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Abstract

A general method is developed which allows the calculation
of the asymptotic behavior of Feynman integrals in the
limit of several large scales. It is employed to deters
mine the asymptotic behavior of various parton amplitudes.

We make use of the parametric representation of Feynman
integrals. Topological formulae for the various parametric
functions of the parametric representation are derived.
The asymptotic behavior is discussed within the general
context of singularities of Feynman integrals set by the
Landau equations. It is shown how the asymptotic behavior
of a Feynman integral can be calculated systematically in
the limit of several independent large scales with the
aid of a multiple Mellin transform of its parametric re-
presentation. In order to calculate the asymptotic be-
havior the parameter space has to be sliced. A general
algorithm is presented.

We report the results of an explicit calculation of the
leading asymptotic behavior of the quark form factor in QCD
in the limit of a large virtual mass of the photon up to
C?(¢x:). In contrast to previous investigations we regul-

arize infrared singularities by keeping either one, or both
quarks off shell, or both quarks on shell. Our final re-
sult is represented by the beginning of an exponential series.
We determine the asymptotic behavior of the deep inelastic
leptoproduction structure functions in the quasielastic re-
gion in the leading double logarithmic approximation. Finally
we investigate the end-point singularities of the hard scatter-
ing amplitude of the pion's electromagnetic form factor. We
calculate the leading double logarithmic corrections to the
hard scattering amplitude up to two loop order.
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Einggitung

In den letzten Jahren haben sich die Hinweise darauf,
daB die starke Wechselwirkung durch die Quantenchromo-
dynamik {Q92} angemessen beechrieben wird, stark ver—
dichtet.'Bzfnichtstorungstheoretisohe Methoden gegen-
wértig noch in der Entwicklung begriffen sind, beruht
diese Evidenz hauptséchlioh auf den Voraussagen der
perturbativen QCD. Der Anwendungsbereich perturbativer
Methoden ist aufgrund der asymptotischen Freiheit der
QCD auf solche Streuprozesse beschrénkt, in denen min-
destens ein groBer Impulsfibertrag auftritt. Diese Tat-
sache hat weitreichende Konsequenzen.

Wegen des groBen Impulsfibertrages konnen samtliche
Quarkmassen vernachlassigt werden. Daher treten verschie-
dene Arten von Singularitéten auf. Kfirzen sich die durch
das Verschwinden der Gluonenmasse verursachten Singu-
laritéten im allgemeinen aus den Ubergangswahrscheinlich-
keiten heraus, so gilt dies nicht fflr die durch das Ver-
schwinden der Quarkmassen hervorgerufenen kollinearen
Singularitéten. Dies erfordert eine Reorganisation der
Storungsreihe. Fur eine groBe Klasse von Streuprozessen
konnte in Analogie zur Losung der Renormierungsgruppen-
gleichung gagg) gezeigt warden, daB solch eine Reorgani-
sation tatEEEEiich durohfflhrbar ist [EL 79] . Sie be-
steht in einer Aufsummation der kollinearen Singularitaten
fiber alle Ordnungen von d3 , der Kopplungskonstanten der
starken Wechselwirkung.

Héngt ein Prozess von mehreren unabhéngigen groBen Im-
pulsfibertrégen ab, so treten zusétzliche Singulariteten
auf. Bekannte Beispiele sind die Partonenverteilungen an
den Grenzen des erlaubten Phasenraumes oder der Drell-Yan-





a
ProzeB in der Region QL<< Q1 . In solohen Regionen sind
daher weitergehende Summationen notig. Die Vorschlege,
wie solche Summationen vorgenommen werden konnen, die in
der Literatur zu finden sind, haben oft einen ad hoc Cha-
rakter und die Begrfindungen eind haufig unvollsténdig,
so daB verschiedene dieser Vorschlége nicht konsistent
untereinander sind [PA 79,.DO 80b, FR 82] .

Angesichts der Schwierigkeiten, die ein Beweis der
Summierbarkeit solcher Singularitéten in allen Ordnungen
von d5 aufgibt, ist es wichtig,die prezise Form der Singu-
laritéten in niedrigen Ordnungen zu kennen. Zu diesem
Zweck benotigt man eine effektive Technik, die es erlaubt,
solche Singulariteten aus Feynman-Integralen LEE) zu iso-
lieren. Die Entwioklung solch einer Technik ist das Ziel
der vorliegenden Arbeit.

Grundlage bilden die Methoden zur Bestimmung des asym-
ptotischen verheltens eines FI , wie sie zu Beginn der
seohziger Jahre zur Untersuchung des Reggeverhaltens in
der Feldtheorie entwickelt und eingesetzt worden sind
[T ED 66, P0 80 J . Der Anwendungsbereich dieser Methoden
ist auf Prozesse beschrenkt, in denen ein einziger groBer
Impulsfibertrag euftritt. Wir werden diese Methods so ver-
allgemeinern, daB auch das asymptotische Verhalten eines
FI 1m Limes mehrer groBer unabhéngiger Impulsflbertrege
berechnet werden kann.

Ausgangspunkt unserer Untersuchungen ist die Form des
FI , die man nach Ausffihrung der invarianten Integration
erhélt, die sogenannte parametrische Darstellung. Im
ersten Kapitel werden wir topologische Regeln ableiten,
mit deren Hilfe die parametrische Darstellung eines FI
direkt aus dem Feynman-Graphen bestimmt werden kann, ohne





daB die invariante Integration explizit ausgeffihrt werden
muB. Das zweite Kapitel enthalt einen Uberbliok fiber die
Singularitaten von FI. Ziel dieees Kapitels ist es, einen
Zusammenhang zwiechen Masaeneingularitaten und aeymptotischen
Singularitaten herzuetellen, sowie allgemein zu erlautern,
welche Teilregionen dee Integrationeraumes der parametrischen
Darstellung eines FI fur die beiden genannten Arten von
Singularitaten verantwortlich eind. Im Kapitel 3 wird ge-
zeigt werden, wie man die aeymptotieche Entwioklung einee
FI eyetematisch mittels einer Mellin-Transformation be-
etimmt. Dies geschieht zueret fur den Fall von zwei groBen
Impulefibertragen und wird anechlieBend auf den Fall von drei
und mehreren groBen Impulsfibertragen verallgemeinert. Das
letzte Kapitel des Teils A, Kapitel 4, enthalt die Beechrei-
bung einer Methode, die as erlaubt, das Integrationegebiet
systematiech zum Zweck der Bereohnung dee aeymptotischen
Verhaltene zu zerlegen.

Im Teil B berichten wir fiber die Resultate, die mit der Tech-
nik,die in Teil A beechrieben wird, ffir daa aeymptotieche
Verhalten

a. dee Sudakov-Formfaktore (Kapitel 5)
b. der tiefinelastiechen Streuung in der quaeielaetischen

Region (Kapitel 6)
c. dee Formfaktore dee Pions in der Endpunktregion

(Kapitel 7)

berechnet wurden.

Im Teil A wird weiteetgehend auf die Illustration der
einzelnen Schritte zur Berechnung dee asymptotieohen Ver-
haltene durch Beispiele verzichtet. Statt deseen ffihren
wir eamtliche Schritte nacheinander fur zwei Graphen der
Prozeeee aue Kapitel 5 und 7 in Kapitel 8 und 9 vor.





Tail A Allgemeine Methoda

1 garametriscn§_Darstellung von FI

Die Barachnung aines Feynman-Graphan erfolgt gawohnlich in
mehraren Schrittan.Nach Wahl der unabhangigan Integrations-
impulse wird dar Impuls Jeder ainzelnen Linia das Graphen
ermittelt und dar antspreohende analytische Ausdruck nach
den bakannten Feynman-Ragaln niedergeschriaban. Im An-
schluB daran warden die Nannar dar ainzelnan Propagatoren
durch Einffihrung einas Feynman-ParameterS'ggig (15 fur
jade Linia mittals dar bakannten Feynmanschen Identitat
zu einam Integral kombiniert, dessen Integrand nur noch
einen einzigan Nenner aufweist. Dann warden die inneran
Impulse so transformiert, daB der Nennar ein rainquadra-
tischer Ausdruck wird, und die invariante Integration fiber
die inneran Impulse ausgaffihrt. Daduch gelangt man zu der
sogenanntan paramatrischan Darstallung des FI. Zum SchluB
blaibt noch fiber die ainzelnen FP zu integriaran.

Die Analyse das asymptotischen Verhaltens eines FI laBt
sich prinzipiall sowohl vor als auch nach dar invarianten
Integration durohfflhran. Da in dar Regal eina Vielzahl von
Graphen zu analysiaran ist, spialt dabai dar notwandige
Aufwand eina wesantlicha Rolle. Im ersten Fall ist es
offensichtlich wichtig, die unabhanigen Impulse gaaignat
zu wahlen (sieha z.B. [:SU 56] ). Diesa Methode arweist
sich dann als vortailhaft, wann die Impulsflusse, von

danan das asymptotische Verhaltan harrfihrt,bekannt sind.
Sind diesa jadooh erst zu bestimmen, so ist die zwaite
Mathoda vorzuziehen (siaha 2.3. [HA 74] ). In diaser
Arbait warden wir ausschliaBlioh den zweitan Wag wahlen.

Sind zur axakten Brachnung von F1 in dar 1-Sohlaifen-
naherung noch samtlioha oban genanntan Schritte fur einen





Graphen ohne weiteres expliZit aueffihrbar, so ist dieses
Verfahren bereite in der 2-Sch1eifennéherung éuBerst mfih-
5am. Allerdings ist es auch gar nicht notwendig.ffir einen
bestimmten Graphen alle einzelnen Schritte explizit aus—
zuffihren. Vielmehr léBt sich die parametrische Darstellung
einee FI mittels der sogenannten topologischen Formeln
direkt aus dem Graphen ablesen. Diese Methode besitzt
nicht nur fur die exakte Berechnung von FI eine groBe Be-
deutung, eie ist auch Ausgangspunkt ffir die Beetimmung des
asymptotiechen Verhaltens. Aus diesem Grunde werden wir
diese Methode im vorliegenden Kapitel im Detail ent-
wickeln.

Historiech wurde die allgemeine Form eines FI zuerst
von Chisholm [CH 52] ebgeleitet. Die parametrische
Integraldarstellung entwickelten Nambu [NA 57a, 58]
und Nakanishi [NA 57b] . Allgemeine Regeln zur Berech-
nung der darin auftretenden parametrischen Funktionen
wurden von Symanzik [:SY 58] angegeben. Diese Regeln
eind spéter von verechiedenen Autoren ergénzt worden.
Eine gute Ubersicht liefert [NA 71] . Besondere Er-
wéhnung verdient die Arbeit von Shimamoto [SH 62] ,
der ale erster topologieche Formeln ffir die parametrischen
Funktionen unter Ausnutzung von Resultaten der Graphen-
theorie ableitete.

Im ereten Abechnitt dieses Kapitels werden wir eine
Reihe von grundlegenden Begriffen der Graphentheorie
einfUhren, die in den darauf folgenden Abschnitten zur
Herleitung der topologischen Formeln der parametrischen
Funktionen benbtigt werden (Abechnitt 1.3). Die allgemeine
Form dee FI wird der Einfachheit halber zunéchst nur fur
eine rein skalare Theorie abgeleitet.(Abechnitt 1.2). Die
Erweiterung auf Theorien mit Feldern. beliebigen Spins er—
folgt in Abechnitt 1.4 . Wir werden une in diesem Kapitel





auf die Darstellung von Standardmethoden beschranken und
nicht auf Verfeinerungen [KI 62, AL 70, cv 743,1), TR 74,
P0 82] eingehen.

1.1 Einige Begriffe aus der Graphentheorie

Unter einem Grapg % ist ein Triplet aus

i. einer Mange von n Kanten {84, m, 85}
ii. einer Mange von v Vertizes {v4,..., i
iii. einer Abbildung, die jeder Kante genau zwei Vertizes

zuordnet,

zu verstehen. Im Zusammenhang mit Feynman-Grephen ist es
sinnvoll,Jeder Kante eine Richtung zuzuordnen. Ein solcher
Graph heiBt_g§;ichteter Grap1_1. Ein zusammenhsngender Grap_1;1_
ist ein Graph, bei dem Jedes Paar von Vertizes durch Kanten-
zuge verbunden werden kann. Zur Analyse von FI reicht die
Betrachtung von zusammenhsngenden Graphen aus. Durch Ein-
schrenkung der Abbildung zwischen Kanten und Vertizes auf
eine Untermenge von beiden bekommt man einen Eeilgggpngn
gt C Q . Da isolierte Vertizes keine Bedeutung haben, ist
ein Teilgraph'gf Vollkommen durch die Angabe seiner Kanten
festgelegt. Aus diesem Grunde warden wir nicht zwischen einem
Teilgrephen und der Menge seiner Kanten unterscheiden.

Sind zwei Teilgraphen '36,, Q % und 2'n gr gegeben,
so lessen sich daraus folgende neue Graphen konstruieren:

1. W10 361(364 0 9(1) die Vereinigung (Durchschnitt)
zweier Teilgraphen ist durch die Vereinigung (Durch-
schnitt) ihrer Kanten bestimmt

Falls zus‘eLtzlich 73., g flfagilt, so 151:
ii. 961-- x‘ durch die Kantenmenge ’Jfan 24 gegeben und





-10-

iii. 9671 / x4 bekommt man durch Zueammenziehen e'eimt-
licher Vertizes eue :K7 zu einem einzigen Vertex. In
diesem Felle spricht man auch von einer Kpntraktigg
des Teilgraphen ’15,, .

Ein Pfad ist eine geordnete Menge von Kanten, die so
gewehlt wird, daB

i. aufeinanderfolgende Kanten jeweils einen Vertex
gemeineam haben,

ii. die Vertizes ansonsten verschieden sind.

Ein geschloeeener Pfad heiBt Schleife $8 . Jeder Schleife
wird eine Orientierung zugeordnet. Wir nennen eine Kante,
die zu mindestene einer (keiner) Schleife gehert, eine
innere (guBere) Kante. Falls nichts anderes geeagt wird,
verstehen wir unter einer Kante immer eine innere Kante.
Die Schleifen f; eines Graph 11 % werden algebraisch
durch die Schleifenmatrix 8 charakterisiert. Ihre Ele-mente b6: <8“ eind folgendermaBen bestimmt:

+1 falls 83" G 410: und Orientierungen gleich
= -1 falls 85 G of, und Orientierungen verveohieden0 falls 69' ¢f; . (1.1.1)

bfi
Offeneichtlich eind nicht alle Zeilen der Schleifenmatrix

‘8 linear unabhengig. Ein System linear unabhéngiger
Zeilen definiert eine Menge Von fundamentalen Sggleifen.
Die zugehb'rige Teilmatrix von 8 fi' bezeichnen wir mit8f .

Die Anzahl der fundamentaien Schleifen eei l. . Fur einen
zusammenhengenden Graphen iet Z. mit )7 , der Anzahl der
Kanten, und mit v , der Anzahl der Vertizes, durch die
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Eulersohe Relation

L=n-v+4
verknfipft.

(1.1.2)

Zu jeder Schleife $6; eines fundamentalen Systems gibt
es eine nichtleere Menge von Kanten.‘d; mit der Eigensohaft,
daB ihre Elements nicht in einer weiteren fundamentalen Schlei-
fs $5 , 2})“ auftreten. Die Elemente von A; bilden einen
Pfad. Der Einfachheit halber werden wir die Orientierung
der Kanten aus (h immer so wéhlen, daB sie mit der Orien-
tierung der entsprechenden Sohleife zusammenfallen.

Ein M 3’ ist ein Teilgraph, der sémtliche Vsrtizes
\nn1 %’ umfasst, zusammenhéngend ist und keine Schleifen
enthalt. Er 1am sich folgendermafien aus 1% konstruierenzy
Man zersohneide nacheinander eine Reihe von Kanten, so daB
im dabei Jeweils entstehenden Teilgraphen die Anzahl der
fundamentalen Schleifen um Jeweils Eins gegenfiber dem Vor—
gsnger verringert ist. Dies léBt sich gerade l_-mal durch-
ffihren. Daher ist die Anzahl dsr Kanten eines Baumes gleich
n - L . Unter einem Kobaum 3” ist der Teilgraph j’t-gff
zu verstehen. In einem Feynman-Graphen wird jeder Kante
ein FF 1%; zugeordnet. Wir werden spéter zur Formulierung
der topologischen Formeln den Begriff des Kobaumproduktes
XCU'“) benotigen. Zu einem Kobaum 3’: {8131 , ..., 911} ge-
hort das Kobaumprodukt

XCCT” = 0(1'4' . . 0M; . (1.1.3)

Falls man das oben angegebene Verfahren zur Konstruktion
eines Baumes vor dem letzten Schritt abbricht, so bekommt
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o 0
man einen Pseudobaum :r . Ein Pseudobaum 3’ enthalt
genau eine Sohleife. Er IaBt sioh als die Vereinigung eines

0Baumes 3’ mit einer Kante ee 0%" 3V) darstellen 3331/8 .

Duroh Entfernen einer Kante 86 3V erh'sllt man aus 9" einen
2-Baum 3’2; T—e oder allgemeiner duroh Entfernen von k
Kanten einen kT-Baum TJC. In Analogie zur Definition des
Kobaums (Kobaumproduktes) ergibt sich die Definition eines
K -Kobaumes 3"” ( k -Kobaumproduktes XCTK“)) zu
Mk” k kwJ Hg"? (9469’ )‘d;...o<' Jon-63"“).

4 'Lok

Im Zusammenhang mit den topologischen Formeln wird ein
weiterer Begriff benotigt. Ein Sohnitt 29 bezeiohne eine
minimale Mange von Kanten, so daB g- f, nioht zusammen-

+). fihnlich wie bereits den Schleifen, sohangend ist
wird auch den Sohnitten eine Orientierung und sine Sohnitt-
matrix Q zugeordnet. Die Elemente q,va-=<0>,-J'der Sohnitt-
matrix (2 sind definiert als

+1 falls 95 e ‘6: und Orientierung gleioh
0/5 : -1 falls 8,’ e E: und Orientierung verschieden

0 falls 85 ¢ 8: . (1.1.4)

Fiir einen beliebigen Sohnitt 8: und eine beliebige
Sohleife EEK lassen sich die Kanten des Graphen 58k“ L”:
zu Paaren mit jeweils gegensatzlicher Orientierung zusammen-
fassen. Daher gilt

Z q”: bka = O (1.1.581)
.l'

d

+)In der englischsprachigen Literatur findet man durohgehend
den Begriff "Cut set". Wir verwenden nioht seine direkte Uber-
setzung "Sohnittmenge", wie sie teilweise in der deutsch-
sprachigen Literatur auftaucht, da dieser Begriff im allge-
meinen eine andere Bedeutung hat.
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oder in kompakter Schreibweise mit der Transponierten ZBT

(2' 87.0 (1.1.5b)

2
Zu einem gegebenen T C g’ gibt es genau einen Schnitt ‘6 ,1 ... . ,Under emf)’ ' fl erful.Lt. Umgekehrt beazeichne J (‘6) die

Menge aller 2-Béume 34' , die 120.9" ¢ ergillen, 11nd T
die entsprechende Menge von 2-Kobaumen 3f fl

2#(E)

Als Schnittprodulcjg 96(8) definiert man die Su-mine aller
2-Kobaumprodukte

X(‘€)=Z Xm'“) (1.1.6)
.. 94*. 72W)

mit 7253’2(€). Offensichtlich 1251131; sich ein Schnittprodukt
auch als

X(€)=o<;4...0‘:K(ZX(3’*))(ZX(T*) , 8,. --.:€ .8 (1.1.7)
3.5 %L rsgfl 1’ K

ausdriicken. Hierbei bezeichne a. bzw. QR einen der beiden
Teile des Graphen % ,duire nach Entfernen der Kanten von 6’
fibrigbleiben.

1.2 Parametrische Darstellung eines FI einer skalaren
Theorie

In diesem Abschnitt warden wir die allgemeine Form der
parametrischen Darstellung eines FI, das dem Graphen einer
rein skalaren Theorie entspricht, ableiten. Aus den bekannten
Feynman-Regeln ergibt sich fur einen beliebigen Graphen
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ein Ausdruck, der proportional zu

. . n_o_l_l<id 0/d Wh—Tfiiihfl "'3' (1.2.1)(2%) (23-) ,4 (cg-ma! +127)3.
ist. L ist, wie bereits im Abschnitt 1.1, die Anzahl der
unabhéngigen Schleifen, V7 die Anzahl der Kanten, d.h. derPropagatoren, und.d ist die Anzahl der Dimensionen des
Minkowskiraumoa. Die 9; setzen sich aus einer Linearkombi-
nation 2; der éuflogen Impulsefk des Graphen und einer
Linearkombination kg dor Integrationsimpulse k; zu-
sammen

(y.= [a + *3 (1.2.2)
Da zu jedem Integrationsimpuls ein endlicher Impuls addiert
werden kann, sind die [a auch nach Wahl der fundamentalen
Schleifen nicht eindeutig festgelegt. Wie aus dem Folgen-den hervorgehen wird, ist I. selbstversténdlich unab-
héngig Von der Wahl der Integrationsimpulse.

(1.2.1) wird zunachst mit Hilfe der Feynmanschen Iden-
titat

[ii/L {7].}, PC Wife/Jfi—‘i '2 (123)0' I h 9‘ dla o .
3 0 f4 fYy) L 4 3 i'«]

in

flak 213.: 01k. -"’~- (1.2.4){-4 P013) (2:7)” (23)“- I = FCn')f[o/a~l
mit

- h 1 9 , (1.2.5W'i;’(1(95"mi*’é’) )
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und

’7 ‘42 ”'3' (1.2.6)

umgeforrnt. [oral] steht ale Abkiirzung von

[d.]=do1.... 0/04.c8‘(zr".13~4) (1.2.7)
3'34

Wegen der S-Funktion in (1.2.7) sind die Integrations—
grenzen durch or; )0 vollkommen bestimmt. Inebesondere gilt,
daB aus 04"."! fur alle k at; ak . 0 folgt.

M

Nach Einfflhrung dee Vektors k (k , ,8 ) , dessen L
( n , n ) Komponenten wiederum aue den Impulsvektoren
k1. ( (43' , £3 )gebildet werden, schreibt sich 51/
ale

9- 2
1/ =Za’jcgd'm1'H6”

3

+1513. 2 efk . .2 15/3. 2 ,2 (1.2.8)

2 ist eine nx n Diagonalmatrix, bei der das 1'-te
Diagonalelement gleich 0‘; 151:

(2 7:3- : (£15 d; (Keine Summation) (1.2.9)

73,. ist die in Abechnitt 1.1 eingefiihrte Schleifenmatrix.
Solange sich die Schleifenmatrix auf den gesamten Graphen
bezieht, unterdriicken wir den Index % . Ihre Trans-

A.
7.

ponierte 8f fiberfiihrt k in k

i2”: ,3; k (1.2.10)

Um die Integration in (1.2.4) ausffihren zu kennen, eliminieren
wir zuerst den Term aue (1.2.8), der linear in k’ ist.
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Dies leistet eine Transformation

k=/<’- [9473.223 (1.2.11)
in der

7
F? ‘73.?2 732 (1.2.12)

ist. Wir setzen dabei voraus, dafi cj’so gewahlt werden kann,
daB die dkdm. dkL Integration konvergent ist, so daB wir
uns fiber zusatzliche Oberflaohenterme [JA 76] keine Ge-
danken machen brauchen. Mit (1.2.11) erhalt man

I 9' I
(11/: ZJJCKé-ma'zf-Ie-F)

6 T .7 r _,, (1.2.13)+k’ Fik -X F? X
mit

X=B§Z£ (1.2.14)
Nach einer Rotation mit einer orthogonalen Matrix i? ,

1 ”k= 72k (1.2.15)

die F7 diagonalisiert,

72.4137 7? = F7” diagonal (1.2.16)

erhalt man schlieBlich

W " Z k; a); + DON/C(15) (1.2.17)
I! IIwobei die a“. die Elements von Fl sind,
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L nC(01) =o/etHfYTau (1.2.18)
i-4

und

D(o( )=C’(21);go111([;— ("4'11“”62)’ C’CHXTFJJX (1.2.19)

Wegen détR.-4 ist die Jacobideterminante der Trans-
formation von k nach k" gleich ’7

u
Die kg -Integrationen kbnnen nun durch sukzessive

Anwendung der Identitat [Ho 73]
0V2OHK -h’ .. 7 .1- _ : 1d

(-5-).(21411) =:( Z) ”n M) (11/12)"+2 (1.2.20)-” ‘1’” (’(h’)

ausgeffihrt werden. Das Resultat lautet

A.

' 4 ” fl" d(a<)’°'2*‘___ C~)fd _.1'_ ______~ (1.2.21)
I KW} ”£11251 owl"

mit
0'42 L

Kgpmé) _] , (1.2.22)

(1.2.23a){3=p+ L6

{.1 = h'-2L (1.2.23b)

und

e=2- d/Q. . (1.2.24)





_‘|8...

1.3 Topologische Formeln

Wie man aus (1.2.21) ersieht, reduziert sich die Be-
rechnung einer parametrischen Darstellung eines Graphenin der Hauptsache auf die Berechnung der parametrischenFunktionenC'c) und 3C4) . Dieses Problem wird wesent-
lich durch die topologischen Formeln vereinfacht, die in
diesem Abschnitt abgeleitet werden. Eine direkte Konse-
quenz der topologischen Formeln ist die Unabhéngigkeitder FunktionenCToO und 0Q)von der Wahl der fundamentalenSchleifen in (1.2.1).

Vorweg ffihren wir einige Bezeichnungen ein. Es sei A7
eine Matrix der Ordnung O x b . Io ( 2v ) bezeichne
eine Teilmenge der ganzen Zahlen von ’7'bis a ( t) )
mit U ( V ) Elementen. Dann ist mit Ma}, 23,)die_
jenige Tailmatrix von. #1 gemeint, die nur die durch

IU ( {v ) gegebenen Zeilen (Spalten) umfasst. Falls
0; 4 b so 131: Mfga) durch

F4 (3%») = flqlrlm, }h') (1.3.1)

definiert. Um die Teilmatrix von ”1 zu kennzeichnen, die
sich durch Entfernen der f-ten Zeile aus W7 ergibt,
verwenden wir das Symbol #4-; .

1-3.1 Tapologische Formal fur (7(8)

Ausgangspunkt der folgenden Uberlegungen ist der Satz
von Cauchy-Binet, der die Berechnung der Determinante eines
Produktes von Matrizen erlaubt. Es sei

/w , p1,“_ A4” (1.3.2)
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ein solchee Produkt aus Matrizen (4f ,~h’%"v’7 der Ordnung
k;_,,xk; , knkh'k, Iggk . Dann gilt

def Mg, 2: am am”) def Mac}; 3:)“,fix 1’1:
(1.3.3)

def mg”: 33") 491“ M. (9,”: , 3;")
Die Summation eretreckt sich jeweile fiber alle voneinander
verschiedenen Untermengen '3; ,:5'@.u,r1 der Menge derganzen Zahlen von ’7 bis Lg . Zum Beweis dieees Satzes
sei auf die Literatur verwiesen [AI 69] .

Da ES eine Diagonalmatrix ist, laBt sich die parametrischeFunktioaGx) mit (1.3.3) ale
2C(a)=Z' (de 1“ 233mm) 4,4 ”‘1". ' (1.3.4)

I a
IL={’49... )IL}

ausdrficken.

Zur weiteren Auswertung von (1.3.4) muB def Zion-”be-
stimmt warden. Dazu mache man sich folgendes klar. Durch
Kontraktion einer Kante 81. G g’ geht eine beliebige Schleife
aus % entweder wieder in eine Schleife in g/é’k fiber
(a), oder aber sie zerfallt in /9k in zwei Schleifen
mit einem gemeinsamen Vertex (b). let (a) fur alle funda-
mentalen Schleifen erfflllt,so gilt; daB die Matrix, die
ans 8; durch Entfernen der Spalte l< entsteht, gleich
Biffi‘ iet, falls in‘gvkk ein entsprechendes System

fundamentaler Schleifen gewahlt wird. Falls (a) nicht ffir
alle fundamentalen Schleifen erffillt ist, so ist die
Matrix, die aus 8} durch Entfernen der Sgalte K ent-
steht, durch elementare Umformungen ans 6% fik zu erhalten.
Die Elemente der Menge 11 bilden den Teilgraphen .IL .





._ _ __h‘_——-
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Um detUJw bekommen, miissen alle Kanten des Graphen-IL kontrahiert werden. Deshalb gilt
/( «1.)Met 8§CIL)/ 3 Net“ 8:! g / (1.3.5)

Enthalt %“ IL eino oder mohrere Schleifen, so gibt es inr /( -I;) hofhofgns L—-4 fundamentale Sohleifen, alsoiat def 8% g ‘n O . lat * IL hingegen ein Baum, sotuldan die Kanten'von‘%/(gJ-JL) gerade ein SyofemfvonTeilgraphen A}. . In diesem Falle ist ldet826’3' ‘)/= ’l.
Daher ist

+1 falls 1; Kobaum ist‘ . (1.3.6)ld‘et8,;(1..)l={ 0 giant

Mit diesem'Resultat last sich (1.3.4) als

0649‘“) = Z ZN“)
3*2

schreiben. Damit haben wir eine topologische Formal ge-
funden, die as erlaubttdfq‘!) direkt aua dem zugrundeie;
liegenden Grophen abzulesen.

(1.3.7)

An dieSer Stelle mochten wir kurz einige charakteri-stisohe Eiganachaften dor parametrisohen Funktion4$%32aufffihren. Aua der Konstruktionavorsohrift (1.3.7) Seht
hervor, daB C'Cat) ein homogenes Polynom der Ordnung L
in den FP an ist. Uber den gesamten Parameterraum gilt6/9)), 0 . Die hochste Potenz, mit der ein einzelner FP
auftreten kann, ist Eino.





-21-

Eine Eigenschaft, von der in den folgenden Kapiteln
haufiger Gebrauch gemacht werden wird, ist das Verhalten
der parametrischen C-Funktion unter Dilatation der FP
eines Teilgraphen Do . Falls die Parameter eines 'ver-
bundenen Teilgraphen CF mit einem Parameter g skaliert
werden, so verh'alt sichCCd) wie [ZA 65]

(A) = ’ ° . (1.3.8)C § 31;) g C2021)
Dabei gibt LQ") die Anzahl der fundamentalen Schleifen von

an, af') die Anzahl der Kanten und Ca'Cd)ist gleich '

CdCdL-z’ 630;")m chug“) Wainw- 5(a) (1.3.9)

Die Summation in (1.3.9) geht fiber alle Mbglichkeiten,
den Teilgraphen I? in 6+4 zusammenhangende Teilgraphen if
zu zerlegen. Alle externen Vertizes von Cf werden als
zu DO gehb’rig betrachtet.Cfi (d): (=47...2 {+4 ist die
parametrische C-Funktion des' i—ten Teilgraphen. Falls

f; keine Schleife enthalt, wird G$(d)=’/ gesetzt.
77 at”; ist das Produkt der FP der g'eschnittenen Kanten
und “@(dpchlieslich ist die parametrische C-Funktion des
Graphen, den man aus nach Zerschneiden von SP und
Kontraktion der 57, bekommt. Insbesondere fur 4': O gilt

Co (0‘) = 420(04 ) Giff/y

Wie man aus (1.3.8) abliest, verschwindet C(01) solange
nicht, wie 30 keine Schleife enth'ellt (91,012.40). Zum
Beweis von (1.3.8) hat man die Summe fiber samtliche
Baume von 1% in (1.3.7) so aufzuspalten, daB sich die

’jf -te Teilsumme iiber alle diejenigen Banme erstreckt,
die die Bedingung erfiillen, daB ma" (3 +1)-Baum ist.
Dann ist diese Teilsumme homogen vom Grade L(tf’)+0' ,

(0;) (1.3.10)
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sollte also gerade(:56d) (1.3.9) liefern. Jeder Baum, der
zur '-ten Teilsumme beitragt, zerlegt 5? in genau
(d +’1) Teile, wobei ein Teil durchaua auch aus einem ein-
zelnen Vertex beetehen kann. Daher entepricht erstene
Jedem Baum aue der ' -ten Teilsumme genau ein Baum, derzu 63(8) beitragt,und umgekehrt und zweitens sind auch
deren Beitrage gleich.

Ist eine feéte Kante ek vorgegeben, 50 1213’s sich
(1.3.7) folgendermafien aufspalten

C(M‘ZXCg'”) 1- ZX(O'*) (1.3.11)
7’38k gage“ o

Daraus folgt

QCQ) = __1__
9d,. 0“:

2 X0”) (1.3.12)
We ek

Zu jedem Kebaum .73 8k 15.81: 31011 ein Pseudobaum 3'0" 3'0 ek
konstruieren, der sine Schleife £39k enthalt, und
umgekehrt gib‘t*ee zu jeder Schleife f 99" eine Mange
von Kob'a’umen 3'3 ek , so daB

80C5;?)12 613/33 (0!) (1.3.13)

Weiterhin gilt

0‘}. C(dk=0)'zx(€) (1.3.14)
BSeu .

Zum Beweie gent man von

o‘k C(dk'0)=0(k EXC9J‘) (1.3.15)3’36.
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w .
aus. Zu jedem 3d ,4 6k gibt es genau einen 2-Baum 9‘: $192. .Dazu gibt es wiederum genau einen Schnitt €a-ek)-¢. ,Um-
gekehrt ist das Schnittprodukt XCE) zu 1? 36k eineSumme von 2-Kobaumprodukten, so daB 71/19. ein Baum iet,
also in der Summe von (1.3.15) enthalten iet. Da

C(d)=d,£7¢(o<) +C’Co1;=o) (1.3.16)
ffir einen beliebigen Parameter A; , IaBt eich mit (1.3.13)
und (1.3.14) auch

= a 1
0 0C(01) 0‘. 2 dfi/fiCaMd; E” 96(8) (1317)

£36;
€983]

echreiben. Dieee Relation werden wir im folgenden benetigen.

1.3.2 Topologieche Formel fiir 00X)

Wir wenden uns nun der Ableitung einer topologischen
Formel fur die parametrieche FunktionDQ‘) zu. Zuerst
werden wir die eogenannte Schleifendarstellung herleiten,
aus der eich dann die in der Praxie wichtige Schnittdar-
stellung ergibt.

-1Geeucht wird eine topologieohe Formel fur F7 . (Wk
bezeichne den Kofaktor dee Elements ((92%

gm (1.3.18)"’ ..._4_< F7 7"k'q(ac)

d.h. die Determinante der Teilmatrix, die aus I? durch
Entfernen der i-ten Zeile'und der ér—ten Spalte hervor-
geht, multipliziert mitC¥4y* . In der Netzwerktheorie
1: CH 71] taucht die Matrix H unter der Bezeichnung
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Schlsifen-Impedanz-Matrix auf. Dort spielen die FP die
Rolls von Ohmschen Widersténden.

1.3.2.1 Schleifsndarstsllung von 236x)

-4Wir betrachten zuerst dis Diagonalelemente vonCCd) H ,
/?3 . Mit der zu Beginn dieses Abschnitts eingeffihrten

Notation gilt

Fl” =o/e 468;)”: 2 ((8.)-9')T] (1.3.19)
Da nun nach geeigneter Wahl eines Systems fundamentaler
Schleifen in %'4;

(8.} )-;' = By?

ist, was sich durch Konstruktion der reohten Seite von
(1.3.20) sofort einsehen lt, folgt wie schon (1.3.7)

.4;
(1.3.20)

9;,- =-. Z ZN") (1.3.21)
T520? a) (~fi .

Durch Vereinigung von 9-: (1% ‘4.“ " J mit A; entsteht
zu jedem 9’“ sin Pseudobaum $570 A: in mit Schleife
170.6; . Umgskshrt gibt es aber auch zu jeder Schleife

J: )4]; sins Mange von 3'? (%-d;) , so daB sich anstelle
von (1.3.21)

H” = Z 0/ (4) (1.3.22).1 £90; w:

schreibsn léfit.
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Fur die Niohtdiagonalelemente F7“ , (#3 last sioh ahn-
lich zu (1.3.19)

h; ' TH”- = (- 4) d€t{(8§).; 2((80. )1) } (1.3.23)

ansetzen. Anwendung des Satzes von Cauchy-Binet liefert

F)”. = C-1>"*°IZ’det(8,453)”. dew/3.6L»); .14... as!”
(1.3.24)

IL“, :{1'4,,,_) 11,4}

Duroh Kombination von (1.3.20) und (1.3.6) sieht man, daB

dot (25:; (1.4)).;={t1 falls rm KObaum in 3.4,. (1.3.25)0 sonst

Also gibt 1:", in (1.3.24) nor dann einen nichtverschwin-
denden Beitrag, falls as sowohl Kobaum in -<L' , als auch
in %-45 ist. Das Vorzeichen léBt sich duroh Aussohreiben
der Matrix 8f ermitteln (eiehe 2.13. [CH 71.] ), so
daB schlieBlich mit den gleiohen Argumenten, die von
(1.3.21) zu (1.3.22) geffihrt haben,

(4:5 = Z i. Cg/gfix) (1.3.26)
234.345

folgt. Des positive Vorzeichen gilt, falls die Orientie-
rung von .‘6 so gewehlt werden kann, daB sie sowohl mit
der Orientierung von 4; als auch mit derjenigen von 11;
fibereinstimmt, ansonsten ist das negative Vorzeiohen zu
Wéhlen.

Der Ausdruck, der in 3C0!) eingeht, lautet mit (1.3.22)
und (1.3.26)
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T -” . ' , , a (1.3.27X EX WW: rX-fk}; +2 Xi ] )ifiifiéfi ¢ez .
wobei.23 die f—te Komponente dee in (1.2.14) eingeffihr-
ten Vektore X iet

X;=< 8,2 1 >; z’=4;---.=L (1.3.28)

Film eine fundamentals Schleife f; reduziert sich die
geechweifte Klammer in (1.3.27) auf q' , w'eihrend eie fiir
eine nichtfundamentale Schleife 4‘8 den Wert ( 2 ix; ) '1'
annimmt. Mit dem Schleifenvektor' §E_ ‘6

73$ _-, 212 100:6; (1.3.29)
8:6 v

wobei dae Vorzeichen durch die Orientierung von 6% be-
ziiglich .8 feetgelegt iet,( 73!; =X; falls 2?, eine fun-
damentale Schleife iet) echreibt eich daher die para-
metrieche D-Funktion zu

DtC’Cas) 2430542: m6.2+fe¢) — 2C7 w (007.32- (1.3.30)
a“ z .

Dies ist die Schleifendaretellung der D-Funktion. In
Vielen praktiechen Anwendungen erweiet es eich ale Nach-
teil, deB die Abhangigkeit von den fiuBeren Impuleen flh
dee Graphen nur fiber den Umweg der fig zu berechnen iet.
Dieser Umweg léBt eich bei der Schnittdaretellung ver—
meiden.
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1.3.2.2 Schnittdarstellung von é9(9$)

In der Graphentheorie sind Schleifen und Schnitte zu-
einander dual. Es ist daher zu erwarten, daB an die Stelleder Summe fiber alle Schleifen in (1.3.30) eine Summe fiber
alle Schnitte treten kann. Solch eine Daretellung von 00:!)
heiBt Schnittdarstellung.

Zur Ableitung dieeer Darstellung drficken wir die Schlei-
fenimpulee 59g durch die Elemente der Schleifenmatrix
b;5 aue. Damit wird

Der-meg“ AMf- xe.) + 2% x; @7600 a... Z dfi”G"J. - (36
.M

3 £98:
5% flag; 499'; Gig/19‘ (04) be; big

(1.3.31)-(1
at

€31
I

.l

I C

bm
q

r
II

I

u

0

.g.Betrachten wir zunechet den KoeffiZienten von é? 3 ,
{#33 . Ffir diesen Koeffizienten gilt

”(HQ 2 be; bed, Z, Z63”)
$1 (Pkg/3ft

(1.3.32)

"-1 A25:=-ql'qk12¢~3, ZCJ )
6“ The»! (Eu) '

Beide Summen umfaseen die gleichen Elemente, da es zu jedem
3'25 O'gfffk), €585 e 8;. einen Pseudobaum 3'3 (ft ext/é," gibt,

der in \%/f,_ , 6,3,4; 6 of; Baum 151'. und umgekehrt. Im
Durchschnitt von PK und f1 liegen gerade 19; und (94’ .
Daher folgt aue (1.1.5a)
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C7145 535 "‘ 9143' be" ‘ 0
Oder

9w 67% 3 " b3" bta' (1.3.33)
Damit ist (1.3.32) gezeigt.

2.Der Koeffizient von 1% wird aufgrund von (1.3.17) zu
9: 96(8) . Dies ergibt zusammen die Schnittdarstellung9Q

..-- 2"0(a): '09);43(m5246:) 1,. €2.36“) P)? (1.3.34)
mit

; 9:”?
(103-35)

Da ein Schnitt '8: den Graphen 1% in zwei Hélften teilt ,
ist fé, gerade die Summe der externen Impulse, die in
eine dieser Halften flieBt. Welche der Hélften gewéhlt
wird,spie1t wegen der Erhaltung des Impulses keine Rolle.

Ahnlich wie schon fur die parametrische C-Funktion, so
lassen sich auch ffir die parametrische D-Funktion topo-logische Regeln zur Berechnung des (Lflf7+1K)-¢en Koeffi-
zienten einer Entwicklung bezfiglich des Homogenitétsgrades
des Teilgraphen .y' angeben. Skaliert man sémtliche FP
des Teilgraphen f mit einem Parameter g , so gilt [ZA 65]

H! 96(5) ’3
- m” W)-L('wr- (1 3 36)92% We; 5’ 27 g1 03%..) ° -EC 5-0
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mit

N@0101) =ZC$CAL 110331401) // of”, 00%) (1.3. 37)
06 (,4) wird in der gleichen Weise wie schond1fd)konstru-
iert. Beim Beweis von (1.3.36) wird (1.1.7) in die linke
Seite von (1.3.36) eingesetzt, die Summe fiber alle Schnitte
in solche Schnitte eingeteilt, die ¢F schneiden bzw.
zusammenhéngend lassen und (1.3.8) ausgenutzt.

1.4 Spin

Bisher haben wir uns auf Feynman-Graphen beschrénkt, in
denen ausachlieBlich Kanten auftraten, die Felder mit
Spin 0 beachrieben. In diesem Abschnitt warden wir zeigen,
wie die gefundenen Regeln verallgemeinert werden mfissen,
um auch eine Beschreibung von Teilchen mit nichtverschwin-
dendem Spin zuzulassen.

Ein FI, in dem ein Polynom der inneren Impulse Cy im
Zéhler auftritt, ist eine Linearkombination von Termen der
Form

P1

“'fi £53 dkL —9(p-J,, g‘uj’g;

i *[Clifld flm‘yfl 377/ 2. "—"_FY (1.4.1)2 .
':q (Cb-mi +16?) i

Wir nehmen an, daB der Impuls (yd (3-mal im Zéhler auf-
tritt. In der Spinorelektrodynamik (Feynman-Eichung) ist

.9 hfichatens Bins, in anderen Theorien wie skalarer
Elektrodynamik oder in nichtabelschen Eichtheorien kann

Si auch grfiBer ale Eins sein. Wie (1.4.1) andeutet,
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beschranken wir uns auf kovariante Eichungen.

Zur Berechnung von (1.4.1) wird dieser Ausdruck zu-
nachst so umgeformt, daB man die Integration wie in
(1.2.1) ausffihren kann. Dazu wird fur jede Kante é? mit

S" #0 ein sogenannter Hmlfsimpuls 04' eingefiihrt, so
daB durch diese Kante nicht mehr der Impuls 45 , sondern

1:73:11- 03' flieBt. Dies ist entweder durch Uberlagerung der
externen Impulse zu erreichen, oder, falls keine auBere
Kante zur Verffigung steht, durch Einffigen fiktiver auBerer
Kanten. Der Impuls cg tritt am Anfangsvertex der ij-ten
Kante in den Graphen ein, und er verlaBt ihn wieder am
Endvertex der gleichen Kante.

Der entscheidende Schritt in der Reduktion von (1.4.1)
auf (1.2.1) geht auf eine Idee von Karplus und Kroll
[ 31.49 J zurfick. Diese Autoren ffihren einen Operator

00
:f ' 9

1);; :i Ila/€3.93.” (1.4.2)
m3 3 cy-c?

ein, der die Eigenschaft hat, daB

.4"

o/Op. ((q3'+0’.3'){2;' (”(61) 1" 2 .10!” . 7’- (1.4.3)
3 (£71.- ma' +I’€;)

let in (1.4.1) Sic/I fiir alle 3' , so ersetzt man jeden
Kantenimpuls 1m Zéhler von (1.4.1) durch einen 59-
Operator , der vor das Integral gezogen wird. Das ver-
bleibende Integral kann dann wie in der rein skalaren
Theorie ausgeffihrt werden, so daB nur noch die Wirkung
dee Produktes von JD —0peratoren auf das Resultat
(1.2.20) zu berechnen bleibt,
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Tritt im Zéhler des Integranden von (1.4.1) ein Impuls
q? mehrfach auf, d.h. ist §r>'7 , so reicht es nioht

aus, einfaoh 00,9: entsprechend oft anzuwenden, do. of)”
nicht mit q; vertauscht. Vielmehr muB man eine geeigne-
te Verallgemeinerung des Karplus-Kroll-Operators suchen.
Solch eine Verallgemeinerung wird in Anhang A vorgenommen,
und es wird dort damit der Ausdruok (1.4.1) bereohnet.
An dieser Stelle mochten wir nur das Resultat angeben

I=Kjfdd~Jf
rrm’f

Ii! ‘3 ~I2+6 -~

/ f" } do)” 296.» ’°1 ['13)
c; n

(1.4.4)
'F(“-6) p—Cfl [{3:E; F) (3(3) . )ig4 ”' fizifi ]G .4

Die Notation ist [CO 73] entlehnt. Unter einer Kon-
traktion verstehen wir die Substitution

Za ’1'

G kO/VTQ.

4
H — r a I, (10405)H. my». 2 (am... 721a

mit

Q 4 flag: Gig/£9) falls {=0
1.0! 1' “mi ' . , (1.4.6)

COMM” 27 276(9) falls ”"0
£30,311; .

Im Falle z' 1‘ 5 trégt ein Schnittprodukt 96(3) mit posi-
tivem Vorzeiohen bei, falls die Kanten 6% und 6% bezug-
lioh der beiden durch Lo gebildeten Teilgraphen ver-
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echieden orientiert sind,und mit negativem Vorzeichen,
falls sie gleich orientiert eind. Die Klammer'f' JG—kayrg,
in (1.4.4) steht fur die Summe Uber aile Ausdrhgke, die
man durch Ausffihren von.<3 Kentraktionen ans E ha.“ flfis,
bekommen kann. Im Unterschied zur Schnittdaregellung van?

0506) , tragen zur Summe der Schnittprodukte £06) in
(1.4.6) ffir 1/5 auch eolche Schnitte bei, deren Schnitt-
impule fig verschwindet, weil eine der beiden Halften, in
die 8 den Graphen zerteilt, keine auBere Linie enthalt.
C(01) 79;, iet ein Polynom in of; . Wie im Anhang A ge-

zeigt wird, berechnen sich die Kantenimpulse y, nach

4 o.= / 25(6) (1.4.7)K “54"9'92; e

Da den Impuleen 5? bei der Analyse dee asymptotiechen
Verhaltene einee FI eine besondere Bedeutung zufallt,
mechten wir einige ihrer Eigenechaften kurz naher er-
lautern. Den Auegangspunkt bildet die Relation

. 4 Q)j. 2’9! 6’2; (0(A)/C’(os)) (1.4.8)
die leicht durch Vergleich derhSchnittdaretellung (1.3.34)
Von 06%) mit (1.4.7) abzuleiten 131:. Durch Einsetzen
der Schleifendarstellung (1.3.30) von 2365) in (1.4.8)
erhalt man eine solche fur ?'

)3= [5 {if awn”; )/c(..) (1.4.9)
"385

Aue (1.2.19) und (1.4.8) folgt die wichtige Beziehung
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7 -4)3? fj-<8f/12 89.23); (1.4.10)
Daraus wird ersichtlich, daB der Kantenimpuls gr ge-
rade derjenige Anteil des inneren Impulses q; ist,
der nicht von dem geshifteten Integrationsimpulsr k},
abhangt

r .
(73"(8f 1‘? ”1 (1.4.11)

Deshalb erfflllen die ‘g an jedem Vertex die Impulser-
haltung. In der Theorie der elektrischen Netzwerke gibt

)g den Strom an, der durch die Kante 85 flieBt. Der
Impulserhaltung entspricht das 1. Kirchhoffsche Gesetz.
Falls der dominante ImpulsfluB eines Graphen dadurch ge-
kennzeichnet ist, daB die Integrationsimpulse 1k; klein
gegenfiber irgendwelchen groBen auBeren Impulsen sind, so
beschreiben die fir den Neg der groBen éuBeren Impulse
durch den Graphen [ ,HA 74] .

Aufgrund der Beziehung (1.2.17) fur ¢/ bekommt man
durch Einsetson‘von (1.4.11) in (1.2.5) eine weitere Dar-
steuung fur DCA)

0(01) "C(01) :1 0‘5 (Yr-m? 1- ie,) (“4-12)
1”

Die Identitfit

Z) 4;)? =0 (1.4.13)
6,1398

die fiir jede Schleife if er'fiillt 131:, entspricht dem
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2. Kirchhoffschen Gesetz. Sie vervollsténdigt die Analogie
zu den elektrischen Netzwerken. Man erhélt (1.4.13)
durch Vergleich der linearen Terme in kg , dem Inte-
grationsimpuls der Schleife afi , in (1.2.17) und (1.2.5).

Die 1512-3 21 1-311q

9 @6111.) = 1/1 2 ,
9143' 40:4) J! m3 lit-’67 (1.4.14)

folgt wegen

2?); 510%; 51 .0 (1.4.15)
'-'-

direkt aus (1.4.12). Zur Ableitung von (1.4.15) wird die
Schleifendarstellung von 5? benutzt

’9
- 19 c7 6%)

— Y 2 '- """"' __f§j£ 0 (104016)

941' I fgé; 941' 67(2) Cf

Man setzt (1.4.16) in die linke Seite von (1.4.15) ein, ver—
tauscht die Summen und nutzt (1.4.13) aus.

Héufig werden die Y’ auch als eine spezielle, ag—ab-
hangige Wahl der 2,1 interpretiert, die so getroffen wurde,
daB gerade (1.4.13) erffillt ist. Mit anderen Worten,
diese Wahl der 3" macht das Shiften fiberfliissig. Fur
diese Wahl reduziert sich die Schleifendarstellung (1.3.30)
gerade auf (1.4.12).
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2. Singularitéten von Feynman-Integralen

Im Limes groBer Impulsfibertrége wachsen FI typischer-
weise fiber Jede Grenze. Daher ist die Bestimmung des asymp-
totischen Verhaltens eines F1 in den weiteren Rahmen der
Untersuchung seiner analytischen Eigenschaften einzuordnen.
Um die entsprechenden Singularitéten von solchen zu unter-
scheiden, die im asymptotischen Limes keine Rolle spielen,
werden wir sie ggymptotiscgeflggngularitéten nennen.

Der Untersuchung der analytischen Eigenschaften von
Streuamplituden ist in den sechziger Jahren viel Aufmerk-
samkeit geschenkt worden. Man erhoffte sich damals nahere
Aufschlfisse fiber die analytische Struktur der Streumatrix
stark wechselwirkender Teilchen durch die Analyse Von
Greenschen Funktionen in der Sterungstheorie zu gewinnen.
Zwar ist dieses Programm ffir die sterungstheoretische QCD
ohne direkte Bedeutung, so bilden doch die in die ana-
lytischen Eigenschaften von FI gewonnenen Einsichten
eine wichtige Grundlage zur Untersuchung des asymptotischen
Verhaltens in der perturbativen QCD.

Das Hauptinteresse dieser élteren Untersuchungen galt
der Bestimmung der Lage der Singularitéten von F1 in dem
durch die éuBeren Impulsvariablen gebildeten komplexen
Raum. Singularitéten auf der reellen Achse des physikali-
schen Blattes charakterisieren bekanntlich Schwsllen ffir
die Produktion neuer Teilchen. Im Gegensatz dazu werden
bei der Untersuchung des asymptotischen Verhaltens die
éuBeren Impulse festgehalten bzw. gegen Unendlich ge-
schickt.

In den ersten drei Abschnitten disses Kapitels werden
wir die Bedingungen untersuchen, unter denen ein allge-
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meines Integral (2.1) als auch inebesondere ein FI (2.2.2.3)
singular werden kann. Ein spezieller Typ solch einer Sin-
gularitat entsteht, falls die Massen einee FI verschwinden.
Dieeen Massensingularitaten ist der Abschnitt 2.4 ge—
widmet. Im Abachnitt 2.5 warden wir uns echlieBlich dem
eigentlichen Gegenstand dieser Arbeit zuwenden, den asym-
ptotischen Singularitaten. Wir werden versqhiedene Aspekte
der Bereohnung dieser Singularitaten im Detail unter-
suchen.

2.1 Singnlaritaten ven Integralen

FI fallen in die Klasse von Funktionen s§)' die ale
Integral

f(§)= (,d Nvaf) (2.1.1)

einer Funktion ta), f) entlang des Weges C7 daretell-
bar sind.Um.Aufsch1uB fiber die Singularitaten von FI zu
gewinnen, ist es daher einnvoll, zunachst nach den Bedinh
gungen zu fragen, unter denen ffl?) singular werden kann.

Die Untereuchung solcher Funktionen geht auf Hadamard
[ HA 98 J zurfick. Seine Resultate wurden zur Analyee ton

FI zueret in einer Arbeit von Eden im Jahre 1952 einge-
eetzt [ED 52:] . Die Form der Landau-Gleichungen, wie
wir sie benutzen werden, wurde von Polkinghorne und
Screaton 1959 angegeben. [P0 60:] . Eine Ubersicht fiber
die Fiille der daran anknfipfenden Arbeiten liefert [ED 66] .

Es ist klar, daB f(§) nicht singular werden kann, so-
lange -T(U,§) entlang des Integrationsweges 6," regular
ist. Bewegt man sich mit é? aus dem Gebiet heraus, in
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dem 7‘10, S"), (/6 4 regular ist, so iet dies gleichbe-
deutend damit, daB sich eine Singularit'elt von 7:(U;§)auf

(j zubewegt. LéBt sich nun der Integrationeweg 4' so
deformieren, daB er diese Singularitét meidet, ohne sich
iiber sie hinweg zu bewegen, so bleibt f(§)regu1'elr. Eine
Singularitet von f(§) kann bloB dann auftreten, wenn
dies nicht mehr mbglich iet. Dee tritt ein, falls entweder

i. Eine Singularitat von ICC/“6) mit einem Endpunkt des
Integrationeweges 4’ zueammenféllt (Endpunkt-Singu-
laritat)

oder
ii. Zwei Singularitéten von IRAQ, von verschiedenen

Seiten dee Wages C kommend, so zueammentreffen,
daB eich durch Deformation von q’ das Auftauchen
einer Singularitet auf diesem Weg nicht verhindern
léBt (Pinch-Singularitét).

Ein Beiepiel mag dies verdeutlichen

g
«r

f(§) = Ida (BE—L?) (2.1.2)

Der I'ntegrend hat fiirUH-I/Fund U=' F Pole, die bei §=O
zueammenfallen. Der Punkt Ur<9 liegt jedoch nicht auf
dem IntegrationsWeg, so deB man ffir‘§=C7 keine Pinch-
Singularitét erwartet. Endpunkt-Singulariteten sollten
fiir £34 und§=46 auftreten. Explizite Integration ergibt

magi—- ,0 (“VFW-"1?) (2.1.3)11/? WWWH +7?)
Tate'eichlich hat f(§) ffir {=4 und§=46 logarithmieche Ver-
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zweigungspunkte' und ist fur §'O regular. Das letztere
gilt allerdings nur fur das "Hauptblatt" der von (2.1.3)
definierten Riemannschen Flache. Auf allen anderen Bléttern
befindet sich 1m Punkt §=O ein Verzweigungspunkt. Diese
Tatsache steht in valliger Ubereinstimmung mit ii. .

’T |_l-l

-\/E +\/';"1r 4
Abb. 2.1 Integrationsweg von (2.1.2)

J3' vi 2.7
Abb. 2.2 Integrationsweg der analytischen

Fortsetzung von (2.1.2)

Die analytische Fortsetzung der durch (2.1;2) definierten
Funktion auf das néchste Blatt durch Uberschreiten des
Schnittes von 3%.?) zwischen §= 4 und§= 46‘ macht es
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notwendig,den Integrationsweg wie in Abb. 2.2 gezeigt zu
deformieren. Deehalb eind nach Uberschreiten des Schnitteedie Bedingungen ffir eine Pinch-Singularitat erfullt.

2.2 Qie LandagyGleionungon

Zur Analyse der Singularitaten einee FI reicht es aus,
sich auf eine rein ekalare Theorie zu beechranken. Da-
her tritt (1.2.21) an die Stelle Von (2.1.1). Es gilt
also die Singhlaritaten des Auedrucke

A -2+eII-
- €01).. LOH] I?)

0 (000/400)
zu bestimmen. Dazu mfiseen die Uberlegungen, die im letzten
Absohnitt fur ein einfaohee Integral angestellt wurden,
auf Mehrfachintegrale erweitert werden.

(2.2.1)

Die Verallgemeinerung der Bedingungen i. und ii. ist in
[;A 59,Po 60]‘vorgenommen worden. Eine mathematisch ein-
wandfreie Behandlung erfordert den Eineatz von Methoden
der algebraischen Topologie [:FO 65,HW 66.] . Man gelangt
dazu, daB jeweils eine der beiden Bedingungen i. und ii.
ffir jede einzelne Integration des Mehrfaohintegrals er—
ffillt eein muB.

Um (2.1.4) in die Form einea gewohnlichen Mehrfaohinte-
grale zu bringen,wird die 8-Funktion aus [dqjdurch Aus-
ffihrung der Lf-ten Integration eliminiert. Daher trittan die Stelle der FunktionD(d)(C(A)) die Funktion Db)
(C(01)), die duroh Eineetzen von

. (2.2.2)04K, 7-J4 ... l' 0‘”
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iniXk)(Cth)) entsteht . Die Bedingmngen i. und ii. Bind
damit equivalent zu der Forderung, daB

UGO/6’ IOU =0 (2°23)
, Iist und auBerdem fiir Jeden Parameter d; , z¥k entweder

i. 4’; =0 oder dk’ = O
°der (2.2.4)
11. 9%: (DEN/624)) =0

erffillt ist. Die erete Bedingung laBt aich in der Form Mkr'c)
nur ffir eine einzige Teilintegration k’ erffillen und
fiir den entsprechenden FP gilt dann J“ #0 . Da nun aber
gerade dieaer Parameter ‘%k von vornherein ausintegriert
werden kann, reicht es aus,sich auf Endpunkt-Singularitaten
zu beachranken, die von unteren Endpunkten herrfihren,
d.h. kn kl . Iat hingegen die zweite Bedingung erfiillt,
so muB zusatzlich gefordert warden, daB die entsprechenden
zuaammenfallenden Singularitaten den Integrationsweg auch
tatsachlich "pinchen".

Diese Bedingungen laseen sich in eine symmetriache Form
bringen. Es gilt

5—3 (om/d6...) =a—36009/c’a) ~93 (Om/dam) <2.2.5>
Multipliziert man nun (2.2.5) mit C%; , summiert fiber alle
f/k und nutzt aus, daB DOIWC'GJI) eine homogene' ‘Funktion vom

Grade 1 iet

OCH/CO) : 2%,.93 (OCH/CON) (2.2.6)
:3”
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so folgt mit (2.2.3)

2 X;£f(0(’r<)/C/CA))= "93k (DOD/C100) (2.2.7)

Damit erhalt man echlieBlich die eymmetrieche Form der
Landau-Gleichungen

d,,92’.(O(a)/CCA))=O {ax/9...?!) (2.2.8)

Aufgrund der Relation (1.4.14) lautet eine alternative
Formulierung

a(;(lfl2’m;l)=0 "=42“‘)n (2.2.9)

Ein Punkt an im ofi-Parameterraum, in dem (2.2.8,9) er-
ffillt ist, werden wir einen Pinch-Singularen-Punkt (Egg)
nennen. Die Forderung, daBDQOA§Ox)an einem PSP verechwindet,
braucht nicht zueatzlich zu (2.2.8.9) gestellt werden. Sie
iet automatiech fur jede Leeung wegen (2.2.6) erffillt.

Auoh die Forderung nach "Pinchen" des Integrationeweges
kann entfallen. Wie bereite im vorauegehenden Beiepiel
gezeigt wurde, kennen zwei zusammenfallende Singulari-
taten, die jedoch keine Pinch-Singularitaten eind, durch
Wechsel dee Blattes auf dem~fU, bzw. hier.fl , betrachtet
wird, zu Pinch-Singularitaten werden. Der Preie daffir iet,
daB 17’ aufgefaeet ale Funktion der Skalarprodukte der
auBeren Impulse in die komplexe Ebene fortgeeetzt werden
muB. Solch eine Fortsetzung iet equivalent dazu, daB man
anstelle dee Wegee C," ea'mtliche Wege im komplexen
d -Parameterraum zulaBt, die die Endpunkte von q mit-
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einander verbinden. Daher "pincht" jedes Paar von zueammen-
fallenden Singularitaten immer irgendeinen dieser Wege. Eine
Koneequenz der Fortsetzung ist, daB die Parameter a}: nicht
mehr unbedingt reell sein mfissen und auch nicht
mehr unbedingt 0<c907< ’/ erfiillen.

Einige der FP sind dadurch ausgezeichnet, daB sie an
einem PSP verechwinden. Wir bezeichnen die Menge der ent-
sprechenden Kanten mit J? . Es ist fiblich,eine Losung
von (2.2.8,9) durch einen sogenannten reduZierten GraphenfiR
zu beschreibena Man bekommt solch einen reduzierten Graphen
aua “P duroh Kontraktion saintlioher Kanten Q6 If , ‘
31:“ /2f . Hagen (2.2.9) liegen alle Kantenimpulse von
:R_ im PSP auf der Masaenaohale.

2.3 Singularitaten auf dem physikalischen Blatt

Eine detaillierte Untersuchung der analytischen Eigenschaf-
ten eines FI, wie sie beipsielsweise im Zusammenhang mit
dem Beweis der Gfiltigkeit Von Dispersionsrelationen be—
notigt wird, ist im allgemeinen sehr kompliziert. Die Be-
schrankung auf Singularitaten im physikalischen Bereich
bringt wesentliche Vereinfachungen mit sich.

_l
Der relevante Zweig der durch l definierten Funktion

wird duch die Feynmansche [6%9V0rschrift festgelegt.
Diese fordert, daB eamtliche Skalarprodukte der auBeren
Impulse strikt reell eind, fiir die Massen wird I’VE-76,. ge-
eetzt und die reelle und positive Grofie é}- gegen Null
geschickt. Solange e, #0 , ist das FI fiir Integrationen
entlang der reellen ay-Achsen wohl definiert und es ist
keine Deformation der Integrationswege notig,um .I’ einen
Sinn zu verleihen. Daher sind die 2: reell, erfiillen
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of; 7/ 0 (2.3.1)

und fur die Kantenimpulse am PSP K gilt
A. M”

K = V. (2.3.2)I

Die Einechrénkung auf den physikalischen Bereich er-
laubt es nicht mehr, die Uberprufung,ob zwei zusammen-
fallende Singularitéten auch tatsachlich Pinch-Singulari-
téten sind,ohne weiteres zu fibergehen. DaB dies dennoch
ffir Losungen der Landau-Gleichungen, die (2.3.1.2) erffillen,
geechehen kann, ist von Coleman und Norton [CO 65]
bewiesen worden. Darfiber hinaus ist in. [CO 65‘] gezeigt
worden, daB der reduzierte Graph einem phyeikalischen
StreuprozeB enteprioht, bei dem jeder Vertex eine Punkt-
weohselwirkung beachreibt.

Be1 dem Bewfiia, daB jede reelle Loeung der Landau-
Gleichungen“ auch tatséohlich zu einer Pinoh-Singularitét
auf der reellen Achse dee phyeikaliechen Blattee ffihrt,
spielt die Feynmansche flak-Vorschrift eine wesentliche
Rolle. Ffir endliches 6% ist die physikalische Region frei
von Singularitéten. Wir gehen davon aus, daB bereits fiber
alle Endpunktsingularitfiten integriert wurde, so daB
wir o.B.d.A.5’=¢ annehmen konnen. Daher léiBt sioh fiir 060/460

292 = .7 agmaydw) . . (2 3 3)
CM) Z 94‘,- 940! a? [Adidd‘r 7" arc-A at) +16,—

Ad; = ol;-0’z’; (2.3.4)
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a
schreiben.®(w)/dQ))/Qafiv 940.131; eine reelle, symmetrische
Matrix, die durch eine orthogonale Transformation dia-
gonalisiert werden kann. FallsDCat) durch die transformieré
ten Parameter ausgedrfickt wird, so ist es einfach zu sehen,
daB sich die Nullstellen vonZXZ) im Limes 6¢-9C7 dem
Punkt 2} von verschiedenen Seiten her nahern, ‘27 also
sin P3P ist. Aug den pathologischen Fall, daB einige der
Eigenwerte vor19[D(d)/C(s))/al;9d5verschwinden, soll hier nicht
Haber eingsgangen werdsn [b0 65] .

Offensiohtlich liefern die Landau—Gleichungen bloB ein
notwendiges Kriterium fur das Auftreten einer Singulari—
tat. Um AufschluB darfiber zu erhalten, ob tatsachlich eine
Singularitat vorliegt und von weloher Art sie ist, muB
man die Integration in der Nahe des PSP explizit ausffihren.
Wir betrachten hier den Fall, daB eine sogenannte 223-
male Losung_ [KI 62] der Landau-Gleiohungen vorliegt.
Normals Losungen sind dadurch gekennzeiohnet, daB der
entsprechende PSP ein isolierter Punkt im cK-Parameter-
raum ist. Im allgemeinen konnen an einem PSP die auBeren
Impulse eines FI nicht frei variieren, sondern sie mussen
auf einer "singularen" Flaohe liegen. Wir nehmen an,
daB die Impulse ,0; auf solch einer Fl'elche gleich ,3}
sind. Die Lage des PSP ist dann eine Funktion der f3,

g,'=xl(fihmk) (2.3.5)

Im Unterschied zu den normalen Losungen stehen die
pathologischen Losunggn bei denen einer oder auoh
mehrere der FP beliebige Werte annehmen konnen. Normale
Losungen ffihren gewohnlioh zu Sohwellensingularitaten,
wahrend pathologische Losungen im Zusammenhang mit den
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asymptotisohen Singularitaten, auf die im nachsten
Abschnitt naher singegangen warden wird, eine Rolle spielen.

Wir gehen davon aus, daB der Teilgraph é? aus n7 Kanten
bestehe. Zur Isolation der Endpunkt-Singularitaten wird eine
Transformation

m

A; : g‘zf ,'= 4? ...)m .24 a“; = 4 (2.3.661)

vorgenommen. Die Jacobideterminante dieser Transformation
ist

9( .4 ) m” m "f”? m = 8 50‘2"“) ' (2.3.6b)
OCA/DH- ) I‘mJg) “.4

Damit ist der PSP duchg-Ound d;'0‘:,:'>mcharakterisiert. Unter
der Transformation (2.3.6) verhalten sioh dis parametrischen
Funktiona'Cd’undDCd)wie

dCO't) ' 3 LG?) 6(8)) 0?}, 0")

. 43.68%“! - ..00s) ' 3‘ 0C3, 4;, .4) "2 (2.3.7)

Falls in 673902}; A) 8’0 gesetzt wird, so faktorisiert das
Resultat nach (1.3.10) in

(/3, (at) 0:42 (a) (2.3.8)

Ahnlich wie schonDGQ/Clé‘hn (2.3.3) entwickelt wurde, so
sntwickeln wir hierDCgflhd) um pea-3: und p; . Der fuhrends
Term 00 ist gleich

_ _. A- r [3 j n“, 6) Q - (2.3.9)00 (3,X,*)A)=O¢Jyp 4- T‘) 8+2; jg‘Ojd'éAJ/‘D
3 PS? ;;015m*4 ’ Q39
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iipsp ist eine Funktion von1gf und /2 , die ffirf;7§zver-
echwindet. De die Singularitet bl von einer endlichen
Umgebung um den PSP herruhrt, kennen die Integrations-
1ntervalle beliebig erweitert werden, solange nur das
resultierende Integral existiert, ohne daB dae singulere
Verhalten beeinfluBt wird. Deshalb entspricht der Singu-
laritet des Fl 1” (2.2.1) am betrechteten PSP gerade das
Verhalten dee Ausdrucks

°° m-4-LC$)C2*€) 4 _ *°°
£3133 fL-do‘g...,mj [ddmm 0/080“,
0 O -OO

“32 ~(cfamfldnfo *6 0.-
Integration von (2.3.10) ergibt

(2.3.10)

{312113 "I ”m",dam) _§,}37’7j Q _ 'FCm-LCm-efl-
def ((517 5073.” O)1>.<P)

(2.3.11)
-m+LC€)(2-G) M

‘ ""' - J L“ {-— N m ”k
fEO/d4,...,mj dye“) ((gg—) ) * LYR) 0a 3 “PS/‘3 17/3) P3P

mit dem asymptotischen Index

Iz=fi’210°'m-4)-m Mafia-e} (2-3-12)

(2.3.11) gilt, falls k>01st. Dies l'eiBt eich prinzipiell
erreichen. Istimmer durch eine geeignete Wahl von 6

NM {(60 und ganzzahlig, i0 treten im Limes €40 zu-‘-eeo
s'aitzliche Logarithmen von OfisP auf. De. ms 10(3)) iet,
léBt eich ' k auoh ale

A/ 4

k=in€fi)-C2-e)L(JZ) +9: (2.3.13)
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ausdrficken. Damit haben wir eine Zahl gefunden, die
as gestattet, die Starks einer Singularitat direkt aus
den reduzierten Graphen abzulesen. Ffir pathologische
L'dsungen der Landau-Gleichungen erh‘o‘ht sich I? um ‘die
Anzahl der freien Parameter. Es ist also zu erwarten,
daB solche Lfisungen AnlaB zu starkeren Singularitaten
geben.

2.4 Mgssensingularitaten

In vielen Fallen ist die Untersuchung des asymptotischen
Verhaltens eines FI im Limes groBer Impulsfibertrage aqui-
valent zur Untersuchung seines Verhaltens im Limes, der
durch das Verschwinden einiger Massen charakterisiert ist.
Im zweiten Fall treten typischerweise sogenannte Messen-
singularitaten auf. DaB Massensingularitaten als eine Form
der asymptotischen Singularitaten aufgefaBt werden kennen,
laBt sich leicht durch eine Dimensionsanalyse der para-
metrischen Funktion DO! ) einsehen. Da Massensingularitaten
in der Literatur grfindlich untersucht worden sind, mechten
wir hier einige der Resultate, soweit sie fur unsere Ziel-
setzung von Interesse sind, zusammenfassen.

Wir haben bereits 1m vorausgehenden Abschnitt darauf hin-
gewiesen, daB Massensingularitaten mit pathologischen
Lesungen der Landau-Gleichungen im Zusammenhang stehen.
Pathologische Lbsungen der Landau-Gleichungen zeicnnen
sich dadurch aus, daB die entsprechenden PSP nicht iso-
lierte Punkte sind, sondern Hyperflachen im dx-Parameter-
raum bilden. In vielen Fallen tritt solch eine Entartung
gerade dann auf, wenn einige der Massen verschwinden.
Eine allgemeine Untersuchung der apathologischen L5sungen
ist leider sehr kompliziert und eine vollstandige Klassi-
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fizierung erscheint aussichtslos. Daher werden wir uns
hier mit dem einfachsten Fall begnfigen. Wie sich in der
Praxis herausgestellt hat, deckt dieser einfache Typ eine
FUlle Von physikalisch interessanten Fallen ab.

Wir werden hier bloB den Typ von pathologischen L6-
sungen untersuchen, der dadurch gekennzeichnet ist, daB
alle FP die zu Kanten des reduzierten Graphen 31. geheren ,
beliebige Werte annehmen kennen, die lediglich durch die
cy-Funktion aus [:d eingeschr‘ankt werden. Im Gegen-

satz dazu steht die Form der Lesungen der Landau-Gleichungen
wie sie in Abschnitt 2.5.5 vorgestellt werden wird. Die
allgemeinen Bedingungen fur das Auftreten solch siner Messen-
singularitat lassen sich leicht ableiten.

Dazu betrachte man den reduzierten Graphen 32, . 3Q. be-
stehe aus verschiedenen irreduziblen Teilgraphen..51£; ,
[3-4,---,$,die Jeweils nur durch einen einzigen Vertex mit

dem fibrigen Graphen verbundsn sind. Falls é? zusammen-
hangend 1st, so hat der reduzierte Graph eine Struktur
wie sie invAhb.2.3 gezeigt wird.

Die Kantenimpulse ¥f der irreduziblen Komponenten jag
haben die Eigenschaft, nicht von den (1 -Parametern der
Kanten aus flp’ . fllfifi abhangig zu sein. Innerhalb eines
irreduziblen Teilgraphen Qfi sind genau LCfider Kanten-
impulse linear unabhangig. Samtliche fibrigen 5f lessen
sich aufgrund der Impulserhaltung als Linearkombinationen
dieser unabhangigen Impulse und der auBeren Impulse Pp; mit
konstanten Keeffizienten darstellen. Damit kann gezeigt
werden. [KI 76] , daB dann und nur dann eine Lesung der
Landau—Gleichungen vorliegt, falls

”7:9; 0 V :1 e a (2.4.1)
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Abb.2.3 Struktur des reduZierten Graphen

und

p/s’, a p/QO' a O (2.402)

erffillt eind. Mit anderen Worten, alle externen Impulse
einer irreduziblen Komponente mfiseen parallel zu eiflgm
lichtartigen vektor sein. Der asymptotische Index K' der
vorliegenden Singularitat berechnet sich mittels einer Trans-
formation (2.3.6) ale

A:

k= k+ eLCfl)
R: [4092) 321.62)

(2.4.3)

Dies gilt fur eine rein skalare Theorie. In einer Spinor-
theorie gibt (2.4.3) lediglich eine obere Grenze an.
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Der Wert (2.4.3) des asymptotischen Index gilt fur den
Fall, daBDfd) wie 31'6”” verschwindet. Es ist jedoch auch
moglioh, daBiIH) starker gegen Null geht [KI 76,77] .
In solch einem Fall kann l< einem grbBeren Wert annehmen.
Dies hangt damit zusammen, daB an die Stelle der linearen
Transformation (2.3.6) natflrlich auoh eine nichtlineare
Transformation treten kann.

q1 C12

mEfl
I I I In II

P . p’
Abb.2.4 Graph, dessen Massensingularitaten im Text

diskutiert werden

Wir mochten dies hier am Beispiel des in Abb.2.4 ge-
zeigten Graphen der Quantenelektrodynamik darstellen. Die
durohgezogenen Linien representieren Fermionen der Masse
rn , die geschlangelten Linien masselose Photonen. Die

mit 52’ bezeichnete Blase enthalte nur Photonen. Offen-
sichtlioh erffillt gK ‘3’) samtliche Bedingungen, die an
einen reduzierten Graphen gestellt werden mfissen, der die
Landau-Gleichungen lost. Wir haben die fermionischen
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Kanten in drei Mengen 9, B, d aufgeteilt. Lassen wir
einmal die Mb'glichkeit, daB Jo Schleifen enthalte auBer
acht, so folgt aus (2.4.3).daB k' genau dann seinen
groBten Wert annimmt, wenn gerade samtliche Fermionkanten
kontrahiert werden. Da der entsprechende asymptotisohe
Index (2.4.3) in jedem Falle negativ (E =C7 ) ist, fol-
gert man, daB das Verschwinden von2)01)wie,3 nicht aus-
reicht, um eine Singularitat zu erzeugen. Durch eine nioht-
lineare Transformation kann nun erreicht werden, daBzDCk)
starker als g gegen Null geht. Im Hinblick auf unser
Interesse an vollstandig maseelosen Theorien, werden wir
hier solch eine nichtlineare Transformation als Uberla-
gerung zweier linearer Transformationen ausffihren.

Zunaohst laBt sich jeder Kantenimpuls aus f9 und 8 als
/K:- p + K 63-6 5’ (2.4.4a)

IK. p’+ 5f as 8 (2.4.4b)
/

schreiben, wobei Y’ eine Linearkombination von K: ,
I

I

8,-632’ist. Damit nimmtflfd)die Gestalt

a. . I .fi}, ,em = coo {(Zx,-(p-m“2+2§.«,.p 9,32 .4. H
aen QM 8"” I I (24 5)

_ ’ _ 2
+ [MO/D )+Z’J,'H + 241(ffma) }

[74-7/3 9363' 9:56,“ '
an. Wir kontrahieren nun die Kanten von Fit/C und von 8UG’
nacheinander, d.h. wir skalieren samtliche FP aus I7UC1
(BC/d )mit SH (33) wie in (2.3.6). Dae hat zur Folge,
daB
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.1

8. eefl
44;” 8,3 6;n (2.4.6)

89 8/3 6; G d

(7647 G; 9.2 I
und

fiwgnp+ou5+0amm9 x63? (Law
ist. Setzt man diese Beziehungen in Dodein, so erhalt man

000': 60¢) {(85, Z X,v(/oQ-m2) + géjg
('69 (2.4.8)

2 2 , Q 2+p mph/op 0‘as +/a’ 079,32}
Unterwerfen wir nun die Parameter 8's und 33 selbst einer
Transformation (2.3.6) mit einem Parameter ‘9' , so ist
klar, daB DOO’Ug ‘9' ist, falls nur die externen Impulse p,f>’

Q 2
(I) = m

9. a (2.4.9)p' =m

erffillen. Angemerkt sei, daB die Transformation mit‘g
eine niohtlineare Transformation ist. Der asymptotische
Index wird

l:*2Cn(%)-(2-6)L(q))-npWe Jim. (2.4.10)

Er ist nicht mehr in jedem Falls negativ. Der wesentliche
Unterschied zum vorher untersuchten allgemeinen Fall ist
die zusatliche Forderung (2.4.9). Die allgemeinen Be-
dingungen,unter denen selch eine "Verstarkung" einer
Singularitat auftreten kann, findet man in [k1 77] .
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Es ist klar, daB in einer masselosen Theorie mit ex-
ternen Impulsen auf der Massensohale

BOUNS’n 3/3 (2.4.11)
gilt. Hier liegen also wieder die zu Anfang untersuohten
Verhaltnisse vor, so daB das Verschwinden von ggoder 57,3
alleine ausreicht, um eine Singularitat zu erzeugen.

Selbstverstandlioh lassen sich Massensingularitaten
auch direkt in Af-Raum untersuchen, ohne erst FP einzu-
fuhren [ST 78] . Dies hat einerseits den Vorteil einer
anschaulioheren Interpretation der Singularitaten, erlaubt
aber andererseits nicht mehr eine systematische Bereoh-
nung im Limes mehrerer groBer Impulsfibertrage, wie wir
sie beabsiohtigen.

Man unterscheidet im allgemeinen zwisohen sogenannten
infraroten und kollinearen Divergenzen. Unter einer kol-
linearen Divergenz [EL 79:] ist eine Maseensingularitat
zu verstehen, die von einer Region des Phasenraumes her—
rfihrt, in der einige Impulse lichtartig werden, jedooh
kein Impuls komponentenweise verschwindet. Das Auftreten
von Infrarotdivergenzen hingegen ist an das komponenten-
weise Verschwinden des Impulses eines strikt masselosen
Teilchens geknfipft. Lassen wir in unseren Beispiel bloB

3n ( 86 ) gegen Null streben, so haben wir es, falls
fl) ( ‘3’ ) lichtartig ist, mit einer kollinearen Diver-

genz zu tun. Gehen hingegen sowohl 87g als auch 89 gegen
Null, so liegt eine Infrarotdivergenz vor.

Die Infrarotdivergenzen der Quantenelektrodynamik, die
durch das Verschwinden der Photonenmasse hervorgerufen
werden, sind in der Literatur ausfuhrlich untersuoht
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worden. Bereits im Jahre 1937 konnten Bloch und Nordsieck
[ BL 37 J zeigen, daB sich die Divergenzen von virtuellen
und reellen Korrekturen so organisieren lessen, daB man
zu physikalischen Wirkungsquerschnitten gelangt, die frei
Von Infrarotdivergenzen sind. Ihre Argumentation ist in
[ YE 61,ET 67,GR 73 J vervollsténdigt worden.

Die Kfirzung von reellen und virtuellen Infrarotdivergen-
zen ist eine Konsequenz des allgemeinen Theorems, das die
Namen von Kinoshita,Lee und Nauenberg trégt£KI 62,LE 63,81]
Danach ist eine Ubergangswahrscheinlichkeit endlich, falls
fiber alle entarteten Eingangs- und Ausgangszustsnde sum-
miert wird. Damit ist such eine Vorschrift gefunden, die
es erlaubt,Ubergangswahrscheinlichkeiten zu definieren,
die im Limes verschwindender Elektronenmasse endlich
bleiben.

Es hat in den letzten Jahren nicht an Versuchen gefehlt,
das Versténdnis der Massensingularitéten in der QCD auf
ein éhnliches Niveau zu heben. Trotz erheblicher Fort-
schritte konnte disses Programm bisher nicht abgeschlossen
werden. Insbesondere wurde gezeigt, daB in Reaktionen mit,
zwei Quarks im Eingangskanal, falls fiber die Farbe ge-
mittelt wird, keine vollstandige Kfirzung der Infrarot-
singularitislten a la Bloch-Nordsieck eintritt [Do 808.,
LI 81] . ‘

2.5 Asymptotische Singglaritaten

Im letzten Abschnitt haben wir die Massensingularitéten
als eine besonders ausgezeichnete Art der asymptotischen
Singularitéten untersucht. Als Massensingularitét faBt
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man im allgemeinen solche Singularitaten auf, deren Auf-
treten nicht daran gebunden ist, daB die auBeren Impulse
des Graphen besondere Bedingungen erffillen, abgesehen da-
von, daB einige eventuell auf der Massenechale liegen mussen
[I KI 62 J. In dieeem Abschnitt nun mechten wir uns der
Situation zuwenden, in der einige der Skalarprodukte der
auBeren Impulse sehr groB werden.

Zunachst werden wir unsere Betrachtungen auf eine rein
skalare Theorie beechranken. E5 391 daran erinnert, daB
ein Graph mit “e auBeren Vertizes hb’chstens von (2(8-4)/2
unabhangigen Skalarprodukten Sxf/Dx/Do' , 139' ' ”r")(3' 4) abhangen
kann. Die Abhangigkeit eines FI von diesen Skalarprodukten
wird ausschlieBlich durch die parametrische D—Funktion her-
vorgerufen. Wir werden von hier an, so wie es auch in der
sterungetheoretischen QCD fiblich ist, samtliche internen
Massen vernachl'sissigen. Dann ist 3(a) von der Form

000 - Z’h’o'fa) 5:; (2.5.1)

Im asymptotischen Limes,der durch einen einzigen groBen
Impulsfibertrag charakterisiert wird, streben eine Reihe
Von Skalarprodukten 6:0' gleichmaBig gegen Unendlich.
Um diese Skalarprodukte von den restlichen zu unterscheiden,
nennen wir die Mange der Paare C65). fur die S}- groB
wird LAP . Die Annaherung an Unendlich werde durch die
Variable (322' kontrolliert, d.h.

Q A

6:5 = Q 8.3,; 033' )c- a? (2.5.2)
und gffl' (“Jefl sowie 8,1,” 6;}3')¢’fl bleiben endlich.
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Spéter werden wir auch den Limes untersuchen, bei dem
mehrere Impulsfibertrége unabhengig voneinander gegen Un-
endlich gehen. Héufig ist es sinnvoll,den asymptotischen
Limes durch die Wahl eines Bezugssystems zu re-
alisieren und alle 53:5 (JMM‘JSI’ explizit verschwinden
zu lessen. Besonders fibersichtlich ist eine Zerlegung der
Impulse nech den lichtartigen Vektoren /Qg und dem
darauf orthogonalen Vektor 7); ( siehe Anhang B ).

2.5.1 figgularisierung

Mit (2.5.2) wird DOA)

UGD=QQ{M¢)+ Z Ago.) ---S""'- } (2.5.3)2c.3923 Q

wobei

W) = Z max) 3,; (2.5.4)(wefl
ist. Setzen wir (2.5.3) in (2.2.1) ein und vernachléssigen
im Limes (QR->00 einmal die Term'e Sig/Q9”, so bekommen wir

Mm IJ=((Q2)-PI” (2.5.5)
@900

mit
H {Er-2+6 -/‘3’I =fid¢3 6(a) baa) (2.5.6)

1Die Vernachl'eissigung der Terme 33/62 in (2.5.5,!) ist ohne
weiteres gerechtfertigt,solange das Integral L endlich ist.
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,Iy kann jedoch singular werden, falls C761) und/oder h€3)
innerhalb des Integrationsbereichs verschwinden. CREL’ver-
schwindet nur dann, wenn die Parameter eines Teilgraphen
8’ mit {.(ff’);!0 gegen Null gehen. Aue (1.3.8.9) und
(1.3.36) folgt, daB, falls CCofi) verechwindet, auch/qéf)
mit mindeetens gleicher Starke verechwindet. Daher reicht
es aus, eich auf das Verschwinden von /JC%) zu konzen-
trieren. Wie (1.3.36) zeigt, verschwindet 5(8)), falls die
I—‘arameter 5211195’l‘e:i.ltg:r."a1i)her1 5? mi‘t g gegen Null gehen
inixuleaytane wia t)- . Fuhrt ein Verschwinden von/‘JGUWie
Sttfl: jedeeh night starker, zu einer Singularitat, so

geschieht dies in jedem Fall unabhangig von den externen
Impulsen, also auch schon vor Vernachlassigung der Terme
Sg/QQQ. Dann haben wir eine Ultraviolettdivergenz vor

uns. Wir nehmen durchweg an, daB wir es mit"off-ehell"
renormierten FI zu tun haben und werden Ultraviolett-
divergenzen keine Beachtung schenken.

Ffihrt das Verschwinden von [16!) st'elrker ale gawzu einer
Singularitat in (2.5.6),so gibt es prinzipiell zwei
M6glichkeiten,sie zu regularisieren. Entweder setzen wir
die Terme fij/ZQAnicht von vornherein gleich Null, nehmen
aber e = O (off-shell Regularisierung), oder aber wir
wahlen G<O , setzen Saw/622': O und flihren zum SchluB den
Limesé-iQaue (dimensionale Regularisierung) [GA 75,
MA 75] . Eine fflhrende Singularitat, die eich in der
off-shell Regularisierung in der Form

I; 9. K 0/I A, (Q ) [03 (Q2) (2.5.7a)

zeigt, nimmt mit der dimensionalen Regularisierung die
Form

._» 4N —-——-———— q ) a>O (2.5.7b)(are +k)
an, wobei <3 eine reelle Zahl ist. Dieser Zusammenhang
wird in Kapitel 3 offenbar werden. Vom praktischen Stand-
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punkt aus ist zur Berechnung des asymptotisohen Verhal-
tens in der Regel die Methode der dimensionalen Regulari—
sierung gegenfiber der off-shell Regularisierung vorzu-
ziehen. Wie (2.5.7b) jedoch zeigt, ist sie nur fur solche
Singularit'aten sinnvoll einzusetzen, fiir die k- O 131:,
da fur k > 0 der Limes E —> O_ nioht ausgefiihrt werden
kann.

Ist k5=C7 und wird die dimensionale Regularisierung gewahlt,
so fiihrt ein Verhalten von 1'” wie 6 -q im Limes 5-)Qzu-
sammen mit dem Faktor (Qaf’ain (2.5.5) dazu, daB der loga-
rithmisch fiihrende Term wie (I03 Q2)q geht, was man auch
von (2.5.7a) erwartet. Daher ist, was das Abzahlen der
Logarithmen betrifft, eine Singularitat (3’ equivalent an

[03 Q1.

2.5.2 Skalierungsmenggn

Wie im letzten Absohnitt festgestellt wurde, ist die

Berechnung des asymptotischen Verhaltens von. I; aqui-
valent zur Bestinnnng der Singularitaten von 1”,. Im

allgemeinen ist 1. sin kompliziertes Integral, das nioht
explizit ausgeffihrt werden kann. Offenbar ist dies aber

auch gar nioht notwendig. Zu diesem Zweck reicht schon

die Integration fiber eine kleine Umgebung der Hyperflaohe

aus, auf der t) verschwindet [P0 63, FE 65.] .

Tragen die Quadrate der einzelnen Schnittimpulse/f‘gaus

(1.5.34) zu 10(8) mit jeweils gleichem Vorzeichen bei,

so kann F104) nur dann Null werden, wenn eine Reihe Von
FP gemeinsam verschwindet. Der Fall, daB die Vorzeichen

unterschiedlich sind, wird spater unter die Lupe genommen

werden. Wir nenne soloh sine Mange von Parametern eine

Skalierungsmengg L§£2 if . Selbstverstandlich ist jede
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Obermenge einer SM selbst ebenfalle wieder eine SM. In
der Literatur findet man fur minimale SM, die keine Schlei—
fen enthalten, Bezeichnungen wie "d-lines" [HA 63,64]
Oder auch "t-path" [TI 63 J. SM mit Schleifen werden
auch "singular configurations" genannt [TI 63 ,P0 80_] .
Da sich dieee Bezeichnungen auf spezielle Prozesee beziehen,
werden wir sie hier nicht benutzen.

Um das Integral .I” in.einer Umgebung der Hyperflache
zu untersuchen, auf der die Parameter von if 'verechwinden,
ffihren wir eine Skalierung wie in (2.3.6) aus. Wie be-
reite festgestellt wurde, kann eine Singularitat, die
nicht eine Ultraviolettsingularitat ist, nur dann auf- '
treten, falls t)st‘arker ale gawgegen Null strebt.
Dazu ist es offensichtlich notwendig, daB 451%(D°(5)/02)
(siehe (1.3.36)) verschwindet. Mit anderen Worten, die
parametrische D-Funktion des Graphen g/jo muB unab-
hangig von (22 sein. Da wir bereits alle Skalarprodukte,
die nicht aus J$ sind, explizit gleich Null gesetzt ha-
ben, bedeutet diese Forderung nichts anderes, als daB
der reduzierte Graphlg/f in 1-vertex-irreduzible Kom-
ponenten zu zerfallen hat, so daB fur alle externen Im-
pulse Pfl’. einer Komponente ,8 :(flf,/d’j)¢u4 gilt. Dies
ist genau die gleiche Bedingung, wie sie schon fur das
Auftreten einer Maseensingularitat in 2.4 abgeleitet wur—
de. Ist insbesondere 5? verbunden, so ist der reduzierte
Graph von der in Abb.2.3 dargeetellten Form.

Nehmen wir einmal an, daB

Wm -- ,. .[0(0‘)= 8 10(0‘28) (2.5.8)

und

LA?) -— I
C(04): g C6498) (2.5.9)
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~

ist, so ergibt sich als asymptotisoher Index L< der
sohon bekannte Ausdruok (2.4.3). In (2.5.8,9) steht o<’
sowohl fur die transformierten Parameter 5E , als
auch fur diejenigen Parameter, die keiner Transformation
unterworfen wurden. Um die Starke einer SM zu oharakteri-
sieren, wird in [HA 64] die effektive Lang§_rne£, ein-
geffihrt

may: 'hCUO)‘2/_(37) (2.5.10)

Damit wird

k ‘P’-mm (2.5.11)

Ist p< Me“: , so liegt keine Singularitat vor, istp=meH ,
so handelt es sich um eine logarithmische Singularitat
und im Fallep’)m“,haben wir es mit einer sogenannten
"power-law" Singularitat zu tun. Ein wichtiger Sohritt
zur Berechnung des asymptotischen Verhaltens eines FI
ist selbstverstandlioh die Bestimmung der SM. Wir werden
uns im Rahmen dieser Arbeit ausschlieBlich auf den ffih-
renden Term mit groBtem l< beechranken. Daher reicht
es aus, sfimtliche 5M minigaler_effektiver gangs {Egg}
zu bestimmen. Kann der asymptotische Limes dadurch reali-
siert werden, daB jeder exteren Impuls als Linearkom-
bination der Impulse 10: dargestellt wird, so besteht
jeder reduzierte Graph aus zwei irreduziblen Komponenten.
In diesem Fall werden die MSM durch verbundene.Graphen
dargestellt. Hat man einmal eine MSM gefunden, so ist es
haufig leiChtvsofort weitere anzugeben. Alle verbundenen
Graphen, die aus einer MSM .f’ durch Hinzuffigen von zwei
Kanten entstehen, so daB die Anzahl der Sohleifen um Eins
steigt, sind ebenfalls wieder MSM.
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Zur Berechnung der Singularitat setzen wir (2.5.8)und (225.9) in (§.5.6) ein, approximieren 5C43;>(<§C.j3))
durch h(d:0) (C(40) ), integrieren iiber ein Inter-.-
Vall 0 <3“? und betrachten nur den singularen Anteil.Ist l<=C> eo'erhalt man mit der dimensionalen Regulari-
sierung

.4 4
- fi‘QtGH .. C’ loI, 3 4 _{kdufltjloflil _£§.,’ ) fi' + "' (2.5.12)

-L(‘%/39)G o O h (A; 0)

mit

[0’02“] c 0/;4...0/J; JCJ” ,L..' *;m_ 4) (2.5.138)

und

[NJ = dd»... o/orn Jaw.“ + 0‘. -4) (2.5.13b)

Selbstveratandlich muB daa verbleibende Integral, das
die Singularitat in (2.5.12) multipliziert, keinesfalls
endlich sein. Im allgemeinen gibt es mehrere SM, dielq(d)
verschwinden laeeen, und es kennen mehrere unabhangige
Skalierungen ausgeffihrt warden. Der gleiche Parameter
kann natfirlich auch mehrmals skaliert werden. Allerdings
kb'nnen wegen der 6-Funktion in (2.5.13a) nicht s’a'mtliche
Parameter einer SM ein zweites mal skaliert werden. Wir
nennen eine Reihe von SM, deren Skalierungen nachein—
ander ausgeffihrt werden kennen, eine Sequenz. Da wir
uns lediglich ffir ffihrende Beitrage intereseieren, sind
samtliche SM einer Sequenz MSM. Ist es aufgrund der Ein-
schrankungen durch die dr-Funktionen nicht m6g1ich,eine
gegebene Sequenz um eine weitere SM zu erweitern, so nen-
nen wir eie vollstandig. Die Konetruktion solcher voll-
standiger Sequenzen ist der Gegenstand dee Kapitels 4 .
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let die SM der in (2.5.12) ausintegrierten SkalierungTeil einer nichttrivialen Sequenz, so charakterisierendie Punkte in (2.5.12) logarithmisch nichtffihrende Terme.Besohrankt man sich auf die Berechnung der ffihrendenLogarithmen, so spielt, wie aus (2.5.12) ersiohtlich
ist, die obere Integrationsgrenze 6‘ keine Rolle.Mochte man hingegen auoh nichtffihrende Beitrage berechnen,so muB die obere Integrationsgrenze, die allgemein eineFunktion der 4X 1st, berficksichtigt werden.

Falls wir unsere bisherigen Uberlegungen auch auf Theo-rien mit Feldern mit nichtverschwindendem Spin ausweitenwollen, so mfissen wir anstelle des Integrals (2.2.1)ein Integral der Form (1.4.4) untersuchen. Ein Term mit
8' Kontraktionen tragt wie

’ 4 CY?) / ,I: "‘“—"“—'" ~- Q A) (2-5-14)ffd¢](D(A)/C:(d ))P G. 42 26-625 526,“, ... r/Uho

bei. Wir haben der Einfachheit halber die Indizes will-
kfirlich gewahlt. Die bisher gezogenen Schlfisse mfissen
lediglich insofern geandert werden, wie sie das Verhalten
des Integranden von (2.5.14) bei Skalierung der Parameter
einer SM betreffen. Der ffihrende Term der Kantenimpulse

K, bleibt bei einer Skalierung entweder konstant oderer verschwindet wie ejne Potenz von 3’ . Die £55 hingegenverhalten sich wie 3. , falls as eine Schleife 28C 50
gibt mit QUEJ C 28 . Liegen eine oder auoh beide der
Kanten 8;, 93' nicht auf soloh einer Schleife, so bleibt
der fiihrende Term von Q“ konstant. Daher muB, fallsG=Oist, eine SM, die das (2.5.14) entsprechende FI
einer skalaren Theorie singular macht,nioht unbedingt
auch zu einer Singularitat in (2.5.14) ffihren. Eine Ent-scheidung darfiber erfordert die Untersuchung der )f .
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let G #(D , so muB, abgesehen vom EinfluB der 8’ , die
effektive Lange einer SM um 5‘ steigen, damit sie eine
Singularitat gleioher Starke verursaoht,wie fur ein ska-
lares FI, es sei denn, diese Unterdrflckung wird teil-
weise duroh die fla' kompensiert.

,An einem PSP der bisher betraohteten Art wird jeder
Kantenimpuls 5f des reduzierten Graphen parallel zu
einem der externen Impulse. Lassen sich samtliohe ex-
ternen Impulse als Linearkombinationen von p, and p_
ausdrficken, so ist der Tensor im Integranden von
(2.5.14) im wesentlichen ein Produkt aus diesen Vektoren.
Im allgemeinen wird der Tensor im zahler des Integranden
Von (2.5.14) mit einem numerisohen Tensor kontrahiert,
der ein Produkt aus metrisohen Tensoren 91w und Dirac-
Matrizen Xp ist. Daher ist es in vielen Fallen vorteil-
haft, eine Lichtkegelbasis zu wahlen ( siehe Anhang B) .

2.5.3 "Disconnected Scalinggfl

An dieser Stelle ist es notig. einen Punkt zu kléren,
fiber den nioht nur in der alteren Literatur einige Ver-
wirrung herrsoht [ME 64,GR 65a,HA 65,?0 80] . Hat man
einmal eine Singularitat wie in (2.5.12) isoliert, so
mag man versuoht sein, als naohstes eine Singularitat
zu isolieren, die einer MSM von.gkk:CL)entspricht. Soloh
eine MSM muB natfirlich nicht unbedingt auoh eine MSM
von })Gg) sein. Ist es ein allgemeines Kennzeiohen der
MSM von hcahdurch'verbundene Graphen dargestellt zu werden,
so trifft dies fiir eine MSM von Ira-0:0)nioht mehr zu.
Solohe SM sind daher unter der Bezeichnung "disconnected
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ecalinge" bekannt. Isoliert man die einem "discone
nected scaling" entsprechende Singularitat dee Integrals
(2.5.12) auf die gleiche Weise, wie echon (2.5.12) eelbst
gewonnen wurde, so ist dae Resultat im allgemeinen un-
brauchbar. Der Grund iet, daB nun die vernachlassigten
Anteile nicht mehr nichtffihrend sind.

Dieser Sachverhalt laBt sich an folgendem Beispiel ein-
sehen. 81'861 der Parameter der Skalierung einer SM fig
undh (dagflsei durch

502.13,): We") + 3,, h—(a’) (2.5.15)

gegeben. Es existiere eine zweite SM jog mit Parameter
31 , die zwar bfak'} , jedoch nicht hfdyzum Verschwinden

bringe. Der Einfachheit halber eei L(£)=/_(502)=O. Dann
iet ‘

hm =' 3,, 1:10; 3,, 3.) (2.5.16)

mit

I —- .

100,34, 6’.>=8’2¢70‘) + £2.50) . (2.5.17)
Es ist klar, daB wir hier den Auedruck h(or,g.,3,)nicht mehr
einfach um 3.,=O und 32: O entwickeln kennen, wie es bei
der Ableitung von (2.5.12) mit bCasjg) geschah.

Es ist.daher falech,die Singularitaten zu isolieren,
indem abwecheelnd skaliert wird und dae Integral wie
besehrieben approximiert wird. Vielmehr muesen zuerst
alle Skalierungen der SM einer vollstandigen Sequenz aus-
geffihrt werden, erst dann darf dae Integral approximiert
werden. Eine Sequenz bricht ab, falls das Integral von
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-- I

I)(Ah} fiber Cflfi am PSP endlich ist. Haben wir es bei-
spielsweise mit einer vollstandigen Sequenz zu tun, fur
deren SM t?“ jeweils Lftfi‘fiOist, so wird

MAP 8... (QC/V) + 0(a)) (2.5.18)
In diesem Ausdruok dfirfen wir ohne Gefahr in der Klam-
mer 3k3=C7setzen. Das Auftreten von "diSconnected scalings"
muB daher als eine Konsequenz der fehlerhaften Approxi-
mation des Integrals if” betraohtet werden.

2.5.4 Nichtlineare Skalierungen

Bisher sind wir davon ausgegangen, daB man mit einer
linearen Skalierung wie (2.3.6) eine Singularitat kor-
rekt isoliert. Wie wir Jedooh schon im Absohnitt 2.4 ge-
sehen haben, kann es unter Umstanden auoh notwendig wer-
den,eine nichtlineare Skalierung auszuffihren. Im folgen-
den mochten wir zeigen, daB zur Isolation des asymptoti-
sohen Verhaltens einer vollig masselosen Theorie, line-
are Transformationen bzw. deren Uberlagerungen vollig aus-
reiohen. '

Wir gehen davon aus, daB die FP q,..., d,,eine
SM 57 bilden. Dann lautet die allgemeine Form einer
niohtlinearen Skalierung

a". = g I”? {=4 m (2-5-19); 2 2

Die Exponenten X¢ seien so gewahlt, daB

mfn{y’.} :7 (2.5.20)
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Normieren wir die ex, auf

m, 4/-
Z .1,- v’ = 4 (2.5.21)
:=4 ,

so wird die Jaoobideterminante der Transformation
(2.5.19.20,21) gerade

86(4) ---__,_ Am) a V. )4, 4/);m~ 4 :9

9C; Jug) = g 5(01: +.. +3", — 4) (2.5.22)
4)---, m,

Wegen der Bedingung (2.5.20) verschwindet die Jacobi-
determinante einer nichtlinearen Skalierung einer vor-
gegebenen SM immer starker als die einer linearen Ska-
lierung. Daher kann eine niohtlineare Skalierung nur
dann sine gleich starke oder auoh starkere Singularitat
im Vergléich mit einer linearen Skalierung verursachen,
falls die Funktion h(}() fur die nichtlineare Skalierung
starker verschwindet, als dies fur sine lineare Skalierung
eintreten kann. Solch ein Fall IaBt sich einfaoh duroh
Uberlagerung mehrerer linearer Skalierungen konstruieren.
Sind beispielsweise zwei SM £9 und 59,3 vorgegeben mit

€90 £3 ¥¢ , so diirfte im allgemeinen eine nichtline-
are Skalierung mit

- 3P2 falls €,-e(b”,.089,3)
- V; = 4 sonst

has) starker versohwinden lassen, als wenn v; = 4 fiir
alle Kanten aus 32,0 508 gewahlt wird. Dieser Fall wurde
bereits im Abschnitt 2.4 vorgeffihrt. Hier mochten wir
nun zeigen, daB sich umgekehrt jede nichtlineare Skalierung .
die h(a)'starker gegen Null gehen laBt, als sine entsprech-
ende lineare Skalierung, als soloh eine Uberlagerung dar-
stellen laBt.
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Der Einfachheit halber setzen wir voraus, daB g? kei-
ne Schleifen enthalte, zusammenhangend ist undlqox)bei
linearer Skalierung von E? wie g versohwindet. Wir
nehmen an, daB eine niohtlineare Skalierung vorliege,
die})0x)wie gz'gegen Null gehen lasse und daB sich
in zwei Teilgraphen zerlegen lasse, so daB alle Kanten
aus if, mit g und alle Kanten aus 501 mit glgehen.
Skalieren wir zunachst die Parameter aus $5: .. Dann
verhalt sich hCA)wie

10(4) a Irv—CW) + gzk-ig“) (2.5.23)
h C14,) :1.c die I") —li"‘1.1.nk't;j_on des Graphen g/J’. Nun zerlegen

W11‘ :9, in einen "heliebigen susmnmr-‘anhangenden Teilgraphen
- ‘i I} (2‘)! 0| uLind das Komplement 533-"- EL,“ L5,; . Werden samtllche

379’ ( £3 ) mit 39,; ( 523 ) linear skaliert,
so muB sich.gC}7wie

1 .I'

As
Kanten aus

.. l 2. 2‘
1004’) = gs, 8,3 flash 8,; known 36 baa) + (2.5.24)

verhalten, d.h. es sind keine Terme erlaubt, die linear
in 39 oder ‘98 sind. Anderenfalls kann.#2(d) nicht
quadratisc? verscawinden. Gibt es eine Zerlegung von

9: in.5; und 5: , so daBtk7=k3C37=CD, so ist die vor-
liegende niohtlineare Skalierung als Uberlagerung der
lime-aren Slialierungen Von j; {1}? und fsuu $81 darstell—
bar. Die Tatsaohe, dam die linearen Terme in 69 bzw. 87/3
fur beliebige Zerlegungen verschwinden mfissen, laBt sich
mit den topologisohen Regeln von (1.3.34) folgendermaBen
ausdrfioken. Falls 5% ( 92 ) in zwei zusammenhangende
Teile zerschnitten wird und ansohliefiend alle Kanten
Von :fi kontrahiert werden, so muB die Q2 Abhangigkeit
des resultierenden Graphen verschwinden. Diese Bedingung
kann aber nur dann erffillt werden, falls tfi aus zwei zu-
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sammenhangenden Teilen besteht, so daB die Kontraktion
schon eines dieser Teile ausreicht, um den resultierenden
Graphen unabhéngig von Q2 zu machen. Diese beiden Teile
erffillgn aber gerade die Bedingungen, die oben an ta;
und 3%; gestellt wurden. Damit ist gezeigt,daB die vor-
gegebene nichtlineare Skalierung eine Uberlagerung der
linear-en Skalierungen Von £91; 3: und 56731,; iii st. Unter Zu—
hilfenahme der topologischen Regeln zur Konstruktion von
(1.3.34) léBt sich die présentierte Argumentation ver-
allgemeinern.

2.5.5 "Pinch"-Singularitéten

Im Abschnitt 2.5.2 wurde ausdrucklich vorausgesetzt,
daB die Quadrate sémtlicher Schnittimpulse 7%, zu [7(a)
mit gleichen Vorzeichen beitragen. In diesem Abschnitt
werden wir die Folgen erbrtern, die eintreten, falls
diese Voraussetzung verletzt wird. Wir mbchten dies an
einem einfachen Beispiel durchffihren [20 65,TI 63 _] .

Wir betrachten den sogenannten Regge-Limes, S—voo
und t fest, eines Graphen, der zu der Vier—Punkt-
Funktion in einer rein skalaren Theorie beitrégt. 8
und 't sind die bekannten Mandelstam-Variablen. Aufgrund
der Relation

“(H/=0 (2.5.25)

muB die dritte Mandelstam-Variable Ll

Use-s (2.5.26)
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erffillen. Als Beispiel haben wir den in Abb.2.5 gezeigten
Graphen ausgewahlt. Die externen Impulse erffillen

22.2; =6
(2.5.27)

Die D-Funktion dieses Graphen ist
.. I l / I .

062%d .42 23 4., + $42,329) 5
I I I I (2.5.28)

+ MM. .43 2., + noradmdo + 00‘)
Dies wird mit (2.5.26) zu

©(%)=(Ma-o<.’d;)(daor.-.(;a<;)s +60%) (2-5-29)
Im Gegensatz zu den in 2.5.2 betrachteten D-Funktionen
kann (2.5.29) auch auBerhalb der Region verschwinden,
in der einige FP gleich Null sind. Beispielsweise falls

0/4/d = ”(z/d (2.5.50)I
2

ist. (2.5.30) reprasentiert eine Lbsung der Landau-Glei-
chungen. Es ist aufschlufireich,die Impulsflfisse am
vorliegenden PSP zu studieren.

In der Sprache der elektrischen Netzwerke besagt
(2.5.50), daB die Potentiale an den Punkten I? und 8
in Abb.2.5 fibereinstimmen. Daher flieBt an einem PSP
durch die Kanten 94:94’;ea;ez'(83:83’)eh 8...: ) ausschlieBlich
der Impuls fih_( f1), wéhrend die Kantenimpulse von
96—. und e5 verschwinden.
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fix xx

9+ 2 B 6 4 p-
Abb. 2.5 Ein Graph, der eine "Pinch"—Singularitat

aufweist

Ein analoger Mechanismus ist fur die als "Landshoff-
Pinch"-Singularitéten [IA 73,0V 74a 1 bekannte Abwei-
Chung des asymptotischen Verhalten der elastischen
pp-Streuung im "Large-Angle"-Limes von den Regeln des
" Dimensional Counting" [BR 73,MA 73]verantwortlich.

LéBt sich der zu untersuchende asymptotische Limes
so realisieren, dafi sémtliche externen Impulse des je-
weiligen Graphen Linearkombinationen der Impulse f3:
sind, so spielen fiPinch"-Singularitéten keine Rolle,
falls diese Impulse an mindestens einem externen Vertex
gleichzeitg auftreten [CO 73:] . Es muB also fur min—

. 1 2.destens einen externen Vertex p. N 0 gelten.
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3 . gym ]_&_’§_O_'L j. s C 1'1 :3 _ En_t11931 U. 1-11.24; 11 113" 1:; .i .|_ Me 1 l i n—
Eransformation

In 2.5 haben wir die Singularitaten eines F1 in sinem
Limes untersuoht, bei dem ein Teil der Skalarprodukte 8g
(f) peflv der auBeren Impulse mit Q9" gegen Unendlich
gingen, wahrend alle fibrigen Skalarprodukte festgehalten
wurden. Diese Form des Limes behandelt alle groBen Skalar—
produkte 5,3 (.‘JJeflv auf gleichem Niveau. Sie beriioksichtigt
nioht die rslativen Untersohiede dor einzelnen Skalar-
produkte. Lassen wir beipsielsweise die beiden Invarianten
\S und t gemeinsam gsgen Unendlich gehen, so gibt
es in der logarithmisch ffihrenden Naherung keinen Unter-
schied zwisohen lag s und I03 1': . Dieser Unterschied
wird aber wiohtig, falls wir z.B. 8:» t werden lassen,
as also zwei groBe, voneinander unabhangige Impulsfiber-
triage gibt. Offensiohtlich reioht die in 2.5 vorgestellte
Methods nioht aus, um die Singularitaten eines FI im
Limes mehrerer unabhangiger groBer Impulsubsrtrage zu
bestimmen. Es ist das Ziel dieses Kapitels zu zeigen,
wie das asymptotisohe Verhalten eines FI im Limes mehrer
groBer Impulsflbertrage mit Hilfe einer mehrfaohen Mellin-
Transformation bestimmt warden kann.

Die Nfitzlichkeit der Mellin-Transformation zur Berech-
nung des asymptotisohen Verhaltens eines FI im Limes
eines einzigen groBen Impulsfibertrages, falls nicht
zusatzlioh wie in Kapitel 2 die dimensionale Regulari-
sierung eingesetzt wird, wurde zuerst von Bjorken und Wu
erkannt [BJ 63] . Ihre Methods wird ausfiihrlich in
[ ED 66]und [P0 80] dargestellt. Eine doppelte Mellin-
Transformation ist zur Bereohnung eines FI zuerst von
Polkinghorne [P0 64] benutzt worden.
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Im Gegensatz zu diesen Arbeiten aus den sechzigen Jahren
steht im Mittelpunkt der ArbeitenCBE 74,77,78a,79] und
[l CA 80,81 J die Entwioklung einer allgemeinen Methode
zur systematischen Bereohnung des asymptotischen Verhaltens
eines FI. Kernstfick solch einer Methode ist immer eine
Zerlegung des d -Integrationsgebietes in Sektoren und
eine Transformation der FF, so daB der Teil des Integranden ,
der nach Faktorisierung der transformierten Parameter ver—
bleibt, die den Integranden als Ganzes multiplizieren,
eine Taylorentwicklung mit nichtverschwindendem ersten
Glied in dem betrachteten Sektor besitzt. In den erwahn-
ten Arbeiten wird das Integrationsgebiet in sogenannte
Hepp-Sektoren zerlegt

d: < d: < 04;'4 .1 n
Iwobei Q, “2’n eine Permutation der Zahlen von 7

bis n ist. In diesem Sektor werden dann entspreehend

d'rx fin flk
mit 04/3; 5 4 , i=’/,...,h-4neue Variablen eingefiihrt.
Inwiefern diese Zerlegung die geforderte Eigenschaft
aufweist, hangt ganz von den parametrischen Funktionen
ab. In [BE 78a] wird ein Polynom derart, daB es in
jedem Hepp-Sektor die beschriebene Eigenschaft aufweist,
FINE genannt. So sind beipsielsweise of, + 0:2 ,o€4da+o(4d,3+daq{3
FINE Polygome, wahrend 09,14- dad? im Sektor 6.?1 {0/7 rap/3
gleich [33 flzfflq+fla)ist, also nicht FINE ist. Die para-
metrische C-Funktion ist immer FINE. Dies ist der Grund
daffir, daB Hepp-Sektoren die angemessene Zerlegung zur
Untersuohung von Ultraviolettsingularitaten sind [HE 66_].
In [BE 74] wird gezeigt, wie im Limes eines einzigen
groBen Impulsfibertrages eine asymptotische Entwioklung
mittels einer einfachen Mellin—Transformation systematisch
bestimmt werden kann, falls (96%) FINE ist. Ist 00f) nicht
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FINE, so iet aine Aufspaltung in ein Produkt aua Poly-
noman, die FINE aind, durch eine mehrfache Mallin-Trans-
formation maglich [ BE 78a,CA 80,81 1 .

Unaare Methoda unteracheidet sich in zweifacher Hin-
aicht von.[jBE 74,77,78a,79,CA 80,81 J . Erstena wéhlen wir
die Aufspaltung dea (x -Intagrationagebietes von vorn-
herein eo, daB der faktorisierte Tail des Integranden
immer eine Taylorentwicklung mit nichtverschwindendam
eraten Glied hat. Wie dies ayatematiech geachehen kann
wird in Kapital 4 gezeigt. Dahar spialt bei unserar
Methode die FINE-Eiganachaft keine Rolle. Zweitena eetzan
wir die mahrfache Mellin-Transformation ein, um daa aeymp-
totische Varhaltan 1m Limes mehrerer groBer Impulafiber-
trage zu finden.

Wie mit einer einfachen Mellin-Tranaformation auch eine
exakte Berachnung ainea FI durohgeffihrt warden kann, ist
in [ KA 81'] gezeigt worden.

Wir warden unsara Daratellung in Abachnitt 3.1 mit einer
Einffihrung dar Mallin-Tranaformation beginnen. Daren
anachlieBend préeantiaran wir ein Beiapial (3.2), daa
illustriert, wia die Koeffizienten einer aaymptotisChen
Entwicklung mittals einer einfachen Mellin-Tranaformation
barachnet warden kbnnan. In 3.3 warden wir una dem asymp-
totiachen Varhalten einea FI im Limaa zweiar groBar
Impulafibertrage zuwendan. Varallgamainerungen auf drei
und mahrera Impulafibertraga warden in 3.4 und 3.5 vor-
genommen.

3.1 Die Mallin-Tranaformation

In dieaem Abachnitt warden wir die Mellin-Tranafor-
mation ainfuhran. Die Mellin-Tranaformation PTT{Ef} einer
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Funktion {Cy} ist durch

MT[§}=f:ry #q (3.1.1)
definiert. Das Integral (3.1.1) konvergiere im Streifen
A < P6 1‘3 < fl . Um M7{f] zu invertieren,gehen wir von dem
Integral

' +llR(1

M—Tff}' J jO/flyfifl’IT-{f} d‘X‘fl (3.1.2)21H
3-:R

aus. Die Integrationskontur verlaufe parallel zur ima-
ginaren Achse. Aufgrund der Konvergenz von (3.1.1) kann
die dy-Integration mit der aQ-Integration vertausoht
werden, so daB

"' . 17 0:; ’f .111 ‘5 5;!t {Ofl Xi}.. ~ . .. 4,.» "—1 1' .1 J
- _ 4.;

o

Lassen wir nun_flQ gegen Unendlich gehen und nutzen
die Relation LLI 66]

(£1111 MXIQA- mac... 1......
I ‘700

aus, so erhalten wir die Inversionsformel der Mellin-
Transformation

511(1)::

_Jf(y)= 2% Vi M7fl{f} of<J<fl (3.1.5)
5-H» .
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3.2 Beipsiel

In diesem Abschnitt mochten wir an einem BeisPiel
[ DA 78 jvorflihren, wie mit Hilfe der Mellin-Trans—
formation eine asymptotische Entwioklung bestimmt werden
kann.

)‘P

Es sei

(3.2.1)“gram
Diese Funktion léBt sich bekanntlich fur kleine L in
einer Reihe

C”

.4: 1/. 163:2)
£65) 2 n!

ruo
(‘3') /2'/< 4 (3.2.2.)

und fiir groBe f." in

4 I .9 4 /'(=—~+-)
3C0? ) = "P ". 'l‘fl'fl' ( 53/) “V > 4 (3.2.2b)

entwickeln. Wir haben also eine aufsteigende (3.2.2a)
und eine absteigende (3.2.2b) asymptotische Entwicklung.

Als Mellin-Transformation vonuf(g)erhélt man
00

MT{f} '-' fa’i‘ 36-4C4+€)‘P (3.2.3)
0

Dieses Integral ist fur kleine 2" konvergent, falls
,€7(9,und an der oberen Grenze konvergiert es,falls
Q-P <0 . (3.2.3) 131: gerade eine Eulersche fl-Funktion
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.. P(£)/—7I"'_._s-Z)
M {f} Np) (3.2.4)

Da (5.2.3) im Streifen 0((‘10 konvergiert, ist M7[f]
dort auch analytisch. AuBerhalb dieses Bereichs hat fifl’ff}
Pole auf der reellen Achse und zwar fur €w2-6'2,m 'und
£79 .0)4,:2)... (siehe Abb. 3.1)

\/ \/
/\ /\
p [)fl ...

>< >< \I/

C

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

«1*
I
I
I
I
I
I

Abb. 3.1 Analytische Struktur vonMHf}

In Abb. 3.1 haben wir mit CI die Kontur bezeichnet,
entlang der in (3.1.2) integriert wird. Wéhlen wir zu-
erst /?/<?4 . Dann kfinnen wir t3 entlang eines Kreis-
bogens im Unendlichen in der linken Halbebene schlieBen.
Daher ist j? gleich der Summe der Residuen der Eulerschen
[3 -Funktion an den Polen [rag-4,4,... . Bekanntlich hat
Fa) am Pol awn das Residuum (-42%1, so daB die Summe

der Residuen der fiB-Funktion genau (3.2.2a) ergibt. Auf
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analogs Weiss laBt sioh auoh (3.2.2b) ffir /?/ >*¢ aab-
leitsn. In disssm Fall ist C7 in der rsohtsn Halbsbsns
zu schlisBsn. Jedsr Pol in der /€-Ebsns reprassntisrt
also sinsn Term dsr asymptotisohsn Entwioklung von_f(gfl),
und die Pole der aufstsigsndsn und dsr abstsigsndsn
asymptotisohsn Entwioklung sind durch dis Kontourtfi
voneinander gstrsnnt.

Durch sinfachs Modifikation von 3%?) l'aBt sioh sins
dsr bsidsn Serisn von Polsn zum Verschwindsn bringsn.
Ist man bsispielswsise nur an der aufsteigsndsn Ent-
wioklung (3.2.2a) interessisrt, so kann man;F(§) fur
IF/>’7 sinfach gleioh Null setzsn. Damit konvsrgisrt das
Integral (3.2.3) in der Halbsbsns .€:>C7. Von disssm

Trick werdsn wir im nachsten Absohnitt ausffihrlich
Gsbrauch machsn.

3.3 Msllin-Transformation eines Feynman-Integrals

Wir wsndsn uns nun unssrem sigsntlichen Zisl zu, dsr
asymptotisohsn Entwicklung sinss FI. Disses Problem untsr-

schsidst sich von dem vorausgshsndsn Beispiel insofsrn,
ale daB naoh Ausffihrung der Msllin-Transformation noch

die d~-Intsgration vsrblsibt. In der nsl sind erst

naoh vollstandigsr Integration samtlichs Pole in der
‘2 -Ebene bekannt. Dies wollen wir ja aber gerads umgehen.

Da wir nur am ffihrsnden Term der asymptotisohen‘Entwik-
klung intersssisrt sind, rsioht es vollig aus sioh auf

den ffihrsndsn Pol in.dsr',€-Ebene zu bssohranken. Zur

Isolation disses Poles kann wiedsr die Skalisrungstsohnik
aus 2.5 singesetzt wsrden.
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In diesem Abschnitt werden wir uns mit der Situation be-
schaftigen, in der zwei groBe Impulsfibertrage vorliegen.
Mehr als zwei groBe Impulsfibertrage sind der Gegenstand
der folgenden Abschnitte. Haben wir es nur mit zwei
groBen Impulsubertragen zu tun, so hat das FI IT” einer
reinen skalaren Theorie die Gestalt

I"=f[d.«] Coop-m on)“ (3.3.1)
mit

DIM) = Mani-3(a) (3.3.2)

T ist das Verhaltnis der beiden groBen Impulsfibertrage.
Unser Interesse gilt dem Limes Mfl<< 4 . Um aus der Mellin-
Transformation von (3.3.1) solche Pole zu eliminieren, die
fur das Verhalten von (3.3.1) fur groBe ‘r (/t/>‘7 ) ver-
antwortlich sind, fiihren wir einen Cutoff U sin, 00) 3 > ’I .
Dieser Cutoff wird nach Inversion der Mellin-Transformation
gegen Null geschickt. Damit schreibt sich die Mellin-
Transformation von (3.3.1) zu

a}?!

MT{I”}=fa’r2'Mfldd) C(a);'2+e(h(as) +2’3COU) '5 (3.3.3)
0

Wir fuhren zunachst alle Manipulationen in einem Ge—
biet der .8 -Ebene aus, das frei von Singularit'aten ist.
Daher dfirfen 01- und ?’-Integration ohne Gefahr ver-
tauscht werden. Eine Transformation der ?'-Integrals

.4 + U may/go.) (3.3.4)t: 4. 4/2- U
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ffihrt auf
ID A,

M7“[r”} = (fa/0.] (imp

A w .. . __ .2
'fo/H [4, .‘W

0 ram.) M; Ma;

Bevor wir die analytischen Eigenschaften des Ausdrucks

(3.3.5) naher untersuchen, mochten wir kurz auf die In-
version von (3.3.3) eingehen. Formal wird (3.3.3) duroh

G-p -5
m.) (ca/(A) when) '

-2+e

#24 (3.3.3)

I]: fl— “("5 MT[I"} (3.3.6)
HI4’

invertiert. Wie in (3.1.2), so verlauft die Kontur C7 auch

hier parallel zur imaginaren Achse in einem Gebiet der

f -Ebene, in dem (3.3.3) konvergiert. Da /‘Z'/<’/ , kann
die Konturtg in der linken Halbebene geschlossen werden.

Daher ist I” gleich der Summe aller Residuen der Pole

von €f£/47{}"}, die links von. C“ liegen. Liegt ein

n-facher Pol an der Stelle [=20 vor

MT{I”} = (2.120)?) (3.5.7)

so ergibt die Inversion

-4 £0
Ilia.) {03 g)" (3) (3.3.8)

Beim Ubergang von (3.3.7) zu (3.3.8) wurden alle logarithw
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misch niohtffihrende Beitrage vernachlassigt. Da samt-
liche Pole von (3.3.5) auf der reellen tse liegen,
wird der ffihrende Beitrag durch diejenigen Pole bestimmt,
die zuerst getroffen werden, wenn C? naoh links verscho—
ben wird, und wie (5.3.8) zeigt, wird der Beitrag einee
n-faohen Poles von einem (n—1)-fachen Legarithmus be—
gleitet.

Wir untersuchen nun das Integrationsgebiet von (3.3.5) auf
mogliohe Regionen, die zu Singularitaten in der ze-Ebe-
ne ffihren konnen. Beginnen wir mit der Region t73’7 . In
dieser Region kann nur das Verschwinden der eckigen Klam—
mer des Integranden von (3.3.5) Singularitaten hervor-
rufen. Da U ’10 , erfordert dies, daB loot) ebenfalls
verschwindet. Versohwinden (Z-zfl) und t) gleichzeitig
wie g , so verh'alt sich. der Integrand wie g 0 . Daher
fiihrt die Region tV/I zu keiner Singularit'at. Anders die
Region fwd? . Die Integration fiber eine kleine Umgebung
um t= O fiihrt unabhangig von 1’10!) und g(a()zu einer Serie
von Polen fur £¢0’-4’92, . Diese Pole haben aber
offensichtlioh nichts mit dem mogliohen singularen Ver-
halten von 1'” im Limes T-rOzu tun. Sie ergeben sich als
eine naturliohe Konsequenz der Definition der Mellin-
Transformation. Fflr den ffihrenden Beitrag zu lfl'ist

ho'ohstens der Pol an der Stelle [=0 von Interesse.

Wir haben also mit der Transformation (3.3.4) erreicht,
daB Pole, die mit einem singularen Verhalten von 1”!

assoziiert werden mfissen, ausschlieBlich duroh die

o< —Integration induziert werden konnen. Solche Pole
treten auf, falls PICA) und/oder $690 versohwinden. Das
Versohwinden vonafi)alleine reicht, wie man aus (3.3.5)
ersieht, nioht aus, um einen Pol zu induzieren. Es muB in
jedem Fall [00) verschwinden. Dazu sei es notwendig,eine
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Skalierung einer SM der effektiven Lénge tq auszu-
fiihren. Versohwindet n) nicht mit dem Skalierungspara-
meter ‘5’ , so tritt in der Z’—Ebene an der Stelle

[o=p-mm +e(LCq)-L(3’)) (3.3.9)
ein einfacher Pol auf. Dieser Pol kann auf die gleiche
Weise isoliert werden, wie sohon im letzten Kapitel
der Ausdruck (2.5.12) gewonnen wurde.

Wie man aus (3.3.9) ersieht, fuhrt die dimensionale
Regularisierung zu einer Verschiebung der Position des
Poles um einen Betrag €(L(g)- M502). Man wird also nach
der Ausffihrung mehrerer SM, die hGOzum Verschwinden
bringen, eine Reihe von Polen antreffen, die auf der

reellen Achse von (ow-mm +6 Lfg) bis (073-1900, +ever-
teilt liegen. Der Beitrag dieser Pole zum Verhalten von

If” wird genauso gezéhlt,als lege der entsprechende

mehrfache Pol vor, der sioh im Limes 6-90. ergibt.
Wir werden den Limes<§¢>CZ. jedooh nicht vor Inversion
inn1fl47{11]ausffihren. Dies hat heufig den Vorteil, daB
die dimensionale Regularisierung such eine logarithmische

Singularitfit, wie beispielsweise in (3.3.8) effektiv
regularisiert. Liegen in der .E-Ebene beispielsweise

die beiden Pole

_. __.. 4 4
M/{1 J .2 "[6— (5.3.10)

vor, so liefert die Inversion

I ._._ é C4-z~'6) (3.3.11)
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Lassen wir nun e -) 0. gehen, so ist
II

I = " (03'? (3.3.12)

Disses Resultat bekommt man naturlich auch, falls man
zuerst <5 in.(3.3.10) gegen Null schickt. (3.3.11) er-
effnet jedoch eine weitere Meglichkeit, namlich zuerst
T'» C) auszuffihren. Dann tritt an die Stelle von (3.3.12)

H 4

I "' ' .3 (3.3.13)

Verschwindet gfd) ebenfalls, so haben wir es mit einer
Masoensingularitat zu tun, die unabhangig von 1" ani-
tritt, vie sie schon in 2.5 behandelt wurde. Damit haben
wir samtliche Singularitaten des Integrals (3.3.5) klas-
sifiziert. Dan Ergebnis ist noch einmal in Tab.3.1 zu-
sammengefaBtJ:

Wegen (3.3.9) liegen samtliche Pole von (3.3.5) auf
der reellen Aches und das Gebchet W€[>,,O ist frei von Polen.
Lassen wir L} gegen Null gehen, so treten auch in der Halb-
ebene Wei”: Pele auf. Wie wir allerdings wissen, spielen
dieae Pole keine Rolle flir Z'<<’/ . Um (3.3.5) zu verein-
fachen, lassen wir L/ in der eckigen Klammer gegen Null
gehen und schreihen

Typ der SM Induzsérter

.6392). ()6“) P01

C(d) C(d)
Iv 4 ""' 8 4/(3-39)

“’ 3 “’ 5' 4'/,€o

Tab.3.1
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__ ,, __ A .312” [for-£2 .Mz{r}-!£d.l do) z. P967 - R
~g.

[1i _ _b.(_“.)___P___
(ohmngw)

Die Notation (L? soll daran erinnern, daB die Pole des
Ausdrucks, der in der Klammer steht, in der é’4Ebene
unwirksam sind.

(3.3.141)

Natfirlich mfiesen such hier, wie schon'in 2.5 angedeutet
wurde.im allgemeinen mehrere Skalierungen nacheinander
eusgeffihrt warden. Im Untersohied zu 2.5 haben wir es
hier aber mit zwei unterschiedlichen Typen von SM zu
tun, solchen, die bloB hck)( TYP h.) und solchen, die
sowohl t) ale auct‘) (Typ g,h) zum Verschwinden
bringen. Nur SM vom Typ h ffihren zu Polen in der
,E —Ebene. Die MSM beider Typen weisen im allgemeinen

unterschiedliche effektive Lengen auf. Wir bfizeichneg
die Lange einer MSM vom Typ h ( 5.11 ) mitmcw. ( meg; )
In einer Sequens kennen beide Typen von MSM beliebig
Kombinisrt warden. Ist f3>n%%g~,d.h. liegt der ffihrende
Pol f; reohts vom Ursprung, so muB Jede Sequenz mindes-
tens eine SM vom Typ h enthalten,um einen ffihrenden
Beitrag zu lie fern. Falls lo=meg§ ist, so braucht dies
nicht zu sein.

Eine weitere Komplikation tritt ein, falls beispiels—
weise zwei SM 3: und 3;_ von Typ h mit Parametern
g4 und 82.

hC¢)=g.g,_ gC-t’) (3.3.15)

die parametrische Funktion (3/0) wie
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ficefi €4%4C‘)+§2fiac") (5.3.16)

skalieren. In soloh einem Fall konnen die entspreohenden
Singularitaten nioht sofort mit der in 2.5 beschriebenen
Methode isoliert werden. Vielmehr mussen die Skalierungs—
parameter 8., und 8:2. selbst erst einer Skalierung unter—
worfen werden. Wir bezeichnen den entspreohenden Skalie-

rungsparameter mit Q7 und nennen solch eine Skalierung

eine G’-Transformation. Eine QY-Transformation ist
eine in der Regel niohtlineare Skalierung,unter der die

Funktionenn) undt) mit versohiedenen Potenzen ver-

sohwinden. Bezeiohnen wir mit [Gund 20 die Positionen
der Pole beider SM, so liefert die Integration fiber den

Bereioh G~O einen Pol an der Stelle €0=IQ 4+4 . Mit
anderen Worten, die Notwendigkeit einer 5 -Transformation
setzt die Korrespondenz zwischen der effektiven Lange einer

MSM des Typs h und der Position des fuhrenden Poles, wie

sie von (3.3.9) angegeben wird, auBer Kraft. Die skalierten
3 —Parameter £4 und 3?; k'onnen nicht mehr gemeinsam

versohwinden. Wir erhalten daher im vorliegenden Bei-

spiel nach der Gu-Transformation zwei unabhangige Se-
quenzen, die beide baa} £2. , jedoch jeweils nur ent-
weder 33 oder 50,. enthalten.

Allgemein sind G‘-Transformationen immer dann not-

wendig, wenn der Teil der Funktion CH), der nach der
Faktorisierung der Skalierungsparameter der SM vom Typ g,h

verbleibt, am PSP versohwindet. In der Regel mfissen in

soloh einem Fall mehrere G’-Transformationen ausge—
fiihrt werden. Haufig lassen sioh G-Transformationen
vermeiden, indem man einen weiteren unabhangigen Impuls-

fibertrag einffihrt (siehe die folgenden Abschnitte). Wir
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werden im folgenden davon ausgehen, daB die unabhangigen
ImpulsUbertrage so gewahlt wurden, daB é>—Transformationen
nicht erforderlich sind.

Hat man einmal die fflhrenden Singularitaten einer voll—
standigen Sequenz isoliert, so kann das verbleibende In—
tegral hoohstens noch nichtffihrende Singularitaten ent-
halten. Insbesondere kann das Verschwinden von #6)!) al-
leine keine fflhrende Singularitat hervorrufen. Ffir<?=%?
tritt @Cd’) mit der Potenz m?” -p auf. Gibt es eine
SM der effektiven Lange mgf , die t’) zum Versohwin_
den bringt, so ergibt sioh der asymptotische Index

h

I<=P ' (may; + meg?) (3.3.17)

,h’Da die effektive Lange der MSM vom Typ g,h I77§}f der
ausgeffihrten Sequenz

W“ h
erffillt, kann die durch das Verschwinden von -C}2)mogliche
Singularitat nicht ffihrend sein. (3.3.18) ist eine Kon-
sequenz der Vollstandigkeit der Sequenz. ware (3.3.18)
nicht erffillt, so lieBe sich in jedem Fall noch eine
Skalierung vom Typ g,h ausffihren. Ist der asymptotische
Index der MSM der Sequenz, die vom Typ g,h sind, gleich
Null, so existiert der Limes 6-7 0.. des verbleibenden
Integrals.

3.4 Qgppelte Mellin-Transformation

In diesem Abschnitt werden wir die Methode zur Bereoh—
nung des asymptotischen Verhaltens eines FI von zwei
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groBen Impulsfibertragen auf drei erweitern. Wir werden
dabei von einer doppelten Mellin-Transformation Gebrauch
machen.

Im Limes von drei groBen unabhangigen Impulsubertragen
treten die Variablen.'C7 und f;_ an die Stelle von Q? .
Wir definieren die ”abgeschnittene" Mellin—Transformation
einer Funktion {(22,923) durch

4’0, (4’4 fl [1.4{WU} .- (on; 2;, are; E. {(5.32) (3.4.1)0 f3

C’<'CH 4 4 (3 492' .
Die Cutoffs U; sorgen dafiir, daB/‘17'[f]keine Singu-
laritaten aus dem Integrationsbereich groBer ?} ent-
halt.

.’ .

3.4.1 0(4):?) (¢/+FJQ.(A)+m1:.CA)
0 U

UDie spezielle Form des Integrals 1' (3.3.1) fur drei
groBe Impulsfibertrage wird durch die parametrisohe Funk-
tion D'Cat ) bestimmt. Im einfachsten Fall hat D (a) die
Gestalt

D’Ohha) +5484CN+32 320‘) (5.4.2)

Wir setzen (3.4.2) und (3.3.1) in (3.4.1) ein und ffihren
eine zu (3.3.4) analoge Transformation aus, mit dem Re-
sultat

4 t_2*€
T -—” :— 69’ J ( )P __ ._ _lfLCd ).__ . _ ______.__ j {3" oM {1-} If ”4 C A (041,100 +340”) 34 ((41564) + 3’, (A?) f
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€4'4 {Aqd (0‘)jaft “1* u
4 4 .. UAkCO‘) +tg4('()

A _4r __fi'@'7
1 ,, t3. gaQ‘Lm. . (3 .4 . 3)

Uhqd)4‘3§CA)

I"

{"7 {3, (1 (27900612 (A) {I
' U 0 -

Z (£14t9+ r3400) (Uahfdhfiaaflj

Dieses Integral kann man auf die gleiche Weise,wie es be-
reits mit dem Integral (5.3.5) geschehen ist, auf Regi—
onen hin untersuchen, die zu Singularifiaten in der
£,-Ebene fflhren. Wir verzichten darauf, dies hier in

allen Einzelheiten vorzufuhren. Das Resultat ist in
Tab.5.2 zusammengefaBt

Typ der SM Induzierter
——---.—.1 .__.—

451m C__> 21:51.). M
CM) CO) (3G4)

M 4 N 4 1 Mg 7/(E41‘f2‘f420)

4/(Za'fzo)

“’4 “’3’ ““9 Hog-a)
4/10

?
(If

) Z 4k E 0%

2 00 C as E 0%
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Wiederum muB in jedem Falle (3(a) verschwinden,und die
(4,tQ-Integration ist uninteressant. Die Position der

Pole £310, 5“”,Ezo'und der Wert von. Z, bereohnen sich
naoh (3.3.9). LaBt man die Cutoffs U; unter dem Inte-
gral in (3.4.3) verschwinden, so erhalt man den handlich—
eren Ausdruok

M 741”} = from Coy/3”” { FMJFC‘HU}
at +4173,

R (3.4.4)
(1(4). (In (mu—— — .——--F F (ea/abs) +3460) [Ya/25(0)) +32 (00) g ,

Die doppelte Mellin—Transformation (3.4.1) wird durch

fa. T )=_ (Q4 [nit ’5'e £1 MT{f} (3.4.5)
“I 1 -257! .- Mfr": ” 1

4. Ci
invertiert. Die Integrationskonturen 6?):H:4,2. verlau—
fen rechts Von allen Polen von.F1T {f} , parallel zu
den imaginaren Achsen mit -oo g 792 2; 5+0() . Siamtliohe
Pole des Ausdrucks (3.4.4). den es zu invertieren gilt,
liegen auf den reellen Achsen. Es ist daher sinnvoll,
ihre Positionen in einer 729 EJJPefi-Ebene darzustellen.
Dies wird fur die nach Tabelle 3.2 mogliohen Pole in
Abb.3.2 gezeigt. Die Position der Integrationskonturen
wird durch einen Punkt in der schraffierten Region
fixiert. Selbstverstandlich kann man die Lage innerhalb
dieser Region beliebig verandern, ohne daB sich der Wert
von (3.4.5) andert, solange nur ihre Grenzen nicht be-
ruhrt werden. Zur Berechnung von (3.4.5) schlieBt man
beispielsweise zuerst die ég-Kontur in der linken
komplexen Halbebene. AnschlieBend wird das gleiche
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Rel/\2

l20

Abb.3.2 Position der Pole aus Tab.3.2

fur die .ZL-Integration durohgeffihrt. Deshalb bekommt
man nur von denjenigen Punkten der 738 €4,1Qef2—Ebene
Beitrége zu (3.4.5), in denen mindestens ein éfl-Pol
und ein QL-Pol zusammenfallen. Der Beitrag des doppel—
ten Polo im Punkt C7 ist gerade ein Produkt von ein—
zelnen Termen der Form (3.3.8). Eine wiohtige Einsohrénk-
ung an die Beitrége der doppelten Pole in F} und 8
folgt aus der relativen GroBe von. 3; und. f; . Ist
beipsielsweise (£20 2:, ( 3",, > 3'; ), so liefern die
in B ( F? ) zusammenfallenden Pole keinen Beitrag.
Der Grund ist, daB nach der f,( ,fl1)-Integration, falls
T1>f4 ( 2',>‘Z"2 ) ist, die Ga. (6,, )-Kontur in der

rechten Halbebene gesohlossen werden muB. In dieser .
Halbebene is.tMT{ 1"} aber analytisoh, so daB der Bei-
trag von 3 ( H ) verschwindet.
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Zur Illustration nehmen wir einmal an, daB sich P7T.{l'~]
in der Umgebung von 23 wie

.. 4 4MT ._-- (z. ,6.) (3.4.6)
{I } (Ed-[40) T ([4 +12. _[420)n42 % ,

verbalt. n4 und hm. seien ganze Zahlen. %([4)fg) sei an
. to ”Ider Stelle £4440, [2,[4M-Apanalyt1sch. Dann erhalt J. I

wegen

___.:'____ ._. 1 9 ”’4 4
($10)" Mo) (97;) 15-3., (3.4.7)

den Beitrag

H A 4 ”4'4— 4 > (9 -F’Cn.)P(n..) W}; 9.4.20 '

{10] a4 d fa if?" r- ”£1 _%£.fl,—)[z)
' —A.n r . ’1 L9. —— _——__"
C42)“ .11: ([1-[40)([4+[4‘,[420).

Vernachlassigen wir einmal logarithmisch nichtffihrende

(3.4.8)

Terme, so ergibt dies

4,. 44-4 W4 (3.4.9)_H - .4 47 [Lino Ea) I :4 1 _

L T04...) Wm”) L" (f (03 E”) (1035,)?{(Z,.,fl2. [4»)QQI-Zfl

m

I] .

In analoger Weise berechnet man I. im entarteten Fall,
in dem die Punkte H, G und 67’ zusammenfallen.

3.4.2 DEN=hCAD+Z§f4CM+QzR 3.42042
U "—U

Es ist keinesfalls so, daB die parametrische D-Funk—
tion immer die Gestalt (5.4.2) aufweisen muB. Prin-
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zipiell kann auch ein gemischter Texml fgf; erscheinen.
Wir untersuchen zunachet den Fall, daB der Term linear
in 2’1 fehlt

00’)=m)+22,g4m +272; (gr/mm (3.4.10)
)1

Die Mellin—Transformation des Integrals In mit (3.4.10)
ist

A. 64'; 16104+? “1304) 4 ” _-__
(U4 100‘) +3403) I}(Ug 3460+?49afl)

,7 .—
[1“.
J.e'} = fig/n do;

"1

” |64'4f0“; 1‘4 4_ {4%(404) :
o _ (who!) at 34(5)) !

(5.4.11)fan new [4 n ~ 1‘ “f m
‘1

a (02 (3,, (A + 3420) j

- [D

gm (A) 4 t4 9,, (A)
.7. U“ fli(‘)+%490‘) H (Ur/”(50) +3400)

4-t

samtliche SM, die Singularitaten hervorrufen kennen, sind
in Tab.3.3 aufgelistet.

Der doppelte Pol 4/(é'iomXéfém), der durch eine SM

vom'Typ h? ,1 hervorgerufen wird, verdient einen be-

sonderen Kommentar. Der Pol 4/{Ia—[jé7mflird durch das Ver-
schwinden von PICA) und firfldhnabhéingig von f4 und 1‘2 her-
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Typ der SM ' Induzierter

gmw W pales)“ I too) . P01
419?} 6’57 'd ?’

N 4 N g ' 4/(64‘i4o) '

/] N g M g 4/(ig'£o42)(€1 .642)

~3 ~§ ~3 4M0
|__._ . _ r

Tab.3.3

vorgerufen. Gleiohzeitig mithCh) und 8”,,(A)k‘onnen aber
such I; und(fl-§1)gegen.Null gehen, so daB der Pol
4/(fiflom)von einem zweiten Pol 4/(fl-[04a)begleitet wird .

In der gleichen Weise, wie wir in den bereits unter-
suohten Fallen die Cutoffs o0 teilweise gegen Null
haben gehen lessen, so konnen wir such hier La undtza
in den eckigen Klammern gleioh Null setzen. Die ge—
sohweifte Klammer bedarf jedoch besonderer Aufmerksam-
keit. Nimmt man in dieser Klammer keine Vernaohlessigungen
vor, so ist das tq)t2flntegral als hypergeometrische
Funktion ausffihrbar. Einige Eigensoheften der hypergeo-
metrischen Funktion haben wir 1m Anhang C zusammenge-
stellt.

_ _u 4- ’3"? +6 [’(fifWT 31.6?! ]m1 j=oflwdm 2 m; R
(3.4.12)

22-!”
—-I-—————.__—.

Q73-
. [7((4 ) W A ) J12 (6)— £n [WC )) £2.

(Uzcfidm M, Ma)» T16" )) mac/“s 2)
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mit

Z =- —- {ii/mfafi) _. .._. . __
U1(U4}'1(A)+ (3,, (an) + 342 (.c) (3.4.13)

Wfirde man in (3.4.13) 9%, gegen Null sohicken, so wfirde
die hypergeometrische Funktion in (3.4.12) singular wer-
den wie (Yfghfa) . Da der ursprungliche Ausdruok (3.4.11)
jedoch keine Singularitat dieser Art besitzt, ist dies
nicht erlaubt. Um die Eg-Abhangigkeit, die in der hyper-
geometrischen Funktion steokt,explizit ausschreiben zu
konnen, wendet man die Transformation (0.4) an. Nun kann
in den transformierten hypergeometrischen Funktionen Z=’7
gesetzt werden, so daB

Au!

4 6470- N = A a [TS-2+6 _.M111} (”“5” F03“) m2
(3.4.14)

4-6,,
[[F(p-L)]R rm) mam (Uri/1W * 314% we

(01(g4CAHC/4b05 )) +342Cx)) ‘2

eff;

+{PCp-919A2 PM.) (YER‘KJ 02 - — — j — g
(UQCaJA) 11-04500) 1-?42Q )) 1

Ist 726 (NW [2,, so kann der zweite Term in der geschweiften
Klammer vernachlassigt werden. Far das fflhrende Verhalten

.p-H

von .1. besitzt er nur entlang der Gerade 7366,”?! [a eine
Bedeutung. Solange entlang dieser Geraden keine weiteren
Pole auftreten, die nicht die geschweifte Klammer als
Ganzes multiplizieren, so heben sich die soheinbaren
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Singularitaten beider Funktionen FCfl-éi) und/(Yi'éa/ge—
genseitig auf. Anders jedoch, falls nach Isolation der
durch eine SM von Typ [0,34 verursaohten Singularitat der
erste Term in der gesohweiften Klammer mit/Ubflwgm2und
der zweite mit4flfl-zmflmultipliziert werden. Dann liefert
die Beziehung

_ 4.. J '4 _ J. ._/ 4 4
[4'41 gg'gom é'go/m. ( fffma 0/049.

genau das in Tab. 3.3 angegebene Verhalten. Da jeder
P01 in. at wie in (3.4.15) von einem P01 in 2; begleitet
wird, liegen in der Region 72¢ 52%?! [4 keine fiihrenden
Pole. Daher ist der fflhrende Term unabhéngig von oQ_ .

(3.4.15)

3'4'3 0(A)=/‘)(A)+ E; (40‘) *52‘4204) + C: 3:2 "7-42 0‘)
U {Jr _ -— _.-.___-

Lassen wir schlieBlich auoh die Annahme fallen, daB der
I

Term, der linear in_ $1 ist, aus235d)versohwindet, so ist

Ob): M.) + 5,3,1.) + 2:. Wow + 2:, 2",. 3.. (a) (3.4.16)
I

Die Mellin-Transformation von .I’ mit (3.4.16) hat die
gleiche Form wie (3.4.3). Die gesohweifte Klammer im In-
tegranden von (3.4.3) ist allerdings durch

'P
{4- (47:23} ' (3.4.17)

zu ersetzen, wobei a durch

: gxomjaam) - 341(A)/’)(d) (3.4.18)
(UtdHfiJAVfi/lhfas) 272(4))

definiert ist. Die SM und die entsprechenden Pole sind
in Tab.3.4 aufgelistet.
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Typ der SM Induzierter
" ' ' Pol

.~ 4 M 4 N 4 N 3 1/(f4f'fz'f420)

“'4 ”5’ N4 ~3 Maia-I“)
~ 4 N 4 N 5 3 4/(l4'fm) 1
~ 4 ~ 3 ~ 3 9 4/(i,-im)(1;-/...)j

|

____ _ I .. _-r._!
Tab.3.4

Auf die gleiche Weise wie schon fur (3.4.4) and (3.4.11)
bekommt man fur (3.4.16)

II “A 5'2”; (WI—11"“ - [4)(71’3 ]MT = ( ) - V .2 /. -
{I} fl“) C A 2- P (,6) p

€A+F2-/3’

runway-m whw €1-—-—--—---~~~—-—-£2 . (3.4.19)
(U/l (161)1'340‘» (U2h(o()+ %2(A))‘

?([47’€2)F7 2')

Dieser Ausdruck ist brauchbar solange (? /<"7 . Nach Iso-
lation éines Poles vom Typ h , wird in (3.4.19) 3 -.- //
ware Qt(fi*~€4-Za) .{O , so wiirde die hypergeometrische
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Funktion weitere Pole induzieren. In der Néhe eines
Poles vom Typ h gilt jedoch immer 73((fi-[ff/2MO . Haben
wir es mit einer SM vom Typ [02691312. zu tun, so gent /'E./
gegen Unendlich. In diesem Fall muB (5.4.19) analytisch
fortgesetzt werden. Ist fie €R>7€e€4 so k'onnen wir (0.3)
benutzen

.— u' A_ “‘2“ ”(NB-.34 Fir/’2)"/7{If=fldo<ldp { (“f' ) / /:2 “- I}If (P ) J R

[H _ 3 4- p;
. - ,'_ f) .l I r( )J 14.49/74); ”W (“3’ W ”gal-n) - C4

((—34 L"; III) {A} ‘f‘ In?" lift, ('45. I; "I [(2- CJ’! (A) +342 (0" ))

(3.4.20)

DaOIOS) symmetrisch in t, und 3'1 ist, erh'alt man in
der Region Rt ("pf 723 [4 einen geeigneten Ausdruck durch
Vertauschen von 4(0‘) ( £4) und ggéfl ( [2 ) in (3.4.20).
Im StreifenIPe(£4'£Q)I<4kann (3.4.19) mit (0.5) fortge—
setzt werden

A “-2+- ’7MW? :ofiow amp C FOB")
c,- c.

[273 ‘
'{Wfi'WL Pfi.)f'(€2-.a)_-. 1-10.41 [vabahgflfl (

I 6,;AUQI’J($)+U432O)+C{Q 34(5) 1424261)) ’

'F(fld)/3'flgjf4'£2 +4," rw—w) (3.4.21)
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4.5,,J. 6473’ _. '2+ i J J, JJJ JJ . J) _ I» + J a a _ 9
(U4 UQ 50‘) + L/43109+o§%(1) + ($420))

'}h(.€g,/3‘-€45£2'Z4'42'7‘j'“) /
' Z

Diese Formel ist das Analogon zu (3.4.14).

Besondere Beachtung muB noch dem Fall geschenkt werden,
in dem sine Sequenz sowohl SM vom Typ h (2.97 ) als
auch SM vom Typ h330r292. (/zl-yoo ) entht-ilt. In solch‘ einem
Fall sind zunéchst'beide Typen Von SM zu fiberlagern."
und anschliefiend der Integrationsbereich so zu zerlegen,
daB nur noch entweder die SM des Typs h oder die des
Typs h,%y,%u, 'verschwinden kdnnen.

5.5 Mehrfache Mellin-Transformatibn

In gleicher Weiss wis die doppelte Mellin—Transfor-
mation dem Limes von drei groBen Impulsfibertrégen ange—
messen ist, so ist die Af—fache Mellin-Transformation
dazu geeignet, das asymptotische Verhalten eines FI im
Limes von /V+’7 unabhangigen groBen Impulsubertrégen
zu berechnen. Wir definieren die A/-fache ”abgeschnit—
tens” Mellin-Transformation von;ffl:)) ;n%...)A/ durch

N ‘Wfifl__ .. w
Mi 1' f} = 77 [0’3- 37' fa?) (3.5.1){'4 o

O<U"<4 i=4)..39A/
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Wis in den vorausgehenden Absohnitten gezeigt wurde,
ffihrt die Anwesenheit eines gemisohten Terms in; a?) zu
erhebliohen Komplikationen. Wir werden diesen Fall daher
in diesem Absohnitt nicht betraohten. Prinzipiell kann
ein gemischter Term immer als neuer unabhangiger Impuls-
ubertrag interpretiert werden, so daB dies keine Ein-
sohrankung bedeutet.[fi%)jhat also die Form

N

O(¢)=h(¢)+z 1“; (350‘) (3.5.2)

Damit wird (3.4.4) auf

4 ~_ 6 M - ,. ‘W) 4)..) a.) =~ { M]
o [765 ) Q

g. (3.5.3)

lwr) 59? __l
M N

—P —

. 100‘) / (0:50} + (304) ) €-;.4

verallgemeinert. Aus (5.5.3) laBt sich ablesen, daB eine
SM in jedem Fallffififi)zum Verschwinden bringen muB, um
einen P01 in der xE—Ebene zu induzieren. Nehmen wir
einmal o.B.d.A. an, daB auBer/afcx) noch 4(5),...)93. (a) ver-
schwinden, so induziert soloh eine SM einen Pol

4/( [9.” +... + [N - [0) (3.5.4)

(3.5.1) wird durch

fig): [ { J55” 3",?“ MT{f} (3.5.5)

invertiert. [1 bezeiohne die konvexe Region der 1(ifi"
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Hyperebene , in der/WT{}Jgnalytisoh ist. Wir betrachten
diese Region ffir €=CD. Um den ffihrenden Pol zu finden,
definieren wir

Q.” [4X4 + + [N XN (3.5.6)

mit

tlOQTE ("49.5. )A/ (30507)

Wir verwenden zur Inversion sine Variante des Verfahrens
aus [BE 78a,CA 80] . Es sei

Pm =1;hf<// (3.5.8)
De. die Region A konvex ist, ist PM" der kleinste
Wert, den.(y' in einem Randpunkt von 1] annehmen kann,
in dem mehrere Pole zusammentreffen. Diese Pole bestimmen
das fflhrende asymptotische Verhalten. Es ist gleioh €I7Qhax
modulo logarithmisoher Korrekturen. Wie schon in 3.4,
so hengt such hier das asymptotische Verhalten im allge-

. . .. «—melnen von der relativen GroBe der C; ab.
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4. Konstruktion unabhanglger Sequenzen

Bieher haben wir uns im wesentlichen bloB mit einzel-
nen SM befaBt. Wie jedoch schon mehrfach betont wurde,
hat man es im allgemeinen mit einer Vielzahl ‘von SM zu
tun, von denen mehrere nacheinander ausgeffihrt werden
kennen. Versucht man samtliche MSM eines Graphen hinter-
einander auszufuhren, so wird man unweigerlich auf Schwie—
rigkeiten stoBen. Offensichtlich kennen beispielsweise
samtliche FP eines FI wegen der dV—Funktion.ixlfdd]
nicht gemeinsam verschwinden. Im Abschnitt 2.5.2 haben
wir eine Reihe von SM, die nacheinander ausgeffihrt werden
k6nnen,eine Sequenz genannt. Wir betrachten Sequenzen, die'
die gleichen SM enthalten, jedoch in untersohiedlicher
Reihenfolge, ale voneinander verschieden. Ein wichtiger
Schritt bei der Berechnung dee asymptotischen[Verhaltens
eines FI ist die Bestimmung eines geeigneten Satzes von
Sequenzen. In diesem Kapitel werden wir eine Methode vor—
stellen, die es erlaubt, eolch eine Bestimmung systematisch
durchzufflhren.

Jeder Sequenz kann eine Teilregion des cX—Raumes zu-
geordnet werden. Wie dies geschehen kann,wird spater er-
lautert werden. Sequenzen gelten als unabhanggg, falls
die entsprechenden Regionen disjunkt sind. Daher gilt
es, eine Menge von unabhangigen Sequenzen zu bestimmen,
deren zugeordnete Teilregionen den gesamten 0<-Raum
ausschdpfen. Wir werden solch eine Menge einen vollstan-
gggen Satz unabhanggger Sequenzen nennen. Wie gezeigt
werden wird, ist die Wahl solch eines Satzes im allge-
meinen nicht eindeutig.

Prinzipiell laBt sich natfirlich auch umgekehrt vor—
gehen, d.h. man kann zuerst den cx-Raum in disjunkte
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Sektoren zerlegen und dann danach fragen, welche Sequenzen
in den einzelnen Sektoren ausgefflhrt werden konnen. Dies
ist der Weg, der infBE 74,77,78a,79] besohritten wird. Der
o(-Raum wird dort zuerst in Hepp-Sektoren zerlegt.

Diese Methode erweist sich fur unsere Absiohten in zwei—
faoher Weise als unpraktikabel. Erstens gibt es zu jedem
Graphen mit r) Kanten r)! Hepp-Sektoren, der technische
Aufwand einer expliziten Berechnung waohst also far
Graphen hb‘herer Ordnung sehr stark. Zweitens istDCO‘) im
allgemeinen nioht FINE, so daB man nicht ohne zusatzliche
Transformationen auskommt.

Im Gegensatz zu [BE 74,77,78a,79 J beechranken wir uns
auf die ffihrenden Logarithmen. Deshalb spielen Sequenzen,
die nicht von maximaler Lange sind,keine Rolle. Wir
brauchen daher in der Praxis nur verhaltnismaBig wenige
Teilregionen zu untersuchen.

4.1 Zerlegnng des 0<-Raumes

In diesem Abschnitt erlautern wir das prinzipielle Vor-
gehen zur Ermittlung eines vollstandigen Satzes unab-
hangiger Sequenzen. Zur praktischen Bereohnung ist es
empfehlenswert,einige weiteren Sohritte einzuffigen, die
im naohsten Absohnitt besohrieben werden.

In 2.5.4 wurde Folgendes gezeigt. Fahrt eine nioht-
lineare Skalierung einer vorgegebenen SM j? zu einer
gleich starken oder auch starkeren Singularitat als
ihre lineare Skalierung, so kann diese niohtlineare
Skalierung durch Uberlagerung linearer Skalierungen von
MSM fife f erzeugt werden. Deshalb laBt sich jede Ska—
lierung,die eine ffihrende Singularitat hervorruft, als
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Uberlagerung linearer Skalierungen ausdrucken. Abgesehen
von den in 3.3 erleuterten Einschrénkungen spielt es dabei
keine Rolle, welchen Type die fiberlagerten MSM sind.

Quantitativ leBt sich der beschriebene Sachverhalt
folgendermaBen ausdrUCken. Wir gehen davon aue, daB
sémtliche MSM bekannt Bind. 5' bezeichne die Menge der
Uberlagerungen, die eine ffihrende Singularitét hervor-
rufen kennen. Jede dieser Skalierungen sei charakteri-
sier't durch einen Vektor 3 , (SW;- q4,2,... , (- 4,”) n .
Die i-te Komponente <67: gebe an, mit welcher Potenz
von 8 an in einer Skalierung wie (2.5.19) verschwindet.
De. jedes Element von 5' eine Uberlagerung linearer Ska-
lierungen ist, kennen die Exponenten v.- in (2.5.19) ganz-
zahlig gewéhlt werden. Die Normierung (2.5.20) kann aller-
dings nicht mehr zusétzlich gefordert werden. Die Menge

1S ergibt sich als das Bild der Menge der Vektoren
unter einer linearen Abbildung mit der Skalierungsmatrix
{1V} . Es gebe m MSM bok , k=’/)~-,m. Dann 151: M durch

‘ 1 falls eLe.fL
<M>£k '{Osonst (4-1.1)

definiert. N ist ein beliebiger Vektor mit <51}. 90,4, 2,...
E=’%..Vrn. Damit gibt es zu jedem Vektor JV. einen

Vektor 5‘6 S

SsM'N (4.1.2)

Zur Bestimmung eines vollstandigen Satzes von unab-
héngigen Sequenzen gehen wir folgendermaBen vor. Zunechst
teilen wir das Integrationsgebiet in. n Sektoren auf.
Der k-te Sektor iet dadurch gekennzeichnet, daB der FP
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(ix derin nicht verschwinden kann. Solche Sektoren kennen
in jedem Fall disjunkt gewahlt werden. Die genauen Grenzen
spielen ffir die fuhrenden logarithmischen Singularitéten
keine Rolle. Be in jedem Sektor nur noch (h-’U FP ge—
meinsam verschwinden kennen, branchen wir uns um die
(5‘ —Funktion in [0/4] nicht mehr zu kummern. AnschlieBend
fuhren wir in jedem Sektor eine Skalierung durch und
teilen danach die skalierte Region auf die gleiche Weise
auf, wie schon die ursprfingliche Region . Diese Prozedur
wird laufend fortgesetzt. In den folgenden Skalierungen
kann prinzipiell auch ein Skalierungsparameter ‘g einer
vorausgehenden Skalierung selbst wieder skaliert werden.
Diese Tatsache wird in den alternen Arbeiten [TI 63,
HA 65 ] fibergangen.

Um zu entscheiden, wann eine Sequenz abbricht, ffihren
win die Matrix: f? eind Es seien bereits yn' Skalierungen
j; karfinjnq’ auegefuhrt worden. Bei den entsprechenden

SM handele es sioh nicht unbedingt my solche MSM,__V0n
denen ursprfinglich ausgegangen wurde. Dann sei fl7 durch

.. -— _ yt'kfalls 67,- e 30“: (4.1.3)
\ M >‘k' O sonstI

gegebenJ‘VU< gibt die Potenz an, mit der der i-te FP
in der k-ten Skalierung transformiert worden ist. Die
Aufteilung in Sektoren werde durch die Diagonalmatrix
i0 charakterisiert

1 falls ci' unabhéngig verschwinden kann<D> .( 6 (4.1.4)k 1k 0 sonst .

Wir vergleichen nun £7 mit der Menge 7— der Skalierungen,
die in einen Sektor noch ausgeffihrt werden kennen.'7'be-





-1o4-

steht aus den Vektoren

f: M_N'+D‘N‘" (4.1.5)

i] und figJ’haben die gleiohen Eigenschaften wie [Yb .
Gibt es ein Element TEA? , so daB nioht alle Komponenten
\nn1.A[”in.(4.1.5) versohwinden, so laBt sich noch eine
weitere Skalierung ausffihren. Gibt es nur noch solche
té‘fifi bei denen A[:C),so ist die Sequenz vollstandig.

Im zweiten Fall konnen neue Skalierungen 63,? nur noch
duroh Transformation der Skalierungsparameter ‘3 unter—
einander konstruiert werden.

4.2 )\-Tranéformationen

Das Verfahren zur Bestimmung eines vollstandigen Satzes
von unabhangigen Sequenzen, wie wir es im vorausgehenden
Absohnitt beschrieben haben, besitzt offensichtlich einen
hohen Grad an Beliebigkeit. So werden an die auszuffihrendan
Skalierungen keinerlei weitere Forderungen gestellt,
auBer daB sie aus fl? sein mflssen. Die Bereohnung des
asymptotischen Verhaltens gestaltet sich um so einfaoher,
je mehr lineare Skalierungen ausgeffihrt werden konnen.
Die vorgestellte Methods erlaubt es nicht, auf nicht-
lineare Skalierungen ganz zu verziohten. In diesem Ab-
sohnitt werden wir zeigen, wie sich die Zahl der moglichen
linearen Skalierungen, duroh zusatzliche Skalierungen,
die wir )\-Transformationen nennen werden, erheblioh
steigern last.

Besitzt die Skalierungsmatrix von vornherein Dreiecks—
form, so lassen sich die MSM so ordnen, daB sie jeweils
einen Parameter enthalten, der in den folgenden MSM nicht
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mehr auftritt. Daher liefern die nach jeder Skalierung
auftauohenden 6‘—Funktionen keine Einschrankungen,
und samtliche MSM konnen aufeinanderfolgend ausgeffihrt
werden. Ziel der ).-Transformationen ist es, ”7 der
Dreieoksform moglioht nahe Zn bringen.

Kommt ein Parameter d; in allen MSM, von denen aus—
gegangen wird, immer nur in Begleitung mit einem, bzw.
mehreren anderen Parametern vor, so skalieren wir diesen
Parameter und seine Begleiter nach (2.3.6). Da der Pa—
rameter cg nach der Transformation in keiner MSM mehr
auftritt, liefert die assozierte 5-Funktion keine Ein—
schrankungen an die folgenden Skalierungen. Um solche
Transformationen von den Skalierungen aus A?! zu unter-
soheiden, nennen wir den Skalierungsparameter /\ . Das
Versohwinden von /\ alleine wird im allgemeinen nioht
zu einer Singularitat ffihren. Wir behandeln..o in gleicher
Weise wie einen FP.

Der Vorteil, den soloh eine A -Transformation bringt,
besteht darin, daB die begleitenden FP teilweise von den
MSM eliminiert werden, da der Parameter /\ an.ihre Stelle
tritt. Tauoht beispielsweise ein begleitender FP nach der
.K -Transformation nur nooh in einer einzigen MSM auf, so

kann die entsprechende lineare Skalierung immer unabhangig
von den fibrigen MSM ausgeffihrt werden.

Ein Beispiel mag dies illustrieren. Es seien die MSM

j: = (“Mainxfi

a {dzrxhdq} (4.2.1)

{54, ”(3’ ”(VJ
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vorgegeben. Sie lassen sioh als lineare Skalierungen
nioht hintereinander ausffihren. Skaliert man jedooh
beipsielsweise erst d3 und 0“,. mit A und halt d9
groB, so bekommt man

1 - {d47 d9.) d3 }
{‘JQ,’)\ } (4.2.2)

303={a<,,,)\}
Diese SM sind in der angegebenen Reihenfolge ausffihrbar.

PL
‘S

Le
)

H
'

Unter praktisohen Gesiohtspunkten ist es zur Berechnung
des logarithmisch ffihrenden Verhaltens empfehlenswert,
folgendermaBen vorzugehen. Hat man einmal das Integrations—
gebiet in r] Sektoren zerlegt, so kann man im i-ten
Sektor, in dem ja OQ' nicht versohwinden darf, alle
MSM vernachlassigen, die d: enthalten. Man fUhrt dann
fortlaufende Skalierungen von solchen MSM aus, die einen
Parameter enthalten, der in den fibrigen, noch nicht
skalierten MSM nicht auftritt. Erst wenn es keine weiteren
soloher MSM gibt, ffihrt man mogliohe A,—Transformationen aus,
so daB danach die Skalierung von MSM fortgesetzt werden
kann. LaBt sich auoh naoh einer X.-Transformation keine
MSM finden,die einen Parameter enthalt, der nur in dieser
MSM auftritt, so ffihrt man eine Skalierung irgendeiner
der verbleibenden MSM duroh. AnsohlieBend spaltet man das
Gebiet genauso auf, wie bereits zu Anfang und wiederholt
das Ganze mit den fibrigbleibenden MSM solange, bis jede
MSM entweder bereits skaliert wurde oder in dem betref-
fenden Sektor ausgesohlossen ist. Nun erst setzt man die
Methode aus 4.1 ein,um eventuelle gemisohte Skalierungen,
die 3 und 0K enthalten, zu bestimmen.
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Teil B Anwendunggg

5. pie_lgjrarot-Regularisierunflsabhanglgkeit des
.gsygptotischen npalteo§_des Sudakov—Fggmfaktors
;g_der QCD

Die Berechnung von Korrekturen hoherer Ordnung zu Pro—
zessen, die in der storungstheoretischen QCD als prin-
zipiell berechenbar gelten, hat gezeigt, daB die Korrek-
turen unter Umstanden recht groB werden konnen, so daB
die Konvergenz der Storungsreihe in Frage gestellt werden
muB. In verschiedenen Fallen ist es moglich, solohe groBen
Korrekturen in jeder Ordnung von.o(s zu.bereohnen und
anschlieBend explizit aufzusummieren. Es ist zu erwar-
ten, daB solche Teilsummationen zu einer wesentlichen
Verbesserung der Konvergenz der Storungsreihe fuhren.
Wie bereits in der Einleitung herausgestellt wurde, ist
es gegenwértig wohl verstanden, wie eine Teilsummation
durch Anwendung der RGE erreioht werden kann. Die RGE
ist jedoch in vielen Fallen nur von beschrankten Wert,
da sie lediglich die sogenannten Einzellogarithmen auf-
summiert. Einzellogarithmen werden typischerweise in
Prozessen, die lediglich Von einem einzigen groBen Im—
pulsfibertrag abhangen,durch kollineare Singularitaten
hervorgerufen. Infrarote Singularitéten kurzen sioh ge-
wohnlioh aus den Ubergangswahrscheinlichkeiten solcher
Prozesse heraus. Héngt ein Prozess jedoch von mehreren
unabhéngigen groBen Impulsfibertrégen ab, so konnen einige
zu effektiven Infrarotregulatoren werden, so daB die
Kfirzung der Infrarotdivergenzen nur noch teilweise ein—
tritt und groBe dopplelogarithmische Korrekturen ver—
bleiben, die nioht mit der RGE behandelt werden konnen.

Gestfltzt auf die Resultate der Berechnung von Korrek—
turen zur Ordnung cxs ist in [BB 79,CU 80a,AM 80,PA 801
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die Vermutung ausgesprochen worden, daB solohe doppel—
logarithmischen Korrekturen exponentieren, genau wie
die logarithmisch ffihrenden Korrekturen zum elektro-
magnetisohen Formfaktor des Elektrons im Limes groBer
virtueller Masse des Photons (71 . Die versohiedenen
Vorschlége zur Aufsummation der groBen Korrekturen
zur tiefinelastischen Streuung in der sogenannten quasi-
elastischen Region sind allerdings nicht konsistent unter-
einander. Dies zeigt, daB es wichtig ist, ein klares
Verstandnis der groBen doppellogarithmischen Korrekturen
in endlicher Ordnung von.cxg zu haben. Abgesehen davon,
daB dies einen nichttrivialen Test der Vorschlége Von
[ BR 79,CU 80a,AM 80, PA 80 ] liefert, kb‘nnen solche
Einsichten euBerst willkommen bei der Bereohnung der voll-
sténdigen Korrekturen sein. Nicht zuletzt mag es auf
Verallgemeinerungen der Resultate von [BR 79,0U 80a,
AM 80,PA 80] fiihren.

Da die doppellogarithmisohen Korrekturen eng mit den
verschiedenen Limites des Quark-Formfaktors verwandt
sind, ist es wfinschenswert den Formfaktor in diesen
Limites genau zu kennen. Dies ist das Ziel des vorliegen-
den Kapitels. Die gewonnenen Ergebnisse werden im neohsten
Kapitel zur Bereohnung der Strukturfunktionen in der
quasielastisohen Region eingesetzt.

Wir mochten nun einen kurzen Uberblick daruber geben,
was gegenwértig uber das asymptotische Verhalten des
Quark-Formfaktors,beziehungsweise seiner abelsohen Version,
des Elektron-Formfaktors, bekannt ist. Anknfipfend an die
grundlegende Arbeit von Sudakov I:SU 56] ist das asymp-
totische Verhalten des Elektron-Formfaktors von versohie—
denen Autoren untersucht worden [JA 68,FI 71,AP 71,BE 80,81,
DA 82 J . Sudakov hat das Verhalten des Formfaktors
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“2:11

[0%P99)in der Spinorelektrodynamik im Limes

W1,” P1; [0'2 >> ml (5.1.1)

untersucht. Die Bezeichnung der Impulse entnehme man
Abb.5.1 . In jeder Ordnung der Storungsreihe in (X ,

Abb.5.1 Bezeiohnung der Impulse der Vertexfunktion

der Feinstrukturkonstanten, tauohen groBe Logarithmen
der Form {oalcfl auf. Die Aufsummation der logarithmisch
ffihrenden Korrekturen ergibt in der "Off-Shell”-Version
von F(p2,p'2, Q1)

”‘1 2 ,1 a. _ _ ofi I I 9‘]’OMMJJW-GXM 2-7 log—ga— lorgm }
Die "Off—Shell"-Massen [31 und [ofilhaben die Funktion
von Infrarotregulatoren.

Geht man mit den Fermionen auf die Massenschale, so
muB ein alternativer Infrarotregulator eingeffihrt werden.
Gibt man beispielsweise dem Photon eine kleine Masse A ,
so erhEIt man anstelle von (5.1.2)

”I 1' 2- 1 ,
lo~(q)=€Xp{':'%:l03 III—:21 } ' (5.1.3)
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DaB in beiden Fallen das asymptotische Verhalten durch
eine Exponentialfunktion beschrieben wird, ist darauf zu—
rfickzufuhren, daB die Aufsummation der groBen Legarithmen
aquivalent zur Aufsummation der Infrarotdivergenzen ist,
die bekanntlich in abelschen Eichtheorien exponentieren
I: m 61,GR 73,ET b7 ].

Das stark abfallende Verhalten, das man nach Aufsummation
der logarithmisch fuhrenden Terme erhalt, deutet darauf
hin, daB es wichtig ist, auch logarithmisch nichtfuhrende
Beitrage zu berUCksichtigen. Fortschritt in dieser Rich-
tung ist in [MU 79,00 80] erzielt worden.

Wegen der Selbstkopplung der Gluonen in nichtabelschen
Eichtheorien hat die explizite Aufsummation der logarith-
misch ffihrenden Beitrage zum Quark-Formfaktor fiber alle
Ordnungen von.c15 bisher jedem Versuch getrotzt. Berech-
nungen bis zur vierten Ordnung in cis [CA 75,00 76,BE 80,
81 J stehen in Ubereinstimmung mit (5.1.2) und (5.1.3),
falls man nur a! durch 4;a% ersetzt. Die Demonstration
der Exponentierung in allen Ordnungen von.c%5 scheint
nichtstbrungstheoretischen Methoden vorbehalten zu sein
{:DA 81,SE 81] .

Bisherige Untersuchungen des asymptotischen Verhaltens
des Formfaktors haben dem Infrarotregulator kaum Beach-
tung gescnenkt. Er wird meist lediglich als ein Arte-
fakt der Regularisierungsmethode betrachtet. Dies ist ge-
rechtfertigt, solange ausschlieBlich der Limes unter-
sucht wird, in dem. 95L grdBer ist als jeder andere Im-
pulsfibertrag. Daher werden in der logarithmisch ffihrenden
Naherung beispielsweise Terme der Artlog;fflpfi'vernachlassigt.
Solche Terme kennen aber groB werden, falls wir beispiels—
weise p’g' gegen Null gehen lassen und )0;L festhalten.
Dieser Limes entspricht nicht mehr (5.1.1). Um AufschluB
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fiber solche Terme zu bekommen, haben wir das fuhrende
Verhalten des Quark-Formfaktors erneut untersucht.

Im nachsten Abschnitt werden wir die Resultate der Be-
rechnung der logarithmisch fuhrenden Beitrage zum asymp-
totischen Verhalten des Quark—Formfaktors vorstellen. Die
Berechnung wurde in der vollstandig masselosen QCD durch-
gefuhrt. Sie geht bis einschlieBlich zur dritten Ordnung.
Wir haben die Feynman-Eichung benutzg,und die Quarks bilden
ein Farbsingulett. Infrarotdivergenzen werden mittels der
dimensionalen Methode regularisiert. FUr die Impulse der
auBeren Quarks werden wir drei verschiedene Konventionen
benutzen. Entweder sind beide Quarks "off-shell" QQFF)
oder eines ist "off-shell” wahrend das andere ”on—shell"
ist (ON/OFF) oder beide Quarks sind "on-shell" £232.

Im ersten Fall (OFF) liefern die Virtuellen Massen der
externen Quarks einen Infrarotregulator, so daB ad , die
Zahl der Raum-Zeit Dimensionen, gegen Vier gehen kann,
ohne daB irgendwelche Massensingularitaten auftreten.
Dieser Fall kann aufgefasst werden als ein Limes von drei
unabhangigen Impulsiibertragen pl , [3’2 und cf?" , die,
abge sehen von [(71/77/[3’7 und loft/w Ip’ll,unabhangig sind.
pl 'und p’z sind groB gegenuber den Massen der Quarks,

die vernachlassigt werden. Unsere Ergebnisse zeigen, daB
es keine Korrekturen der Form ’03 pz/p'g’gibt. Dies steht in
Velliger Ubereinstimmung mit [CA 75,00 76,BE 80,81 J .

Der zweite Fall (ON/OFF) scheint am interessantesten
2 .. .zu sein. Da p’ = 0 ist, ist er aquivalent zum Limes

von zwei groBen Impulsfibertragen t>>lp2/. Genau dieser
Limes ffihrt zu den groBen Korrekturen der Strukturfunktionen
Er ist bisher nicht untersucht worden.
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Sowohl im ON- als auch im ON/OFF-Fall treten Massensingu—
laritéten als Pole fUr d3 9 auf. In allen drei Fallen
exponentieren die ffihrenden Beitrage, egal ob manifest
singular oder endlich.

5.1 Das asyflptotische Verhalten des Quark-Formfaktors

In der massiven Theorie setzt sich die "On—Shell"-
Vertexfunktion eine q 37- -Paares I; (172) , das ein Farb-
singulett ist, wie die Vertexfunktion des Elektrons aus
zwei Anteilen zusammen

m(ql)=Z{PE(qa)*§Ln3—‘QPV {Egg-'1) (5.1.1)
Im Falle des Elektrons ist Efqi) (730,“) ) als Dirac-
(Pauli-)-Formfaktor bekannt. Fur groBe (f1 gilt

o {12' ya2 N a. 2.
- ..-)... . .{Kg} (0]) ,Faai) (‘72) (512)

!

modulo logarithmischer Korrekturen. Daher kann Eff) ge—
geniiber a (q'z) vernachlassigt werden.

r- I‘- 2Wir definieren den Quark-Formfaktor F(Lh(£)q ) in der
masselosen Theorie fur

2 ,2
fq/qz << 4 ) f1=p/Cy9. << 4 (5.1.3)

durch

F(C,Z‘Mqa)=g;;_é_ Tar/KP}, (q1)(F+q)K/U (5,1,4)
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Es gilt
1 _ a

”07020! )' Ea? ) M930 (5.1.5)

Die parametrische D-Funktion eines Graphen, der zu./1[KM2})92)
beitragt.hat im allgemeinen die Gestalt

DO)"q1[h(¢')+f4gn(d)+igg2(d)] (5.1.6)
9

so daB wir die in 3.4.1 besehriebene Methode zur Berech-

nung des asymptotischen Verhaltens einsetzen_k6nnen.

In Abb.5.2 sind die Graphen abgebildet, die bis zur
dritten Ordnung in.<ig einen Beitrag zur logarithmisch
fuhrenden Naherung liefern. Wir haben sie durch Zahlen
von 0 bis 20 gekennzeichnet. Der Beitrag jedes einzelnen
Graphen zum Formfaktor schreibt sich als

F(2‘f,,T2)q2)-; GICLI' (5.1.7)

mit
a

fif’: - .Jlfl.) ..¢*s__ (
L J 2_rr 5.1.8)

2 a '
FYEHT52q )ist so normiert, dafi P(E”7§fi?)3’7ffir den Born

Graphen 0. Da wir nur fuhrende Terme berechnen, ist das
Argument der Kopplungskonstanten. 0L5 nicht bestimmt.
Unsere Resultate gelten sowohl fur raumartiges als auch
fur zeitartiges q2.. C; ist der grupgentheoretische
Faktor des betrachteten Graphen und f) ist ein Para-
meter, der eingefiihrt werden muB, um as in 0/ Di—
mensionen dimensionslos zu halten:





__' l‘f-

die zum logarithmisch ffih—5.2 Feynman—Graphen,Abb
renden Verhalten des Quark—Formfaktors bei-

tragen
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Abb.5.2 (Fortsetzung)
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5

d5 .4) 69% (P2) (5.1.9)

Zunachst werden wir beide Quarks "offvshell" nehmen
und (9 endlich. Nachdem man alle Pole der Mellin-Trans-
formation Von W2},Z',,qz)isoliert hat , ist MT{F(E,,T2, (171)} eine
Summe aus Termen der Form

. kM's-41.1.3} ,1 f) j ) 4 5
{ l—‘(fiJ R («[79, ZZMf-rrcge)

ka- [(4{11 4 1“ A 1_(2) Th" u I —— C42)2 " ”T G ,1. .. _k'4(1 k ) k=4 ([4 [a (T‘k C J .

Der logarithmisch fuhrende Beitrag ist durch kl, 1- k; + A1,. = .2 L.
charakterisiert. FUr jeden einzelnen Graphen findet eine
erstaunliche KUrzung der Beitrége der verschiedenen Se-
quenzen statt, die dazu ffihrt, daB

k41.=(9

k,,=/( =L (5.1.11)9.

C4) (2)
IT’k t rr k ' A:e

wird. Daher gilt

II: CXL (5.1.12)

mit

(5.1.10)

XL' 91g. CM. page.
‘ 2m 2172' 1 a ‘c4 c1 (5.1.15)
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I __,” __._./.l__
o (£4'ké) mo (12- k6)

Beim Ubergang von (5.1.10) zu (5.1.15) haben wir die ver—
schiedenen r1-Funktionen, die vor (5.1.10) stehen, ent—
wickelt. Die Grb‘Ben G und (2 sind in Tab..5.1 fiir jeden
Graphen einzeln aufgelietet. Falls es zu einen Graphen
einen Partner gibt, der durch Vertauschen von 2'4 und 9'2
entsteht, so haben wir in C: die Beitrage beider Graphen
addiert. In Kapitel 8 prasentieren wir die Berechnung des
Graphen 15 im Detail. Der gruppentheoretische Faktor
wurde unter Zuhilfenahme folgender Relationen

[7}, 7'3] = .' 6,5,. Tk (5.1.14...)
I Cram FTG = - C79 7—,. (5.1.14b)
T17} = j) d, (5.1.14c)

7-." T5 T, ”(Cr - C5,.) 7-, (5.1.14d)

mit

ud; (Nz' ’7)/2N (5.1.15a)

Gn= 4/2/V (5.1.1513)

zwischen den Generatoren In und den Strukturkonstanten
(jfjk der Gruppe $LHQV)berechnet. Ffihrt man die Summe

uber alle Graphen aus, so erhalt man
3

Wm, q“)= E: L! (en-[OLXL (“16>
L: I
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—-—._...

=1“
a;

d; (d; ' d0)

-_-.._...

K
O

C
d

U
'I

10

11

12

13
14
15
16
17
18

19
2O

61“,: 6’1;
4,.”

among -c’,,)
Cz’FaCd/r- 'dn)
6,: (CF 4;)"

Cfic-c‘n )(Cp-Qcfi)
6736“,;
q: G’s

CFC” (C; 4'11)
d; an (6,: -d,,)
or; on (GO: - 6’»)
GP d9 (all: '60)

dnzdp
4; d1:
c1; cf
4,: a,
di, 4,...

Tab.5.1
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samtliohe Beitrage, die proportional zutjg sind, heben
sioh a. Wir werden nun die Beitrage der einzelnen
Graphen ffir die drei Regularisierungsvorsohriften ab-
leiten.

5.2 figgularisierungsabhanglgkeit

5.2.1 OFF-Shell

' a 2
Im OFF—Fall ist [EFFQQWIWIU in Vier Raum—Zeit Dimensionen

endlioh. Daher k'o'nnen wir in (5.1.10) 6=O setzen. In—
version a la (5.1.13) ergibt

4
XL = I, (103 2%,)L E", ((0321)!- (5.2.1)

(5.2.1) onthalt nur ffihrende Terme, d.h. alle Beitrage
I k~(1og '54) (1035’) mit f+k<2L sind vernaohlassigt worden.

Im allgemeinen wfirde man auf dem ffihrenden Nivéau eini k .Polynom in (103 2”,.) (1032} ) , H- k = Q L erwarten, das
symmetrisch in. C. und T; ist. Wegen (5.1.11) tritt aber
lediglioh der Term (5.2.1) mit f: k auf. Setzt man
(5.2.1) in (5.1.16) ein, so erhalt man

’3 4 L
9“ *2 °~ - Z — 5 2 2'

mit

" 913 n— (~- .
.YOr- = ' C; 9-” (05 6,1 ’03 LA (50205)fl.’—
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5.2.2 MQELM;
LaIBt man die virtuelle Masse des Quarks, das den Impuls

pl tragt, verschwinden, so hangt die parametrische
D-Funktion nicht mehr von 22L ab. Daher braucht man nur
noch die Mellin-Transformation bezfiglich 2} auszuffihren.
Wir bezeichnen die entsprechende Variable mit‘ [4 . Das
ffihrt dazu, daB zwischen den Polen, die bei der OFF—Re—
gularisierung auftraten,und den Polen hier folgende
Korrespondenz gilt

4 4—- CM ——9 -—-nn—m~u (5.2.48)
[2"k arrke

.7 4_. _. #67272 __ .._ __-_ E13.) ._ ._
£4 +£2 - fr“ 6 (£4 - fr“ 6 )

(5.2.413)

Definiert man in Analogie zu (5.1.13)
L

”L “’L (”1 “I” 77" 4 (5.2.5)X = L ,. . 1,, ———-——‘
L L ('6) £321” k.0 (£4‘ké‘)

an let I?! wieder dureh (5.1.12) gegeben. (5,2,5) be-s
rechnet sich zu

-e L

X .. “:1.— "i'lii— (502.6)- 2. 2.L (L I) e E M ,
falls nichtfiihrende Terme ave-H0933) 9 £+m<QLwiederum
vernachlassigt werden. Setzt man (5.2.6) und (5.1.12)
in (5.1.7) ein, so erhalt man

3
I 4

[ZN/OFF (10‘: (‘72) 5 Z [1 (Yaw/OFF )
L'-'0

L (5.2.7)
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mit

-e. Ll ..y #4 4) 1.0-2; C4Wm M a(DH/OFF P

oder falls man YEN/OFF nach E entwickelt

as 2 r. .4Ema“: = 5:15;): {0631005633} +5109; £4 '63, ]+(7(€) (5-2.9)

Nach dem Kinoshita—Lee-Nauenberg Theorem ist damit zu .2
rechnen, daB sich der P017817 wegkiirzt, falls mit CMOFF(/J) (72)
eine physikalische GrdBe berechnet wird und die Ab-
strahlung weicher, reeller Gluonen ebenfalls BerUcksieh-
tigung findet. Oder aber er leBt sich durch "Renormierung"
von Partonen-Verteilungsfunktionen absorbieren.

5.2.3 ON-Shell

Befassen wir uns schlieBlich mit dem Fall, bei dem
beide Quarks "on—shell" sind. De nun fif?3=(9 .ist, braucht
keine Mellin-Transformation ausgefuhrt werden, und wir
haben folgende Korrespondenz mit der ON/OFF-Regulari—
sierung

.4 4
"_” (5" "—9 "_"'df___ (5.2.10)
[4"Tke ”r“ 6

Daher gilt

X .___4_ 1;“ (5.2.11)L (1.!)2 6
2fiir jeden Graphen. IENCC] )wird

B,“ (12):? :7 (Yo~)L (5.2.12)
L=o L!
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mit

-e_ 4
Y =-C;§of§'(' r} > 6:2 (5.2.13)

Entwickelt man PEN nach G , so bekommt man

.. 2’ 9. 2 2 2 -

You .._- - d7 ad; {(03 (/31) '62: {03 (35.) * 5“} ”L 06C) (5.2.14)

Auch hier muB davon ausgegangen werden, daB sich die
singularen Terme aus physikalischen GrbBen herauskfirzen.
Subtrahiert man diese Singularitaten, so steht (5.2.14)
in Ubereinstimmung mit [CA 75,00 76]. falls }/ als
eine kleine Gluonenmasse interpretiert wird.

Zum SchluB dieses Kapitels mechten wir noch einen Aus—
druck fur den Formfaktor angeben, aus dem sich die drei
vorgestellten Resultate einfach durch Vertauschen der
Grenzwertbildung ableiten lassen:

-6
,3 L

2,1 2 _"Jj _ 3:?) 4m“? 144-4)} (5.2.15)WIN“? '33L£{CF2;7 e‘l trig/11 ( C” X “
Dieser Ausdruck ist uniform in t, und 2‘2 . Der OFF-Li—
mes ergibt sich als<§a(2_ , wahrend der ON/OFF- (ON-)
Limes erfordert, daB zuerst 2; ( 2} und 2}. ) gegen
Null geschickt wird.
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6. Die tiefinelastische Streuung in der gyasi—
elastischen Region

Wie bereits betont wurde, ist das Auftreten von groBen
Korrekturen an den Grenzen des Phasenraumes versohiedener
Parton—Prozesse ein Problem der storungstheoretischen
QCD, dem im letzter Zeit viel Beaohtung gesohenkt worden
ist. Zum Beispiel gibt es zur tiefinelastisohen Streuung
Korrekturen der FormflogC4-2)]/(4-z), die in der- sogenannten
quasielastisohen Region sehr groB werden. Die quasi—
elastisohe Region ist dadurch gekennzeichnet, dafi {z ,
die partonische Bjorken-Variable, fast gleioh Eins ist.
Diese Region ist begrenzt duch 2‘4“0‘;622 ((30:1{4 Q2 ).
(QJL ist ein charakteristischer Impulsflbertrag, der den

Ubergang der Region, in der die Storungstheorie ange—
wandt werden darf,in die Confinement—Region markiert.
-(Qgist die Masse des virtuellen Photons zum Quadrat.

Es gelte 2
(13(130) <T’7 (6.0.1)2. 77' 2 .

Die elastisohe Regiong>4-gfiaist mit st'o'rungstheoretisohen
Methoden nicht zuganglioh und muB daher ausgesohlossen
werden. Bildet man die Momente Mh(C22)der Strukturfunktionen,
so wird die quasielastisohe Region besonders von den
hohen Momenten hervorgehoben (/l<‘< n < Q2/6202” ). Ein Ver-
halten der Struktur_1'.'1;1.mc1:“imien E'Jif4!:./{}t3(’7*-2)] /(/{-2) ergibt
fflr die Momente iflflia)~/03Ay} . Dn man eryarten muB,
daB Korrekturen hoherer Ordnung wie (dB/ogfla) beitragen,
bricht die naive Storungsreihe in der quasielastisohen
Region zusammen. Es sei denn, man findet einen Weg, diese
Korrekturen in allen Ordnungen von a3 aufzusummieren.

In der Literatur sind verschiedene Vorschlage gemacht
worden, wie solch eine Aufsummation durohgeffihrt werden
kann. Die erste Losung dieses Problems ist von Gribov
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und Lipatov in ihrer klassischen Arbeit [GR 721 im
Rahmen der Spinorelektrodynamik vorgeschlagen werden.
Die Verallgemeinerung auf nichtabelsohe Eichtheorien
wurde von Dokshitzer [DO 77Jvorgenommen. Daren anknfi—
pfend sind ahnliche Lbsungen von verschiedenen Autoren
vergeschlagen worden [BR 79,PA 80,CU 80a,AM 80,01 80,
81,MU 81:] . Es herrscht allgemein Ubereinstimmung da—
rfiber, daB die groBen Korrekturen exponentieren und so
zu einer starken Unterdrfickung in der quasielastischen
Region fuhren. Allerdings gibt es,'wie bereits erwahnt,
keine Ubereinstimmung fiber die detaillierte Form. Insbe-
sondere in [DR 82] ist darauf hingewiesen werden, daB
die Vorschlége von. [BR 79] und [AM 80] zwar die
Korrekturen niedrigster Ordnung [AL 78,79,KU 79,HA 79]
reproduzieren, sich jedoch in hbherer Ordnung unter-
scheiden. Um mindestens einen der beiden Vorschlege aus-
schlieBen zu kennen, reicht es aus, das logarithmisch
ffihrende Verhalten in hbherer als erster Ordnung zu be-
stimmen. Dies ist die Absicht dieses Kapitels.

Wir haben den Limes‘zo’7der Strukturfunktionen der
tiefinelastischen Streuung in der fuhrenden doppello—
garithmischen Neherung (LDLA) untersucht. Unsere Unter-
suchung geht bis zur dritten Ordnung in ads . Da die
Ergebnisse eine Erweiterung auf alle Ordnungen von d5
nahelegen, stellen wir sie hier in ihrer erweiterten
Form dar. Wir benutzen die gleichen Konventionen wie im
vorausgehenden Kapitel.Anstatt die Diagramme, die zum
LeptoproduktionsprozeB beitragen.direkt zu untersuchen,
ist es wesentlich einfacher,die Vorwartsamplitude der
Comptonstreuung zu nehmen und das asymptotische Verhalten
der Strukturfunktionen fiber das Optische Theorem abzuleiten.
Der Vorteil der Comptonstreuamplitude ist, daB keine
reellen Korrekturen beruckeichtigt werden brauchen.
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Wir finden, daB der (239«4)-Limes der Vorwartsamplitude
der Comptonstreuung im wesentlichen durch den ON/OFF—
Limes des Sudakov—Formfaktors gegeben ist, wie er im
letzten Kapitel abgeleitet wurde. Auf dieser Basis be-
stimmen wir das asymptotische Verhalten der Struktur-
funktionen. Es stimmt mit [Do 77] fiberein und steht im
Widerspruch zu [BR 79] .

Im Abschnitt 6.1 werden wir die LDLA der Struktur—
funktionen definieren und zeigen, wie sie mit der LDLA
der virtuellen Parton-Photon-Streuung zusammenhangt. An—
schlieBend werden wir die Struktur der dominanten Dia-
gramme diskutieren. Das asymptotische Verhalten der
Strukturfunktionen wird im Abschnitt 6.2 ffir feste Kopp-
lungskonstante berechnet. Wir berucksichtigen die Vari—
ation der Kopplungskonstanten durch Vergleich der allge-
meinen Form von.fifi,OQ2), wie sie sich als Lesung der
RGE ergibt, mit dem in 6.2 erhaltenen asymptotischen
Verhalten (Abschnitt 6.3).Im letzten Abschnitt 6.4 schlieB-
lich vergleichen wir unsere Resultate mit den Vorschlagen,
die in der Literatur zu finden sind.

6.1 Dominanje Diagramme

Bevor wir erlautern,welche Diagramme in der quasi-
elastischen Region dominant sind, mechten wir kurz einige
Definitionen einfflhren und prazisieren, was genau unter
der LDLA zu verstehen ist.

Wir zerlegen die Vorwartsamplitude der Photon-Parton-
Streuung, bzw. ihren absorptiven Teil,auf die gleiche Wei-
se wie z.B. in E AL 79 j . Die Bezeichnung der Impulse
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ist in Abb. 6.1 angegeben./9 bezeichnet den Impuls des
einleufenden Partons und. q ist der Impuls des elektro-
magnetischen Stromes (Q’Qhfij'.z ). So schreibt sich die
Amplitude der Photon-Parton-Streuung nach Summation fiber
die Spins der Partonen als

T”v=(-Odpv+gc%q:) 31’ 33mg)“
(6.1.1)+(,.>n—r0q—-:t- q”)(p - @q )f—g 3,;(QZ‘ 2)

Dabei ist die partonische Bjorken-Variable Z: durch

2
Z =_ 4— (601.2)

2M
definiegt. Durch Kontraktion mit - pv'undjqppvlassen sich
aus T- zwei Linearkombinationen der invarianten Ampli-

1 . .. .tudenI{Q)2), (a 4) Q herausproa'lmeren

- (3,9,, 7/”: (4—6) Lmifl-(E ’€)($~(Qf3)' $(s)) , (5°15)

Abb.6.1 Bezeichnung der Impulse der Vorwertsamplitude
der Comptonstreuung
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p

E
ppp'y T}, = Q1(3;(Q33)“j~4(0i2))Dar

i)
'

(6.1.4)

Die partonischen Strukturfunktionen bezeichen wir mit
2 ( . . P . 4 /9-;(62, 2.) , k: 4,1. Sie stehen mit JIJQEH' kt éidurch das

Optische Theorem

3‘ (Q32) g 7;; [m (-5 31“???» (6.1.5)
2

in Beziehung. Wir normieren die 3;0Q,2)so, daB im ein-
fachen Parton-Modell

31",;(Qi 2): 5(4- 2) La 4,2 (6.1.6)
gilt. Momente werden durch

may) . [0/2 2” 33 (am) (6.1.7)
0

definiert.

Wenden wir uns nun der LDLA zu. Es ist beabsichtigt,
die Koeffizienten.cnpq einer Entwicklung der subtrahiertenso
Momente flfiq G93 :9, die frei von Massensingularitaten sind,

$013 2. a. 1 pa. (22 C’ 2P"?
Mn (Q7‘QO)=§"(3 %0pq(4*00:))(1036:)(Mjn) (6.1.8)

zu berechnen.(Q:' ist die Faktorisierungsskala
Wir mechten betonen, daB unsere Néherung fiber eine ein—
fache LDLA in bgflq hinausgeht, die nur Terme mit q=C7 be—
rficksichtigt. Solch eine Néherung wfirde in der Region
(22/w n zusammenbrechen. Da. MnSUFQfQOR)eine L'dsung der

RGE ist, wissen wir, daB fur (77/9 0M :0 iet. Um eine
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W3
Entwicklung der Momente/1702fQj) wie (6.1.8) durch An—
wendung des optischen Theorems zu erhalten, mussen die Ko—
effizienten 5pc, der Entwioklung

5013A! 2 a 1 1° “1.,J: (Q)QO)=[7-—;11_IIH P248 g4 0P0, (4+0ZX‘))

(101Qias)q(’°1“”'2’1)2phq 1., sm .der Comptonamplltude jInafij, von der ebenfalls die
Massensingularitéten subtrahiert wurden, bekannt sein.

(6.1.9)

Die [ ]+-Regularisierung ist wie gewohnlioh far zwei
Funktionen 30(2) und c362) durch

4

fi(2f(2)[%(2)_]+ = [01,2 [fffl -f(4)] 3(2) (6.1.10)

definiert. Die Aquivalenz von (6.1.9) und (6.1.8) ergibt
sich duroh Einsetzen von (6.1.9) in (6.1.5) und Bildung
der Momente. Wegen (6.1.5) geht zunéchst eine Potenz von
I03!(1-2)/*verloren. Sie wird wiedergewonnen duroh

I . k

.- - " (0310.13)] .. __/’____. “”51 k :3 (6.1.11OM“ ( $2 + - k+4 {03 n +6003 r1) . )

Im folgenden mochten wir die Struktur der dominanten Dia-
gramme diskutieren. Aus (6.1.9) geht hervor, daB eich der
Beitrag eines dominanten Diagramms in der Region, in
der zgs’1 ist, wie '4/’C1*2) modulo lagarithmischer
KOrrekturen verhalten muB. Momente von Beitrégen, die
schwaoher singular sind, sind im Vergleioh zu (6.1.8)
um einen Faktor 041 unterdruckt. Es gibt versohiedene
Ursaohen, die dazu fflhren konnen, daB der Beitrag eines
Diagramme an der Stelleaw=4 einen Pol besitzt. Ist ein
Diagramm in einem Kanal reduzibel, dessen invariante Masse
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an der Stelle‘2=-4 verschwindet, so besitzt es solch einen
Pol. Aber auch das FI eines irreduziblen Graphen kann solch
einen Pol hervorrufen. Dies kann entweder auf das Ver-
schwinden eines Eichnenners Oder eines Feynman—Nenners
zurfickgehen. Da wir die Feynman—Eichung benutzen, bleibt
bloB die zweite Ursache. Die Untersuchung aller Diagramme,
die bis zur dritten Ordnung in..i$ zu ;~ beitragen, hat
uns zu dem SchluB gefuhrt, daB alle Diagramme, die einen
Beitrag zur LDLA liefern, eine reduzible Struktur besitzen,
wie sie in Abb.6.2 gezeigt wird. Die irreduziblen Blasen
in Fig.6.2 stellen die Quark—Photon-Vertexfunktion dar.
Es ist gerade der im letzten Kapitel untersuchte ON/OFF—
Limes . der hier eine Rolle spielt. Wie unsere Unter-
suchung gezeigt hat, kennen Diagramme, die nicht die fak-
torisierte Struktur aufweisen, zwar durchaus einen Pol an
der Stelle‘a=*4 heben, dieser kann aber allem Anschein
nach in der k —ten Ordnung von hbchstens A” Logarith-
men begleitet werden. Eine wesentliche Voraussetzung far
die Faktorisierung der zur LDLA beitragenden Graphen ist
die Wahl der Feynman—Eichung.Die Faktorisierung gilt bei-
spielsweise nicht ffir die planare Eichung [DO 80b] .
Wie wohlbekannt ist, tragen Leitefgraphen in dieser
Eichung zu den Momenten wie (gs/gqaa/ojhrbei. Die Fakto_
risierung bricht ebenfalls in der Landau-Eichung zusammen.

Als Folge der Faktorisierung verschwindet die rechte
Seite von (6.1.4). Deshalb besteht in der LDLA kein Unter-
schied zwischen $(Q: z.) und $(s) . Aus diesem Grunde

,\- A .werden wir im folgenden einfach nur noch 3“?)5')schrei—
ben.
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r/
902(1-z)/z
\

Abb.6.2 Struktur der dominanten Diagramme

6.2 Das asymptotische Verhalten

In diesem Abschnitt werden wir das asymptotische Ver-
halten der Strukturfunktionen in der quasielastischen
Region ableiten. AusgangsPunkt bilden der ON/QFF-Limes
des Sudakov»Formfak’corsIt;l (502}und die Faktorisierungs-MOI-T-
eigenschaft, die im vorausgehenden Abschnitt beschrieben
wurde.

Aufgrund der Faktorisierung gilt in der LDLA

_' 9. .~ Q

' F
mit

.2 .a; z Caci ... .. gig; (6,2,2)
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I . 5L:bNmfiffflQ )ist bis zur dritten Ordnung in d5 in (5.2.7)
angegeben worden. Wir extrapolieren (5.2.7) auf alle
Ordnungen von d5

1mg” (6,091) = exp {-EM- 3-6)] (6.2.3)
mit

I?" " K 7:1 (6.2.4)6'

Setzt man (6.2.1) in die rechte Seite des optischen Theo-
rems (6.1.5) ein und entwickeltfamfir(fi(32) nach Potenzen
Von d5 , so bekommt man fur die Strukturfunktion

00

3(033) ”e-QKi/LZ) III-(.2; g! (QE)L

(,4- 2 )“Et' 7_6I'h_(1?2'__6_2____ f
(6.2.5)

f‘f

Im Limes e?eCZ enthélt (6.2.5) Pole, die als Messen-
singularitéten interpretiert werden mfissen. Aufgrund
des Theorems fiber die Faktorisierung solcher Massensin-
gulariteten’ [EL 79] kann eine endliche StrukturfunktionSUB 2 2 _

g-(Q,Qha)dur°h
2W623?) =H/X fame/25y) 3t

Z

566 Q
((3)002) Z) (6.2.6)

definiert werden, Oder nach Bildung der Momente

Mb (6“) -- M:(Q:.) 2. ) Mh‘mmi a: ) (6.2.7)
0 2Sémtliche Massensingularitéiten kennen in 9(Oo,é,y) bzw.

flfijfl2:fi%1)absorbiert werden, die dann die "nackten"
Parton-Verteilungsfunktionen "renormieren".
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(6.2.5) laBt sich leicht in die Form eines Konvolutions-
integrals wie (6.2.6) bringen. Dazu entwickelt man zunachst

--L-7 —eL-7 .
(4- 2) C = (’08 :7!) (f+@(/f—Z)) (6.2.8)

und setzt danach die rechte Seite der Identitat

4— = (6.2.9)

( C5\(//-2) falls (Fir/D

in (6.2.5) mit argfl und (0’80 ein.?¢‘=Zo(QO€CE/)ist eine
Konstante, die eingeffihrt wird, um die MassenSingularitaten
zu subtrahieren. Sie ist hier von der Ordnung #563 . Die
Identitat (6.2.9) laBt sich zeigen, indem man entweder
die linke Seite explizit ausrechnet (0#‘(?) Oder die
Momente beider Seiten bildet (a = b ). Mit (6.2.9) er-
halt man

:
-43..eL-4

SW3 .2]? C 4 .6. L (I 4/)
(~— 2 2. _ 0 2

(62,590, )=€ 5 2(2 <5) .3 (6. .3L 2 DO), I 2.00”” 210)

und

f) (0.
1
air)"4

3 (#2243; (6.2.11)2 4
75.)?)

Bevor wir e in (6.2.10) gegen Null gehen lassen
k'dnnen, mfissen wir die Singularitat an der Stelle 2:4
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regularisieren. Dies geschieht mittels der in (6.1.10)
definierten [ ]+-Vorschrift. Wegen

4
30/3

0

folgt O

SW3

3762:6252)=[3‘$0,3(C2f002,2)]+ “964-5) (6.2.13)
und

‘Po 2 .
E(Qo)é’)3)=[i(ao;é)2)]++564'2) (6.2.14)

Nun kann @- in (6.2.13) verschwinden. In der LDLA
last sich in (6.a.1o)

4———--——--—-~¢—d—- =GZo-eL)+.. (6.2.15)(7620-61.)
setzen. Damit bekommt man

[950/3 2 9. " 9 n.- .-‘€
J" (Q’QO7Z)=[9—C4:)—— @x/D{QI<[C/l-2) - ’7]

(6.2.16)
'20 {0301-2)}:L NFC/('2)

Entwickelt man das Argument der Exponentialfunktion
nach E , so nimmt (6.2.16) die Form_ a , _{F (62,0..2>‘ '9‘0‘?‘€’<P M13 ””35”"

(6.2.17)

((039252. 1‘ %I03(4-2)-é - 20 0:6“.- )}] +6‘C/I-z)
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an. Um die Massensingularitéten aus (6.2.17) endgfiltig
zu entfernen, wéhlen wir

2 -e
I” ____ 3154(00 a)25° ‘ Ca: 7y (3 /7: (6.2.18)

Damit erhalten wir das Resultat fur feste Koppungskon-
stante

€01?

“3‘(cffcucian-{dI :5: 4/5 (103%; - 1.3 (4-22)
(

'€¥P{dr g5/03C4-3)[{0g 6362;: + % lag M-zfl} :I (6°2-19)
+

NYC/1'2)

_ a son '
Die MomenteMnCG’oighnt (030,2)1assen sich aus (6.2.10)

und (6.2.11) unter Ausnutzung der Identitét

A h 4 a“, 4 '0 4 (6.2.20)s Z (/03 Z) [1(a) h (4+0(h))

ableiten. Man erhélt

(6.2.21a)Mh (Q2) =€xp{-2]?(4-he)}

"we 9 2- d5 4 1 4MnTQflo )=€xp{dr;/ogfi(/Dggpa 1‘ g ’03 {/7 k? (6.2.21b)
und
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o 2 ‘4

Mh(0°) é)=eX/O{'Zo {03“} (6.2.22)
An dieser Stelle ist es aufschluBreich.(6.2.3) und (6.2.21a)
miteinander zu vergleichen. Das asymptotisohe Verhalten
der Momente ist duroh die gleiche Funktion gegeben wie
das Quadrat des Sudakov-Formfaktors, wobei lediglioh

T’ duroh fih ersetzt werden muB. Diese Korrespondenz
gilt allerdings nur auf den Niveau der LDLA. Den ersten
Term in der Exponentialfunktion von (6.2.21b) ~ /03 E, [0396501
erhalt man gewohnlich als Losung der RGE, wahrend der
zweite Term der Koeffizientenfunktion zuzuordnen ist.
Es ist bemerkenswert, daB man hier den Limes n-a 00 der
anomalen Dimensionen 501)

Mm KOO) = 9o; /03 )0 (6.2.23)h->oo

alleine aus dem ON/OFF Sudakov-Formfaktor abgeleitet hat.
Eine ahnliohe Relation liegt auoh der Argumentation in

MU 79 J zugrunde.

6.3 Einbeziehung der gleitenden Kopplungskonstanten

Im Rahmen des Klassifikationseohemas aus 6.1 ist die
Variation der Kopplungskonstanten ein nichtffihrender
Effekt. Daher kann in der LDLA nur eine feste Kopplungs—
konstante auftreten. Allerdings ist die Variation der
Kopplungskonstanten

4g: 42 - .__.0(n )- b IOWA?) (6.3.1)

b : .32 deg“ if 7(8) TCR) = 4 n; (6.3.2)R3
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eine Erscheinung, die zu wichtig ist, um einfach vernach-
léssigt zu werden. Glficklicherweise wissen wir, daB eine
teilweise Aufsummation der groBen Logarithmen in (22
mittels der RGE vorgenommen werden kann. Wir werden eine
Berficksichtigung der (Q-Variation der Kopplungskonstanten
durch einen Vergleich von (6.2.21) mit der allgemeinen
Lesung der RGE erreichen.

Die Formulierung der RGE in d Dimensionen, wie sie
hier benbtigt wird, léBt sich beispielsweise ['FL 77,
CU 80b] entnehmen. Die fl-Funktion in 0/ Dimensionen
fl(g,C-) ist durch

3%36) = flag!) - %e (6.3.5)

gegeben. Wir bezeichnen den /3(g)'70Limes der gleitenden
- "" .‘2Kopplungskonstanten JSCQvin d Dimensionen mit aid-(P /.

J3 (622)1c gleich
--G_ 2. QR

043(62 )-‘ dSCIL/Q) (/31) (6.3.4)

Setzt man

éCh)ds)=C/é; XCh)+(Lf—’§-;)QJ40,)+M , (6.3.5)

so hat die Lésung der RGE die Form , J
H:

”mm“: 6202) . (as ((2‘) /.<8 (0.2)) ’5
(6.5.6)

ep—iL-[—ZS$C£J (ASCQQ) " "('8 (002)) + a (ds(Q2)) .

wobei die dn(d5(92))die Momente der Koeffizientenfunktion aus
der Operatorproduktentwicklung sind. Ein ahnlicher Aus-
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2 2druck ergibt sich fiir Mh(Q)g/~/). Im Limes 45-70 nimmt Mb (0)5!)
die Form

.. __ 2. 4 ( B _ - 2 . ‘MH{Qfg).exp{2-é[ fi§flnnfij§053.662...,]J/q1(25602))
(6.3.7)

an. Durch Vergleich von (6.5.7) mit (6.2.21.3) kann (m)
und dnfx}(0z)) bestimmt werden. In der LDLA ist kh)=0 fur
k'b/7 . Setzt man die so gefnndenen Funktionen wiederum

in (6-3-6) ein, so erhélt man die durch die RGE ver—
besserte LDLA

an,
\ b 03”

x SUB Q 2 d5(aa) 2 {(5 (‘02) (6.3.8)

H“ (0’62" ) = “P {1‘6 4,)... 4 flag)

Selbstversténdlich kann die gleitende Kopplungskonstante
auf die gleiche Weise auch in den ON/OFF Sudakov-Formfak-
tor einbezogen werden

2 b 2 ‘POW (£3 (2 )4. ,9 {- 2.56.“: ,03 r.» ,03 (fl (semi. )
(6.3.9)

Leider kbnnen (6.3.7) und (6.2.21a) nicht verglichen
werden, ohne daB (Ir—n6) in (6.2.21a) nach E ent-
wickelt wird. Deshalb ist es nicht mbglich, den ON Sudakov-
Formfaktor durch das Verschwindenlassen von L aus
(6.5.9) zu erhalten.





-138-

6.4 Lexi-alias;
In diesem Abschnitt mechten wir unser Resultat mit Vor-schlagen vergleichen, wie sie in der Literatur zu finden

sind.

In [6R 72,DO 77] ist das asymptotische Verhalten derStrukturfunktionen fur groBe (Q auBerhalb der quasi—elastischen Region, wo nur die EinzellogarithmenJfigafizeine
Rolle spielen, untersucht worden. Es wird gezeigt, daB
nach Wahl einer axialen Eichung nur Leitergraphen zur
ffihrenden logarithmischen Naherung beitragen. Ihre Auf-
summation liefert

36%;}. -. J I n :1N (i2iQwmPPciJ6/V (521%)"). +at.
Q (6.4.1)

wie in. LGH 72,DO 77 J behauptet wird, lassen SiCh die
doppellogarithmischen Korrekturen in der quasielastischen
Region dadurch aufsummieren, daB man die exakten kine—
matischen Grenzen jedes Leiterimpulses berficksichtigt. ‘Dies fiihrt dazu, daB in (6.4.1) die Substitution Q29 (P‘t‘lf-y)der oberen Grenze der k -Integration vorgenommen werden
muB. Da die Unterschiede zwischen der modifizierten FormVon (6.4.1) und unserem Resultat (6.5.8) nichtffihrend sind,
sind beide Ergebnisse kompatibel.

Eine andere Lbsung ist in [nM 80] ‘Vorgeschlagen wor—den. Man erhalt sie aus (6.4.1)gindem man das Argument
der Kopplungskonstanten dsfkahn kQC4-y) umandert. Dies
impliziert, daB im Limes/WB%M9, fur feste Kopplungskon-
stante, kein Unterschied zwischen (6.4.1) und der modi-
fizierten Form besteht. Solch ein Verhalten wird von
unserer Rechnung nicht bestatigt. Der Grund dieser Dis-
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krepanz ist leicht gefunden. In [AM 80] ergibt sieh die
modifizierte Form von (6.4.1) als Lbsung einer modifiziertenAltarelli-Parisi—Gleichung [AL 77] . Die Modifikation
der Altarelli-Parisi-Gleichung besteht in der gleichen
Ersetzung des Arguments der gleitenden Kopplungskonstanten
wie far (6.4.1). Diese modifizierte Form der Altarelli-
ParfiEE-gleichung wird in [AM 80] mit der Randbedingung

My1 (GHQ, )r4integriert. Da jedoch zumindest ein Teil-
der doppellogarithmischen Effekte mit der Koeffizienten—
funktion identifiziert werden muB, ist die korrekteswa ,
Randbedingung Mn ((301003) __ Cf” 050901)).

Eine dritte Lbsung ist in [ER 793 vorgeschlagen worden.
Im Gegensatz zum Vorschlag Von [CR 72,D0 77.1 der die
Integrationsgrenzen sémtlicher Leiterimpulse korrigiert,
wird in [ER 79] nur die Integrationsgrenze des trans-
versalen Leiterimpulses der hértesten Leiterzelle abge—
andert. Es wird behauptet, daB diese Vorschrift einen zu—
sétzlichen.Beitreg 6bf?fi?€}zur Strukturfunktion liefert

flafzwqan?) $953,522) (6.4.2)
!

wobeiC/(2,QZ/die gewb’hnliche einzellogarithmische 'Parton-
Verteilungefunktion ist. Um den Vorschlag von [ER 79]
mit unsereaesultat vergleichen zu kennen, haben.wir
den Limes fester Kopplungskonstanten der GrbBe

{:1 (2,02) + J‘qfl’)
(703,02) (6.4.3)

berechnet. Mit den Ergebniesen aus [BR 79] folgt, (13.13
I
r4( 2H C 2 °9 '2*1? 2.1a (5‘? 8"62):: 4 +2 110 d! 2 )] (6.4.4)q(3)02) “:2 Ii! 11' f}.- /OgC//'Z

I
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Mit unserem eigenen Resultat (6.2.19) gilt

fl-,12 (RCFQV lg(% ) qfik 2_ ](5;{_1 _)_+ _? _.§J_ ._.{ _ 0 3 } . F _ .“(Chara-J 4 {onpoa (Pr/3 2?), 1030/ 2)} (6 4.5)

Die Diskrepanz ist offensiohtlich.

In [CA 80,81] sind nichtffihrende Logarithmen ana—
lysiert worden. Es wird behauptet, daB alle groBen Loga-
rithmen (ds'lagh); , [7,2 die m'ciglicherweise zu den anomalen
Dimensionen xCh) beitragen kennten, nicht auftreten. Nicht-
ffihrende Korrekturen zu der Koeffizientenfunktion werden
dort allerdings nicht diekutiert. Aufgrund des engen Zu-
semmenhanges beider Effekte, ist es nicht unwahrecheinlich,
daB auch die logarithmischen Korrekturen zu der Koeffi-
zientenfunktion stark reduziert werden.
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7. Die Aufsummation groBer Korrekturen zum elektro—
Eggnetischen Formfaktor des Pions

In diesem Kapitel mechten.wir die Resultate der Be-
rechnung von groBen Korrekturen zum elektromagnetischen
Formfaktor des Pions in der perturbativen QCD vorstellen.
In der Einleitung wurde darauf hingewiesen, daB durch den
Beweis der Faktorisierung der Massensingularitéten in einer
Reihe von inklusiven Prozessen der Anwendungsbereich der
stdrungstheoretischen QCD entscheidend erweitert wurde.
In paralleler Weise léBt sich auch fur verschiedene ex—
klusive Prozesse die Faktorisierung der Massensingulari-
téten nachweisen [BF 80,LE 79,80,DU 80.] . Die Wahl
einer axialen Eichung ffihrt zu einigen Vereinfachungen,
stellt jedoch keine unbedingte Voraussetzung dar. In
dieser Eichung lefit sich ein exklusiver ProzeB, insofern
die Massensingularitaten faktorisieren, durch eine Kon-
volution der Amplitude 7g des harten Anteils der Parton-
Streuung mit je einer Wellenfunktion(fi%/77ffir jedes be-
teiligte Hadron beschreiben, die lediglich die Valenz-
zustande enthélt. Nicht—Valenzzusténde sind mit einem
Faktor ”flQa'unterdrfickt.

Der harte Anteil 7Q ‘wird durch den kurzreichweitigen
Teil der Wechselwirkung bestimmt. Er ist frei von Messen-
singularitielten. Daher ist eine Entwicklung in dJQ'QJSinn-
V011. In der Operatorproduktentwicklung entspricht dieser
Anteil der Koeffizientenfunktion. Ffir eine weite Klasse
von exklusiven Prozessen erffillt TH die "Dimensional—
Counting-Rules" [BR 75,MA 75,] .

Die WellenfunktionflMQz)hingegen entspricht einer Summe
hadronischer Matrixelemente von Operatoren der Operator-
produktentwicklung. Sémtliche kollinearen Singularitaten
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kennen in(¢05Q2)faktorisiert werden.dimGfi/reprasentiert
den langreichweitigen Anteil der Wechselwirkung, der dem
Zugeng mittels Methoden der stdrungstheoretischen QCD
prinzipiell verschlossen ist. Was allerdings berechnet
werden kann, ist die (Qé-Abhengigkeit dieser Wellenfunk-
tion. In einem gewissen Sinne spielen die Wellenfunktionen
bei den exklueiven Prozessen die gleiche Rolle wie die
Parton-Verteilungefunktionen und Fragmentationsfunktionen
bei den inklusiven Prozessen.

Ein typisches Beispiel fur solch einen exklusiven Pro-
zess ist der elektromagnetische Formfaktor des Pions,
dem wir uns in diesem Kapitel widmen werden. Entsprechend
dem skizzierten Bild der exklusiven Prozesse in der QCD
wird der Pion-Formfaktor durch

m0") = fdxfdy abbn“) THWO‘) 45090”) (7-0-0
beschrieben. Abb.7.1 stellt diese Relation anschaulich dar.

Abb.7.1 Der Pion-Formfaktor in der stdrungstheoretischen QCD
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I

fl? ( f3 ) ist der Impuls des einlaufenden (auslaufenden)
Pions. Das virtuelle Photon tragt den Impuls

(7 = _ (P%) 4 ¢))) ('7.C).2)

mit

Q 1
62 = ' 9 (7.0.3)

und (MW/2 ((4l‘y) /,’2 ) sind die Anteile der longi-
tudinalen Impulse der Valenzpartonen vom Impuls des Pions

/9 ( ¢>1 ). In niedrigster Ordnung in.6{s tragen ledig-
lioh die beiden in Abb.7.2 gezeigten Graphen zum harten
Anteil bei

#0( 9‘ ~64 M)“ 4_ U (704)/H X)>/)Q )=//6H 7: (92 (4“X)(//—-->-/d; . .

Wie man aus (7.0.4) ersieht, ist fl:(&000{)an den
Stellen,x=’7 und y='7 singular. Deshalb ist die Dar-
stellung (7.0.1) nur sinnvoll, falls die Wellenfunktion
d)(x,Q3) in der Endpunktregion so stark verschwindet,

daB das Integral konvergiert. Jedoch selbst dann'muB damit
gerechnet werden, daB der Hauptbeitrag zu ?b%flQ'fi)aus der

b
"
"
"
"
'”
7

—
—

—
_

—
-
—

—
.
.
.
_
-

(o) (b)
Abb.7.2 Fiihrende Beitrage zu ROW-1 02/
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Endpunktregion kommt. Dies hangt ganz von der speziellen
Form von¢(x)Qa)ab. Es ist davon auszugehen, daB die Sin-
gularitat in (7.0.4) duroh logarithmisohe Korrekturen nooh
verstarkt wird. Daher kann nioht ausgesohlossen werden,
daB die Storungsreihe von.%}flQa) divergiert. 1—Schleifen-
Korrekturen zu (7.0.4) sind von verschiedenen Gruppen be—
rechnet worden [Fl 81,DI 81] . Die Endpunktregion ist
besonders in. [DI Btjuntersuoht worden. Es wurden groBe
Korrekturen gefunden.

Wir haben die ffihrenden doppellogarithmisohen Korrekturen
zu (7.0.4) bis zur 2-Sohleifen-0rdnung berechnet. Unser
Resultat deutet darauf hin, daB die fUhrenden doppelloga-
rithmisohen Korrekturen exponentieren. Unter der Annahme,
daB dies in allen Ordnungen geschieht, wird das Integral
(7.0.1) tatsachlioh divergent. Die Singularitat wird
daduroh hervorgerufen, daB die Entwioklung von,E/%yfipfi,
die mit (7.0.4) beginnt, nicht gilt.falls x: 4' oder;y=-7 .
Diese Singularitat kann vermieden werden, indem man die
Integrationsgrenzen in (7.0.1) mit groBerer Sorgfalt be—
handelt. Geschieht dies, so wird die Endpunktregion fur
groBe Q2 unterdriiokt .

Es sei auf die Analogie zum Verhalten der Strukturfunktion
in der quasielastisohen Region hingewiesen, wie es im
letzten Kapitel abgeleitet wurde. Das Verhalten, das dort
gefunden wurde, laBt sioh qualitativ folgendermaBen er-
klaren. Aufgrund des in der quasielastisonen Region stark
eingesohrankten Phasenraumes ist die Abstrahlung von
reellen weiohen Quanten stark unterdrfickt, so daB eine
Neutralisierung der Infrarotsingularitaten zwisohen reellen
und virtuellen Korrekturen dem Kinoshita-Lee-Nauenberg
Theorem entspreohend nur nooh teilweise stattfinden kann
und die virtuellen Singularitaten uberwiegen.
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Die Vermutung liegt nahe, daB die Region.r,yas'4 des
Pion-Formfaktors auf ahnliche Weise unterdruokt wird.
Die Beitrage individueller Graphen zum Pion-Formfaktor
weisen, genau wie zur tiefinelastischen Streuung,Infra-
rotsingularitaten auf, die durch die verschwindende Masse
des Gluons hervorgerufen werden. Nun kennen farblose
Quark-Antiquark-Systeme, wie sie von Mesonen gebildet
werden, nicht durch den Austausch weicher Gluonen wechsel-
wirken. Selbst der Austausch weicher Gluonen zwischen
einem Meson und einem einzelnen Quark ist unterdruckt
I: 00 76,0H so ]. In einer abelschen Theorie ist dieser
Sachverhalt leicht einzusehen. Zu jedem singularen Bei-
trag, der durch die Kopplung eines weichen Gluons an ein
Quark hervorgerufen wird, gibt es einen Partner, der Kop-
plung an das Antiquark, der sich lediglich durch das Vor-
zeichen unterscheidet. Ein ahnlicher Mechanismus arbeitet
auch fur nichtabelsche Theorien. Daher kurzen sich die
InfrarotSingularitaten aus der Summe uber alle Graphen,
die zum Pion-Formfaktor beitragen.heraus. Die Farblosig—
keit der Mesonen spielt fur die exklusiven Prozesse also
die gleiche Rolle, wie die Summe fiber die Endzustande fur
die inklusiven Prozesse. In der Region>§>ms4 wird nun aller—
dings die Symmmetrie zwischen Quark und Antiquark derart
gestbrt, daB erwartet werden muB, daB der beschriebene
Kurzungsmechanismus auBer Kraft tritt. Diese Erwartung
wird von unseren Ergebnissen bestatigt.

Der Rest dieses Kapitels ist folgendermaBen gegliedert.
Im ersten Abschnitt werden wir kurz erlautern, auf welche
Weise der Formfaktor des Pions in der stbrungstheoretischen
QCD beschrieben wird. Der zweite Abschnitt befaBt sich
mit dem Endpunktverhalten der Wellenfunktion. Im dritten
Abschnitt werden wir dann die Resultate unserer Rechnung
vorstellen.und anschlieBend daraus(Abschnitt 4) den
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harten Anteil isolieren. Im Abschnitt 5 wird illustriert
werden, welche Konsequenzen die Aufsummation der fUhrenden
groBen Korrekturen ffir den Formfaktor mit sich bringt.
Abechnitt 6 schlieBlich ist einigen SchluBfolgerungen vor-
behalten.

7.1 Der elektromavnetische Formfaktor des Pions in{J

der perturbafiiven QCD

Die grundlegenden Eigenschaften des elektromagnetischen
Formfaktors des Pions sind bereits in der Einfflhrung zu
diesem Kapitel besohrieben worden. In diesem Abschnitt
mechten wir einige Details erleutern.

Mit

f=/og(o<g(0:)/¢<C(Q”)) (7.1.1)

ergibt sich die Wellenfunktion 45(X)Q"7a1s L'dsung von
+4

0% ¢(2)é)=’§b fd(2)x)¢(x)f) (7.1.2)
-4 .

(7.1.2) kann nur dann vollstandig geldst werden, falls
die "Anfangsbedingung" ¢Kgd%{)bekannt ist. Der Bezugo-
punkt (23' kann prinzipiell beliebig gewéhlt werden. Die
Gleichung (7.1.2) ist das Analogon zur Altarelli-Parisi—
Gleichung [AL 77] . Wie schon im letzten Kapitel, so
wéhlen wir auch hier Gka<<<Q2'. In niedrigster Ordnung
ist der Brodsky-Lepage-Kern Vn} gleich

.. I 4+3 2 _ (7.1.5)V(2,x)- 26;:{7fx [/1 + “fix-2h ]C9(2<-?)
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_/ -__; 9 "+ /-~*[tf AJCKE-x)-cQé—x) f.d-K

Die [ ]+—Regularisierung ist hier im Unterschied zu
(6.1.10) durch

x
/7 4 1 A_. _ .-_-. 6&- f 11/ .. .. . .

4

definiert.

Zur Lbsung der Entwicklungsgleichung (7.1.2) bestimmt
man zunachst die Eigenfunktionen ik) in

-£dXV(2)x)f;7(x)'-=5(h)fh(2) (7.1.5)

Durch Ausnutzen der Symmetrie von V{2fi<) bei Vertéuschung
der Argumente laBt sich zeigen, daB 5L0“) im wesentlichen
durch die Gegenbauer Polynome (::%L ( siehe Anhang D)
bestimmt ist

3/
fr, carpi-1'2) C3,, 20¢) (7.1.6)

Das Auftreten dieser Orthogonalpolynome ist eine Kon-
sequenz der Tatsache, daB gerade konform kovariante
Operatoren die RGE diagonalisieren FOH 827 . Fur die
Eigenwerte 500) ergeben sich die schon vofi der tiefin-
elastischen Streuung her bekannten anomalen Dimensionen

n+4
' 1 4 (7 1 7)(rm-2c! - -- —-—-—— ,4 - £1 /. ~-11 4' mmmm) 2:; o .a

DaB hier die gleichen anomalen Dimensionen auftreten wie in
der tiefinelastischen Streuung, liegt an der Verwandt-
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schaft der entsprechenden Operatoren. Damit schreibt sich
die allgemeine Lésung von (7.1.2) als

. 001 3/? (h)qb(x,62“)=(4-x2)Z 01., 6,, (x)cxp{— 5-,; t] 17.1..)
h=0

Aufgrund der Orthogonalitat der Gegenbauer Polynome
lassen sich die Koeffizienten cm aus der Wellenfunktion
ffi(x,C%R) berechnen

+1 3Q

01w}? fdx ¢(X1@02)dh (X) (7.1.9)

Sie entsprechen den Matrixelementen der aus zwei Quark—
feldern aufgebauten Operatoren, die ein Pion représentieren,
zwischen dem Vakuum und dem Einpionzustand. Im Rahmen der
stérungstheoretischen QCD mfissen diese Koeffizienten bzw.
die Wellenfunktion Q5Cx)Qoa)als Inputgrb‘fien angesehen werden.
Eine experimentelle Bestimmung ist zwar prinzipiell mag—
lich [BA 80] , praktisch jedoch éuBerst schwierig. Da—
her bleibt beim momentanen Stand der Dinge nur der Ruck-
griff auf Modellannahmen fur q5(x,002) fibrig.

Eine Ausnahme macht der Koeffizient (L9 . Er léBt sich
in Beziehung zur Zerfallskonstante des Pions £513(1(7q3(§cyf
setzen

(7.1.10)

Damit ist die Normierung der Wellenfunktion festgelegt

(7.1.11)0’ ¢(X,QQ)* 4 Joy;—[X 1/31
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Die anomalen Dimensionen haben die Eigenschaft, daB
[(01) > 0 ist fur alle n>0 , lediglich MOD-=0 . Da—

her sind im ultrahochrelativistischen Limes 62:39:90 alle
Beitrége zu (7.1.8) mit Y))C7 durch gebrochenzahlige
Potenzen von at unterdruckt

121m ¢(x,QR)-= (4-xQ200 (7.1.12)
Q -700

Damit erhélt man

45% F17(QR)= 42 17' C7; AJQ'Q) frrrz/ Q2 (7.1.13)

Wie schnell die Wellenfunktion @0902) die asymptotische
Form (7.1.12) erreicht, héingt ganz von (1509 C902) ab. Hat
43(X’Qa) beispielsweise exakt die asymptotische Form
(7.1.12), so gilt dies such far alle anderen Werte von (3
Weicht d)(x,0:) hingegen stark von (7.1.12) ab, so wird die
asymptotische Form erst fur sehr groBe Werte von 621 an-
genommen.

Wird die Brechung der Flavour-Symmetrie vernachléssigt,
so ist

430292)" 450”a (7.1.14)

Dann tragen in (7.1.8) nur gerade k7 bei.

Da die Details des Bindungsmeehanismus des Pions in
die Beschreibung des Formfaktors lediglich durch die Ko—
effizienten ah einflieBen, kann an die Stelle des Pions
jedes andere pseudoskalare Teilchen treten. Dabei darf
die Bedingung, daB C?2 groB gegenfiber sémtlichen Massen
ist, allerdings nicht verletzt werden.
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Ein gewisses Problem stellt der Vergleich von (7.0.1)
mit den experimentellen Daten dar. Nimmt man einmal an,
daB $(kfi22) schon frfih das asymptotische Verhalten (7.1.12)
erreioht, (7.1.13) also auch ffir niedrige (72;L gilt, so
liegt der Wert von (7.1.13) im Bereich von (gisggavzbis
l ~10 Gel/9‘ um etwa einen Faktor 1+ unter den experi-

mentellen Daten [D0 82] , wahrend die Ubereinstimmung
fur kleine (Q besser wird. Es ist daher anzunehmen, daB
die Wellenfunktion in diesem Bereich stark von der asym-
ptotischen Form abweicht.1n Abschnitt 7.5 werden wir zei-
gen, daB eine geeignete Berficksiohtigung der Endpunkt—
region tatsachlich zu einer Form von £7(Q2)fUhren kann,
die eher im Einklang mit den experimentellen Daten zu stehen
soheint.

7.2 Das Endpunktverhalten der Wellenfunktion

. 2.7.2.1 Das Endpunktverhalten von (@0163;- )

Wie bereits in der Einleitung dieses Kapitels heraus-
gestellt wurde, maoht der Ausdruck (7.0.1) nur Sinn,
falls die Wellenfunk'tion in der Region x954 geniigend
stark verschwindet. Formal reicht es aus, daB

ll'h') (fiCx (22) < (xi-x)? )0 (7.2.1)
xe/1 ’ Q

Damit ist die Konvergenz des Integrals in (7.0.1) gewahr-
leistet.

In [DE 80] wird argumentiert, daB Losungen der homo-
genen Bethe-Salpeter-Gleichung die Randbedingung (7.2.1)
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tatsachlioh erffillen. Selbst falls dies zutrifft, so biei-
ben doch zwei auBerordentlich wichtige Fragen unbeant-
wortet. Namlich erstens, inwiefern es gerechtfertigt ist,
die Wellenfunktion beispielsweise eines leiohten Masons,
wie des Pions, als Losung einer homogenen Bethe—Salpeter-
Gleichung zu betrachten und zweitens, nach der GroBe Von

. Da die Endpunktregion einen Beitrag der GroBen-
ordnung ’I/Q zu 7?} (Q2) liefert, ist ein geniigend
starkes Verschwinden der Wellenfunktion offenbar Voraus-
setzung fur die Abwesenheit von anomal groBen Beitragen
aus dieser Region.

In der Tat stellt es sich heraus, daB die Endpunktre-
gion von ¢(X;Q2) unter gewissen Voraussetzungen nur
wenig unterdrfickt ist. So ist beispielsweise die nicht-
relativistische Wellenfunktion eines aus einem schweren
Quark der Masse f1 und einem leiohten Quark der Massern
zusammengesetzten Mesons in der Nahe von (/f-x2/2 9d m/(m +M)
stark iiberhb'ht [Ho 81,LE 82,0H 82] . In [Jo 82] wird
als Ansatz fur die Wellenfunktion eines solchen Teilchens

¢(x)Qoa)~c§(x - -/\%t7———-) (7.2.2)

vorgeschlagen, wobei sich aka in der GroBenordnung von
4 Gevfllbewegt. LaBt man einmal die (31 Variation von
¢5(x,62’“) auBer acht, so fiihrt (7.2.2) zusammen mit (7.0.4)

zu einer starken Erhohung des Wertes von.?fi(zya) gegen-
fiber dem Formfaktor eines Mesons, das aus etwa gleich
schweren Quarks besteht.

2
7.2.2 Die Cl—Variation des Endpunktverhaltens

2
Wir haben bisher die G? Variation der Wellenfunktion

d)(x,(22) auBer acht gelassen. Wie (7.1.12) jedoch zeigt,
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. . lmuB die Anderung des Endpunktverhaltens mit (Q eine wich-
Rolle spielen. Da bekannt ist, wie sioh $07622) mit Q1
éndert, léBt sich dieser Effekt ohne weiteres ableiten.

Ist die Reihe, duroh die die Wellenfunktion. ¢Mk7Gfia) in
(7.1.8) dargestellt wird, gleiohméfiig konvergent, so
verschwindet $0,622) wenigstens wie (xi-x), die Endpunkt-
region spielt also keine Rolle. Umgekehrt erfordert ein
Verschwinden von ¢KXK31) sohwéoher als (W-x) , daB die
Summe in (7.1.8) fur X ='7 divergiert. Da jeder ein-
zelne Beitrag endlioh ist, wird der ffihrende divergente
Anteil duroh das Verhalten Von ahéxpfl 3(t/2/o}fiir m +50
festgelegt. Der Limes n -> 00 von an wiederurn wird
duroh das Endpunktverhalten der Wellenfunktion ¢(x,({'02)bestimmt. Es sei denn, die Reihe, die Wag") darstellt,
ist gleichméBig konvergent. Es sei

¢)(X,Q01) = {/l-x2)(4-x)2-4 (7.2.3)

mit ,Z.:»1 , dann folgt aus (D.6)

¢Cx,o“) =(4-x“)2." {Pang/mow}
. Z! or: GhrB/QCX} QX/O{- gch) [/12 b]

h=0

(7.2.4)

mi't

ah)?CQh+3)P(n+/I-;Z)/F(h+‘34-,?) (7.2.5)

Wegen

r'(n+o,)/P(h>-n°'(4+ OWN) (7.2.6)
(6.2.23) und (D.4) ist
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I 3/; ' 4-2 ”(f-9:25
an an (HM/0 [Goat/2.5} = h 2 b (/lnmg, 5)) (7.2.7)

Ist q+QCFt/b> 4 , so ist.die Reihe in (7.2.4) gleich-
maBig konvergent. Im umgekehrten Fall divergiert die Reihe
fiir X -..- 4 . Dann kann das Endpunktverhalten von ¢CX9Q2)
bestimmt werden,indem man die Schritte von (7.2.3) nach
(7.2.7) umkehrt, mit dem Resultat

((10:11¢(X,Q2)r(4*X)2+2gt(4+6(K5))
x9

Y2 +e(/(D < 4

Wiirden wir in (7.2.3) auch Q: 4 zulassen, so verschwanden
in (7.2.4) alle Terme mit rlz’l . Daher kann die Argu-
mentation, die zu (7.2.8) geffihrt hat, nicht in den Be-
reich q'WI1 erweitert werden. Damit haben wir die
Variation des Endpunktverhaltens bestimmt. Setzt man

(7.2.8)

2
¢(X)C22) 6- (/l-xflap) (7.2.9)

so wird

QCQ‘)=Q(0:)+QG';L‘/b (7.2.10)

2 2. °
Die Endpunktregion wird also fur 62 >7 Q0 stark unter-
drfickt,Ein ahnliches Verhalten ist schon in [DI 81,
CH 81,JO 82] ermittelt worden. Es steht in Ubereinstim-
mung mit (7.1.12). Sieht man einmal von moglichen Kor-
rekturen zu 7;,(x,y,Q2) ab, so kann die Erqldpunktregion, falls
fiberhaupt, nur ffir kleine Werte von.C? (gfl?9<«7 )
zu einer entscheidenden Abweichung vom asymptotischen
Verhalten des Pion-Formfaktors (7.1.13) ffihren, die

eventuell die Ubereinstimmung mit den experimentellen
Daten verbessert. Insbesondere ist ein Ansatz wie (7.2.5),





-154-

der nur das Endpunktverhalten richtig beschreibt, fur
n); 4 nicht mehr gerechtfertigt. In [D1 81]

wird fiir Q (Q5) die Abschétzung )2 ((201) = ('2 2‘ 0' if
3’ . . . .. .~ ~ ,9-angegeben. (20 liegt dabei in der GroBenordnungr;5 66b .

Das Resultat (7.2.9) basiert auf der Néherung der ano-
malen Dimensionen 5%)J5) durch die niedrigste Ordnung
in .15 . Dies léBt prinzipiell die Mdglichkeit offen,
daB hbhere ordnungen das Verhalten (7.2.9) wesentlich
veréndern. Die Ubereinstimmung der anomalen Dimensionen
des Formfaktors mit denen der tiefinelastischen Streuung
gilt auch in hfiheren Ordnungen von d5 . Explizit ist dies
zur Ordnung .g2 in [SA 82:] verifiziert worden. Es
léBt sich daher von den Ergebnissen aus [CI 80;] Gebrauch
machen. Danach kann 27(1), 0(5) in der k-ten Ordnung ( k 7, 12 )
j11 As héchstens wie lWfik-fl) anwachsen. Dementsprechend
haben die Korrekturen zu (7.2.12), die aus den Korrekturen
zu()(hfl{6) resultieren, die Form

d; (03k(4'x) mit /<<:[ (7.2.11)

7.5 Die ffihrende doppellogarithmische Nuherung des
Formfaktors in der Endpunktregion

Ein wesentlicher Beitrag zum Verhalten der Struktur-
funktionen in der quasielastischen Region wurde von der
Koeffizientenfunktion geliefert. Es ist daher zu erwarten,
daB auch der harte Anteil TH(x)y,Qz) in der Endpunktregion
durch Korrekturen hbherer Ordnung zu (7.0.4) stark modi-
fiziert wird. Um fiber solche Korrekturen nehere Auf-
schlusse zu erhalten, haben wir die ffihrenden doppel-
logarithmischen Korrekturen zum Formfaktor in der End-
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punktregion bis zur 2-Schleifen-Neherung berechnet. Die
Resultate dieser Rechnung mechten wir in diesem Abschnitt
vorstellen.

Dem Formfaktor entspricht die Parton-Amplitude ThGQfifi(?k/
des Parton-Prozesses q+ *-; £747 . Sie wird in Abb.7.3
dargestellt. Die Impulse der einlaufenden (auslaufenden)
Quarks werden zu (HHW/Q (CHI/N372) gewahlt. Es ist

_ if -Abb.7.3 Die Paxton-Amplitude qr; +J' '9 67‘?

7): ¢V2= C) und sémtliche Partonen sind masselos. Um
den Eingangs-(Ausgangs-)zustand auf den Einpionzustand
zu projizieren kontrahieren wir die der Abb.7.3 entsprech-
ende Amplitude auf der linken (rechten) Seite mit.fy£;
( JQ’{5_ ). Ublicherweise ist der Formfaktor des Pions
durch

< 70’} gym/79> - (MP2, Erma) (7.3.1)
definiert. 9F(Qp) ist der elektromagnetische Strom. Die
Form der rechten Seite von (7.3.1) ist eine Konsequenz
der Eichinvarianz. Summiert man die Beitrége aller Dia-
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gramme, der Von Abb.7.3 gezeigten Amplitude zu fester
Ordnung von ((5 auf, so muB die Summe ebenfalls proe
portional zu (734¢V%U sein. Das gilt jedoch nicht fur
jeden einzelnen Graphen. Daher ffihrt die Berficksichtigung
nur solcher Beitrége, die beispielsweise zu 7; proportional
sind, zu einer weitgehenden Vereinfachung der Reohnung.
Technisch erreicht man dies, indem man den elektromag-
netischen Strom einfach mit fl: kontrahiert. Dies hat
in der niedrigsten Ordnung zur Folge, daB der Graph (a)
in Abb.7.2 keinen Beitrag liefert.

Wir werden den Pion-Formfaktor durch eine Reihe approxi-
mieren, die im Limes @90— die Form

00__l .._O Q "*'l L[p (Wm: /;.,((/,V,Q )2, as .
Lgo

.(70302)4 .54 t 42 r ’3 39-

. 2? com ((5) (lawman) (1032—2)
94+32+d3+gq=2L [U

aufweist, wobei

2.} (MN/.2 und EZ=(//-v)/¢Q (7.3.3)
Die Bedingungen daffir, daB'ein Beitrag in der LDLA berucksich-
tigt wird, sind also, daB er singular wie 9/?}F2 ist
und daB er auBerdem in.der (L+’0-ten Ordnung in d5 fiZL
Logarithmen mit sich ffihrt. Wie (7.3.2) zeigt, behandeln
wir die Gro'Ben CIR/pa, T4 und {[1 beziiglich der Logarith-
men so, als seinen sie von der gleichen GroBenordnung.
Die Pole /7/éi werden durch kollineare Singularitaten
verursacht. Daher gilt 1fi1< L . Da wir wissen, daB die
kollinearen Singulariteten faktorisieren, ist es im
Prinzip ausreichend,nur solche Beitrége zu (7.3.2) zu be-
rechnen, fur die 44=C3 ist. DaB wir dennoch sémtliche
Infrarotsingularitaten rfiZ? euf gleicher Stufe mit den
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fibrigen LOgarithmen behandeln, hat zwei Grfinde. Zum einen
erfordert es technisch keinen Mehraufwand und zum anderen
liefert es einen willkommenen.Test unserer Ergebnisse
Es erweist eich ale vorteilhaft,den Limes 6 9'CL erst
auszuffihren, wenn die Beitrége sémtlicher Graphen auf—
summiert worden sind.

Sémtliche Graphen, die einen nichtverschwindenden Bei-
trag zur LDLA liefern, werden in Abb.7.4 gezeigt. Alle
Graphen, die nicht gezeigt werden, sind entweder loga-
rithmisch nichtfiihrend oder aber ihr Farbfaktor G
verschwindet. Graphen, die Fermionenloops enthalten, sind
nicht berficksichtigt worden, da sie nicht logarithmisch
ffihrend sind. Der Beitrag eines einzelnen Graphen ist

L

" r —-° . 2 “4
llp(L})\/)Q'l) -.- [H (UH/102) [, CZ—4i)(z)%p2) 52] G H (7.3.4)

worin L. die Anzahl der Schleifen angibt. Die GrbBen G;
und [3/ sind in Tab.7.1 aufgelistet. Wir benutzen die
Abkfirzungen

6; =<:;-cfl,
G : 417-62,)(0’; '20,”)11'

GE (:6, -C,“,,, ) (in (7.3.5)

In Kapitel 9 wird die Berechnung des Graphen 55 stell-
vertretend fur alle Graphen im Detail erléutert. Die
Resultate fur die Graphen 1 bis 6 stehen in Uberein-
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stimmung mit [DI 81,FI 81] . Ein partieller Test unserer
Reeultate ist mit Hilfe der Eichinvarianz mdglich. Bildet
man die Summe fiber die Beitrage aller Graphen, die man
aus einem vorgegebenen Graphen und seinem Partner, bei
dem Z} und 2; vertauscht sind,durch Verschieben des
elektromagnetischen Vertex in der oberen Fermionlinie
erhalt, so muB sie symmetrisch in $9 und Ti sein.
(Beispielsweise die Graphen 33-36 ).

Die parametrische D-Funktion hat im allgemeinen die
Form (3.4.16). Dementsprechend treten vier verschiedene
Arten von SM auf. Jede der SM vom Typ h;fia;fizfl?mz ent-
halt den in Abb.7.5 stark herauegezeichneten Teilgraphen.
Daher kann man sagen, daB fur endliche £3 und 2; der
dominante Impulsfibertrag durch diesen Teilgraphen flieBt.
Die Symbole + , - und l kennzeichnen den Spinor-

Abb.7.5 Dominanter ImpulsfluB
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oder Vektorindex am jeweiligen Vertex, bzw. die dominante
Spinorkomponente des Fermionpropagators in einem System,
in dem 73-¢[ , 92/9; ist und alle anderen Komponenten von
fl) und 73’ verschwindeh. Die dominanten Impulsflfisse

fur verschwindendes Q} oder Z; , die zu den restlichen
Typen von SM gehbren, sind komplizierter. Wir gehen da-
rauf nicht ein.

Wie man aus der Tabelle 7.1 ersieht, gibt es keine
logarithmischen Terme solange <5 ¥(9 . Mit anderen
Weften, sieht man einmal von der Singularitat von
7pé¢V3QQ) ab, so liefert die dimensionale Regularisierung
nicht nur eine Regularisierung der kollinearen Singulari-
teten, sondern auch der Endpunktsingulariteten. Dies
gilt nicht fur die Beitrage der einzelnen Sequenzen.
Hier treten in der Regel logarithmische Terme wie z.B.
(oath auf. Summiert man allerdings die Beitrege aller

Sequenzen eines Graphen auf, so heben sich die logarith-
mischen Singularitéten gegenseitig auf. Ein éhnlicher
Sachverhalt wurde schon in Kapitel 5 beobachtet.

Durch Aufsummation aller aufgelisteten Beitrege erhalten
wir das Reeultat

L2 Q —6
" 9 0 f _49 [MGR 1 _ er “5//=(cal4Q)=MoM‘ULgu 23d{§‘;@)€1(4 (W )) (7-3-6)
Damit ist die Exponentierung der ffihrenden logarithmischen
Beitrége aus [DI 81,FI 81] in nichttrivialer Weise veri-
fiziert. Wif werden im folgenden davon ausgehen, daB die
Exponentierung der ffihrenden logarithmischen Singulari-
téten in jeder Ordnung von d5 eintritt.
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7.4 Das Endpunktverhalten der Amplitude der harten
Streuung TH (fix, Q2)

Die Parton-Amplitude Tp(u,v)(?2) darf nicht mit der Amp-
litude der hargcen Streuung7;(x)>/) Q2) gleichgesetzt wer-
den. Mit7;(U,V,Q )schreibt sich der Pion—Formfaktor als

+4

757((22) = fduo’v 450%) 7}; (cu/,QQ) 0500/) . (7'4”)
.. 2 2Im Gegensatz zu 1H(x)y,(3 / entht—ilt 7;:(0,V,C? /s'a'.mtliche Massen-

singularitéten und die damit assoziierten groBen Loga-
rithmen.

Um die Massensingularitéten von 330323637 abzuspalten,
lassen wir 6, im Exponenten der Verallgemeinerung von
(7.3.6) auf alle Ordnungen von 0/5 gegen Null gehen.

7}.(u,t/,Q2) = TH‘YU, 1402) »
(7.4.2)2

f r—r- 4 (1 I r- A“ ‘.Cxp{’2¢f q;- IOjC¢62 6: '/03 2:“; '2 {(7n(1_{}

"Renormieren" wir ¢O((/) nach

2
3. S / (10 r .@(U)C90) =€x,.> {-33%- CHOjEZ, é #03 2,7,.2jjfiag (7.4.3)

und $500) entsprechend, so tritt in (7.4.1) (f){(/)(;.>:/' an

die Stelle von (150 (U) und '/;,(U)'t/)Q2/..wird durch den
endlichen Ausdruck

sub

TP ((171002) = THO(U7V7QQ) .

'Cxpkél"? 5’; "73 315200369/6902 *5/03 12—7 2.2)]
ersetzt. Q02 markiert hier die Faktorisierungsskala.
Prinzipiell ist die "Renormierung" von $0 (U) nur bis auf

(7.4.4)





Pu-"
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einen endlichen Faktor festgelegt. Unser "Faktorisierungs-

schema" ist durch (7.4.3) fixiert.

Mit Hilfe des durch
+4

¢(x)Q'Q)=d ECK)QQ;U,G?02)¢(U)002) (7.4.5)
._ Q 2

definierten Entwicklungskerns L'Cx,(»2)-U,C90 ) ist es m'dglich,

die sogenannte "Inside-Out"-Methode [Fl 81] , wig wir

sie zur Berechnung von Efllyvfl92)angewandt haben, mit der

"Outside-Infl—Methode, wie sie in (7.0.1) verwendet wird,

in Beziehung zu setzen. Graphisch wird dies fur die

axiale Eichung in Abb.7.6 dargestellt.

$08__ a _ — r I Q aIf, (two )- 504x dy 1= (VJQoIG’ 2' (7.4.6)
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TH(X,7,Q“)E(K,Q%U,0:)
mit

+ Q. Q _ Q '2.

E: (0,620 ; MC? )= 12-096? ; r000} (7.4.7)
2 a£030 ;U, Q, )ist explizit durch

_. 0° 7 3/2 3/2

[:(XJQQJ'U) 002).(4_x2) Z 2-) an (x) ch (U)€x/o{.&(n)t/2b} (7.4.8)

I1=0 n

gegeben. Wegen (D.3) ist
14/2

1 f _ 2
1509623; U, C90 ) = LELXZ) J(X’U) (7.4.9)

'0

so daB allgemein gilt

50’3 1 2 .
TP (07140;,(3 )= TH (0214672) (7.4.10)

Daher haben wir in unserem Fall

TH (U)V)QQ)= TH0((/)V)Q )C)(P{-—E{I§_ 47: [032-4152] (7.4.11)

Der erste Term im Exponenten von (7.4.4), der in

(7.4.11) nicht mehr auftaucht, ist der Q'EVariation

des Endpunktverhaltens der Wellenfunktion, die im Ab—

schnitt 7.2.2 untersucht wurde, zuzuordnen. Um (7.2.10)
und (7.4.4) direkt vergleichen zu kbnnen, muB in (7.2.10)
die Kopplungskonstante eingefroren warden. Zu diesem

Zweck lassen wir die fiB-Funktion verschwinden, die in

(7.4.4) nur durch den ffihrenden Koeffizienten l) ihrer
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Entwicklung in 0%- eingeht

. 1 = '(S Q2
i138 b 7: Mr 103 {2: (7.4.12)

Wie man sieht, stehen die Resultate (7.2.10) und (7.4.4) ,
die auf vollig unterschiedlichem Wege gewonnen wurden,

in totaler Ubereinstimmung. Wéhrend (7.4.4) nur fur
kleine 2“,, und 2'1 Giiltigkeit besitzt, 151: (7.4.6) eine
exakte Relation. Daher kann durch Einsetzen von (7.4.11)
in (7.4.6) die volle (2, Abhangigkeit rekonstruiert werden.
Wir werden von dieser Moglichkeit jedoch nicht Gebrauch

machen.

7.5 Phénomenologisohe Implikationen

Dieser Abschnitt ist der Untersuchung der Konsequenzen

gewidmet, die die Aufsummation der fflhrenden Logarithmen

in der Endpunktregion fur die Grofle des Formfaktors des

Pions hat.Im Abschnitt 7.1 wurde bereits darauf hin-

gewiesen, daB eine erhebliche Diskrepanz zwischen dem

asymptotischen Verhalten (7.1.13) und den experimentellen
Daten im Bereich von Q‘i‘r’gG‘U/lbis 095°4OGel/Qbesteht. Wie
wir sehen warden, ffihrt die Berflcksichtigung der Endpunkt-

singularitéten zu einer wesentlichen Veranderung des

Verlaufs von Efflfia) fur nichtasymptotische Werte von

(22 : so daB eine bessere Ubereinstimmung mit den ex-

perimentellen Daten erreicht worden zu sein scheint.

Ausgangspunkt unserer Betrachtungen ist die "renoE-I3
U

mierte" Version von (7.4.1) mit dem harten Anteil'fl. (Cfl4CPa)

aus (7.4.4). Als Ansatz fur die Wellenfunktion¢{u,002) in
der Region s'f wahlen wir

43(0) 001)” ‘5}? (7.5.1)
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Da davon ausgegangen wird, daB (7.5.1) die Wellenfunktion
a . . P .$446k )nur 1n der Endpunktreglon Lflk’f angemessen W1eder-

gibt, kann die Normierung von ¢Mu?6gl) leider nicht mit

(7.1.12) bestimmt werden.

Bevor wir (7.4.1) mit (7.5.1) und (7.4.4) auswerten
konnen, mfissen wir uns noch kurz einige Gedanken fiber

den Gultigkeitsbereich von (7.4.4) machen. Bei der Ab-
leitung von (7.4.4) wurde implizit angenommen, daficgfigfil

groB ist gegenflber der Masse des Pions, der Massen der

Quarks und ihren mittleren Transversalimpulsen. Um diese

Einsohrénkungen zu berflcksichtigen, ffihren wir einen Cut-

off 5W4/C22'ein, so daB

’“ Z; ;.5‘ (7.5.2)(4

Daher ffihrt (7.4.4) fur groBe (32 zu einer starken Unter-
drfickung dor Endpunktregion. Das gleiche gilt selbstver-

sténdlich auoh,falls eine Wellenfunktion der Form (7.2.2)
an die Stelle von (7.5.1) tritt, solange nur

mil/Mg 7/6‘ (7.5.5)

ist.

. . .. . - 2
Berucksichtigen wir dlese Elnsohrankung, so Sleht fy(23 /

folgendermafien aus

7,3402% 45032") I /(322 (7.5.4)

In 41t 4

— ?34 r1 '= fry/‘54 [fa/2'2 ($.31) @(Qa-d‘f
0 0

12(4)?) (035,21 +8’ogz‘z’4’c‘2} .
(7.5.5)





-174-

3 ’ 2 GI L‘//:> (7.5.6)

und

- 28- 4.162 )d; Mar (7-5-7)
Wir haben in (7.5.5) die gleitende Kopplungskonstante
"per Hand" eingeffihrt. Dae Integral (7.5.5) ist in ge-
echloseener Form ausffihrbar mit dem Resultat

I-JzflLffi—(ei) —- 33g 223” 2 .‘2 8” )2 +3—
7/2

dmp{b35[8hvf+7+3]}- (W53)

.. /2 a.
- [1(84/036W-Z—77—{BDQ ) - ————-’2[§\D ]}

Darin 131'. 700 Dawson's Integral [AB 72]
X2. 2.m). 9;" fat 6* (7.5.9)

0

(7.5.4) ist in Abb.7.7 ffir verschiedene Werte von
dargeetellt. Selmtliche Kurven sind auf§CQ£5GeV2}"/nor-
miert worden. Die gestrichelte Linie entspricht dem
asymptotiechen Verhalten (7.1.14). Zur Auswertung von
(7.5.4) wurde .6‘=02/0:', Q02=4&V%1nd AQ- Qgéevggesetzt. Die
experimentellen Daten Sind [BE 78b] entgfmmen. Dem
experimentelle Wert an der Stelle 02:6362V 131'. will-
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kurlich normiert worden. Wie man sieht, stimmt die Ge-
stalt des Verlaufs von B- (02) fiir kleine 2(4015'2wesent-
lich besser mit den experimentellen Daten fiberein, ale
die asymptotische Form. Da die Normierung von (7.5.4)
nicht fixiert werden kann, bedeutet dies aber nicht,
daB auch die absoluten Werte besser fibereinstimmen. In
Abb.7.8 haben wir (7.5.4) mit 8:0 dargestellt, es wird
also nur die Wellenfunktion modifiziert. Auch in diesem
Fall bleibt die Tendenz erhalten.

7.6 SchluBfolgerunggn

In diesem Kapitel haben wir gezeigt, daB die Beitrage
der Endpunktregion zum Pion-Formfaktor fur groBe G?
unterdruckt sind. Umgekehrt liefert diese Region fflr
nichtasymptotische Werte von (92 einen Verlauf des Form-
faktors als Funktion von (22 , der zumindestens der Form
nach besser mit den experimentellen Daten im Bereich
von (22955616 VzbisQa'M 4006V2'iibereinstimmt, als der Ausdruck,
bei dem die Endpunktregion keine besondere Rolle spielt.
Leider ist es nicht m6glich,die Normierung der Wellen-
funktion aus ihrem Verlauf in der Endpunktregion zu be-
stimmen. Aus diesem Grunde muB nicht jede Form der Wellen-
funktion, die in der Endpunktregion einen dominanten Bei-
trag leistet.auch zu einer besseren Ubereinstimmung mit
den experimentellen Daten ffihren.

Der Ausdruck, den man nach Aufsummation der ffihrenden
logarithmischen Korrekturen in der Endpunktregion fur
Tp(u,v, Q2) erhalt, hat viele Gemeinsamkeiten mit den

Strukturfunktionen, falls das Produkt‘mfi§_durch die
Bjorken-Variable (4-n2) ersetzt wird. Im Gegensatz
zur tiefinelastischen Streuung jedoch, bei der die groBen
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..
2

Korrekturen durch Veranderung des Argumentes von dsCG?)

in der Altarelli-Pariei-Gleichung berficksichtigt

werden kannen,reproduziert die analoge Modifikation
des Arguments Von 0(5(Qa) in der Brodsky-Lepage-Entwicklungs-

gleichung (7.1.2) nicht die logarithmiech ffihrende Naher-
T'( 02)ung von {5 07V, .

Ein weiterer Unterechied zur tiefinelastischen Streuung

resultiert aue der Tatsache, daB fiber ‘5, und E}_ inte-
griert werden muB, um ?g(x?g)zu erhalten. Daher kann die
Region ”(4%“? , die dem Grenzfall der elastischen Streu-

ung bei der tiefinelastischen Streuung entspricht, nicht-ohne

weiteres vernachlassigt werden. In [LE 80,82] ist aller-

dinge gezeigt worden, daB der Beitrag zu ‘79,;- (Q2) aus

dieser Region mit einer Potenz von 4/631 unterdriickt ist.

Unsere Analyse ist nur im Bereich.&?¢n§ gfiltig. Die Be-

achtung dieser Einschrénkung ist wichtig, da ansonsten die

(n+4) —te Ordnung wie (QhH/(n-4)! anwachst.

Zerfalle von schweren Quarkonia lessen sich in der

stdrungstheoretiechen QCD in einer ahnlichen Weise be-

schreiben wie der Pion-Formfaktor. In [CH 82:] wird

argumentiert, daB die Zerfallsrate in Mesonen, die aus

einem leichten und einem schweren Quark zusammengesetzt

sind, wie beipsielsweieefi[;[f1)', um zwei GrbBenordnungen

fiber der Rate von Zerféllen in Mesonen liegt, deren

Konstituenten gleiche Maesen haben ( z.B. jialz+fif ).

Als verursachender Mechanismus wird das Zusammenwirken

eines starken Pole der Amplitude der harten Streuung

mit einer Wellenfunktion der Form (7.2.2) angegeben.
Angesichts der Resultate dieses Kapitels bedarf dieses

Ergebnis der Revision. Das gleich gilt auch fur LHO 81] .
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Teil 0 Beispiele

In den beiden folgenden Abschnitten mdchten wir an
Hand von zwei Beispielen illustrieren, wie die in Teil A
entwickelte Technik in einer konkreten Situation anzu-
wenden ist. Wir werden das logarithmisch ffihrende Ver-
halten eines Graphen, der zum Sudakov-Formfaktor aus
Kapitel 5 (Beispiel I) beitrégt,und eines Graphen des
Prozesses q [j + 5395;" aus Kapitel 7 (Beispiel II) be-
rechnen.

8. BeisPiel I

Der Graph, dessen logarithmisch ffihrendes Verhalten
berechnet werden soll, ist in Abb.8.1 dargestellt. Er
entspricht dem Graphen 13 aus Abschnitt 5.1.

Der Beitrag dieses Graphen zum Sudakov—-Formfaktor
[77},Q’qa)ist durch (5.2.7) gegeben mit

.t 5.21%;
I 7" Jfifdd] fl”ay36 207‘) (8.1)

C7
(8.2)

Im allgemeinen wird der Ziater ZOO nach den in 1.4
angegebenen Regeln berechnet. Da hier, im Unterschied
zum Beispiel II, keine Kontraktionen von Kantenimpulsen
beitragen, haben wir

-4 4 fl F v A x

25"" 46 am) ”MW/53 m #35 £3 )1?”n '
(8.3)

A1fl5(lf9) Y?) ‘6)
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Abb.8.1 Graph 13 ans Abschnitt 5.1

mit dem Drei-Gluonen-Vertex

Adfla (P47P2,Pe)' a”; (Pd-p2)d
(8.4)

+i5((Pa'/’3)A +fi’gé'CP3'P4)fl -
Mit der Abkfirzung

04;“... " A; + 0‘5 40‘14 *-~ (8.5)

schreibt sich die parametrische C-Funktion

(/0): of,” (dew-9‘39 +082“ (”was”) (8.6)

'f‘ 0‘8C529 0(6'6. + 0‘39, daggq.)
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und die D-Funktion

r 2 " .0(4):? [#3 dc; (449 “2557 ”/9 ”(x/956?"! H of? ”/5 ”(3 ”/9

7"”(24 ’{6 4430/ ”(t/.46“ 4/3 1’ “/3 ’45" ”/2 4M]
2..

H3 [‘15 "6‘ (”(49 ”(Raw ”(3 ”(4999 M)

1‘ d9 55%; #435? 1‘ X9 0%! d3 0/9

+99%; 9(5- d/lfl‘i + ”/4 ”/3 ”(5 X9]
,2 __ (8.7)

+/D [0/4 9(a) (X56 ”(299 ’L ’(39 ”(9&693)

+53 45 X3" ‘14 + ”/4 ”/31 “/3 ”3965*

* (vb/91513 * ”(a '(9 '(9 ”(39.55

+ «in ’(2 ”/39 55 ”(x/ear " ”(a 4/ "/5 "”459

11003.0(; '(?- 5/439 J

Die Indizee der FP sind in Abb.8.1 angegeben. Die Kanten-
impulse sind

45;:P’Eflzq (“£93 0(55 +dq95673) + “If ”(5 4?

(8.8a)
* 0(1490‘39551’?d6 “(s 7””? '{6' ’(9

CV»:- pwm am“ * M a,“ “/e/s-a/«MJ <8-8b>
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' CI ”‘9 ’(6 {my ' P1345 “4347

dig: '5]q OM ”(2561 ’L ‘(9 0‘42 5'6 M)

’L “H“ We * 4:12q (8.80)

+ {3’1'46 “(a ”(494 + ”‘6 “(3 ‘9] mantis-445., " do 15 13.]

I
C; If, " ”Inga/m 52667 " '(s “425:99)

* (’42 “a ”(4:01 7‘ “'4 ”‘5‘ ”(8] (8.8d)

+ pm 4 a, Mad; am] + p'mx; 45,

473%."!!! ’{9 J! + ”(a ’(9 ”‘48? :1

0 Y6 .,._ PEA5(%9’399 A“! ‘L ”(9 ”(4239 M) +49 “/3 0/436? *4/34]

'01[’{9J4 ”/3. J' X2 J9 4450,] (8.81?)

'P'L‘sfl‘; 44M * ”(a 12 J9]
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G] Y; = p a“, 0‘; A45? 1" 7A3 4’6 4/4gq
(8.8g)

"P [I‘M/3 ”(3954‘ +4: ”(4399(396'6 ”(3&5 0/4”]

C Y8 = f3 ”35671? + ”(.2 ”(6] ”(3966‘ ’9/4/% 0/395: “0/44 5;]
_ (8.8h)4— Moms A5 - (/9 ”(€a w; [among - Add, d;]

I "'C q ‘ [0 [5464299 ”(6'6“ ”(#39 ”(35649) 4 0/3/n
(8.81)

+‘ dad/9 0‘34‘56'] “(70/345179 -P0/9 A; 0(5)

Die Orientierung der Y? ist in Abb.8.1 gekennzeichnet.

Zur Bestimmung der MSM ermittelt man zunachst alle SM,
die V)(%) zum Verschwinden bringen. Daran anschlieBend
wird die Potenz berechnet, mit der‘ZCQ) bei linearer
Skalierung dieSer SM verschwindet. Dazu zerlegt man die
Kantenimpulse 5? nach den beiden unabhangigen Impulsen

{3 mid p’ , die, was 2(a) betrifft, als lichtartig
betrachtet werden. Skaliert man beispielsweise die SM
{043) 5M} so gilt

‘fl ~p’+ 0(3) x- 4, 2, ’7, 9, 9 (8.9a)
KN p +0(g) ,’= 5,6 (8.91:)

Daher ist
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Y1 KW” EVA/525
=2 {3:9 g'Qp'fl'g- Y9) +0’Cga) ~ 0(3)

so daB die effektive Lange dieser SM mm =3 ist. Auf

(8.10)

diese Weise erhélt man die in Tab.8.1 aufgelisteten MSM.

Aus den MSM muB nun ein vollsténdiger Satz unabhangiger
Sequenzen konstruiert warden. Zur logarithmisch ffihrenden

.______ ._.. ._._

MSM

{0/32 a}
{19,949,133

{Anyhxwdmxg}
{049,145}

{AQIA9JX6IX6‘}

{amwhxmm as, 49}
{0(4) ”(R/x3}

{14) ”(:22 ’(3; ’(3; 40/}

{44)049’) 0(3) '(‘f 2 x?) 0(9’ 14"}
_._.- ._._ ....__ _._-___.._._....._..

Tab.8.1

- ——-—-- n _ -—-.-—__--_-."_ -u--—--u-.----.- -

Typ

._r.-___.. ___..

-552
O

O
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Néherung tragen nur die Sektoren bei, in denen entweder
d6 , (fig oder a; nicht verschwinden kann.

Im Sektor, der durch.c%g gekennzeichnet ist, lessen sich
folgende Skalierungen nacheinander ausffihren

{d’?)d22’<31 ”(3)1‘7}

{AQJ‘JQJAS)é§}

{0(2) A3 2 19}
(8.11)

{14?12/0‘9}

{13)0‘9}

{99:15} ,

Wir haben jeweils den Parameter unterstriehen, der in den
nachfolgenden Skalierungen nicht mehr auftaucht. Da im
vorliegenden Sektor keine weiteren Skalierungen mbglich
sind, ist die Sequenz vollstendig.

Im Sektor, in dem (x6 nicht verschwindet, kennen zu-
nechst alle MSM, die cxg enthalten,aus Tab.8.1 gastri-
chen werden. Von den verbleibenden MSM kann { 01¢, g5}
sofort ausgeffihrt werden, da dg- in keiner weiteren MSM
auftritt. Ffihrt man eine A -Transformation von {db g9 }
aus, so léBt sich ale n'aichstee {“3293} ekalieren. Da-
nach ist dann keine weitere ,Xh-Transformation mehr mbglich,
so daB auch eine der MSM unabhéngig wird. Daher ffihren
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wir als néchstes die Skalierung von {06” A2) A3 J 4(3) A, ) A }
aus. Bleibt ,A groB, so konnen

[A4>”(21"<’37’{9) £67}

{39, 1 ”‘2: “93

{012: {3)i3}

bleibt dq groB, so konnen

{JQJAQJJQJA}

{éhfl‘t’lvdB}

{34.2) ‘13) {9}
ausgefuhrt warden. Sémtliche anderen Sektoren, die nach
Ausffihrung der Skalierung von {54)0‘220‘3, d9, 0(9) A} durch

Nichtverschwindenkonnen einer der skalierten Variablen

gekennzeichnet sind, liefern keinen Beitrag zur LDLA.
Dies kann mit der in 4.1 beschriebenen Methode nachge-

prfift werden. In ahnlicher Weise werden auch die Sequenzen
in dem Sektor konstruiert, in dem C‘q von vornherein
groB bleibt.

Ist gesichert, daB die den Sequenzen zugeordneten

Regionen disjunkt sind, so spielt in der logarithmisch

ffihrenden Néherung die Reihenfolge der MSM innerhalb einer

Sequenz keine Rolle mehr. Deshalb kann von hier ab auf
die Einhaltung der Reihenfolge der MSM verzichtet werden.
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Insgesamt bekommt man folgende unabhangige Sequenzen:

F}

{4,42,13,43M? 3

{”82‘9/ 45,19}

{#2,A3,43}

{¢,AR,43}

M ., an}
{avg}

B
{42,x3,x,,,x;,x;, x“ as}

£13,,“ ,xsm’e}
{012, 4,3,4}

{44,42, A3}

{043219}

{XL/M5}

C},

I {422%3719IX6'2’5’5/ A?) 19}

{9(2,¢<’370(9;0(?; ”(3}

{9(2)’{32'(3}

{44,Aa,dg}

{33,193

{592/5}

D
{x4,ag,x3, #9, 4,19, x9]

[A4,AQ,15,A,,#9}
{OILXQMJ

{dhdb Ag}

{4‘32 ”(9}

(8.12)

{“9245}
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{d’JJA92J32 d9)d;}¢ ’(82 ’49}

0409;04 d9/J7'Jx9}

do?) ”(’32 “(9}

042:;(A23x’3}

£419}
r.

1-49)0(5}

Stellvertretend fur die fibrigen'SequenZen, berechnen wir
nun den Beitrag der Sequenz H 211 I, . Skalieren wir die
an der i-ten Stella in (8.12) aufgelistete MSM der Se-
quenz Fl

J4=

(12 =

0‘3

9‘ 4:-
:x

x
x

Q
on»

*4
I!

g
3!

mit g; , so ist

3489 X4
3431 31.22
34 82 5’9 3v 35-

32 35 36‘ “7+
32 36 (is:
32
4

3433
84

(8.13)
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Dabei wurden Beitrage von hoheren Ordnungen in den 5; ,
818 818 in (8.15) angegeben Bind, vernachlassigt. In
der gleiohen Naherung ist

31003“ f (fie/sqflgjgf gig-’38. 5’.) -
- f 0/1,, all; (50“,, 1X; - 4) f01,2; 0/4,. an; 1.; -4;

i

(8.14)

Cfi%)’34ga (8J5)

170‘): (VHS/r 52 33 3’1, 9556‘ (8'16)
3.105.) = CONS} 56. .35. (8-17)
(5901) = CH) 5,, 374 .7? (8.18)

31»
- U.
I

‘II
IHr [of /’ 13,3 , %fl/J (8.19)

‘16 p S.- J; (8.2051)

53* P 3.2 525- 96' ”<1, -- pig”. 5’. a. (8-2013)
Y8" 7313914 ‘P $2 8’: 5’5 ’29 (8-200)

‘12]: [3131 ix: " P 32 8'3 35 575 071,. (8-2011)

und

2Q): (€93.12, g2 g6. 36 (8.21)

Damit ergibt die Integration fiber die 3; fur die Mellin—

Transformation von.I'
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'— A ’I' Pfi'f'fig)I I = . 4. ’ .

(8.22)
4 4 4 7 _ 7 C:

7495 [4% hie-36"" 5.49:5 "aka-3.: 2-3?
mit

f = [0’14 dig era. 4.72— »fifo/Jq 0/33 6Y2. 4J5 - 4)' (8.23)
- _ e -F

'Jg/(dg 4442)

In der Nahe von [$550 131: fr’l/l . In analoger Weise be-
kommt man die Beitrage der fibrigen Sequenzen. Diese Bei-
trage erhalt man aus (8.22).indem die den einzelnen
MSM zugeordneten Pole auegetauecht werden. Dies geschieht
mit den in Tab.3.2 angegebenen Regeln, wobei eich {2m%,6%
und (1o nach (3.3.9) berechnen. Addiert man die Beitrageh
der einzelnen Sequenzen auf, so wird

_‘ 1.L c 2 XL (8.24)

Der Ausdruck fur LXIL wird in (5.1.13) angegeben. Addiert
man das Resultat fur den gespiegelten Graphen hinzu,
so bekommt man genau den in Tab.5.1 angegebenen Ausdruck.
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9. Beispiel II

Als zweites Beispiel machten wir die Berechnung des

Graphen 55 der Parton—Amptitude (MW Jan) 6M" aus Abschnitt

7.3 vorfflhren (siehe Abb.9.1)a Sein Beitrag zu 7fi(bBV;09/
lautet

.6 2
H. :1 _ I: J: an --0 2 'Ip(u,v,0)~6[;2fi. W) ] m,./,@ 2 I (9.1)
mit

A»

[3-2 +5
(9.2)

-26 2WC¢) ,f F - Q’Q‘Z___you] 00‘)q

p 3 + 2e (9.3)
worin 20‘) durch

ZN=~ ’4 7: ,, fl ’ d '_ v
9‘ 9(6):); rflJg6/lfl/K flflXGJfiJ/sg

o ’ ’ Org. - (904)
AX/QB(L{6)1(5;‘V?)A/)v€(\flf)lf3)Y7) a?

+ Kontraktionen

gegeben ist.

Die parametrische C-Funktion ist

dmho‘me‘ 0‘49? + ”‘5' (Macaw? (9'5)
die D-Funktion
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\l/
N

W

V
b)we

u‘y’p
1 u :V 1._ —VP + 8 —P’

lV A

Abb.9.1 Graph 55 ans Abschnitt 7.3

+21), (ASA, AS.

”ELLJn ”(ANNA/I ”/5 ’(6‘ ”(9/5/47 (9 5)

+d-1d? ”(2356]

+54 2:91 L0“; ”(9 ”(235-6 ’t ”(9 ”(5 ”6-!
und die V? sind gleich
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(flag-(4%))d x9956 #(V’D+E‘R¢9’)[d;dm“ +15n
(9.7a)

+(Pm’h43ag-

a v2 = (pm-MM)“, +4; mm] + (Mn/9 aw;
_ , (9.7b)

+(¢3+P)a(39(4961}

CM?) = {WNW 44”,; ,1 44x5J-(tmv73’2x9x5
(9.70)

" afflpllhda ”‘49 57 ”(S/v]

d K, ‘ (4'f4)//J[--0{4fl‘3356~ 7‘ 5"n J.'(C,/pf737 Madé
I“ P ,

- _ (9-7d)
"((4¢)+62 9.))n ”(235-6 7‘ dé‘fl’g‘]

3 (”Lafiudg #9 *MD ”2 797(4219 ‘J4d52’mm7’éh
, I , (9.7e)

-(f,,¢3+¢9)d3x9 -(4-g)73¢<3/9 (aflxgflumg

6’53 -.- (4-329Pa43 ”‘4q .. (:52 you @2012d +4.15)
, (9.7f)

- (23,43 +E‘243)o(z,of$-

dLr? " 'flflhfflw “a; ”(2356‘ *M'QMJ ’{3 ’(5‘0 I (9.75).. (/ mgr/0 )(d,, #2355 + awg)
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Zusétzlich definieren wir

Y3 = aflmo’ (9.8)

Die MSM werden auf die gleiche Art wie schon im vor-
ausgehenden Beispiel bestimmt. Im Unterschied zum Bei-
spiel I tragen hier auch solche Terme zu 3(a) bei,
die preportional zu Potenzen von ?; und 9} sind. Daher
mfissen die MSM fur jeden Term einer Entwicklung in $5
und ’21 einzeln bestimmt werden. Es kommen die in
Tab.9.1 aufgelisteten SM als MSM in Frage. Um spéter
darauf Bezug nehmen zu kbnnen, haben wir die einzelnen
SM durchnummeriert. Mit

i Nr- SM Typ Ht?)

4 I {d3 } h) ‘34 O

2' {092091} 1’),c 0

{0‘32 4611?} h,fi4,?g,‘3« O
E

'
Lf'l{0(2)¢<3;0(5)0{6‘} hara/I 4 1

!{0‘A)0‘2,0<’3, 45,0{5} {WCJHCJQ 4

c 1
6 1&5; 0(3) ”(6; ”(6, d7} ka‘aHOJaJCJ/m. ’1

.._...._____. _..-..._,_. __.__ g.

Tab.9.1
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+ -
\(l=\f:p+t,jp’ (9.9)

l

wird
4 - + +zap-fizzLrfieg-‘rnomg-m

+ * t - - .. .. (9.10+fi‘r’173(y3-73)(5g+y;)} )

falls die Kontraktionen zunéchst unterdrfickt werden. Ent-

wickelt man (9.10) nach Potenzen von E} und E; , so
stellt sich heraus, daB nur der ?f, Term des zweiten

Summanden in der geschweiften Klammer einen Beitrag

zur logarithmisch fuhrenden Naherung liefert.

2Betraohten wir zuerst den Term , der proportional zu
r‘- P‘-

‘2 ‘4 ist. Er ergibt sich mit der Substitution

('f’e‘mfl-A ’ 5;) '9 #22 [CCU + 0‘49 a2356 +d3‘x5-Y'

[Wm ”(2356 + dag/5 +0‘2d4959 ¥d$d491 (9.11)

aus (9.10). Ffihrende Beitrage liefern solche SM, die in
der f -Ebene Pole in der Umgebung von A'O , 5,9 '2 her-
vorrufen. Dies leisten die SM (1),(2),(3),(5),(6). Sie
bilden gerade eine vollstandige Sequenz. Da die MSM (5) vom

Typ h)g’4;fi1 ist, gilt fur die in (5.4.18) definierto
Funktion 2 )2/4 00 . Daher muB die Form (3.4.20)
der Mellin—Transformation benutzt werden. Die Skalierung

erfolgt auf die gleiche Weise wie in Beispiel I . Man er-
halt

MIN? = _ 2 {Ho/1.39-9 J2 WAWMQ)P (,5) 72 (9.12)
// , .-; 1f 4 2.’ T

@5246)(6,-2eMQex-GM/4-e) 2 ,1....--
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Die Inversion ergibt

_I 4 ,...--IIG __ 2
i = {-4) "4—6:? ‘2 (4- “5,, C) (9.15)

Betrachten wir als néchstes den Term, der proportional
fi.0~ . .. .zu. L,(2' ist. Man erhalt ihn durch die Substitution

(Y3 -Y?)(Lr6+‘f9) ——> “5‘1 [400 7‘ ”(2/355 “/49 " ”(9‘45 1'
- (9.14)

'(4"-")[0‘30‘5*0‘3 09/4591] '

Nun sind die Singularit'aten um [4:0 , Q = ’7 von-Interesse.
Die MSM (1),(2),(4),(5) und (6) ffihren zu soichen Singu-
laritsten. Auch sie bilden gerade eine Sequenz. Das Re-
sultat ist

2I 4 -e r.._--.‘Ze by.
(T2 '61 )(4-9, 6) (9.15)¢

I" ME)

Wenden wir uns nun den Kontraktionen zu, die in (9.10)
vernachlassigt wurden. Durch eine Kontraktion erhoht sich
der Index ’3' um Eins. Dieser Effekt kann nur dadurch

kompensiert warden, daB Q4; wie 4/3 skaliert. Da-
her scheidet die SM (3) ans. Die Analyse aller moglichen
Kontraktionen zeigt, daB nur die Kontraktionen der Kanten

83) es. und (’3) (’6 beitragen. Es ist

R35= -(oc,,+m +d;)/C“(d) (9.16a)

und
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72 (35 = (at, +044 +945 +o4;)/ 0m) (9.16b)

In beiden Fallen bilden die MSM (1),(2).(4).(5) und (6)
wieder eine vollsténdige Sequenz. Die Isolation der Pole
geschieht auf die gleiche Weise wie bei Abwesenheit der
Kontraktionen. Man erhélt das Resultat

__.’ (:3 4 (u-‘e h'ae (“v-e 2'
= " ' “*" c — c 14- c

Addition von (9.13).(9.15) und (9.17) ergibt

(9.17)

-I_ 4 1 P_ e _ _ 2i==~i égti @LE;$Q)(4-a€) (9nm
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Anhang A Verallgemeinerung_ges Karplus-Kroll—Operators

In diesem Anhang werden wir eine Verallgemeinerung des

Q0 —Operators von Karplus und Kroll [KA 49] 'vorstel-

len, mit dessen Hilfe die Relation (1.4.4) gezeigt werden
kann. Ist der Operator QM , der urspriinglich von

Karplus und Kroll eingeffihrt wurde, dazu geeignet, um

qp; im zahler von (1.4.1) zu ersetzen, so ersetzt der
Operator

0° $’
.2 Q ' f m j 9 { an.

flpé4... p63.» 1"." 2 @a'pl’s’ dtf’sl J J.

Ina
I C95; (A01)

00

. 9 f
" (II. (E.

’ 96! ’4r( Cih” " /. r a" = 0”3+0a
. I- ‘ LL

...

aufgrund von
. -T’

2 .
fl;/‘),’”./’lt')$l' [(q;+a:') - 2:34 + IGFj

r! (A.2)
l

--- 671.. my... 1‘ q}- mm” + I]
das Produkt qp¢1.. qpog . Falls $,=/7 , so ist

rm? als untere Grenze der ONEd-Integration in (A.1)
zu nehmen. Wir werden hier (1.4.4) nur fur den Fall ab-

leiten, in dem alle 1512.4 sind. Der Fall, in dem einige

S; verschwinden, erfordert nur geringffigige Modifi-

kationen.

Durch Einffihrung der Hilfsimpulse 0;, f"%'"2V7'wie in

1.4 beschrieben, bekommt man die parametrisohe Funktion

N.., :L ho 828 we) -C(.)s(e-s,,-xe;) + O (m)
3.4
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mit

: ( vw . . 2. my; + .2 z, 0:0: ”a + Z a; 2, (n4)
und

y; :2 (pg %((€) (11.58.)

996’;
F’ ' I ’ ADS-b: 2. 125m ”‘3 ‘ )

Emma;

21.: £9: 21(8) .
In (A.5b) iet dee positive (negative) Vorzeichen zu Weh-
len, falle die Kanten C9; .69; beziiglich é gleich
(verschieden) orientiert sind.

“i
(A.50)

Zur Ableitung von (1.4.4) ist im weeentlichen der Aus-

druck
h

(x, __ u —f3

// 019MH- "V03.” 7‘) (11.6)

zu ermitteln. Dies geschieht am zweckmeBigeten, indem

zuerst eemtliche Integrationen, die in (A.6) enthalten
sind, edegeffihrt werden, um anschlieBend die Ableitungen
vorzunehmen. Die Integration in (A.6) fflhrt auf

00 C» ~
(‘2’ f I; “/0/ Jar-Ema. J““7~ 2)

4 ‘ J (m)
n ~ SJ 5., . ”4 __ i-

‘7 (5’7) I E3751.“ ‘ 35).- Or P 64 sh
(j 94 J [TC/8 ) .

‘1—

Dabei ist
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/".I K‘ " N AU 0(a) + o - can 2 0,3, (A 8)
i=4 .

Mit den beiden Regeln

-4,.¢ ,-¢232%.”; ,0 gm) ,9 0C4” 2m; (A.9a)
und

J
g gar-M3" filmy”. ‘ jg %V¢t 3%?” fr": (A.9b)

lassen sich die Ableitungen in (A.6) einfach berechnen.

In (A.9) bedeuten

Y) x

dime ‘ (Y; +s 0'9 ’f5: )n (A.10a)

und

4;; = 2; —. 6,44; (A.10b)

Man erhélt

4 4 ’0) HMS—4“ *5"Q - _
2 gab/"Mash ‘_ 2 9041/43!”

flq a” g;5 ~ , -h+6':2 (,4) _.C§/Q_.:-§.?_ O ’0 (A.11)
mo F(/8'-s,,...-s,,)

'[dflmsn 0/11/4416 kmvr/e

Hierbei ist E .IG-kopre die Summe aller Terme, die

man durch Auswahl von 5 Paaren aus der Menge der dpm'

und Kontraktion jedes Paares nach
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“/Vuf ()jpfilnhh -> 1 (El/'4“ Vim" T'O (A.12)

erhélt. Durch Einsetzen von (A.11) und (A.7) in (A.6) be-
kommt man schlieBlich (1.4.4).wobei

K t - LL ., (A.12a)

i, {CI/CA) (A.12b)
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Anhang B Lichtkegelvariablen

In diesem Anhang machten wir einige Eigenschaften

der Dirac-Matrizen vorstellen, falls anstelle der ge-

wfihnlichen O,1,2,3—Basis eine +,é,J.-Basis gewéhlt wird
[: CH 68 .1. Diese Basis erweist sich bei der Berechnung

des asymptotischen Verhaltens eines FI haufig als vor-

teilhaft. Sie ist fur einen allgemeinen Vektor c1 durch

611*“ (610 t aa)/VZ
(13.1)

or; = (am, 02)

definiert. Damit schreibt sich das Skalarprodukt

ozfib=a+lo_+a-b+-aL/OJ. (3.2)

In analoger Weise fuhrt man

Kt =(601633/W

KL ”WW
ein. Damit wird

K* K’ = K K = O (3.4a)

{13*} 18'} = 2 (13.410)

kB.5)

{Fwifio (3.40)

{KMKJ'1‘I-24j’ (B.4d)





Bei der Berechnung eines Produktes ans 8 —Matrizen

kann man die 61 -Matrizen getrennt von den 6;-Ma-
trizen betrachten, da 1hre Vertauschung aufgrund von

(B.4c) lediglich das Vorzeichen findert. Fur die

61 -Matrizen gilt

KIfiK; 6+) (5:. 61) : 22k 6/: (13-5)

und fflr diehL

.34," 5" Km an x" =0
(<4)--')k1'4)2' [ ungerade .

(B.6)
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Anhang C E:i.nig_e_§igenschaften der hypgageometrischen
Funktion IMHQ; X; Z)

r U

Die hypergeometrische Funktion FOB/35K; 3) ( siehe
z.B. [CR 65b] ) ist durch die Reihe

W1— 50—0 2‘“ {'*(.A++-.,21‘*(/.aw (C1)
WNW/5) ”:1, B: F‘( g + h )I'F-(X)/3,‘ 5; 2):

definiert. Diese Reihe konvergiert fiir [2/ < 4 . Auf
dem Konvergenzkreis [2/ = ’l ist sie

i. divergent, falls 722 (6-06 -/3) g ‘ 4
ii. absolut konvergent, falls 7?€( ~5-fl) >0
iii. bedingt konvergent, falls -’I < Rn-d-fi) 50

3 = 4 ausgenommen

131: 92657 736 [3 so kann ?(d,/3;J; 2) durch ein Integral
dargestellt werden

4 ..15' -a4'7" _, _ 4 -4 /rfd,/'3,'5; 2)=1—————— fat tfl (44/5 (r— t 2/ (0.2)
5(fl)5/3) 0

Um ¥(o‘)/3j5';’ 2*)1'1ber den Bereich hinaus, in dem die Reihe
(0.1) konvergiert, analytisch fortzusetzen, kdnnen fol-
gende Transformationen benutzt werden

"Foo/9; 3;, 2) -- oz- 2)" m, ((73; J; 2/0“ W (6-5)

"' . ' _P()!’(d/3) . .- /_rofiwa) I“(§-wé(g-/a) Haggai/era 2)
(0.4)Wp ., .-, . _

,1. )3 f(})!(a<+fi-x)-— _ , _ ’,._d_344/,,/_.)
M 2 (“Guam/3Nr “5 ”(f/3 3f / g





—2o4-

_ "‘ CC H3731? ya - 3w 3+4“ ‘7/(4-3J/*(Jlfl1'6‘2)=(4'2) I“(%)P(g’a) )d/) / I
(0.5)

-9 "1' "r _ _ -.- _ , _ //' /_7/_4_ )-«LN-2) / Tflpéjflflfijf Mfl/J A; fld+ , f 2/{3(m)/ {a /3
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a
Anhang D Elggge Eigggschaften der Gegenbauer Polynome (X)

Siehe z.B. [GR 65b]
Orthogonaiitét:

+41
\. (3/9 3/

Idx (4mg) Cm CK) CHZCX) : 3),,“ lab (D.1)
'1

J; -111. 1:1.)(m_n _ (r3 +g’m) (D.2)b

Vollsténdigkeit:

3/2g3 4 I 3@ g' 25, 5“ Ch (HQ/h (y)“§(x-y) ((J-x )('7'y /) (DJ)
hgb

4/;

”$2 .
(,7) = (r: + HO) +2) /=Q (13-4)'H,

gr”;

I CI, h (0/ < Q3201) (13.5)
+4 4

fdx(4-x“)df2(x)(4-x)y = lab WNW
-4 (D.6)

. 2V W4_+y_J_/:’_(_n_t1f1)
PC4-y)P(h+’3+7)





AB

AI

AL

AL
AL

AL

AM

AP

BA
BB

BE

BJ

BR

72

69

7O

77
7s

79

80

71

80
74

77
78a

78b
79
80

81

63
57
75
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