’%?ﬂﬁ’z zu tun, so geht / 2/
gegen Unendlich. In diesem Fall muB (3.4.19) analytisch
fortgesetzt werden. Ist ke €R>7\76’-€4 so konnen wir (C.3)
benutzen

]

R R R P N R NI Y

0,-C,

RN
1) 1(gy) — D@2 (0ahG) g, 600) 5

Uy Up hs) + t, [j.a(d)f Cy Lad[,() +?42(.{))

(%3.4.20)

POy Pty i )

DaZ)?%) symmetrisch in ?; und 21 ist, erhdlt man in
der Region R¢ f2< Re [4 einen geeigneten Ausdruck durch
Vertauschen von ¢y(@) ( £,) und 3'2(0‘) (4, ) in (3.4.20).
Im Streifen/ﬂe(l;l&”<4kann (3.4.19) mit (C.5) fortge-
setzt werden

p < pe
MT{I"} =J[d¢] G ) F(AIBJ
(-G,

(2'/?" _
'{{F(ﬁ-@)}q ree,r¢e,-0,) —h2) _(szab(eﬁ?z‘_gm(*)-)_ .
/ @uah(;) +U, ?Q(AH% 24(.4) +?4,(,«)/ '

CF(Lpla -l 1, 4%_7.“-,) (3.4.21)
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l,- €,

+ {‘[,(ﬁ-&)}p f"[[ )[‘P(‘[; f) }')(A) (U"/)(’()fq"("))
(U,,Uah(d)-f—(/ 3 (A/y‘(/ 7(,().,. ((} )(x))

-fr(@w[g"&:’ £2'[4'4z' —f_j—:_) f

Diese Formel ist das Analogon zu (3.4.714).

Besondere Beachtung muB noch dem Fall geschenkt werden,
in dem eine Sequenz sowohl SM vom Typ h (z>1 ) als
auch SM vom Typfngq,gl (/2] 400 ) enthdlt. In solch einem
Fall sind zun#chst beide Typen von SM zu iberlagern -
und anschlieBend der Integrationsbereich so zu zerlegen,
daB nur noch entweder die SM des Typs h oder die des
Typs b7%4)%1 verschwinden konnen,

3.5 Mehrfache Mellin-Transformation

In gleicher Weise wie die doppelte Mellin-Transfor-
mation dem Limes von drei groBSen Impulsilibertrigen ange-
messen ist, so ist die AN -fache Mellin-Transformation
dazu geeignet, das asymptotische Verhalten eines FI im
Limes von N+ unabhédngigen groBen Impulsiibertrédgen
zu berechnen, Wir definieren die A -fache "abgeschnit-
tene" Mellin-Transformation von.fYt)) /“%'-')A/ durch

- N ! N 4/‘/" é“-"
M‘.{f},;‘].?’/ fd'(\': ?’—" f(fc\,') (30501)
£ 0

O< v:< 1 (AN
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Wie in den vorausgehenden Abschnitten gezeigt wurde,
fiihrt die Anwesenheit eines gemischten Terms iniJZ%) zZ11
erheblichen Komplikationen. Wir werden diesen Fall daher
in diesem Abschnitt nicht betrachten. Prinzipiell kann
ein gemischter Term immer als neuer unabhidngiger Impuls-
lUibertrag interpretiert werden, so daB dies keine Ein-
schrankung bedeutet.[ﬂ%) hat also die Form

N
Ola)-ha)+ 2 9il4) (3.5.2)

Damit wird (3.4.4) auf

1
- —/Iﬁ N-Q*G 5 - 'K )
- / )/o {FCP.@_ *’.]
M7 {1 f ﬁda] G (4 re

(3.5.3)

N ¢
/ L) his) e
(b;h())f %;(A)) ;

'h(»)-P

fed

verallgemeinert. Aus (3.5.3) 148t sich ablesen, daB eine
SM in jedem Fall h{4) zum Verschwinden bringen muB, um
einen Pol in der ae-Ebene zu induzieren. Nehmen wir
einmal 0.B.d.A. an, daB auBer h(4) noch 14y, G (4)  ver-
schwinden, so induziert solch eine SM einen Pol

1/ (lyoy+... + L, -2, ) (3.5.4)

(3.5.1) wird durch
N

‘ e (
f”ﬂ"rT é%%)27 ﬁﬁT{f} (3.5.5)

e
L

invertiert. [X bezeichne die konvexe Region der f(’f%'
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Hyperebene , in derﬁ47{}Jgnalytisch ist., Wir betrachten
diese Region fiir €0, Um den fiihrenden Pol zu finden,
definieren wir

g/ = .&x4 to b Ly, (3.5.6)
mit

thtlosl(\,": (:'4,),.-. )N (3-507)

Wir verwenden zur Inversion eine Variante des Verfahrens
aus EBE 78a,CA 80] . Es sei

Prax * ahf 7 (3.5.8)

Da die Region A konvex ist, ist Pmsx der kleinste
Wert, den in einem Randpunkt von /4 annehmen kann,
in dem mehrere Pole zusammentreffen. Diese Pole bestimmen
das filhrende asymptotische Verhalten, Es ist gleich G-/q”“x
modulo logarithmischer Korrekturen. Wie schon in 3.4,
so héngt auch hier das asymptotische Verhalten im allge-

L O~
meinen von der relativen GroSe der (; ab,



L)
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4. Konstruktion unabhingiger Sequenzen

Bisher haben wir uns im wesentlichen blog mit einzel-
nen SM befaBt. Wie jedoch schon mehrfach betont wurde,
hat man es im allgemeinen mit einer Vielzahl von SM zu
tun, von denen mehrere nacheinander ausge fiihrt werden
konnen. Versucht man samtliche MSM eines Graphen hinter-
einander auszufilhren, so wird man unweigerlich auf Schwie-
rigkeiten stoBen. Offensichtlich kdnnen beispielsweise
samtliche FP eines FI wegen der o -Funktion in [da]
nicht gemeinsam verschwinden. Im Abschnitt 2.5.2 haben
wir eine Reihe von SM, die nacheinander ausge fihrt werden
konnen,eine Sequenz genannt. Wir betrachten Sequenzen, die’
die gleichen SM enthalten, jedoch in unterschiedlicher
Reihenfolge, als voneinander verschieden. Ein wichtiger
Schritt bei der Berechnung des asymptotischen‘Verhaltens
eines FI ist die Bestimmung eines geeigneten Satzes von
Sequenzen. In diesem Kapitel werden wir eine Methode vor-
stellen, die es erlaubt, solch eine Bestimmung systematisch

durchzufiihren,

Jeder Sequenz kann eine Teilregion des K -Raumes zu-
geordnet werden. Wie dies geschehen kann,wird spater er-
lédutert werden. Sequenzen gelten als unabhéngig, falls
die entsprechenden Regionen disjunkt sind. Daher gilt
es, eine Menge von unabhéngigen Sequenzen zu bestimmen,
deren zugeordnete Teilregionen den gesamten o -Raum
ausschdpfen, Wir werden solch eine Menge einen vollstan-
digen Satz unabhédngiger Sequenzen nennen. Wie gezeigt
werden wird, ist die Wahl solch eines Satzes im allge-

meinen nicht eindeutig.

Prinzipiell 188t sich natiirlich auch umgekehrt vor-
gehen, d.h, man kann zuerst den o« -Raum in disjunkte
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Sektoren zerlegen und dann danach fragen, welche Sequenzen
in den einzelnen Sektoren ausgefiihrt werden kénnen. Dies
ist der Weg, der in[BE 74,77,78a,79] beschritten wird. Der
X -Raum wird dort zuerst in Hepp-Sektoren zerlegt.

Diese Methode erweist sich fiir unsere Absichten in zwei-
facher Weise als unpraktikabel. Erstens gibt es zu jedem
Graphen mit n Kanten p! Hepp-Sektoren, der technische
Aufwand einer expliziten Berechnung wichst also fir
Graphen hoherer Ordnung sehr stark. Zweitens ist (%) im
allgemeinen nicht FINE, so daB man nicht ohne zusitzliche
Transformationen auskommt.

Im Gegensatz zu [BE T4,77,78a,79 J beschranken wir uns
auf die flihrenden Logarithmen. Deshalb spielen Sequenzen,
die nicht von maximaler Linge sind,keine Rolle, Wir
brauchen daher in der Praxis nur verh&ltnisméaBig wenige
Teilregionen zu untersuchen.

4,1 Zerlegung des o -Raumes

In diesem Abschnitt erlidutern wir das prinzipielle Vor-
gehen zur Ermittlung eines vollstdndigen Satzes unab-
héngiger Sequenzen. Zur praktischen Berechnung ist es
empfehlenswert,einige weiteren Schritte einzufiigen, die
im ndchsten Abschnitt beschrieben werden.

In 2.5.4 wurde Folgendes gezeigt. Fihrt eine nicht-
lineare Skalierung einer vorgegebenen SM ;F Zzu einer
gleich starken oder auch stidrkeren Singularitdt als
ihre lineare Skalierung, so kann diese nichtlineare
Skalierung durch Uberlagerung linearer Skalierungen von
MSM :(:c ¥ erzeugt werden. Deshalb 148t sich jede Ska-
lierung,die eine fiilhrende Singularitdt hervorruft, als
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Uberlagerung linearer Skalierungen ausdriicken. Abgesehen
von den in 3.3 erliduterten Einschrankungen spielt es dabei
keine Rolle, welchen Typs die iiberlagerten MSM sind.

Quantitativ 188t sich der beschriebene Sachverhalt
folgendermaBen ausdriicken. Wir gehen davon aus, daB
sdmtliche MSM bekannt sind, 5’ bezeichne die Menge der
Uberlagerungen, die eine fihrende Singularitit hervor-
rufen kdnnen. Jede dieser Skalierungen sei charakteri-
siert durch einen Vektor § , {(8§%:042,.., (=4 ..., n
Die i-te Komponente <§) gebe an, mil welcher Potenz
von § d; in einer Skalierung wie (2.5.19) verschwindet.
Da jedes Element von S’ eine Uberlagerung linearer Ska-
lierungen ist, konnen die Exponenten V; in (2,.5.19) ganz-
zahlig gewdhlt werden. Die Normierung (2.5.20) kann aller-
dings nicht mehr zusidtzlich gefordert werden. Die Menge

S ergibt sich als das Bild der Menge der Vektoren
unter einer linearen Abbildung mit der Skalierungsmatrix
{N} . Es gebe m MsM ¥, , k=%.,m. Dann ist M durch

| 1 falls e, ¢ S,
<M >L‘k :{O Sonst (4-1.1)

definiert. N ist ein beliebiger Vektor mit <N 2072 ..
(=7,....m, Damit gibt es zu jedem Vektor N einen
Vektor géﬁg

s« M-N (4.1.2)

Zur Bestimmung eines vollstidndigen Satzes von unab-
hdngigen Sequenzen gehen wir folgendermaBen vor. Zunichst
teilen wir das Integrationsgebiet in n Sektoren auf.
Der k-te Sektor ist dadurch gekennzeichnet, daB der FP
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o, darin nicht verschwinden kann. Solche Sektoren kénnen
in jedem Fall disjunkt gewdhlt werden. Die genauen Grenzen
spielen fir die fllhrenden logarithmischen Singularitaten
keine Rolle., Da in jedem Sektor nur noch (h--) Fp ge-
meinsam verschwinden kGnnen, brauchén wir uns um die
& -Punktion in [ 04 ] nicht mehr zu kiimmern. AnschlieBend
fihren wir in jedem Sektor eine Skalierung durch und
teilen danach die skalierte Region auf die gleiche Weise
auf, wie schon die urspriingliche Region . Diese Prozedur
wird laufend fortgesetzt. In den folgenden Skalierungen
kann prinzipiell auch ein Skalierungsparameter & einer
vorausgehenden Skalierung selbst wieder skaliert werden.
Diese Tatsache wird in den &lternen Arbeiten [TI 63,

HA 65 ] libergangen.

Um zu entscheiden, wann eine Sequenz abbricht, fiihren
wiF die Matrix ﬁ? ein. Es seien bereits Vn' Skalierungen
§ k=1.. m' ausgefiihrt worden. Bei den entsprechenden
SM handele es sich nicht unbedingt um solche MSM,fvon

denen urspriinglich ausgegangen wurde. Dann sei M durch

<'P4 2: O sonst

!

!
N { Vo falls ¢ ¢ ka (4.1.3)
k:

gegeben. V;, gibt die Potenz an, mit der der i-te FP
in der k-ten Skalierung transformiert worden ist. Die
Aufteilung in Sektoren werde durch die Diagonalmatrix
JD charakterisiert

1 falls dJ; unabhidngig verschwinden kann

<D>' -_-& ¢ (401.4)
k ¢ O sonst .

Wir vergleichen nun é7 mit der Menge 7 der Skalierungen,

die in einen Sektor noch ausgefiihrt werden kdnnen. / be-
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steht aus den Vektoren

t- M- N +DN" (4.1.5)

/

[J und A[“ haben die gleichen Eigenschaften wie N .
Gibt es ein Element te § , so daB nicht alle Komponenten
von lvd/in (4.1.5) verschwinden, so 1l&aBt sich noch eine
weitere Skalierung ausfiihren., Gibt es nur noch solche
te S vei denen_A[:C),so ist die Sequenz vollstindig.

Im zweiten Fall konnen neue okalierungen & S’ nur noch
durch Transformation der Skalierungsparameter g unter-
einander konstruiert werden.

4,2 )\-Tranéformationen

Das Verfahren zur Bestimmung eines vollstandigen Satzes
von unabhéngigen Sequenzen, wie wir es im vorausgehenden
Abschnitt beschrieben haben, besitzt offensichtlich einen
hohen Grad an Beliebigkeit. So werden an die auszufiihrenden
Skalierungen keinerlei weitere Forderungen gestellt,
auBer daB sie aus A? sein miissen. Die Berechnung des
agymptotischen Verhaltens gestaltet sich um so einfacher,
Je mehr lineare Skalierungen ausge filhrt werden kodnnen.

Die vorgestellte Methode erlaubt es nicht, auf nicht-
lineare Skalierungen ganz zu verzichten. In diesem Ab-
schnitt werden wir zeigen, wie sich die Zahl der moglichen
linearen Skalierungen, durch zusdtzliche Skalierungen,
die wir )\-Transformationen nennen werden, erheblich

steigern 1aBt,

Besitzt die Skalierungsmatrix von vornherein Dreiecks-
form, so lassen sich die MSM so ordnen, daB sie jeweils
einen Parameter enthalten, der in den folgenden MSM nicht
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mehr auftritt, Daher liefern die nach Jeder Skalierung
auftauchenden 6\-Funktionen keine Einschrankungen,
und sédmtliche MSM konnen aufeinanderfolgend ausge fithrt
werden. Ziel der )\-Transformationen ist es, M  der
Dreiecksform moglicht nahe 2u bringen.

Kommt ein Parametér of in allen MSM, von denen aus-
gegangen wird, immer nur in Begleitung mit einem, bzw.
mehreren anderen Parametern vor, so skalieren wir diesen
Parameter und seine Begleiter nach (2.3%.6). Da der Pa-
rameter o; nach der Transformation in keiner MSM mehr
auftritt, liefert die assozierte & -Funktion keine Ein-
schréankungen an die folgenden Skalierungen. Um solche
Transformationen von den Skalierungen aus AY zu unter-
scheiden, nennen wir den Skalierungsparameter A . Das
Verschwinden von ‘A alleine wird im allgemeinen nicht
zu einer Singularitdt filhren. Wir behandeln A in gleicher
Weise wie einen FP.

Der Vorteil, den solch eine X -Transformation bringt,
besteht darin, daB die begleitenden FP teilweise von den
MSM eliminiert werden, da der Parameter A an ihre Stelle
tritt. Taucht beispielsweise ein begleitender FP nach der
A -Transformation nur noch in einer einzigen MSM auf, so
kann die entsprechende lineare Skalierung immer unabhingig
von den librigen MSM ausgefiihrt werden.

Ein Beispiel mag dies illustrieren. Es seien die MSM

£= {'O{")AQ,'(S

2 {‘7‘2,"(3,0(9} (4.2.1)

{Xm d?/ X?‘}
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vorgegeben. Sie lassen sich als lineare Skalierungen
nicht hintereinander ausfiihren. Skaliert man jedoch

beipsielsweise erst oy und o, mit A und halt Ay
grof, so bekommt man

- {447 Ao ) dy }
{042))\ } (4.2.2)
fy = {d, A ]

Diese SM sind in der angegebenen Reihenfolge ausfiihrbar.

F’L—e S
" !

Unter praktischen Gesichtspunkten ist es zur Berechnung
des logarithmisch fiihrenden Verhaltens empfehlenswert,
folgendermaBen vorzugehen. Hat man einmal das Integrations-
gebiet in N Sektoren zerlegt, so kann man im i-ten
Sektor, in dem ja o; nicht verschwinden darf, alle
MSM vernachlédssigen, die d; enthalten. Man fiihrt dann
fortlaufende Skalierungen von solchen MSM aus, die einen
Parameter enthalten, der in den librigen, noch nicht
skalierten MSM nicht auftritt. Erst wenn es keine weiteren
solcher MSM gibt, fiihrt man mdgliche A -Transformationen aus,
so daB danach die Skalierung von MSM fortgesetzt werden
kann, LdBt sich auch nach einer X -Transformation keine
MSM finden,die einen Parameter enthalt, der nur in dieser
MSM auftritt, so flihrt man eine Skalierung irgendeiner
der verbleibenden MSM durch. AnschlieBend spaltet man das
Gebiet genauso auf, wie bereits zu Anfang und wiederholt
das Ganze mit den librigbleibenden MSM solange, bis jede
MSM entweder bereits skaliert wurde oder in dem betref-
fenden Sektor ausgeschlossen ist. Nun erst setzt man die
Methode aus 4.1 ein,um eventuelle gemischte Skalierungen,
die g wund A enthalten, zu bestimmen.,
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Teil B Anwendungen
D Die Infrarot-Regularisierungsabhédngigkeit des

asymptotischen Verhaltens des Sudakov-Formfaktors
in der QCD

Die Berechnung von Korrekturen hoherer Ordnung zu Pro-
zessen, die in der storungstheoretischen QCD als prin-
zipiell berechenbar gelten, hat gezeigt, daB die Korrek-
turen unter Umstdnden recht groB werden kdnnen, so daB
die Konvergenz der Storungsreihe in Frage gestellt werden
muB. In verschiedenen Fadllen ist es mdglich, solche groBen
Korrekturen in jeder Ordnung von olg 2zu berechnen und
anschlieBend explizit aufzusummieren. Es ist zu erwar-
ten, daB solche Teilsummationen zu einer wesentlichen
Verbesserung der Konvergenz der Storungsreihe fiihren.

Wie bereits in der Einleitung herausgestellt wurde, ist
es gegenwartig wohl verstanden, wie eine Teilsummation
durch Anwendung der RGE erreicht werden kann. Die RGE
ist jedoch in vielen Fdllen nur von beschrankten Wert,
da sie lediglich die sogenannten Einzellogarithmen auf-
summiert., Einzellogarithmen werden typischerweise in
Prozessen, die lediglich von einem einzigen grofBlen Im-
pulsiibertrag abhangen, durch kollineare Singularitéaten
hervorgerufen. Infrarote Singularitaten kiirzen sich ge-
wohnlich aus den Ubergangswahrscheinlichkeiten solcher
Prozesse heraus. Hangt ein Prozess jedoch von mehreren
unabhidngigen groBen Impulsiibertrédgen ab, so konnen einige
zu effektiven Infrarotregulatoren werden, so daB die
Klirzung der Infrarotdivergenzen nur noch teilweise ein-
tritt und groBe dopplelogarithmische Korrekturen ver-
bleiben, die nicht mit der RGE behandelt werden konnen.

Gestiitzt auf die Resultate der Berechnung von Korrek-
turen zur Ordnung . ist in [BR 79,CU 80a,AM 80,PA 801
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die Vermutung ausgesprochen worden, daB solche doppel-
logarithmischen Korrekturen exponentieren, genau wie

die logarithmisch filhrenden Korrekturen zum elektro-
magnetischen Formfaktor des Elektrons im Limes groBer
virtueller Masse des Photons ¢72 . Die verschiedenen
Vorschldge zur Aufsummation der grofBen Korrekturen

zur tiefinelastischen Streuung in der sogenannten quasi-
elastischen Region sind allerdings nicht konsistent unter-
einander. Dies zeigt, daB es wichtig ist, ein klares
Verstdndnis der groBen doppellogarithmischen Korrekturen
in endlicher Ordnung von og 2zu haben. Abgesehen davon,
daB dies einen nichttrivialen Test der Vorschlidge von

[- BR 79,CU 80a,AM 80, PA 80 ] liefert, konnen solche
Einsichten &auBerst willkommen bei der Berechnung der voll-
stdndigen Korrekturen sein. Nicht zuletzt mag es auf
Verallgemeinerungen der Resultate von EBR 79,CU 80a,

AM 80,PA 80 | fiihren.

Da die doppellogarithmischen Korrekturen eng mit den
verschiedenen Limites des Quark-Formfaktors verwandt
sind, ist es wiinschenswert den Formfaktor in diesen
Limites genau zu kennen, Dies ist das Ziel des vorliegen-
den Kapitels. Die gewonnenen Ergebnisse werden im nichsten
Kapitel zur Berechnung der Strukturfunktionen in der
quasielastischen Region eingesetzt.

Wir mdchten nun einen kurzen Uberblick dariiber geben,
was gegenwartig lber das asymptotische Verhalten des
Quark-Formfaktors,beziehungsweise seiner abelschen Version,
des Elektron-Formfaktors, bekannt ist. Anknlipfend an die
grundlegende Arbeit von Sudakov [SU 56] ist das asy.up-
totische Verhalten des Elektron-Formfaktors von verschie-
denen Autoren untersucht worden fJA 68,FI 71,AP 71,BE 80,81,
DA 82 | . Sudakov hat das Verhalten des Formfaktors
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'12”12
IQ%P;Q)in der Spinorelektrodynamik im Limes

[q%]» p* p'* 5> m* (5.1.1)

untersucht. Die Bezeichnung der Impulse entnehme man
Abb.5.1 . In jeder Ordnung der Storungsreihe in A,

4

p p

Abb.5.1 Bezeichnung der Impulse der Vertexfunktion

der Feinstrukturkonstanten, tauchen groSBe Logarithmen
der Form [o fqal auf. Die Aufsummation der logarithmisch
fiihrenden Korrekturen ergibt in der "Off-Shell"-Version

von F(pa, p’a, ql)

7 9.),2. 2) _ - _[il | ’-l .
’OFF (P’/ >‘7) (’xp{ 2% lof] gz Iog";’aj‘g } (5.1.2)

2 -
Die "Off-Shell"-Massen /32 und /3’ haben die Funktion

von Infrarotregulatoren.

Geht man mit den Fermionen auf die Massenschale, so
mu3 ein alternativer Infrarotregulator eingefiihrt werden.
Gibt man beispielsweise dem Photon eine kleine Masse A ’
so erhilt man anstelle von (5.1.2)

~l a Q 2 .
ION(q)=exp{-¢éﬂ: 103 i}(i/2 Jl | (5.1.3)



)
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DaB in beiden Fdllen das asymptotische Verhalten durch
eine Exponentialfunktion beschrieben wird, ist darauf zu-
rickzufiihren, daB die Aufsummation der groBen Logarithmen
dquivalent zur Aufsummation der Infrarotdivergenzen ist,
die bekanntlich in abelschen Eichtheorien exponentieren
[ v& 61,6R 73,ET 67 ].

Das stark abfallende Verhalten, das man nach Aufsummation
der logarithmisch fllhrenden Terme erh&dlt, deutet darauf
hin, daB es wichtig ist, auch logarithmisch nichtfiihrende
Beitrige zu berilicksichtigen. Fortschritt in dieser Rich-
tung ist in [MU 79,C0O 80 ] erzielt worden.

Wegen der Selbstkopplung der Gluonen in nichtabelschen
Eichtheorien hat die explizite Aufsummation der logarith-
misch filihrenden Beitridge zum Quark-Formfaktor iliber alle
Ordnungen von og bisher jedem Versuch getrotzt. Berech-
nungen bis zur vierten Ordnung in ofg [CA 75,C0 76,BE 80,
81 J stehen in Ubereinstimmung mit (5.1.2) und (5.1.3),
falls man nur o durch q;a% ersetzt. Die Demonstration
der Exponentierung in allen Ordnungen von os scheint
nichtstorungstheoretischen Methoden vorbehalten zu sein
[ pasi,sE81] .

Bisherige Untersuchungen des asymptotischen Verhaltens
des Formfaktors haben dem Infrarotregulator kaum Beach-
tung geschenkt. Fr wird meist lediglich als ein Arte-
fakt der Regularisierungsmethode betrachtet. Dies ist ge-
rechtfertigt, solange ausschlieB8lich der Limes unter-
sucht wird, in dem qg' grofer ist als jeder andere Im-
pulsiibertrag. Daher werden in der logarithmisch fiihrenden
Ngherung beispiel sweise Terme der Artlog)oa'/‘p’2 vernachlassigt.
Solche Terme kOnnen aber groB werden, falls wir beispiels-
weise /0’2 gegen Null gehen lassen und /Oz festhalten.
Dieser Limes entspricht nicht mehr (5.1.1). Um AufschluB
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liber solche Terme zu bekommen, haben wir das fiihrende
Verhalten des Quark-Formfaktors erneut untersucht.

Im néchsten Abschnitt werden wir die Resultate der Be-
rechnung der logarithmisch fiihrenden Beitrige zum asymp-
totischen Verhalten des Quark-Formfaktors vorstellen. Die
Berechnung wurde in der vollstidndig masselosen QCD durch-
gefiihrt. Sie geht bis einschlieBlich zur dritten Ordnung.
Wir haben die Feynman-LEichung benutzt ,und die Quarks bilden
ein Farbsingulett. Infrarotdivergenzen werden mittels der
dimensionalen Methode regularisiert. Fiir die Impulse der
auBeren Quarks werden wir drei verschiedene Konventionen
benutzen., Entweder sind beide Quarks "off-shell™" QQEE)
oder eines ist "off-shell" widhrend das andere "on-sghell"
ist (ON/OFF) oder beide Quarks sind "on-shell" gggg.

Im ersten Fall (OFF) liefern die virtuellen Massen der
externen Quarks einen Infrarotregulator, so daB ol y die
Zahl der Raum-Zeit Dimensionen, gegen Vier gehen kann,
ohne daB irgendwelche Massensingularitidten auftreten.
Dieser Fall kann aufgefasst werden als ein Limes von drei
unabhédngigen Impulslibertrigen /02, p’a und ql , die,
abgesehen von/qz/>7/pk/und/qllnlpﬁw,unabhéngig sind.

pl und p‘l sind groB gegeniiber den Massen der Quarks,
die vernachliédssigt werden, Unsere Ergebnisse zeigen, daB
es keine Korrekturen der Form Iog pz/p'zgibt. Dies steht in
volliger Ubereinstimmung mit [CA 75,80 76,BE 80,81 ] .

Der zweite Fall (ON/OFF) scheint am interessantesten
2 L
zu sein. Da pP'"= (0 ist, ist er &quivalent zum Limes

von zwei groBen Impulsiibertrigen hf]>>lp2/. Genau dieser
Limes fihrt zu den groBen Korrekturen der Strukturfunktionen .

Er ist bisher nicht untersucht worden.
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Sowohl im ON=- als auch im ON/OFF-Fall treten Massensingu-
laritdten als Pole fiir d7 %  auf. In allen drei Fallen
exponentieren die fiihrenden Beitrage, egal ob manifest
singulédr oder endlich.

5.1 Das asymptotische Verhalten des Quark~Formfaktors

In der massiven Theorie setzt sich die "On-Shell"~
Vertexfunktion eine q 9 -Paares f’(q ), das ein Farb-
singulett ist, wie die Vertexfunktion des Elektrons aus
zwel Anteilen zusammen

Fp(qlﬁgpﬁ(qa)v-ﬁ@v qv?(q‘l) (5.1.1)

Im Falle des Elektrons ist 7,(g") (F'(qa) als Dlrac-
(Pauli-)-Formfaktor bekannt. Fiir groBe <] gilt

Y
)~ (%) | Falgh)~ (—*12) (5.1.2)

modulo logarithmischer Korrekturen. Daher kann };(qn) ge-~
genliber F1(ql) vernachléassigt werden.

-~ 2
Wir definieren den Quark-Formfaktor F(thﬂ)q ) in der
masselosen Theorie fiir

2 2
:P/qz <1 ffP/qp. << 7 (5.1.3)

durch

(g, a,q)-TT"’P'P (q%) Cp + ‘?’)K (5.1.4)
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Es gilt

4y a
(6,0, 97) - 7,(q*) 20 (5.1.5)

Die parametrische D-Funktion eines Graphen, der zu./j(g)?;)qi)
beitrédgt,hat im allgemeinen die Gestalt

-3 ) . > T,
D(d)'q [h(dh—t, %(Hiw_?(gg(,()] (5.1.6)
. ?
so dafl wir die in 3.4.1 beschriebene Methode zur Berech-

nung des asymptotischen Verhaltens einsetzen konnen.

In Abb.5.2 sind die Graphen abgebildet, die bis zur
dritten Ordnung in og¢ einen Beitrag zur logarithmisch
fihrenden Naherung liefern. Wir haben sie durch Zahlen
von O bis 20 gekennzeichnet. Der Beitrag jedes einzelnen
Graphen zum Formfaktor schreibt sich als

f’(tﬁ,,@)q’): (;[{LI’ (5.1.7)

}{T (/ iy ) B, (5.1.8)
p 297

P(Q,Lz, )ist so normiert, daf F(fhf},qvi’7fur den Born
Graphen 0. Da wir nur filhrende Terme berechnen, ist das
Argument der Kopplungskonstanten A ¢ nicht bestimmt.
Unsere Resultate gelten sowohl fiir raumartiges als auch
fiir zeitartiges q2 . (; ist der grupgﬁntheoretische
Faktor des betrachteten Graphen und p  ist ein Para-
meter, der eingefiihrt werden muB, um og in o Di-
mensionen dimensionslos zu halten:






die zum logarithmisch fih-

5.2 Feynman-Graphen,

Abb

renden Verhalten des Quark-Formfaktors bei-

tragen
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Abb.5.2 (Fortsetzung)
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(=4
ds > de (pF) (5.1.9)

Zundchst werden wir beide Quarks "off-shell" nehmen
und &€ endlich. Nachdem man alle Pole der Mellin-Trans-
formation von P(Z’,,L’,,ql)i soliert hat, ist MT{F(Q, 0, q")] eine
Summe aus Termen der Form

ﬂ!ﬁM} .
Pyt re /W){ kexrs )}

k (5.1.10)

{Tf 46” } / 7 - 12) }
wer (-7 e) ke ([4+/2-¢£25 )

Der logarithmisch filhrende Beitrag ist durch K, +kp+ k,, = L L
charakterisiert. Fiir jeden einzelnen Graphen findet eine
erstaunliche Kirzung der Beitrsdge der verschiedenen Se-
quenzen statt, die dazu fiihrt, daB

k4i =0
k,=k,=L (5.1.11)
Ti> m)=kc

wird. Daher gilt

/ -
= CXL (5.1.12)

S (5.1.13)
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L L

/!,(zd ke) HZZ; ke )

Beim Ubergang von (5.1.10) zu (5.1.13) haben wir die ver-

schiedenen [ -Funktionen, die vor (5.1.10) stehen, ent-
wickelt. Die GroBen (> und ¢ sind in Tab.5.1 fir Jjeden
Graphen einzeln aufgelistet. Falls es zu einen Graphen
einen Partner gibt, der durch Vertauschen von ¢, und ?Q
entsteht, so haben wir in ¢ die Beitridge beider Graphen
addiert. In Kapitel 8 prasentieren wir die Berechnung des
Graphen 13 im Detail, Der gruppentheoretische Faktor
wurde unter Zuhilfenahme folgender Relationen

[T, T3 ) =i T (5.1.14a)
PGk T Ty = - G T, (5.1.14Db)
T; T =4 d; (5.1.14¢)
=(Cr -G T, ,- (5.1.14d)

mit
Cff(Nl- /2N (5.1.15a)
Co=1/2N (5.1.15Db)

zwischen den Generatoren ﬁ und den Strukturkonstanten

67;5k der Gruppe SU(N)berechnet. Fiihrt man die Summe

lUber alle Graphen aus, so erhdlt man

3
M(6,1,,9%)= ). L1 (4 K) X, (5.1.16)

L=0 .
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Graph

G

c
1 G, 1
2 C’Fl 1
3 dp(d/:-dﬁ) 1
4 o dn 1
5 G’F3 1
6 G (G -Cp) 1
7 d:cc;'dn) 1
8 Ce (Cr-Cp)* 2
9 Ce(Ce-Ca )(Ge-2G,)| 1
10 Gl q, 2
11 C}rl o 1
12 CeGaCGe-Gr) | 2
13 Cr Gy (Gr-Cp) 1
14 Cle qu(ZjF -Cﬂo,J 2
15 G G’n Cd/:'dﬂ) 1
16 dnzdp 1/4
117 GpCe 1/4
18 oPgep 1/2
19 ApCr 1/2
20 Q% Cr 1/2

Tab.5.1







=119~

Samtliche Beitridge, die proportional zu.Cﬁ sind, heben
sich auf, Wir werden nun die Beitridge der einzelnen
Graphen filir die drei Regularisierungsvorschriften ab-

leiten.

5.2 Regularisierungsabhingigkeit
5.241 OFF-Shell

Im OFF- Fall ist OFFQo/o7q ) in vier Raum-Zeit Dimensionen
endlich, Daher konnen wir in (5.1.10) =0 setzen. In-
version a la (5.1.13) ergibt

1
XL= Iy (/03 ’L})L Ll', (/og Z’A)L (5.2.1)

(5.2.1) enth#dlt nur fiihrende Terme, d.h. alle Beitrage
AJ(bSL4 (w 5 )m1t1+k<2l-s1nd verhachlédssigt worden,

Im allgemelnen wilrde man auf dem fiihrenden Niveau ein

k
Polynom in (Iog ) (Iog T, ), rk=42L erwarten, das
symmetrisch in T, und T, ist. Wegen (5.1.11) tritt aber

lediglich der Term (5.2.1) mit = k auf. Setzt man
(5.2.1) in (5.1.16) ein, so erhilt man
2 2 - 4 L .
[oer (P55 %) = D) 5 (Y,..) (5.2.2)
L_-:o ']
mit

Yo.. = -G, Jw log, log &, (5.2.3)
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5e2.2 ON/OFF-Shell

LaBt man die virtuelle Masse des Quarks, das den Impuls ;
pl lragt, verschwinden, so hdngt die parametrische
D-Funktion nicht mehr von.’ta ab, Daher braucht man nur
noch die Mellin-Transformation beziiglich auszufiihren,
Wir bezeichnen die entsprechende Variable mit: [4 . Das
fihrt dazu, daB zwischen den Polen, die bei der OFF-Re-
gularisierung auftraten,und den Polen hier folgende
Korrespondenz gilt

/ \ 1
iz - N i (5.2.4a)

2" T e Ty € ’

-1 1
ey T (5.2.4D)
(12) 1

o T |

Definiert man in Analogie zu (5.1.13)

L

) IR - L PRy i (5.2.5)

L L ('G)L 1277". ! k0O (Zq-ké) ’

so ist I’ wieder durch (5.1.12) gegeben. (5.2.5) be-
rechnet sich zu

-6 L
Yo A5 (5.2.6)
= a By
L) € 2 . ,
falls nichtfilhrende Terme “’é-(logt;), £tm<2Lwiederum
vernachlassigt werden. Setzt man (5.2.6) und (5.1.12)

in (5.1.7) ein, so erhdlt man

3

A
FOTNIOFF (p‘: qz) = Z [ (Yowon— )

L=0

L (5.2.7)
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mit

-
. 2 4 -
Y A L':.ryl_q—pﬂ. ) 2 (1-47°) (5.2.8)

ONIOFE Fawr

oder falls man YON,DFF nach &€ cntwickelt

.YDN/UFF q;z,\, IOgL [Oﬂ( ) g e ]*0(C) (5.2.9)

Nach dem Kinoshita-Lee-Nauenberg Theorem ist damit zu P
rechnen, daB sich der Pol’%é wegkiirzt, falls mlt/;Nmrf(yo) g )
eine physikalische GroBe berechnet wird und die Ab-

strahlung weicher, reeller Gluonen ebenfalls Beriicksich-
tigung findet. Oder aber er 148t sich durch "Renormierung"
von Partonen-Verteilungsfunktionen absorbieren.

5.2.3 ON-Shell

Befassen wir uns schliefilich mit dem Fall, bei dem
beide Quarks "on-shell" sind. Da nun & 2= GO 1ist, braucht
keine Mellin-Transformation ausge filhrt werden, und wir
haben folgende Korrespondenz mit der ON/OFF-Regulari-
sierung

1 N
e 3 o7 (5.2.10)
[4-Tk€ -,rk E€ .
Daher gilt
1 1 (5.2.11)
X - ..2 'y )
Lot et

2
fiir jeden Graphen. fZN(q ) wird

[ ql) Zg (Y, ) (5.2.12)

LOL’
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mit
-€

y
- ~2 .2,
S/ON q: 27 ( ’HT’U > € (5.2.13)
Entwickelt man ?2~ nach € , so bekommt man

Y Fl fo‘j( 67 ) - 05( 9; ) '2} + OCe) (5.2.14)

Auch hier muB davon ausgegangen werden, daB sich die
gingulédren Terme aus physikalischen GréBen herauskiirzen,
Subtrahiert man diese Singularitédten, so steht (5.2,14)
in Ubereinstimmung mit [CA 75,C0 76]. falls v als
eine kleine Gluonenmasse interpretiert wird.

Zum SchluB dieses Kapitels mochten wir noch einen Aus-
druck flir den Formfaktor angeben, aus dem sich die drei
vorgestellten Resultate einfach durch Vertauschen der
Grenzwertbildung ableiten lassen:

-a&

FCPQ)PI:%Z) Z {C;QH € u; )(4_54'6)(4_724)}L (5.2.15)

Dieser Ausdruck ist uniform in T, und ¢, . Der OFF-ILi-
mes ergibt sich als €20. , widhrend der ON/OFF- (ON-)
Limes erfordert, daB zuerst §, ( &, wund &, ) gegen
Null geschickt wird.



e
&
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6. Die tiefinelastische Streuung in der quasi-

elastischen Region

Wie bereits betont wurde, ist das Auftreten von grofen
Korrekturen an den Grenzen des Phasenraumes verschiedener
Parton-Prozesse ein Problem der storungstheoretischen
QCD, dem im letzter Zeit viel Beachtung geschenkt worden
ist. Zum Beispiel gibt es zur tiefinelastischen Streuung
Korrekturen der Form[]og(fi-z)]/(/l-z), die in der sogenannten
quasielastischen Region sehr groB werden. Die quasi-
elastische Region ist dadurch gekennzeichnet, daB z ,
die partonische Bjorken-Variable, fast gleich Eins ist.
Diese Region ist begrenzt duch 254‘0‘;&2 (Q‘,Q(‘\’ QQ )«
(QOQ ist ein charakteristischer Impulslibertrag, der den
Ubergang der Region, in der die Storungstheorie ange-
wandt werden darf,in die Confinement-Region markiert.
-(inst die Masse des virtuellen Photons zum Quadrat.

Es gelte 2
(ﬂs(C%) < (6.0.1)

21
2 .

Die elastische Regionz;;4-§%tist mit stdrungstheoretischen
Methoden nicht zuginglich und muB daher ausgeschlossen
werden. Bildet man die Momenteﬁi,aﬁsder Strukturfunktionen,
so wird die quasielastische Region besonders von den

hohen Momenten hervorgehoben (4<<r)<‘Q3f2:'). Bin Ver-
halten der Strukturfunktioneg WiGKJOQOLE)J/%4-3> ergibt
fir die Momente ﬁ@,(az)~/og‘y7 . Da man eryarten mus,
daB3 Korrekturen héherer Ordnung wie (ds/ogﬁv) beitragen,
bricht die naive Storungsreihe in der gquasielastischen
Region zusammen, Es sei denn, man findet einen Weg, diese
Korrekturen in allen Ordnungen von ds aufzusummieren.

In der Literatur sind verschiedene Vorschlige gemacht
worden, wie solch eine Aufsummation durchgefiihrt werden
kann. Die erste Losung dieses Problems ist von Gribov
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und lLipatov in ihrer klassischen Arbeit [GR 72] im
Rahmen der Spinorelektrodynamik vorgeschlagen worden.
Die Verallgemeinerung auf nichtabelsche Eichtheorien
wurde von Dokshitzer [bo 77]V0rgenommen. Daran anknii-
pfend sind dhnliche Losungen von verschiedenen Autoren
vorgeschlagen worden [BR 79,PA 80,CU 80a,AM 80,CI 80,
81,MU 81:] . Es herrscht allgemein Ubereinstimmung da-
riber; daB die groBen Korrekturen exponentieren und so
zu einer starken Unterdriickung in der gquasielastischen
Region filhren., Allerdings gibt es, wie bereits erwahnt,
keine Ubereinstimmung liber die detaillierte Form. Insbe-
sondere in [FR 82] ist darauf hingewiesen worden, dasB
die Vorschlidge von [BR 79] und [AM 80] zwar die
Korrekturen niedrigster Ordnung [jAL 78,79,KU 79,HA 79]
reproduzieren, sich jedoch in hdherer Ordnung unter-
scheiden. Um mindestens einen der beiden Vorschl&dge aus-
schlieBen zu konnen, reicht es aus, das logarithmisch
fihrende Verhalten in hoherer als erster Ordnung zu be-
stimmen., Dies ist die Absicht dieses Kapitels.

Wir haben den Limes z» 4 der Strukturfunktionen der
tiefinelastischen Streuung in der fiihrenden doppello-
garithmischen Nzherung (LDLA) untersucht. Unsere Unter-
suchung geht bis zur dritten Ordnung in A . Da die
Ergebnisse eine Erweiterung auf alle Ordnungen von o
nahelegen, stellen wir sie hier in ihrer erweiterten
Form dar., Wir benutzen die gleichen Konventionen wie im
vorausgehenden Kapitel.Anstatt die Diagramme, die zum

LeptoproduktionsprozeB Dbeitragen,direkt zu unter suchen,

ist es wesentlich einfacher,die Vorwdrtsamplitude der
Comptonstreuung zu nehmen und das asymptotische Verhalten
der Strukturfunktionen iliber das optische Theorem abzuleiten.
Der Vorteil der Comptonstreuamplitude ist, daB keine
reellen Korrekturen beriicksichtigt werden brauchen.
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Wir finden, daB der (2 ﬁ’4)—Limes der Vorwdrtsamplitude
der Comptonstreuung im wesentlichen durch den ON/OFF~
Limes des Sudakov-Formfaktors gegeben ist, wie er im
letzten Kapitel abgeleitet wurde. Auf dieser Basis be-
stimmen wir das asymptotische Verhalten der Struktur-
funktionen. Es stimmt mit [DO 77] iberein und steht im
Widerspruch zu [BR 79] .

Im Abschnitt 6.1 werden wir die LDLA der Struktur-
funktionen definieren und zeigen, wie sie mit der LDILA
der virtuellen Parton-Photon-Streuung zusammenhangt. An-
schlielend werden wir die Struktur der dominanten Dia-
gramme diskutieren. Das asymptotische Verhalten der
Strukturfunktionen wird im Abschnitt 6.2 fiir feste Kopp-
lungskonstante berechnet. Wir beriicksichtigen die Vari-
ation der Kopplungskonstanten durch Vergleich der allge-
meinen Form von PL)(Qz), wie sie sich als Losung der
RGE ergibt, mit dem in 6.2 erhaltenen asymptotischen
Verhalten (Abschnitt 6.3%).Im letzten Abschnitt 6.4 schlieB-
lich vergleichen wir unsere Resultate mit den Vorschldgen,
die in der Literatur zu finden sind.

6.1 Dominante Diagramme

Bevor wir erldutern,welche Diagramme in der quasi-
elastischen Region dominant sind, mdchten wir kurz einige
Definitionen einfilhren und prédzisieren, was genau unter
der LDLA zu verstehen ist.

Wir zerlegen die Vorwdrtsamplitude der Photon-Parton-
Streuung, bzw. ihren absorptiven Teil,auf die gleiche Wei-
se wie 2z.B. in [ AL 79 ] . Die Bezeichnung der Impulse
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ist in Abb. 6.1 angegeben. 0 bezeichnet den Impuls des
einlaufenden Partons und g ist der Impuls des elektro-
magnetischen Stromes (&71‘-6]'z ). So schreibt sich die
Amplitude der Photon-Parton-Streuung nach Summation iiber
die Spins der Partonen als

T P _qiqf 4 T(an)
| (% " q* >2 ! ’
(6.1.1)

R

Dabei ist die partonische Bjorken-Variable Z durch

2
Z S - —g—— (601.2)
2p-q
definiert., Durch Kontraktion mit -g,, und pQ,p,lassen sich

v .
aus T} zwei Linearkombinationen der invarianten Ampli-

tudenI[Qp;z), [.4);}_ herausprojizieren

g T = (1-6) L@ 2)-(3-¢) (@) ,@52) 61+

Abb,6.1 Bezeichnung der Impulse der Vorwadrtsamplitude
der Comptonstreuung
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P T/JV=.Q2(3‘(QQZ)-T(Q22))
PPy gz \ VAT EIT T (6.1.4)

Die partonischen Strukturfunktlonen bezeichen wir mit
g’(Q 2) 5 k:12d . Sie stehen mit Jk&Q/EL k- hZ durch das
optische Theorem

5,@%2) = £ Im(-i J.(@%%)) (6.1.5)

2
in Beziehung. Wir normieren die B;QQ)Z)SO, daB im ein-
fachen Parton-Modell

F.(Q°2): SC1-2) k< 1,2 (6.1.6)

gilt. Momente werden durch

/\’l:(Q’l)-fo/a - T (@ 2) (6.1.7)
0
definiert.

Wenden wir uns nun der LDLA zu. Es ist beabsichtigt,
die Koefflzﬁfnten dpgq einer Entwicklung der subtrahierten
2.2

Momente ﬁ4 (@, a,

), die frei von Massensingularitisten sind,

U3

M. (@5a,)) - Z Zapq (1+0G)) (log /Q)(/ojn) (6.1.8)

zu berechnen. Qo ist d1e Faktorisierungsskala

Wir mochten betonen, daB unsere Nidherung iiber eine ein-
fache LDLA in bgzh hinausgeht, die nur Terme mit g-=O be-
ricksichtigt. Solch eine Ndherung wurde in der Region
QZ/Q:’M N  zusammenbrechen. Da/"’ (Q @, *)eine Losung der
RGE ist, wissen wir, daB fiir 9y P apq-C> ist. Um eine
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surs
Entwicklung der Momente/7 (Q, QQ) wie (6.1.8) durch An-

wendung des optlschen Theorems zu erhalten, miissen die Ko-
effizienten an der Entwicklung

1@ er)- i Z L Gy (140C4)

'(/ij Q}Qoz) (log[‘M‘Z)J) . ]+

R
der Comptonamplitude j:?&f&y), von der ebenfalls die

(6.1.9)

Massensingularitsdten subtrahiert wurden, bekannt sein.
Die [ ]+-Regularisierung ist wie gewdhnlich fiir zwei
Funktionen f(a) und.%(a) durch

1

ﬁ’laJ((27[?r(2)J+ =fo/2 [f(z)-f(f/)]g(z) (6.1.10)

definiert., Die Aquivalenz von (6.1.9) und (6.1.8) ergibt
sich durch Einsetzen von (6.1.9) in (6.1.5) und Bildung
der Momente. Wegen (6.1.5) geht zundchst eine Potenz von
IOﬁl(f-z)/ verloren., Sie wird wiedergewonnen durch

1

k
[ Lo (4-&)} _ A g k1 (6.1.
OJ;’/E" [_SJT,L g leg o Oy . e

Im folgenden méchten wir die Struktur der dominanten Dia-~
gramme diskutieren. Aus (6.1.9) geht hervor, daB sich der
Beitrag eines dominanten Diagramms in der Region, in
der z= 1 ist, wie 1/ (1-z) modulo lagarithmischer
Korrekturen verhalten muB. Momente von Beitragen, die
schwécher singulédr sind, sind im Vergleich zu (6.1.8)
um einen Faktor U}) unterdriickt. Es gibt verschiedene
Ursachen, die dazu fiihren konnen, daB der Beitrag eines
Diagramms an der Stellez= - einen Pol besitzt. Ist ein
Diagramm in einem Kanal reduzibel, dessen invariante Masse



®
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an der Stelle z = -7 verschwindet, so besitzt es solch einen
Fol, Aber auch das FI eines irreduziblen Graphen kann solch
einen Pol hervorrufen. Dies kann entweder auf das Ver-
schwinden eines Eichnenners oder eines Feynman-Nenners
zurlickgehen. Da wir die Feynman-Eichung benutzen, bleibt
bloB die zweite Ursache. Die Untersuchung aller Diagramme,
die bis zur dritten Ordnung in A¢ 2zu /yH, Dbeitragen, hat
uns zu dem SchluB gefilhrt, daB alle Diagramme, die einen
Beitrag zur LDLA liefern, eine reduzible Struktur besitzen,
wie sie in Abb.6.2 gezeigt wird. Die irreduziblen Blasen
in Fig.6.2 stellen die Quark-Photon-Vertexfunktion dar.

Es ist gerade der im letzten Kapitel untersuchte ON/QFF-
Limes . der hier eine Rolle spielt. Wie unsere Unter-
suchung gezeigt hat, konnen Diagramme, die nicht die fak-
torisierte Struktur aufweisen, zwar durchaus einen Pol an
der Stelle z= -1 haben, dieser kann aber allem Anschein
nach in der k -ten Ordnung von hdchstens K Logarith-
men begleitet werden. Eine wesentliche Voraussetzung fiir
die Faktorisierung der zur LDLA beitragenden Graphen ist
die Wahl der Feynman-Eichung.Die Faktorisierung gilt bei-
spielsweise nicht fiir die planare Eichung [DO 80b] .

Wie wohlbekannt ist, tragen Leitergraphen in dieser
Eichung 2zu den Momenten wie &qug%é}ﬂyw)kbei- Die Fakto-
risierung bricht ebenfalls in der Landau-Eichung zusammen.

Als Folge der Faktorisierung verschwindet die rechte
Seite von (6.1.4). Deshalb besteht in der LDLA kein Unter-

schied zwischen g&ﬂfz) und EiﬂQiz) . Aus diesem Grunde
e < .
werden wir im folgenden einfach nur noch EI(- )schrei—

ben.
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‘-Q2(1—z)/z

Abb.6.2 Struktur der dominanten Diagramme

6.2 Das asymptotische Verhalten

In diesem Abschnitt werden wir das asymptotische Ver-
halten der Strukturfunktionen in der quasielastischen
Region ableiten. Ausgangspunkt bilden der ON/OFF-Limes
des Sudakov-Formfaktors /;’hlopr(%‘,d?a)und die Faktorisierungs-
eigenschaft, die im vorausgehenden Abschnitt beschrieben

wurde.

Aufgrund der Faktorisierung gilt in der LDLA

- 2
SF(Q’ZE)=(7:Z_)L+—; PON/aFF (?)QQ) (6.2.1)
'CF
mit
2‘ B
v-lptgl o (1-2) (6.2.2)

q 2 ,
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S 4R
(t Q") ist bis zur dritten Ordnung in o in (5.2.7)

ION/OfF
angegeben worden. Wir extrapolieren (5.2.7) auf alle

Ordnungen von og

wrore (6,Q7) = exp {-I?(/I- ﬁ'@)] (6.2.3)

mit
K= i K (6.2.4)
Setzt man (6.2.1) in die rechte Seite des optischen Theo-

rems (6,1.5) ein und entw1cke1t/NM”F(j(QQ) nach Potenzen
» 80 bekommt man fiir die Strukturfunktion

von dg
OO

HQ ) - 'QK{OW 2) -2 f aR)
- (6.2.5)

Sin(lire) _ f

el
(/7-z)£
e

Im Limes &+ enthdlt (6.2,5) Pole, die als Massen-

singularitaten interpretiert werden miissen. Aufgrund
des Theorems iliber die Faktorisierung solcher Massensin-
gularltaten [EL 79] kann eine endliche Strukturfunktion

¥ (Q Q Z)durch
2 sUB
o, (6.2.6)

F@ia) =f°{/% 700, %,y) 5@

definiert werden, oder nach Bildung der Momente

2 °©_a 4 B, a2 2
M Q) =M (@, %) M (Q,Q,) (6.2.7)
Samtllche Massensingularitédten konnen 1n_?[Q°“:,y) bzw.
ﬁ4 (Q % ) absorbiert werden, die dann die "nackten™

Parton-Verteilungsfunktionen "renormieren"



»
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(6.,2.5) 14Bt sich leicht in die Form eines Konvolutions-
integrals wie (6.2.6) bringen. Dazu entwickelt man zunichst

-el-1 ~eL- .
A - - 1 . (6.2.8
(/ 2 ) —(/ogz) [,4+O(4 a)) )
und setzt danach die rechte Seite der Identitat
. 4)a+b-/’
7
Clog 2
ot b o falls d70b
P(a+b>

1
M = < (6.2.9)
(«5\(/7-2 ) falls 4 - b

in (6.2.5) mit g=-Z-cL und b= %, ein.’&,"é{o(@%g)ist eine
Konstante, die eingefiihrt wird, um die Massensingularitéaten
zu subtrahieren. Sie ist hier von der Ordnung J;éﬁ . Die
Identitat (6.2.9) 148t sich zeigen, indem man entweder

die linke Seite explizit ausrechnet (07-b ) oder die
Momente beider Seiten bildet (a= b ). Mit (6.2.9) er-
h&dlt man

-%-EL-’/

~SUB 5 ak & 4 A L (,0 1y )
(Q,Q,,2)-€ T (2K) 2] 72 (6.2.10)
: ‘ L=Zo'L' k ['C-2, -el) =10

und

2

?(QME 2): (;32;2)) (6.2.11)

Bevor wir € in (6.2.10) gegen Null gehen lassen
konnen, miissen wir die Singularitdt an der Stelle z:1
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regularisieren. Dies geschieht mittels der in (6.1.10)

definierten [ ] -Vorschrift., Wegen
p

SUI?

J‘dz CQ G?,,z) o/aj(Qo €,2) - " (6.2.12) |
o o
folgt

S ~ SR .

Hala' 2|5 (@ a ], + sct-e) (6.2.13)
und

0 2 "0

GI(G?mé,w?)‘[ (@o;c)Z)ln?M-z) (6.2.14)

Nun kann & in (6.2.13) verschwinden. In der LDLA
188t sich in (6.%.10)

4
=(CZ,-el)t.. (6.2.15)
Fg, e C%C

setzen. Damit bekommt man

U(C? Qo;Z) [E)—ng*) @XP{Q]%[M-z)-G- /7]

(6.2.16)
'ZO {030,-2)}:{+ +8(1-z)
Entwickelt man das Argument der Exponentialfunktion
nach €é , so nimmt (6.2.16) die Form
suB 2 0 A |
T (Q C?O,Z) [Dméxp{qgr# log (1-2) -
(6.2.17)

(’Os%j% *logti-a)- Loz, ds”} ) [ ] +8cr2)

1y
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an, Um die Massensingularitdten aus (6.2.17) endgiiltig
zu entfernen, wdhlen wir

R A 2 - &
Z --a, ng (Q%z) (6.2.18)

Damit erhalten wir das Resultat fiir feste Koppungskon-
stante

F@*as2)e[ G %~ (10g%z - log (1-2))

.exp{dr 7%(.‘/0364'3)006%: + :{l’ lag (4-2)] } :I (6.2.19)

+

+8C1-2)

.0 son :
Die Momenteﬁ%@&ig)undﬁﬁ(Ofaf}lassen sich aus (6.,2,10)
und (6.2,11) unter Ausnutzung der Identitit

" ) - a1

ableiten., Man erhslt

zh'a(/”o(ﬁ,)) (6.2.20)

Mh (Q2)=€xp{'2f<:(4’he)} (6.2.21a)
SF/B . 0( 2 )
M,, (Qj&o )-@xp{@l;,/ri:/og,:, /og 2 +’Q¢ /05 %7)] (6.2.21b)

und
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o 2
Mh(Qo) g/)=e><,o{-20 /Ogh} (6.2.22)

An dieser Stelle ist es aufschluBreich,(6.2.3) und (6.2,21a)
miteinander zu vergleichen. Das asymptotische Verhalten
der Momente ist durch die gleiche Funktion gegeben wie
das Quadrat des Sudakov-Formfaktors, wobei lediglich

T durch ¢h ersetzt werden mug. Diese Korrespondenz
gilt allerdings nur auf den Niveau der LDLA. Den ersten
Term in der Exponentialfunktion von (6.2.210) ~ /03 ,4, /og %1
erhdlt man gewdhnlich als Losung der RGE, wdhrend der
zweite Term der Koeffizientenfunktion zuzuordnen ist.
Es ist bemerkenswert, daB man hier den Limes N - 00 der
anomalen Dimensionen gCh)

lim X(h) = §4, log n (6.2.23)

n = o0
alleine aus dem ON/QFF Sudakov-Formfaktor abgeleitet hat.
Eine &hnliche Relation liegt auch der Argumentation in
MU 79 J zugrunde,

6.3 Einbeziehung der gleitenden Kopplungskonstanten

Im Rahmen des Klassifikationsschemas aus 6. 1 ist die
Variation der Kopplungskonstanten ein nichtfilhrender
Effekt. Daher kann in der LDLA nur eine feste Kopplungs-
konstante auftreten. Allerdings ist die Variation der
Kopplungskonstanten

ay _ 4 A
dgCQ ): b W/\z) (6.3.1)
b - 22 Gn -4 TCR) TCR) 5 Ny (6.3.2)

3
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eine Erscheinung, die zu wichtig ist, um einfach vernach-
ldssigt zu werden. Gliicklicherweise wissen wir, daB eine
teilweise Aufsummation der groBen Logarithmen in CQQ
mittels der RGE vorgenommen werden kann. Wir werden eine
Beriicksichtigung der (- Variation der Kopplungskonstanten
durch einen Vergleich von (6.2.21) mit der allgemeinen
Losung der RGE erreichen.

Die Formulierung der RGE in o Dimensionen, wie sie
hier bendtigt wird, 148t sich beispielsweise [ FL 77,
CU 80b] entnehmen, Die /3-Funktion in o Dimensionen
/3((5,6) ist durch

B(%C‘) : /3(%) nge (6.3.3)

gegeben, Wir bezeichnen den /3f9)'>OLimes der gleitenden
Kopplungskonstanten dg(@?in d Dimensionen mit J;-[C?'z/.
A (Q*)ist gleich

_ 2 G?Q -
AS(Q ) = 0(5(',1/2) [;Q) (6.3.4)
Setzt man
. ds Ae)® 6.3.
BCh)ds)' L/'?/’ X(h)* (Lfﬁ (r”(h)f ves , ( 3 5)

so hat die LOsung der RGE die Form

0 g
M Q% Q1) + (4 (@Y /45 (0s")

(n)
2 b

(6.3.6)

etp 5 [ M2 (@48 ) ]Gy nae.

wobei die q’n(o(‘(Qz))die Momente der Koeffizientenfunktion aus
der Operatorproduktentwicklung sind. Ein shnlicher Aus-



(-
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druck ergibt sich furM (Q)C/ Im Limes /{3'70 nimmt M (@ )
die Form

- - 2
| 1 @" [ 0Y) |
MA@, )-eplt | 2@ (%%”) L pen] o)
(6.3.7)

an., Durch Vergleich von (6.3.7) mit (6.2.21a) kann } (»)
und d CQQ?)) bestimmt werden. In der LDLA ist J}Oﬂ <0 fiir
K»“ . Setzt man die so gefundenen Funktionen wiederum
in (6.3.6) ein, so erh#lt man die durch die RGE ver-
besserte LDLA

.
5 logn

S0y 4s(Q°) 2 ) [ds(@) (6.3.8)
Mh(Q.,Qo)-GXP{m quogh} S(Qoa)

Selbstverstandlich kann die gleitende Kopplungskonstante
auf die gleiche Weise auch in den ON/OFF Sudakov-Formfak-
tor einbezogen werden

oo - (f,Q2)=€xp{' der log T lo (ﬂ—a(s[»(?~)ic— )

+Gs is_(_Q, /03 j

Leider konnen (6.3.7) und (6.2.21a) nicht verglichen
werden, ohne daB (1-n®) in (6.2.21a) nach & ent-
wickelt wird. Deshalb ist es nicht moglich, den ON Sudakov-

Formfaktor durch das Verschwindenlassen von % aus
(6.3.9) zu erhalten.

(6.3.9)






-138-

6.4 Vergleich

In diesem Abschnitt mochten wir unser Resultat mit vVor-

schlédgen vergleichen, wie sie in der Literatur zu finden
sind.

In [bR 72,D0 77] ist das asymptotische Verhalten der
Strukturfunktionen fiir grole (QQ' aullerhalb der quasi-
€lastischen Region, wo nur die Einzellogarithmen.k@C?Q"eine
Rolle spielen, untersucht worden, Es wird gezeigt, dag
nach Wahl einer axialen Eichung nur Leitergraphen zur
fihrenden logarithmischen Néherung beitragen. Ihre Auf-
summation liefert

A
S8 8 R n| 142
ﬁﬂ (Q Qo )=’OXF){2‘1; d Y —
’ % / 1 - Y +
N (6.4.1)
4 Cjk 2
q“(?“ I«
o .
Wie in [GR 72,00 77 ] behauptet wird, lassen sich die
doppellogarithmischen Korrekturen in der quasielastischen
Region dadurch aufsummieren, daB man die exakten kine-
matischen Grenzen Jedes Leiterimpulses berucksichtigt.‘
Dies fiihrt dazu, daB in (6.4.1) die Substitution (% QU 7~y
3
der oberen Grenze der K ~Integration vorgenommen werden
muB. Da die Unterschiede zwischen der modifizierten Form

von (6.4.1) und unserem Resultat (6.3.8) nichtfithrend sind,
sind beide Ergebnisse kompatibel.

Eine andere Losung ist in [AM 80] vorgeschlagen wor-
den. Man erhilt sie aus (6.4.1),indem man das Argument
der Kopplungskonstanten £(k*)in ka(4-y) umédndert, Dies
impliziert, daB im Limes /3(3)-70, flir feste Kopplungskon-
stante, kein Unterschied zwischen (6.4.1) und der modi-
fizierten Form besteht. Solch ein Verhalten wird von
unserer Rechnung nicht bestdtigt. Der Grund dieser Dis-
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krepanz ist leicht gefunden. In [AM 80] ergibt sich die

modifizierte Form von (6.4.1) als Losung einer modifizierten
Altarelli-Parisi-Gleichung [AL 77] « Die Modifikation

der Altarelli-Parisi-Gleichung besteht in der gleichen

Frsetzung des Arguments der gleitenden Kopplungskonstanten

wie fiir (6.4.,1), Diese modifizierte Form der Altarelli-

Par1s1 Glelchung wird in [AM 80] mit der Randbedingung
ﬁ? 00,0 )7integriert. Da Jedoch zumindest ein Teil

der doppellogarithmischen Effekte mit der Koeffizienten-
funktion 1dent1f1z1ert werden muB3, ist die korrekte

Randbedingung M (C\?o)d?) d Cas (o })

Iine dritte Losung ist in [BR 79] vorgeschlagen worden.
Im Gegensatz zum Vorschlag von [CR 72,D0 77 ] der die
Integrationsgrenzen samtlicher Leiterimpulse korrigiert,
wird in LBR 79] nur die Integrationsgrenze des trans-
versalen Leiterimpulses der hirtesten Leiterzelle abge-
dndert. Es wird behauptet, daB diese Vorschrift einen zu-
sé&tzlichen Beitrag Jb[zﬂ?z}zur Strukturfunktion liefert

?(Qiz)"*q(e,@z) +d'gCe, @%) (6.4.2)

?
wobeiq(al?ﬁdie gewohnliche einzellogarithmische.Parton-
Verteilungsfunktion ist. Um den Vorschlag von [BR 79 ]
mit unserem Resultat vergleichen zu konnen, haben wir
den Limes fester Kopplungskonstanten der GroBe

q(eQ ) +J‘q(a&>)
q(a Q"‘)

(6.4.3)

berechnet, Mit den Ergebnissen aus EﬁR 79] folgt, daB

/

qe,Q) 2Ry & 4T de 2 7
@) 1t ch i logC1- 3)]

(6.4.4)
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Mit unserem eigenen Resultat (6.2.19) gilt

%’?TE’LM) " %}"P Ftlgaa] s

Die Diskrepanz ist offensichtlich.

In [CA 80 81] sind nichtfiilhrende Logarithmen ana-
lysiert worden. Ds wird behauptet, daB alle groBen Loga-
rithmen (,,(s 03!4) y (%6 die mOglicherweise zu den anomalen
Dimensionen XC”) beitragen konnten, nicht auftreten. Nicht-
fihrende Korrekturen zu der Koeffizientenfunktion werden
dort allerdings nicht diskutiert. Aufgrund des engen Zu-
sammenhanges beider Effekte, ist es nicht unwahrscheinlich,
daB auch die logarithmischen Korrekturen zu der Koeffi-
zientenfunktion stark reduziert werden.
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7. Die Aufsummation groBer Korrekturen zum elektro-

magnetischen Formfaktor des Pions

In diesem Kapitel mochten wir die Resultate der Be-
rechnung von groBen Korrekturen zum elektromagnetischen
Formfaktor des Pions in der perturbativen QCD vorstellen.
In der Einleitung wurde darauf hingewiesen, daB durch den
Beweis der Faktorisierung der Massensingularitdten in einer
Reihe von inklusiven Prozessen der Anwendungsbereich der
storungstheoretischen QCD entscheidend erweitert wurde.
In paralleler Weise 188t sich auch fiir verschiedene ex-
klusive Prozesse die Faktorisierung der Massensingulari-
tdten nachweisen [EF 80,IE 79,80,DU 80 ] . Die Wahl
einer axialen Eichung fiihrt zu einigen Vereinfachungen,
stellt jedoch keihe unbedingte Voraussetzung dar. In
dieser Eichung léﬁt sich ein exklusiver ProzeB, insofern
die Massensingularitdten faktorisieren, durch eine Kon-
volution der Amplitude Th des harten Anteils der Parton-
Streuung mit je einer Wellenfunktion(ﬂiﬁ?ﬁfur jedes be-
teiligte Hadron b?schreiben, die lediglich die Valenaz-
zustédnde enthdlt. Nicht-Valenzzustédnde sind mit einem
Faktor 4&91 unterdriickt.

Der harte Anteil 7@ wird durch den kurzreichweitigen
Teil der Wechselwirkung bestimmt. Er ist frei von Massen-
singularitdten. Daher ist eine Entwicklung in.a%ﬁ?“)sinn—
voll. In der Operatorproduktentwicklung entspricht dieser
Anteil der Koeffizientenfunktion. Fir eine weite Klasse
von exklusiven Prozessen erfiillt 7Ty die "Dimensional-
Counting-Rules" [BR T3,MA 73 J .

Die Wellenfunktiondng%ﬁhingegen entspricht einer Summe
hadronischer Matrixelemente von Operatoren der Operator-
produktentwicklung. Samtliche kollinearen Singularitidten
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konnen in(f&an)faktorisiert werden.Q%&Gﬂ/représentiert
den langreichweitigen Anteil der Wechselwirkung, der dem
Zugang mittels Methoden der storungstheoretischen QCD
prinzipiell verschlossen ist. Was allerdings berechnet
werden kann, ist die CQ%-Abhéngigkeit dieser Wellenfunk-
tion. In einem gewissen Sinne spielen die Wellenfunktionen
bei den exklusiven Prozessen die gleiche Rolle wie die
Parton-Verteilungsfunktionen und Fragmentationsfunktionen
bei den inklusiven Prozessen.

Ein typisches Beispiel filir solch einen exklusiven Pro-
zess ist der elektromagnetische Formfaktor des Pions,
dem wir uns in diesem Kapitel widmen werden. Entsprechend
dem gkizzierten Bild der exklusiven Prozesse in der QCD
wird der Pion-Formfaktor durch

'Frr(&l) - fdxfd‘/ ¢+(>’)Q2) Ty (%, Q) §x, @*) (7.0.1)

beschrieben., Abb.7.1 stellt diese Relation anschaulich dar.

Abb.7.1 Der Pion-Formfaktor in der stdrungstheoretischen QCD
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/’
P (2 ) ist der Impuls des einlaufenden (auslaufenden)
Pions, Das virtuelle Photon trédgt den Impuls

g=-(P+P) (7.0.2)
mit

Q- - ql (7.0.3)
und (/tx)/Q ((1*y) /2 ) sind die Anteile der longi-

tudinalen Impulse der Valenzpartonen vom Impuls des Pions

P (P ). In niedrigster Ordnung in 4, tragen ledig-
lich die beiden in Abb.7.2 gezeigten Graphen zum harten
Anteil bei

4R a4

Q2 _(/}-):)(2—:;/7 (7.0.4)

TH (X)Va Ql) =16 ir d'F

Wie man aus (7.0.4) ersieht, ist 7}?00yﬂ?{)an den
Stellen x- 1 und y=7 singulér. Deshalb ist die Dar-
stellung (7.0.1) nur sinnvoll, falls die Wellenfunktion
d)(x7Q2) in der Endpunktregion so stark verschwindet,
daB das Integral konvergiert. Jedoch selbst dann muB damit
gerechnet werden, daB der Hauptbeitrag zu Fﬁ(z?d)aus der

e ccacaad

(a) (b)
Abb.7.2 Fiihrende Beitrige zu 7;,(x)y)C?2)






-144-

Endpunktregion kommt. Dies hingt ganz von der speziellen
Form Von¢ng“)ab. I's ist davon auszugehen, daB die Sin-
gularitdat in (7.0.4) durch logarithmische Korrekturen noch
verstdrkt wird. Daher kann nicht ausgeschlossen werden,

daB die Storungsreihe von ﬁrﬂQ ) divergiert. 1-Schleifen-
Korrekturen zu (7.0.4) sind von verschiedenen Gruppen be-
rechnet worden [FI 81,DI d1] . Die Endpunktregion ist
besonders in [DI 81Juntersucht worden. Es wurden groBe
Korrekturen gefunden.

Wir haben die fiihrenden doppellogarithmischen Korrekturen
zu (7.0.4) bis zur 2-Schleifen-Ordnung berechnet. Unser
Resultat deutet darauf hin, daB die fiihrenden doppelloga-
rithmischen Korrekturen exponentieren. Unter der Annahme,
daB dies in allen Ordnungen geschieht, wird das Integral
(7.0.1) tatssichlich divergent. Die  Singularitat wird
dadurch hervorgerufen, daB die Entwicklung von 7(%yﬁ?9
die mit (7.0.4) beginnt, nicht gilt,falls x= 7 oder y=7
Diese Singularitédt kann vermieden werden, indem man die
Integrationsgrenzen in (7.0.1) mit groBerer Sorgfalt be-
handelt. Geschleht dies, so wird die Endpunktregion fiir

groBe Q unterdriickt.

s sei auf die Analogie zum Verhalten der Strukturfunktion
in der quasielastischen Region hingewiesen, wie es im
letzten Kapitel abgeleitet wurde. Das Verhalten, das dort
gefunden wurde, 148t sich qualitativ folgendermaBen er-
klédren. Aufgrund des in der quasielastischen Region stark
eingeschriankten Phasenraumes ist die Abstrahlung von
reellen weichen Quanten stark unterdriickt, so daB eine
Neutralisierung der Infrarotsingularitaten zwischen reellen
und virtuellen Korrekturen dem Kinoshita-Lee-Nauenberg
Theorem entsprechend nur noch teilweise stattfinden kann
und die virtuellen Singularitidten iiberwiegen.
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Die Vermutung liegt nahe, daB die Region K,y;v-ﬂ des
Pion-Formfaktors auf &hnliche Weise unterdriickt wird.
Die Beitrédge individueller Graphen zum Pion-Formfaktor
weisen, genau wie zur tiefinelastischen Streuung yInfra-
rotsingularitdten auf, die durch die verschwindende Masse
des Gluons hervorgerufen werden. Nun konnen farblose
Quark-Antiquark-Systeme, wie sie von Mesonen gebildet
werden, nicht durch den Austausch weicher Gluonen wechsel-
wirken. Selbst der Austausch weicher Gluonen zwischen
einem Meson und einem einzelnen Quark ist unterdriickt
[' CO 76,CH 80 ] . In einer abelschen Theorie ist dieser
Sachverhalt leicht einzusehen. Zu jedem singuliren Bei-
trag, der durch die Kopplung eines weichen Gluons an ein
Quark hervorgerufen wird, gibt es einen Partner, der Kop-
plung an das Antiquark, der sich lediglich durch das Vor-
zeichen unterscheidet. Ein Zhnlicher Mechanismus arbeitet
auch fiir nichtabelsche Theorien. Daher kiirzen sich die
Infrarotsingularitdaten aus der Summe iiber alle Graphen,
die zum Pion-Formfaktor beitragen,heraus. Die Farblosig-
keit der Mesonen spielt fiir die exklusiven Prozesse also
die gleiche Rolle, wie die Summe iiber die Endzustinde fiir
die inklusiven Prozesse. In der Regionxgyaﬁ4 wird nun aller-
dings die Symmmetrie zwischen Quark und Antiquark derart
gestort, daB erwartet werden muB, daB der beschriebene
Kiirzungsmechanismus auBer Kraft tritt. Diese Erwartung
wird von unseren FKrgebnissen bestatigt.

Der Rest dieses Kapitels ist folgendermaBen gegliedert.
Im ersten Abschnitt werden wir kurz erliautern, auf welche
Weise der Formfaktor des Pions in der storungstheoretischen
QCD beschrieben wird. Der zweite Abschnitt befaBt sich
mit dem Endpunktverhalten der Wellenfunktion. Im dritten
Abschnitt werden wir dann die Resultate unserer Rechnung
vorstellen und anschlieBend daraus(Abschnitt 4) den
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harten Anteil isolieren. Im Abschnitt 5 wird illustriert
werden, welche Konsequenzen die Aufsummation der fihrenden
groBen Korrekturen fiir den Formfaktor mit sich bringt.

Abschnitt 6 schlieBlich ist einigen SchluBfolgerungen vor-
behalten.

Te1 Der elektromagnetische Formfaktor des Pions in

der perturbativen QCD

Die grundlegenden Eigenschaften des elektromagnetischen
Formfaktors des Plons sind bereits in der Einfiihrung zu
diesem Kapitel beschrieben worden. In diesem Abschnitt
mochten wir einige Details erlsdutern.

Mit
f=/0ﬂ(o<s(Q,,“)/,<s(Q")) (7.1.1)

ergibt sich die Wellenfunktion ¢(X)Q°‘/als Losung von

-1
d i
¢ ¢(2,é)=_2b-‘[a’x\/(2,x)45(,(,1‘) (7.1.2)

(7.1.2) kann nur dann vollstdandig gelost werden, falls
die "Anfangsbedingung" ¢(@G%n)bekannt ist. Der Bezugs-
punkt G%} kann prinzipiell beliebig gewdhlt werden. Die
Gleichung ('/.1.2) ist das Analogon zur Altarelli-Parisi-
Gleichung [AL 77] . Wie schon im letzten Kapitel, so
wdhlen wir auch hier G%?<<<Ql . In niedrigster Ordnung
ist der Brodsky-Lepage-Kern /(2 x) gleich

_ / 1+ 2 2 , (7.1.3)
\/(E)x>- QC’F{—_—/; -~ [4 4 [ONT) ]@(x-;?)
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1-2 |, 2 .
" [/ (z-x), ]@CZ x) -z X)f

Die [ ]+-Regularisierung ist hier im Unterschied zu
(6.1.10) durch

A S z)fo/y 7 (71.4)

(x-2), x-2 1tx X -y
definiert,

Zur Losung der Entwicklungsgleichung (7.1.2) bestimmt
man zunsichst die Eigenfunktionen %, (x) in

‘gdx\/(?_)x)f;(x):x(h) fh(z) (7.1.5)

Durch Ausnutzen der Symmetrie von Vf2ﬂ<) bei Vertéuschung
der Argumente 1laBt sich zeigen, daB fL(X) im wesentlichen
durch die Gegenbauer Polynome (:;%L ( siehe Anhang D)
bestimmt ist

32
f;(k)=(%-x‘) G, (x) (7.1.6)
Das Auftreten dieser Orthogonalpolynome ist eine Kon-
sequenz der Tatsache, daB gerade konform kovariante
Operatoren die RGE diagonalisieren "OH 827 . Flir die
Eigenwerte XCh) ergeben sich die schon von der tiefin-
elastischen Streuung her bekannten anomalen Dimensionen

» i
XC)') { 4 g -k Z (7.1.7)

1+p)A+n) /J ;

Dafl hier die gleichen anomalen D1mens1onen auftreten wie in
der tiefinelastischen Streuung, liegt an der Verwandt-
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schaft der entsprechenden Operatoren. Damit schreibt sich
die allgemeine Losung von (7.1.2) als

) OOI 3/ (h)
P(x, Q%) = (1-x*) D a, C, (x)expf- 2" ¢ (7.1.8)
PL™ 2k
h=0

Aufgrund der Orthogonalitdt der Gegenbauer Polynome
lassen sich die Koeffizienten d, aus der Wellenfunktion

fﬁ(x,d%a) berechnen

v 3
ol = é’ fdx cﬁ(x,@f}dh (x) (7.1.9)

Sie entsprechen den Matrixelementen der aus zwei Quark-
feldern aufgebauten Operatoren, die ein Pion reprédsentieren,
zwischen dem Vakuum und dem Einpionzustand. Im Rahmen der
storungstheoretischen QCD miissen diese Koeffizienten bazw.
die Wellenfunktion ¢056%1)a1s Inputgrolen angesehen werden.
Eine experimentelle Bestimmung ist zwar prinzipiell mog-
lich [BA 80] , praktisch jedoch &uBerst schwierig. Da-
her bleibt beim momentanen Stand der Dinge nur der Riick-
griff auf Modellannahmen fiir d%kﬂ%ﬁ) iibrig.

Eine Ausnahme macht der Koeffizient (7, . Er 188t sich
in Beziehung zur Zerfallskonstante des Pions {5 v 0.093 GcV

setzen

(7.1.10)

Damit ist die Normierung der Wellenfunktion festgelegt

(7.1.11)

d (ﬁ()(ya)t : f%
S 00,@%) < g
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Die anomalen Dimensionen haben die Eigenschaft, daB
X(”) > 0 ist fir alle n YO , lediglich 2((0)'0 . Da-
her sind im ultrahochrelativistischen Limes Q> o alle
Beitrage zu (7.1.8) mit n YO durch gebrochenzahlige
Potenzen von @° unterdriickt

im $x,Q%) - (1-x% a, (7.1.12)

Q% o0

Damit erh&dlt man

Fo(Q%) = 12 r Cr 4o(Q%) f;/ Q% (7.1.13)

[/
R*» 00 .
Wie schnell die Wellenfunktion P(x,@>/ die asymptotische
Form (7.1.12) erreicht, hingt ganz von ¢65(?;l) ab. Hat

d)(x’ Qa) beispielsweise exakt die asymptotische Form
(7.1.12), so gilt dies auch fiir alle anderen Werte von (X .
Weicht Q(x,QS ) hingegen stark von (7.1.12) ab, so wird die
asymptotische Form erst fiir sehr groBe Werte von (Qg'an-

genommen.

Wird die Brechung der Flavour-Symmetrie vernachlédssigt,
So ist

CP(">Q2)‘Q5("<>Q2) (7.1.14)

Dann tragen in (7.1.8) nur gerade 7 Dbei.

Da die Details des Bindungsmechanismus des Pions in
die Beschreibung des Formfaktors lediglich durch die Ko-
effizienten (g, einflieBen, kann an die Stelle des Pions
jedes andere pseudoskalare Teilchen treten. Dabei darf
die Bedingung, daB (?2 groB gegeniiber samtlichen Massen
ist, allerdings nicht verletzt werden.
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Ein gewisses Problem stellt der Vergleich von (7.0.1)
mit den experimentellen Daten dar. Nimmt man einmal an,
daB3 ¢(k(2 ) schon frilh das asymptotische Verhalten (7.1.12)
erreicht, (7.1.13) also auch fiir niedrige (7 gilt, so
liegt der Wert von (7.1.13) im Bereich von ,xzsgéﬁvlbis
Q2¢:40(}ev2‘um etwa einen Faktor & unter den experi-
mentellen Daten [DO 82] , wihrend die Ubereinstimmung
fliir kleine (Qz'besser wird. Es ist daher anzunehmen, daB
die Wellenfunktion in diesem Bereich stark von der asym-
ptotischen Form abweicht.In Abschnitt 7.5 werden wir zei-
gen, daB eine geeignete Beriicksichtigung der Endpunkt-
region tatsdchlich zu einer Form von ﬁ,(Qz)fuhren kann,
die eher im Einklang mit den experimentellen Daten zu stehen

scheint.

Te2 Das Endpunktverhalten der Wellenfunktion
2

Te2.1 Das Endpunktverhalten von<b0@6% )

Wie bereits in der Einleitung dieses Kapitels heraus-
gestellt wurde, macht der Ausdruck (7.0.1) nur Sinn,
falls die Wellenfunktion in der Region xw~ 7 genligend
stark verschwindet. Formal reicht es aus, daB

{lll"v‘) d)()( QQ) < (/’-X)'z )O (7-2.1)
X ! {

Damit ist die Konvergenz des Integrals in (7.0.1) gewdhr-
leistet.

In [LE 80] wird argumentiert, daB Losungen der homo-
genen Bethe-Salpeter-Gleichung die Randbedingung (7.2.1)
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tatsachlich erflillen. Selbst falls dies zutrifft, so bléi-
ben doch zwei auBerordentlich wichtige Fragen unbeant-
wortet. Némlich erstens, inwiefern es gerechtfertigt ist,
die Wellenfunktion beispielsweise eines leichten Mesons,
wie des Pions, als Losung einer homogenen Bethe-Salpeter-
Gleichung zu betrachten und zweitens, nach der GroBe von

. Da die Endpunktregion einen Beitrag der GroBen-
ordnung ’7/Q zu ﬁ}(QQ) liefert, ist ein geniigend
starkes Verschwinden der Wellenfunktion offenbar Voraus-
setzung fiir die Abwesenheit von anomal groBen Beitridgen
aus dieser Region,

In der Tat stellt es sich heraus, daB die Endpunktre-
gion von ¢(X;Q2) unter gewissen Voraussetzungen nur
wenig unterdriickt ist., So ist beispielsweise die nicht-
relativistische Wellenfunktion eines aus einem schweren
Quark der Masse ﬁ1 und einem leichten Quark der Masse m
zusammengesetzten Mesons in der Nahe von (f-x)/2 = m/(m +M)
stark liberhoht [HO 81,LE 82,CH 82] . In [JO 82] wird
als Ansatz fiir die Wellenfunktion eines solchen Teilchens

Plx,Q,") ~ 8 (x - 40 (7.2.2)

vorgeschlagen, wobei sich CLQ in der GroBenordnung von

4 GeVz'bewegt. Li8t man einmal die & Variation von
$h(x,Q*) auBer acht, so fiihrt (7.2.2) zusammen mit (7.0.4)

zu einer starken Erhchung des Wertes von ET(QQ) gegen-

Uber dem Formfaktor eines Mesons, das aus etwa gleich
schweren Quarks besteht.

2
Te2e2 Die (J—Variation des Endpunktverhaltens

2
Wir haben bisher die (] Variation der Wellenfunktion
d)(X,CQQ) auBer acht gelassen. Wie (7.1.12) jedoch zeigt,






-152-

. 2
muB die Anderung des Endpunktverhaltens mit R eine wich-

Rolle spielen. Da bekannt ist, wie sich ¢, Q%) mit (QQ
dndert, 1Bt sich dieser Effekt ohne weiteres ableiten.

Ist die Reihe, durch die die Wellenfunktion ¢CXJ?2) in
(7.1.8) dargestellt wird, gleichmdBig konvergent, so
verschwindet ¢(x,CZ2) wenigstens wie (/-x), die Endpunkt-
region spielt also keine Rolle. Umgekehrt erfordert ein
Verschwinden von ¢QH(QI) schwécher als (/-x) , daB die
Summe in (7.1.8) fiir x = 7/  divergiert. Da jeder ein-
zelne Beitrag endlich ist, wird der filhrende divergente
Anteil durch das Verhalten von akexp{ZKOﬂf/Qb}fﬁx'm + 0O
festgelegt., Der Limes n -+ oo von g, wiederum wird
durch das Endpunktverhalten der Wellenfunktion ¢(4c?f)
bestimmt. Es sei denn, die Reihe, die @(x @,°) darstellt,
ist gleichmidBig konvergent. Es sei

ql)(x)Qol) : (4-x2)(4-x)2-4 (7.2.3)

mit h < , dann folgt aus (D.6)

(P(X,Qa) =(//-x1)2,Z {l_'(//ﬂz)//"(’f'i&)}

(7.2.4)
& 37
'Zan G (x) exp{-g(h)f/ﬁb]
mit h=o
ah’-czmz)f“(nw/-,l)//“(m3+,Z) (7.2.5)
Wegen
Plntod/PCa) = 0 1+ 0(%)) (7.2.6)

(6.2.23) und (D.4) ist
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Y | 1-2y 4§t
a, c’ 2(47ex,0{-6(m)t/2b]=h Lo (140G, £3)  (1.0.7)
Ist p+2Cit/b> 1 , so ist.die Reihe in (7.2.4) gleich-
médBig konvergent. Im umgekehrten Fall divergiert die Reihe
fiir x= 4 . Dann kann das Endpunktverhalten von ¢C@CQ2)
bestimmt werden,indem man die Schritte von (7.2.3) nach
(7.2.7) umkehrt, mit dem Resultat

fmj’ dlx, Q%) < (1- X %t(ﬂﬁ(xg))
X
Q *er#/b< 1

Wiirden wir in (7.2.3) auch n= 7 zulassen, so verschwinden
in (7.2.4) alle Terme mit n»1 . Daher kann die Argu-
mentation, die zu (7.2.8) gefiihrt hat, nicht in den Be-
reich Q,W'4 erweitert werden. Damit haben wir die
Variation des Endpunktverhaltens bestimmt. Setzt man

(7.2.8)

00, @%) ~ C1-x )0 (7.2.9)
so wird ’
’Z(QQ)’?(OoQ)*ert/b (7.2.10)

2 L
Die Endpunktregion wird also fir (X »» &, stark unter-
driickt, Ein dhnliches Verhalten ist schon in [DI 81,
CH 81,J0 82:] ermittelt worden. Es steht in Ubereinstim-
mung mit (7.1.12). Sieht man einmal von mdglichen Kor-
rekturen zu T'&»UQ ) ab, so kann die Endpunktregion, falls
iiberhaupt, nur fiir kleine Werte von C? (70?f)<"7)
zu einer entscheidenden Abweichung vom asymptotischen
Verhalten des Pion-Formfaktors (7.1.13) filhren, die
eventuell die Ubereinstimmung mit den experimentellen
Daten verbessert. Insbesondere ist ein Ansatz wie (7.2.3),
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der nur das Endpunktverhalten richtig beschreibt, fiir
N(Q?)y 1 nicht mehr gerechtfertigt. In [ DI 81
wird fir Q(QOQ) die Abschdtzung i Ry ) =2t -

a . o . o , 2
angegeben. Qs liegt dabei in der GrdBenordnung (14 Gel/ ™,

Das Resultat (7.2.9) basiert auf der Niherung der ano-
malen Dimensionen M%)Js) durch die niedrigste Ordnung
in JAs . Dies 148t prinzipiell die Mdglichkeit offen,
daB hohere Ordnungen das Verhalten (7.2.9) wesentlich
verandern. Die Ubereinstimmung der anomalen Dimensionen
des Formfaktors mit denen der tiefinelastischen Streuung
gilt auch in hdheren Ordnungen von o . Explizit ist dies
zur Ordnung dgz in [SA 82] verifiziert worden. Es
148t sich daher von den Ergebnissen aus [CI 80] Gebrauch
machen. Danach kann K(”/ds) in der k-ten Ordnung ( k » 2 )
in A hochstens wie /qﬂk'ﬁ) anwachsen., Dementsprechend
haben die Korrekturen zu (7.2.12), die aus den Korrekturen
m16(n>d6) resultieren, die Form

ASE /ogk(4-x) mit k <d (7.2.11)

Te3 Die fiihrende doppellogarithmische Niherung des
Formfaktors in der Endpunktregion

Ein wesentlicher Beitrag zum Verhalten der Struktur-
funktionen in der quasielastischen Region wurde von der
Koeffizientenfunktion geliefert. Es ist daher zu erwarten,
daB auch der harte Anteil TLOSY)Qz)in der Endpunktregion
durch Korrekturen hoherer Ordnung zu (7.0.4) stark modi-
fiziert wird. Um iliber solche Korrekturen nahere Auf-
schliisse zu erhalten, haben wir die flihrenden doppel-

logarithmischen Korrekturen zum Formfaktor in der End-



>
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punktiregion bis zur 2-Schleifen-Naherung berechnet. Die
Resultate dieser Rechnung mochten wir in diesem Abschnitt
vorstellen,

Dem Formfaktor entsprlcht die Parton-Amplitude /, PO,
des Parton-Prozesses qq +y* - qq . Sie wird in Abb.7.3
dargestellt. Die Impulse der elnlaufenden (auslaufenden)
Quarks werden zu (1:¢)P/2 ((1tvIP' /2 ) gewdhlt. Es ist

- x
Abb.7.3 Die Parton-Amplitude qq +J =

7>ﬁ P O und sédmtliche Partonen sind masselos. Um
den Eingangs-(Ausgangs-)zustand auf den Einpionzustand
Zu projizieren kontrahieren wir die der Abb.7. 3 entsprech-
ende Amplltude auf der linken (rechten) Seite mit %y
( P’ [ ). Ublicherweise ist der Formfaktor des Plons
durch

P4 [Py = (PP, Fr (R (7.3.1)

definiert, gy(o) ist der elektromagnetische Strom. Die

Form der rechten Seite von (7.3.1) ist eine Konsequenz
der Eichinvarianz. Summiert man die Beitrédge aller Dia-
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gramme, der von Abb.7.3 gezeigten Amplitude zu fester
Ordnung von Adg auf, so muB die Summe ebenfalls pro=
portional zu (ﬁ’#P’bJ sein. Das gilt jedoch nicht fiir
Jeden einzelnen Graphen. Daher fiihrt die Berilicksichtigung
nur solcher Beitridge, die beispielsweise zu 7; proportional
sind, zu einer weitgehenden Vereinfachung der Rechnung.
Technisch erreicht man dies, 1ndem man den elektromag-
netischen Strom einfach mit 7’ kontrahiert. Dies hat

in der niedrigsten Ordnung zur Folge, daB der Graph (a)

in Abb.7.2 keinen Beitrag liefert.

Wir werden den Pion-Formfaktor durch eine Reihe approXi-
mieren, die im Limes &-+O. die Form

Io (0w, Q%) = T, ((}VQ ).>
(7.3.2)

4 ﬁ‘r
20 Chii ( ) oy ) Cley) 10y
(}“Jz*ga*”)q .&L
aufweist, wobei

= (1-0)/2 und L, (1-v)/A (7.3.3)
Die Bedingungen dafilir, daB ein Beitrag in der LDLA beriicksich-
tigt wird, sind also, daB er singular wie //f,(, ist
und daB er auBerdem in der (L+7)-ten Ordnung in As <L
Logarithmen mit sich fiihrt. Wie (7.3.2) zeigt, behandeln
wir die GroBen.Cl,Oua' T und 7” beziliglich der Logarith-
men so, als seinen sie von der gleichen GroBenordnung.
Die Pole 7 /E werden durch kollineare Singularititen
verursacht. Daher gilt Af1< L . Da wir wissen, daB8 die
kollinearen Singularitdten faktorisieren, ist es im
Prinzip ausreichend, nur solche Beitrige zu (7.3.2) zu be-
rechnen, fir die 44=C) ist. DaB wir dennoch samtliche
Infrarotsingularitsdten 7/ auf gleicher Stufe mit den
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Uubrigen Logarithmen behandeln, hat zwei Griinde. Zum einen
erfordert es technisch keinen Mehraufwand und zum anderen
liefert es einen willkommenen Test unserer Ergebnisse

Es erweist sich als vorteilhaft,den Limes €& 2 O. erst
auszufilhren, wenn die Beitrige sdmtlicher Graphen auf-
summiert worden sind.

Séamtliche Graphen, die einen nichtverschwindenden Bei-
trag zur LDLA liefern, werden in Abb.7.4 gezeigt. Alle
Graphen, die nicht gezeigt werden, sind entweder loga-
rithmisch nichtfilhrend oder aber ihr Farbfaktor
verschwindet. Graphen, die Fermionenloops enthalten, sind
nicht beriicksichtigt worden, da sie nicht logarithmisch
filhrend sind. Der Beitrag eines einzelnen Graphen ist

7;9((/)\/)(2“) (U e )[ [_é)([_/%’z; >‘552]L(; H (7.3.4)

worin [ die Anzahl der Schleifen angibt. Die GroBen (

und [{ sind in Tab.7.1 aufgelistet. Wir benutzen die
Abkiirzungen

G, = Gy -G,
G, (0 -G, )Gy -246,)

Ggp=(¢y-6,)0, (7.3.5)
Gﬂ;t : d;’ qﬁ
G G,

In Kapitel 9 wird die Berechnung des Graphen 55 stell-
vertretend fiir alle Graphen im Detail erlédutert. Die
Resultate fiir die Graphen 1 bis 6 stehen in Uberein-
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AL

Abb.7.4 (Fortsetzung)
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Tab.7.1

Graph G A
1 G, (1)
2 i s (1, 6,)°¢
3 /Gy (c, ,)°°
4 1 Gy 1
€ - &
5 i Gy T, (1-%, )
6 i Gy (1-2,°)
- e
I (5,554
! a' -2
! 8 G, -5, 0,) "/
9 GE - 2—4 Ta)-QG/Lf‘
10 G, S, )
1 Gy - (6,0, )5/
-2 N
12 G, o6/
13 Gy A
2 -€ -
14 G (t0) (1-¢,/2)
-€ e
15 G (tG) (1-7,/2)
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Graph G A
16 Gy (t, 5,0/ 2
17 Gy (5,%)%/2
8 6l (%, 0,0/ 2
19 G, (€, &)/ 2
20 GIQ -1 /Y
21 Gy -1/4
22 GI2 (4, 5,) /b
23 Gy (1)
24 G: SCI
25 o, | @ -2y
% | Gy | UG (1-5°)
27 Gy (7'42‘1)'6(4- £,°¢) 1 -22'6/2 )
28 Gy 73.2631.6(4- o )/2
29 Gy ,t,) (1-¢,)
30 Gp | % (-5 /2) /4

Tab.7.1 (Fortsetzung)
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Graph G A
44 Gy -1/9
45 Gy -1/
46 Gy ~(5,72)¢/ 8
47 Gy -(2,0,)%¢/ 3
48 Gy SR o)
49 G (5,0, (1-¢,°¢)
50 Ga | T
51 G; AN 6, ) (1-2,¢)

-1 (1-5,76)% /8

52 Gy - (1-6°%) /8
53 Gy L5 8
54 Gy | - (4-6FV-5) sy
55 Gy |- % Ct-52)(1-c7)% /2
56 | Gz /2 |- TP
51 | Gy /2 | -t (-8R
58 - G; - (4 . 2€) (-5, e /.

Tab.7.1 (Fortsetzung)
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stimmung mit [DI 81,F1 81] . Pin partieller Test unserer
Resultate ist mit Hilfe der Eichinvarianz mdglich. Bildet
man die Summe lber die BeitrZge aller Graphen, die man

aus einem vorgegebenen Graphen und seinem Partner, bei
dem ¢, und Zk vertauscht sind,durch Verschieben des
elektromagnetischen Vertex in der oberen Fermionlinie
erhdlt, so muB sie symmetrisch in T, und Ti sein.
(Beispielsweise die Graphen 33-36 ).

Die parametrische D-Funktion hat im allgemeinen die
Form (3.4.16). Dementsprechend treten vier verschiedene
Arten von SM auf. Jede der SM vom Typ hzga;ﬂzichz ent-
hdlt den in Abb.7.5 stark herausgezeichneten Teilgraphen.
Daher kann man sagen, dafl fiir endliche €, und t, der
dominante Impulsiibertrag durch diesen Teilgraphen fliefBt.
Die Symbole + , - und 1 kennzeichmen den Spinor-

+

Abb.7.5 Dominanter ImpulsfluB
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oder Vektorindex am jeweiligen Vertex, bzw. die dominante
Splnorkomponente des Fermionpropagators in einem System,
in dem P , P=pP. ist und alle anderen Komponenten von
P und 73 verschwindenh. Die dominanten Impulsfliisse
fiir verschwindendes Z; oder Zé sy die zu den restlichen
Typen von SM gehdren, sind komplizierter. Wir gehen da-
rauf nicht ein.

Wie man aus der Tabelle 7.1 ersieht, gibt es keine
logarithmischen Terme solange & #(O . Mit anderen
WOrten, sieht man einmal von der Singularitdt von

&'ng ) ab, so liefert die dimensionale Regularisierung
nicht nur eine Regularisierung der kollinearen Singulari-
tdten, sondern auch der Endpunktsingularititen. Dies
gilt nicht fiir die Beitridge der einzelnen Sequenzen.

Hier treten in der Regel logarithmische Terme wie z.B.
(0374 auf. Summiert man allerdings die Beitrsdge aller
Sequenzen eines Graphen auf, so heben sich die logarith-
mischen Singularitédten gegenseitig auf., Ein dhnlicher
Sachverhalt wurde schon in Kapitel 5 beobachtet.

Durch Aufsummation aller aufgelisteten Beitrédge erhalten
wir das Resultat
L

7}:'(0)[/)632): K/D(U7V7Q2)L§Lj.l Qll ’r((L -T) 1(/] ((’ : )) (7.3.6)

Damit ist die Exponentierung der fiihrenden logarithmischen
Beitrége aus [DI 81,FI 81] in nichttrivialer Weise veri-
fiziert. wir werden im folgenden davon ausgehen, daB die
Exponentierung der filhrenden logarithmischen Singulari-
taten in jeder Ordnung von &g eintritt.
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Te4 Dag Endpunktverhalten der Amplitude der harten
streuung T, (xy, Q)

Die Parton-Amplitude 7;a4p302)darf nicht mit der Amp-
litude der hargen Streuungu(x,y) Q’“) gleichgesetzt wer-
den. Mit J,(u,v,Q )schreibt sich der Pion-Formfaktor als

+1
??r(QQ) : fo/uolv ¢:(u) To (U,V,QQ) botv) (T
-1

—_ 2 2

Im Gegensatz zu /,(x,y,(") enthalt 7:(¢;,v, & /samtliche Massen-
singularitdten und die damit assoziierten grofSen Loga-
rithmen.

Um die Massensingularitdten von /pp(i, 1, Q) abzuspalten,
lassen wir ¢ im Exponenten der Verallgemeinerung von
(7.3.6) auf alle Ordnungen von A, gegen Null gehen.

To (b R%) = T, (b1, Q%) -

‘ 1 ot . (7.4.2)
.C’X/\){-Qﬂf q/;' /05’[,,'52 e -/Oﬂ ’;:,2 -3 /09 2.12;“(}

"Renormieren" wir (f)o (v) nach

2
2 s i’ & o ]

und ¢0(V) entsprechend, so tritt in (7.4.1) (/?[c/)@)na/' an
die Stelle von ¢, (v) und 7/',(0)1/)6?2/ .wird durch den
endlichen Ausdruck

sub

2 ° 2
TP (v, Q7) =T, (v,v,Q )
. (7.4.4)
. 0(5 - &~ ! {’ - A~ N
'CXP{QTT' d; ,Og L4L2 [Iog%ol +£ /03 (762—}]
ersetzt. C?OQ markiert hier die Faktorisierungsskala.
Prinzipiell ist die "Renormierung" von ¢5(1/) nur bis auf
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einen endlichen Faktor festgelegt. Unser "Faktorisierungs-
schema" ist durch (7.4.3) fixiert.

Mit Hilfe des durch
+/’

B, Q) = [du EG,@% 0,68 ) ¢, @) (7.4.5)
-

definierten Entwicklungskerns [XX)Q?U,Q;) ist es moglich,
die sogenannte "Inside-Out"-Methode [FI 81] y Wie wir
sie zur Berechnung von7;&4v302)angewandt haben, mit der
"Outside-In"-Methode, wie sie in (7.0.1) verwendet wird,
in Beziehung zu setzen. Graphisch wird dies fir die

axiale Eichung in Abb.7.6 dargestellt.

SR

— 2y =7 2 R
[ p (0,007 Sax dy 01,05 5, 0% (7.4.6)

O(u. QY )i | E(x,Q%u,Ql)

0 (x, Q" 1 v.al 0% 0*(y,Q*)

Abb.7.6 "Inside-Out't versus "Outside-In"-Methode der
Faktorisierung
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TGy, @) E(x,Q% v, Q)
mit
E+(o,6202;><,QQ‘)=E(x1QQ; U,@oi) (Te4.7)

2 2
Ex,Q%v,Q, ) ist explizit durch

_ o0 3/2 3/2
EG,Q% 0,00 =¢1-x*) 3, ;Z ¢, )¢, (U)@xp{-&(")t/ib} (7.4.8)

h=o "N

gegeben. Wegen (D.3) ist

Y2
2
E(X)Q3}L4<?:) - Jgt;ﬁ*z*- Jlx-v) (7.4.9)
(4-(/2)
so daB allgemein gilt
50 2 _
T, (0v,QQ ) Ty (yv, Q@) (7.4.10)

Daher haben wir in unserem Fall

T, (v, Q%) - THOCU) v, Qa)cxp{-lf-{,,-;— Cr /03 z, ’52} (7.4.11)

Der erste Term im Exponenten von (7.4.4), der in
(7.4.11) nicht mehr auftaucht, ist der Q- Variation
des Endpunktverhaltens der Wellenfunktion, die im Ab~-
schnitt 7.2.2 untersucht wurde, zuzuordnen. Um (7.2.10)
und (7.4.4) direkt vergleichen zu konnen, mu8 in (7.2.10)
die Kopplungskonstante eingefroren werden. Zu diesem
Zweck lassen wir die ﬁ}-Funktion verschwinden, die in
(7.4.4) nur durch den fitlhrenden Koeffizienten b ihrer
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Entwicklung in &g eingeht

A 2
LIVQ ‘ét = Ll'fl‘r ,oﬂQ/Q:' (7.4.12)
3

Wie man sieht, stehen die Resultate (7.2.10) und (7.4.4) ,
die auf vollig unterschiedlichem Wege gewonnen wurden,

in totaler Ubereinstimmung. Wahrend (7.4.4) nur fiir

kleine ¢, und 7, Giiltigkeit besitzt, ist (7.4.6) eine
exakte Relation. Daher kann durch Einsetzen von (7.4.11)

in (7.4.6) die volle GL Abhéangigkeit rekonstruiert werden.
Wir werden von dieser Moglichkeit jedoch nicht Gebrauch
machen,

T¢5 Phinomenologische Implikationen

Dieser Abschnitt ist der Untersuchung der Konsequenzen
gewidmet, die die Aufsummation der fiihrenden Logarithmen
in der Endpunktregion fiir die GroBe des Formfaktors des
Pions hat.Im Abschnitt 7.1 wurde bereits darauf hin-
gewiesen, da8 eine erhebliche Diskrepanz zwischen dem
asymptotischen Verhalten (7.1.13) und den experlmentellen
Daten im Bereich von Q% L S6eV bis Q% ]06ev vestent. Wie
wir sehen werden, filhrt die Beriicksichtigung der Endpunkt-
singularitdten zu einer wesentlichen Veradnderung des
Verlaufs von %.(Q") fir nichtasymptotische Werte von

(22 , so daB eine bessere Ubereinstimmung mit den ex-

perimentellen Daten erreicht worden zu sein scheint.

Ausgangspunkt unserer Betrachtungen ist die "renor-
mierte" Version von (7.4.1) mit dem harten Antell'ﬁa (b v, @ Y)
aus (7.4.4). Als Ansatz fiir die Wellenfunktlond)(u, Oo)ln
der Region &,=7 widhlen wir

Olu, @) ~ 7, " (7.5.1)
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Da davon ausgegangen wird, daB8 (7.5.1) die Wellenfunktion

1 . . 1~ .
<ﬁ&400 ) nur in der Endpunktregion T, 7 angemessen wieder-
gibt, kann die Normierung von ¢(U7ng) leider nicht mit
(7.1.12) bestimmt werden.

Bevor wir (7.4.1) mit (7.5.1) und (7.4.4) auswerten
konnen, miissen wir uns noch kurz einige Gedanken iiber
den Gililtigkeitsbereich von (7.4.4) machen. Bei der Ab-
leitung von (7.4.4) wurde implizit angenommen, daB(Q%;Ql
groB ist gegeniiber der Masse des Pions, der Massen der
Quarks und ihren mittleren Transversalimpulsen. Um diese
Einschrankungen zu beriicksichtigen, filhren wir einen Cut-
off én/4ﬂ92ein, so daB

(PRI (7.5.2)

Daher fiihrt (7.4.4) flr groBe <QQ zu einer starken Unter-
driickung der Endpunktregion. Das gleiche gilt selbstver-
standlich auch,falls eine Wellenfunktion der Form (7.2.2)
an die Stelle von (7.5.1) tritt, solange nur

MR/MQ 7/5‘ (7.5.3)

ist.

. . . . ey 2
Beriicksichtigen wir diese Einschriankung, so sieht fﬁ(k? /
folgendermafBen aus

T Q%) ~ de(@*) I /Q% (7.5.4)

ml 1

t
1 ?-4
T - falg folzz (r,6,)° O g -4):

(7.5.5)

-axp{D log €, T, +8/032T42“2} ,
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D-236:¢t/b (7.5.6)
und

_ P
B+ ds@*) Gy /40r (7.5.7)
Wir haben in (7.5.5) die gleitende Kopplungskonstante
"per Hand" eingefiihrt., Das Integral (7.5.5) ist in ge-
schlossener Form ausfiihrbar mit dem Resultat

{(rHD >_ B”
e |F(en ¢ +D
-Mﬁ{bﬂg[Bth+7+D]}' (7.5.8)

M + D gg”& hF
[*{B /03&4-_@_7—26“)-_—'2*@ ]
Darin ist F(x) Dawson’s Integral L[AB 72 ]

2 B 2
F(x)=e” fa’f e’ (7.5.9)
o

(7.5.4) ist in Abb.7.7 fir verschiedene Werte von
dargestellt, Samtliche Kurven sind aufﬂ(@gi &§6eV % 1nor-
miert worden. Die gestrichelte Linie entspricht dem
asymptotischen Verhalten (7 1. 14). Zur Auswertung von
(7.5.4) wurde &= C?Q/Qo , Q= 16e/tna A% O& Gav? gesetzt. Die
experimentellen Daten sind [BE 78b ] entnomnen. Der
experimentelle Wert an der Stelle Q%636eV ist will-
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kiirlich normiert worden. Wie man sieht, stimmt die Ge-
stalt des Verlaufs von 7y (@%) tir kleine p(<0&) wesent-
lich besser mit den experimentellen Daten iiberein, als
die asymptotische Form. Da die Normierung von (7.5.4)
nicht fixiert werden kann, bedeutet dies aber nicht,

daB auch die absoluten Werte besser ilibereinstimmen. In
Abb.7.8 haben wir (7.5.4) mit B= O dargestellt, es wird
also nur die Wellenfunktion modifiziert. Auch in diesem
Fall bleibt die Tendenz erhalten.

T.6 SchluBfolgerungen

In diesem Kapitel haben wir gezeigt, daB die Beitrige
der Endpunktregion zum Pion-Formfaktor fiilr groBe &}
unterdriickt sind. Umgekehrt liefert diese Region fiir
nichtasymptotische Werte von (Ql einen Verlauf des Form-
faktors als Funktion von (22 , der zumindestens der Form
nach besser mit den experimentellen Daten im Bereich
von sz’gée V;‘bistﬂf 10 6GeViibereinstimmt , als der Ausdruck,
bei dem die Endpunktregion keine besondere Rolle spielt.
Leider ist es nicht moglich,die Normierung der Wellen-
funktion aus ihrem Verlauf in der Endpunktregion zu be-
stimmen. Aus diesem Grunde muB nicht jede Form der Wellen-
funktion, die in der Endpunktregion einen dominanten Bei-
trag leistet,auch zu einer besseren Ubereinstimmung mit
den experimentellen Daten fiihren.

Der Ausdruck, den man nach Aufsummation der fiihrenden
logarithmischen Korrekturen in der Endpunktregion fiir
Tp(u,v,Qa) erhilt, hat viele Gemeinsamkeiten mit den
Strukturfunktionen, falls das Produkt %; % durch die
Bjorken-Variable (/-2 ) ersetzt wird. Im Gegensatz
zur tiefinelastischen Streuung jedoch, bei der die groBien
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2

Korrekturen durch Verianderung des Argumentes von ds(G’)
in der Altarelli-Parisi-Gleichung beriicksichtigt
werden konnen,reproduziert die analoge Modifikation
des Arguments von dsa?a)in der Brodsky-Lepage-Entwicklungs-
gleichung (7.1.2) nicht die logarithmisch filhrende Naher-

Tolu, v, Q%)
ung von /pl0,V, .

Ein weiterer Unterschied zur tiefinelastischen Streuung
resultiert aus der Tatsache, daB iiber ¢, und ¢, inte-
griert werden muB, um ?W(XQQ)zu erhalten. Daher kann die
Region ;<8 , die dem Grenzfall der elastischen Streu-
ung bei der tiefinelastischen Streuung entspricht, nicht.ohne
weiteres vernachlassigt werden. In [LE 80,82 ] ist aller-
dings gezeigt worden, daB der Beitrag zu 75(1?2) aus
dieser Region mit einer Potenz von 1/Q@* unterdriickt ist.
Unsere Analyse ist nur im Bereich [,{,7d giiltig. Die Be-
achtung dieser Einschrinkung ist wichtig, da ansonsten die

(h+1) -te Ordnung wie (2n)!/Ch-1)! anwichst.

7erfdlle von schweren Quarkonia lassen sich in der
storungstheoretischen QCD in einer gdhnlichen Weise be-
schreiben wie der Pion-Formfaktor. In [CH 82] wird
argumentiert, daB die Zerfallsrate in Mesonen, die aus
einem leichten und einem schweren Quark zusammengesetzt
sind, wie beipsielsweise~[;[f1)-, um zwei GroBenordnungen
{iver der Rate von Zerfallen in Mesonen liegt, deren
Konstituenten gleiche Massen haben ( z.B.'X1>Ef+ﬁf.).
Als verursachender Mechanismus wird das Zusammenwirken
eines starken Pols der Amplitude der harten Streuung
mit einer Wellenfunktion der Form (7.2.2) angegeben.
Angesichts der Resultate dieses Kapitels bedarf d{eses
Ergebnis der Revision. Das gleich gilt auch fiur LHO 81] .
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Teil C Beispiele

In den beiden folgenden Abschnitten mdchten wir an
Hand von zwei Beispielen illustrieren, wie die in Teil A
entwickelte Technik in einer konkreten Situation anzu-
wenden ist. Wir werden das logarithmisch filhrende Ver-
halten eines Graphen, der zum Sudakov-Formfaktor aus
Kapitel 5 (Beispiel I) beitrigt,und eines Graphen des
Prozesses q<§+ X“»z;@ aus Kapitel 7 (Beispiel II) be-
rechnen.

8. Beispiel I

Der Graph, dessen logarithmisch fiihrendes Verhalten
berechnet werden soll, ist in Abb.8.1 dargestellt. Er
entspricht dem Graphen 1% aus Abschnitt 5.1.

Der Beitrag dieses Graphen zum Sudakov - Formfaktor
fQY})Q‘qz)ist durch (5.,2.7) gegeben mit
A

/ Cea)P2re (8.1)
I =[da] ———% -
oy a @(o()p (qﬂ) 3¢ Z(ﬂ‘)
(8.2)

/S=3+36

Im allgemeinen wird der Zihler Z(x) nach den in 1.4
angegebenen Regeln berechnet. Da hier, im Unterschied
zum Beispiel II, keine Kontraktionen von Kantenimpulsen

beitragen, haben wir

-1 1 < 4 v A /
Z,(4) = YT apq)T"'P/KstK %j%gﬁ&%{f v

(8.3)

Bagy (%, 1, %)
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Abb.8.1 Graph 13 aus Abschnitt 5,1

mit dem Drei=-Gluonen-Vertex

Aaﬁx (P’H Pz;Pe)’ %Aﬁ (Pﬂ'/:’a)d

(8.4)
+Cﬂﬁ((f>a'/>3),< +%54'(/03-/J4)ﬁ .
Mit der Abklirzung
04/“... SV R - A SV (8.5)
schreibt sich die parametrische C-~-Funktion
GCA) = b1 (Ag Aoy + Bogq Agy s ) (8.6)






-180-

und die D-Funktion

-

; 2 :
D(4)- q [0(3 Ay (a{,,o, das6y * g dygsezq /7 ¥ /5 '7(8 ’(?
Fdy dp digy t dydg Ay dg 14y ds 4y 4,y ]
9 -
L e (A1g Aasqs * 45 412545,
tdy dedy dagq 4 Ay dp dy Ay
*P(,a/g /5 "{4867 u ”{4 A3 ds A9 ]
0 (8.7)
P Za/,, dg (/55 ”(.999 + g 0{96‘6‘?,{)
+¢{3 ﬂ{5~ r(g' /q * ”/4 '/’,l '(8 ”{3955
1 9{4 ’{t/_ ng(g * ﬂ(’rz I(g ’(9 ’(396’5
Fdady Ayygs Aagy * Ay 4, Ag Arg
f /3%5 '(7 /4$q J .
Die Indizes der FP sind in Abb.8.1 angegeben. Die Kanten-
impulse sind
C,'ﬁ=p'{_.a(q(d“s 455 +4‘g¢,0‘ase9s) t Ay dg Ay

(8.8a)
tdy dg 0‘395;]'744'(6 Ay ~Pdgds 4g

CYQ- R L’(? ’{434 0{3955 ’ "{9 ’(4 ’(%5& '(’/" '/6‘ 9/”"’] (8.8b)
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T Ay dg digq - P Az ds digq

dﬁg" ’O[La(q ('(401 ”<255'; * dg 0(42 56 M)
Filsdy digg  + A5 dg 4, ] (8.8¢c)

4 P,l'%‘ Ay digq + 4 A5 dg ) P [apds dygy + oy ds Ay ]

)
G Y~ -qldy(hg dasss + Ay dpzsspq)
b do dp dagg 1+ dq Ao Ay ] (8.84d)

C l/5 = p[:‘;(oﬂ%“ Aig + Ay dizay 7‘7>+/.'2’(‘3 A13q
tdydade |~ qLdy Ay drgy # Aydyg 4y ] (8.8¢)

Fp Ldydy dy + dydy duga ]

CIY PL”‘5(”(9’39? kg drg34 ?4)”‘9 oy Aoy q *de/g/J
'Ol[’(‘/ 4, /g. F dy Ay '{ﬂq] (8.8f)

'P’[o(sﬂ(; 0‘4;0, + 0(3 I(g t(qJ
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(8.8g)
P [v‘w(s Aayse t A Arsah aysp *dade drgq]
¢ Ys P Lds"é’_'("/ tdy Ay Aguss Ay dy A3yse - o, A, ,;(,;J
- (8.8h)
tPLdidyds - dydedg] =g Ldgdsdy- dydy d ]
/ o
Gy = p [44(0‘2 ve A6 * Agy dasgng) 4 dads oy
(8.81)

Pdadg Aaygel] - qdsdsdy - pdy dp Ay

Die Orientierung der V? ist in Abb.8.1 gekennzeichnet.
Zur Bestimmung der MSM ermittelit man zundchst alle SM,

die h (#) zum Verschwinden bringen. Daran anschlieBend
wird die Potenz berechnet, mit der ZCB) bei linearer
Skalierung dieser SM verschwindet. Dazu zerlegt man die
Kantenimpulse )ﬁ nach den beiden unabhdngigen Impulsen

f und p' » die, was Z(4A) Dbetrifft, als lichtartig
betrachtet werden. Skaliert man beispielsweise die SM

{ Ay, du.} so gilt

Yo~ p't 0Q) i~ 4,2,%, 8,9 (8.9a)
Y.~ p +0(Q) /= 6,6 (8.9b)

Daher ist
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A ¥ )
Yl x Xlk P A"ﬁﬁ
| . (8.10)
=2ppp.’2p('r’g-‘fq)+(5’6ga)~0(8) ’

so daB die effektive Liénge dieser SM mess =3 ist. Auf
diese Weise erh&élt man die in Tab.8.1 aufgelisteten MSM.

Aus den MSM muB nun ein vollstidndiger Satz unabhingiger
Sequenzen konstruiert werden. Zur logarithmisch fiihrenden

o ww e L)
{dy, 4} | h 0
{"a; 45, 4g ) h o
{“9:33,/9”{?:43} h 1
{ dy, 4s h, 4 O
{Ag,/y,/g’lg} g, 4
{“2/0‘9,"9,45,%,4,19} h, g 2
{4, 42, 45 ] has | O
{'(m Ay, Ay, 4g, 4g | hgs y
[diyda,da, dy, 43, 45, 4e } h. 4a 9 ’;

Tab.8.1
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Neherung tragen nur die Sektoren bei, in denen entweder
Az s A, oder oy nicht verschwinden kann.

Im Sektor, der durch o3 gekennzeichnet ist, lassen sich
folgende Skalierungen nacheinander ausfiihren

{p{ﬂ)dexav’(ﬁ;i‘f}

{AQ)JQ) AG} éé}

(8.11)

Wir haben jeweils den Parameter unterstriehen, der in den
nachfolgenden Skalierungen nicht mehr auftaucht. Da im
vorliegenden Sektor keine weiteren Skalierungen moglich
sind, ist die Sequenz vollstiandig.

Im Sektor, in dem o4 nicht verschwindet, konnen zu-
nachst alle MSM, die dg enthalten,aus Tab.8.1 gestri-
chen werden. Von den verbleibenden MSM kann { dy, 2{5}
sofort ausgefiihrt werden, da ds in keiner weiteren MSM
auftritt. Fihrt man eine A -Transformation von.{du,gg‘}
aus, so 1&Bt sich als nidchstes {dsié&}skalieren. Da-
nach ist dann keine weitere A\ -Transformation mehr moglich,
80 daB auch eine der MSM unabhingig wird. Daher fiihren
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wir als nédchstes die Skalierung von {a(,,)AQ, Ay, dg, dg, A }
aus. Bleibt A groB, so konnen

{"M”‘-’M”‘Q ) ’(‘Z) io/}
{f{_a ) ”(R’ '(8}

{i(a: ”_‘3)”13}

bleibt dq gro3, so konnen

{"(9;’{31"(91&_}
{f‘j)”‘ﬂ?d’.%}

{éﬂ) OLB) ”_(_2}

ausge filhrt werden., S&@mtliche anderen Sektoren, die nach
Ausfiihrung der Skalierung von {Anoﬁ,ds,dg,dq;*} durch
Nichtverschwindenkdénnen einer der skalierten Variablen
gekennzeichnet gind, liefern keinen Beitrag zur LDLA.

Dies kann mit der in 4.1 beschriebenen Methode nachge-
priift werden. In dhnlicher Weise werden auch die Sequenzen
in dem Sektor konstruiert, in dem g von vornherein
grof bleibt.

Ist gesichert, daB die den Sequenzen zugeordneten
Regionen disjunkt sind, so spielt in der logarithmisch
filhrenden Naherung die Reihenfolge der MSM innerhalb einer
Sequenz keine Rolle mehr. Deshalb kann von hier ab auf
die Einhaltung der Reihenfolge der MSM verzichtet werden.
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Insgesamt bekommt man folgende unabhingige Sequenzen:

F

{4y dy dy, dg, dy ]
{0, 4, 45, 46§
{42, 43, 43}
{d,,d2,44]
{43, 4y ]

{4y 45

3

{dy dy Ay dside, Ay dg }
{4y, ke, s, 4o §
{dy, Ay, 43}
{d) Ay dy)
{4y, 4,

{4, 45

C/

{dz,xs,x,,xé.,,{g,xg,/g}
{dy, Ao, dy, ds, 45}
{42, 43,45
{4, 4y, dy |

{45, 44 }

{do, 45}

D

{4y daydn, dy) 43,49, 49
[darha, dy, dg, 4 }
Fdy, dy, ds}
{0‘4)0‘2;"%}

[ay, dy}

L dy, ds ]

(8.12)
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o
-

fam

{"{w "97”‘3) ”‘9)’(% '487 '{9'}

{:0{,7,0(3) p{‘// '(7)"(8}

{0{2/”"3)“(9}

[ 4)) 4y, da }
{4y, 4§

.

1_”{9) 0(5}

Stellvertretend fiir die ilibrigen Sequenzen, berechnen wir
nun den Beitrag der Sequenz A zu I’ . Skalieren wir die
an der i-ten Stelle in (8.12) aufgelistete MSM der Se-
quenz [{ mit ¢; , so ist

d1 % 84 84 A4

dy = 84 8 §3 42
A3 8, 82 §3 & s
dy * 82 85 8¢ Ay

ds = 82 8¢ 026‘ (8.13)
dg’ ga

Ay = A

Ag = 8184
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Dabei wurden Beitridge von hoheren Ordnungen in den <. ,
als sie in (8.13) angegeben sind, vernachlassigt. In
der gleichen Nzherung ist

§Ldad« [ (fdlg,)Cgh 52 85 6. 80 86 )

(8.14)
o, iy 82,14, 1) [, iy 8y oy - 1)
C,’(Mr 8,82 ’ (8.15)
h(4)= G (48,8, 858y 85 56 (8.16)
:J,,Os')z (,“(a()ga ¢ ,25. ’ (8.17)
Gu(4) - C(4) g, g 4, . (8.18)
. /3’ 42,3, AV RN - ’ (8.19)
l.,é_ - /3 gé_ J{ , (8.20a)
Vi P S G586 du - o G4 85 6 ,  (8.200)
\fg : -Plg‘*’(.,’ -/) gﬂ QS' 675‘ aZg (8.200)
\l-'% = /a'gt, X,,-/Dga Ca G5 8¢ dy , (8.204)
und
2Ca)= (g% dy ¢, G5 Ss (8.21)

Damit ergibt die Integration iiber die §; fiir die Mellin-
Transformation von I’
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105-6,- o) ,
[T} - { AR, ML)
(8.22)

4 i 4 / 7 7 g
~~~~~~ P e —_— _L

26 036 (i0,3¢ (-3¢ (il-3¢ A 3¢

mit

T- fo/,( di, 8 (X, 14, - 7)fa/ah, dds SChy 145 - 1) - (8.23)

~ _lr . C
‘J(L,/(()(g”ﬂ(,,z)

In der Nshe von (;+{+0 ist I:1/2, In analoger Weise be-
kommt man die Beitrage der ilibrigen Sequenzen., Diese Bei-
trige erhdlt man aus (8.22),indem die den einzelnen

MSM zugeordneten Pole ausgetauscht werden. Dies geschieht
mit den in Tab.3.2 angegebenen Regeln, wobei sich iﬁ,@ fqo
und {,, nach (3.3.9) berechnen. Addiert man die Beitrégé»

der einzelnen Sequenzen auf, so wird

', 1 X, (8.24)

Der Ausdruck fir ‘>{L wird in (5.1.13) angegeben. Addiert

man das Resultat fiir den gespiegelten Graphen hinzu,
so bekommt man genau den in Tab.5.1 angegebenen Ausdruck.
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9. Beispiel II1

Als zweites Beispiel mdochten wir die Berechnung des
Graphen 55 der Parton-Amptitude 77+ J ﬁtyq aus Abschnitt
7.% vorfilhren (siehe AbD.9.1). Sein Beitrag zu ToCO 1, RF)
lautet

e a4 ,
Tl @)+ 6 [ 2 qf?y) | T e 1 (9.1)
mit
p-Ae
(‘,(0‘) (902)
r [O/o( C.
(\) ]D( )p(q;_).ze 27‘) ’
p‘ 3+2e€ (9.3)

worin Z(A) durch
20h) < - T v
A gq 2. rﬁ(rg(y%,g ﬂ}’/GJ/DJ/ (}/

, : £ ©(9.4)
A%/?K ((fa; Lfs;‘h)ﬂ/w (Y‘nlfs) ) %
+ Kontraktionen
gegeben ist.
Die parametrische C-Funktion ist

Ca)= dyng diyy +ds Banayes (9:5)

die D=-Funktion
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— - :
1'.‘U P\\\ \\\\ ’I’/1+V P,
\ . ,

2 .. ' . 2
\ pF) v
\\ \\ ’IL-
\\44 5\\\\ ,/’6
\\ B \v'/a
[N 7’
N ,"Y
N k.
oo LT
I
1-U VY 1
- -V
‘ N i ) 2
Abb.9.1 Graph 55 aus Abschnitt 7.3
DCa) = g*{ 4
7L(Z:4 (1‘30(9 ,7{5.
+'('ll_0(:zi(6 0‘4‘,6;‘}0(4 0{5 r(é' lo/pl/S'/;? (9 6)

td,dy Agase |

POy Ty [y dy Aagss A ds 4o ]

und die Y; sind gleich
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ql@‘(%‘c})/odq dosss +(P+E, p/)[”{?”(-’lwb‘ Hsdg ]

(9.7a)
+(PHP') dgds
d\(g:(@*@]_@,)[a{(;/; *0(5”(4#67:] +(4'?4)/0d9 A5
- (9.7b)
+(¢)+P)0(30</"f67'
Gy = ~CPIP Ay dyygn 4 Agde 1-CEP 1Py
(9.7¢)
‘(4'@1)@[454‘4957 I ds Ay ]
Gy = (10 )P A dyggp # dads 1-CCP 1070 oy d,
(9.74)

- (2‘,,@*,[2 7‘)1)[-0(; 0(235_6 # 0{5 A’;]

= (16, 0Pdy by 1 CP G P') Chy - dy ) -(P1P) oy

/ ’ ; (9-76)

Gl = (18P dy dyy gy - Ceu Pt P dydyysy g As )

, (9.7£)
(6P P) dy d
dlf? < .[‘(1 73*2‘27.)/)0{# 0(336-5 +(4'@2)¢3 0{3 1(5-
(9.7g)

(P 6, P') (dy dggse + dydy )
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Zusdtzlich definieren wir

Yo < L, P+ P (9.8)

Die MSM werden auf die gleiche Art wie schon im vor-
ausgehenden Beispiel bestimmt. Im Unterschied zum Bei-
spiel I tragen hier auch solche Terme 2zu ZCd) bei,
die proportional zu Potenzen von ¢, und ¢, sind. Daher
miissen die MSY fiir jeden Term einer Entwicklung in ¢,
und tz einzeln bestimmt werden. Es kommen die in
Tab.9.1 aufgelisteten SM als MSM in Frage. Um spdter
darauf Bezug nehmen zu kdnnen, haben wir die einzelnen

SM durchnummeriert. Mit

Nr. SM Typ

L09)

|
f
|

;’7? {dg } h>%4 O
l

2 {o{,,,o(a} h, CJI v

3 {“‘37 "57’(?} h)%v?a)?ﬂ O

L {o‘aﬂ‘%ﬂ(s»ﬂ‘a} L"%” 1
5 {0‘4)0‘2)0(%, p{s)db'} "7,%4,%2 4 |
6 : {0{2) 0{3) "(5) ”{6) A3 } h’%”%’“%/u T

e =% Sy 4 e - e s e s b e

Tab.9.1
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+ 3
V.o Py P (9.9)

!

wird

ZQM—i{Y v (- e ) (-
A = - - (9.10

+Y4Y173(k@-n)(y‘,y;)} )

falls die Kontraktionen zunidchst unterdriickt werden. Ent-

wickelt man (9.10) nach Potenzen von ¢, und 7, , so

stellt sich heraus, daB nur der ?f, Term des zweiten

Summanden in der geschweiften Klammer einen Beitrag

zur logarithmisch fiihrenden Nzdherung liefert.

2Betrachten wir zuerst den Term , der proportional zu

t, (4 ist., Er ergibt sich mit der Substitution

(rg-%) (v, + 7)) > -4, T[CCOt By Gags *Aads]

[ day Fansg t dyds + A Rrygy tds A ] o
aus (9.10). Fihrende Beitrage liefern solche SM, die in
der [ -Ebene Pole in der Umgebung von (-0 & rsl her-
vorrufen. Dies leisten die SM (1),(2),(3),(5),(6). Sie
bilden gerade eine vollstidndige Sequenz. Da die MSM (5) vom
Typ h, gﬁ%; ist, gilt fir die in (3.4.18) definierte
Funktion 2 |2/> oo - Laher muB die ¥orm (3.4.20)
der Mellin-Transformation benutzt werden. Die Skalierung
erfolgt auf die gleiche Weise wie in Beispiel 1 . Man er-
h&alt

r{1}--2 {’YD[ G- ’)j e, ree,)

riep) (9.12)

7 Y 4 1 7 2

.
(0,-2-2¢) (¢,-2e)C2e)(-c)(-¢) *




-
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Die Inversion ergibt

_ 1 .- AE € 2
I =(-1) zf—éjr t, (1- Cy ) (9.13)

Betrachten wir als nidchstes den Term, der proportional

f-‘0~ N o »
zu (, t, ist, Man erhdlt ihn durch die Substitution

(q-%)%+%) » -0 /:C(*) t Aaagg Are * "{945 I
: (9.14)
'(4"2)[0(30‘51‘0‘3 0‘445'}] :
Nun sind die Singularitéaten um &rC’,é’:4 von Interesse,
Die MSM (1),(2),(4),(5) und (6) filhren zu solchen Singu-
laritdaten., Auch sie bilden gerade eine Sequenz. Das Re-
sultat ist

/ 1

e .26 P
I' 3 aey (W55 (1-57¢) (9.15)

Wenden wir uns nun den Kontraktionen zu, die in (9.10)
vernachlassigt wurden. Durch eine Kontraktion erhoht sich
der Index ,5 um Eins, Dieser Effekt kann nur dadurch
kompensiert werden, dasB ﬂ@j wie 7/§ skaliert. Da-
her scheidet die SM (%) aus. Die Analyse aller mdglichen
Kontraktionen zeigt, daB8 nur die Kontraktionen der Kanten
es,es' und CQ) Cg beitragen. Es ist

R35= -(o{,,+o(# f‘d?)/d(g‘) (9.16a)

und
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= (d, +dy +de +ad3)/ G(a) (9.16b)

In beiden Fallen bilden die MSM (1),(2),(4),(5) und (6)
wieder eine vollstidndige Sequenz. Die Isolation der Pole
geschieht auf die gleiche Weise wie bei Abwesenheit der
Kontraktionen., Man erh&dlt das Resultat

- ! 3 -¢ z\-ﬂe ~~-€ 2

= - = Cp = L A=t
I 226»( 2 J(1-877) (9.17)

Addition von (9.13),(9.15) und (9.17) ergibt

-

- ! 4 1 2
L= gt T (1-5C/2)C1-57 ‘) (9.18)
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Anhang A Verallgemeinerung des Karplus-Kroll-Operators

In diesem Anhang werden wir eine Verallgemeinerung des
&D -Operators von Karplus und Kroll [KA 49] vorstel-~
len, mit dessen Hilfe die Relation (1.4.4) gezeigt werden
kann, Ist der Operator &ng , der urspriinglich von
Karplus und Kroll eingefiihrt wurde, dazu geeignet, um
gy im Z&hler von (1.4.1) zu ersetzen, so ersetzt der

Operator
00
79 f,b /Q
ﬂ,‘-//')q... ,U,')S’ 2 @a'lu')s, 2d(.,’)s ‘Z IU; (S' -1) ('/(
'n‘ /}5; (Ao1)
0
19 . -
9 J‘ C/LI)‘f /
i C’ ',.z"’dl a; =0

aufgrund von

Doy e [(giva) .,,+/e;]-

i (A.2)
ql";‘ "q,U:',S,' 1_ q,’z' m,'z $ G’F.J

das Produkt qp¢4.. qpbg . Falls ¢,=- , so ist
rm? als untere Grenze der (jfﬁ4-lntegration in (A.1)

zu nehmen. Wir werden hier (1.4.4) nur fiir den Fall ab-

leiten, in dem alle .5/ % 1 sind. Der Fall, in dem einige

S, verschwinden, erfordert nur geringfiigige Modifi-
kationen,
Durch Einfithrung der Hilfsimpulse 4, , f<h -, N wie in

1.4 beschrieben, bekommt man die parametrische Funktion

N

U 2/0 A(¢) - C’(A)Za(sfcs,, (&) + D (A.3)
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mit

D23 arys 220 aain -3 gl

1EEh 1er<)<h 16/ €N { (A.4)
und
N |
vy = 2 R K¢ (A.5a)
¢
Ty 2, rx(e) /4 (4.5D)
£3¢,6
(A.5¢)

TR ge; X (€ ) )

In (A.5b) ist das positive (negative) Vorzeichen zu wih-
len, falls die Kanten & ,¢; Dbeziglich € gleich
(verschieden) orientiert sind.

Zur Ableitung von (1.4.4) ist im wesentlichen der Aus-
druck
h

(P T’ —PM
{r/ "[/)/./,,4...}/,)5'" /J (4.6)

zu ermitteln., Dies geschieht am zweckmédBigsten, indem
zuerst simtliche Integrationen, die in (A.6) enthalten
sind, ausgefiihrt werden, um anschlieBend die Ableitungen
vorzunehmen, Die Integration in (A.6) fihrt auf

h 0 0o —A-
(\// Jﬂ)fu,’,s,..‘ J{)f '(x,',‘, D” /o
o a7 (4.7)
7 [ C-1) jsﬂfﬁ_ S8y st 5
By g # F(ﬁS) .

Dabei ist
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P - = <
D-00) + 1D - CC4) Z, C//Qa(/
=1

Mit den beiden Regeln

areq

12 0.0 e 0 d
2 6q; V',L ® ("r) D ///';ﬂ

und

2 8k dyim * G o i

(A.8)

J<s; (A.9a)

(A.9Db)

lassen sich die Ableitungen in (A.6) einfach berechnen.

In (A.9) bedeuten

A,
/Jl; (\7/ + 7 )//, ( 10&)
und
/7','/' : 2; - do(,’ (Ao10b)
Man erh&lt
P +S, .. +8
4 f/ @ , Pt +3,
= ’@ Pn,8, ,9 Fa,4 Z)
2 aah ol 2 a,’
848,78 _p+6
= 5 (=) ’:C,O_:_“Z)__ r P (4.11)
G310 F(/O'S,,...'S‘h)
' l_leh,Sn 0//./4,4 .(G kONTR
Hierbei ist E ,IG-kONTQ die Summe aller Terme, die

man durch Auswahl von © Paaren aus der Menge der a@hi

und Kontraktion jedes Paares nach
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o . 1 it
!I‘/IJ‘)[ O/Iuﬁlph;— % 2 (3//‘/")‘ Foym 7"0 (A' L 2)

erhdlt, Durch Einsetzen von (A.11) und (A.7) in (A.6) be-
kommt man schlieBlich (1.4.4) ,wobei

W - Ty (A.122)
i<, did; GCA) ’

D S
P X,’GC") (A.12D)



-




-201-

Anhang B Lichtkegelvariablen

In diesem Anhang mdochten wir einige Eigenschaften
der Dirac-Matrizen vorstellen, falls anstelle der ge-
woéhnlichen 0,1,2,3-Basis eine +,-, L -Basis gewdhlt wird
[ CH o8 .]. Diese Basis erweist sich bei der Berechnung
des asymptotischen Verhaltens eines FI h&dufig als vor-
teilhaft. Sie ist fiir einen allgemeinen Vektor & durch

d, = (g, t d;)/ VT

(B.1)
o, = (04,0)
definiert. Damit schreibt sich das Skalarprodukt
Ol'b=a+b-+01-b+‘a¢b4. (B.2)
In analoger Weise filhrt man
K b (60 : 637 /1757
(B.3)

= o pe)

ein. Damit wird

K+ K+ = X K : O (B.4a)
{ [+ K} = (B.4b)
[yeopud-o0 (B.4c)

{K*’K*}"Qﬂ' (B.4d)






-202-

Bei der Berechnung eines Produktes aus X -Matrizen
kenn man die 61 -Matrizen getrennt von den 6¢—Ma-
trizen betrachten, da ihre Vertauschung aufgrund von
(B.4c) lediglich das Vorzeichen &dndert. Fiir die

5: -Matrizen gilt

el (o) - 2y 2.5
und fir diehL K
;ga it o 2O

kt' 4, L £ ungerade ’

(B.6)

(g,
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Anhang C Einige Eigenschaften der hypergeometrischen

Funktion F(4,/3; X; 2)
7 U

Die hypergeometrische Funktion F(d, /3 ( 2) ( siehe
z.B. [CR 65b] ) ist durch die Reihe

T, 2 ["Catn)(31n) .

definiert., Diese Reihe konvergiert fiir [2/< 7 . Auf
dem Konvergenzkreis !2/=1 ist sie

i. divergent, falls K@ (G-aﬁ-ﬂ> < -1
ii. absolut konvergent, falls 7?8(5 A-f3)90
iii. Dbedingt konvergent, falls -1 < ﬂe(5 A - ﬁ;) <0
2 = 7/ ausgenommen
Ist Re K) Re 3 so kann f(dﬂ J 2 ) durch ein Integral
dargestellt werden

1 5 -
Tl By pi2) e fdtéﬁ (-0 T e
5([3)2{ 3)

Um I(),ﬂ;x;?)ﬁber den Bereich hinaus, in dem die Reihe
(C.1) konvergiert, analytisch fortzusetzen, konnen fol-
gende Transformationen benutzt werden

FCafipe) = Coa) " 7Ca, g B i 2/Co- ) (¢.3)

) O a-fo) o
FCa By “Q?Méfg Ty TChaipeyets Te)

(C.4)

, Zf""pf"(})/"’(mﬂ-x) - g
1- / Ay k-3 A3 )
2 rearca)” PO P ‘
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“qu(ﬁd7¢5667%47%43fﬁ%?ﬂ
Fla By 2)-(1-2 [(BIPCy-a)

(C.5)

Ao /01-2)
/s /3 F(X (4 -3) f_(/;/(}"’{"ﬂ'd’L 7y 1/C1-2))
+( P(“‘)P((Y /3)
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3,
Anhang D Einige Eigenschaften der Gegenbauer Polynome C/yy %)

Siehe z.B. [GR 65b]

Orthogonalitat:
+
de (1-x )C' (x) in Cx) = & L, (D.1)
(1tn )i n)
‘2 C3+2n) (D.2)
Vollsténdigkeit 1
r?o nG’ (")(J (>’) Slx- y)(“ x*)(1-y ) (D.3)
52
.f",'” CA) = (it 1)(n+ Q) /9- (D.4)
3, 3.
[d ol < G, () (D.5)
- ) ’, Jo )
fo/x(//-x )G, (x) (1-x) = h, (Zn+3)"
-7 (D.6)

9 [C1ty) Plnt 1-y)
PC1-y)P(n+3ty)
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