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Abstract

In this thesis we mainly focus on particle accelerators applied to high energy physics research
where a fundamental parameter, the luminosity, is maximized in order to increase the rate of
particle collisions useful to particle physicists. One way to increase this parameter is to increase
the intensity of the circulating beams which is limited by the onset of collective effects that may
drive the beam unstable and eventually provoke beam losses or reduce the beam quality required
by the particle physics experiments.

One major cause of collective effects is the beam coupling impedance, a quantity that quantifies
the effect of the fields scattered by a beam passing through any accelerator device. The development
of an impedance budget is required in those machines that are planning substantial upgrades as
shown in this thesis for the CERN PS case.

The main source of impedance in the CERN LHC are the collimators. Within an impedance
reduction perspective, in order to reach the goals of the planned upgrades, it was proposed to
reduce the collimator impedance by means of their segmentation in the longitudinal direction.
This motivated the study of electromagnetic techniques able to take into account the finite length
of the device, such as the Mode Matching technique. This technique enabled us to study the
impedance dependence on the device length and assess that no evident impedance reduction can
be achieved by means of a collimator segmentation.

The developed model allowed also for an accurate study of the impedance resonant-like behavior
below the beam pipe cut-off frequency in beam pipe flanges. These insertions are very common
in particle accelerator and the resonant effect could drive harmful instabilities within circulating
bunches.

The possibility of detecting the high impedance sources by means of beam-based measure-
ments represents another powerful investigation tool. In this thesis we improved the impedance
localization technique based on the impedance-induced phase advance beating with intensity. We
improved the theoretical background by means of macro particles simulations showing the effect
of distributed and localized impedances, we quantified the impact of the noise over signal ratio in
the measurement accuracy and we performed impedance localization measurements in the CERN
PS, SPS and LHC and in the Brookhaven RHIC accelerators.
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Estratto

Il lavoro descritto in questa tesi è focalizzato sullo studio degli acceleratori di particelle dove un
parametro fondamentale, la luminosità, è massimizzato al fine di aumentare il tasso di collisioni
utili negli esperimenti di fisica delle particelle. Un modo per aumentare la luminosità è aumentare
l’intensità dei fasci circolanti, la quale è a sua volta limitata dal possibile insorgere di instabilità
che possono provocare perdite di particelle, rendere i fasci instabili o comprometterne la qualità ai
fini degli esperimenti.

Una delle principali cause correlate all’insorgere di instabilità è l’impedenza di accoppiamento
di fascio, una quantità che racchiude gli effetti dei campi scatterati dai fasci al passaggio attraverso
i dispositivi che costituiscono l’acceleratore. Lo sviluppo di un budget d’impedenza di macchina è
auspicabile in quegli acceleratori predisposti a futuri upgrades come nel caso del CERN PS trattato
in questa tesi.

La più importante sorgente d’impedenza nel CERN LHC è costituita dai collimatori. Al fine
di garantire il raggiungimento dei futuri upgrades pianificati per la macchina, è stata proposta
la segmentazione longitudinale di tali dispositivi al fine di ridurne l’impedenza associata. Tale
proposta ha motivato lo studio di tecniche elettromagnetiche per l’analisi d’impedenza che potessero
tener conto della dimensione longitudinale finita dei dispositivi, come la tecnica del Mode Matching.
L’impiego di tale tecnica ha consentito lo studio della dipendenza dell’impedenza rispetto alla
lunghezza del dispositivo in studio, e, nei limiti del modello sviluppato, ha consentito di stabilire
l’inefficacia della segmentazione al fine della riduzione d’impedenza dei collimatori.

Il modello sviluppato ha consentito inoltre uno studio accurato del comportamento risonante
dell’impedenza in prossimità delle frequenze di cut-off del tubo di fascio nel caso delle flange. Queste
sono inserzioni molto comuni in macchine acceleratrici e l’effetto risonante studiato potrebbe essere
causa di instabilità sui fasci circolanti.

La possibilità di localizzare sorgenti di impedenza per mezzo di misure dirette sulla macchina
utilizzando i fasci circolanti rappresenta un altro mezzo d’investigazione efficace. In questa tesi
abbiamo migliorato la tecnica di localizzazione d’impedenze basata sullo studio della variazione
dell’avanzamento di fase delle oscillazioni betatroniche del fascio con l’intensità in corrispondenza
dei monitor di osservazione di fascio. Le basi teoriche del metodo sono state derivate in modo
sistematico ed originale utilizzando simulazioni di macro particelle e mostrando l’effetto di sorgenti
d’impedenza localizzate o distribuite. Abbiamo quantificato e misurato l’effetto del rumore nella
misura rispetto al segnale misurato ed abbiamo effettuato misure nelle macchine del CERN PS,
SPS e LHC ed in RHIC nel Brookhaven National Laboratory.
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Chapter 1

Introduction

Particle accelerators are nowadays some of the most powerful instruments for scientists in different
branches of science. One could think to the high energy physics that recently opened a new research
path after the discovery at CERN of a particle compatible with the theorized Higgs boson, or the
wide range of studies in synchrotron radiation facilities (biological, chemical, optical studies, etc.)
or to the medical applications of the therapy. Particle accelerators are in continuous development
in order to meet the always more challenging requirements in beam energy and quality.

Focusing on the high energy physics accelerators, in particular, the potential of new particle
discoveries is strongly correlated with the intensity of the circulating particle beams and their size.

The CERN accelerator complex in Fig. 1.1 is an example of the development of accelerators
in order to push the frontiers of knowledge towards unexplored high energy boundaries. CERN,
the European Organization for Nuclear Research, is currently the world’s leading laboratory for
particle physics. CERN mission is the fundamental research in physics pushing the frontiers of
human knowledge. In support of that mission, CERN drives technology innovation, stimulates
international collaboration and inspires a rising generation of scientists. CERN has its headquarters
in Geneva. At present, its member states are Austria, Belgium, Bulgaria, the Czech Republic,
Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, the Netherlands, Norway,
Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is
a Candidate for Accession. Serbia is Associate member in the pre-stage to membership. India,
Japan, the Russian Federation, the United States of America, Turkey, the European Commission
and UNESCO have observer status.

In order to understand the challenges of accelerating particle beams in circular accelerators,
we can virtually follow the process of acceleration of a particle beam from the source to the high
energy of the CERN LHC, the Large Hadron Collider [1, 2]. Hydrogen atoms are taken from a
bottle containing hydrogen from which protons are taken by stripping out the orbiting electrons.
The protons are then accelerated in the Linac 2 to the kinetic energy T = 50 MeV. The extracted
beam is injected in the PS (Protron Synchrotron) Booster, a piled-ring accelerator built in 1972 in
order to provide high intensity beams up to 1.4 GeV to the PS. The PS is one of the oldest machine
at CERN, built in 1959, it was the first accelerator designed with strong focusing technique for
acceleration [3]. It accelerates particles up to 25 GeV. Particles are then injected in the SPS
(Super Protron Synchrotron) where a further acceleration brings them to 450 GeV. The beam
is then sent to the LHC through the transfer lines TI2 (clockwise) or TI8 (counter-clockwise).
Particles circulate in opposite direction until the energy is increased and the beams are brought
into collision.

The amount and quality of beam collisions is of crucial importance in order to provide sufficient
data to the experiments. ATLAS and CMS, for example, during the first run of the LHC, were
focused on the study of rare events associated with the decay of Higgs-like particles [4,5]. Defined σp
the cross-section of a particular event, the number of interactions per second dR/dt is proportional
to the Luminosity L [6]:

dR

dt
= Lσp. (1.1)

1
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Figure 1.1: The CERN accelerator complex (courtesy of CERN).

For nb Gaussian bunches circulating at the revolution frequency frev with same horizontal, vertical
and longitudinal beam sizes σx, σy and σb, and intensity per bunch Nb for the two colliding beams,
the luminosity is given by

L =
N2
b nbfrev

4πσxσy
. (1.2)

As we can see from Eq. (1.2), a high rates of events can be achieved either with small beam
sizes or by increasing the number of circulating bunches or their intensity1. The increase in beam
intensity is often limited by beam instabilities due to the beam interaction with itself, the other
beam, electrons or the accelerator devices. The machine beam coupling impedance, for example,
is a concept that allows to gather the electromagnetic field interactions with the beam itself and
allows for useful stability, or instability, predictions2. The knowledge of this parameter is therefore
of great importance in order to correctly model and improve the machine performance.

This thesis will introduce into improved calculation and measurement techniques of the beam
coupling impedance.
In Chap. 2 we will introduce the concept of beam coupling impedance in a general axisymmetric
structure. We will introduce the Mode Matching technique applied to the impedance calculation
that will allow to solve the electromagnetic problem associated to the beam scattered fields in a
device of finite length. The studied model is a toroidal insert loading a cylindrical cavity. Despite
its simplicity, the studied case can model very long devices such as collimators, or beam pipes, or
very narrow devices such as flanges, beam pipe gaps or perturbations. The study of the model
will be fully characterized in terms of the insert material properties, dimensions and the beam
velocity. Interesting trapped modes enhanced close to the beam pipe cut-off frequencies will also
be analyzed.
In Chap. 3 we will summarize the effect of the beam coupling impedance on the beam itself
particularly focusing on the perturbation of the betatron coherent oscillation frequency, when

1N.B. We discarded here other effects that reduce luminosity such as beam collision offset, crossing angle, hour
glass effect, etc. [6]

2Other instability mechanism are the electron cloud, related to the beam interaction with the extracted electrons
from the beam pipe walls, or the beam-beam effect, related with the long range or short range interaction of
circulating beams.
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CHAPTER 1. INTRODUCTION

increasing the intensity of the circulating beams. This effect, in a circular accelerator, can allow
probing the total reactive part of the machine impedance and, even if already studied by other
authors, it will be introduced in a simple and original way in Sec. 3.1. The method can be extended
to the localization of equipment impedances through the study of the phase advance shift with
intensity in accelerators equipped with a distributed multi-turn beam position monitors: this kind
of measurement is called the impedance localization method. Section 3.2 will give the theoretical
background of the measurement technique. Section 3.3 will study the impact of noise on the
impedance localization method. Accelerator machines are routinely monitored from the impedance
point of view, and impedance models are often one of the core studies before machine upgrades: an
example of an impedance model under development is the one of the CERN PS described in Sec. 3.4.
Based on this model, the impedance localization method is validated with macroparticle simulations
in Sec. 3.5 studying the effect of single (Sec. 3.5.1), distributed (Sec. 3.5.2) and both lumped and
distributed impedance sources (Sec. 3.5.3). The chapter is concluded with the introduction of the
localization map in Sec. 3.7, a useful representation of the measurement accuracy with respect to
the expected impedance measured or modeled signals.

The tools described until now will be applied to machine measurements in Chap. 4. The
constraint on the quality of the signal from the beam position monitors, the reliability of the
machine optical models, the amount of impedance with respect to the noise background, are all
aspects that will be addressed during the description of the measurements done in the CERN PS
(Sec. 4.1), SPS (Sec. 4.2) and LHC (Sec. 4.2) and in the AGS and RHIC (Sec. 4.4.1), accelerators
located in the Brookhaven National Laboratories (BNL).

In Chap. 5 we will summarize the main results obtained with the Mode Matching technique
and the impedance localization method giving an outlook for future possible developments.

3



Chapter 2

Mode Matching for coupling
impedance calculations

2.1 Wakefields and impedances

The interaction of the surrounding electromagnetic (EM) fields with a particle beam, can be
modeled, in first approximation, as the superposition of the external electric Eext and magnetic
Hext fields1 like the ones produced in the dipoles, quadrupoles, RF cavities, etc., and the beam
induced electric Ewake and magnetic Hwake, denoted as wakefields.

The external magnetic field induced in the dipoles forces the circulating beam to follow a closed
orbit; the field induced by alternating focusing and defocusing quadrupoles controls the amplitude
of the transverse betatron oscillation of the beam; the electric field in the RF cavities allows
acceleration and RF manipulations; several higher order magnetic and electric fields are used to
manipulate the beam, control the beam quality and overcome instabilities.

The self-induced wakefields represent the scattered field excited by the beam interacting with
the accelerator devices (beam pipe, cavities, collimators, beam position monitors, etc). These fields
can drive the beam unstable behavior which may culminate in partial or total beam loss. Since
usually Ewake << Eext the wakefields and the resulting collective effects on the beam motion can
be treated with a perturbative approach ( [7], [8], [9]).

T 

S 

(𝑢 𝑇 , 𝑧𝑇) 

𝑧𝑇  𝑧𝑆 

𝑠 

𝑧 0 

𝑢 𝑇  

𝑢 𝑆 

(𝑢 𝑆, 𝑧𝑆) 

𝑢 0 

Figure 2.1: Scheme of source (S) and test (T) particle for impedance calculation. The source is
displaced by uS , and the test by uT from the device reference axis. It is assumed that the two
particles maintain the distance s unchanged along the device passage.

Let us now consider the scheme shown in Fig. 2.1: a source particle (S) of charge Q and a

1The symbols E and H denote fields in time domain.

4



CHAPTER 2. MODE MATCHING FOR COUPLING IMPEDANCE CALCULATIONS

test particle (T) of charge q, travel along the closed orbit across a discontinuity in the accelerator
beam pipe. A generic cylindrical coordinate system is adopted with transverse coordinate u = uû0

and longitudinal coordinate z = zẑ0. In particular, if the coordinate system is specified to be
Cartesian, we have u = (x, y) and u = xx̂0 + yŷ0, if cylindrical, u = (r, φ) and u = rr̂0 + φφ̂0.

The test particle is at position (uT , zT ), and it is following at distance s the source particle
at position (uS , zS = vt), where v = βc is the particle beam velocity, β the relativistic factor,
c the speed of light. The source particle represents a current passing in the accelerator device
and it excites electromagnetic (EM) fields that act back on the trailing particle. If the velocity
of the two particles is constant along the device (i.e. we suppose rigid motion), we can calculate
the change in transverse and longitudinal momentum of the test particle to have an indication of
the scattered fields impact on longitudinal and transverse dynamics. The source particle excites
electric E(uS , uT , zT , zS = vt) and magnetic H(uS , uT , zT , zS = vt) fields whose strength depends
on its position and the coordinates in which they are evaluated (the test particle coordinate in this
case). The change in momentum is

∆p(uT , uS , s) =

∞∫
−∞

dt F(uS , uT , zT , zS = vt)

∣∣∣∣
zT=zS−s

, (2.1)

where F is the Lorentz force F = q(E+βµ0cẑ0×H) with µ0 the vacuum permeability. Considering
the projections on longitudinal and transverse plane (i.e. E = Elẑ0 + Etû0, H = Hlẑ0 +Htû0 and
∆p = ∆plẑ0 + ∆ptû0) we have

∆pl(uT , uS , s) =

∞∫
−∞

dt q El(uS , uT , zT , zS = vt)

∣∣∣∣
zT=zS+s

, (2.2)

∆pt(uT , uS , s) =

∞∫
−∞

dt û0 · (qEt(uS , uT , zT , zS = vt) + qµ0v ẑ0 × Ht(uS , uT , zT , zS = vt))

∣∣∣∣
zT=zS+s

.

(2.3)

The wake function is defined, respectively for longitudinal and transverse plane, as

Wl(uT , uS , s) = − v

q Q
∆pl(uT , uS , s), (2.4)

Wt(uT , uS , s) = − v

q Q
∆pt(uT , uS , s). (2.5)

The wake function represents the integrated response to the beam impulse excitation, i.e. the
equivalent of a Green function. In the following, unless explicitly specified, we will use the term
wakefield referring to the wake function. When interested in the effects of wakefield on the longi-
tudinal motion, in first approximation we could neglect the transverse test and source positions,
and consider particles aligned on the closed orbit, i.e. uT = 0 and uS = 0. We have

Wl(s) = Wl(0, 0, s). (2.6)

When interested in the effect of wakefields on the transverse motion, we can Taylor develop the
transverse wake along test and source transverse position

Wt(uT , uS , s) ≈Wt(0, 0, s) +∇tWt(uT , uS , s)

∣∣∣∣
uT=0

uS +∇tWt(uT , uS , s)

∣∣∣∣
uS=0

uT . (2.7)

The first term is a constant term, null in axisymmetric structures where the wakefield integration
path corresponds to the geometrical symmetry axis; the second term is called driving or dipolar
wakefield since the test particle is driven by the source particle displacement and “feels” a trans-
verse force independent by its position; the third term is called detuning or quadrupolar wakefield
since the test particle “feels” a transverse force linearly proportional to its displacement (like in a
quadrupole) being therefore detuned.

5
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The beam coupling impedance (or simply impedance) is defined as the Fourier transform of the
wakefield:

Zl(uS , uT , ω) =

∞∫
−∞

Wl(uS , uT , s)e
jωs/v ds

v
, (2.8)

Zt(uS , uT , ω) = −j
∞∫
−∞

Wt(uS , uT , s)e
jωs/v ds

v
. (2.9)

Reversely, the wakefields can be expressed in term of the impedance:

Wl(uS , uT , s) =
1

2π

∞∫
−∞

Zl(uS , uT , ω)e−jωs/v dω, (2.10)

Wt(uS , uT , s) =
j

2π

∞∫
−∞

Zt(uS , uT , ω)e−jωs/v dω. (2.11)

Depending on the case of study the use of wakefields or impedances might be more appropriate.
For example, in linear accelerators, the concept of wakefield is more common, while in circular
accelerator, due to periodicity, the frequency domain approach is preferred.

2.2 Methods for impedance calculation

In particle accelerators, one is usually interested in evaluating the impedance of beam pipes,
cavities, collimators, kickers, etc., in order to evaluate the impact of beam induced scattered fields
on the beam dynamics. From an EM point of view, depending on the boundary conditions faced by
the beam and the detail accuracy one is interested in, different approaches, analytical or numerical,
TD (Time Domain) or FD (Frequency Domain), may be preferred.

2.2.1 TD simulations

In TD simulators the bunch is tracked along the device under study and the wakefield is calculated
from Eq. (2.2) or (2.3). The impedance can be obtained from the Fourier transformations in
Eqs. (2.8) and (2.9). Note that in this case the impedance will be weighted by the longitudinal
bunch spectrum since it is not numerically possible to simulate a single particle distribution.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

s’ [m]

a.
u.

 

 

ρ(s−s’)ds

ρ(s’)
W(s’)

Figure 2.2: Each slice in the bunch produces a wakefield affecting the following particles. The
convolution of bunch distribution and wakefield defines the so-called wake potential.
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If we consider a Gaussian bunch of rms bunch length σb,

ρ(s) =
1√

2πσb
e
−s2

2σ2
b , (2.12)

each slice ρ(s− s′)ds′ of the bunch passing through a device will excite a wakefield (see Fig. 2.2):
the convolution of the generated wakefield and the distribution determines the wake field from the
distribution, i.e. the so called wake potential

Wpot(uS , uT , s) = (W ∗ ρ) (s) =

∞∫
−∞

ρ(s− s′)W (uS , uT , s
′) ds′. (2.13)

The impedance will be therefore the ratio of the Fourier transform of the wake potential and the
spectrum of the bunch distribution

Z(uS , uT , ω) = Zpot(uS , uT , ω)/S(ω), (2.14)

where S(ω) = eσ
2
bω

2/2. This approach is used by commercial particle simulation tools like CST [10].
The accuracy in the impedance determination at high frequency will be conditioned by the bunch
spectrum extension. In CST, the maximal frequency is set to the frequency where S(ω) falls of
−20 dB, which corresponds to:

fmax = c

√
| log(0.01)|

2πσb
' 1010

σb[cm]
. (2.15)

2.2.2 FD simulations

In FD simulations, Maxwell equations are solved for the device under study and the impedance is
calculated directly from the obtained fields. Equations (2.8) and (2.9) can be slightly modified in
order to express directly the electric and magnetic fields in frequency domain. The test particle
in Fig. 2.1 can be written as a current distribution JT = q v δ(u− uT )δ(vt− z + s). Considering
the longitudinal plane for simplicity, the change in momentum, and therefore the wakefield, can
be calculated as

Wl(uS , uT , s) = − v

q Q
∆pl(uT , uS , s) = − 1

q Q

∞∫
−∞

dt

∫
V

dV JT · El(uS , u, z, zS = vt) =

= − v

q Q

∞∫
−∞

dt

∫
V

dV q δ(u− uT )δ(vt− z + s)El(uS , u, z, zS = vt) =

= − v
Q

∞∫
−∞

dt

+∞∫
−∞

dz δ(vt− z + s)El(uS , uT , z, zS = vt) =

= − 1

Q

1

2π

∞∫
−∞

dz

+∞∫
−∞

dω ejω(z−s)/vEl(uS , uT , z, ω) =

= − 1

Q

1

2π

∞∫
−∞

dω e−jωs/v
+∞∫
−∞

dz ejωz/vEl(uS , uT , z, ω),

where we applied the Parseval’s theorem

+∞∫
−∞

dtf(t)g(t)∗ =
1

2π

+∞∫
−∞

dωF (ω)G(ω)∗,

7
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to pass from the time domain electric field El to the frequency domain El. The last expression,
together with Eq. (2.10) allows to write the coupling impedance as

Zl(uS , uT , ω) = − 1

Q

+∞∫
−∞

dz ejωz/vEz(uS , uT , z, ω). (2.16)

For test and source particle on the closed orbit we recover the usual expression for the longitudinal
impedance

Zl(ω) = − 1

Q

+∞∫
−∞

dz ejωz/vEz(uS → 0, uT → 0, z, ω). (2.17)

Analogous analysis can be done for the transverse impedance leading to

Zt(uS , uT , ω) =
j

Q

+∞∫
−∞

dz ejωz/v (E(uS , uT , z, ω) + vµ0ẑ0 × H(uS , uT , z, ω)) · û0. (2.18)

In a cylindrical reference system (r̂0, φ̂0, ẑ0) we have

Zt(rS , φS , rT , φT , ω) =
j

Q

+∞∫
−∞

dz ejωz/v(Er(rS , φS , rT , φT , ω)− vµ0Hφ(rS , φS , rT , φT , ω)). (2.19)

At first order we can define a dipolar and quadrupolar impedance as done in Sec. 2.1. If, for
simplicity, we consider φS = φT = 0 (i.e. test and source are on the same azimuthal angle) we
have

Zt(rS , rT , ω) ≈ ∂Zt(rS , rT , ω)

∂rS

∣∣∣∣
rT=0

rS +
∂Zt(rT , rS , ω)

∂rT

∣∣∣∣
rS=0

rT . (2.20)

We therefore define the dipolar and quadrupolar impedance as

Zdip(ω) =
j

Q rS

+∞∫
−∞

dz ejωz/v(Er(rS , rT → 0, z, ω)− vµ0Hφ(rS , rT → 0, z, ω)), (2.21)

Zquad(ω) =
j

Q rT

+∞∫
−∞

dz ejωz/v(Er(rS → 0, rT , z, ω)− vµ0Hφ(rS → 0, rT , z, ω)). (2.22)

This approach is frequently used in analytical codes like [11–14], and, with some restriction, in
numerical codes like HFSS [15].

Within the FD analytical approaches we can distinguish between those based on Field Matching
and those based on Mode Matching.

Field Matching and Mode Matching

The Field Matching consists in dividing the structure in a certain number of infinite sub-domains
and representing the electromagnetic fields in these domains by an infinite sum of traveling waves
whose unknown coefficients form an infinite vector. A number of functional equations are obtained
by matching the tangential component of the fields on the domains boundaries. By means of the
Ritz-Galerkin method [16], each functional equation is transformed in an infinite set of equations
which link the unknown vectors.

The Mode Matching method, represents the EM fields in one of the finite sub-domains as sum of
eigenmodes whose unknown coefficients form an infinite vector [17,18]. Afterwards, the procedure
is similar to the previous one.

Let us consider as an example 2.3a, where an infinite multi-layer beam pipe is represented: this
structure could represent a beam pipe coated with thin layers of material (for example for electron

8
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(a) (b)

Figure 2.3: (a) Example of structure solvable with Field Matching. (b) Example of structure
solvable with Mode Matching.

cloud mitigation). With a Field Matching approach, each layer is treated as an infinite sub-domain
in which Maxwell equations may be solved. The EM tangential component are therefore matched
at the boundaries and the problem can be solved [13].

The structure in 2.3b represents a cylindrical cavity loaded with an insert and connected with
cylindrical beam pipes. To solve Maxwell equations we could divide the structure in four sub-
domains: the beam pipes (I and II), the insert (III) and the cavity (IV). In the finite sub-domain IV,
we could assume perfect electric (PEC) boundaries for the field expansion, but this would make the
tangential electric field null at the surfaces between the cavity and the beam pipes making difficult a
Field Matching approach. We would have similar consequences assuming perfect magnetic (PMC)
boundaries. This limit can be overcome representing the EM fields in sub-domain IV as sum of
eigenmodes and applying the Mode Matching technique, as will be extensively explained in the
next section.

2.3 The Mode Matching method

In this section we will show the expressions for the electromagnetic field decomposition in a closed
volume. The derived equations are the basis for the Mode Matching method.

Given a volume V , enclosed in an ideal surface S = SE ∪ SH , with SE perfect electric, and
SH perfect magnetic boundary surfaces, the scattered electromagnetic fields E and H may be
decomposed by means of the Helmholtz theorem in summation of irrotational and solenoidal modes
which constitute a complete set of orthonormal functions [17,18]. We can write:

E =
∑
n

Vn en +
∑
n

Fn fn (2.23)

H =
∑
n

Inhn +
∑
n

Gn gn (2.24)

where en and hn are solenoidal and fn and gn irrotational orthonormal eigenvectors. Table 2.1
resumes a set of eigenvectors and the relative differential equations and boundary conditions they
satisfy (n̂0 is the unit vector normal to S pointing internally the volume). Since the eigenvectors
are determined by the geometry of the structure under study, the problem reduces to finding the
coefficients Vn, Fn, In, Gn. This can be done by imposing the continuity of the EM field on the
boundary surface S. In this condition one must also take into account also the impressed field
generated by the sources.

On SE , because of the homogeneous boundary condition, which is an intrinsic property of the
eigenmodes, it is not possible to perform tout court the matching of the electric field. Analogously
this happens on SH for the magnetic field. This difficulty can be surmounted by resorting to a
procedure which will be described in the following. Let E be the given imposed electric field on

9



CHAPTER 2. MODE MATCHING FOR COUPLING IMPEDANCE CALCULATIONS

Eigenvector In V On S = SE ∪ SH

en ∇× en = knhn

{
n̂0 × en = 0; on SE

n̂0 · en = 0; on SH

fn = ∇Φn ∇2Φn + µ2
nΦn = 0

{
Φn = 0; on SE

∂Φn/∂n = 0; on SH

hn ∇× hn = kn en

{
n̂0 · hn = 0; on SE

n̂0 × hn = 0; on SH

gn = ∇Ψn ∇2Ψn + ν2
nΨn = 0

{
∂Ψn/∂n = 0; on SE

Ψn = 0; on SH

Table 2.1: Eigenvector equations.

the surface S . If we consider the quantity ∇ · (E × h
∗
n), and resort to simple algebra, we get the

following expression:
∇ · (E × h

∗
n) = h

∗
n · (∇× E)− E · (∇× h

∗
n). (2.25)

Into the RHS we use the Maxwell’s equation for E and Eq. (2.23), then integrate in the volume
V . Applying the divergence theorem and exploiting the orthonormality of the eigenmodes, we get
the following expression: ∫

SE

(E × h
∗
n) · n̂0 dS = −jkZoIn − knVn, (2.26)

where n̂0 is the unitary vector pointing inward the volume V boundaries, Zo is the characteristic
impedance and k = ω/c the propagation constant in vacuum. Doing the same for the quantity
∇ · (e∗n × H), we have: ∫

SH

(e∗n × H) · n̂0 dS = knIn − jkY0Vn, (2.27)

with Y0 = 1/Zo. Solving the system of Eqs. (2.26) and (2.27) allows us to get the coefficients In
and Vn:

In =
1

k2 − k2
n

(
jkY0

∫
SE

(E × h
∗
n) · n̂0 dS − kn

∫
SH

(e∗n × H) · n̂0 dS

)
, (2.28)

Vn =
1

k2 − k2
n

(
jkZo

∫
SH

(e∗n × H) · n̂0 dS + kn

∫
SE

(E × h
∗
n) · n̂0 dS

)
. (2.29)

Analogously we may proceed for the irrotational fields obtaining:

Gn = j
Y0

k

∫
SE

(E × g∗n) · n̂0 dS, (2.30)

Fn = −j Zo
k

∫
SE

(H × f
∗
n) · n̂0 dS. (2.31)

The results of the above procedure may appear contradictory. On SE , for example, we have
imposed the use of the eigenmodes which satisfy homogeneous boundary conditions: one might be
tempted to infer that the expansion coefficients should vanish. There is, indeed, no contradiction:

10
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the result of the LHS of Eqs. (2.28)-(2.31) is obtained integrating on the volume V a positive definite
function, while the result of the RHS is obtained integrating on the surface S the “imposed” field
E. However, such an expansion will only be non-uniformly convergent. This behavior will require
some caution when truncating the expansion.

2.4 Application to a finite length toroidal loaded insert

Structures like 2.3b are common in particle accelerators. Opportunely varying the longitudinal and
radial dimensions, or the insert material parameters, the structure could represent a small beam
pipe discontinuity, a flange connecting two beam pipes, a beam pipe, a loaded cavity, etc.

The problem has been approached in the past mainly by means of the field matching technique
making use of careful approximations where the cavity-like structure was approximated as a thin
insert [19–22].

In this section we want to study rigorously the EM fields scattered by a particle beam traveling
through a cavity loaded with a linear, isotropic, stationary, dispersive, homogeneous, toroidal
material, by means of the Mode Matching method and derive the beam coupling impedance.
We will compare our model with the classical thick wall formula for resistive wall impedance,
and with CST Particle Studio [10] for low conductivity cases. The impedance dependency on
the device length will be also studied in order to assess the validity of the usual “infinite length”
approximation. The study of thin inserts will be presented and compared with the theory developed
in [22] and the theory developed for small discontinuities [23, p.215]. Since the used approach is
non ultra relativistic, we will also study the impedance behavior as a function of the relativistic
particle beam velocity.

We will present results both for the longitudinal and transverse dipolar impedance. In partic-
ular, the discussion about the longitudinal impedance can be also found in [24].

2.4.1 Fields in the sub-domains

The structure we study is a cavity of radius d connected with a beam pipe of radius b and filled
with a toroidal insert of thickness t = d− b, as shown in Fig. 2.4. We choose a cylindrical reference
system (r̂0, φ̂0, ẑ0). The sub-domains I and II represent the cylindrical left and right beam pipes
where reflected fields will propagate, sub-domain III is the toroidal insert where radial waves can
propagate, and sub-domain IV is the cavity volume where resonances can be excited. Sub-domains
I, II and IV are filled with vacuum (permittivity ε0 and permeability µ0), sub-domain III with a
linear, isotropic, stationary, dispersive, homogeneous material with complex relative permittivity
εf (ω) = ε′f (ω)+jε′′f (ω), conductivity σc and complex relative permeability µf (ω) = µ′f (ω)+jµ′′f (ω).
The surface S1 divides sub-domain I from IV, S2, II from IV, S3, III from IV. The background is
chosen to be PEC. Table 2.2 summarizes this information.

Sub-domain Geometry Material

I (left beam pipe) z ∈ (−∞, 0), r ∈ (0, b) ε0,µ0

II (right beam pipe) z ∈ (L,∞), r ∈ (0, b) ε0,µ0

III (material insert) z ∈ (0, L), r ∈ (b, d) ε0εf (ω), µ0µf (ω), σc

IV (cavity) z ∈ (0, L), r ∈ (0, b) ε0,µ0

Table 2.2: Geometry and material definitions.
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Figure 2.4: Structure under study: loaded cavity connected with two beam pipes.

Source currents

Once the geometry is given, we define the source currents for the impedance calculation. Since we
are interested in the longitudinal and dipolar impedance, we will consider two beam configurations:
both test and source particle at the device center (we suppose that the closed orbit is exactly passing
at the center of the device) to calculate the longitudinal impedance (Eq. (2.17)) and test at the
center and displaced source particle to calculate the dipolar impedance (Eq. (2.21)).

In cylindrical coordinates, a charged particle Q displaced at r = rS traveling at velocity v along
ẑ0 can be written as

Jb(r, φ, z; t) = Qvδ(u− uS)δ(vt− z) = Qvδ(r − rS)
δ(φ)

rS
δ(vt− z), (2.32)

and equivalently, in frequency domain:

Jb(r, φ, z;ω) = Qδ(r − rS)
δ(φ)

rS
e−jωz/v, (2.33)

Since we work in azimuthal symmetry we can expand the current in a Fourier series:

Jb(r, φ, z) =

∞∑
m=0

ρb,mv = δ(r − rS)

∞∑
m=0

Q cos(mφ)

πrS(1 + δm0)
e−jωz/v. (2.34)

In particular, for practical reasons, we rewrite the terms m = 0 and m = 1 in Tab. 2.3.

Multipolar term Current

m = 0 J longb (r, φ, z) =
Q

2πrS
δ(r − rS)e−jωz/v

m = 1 Jdipb (r, φ, z) =
Q cos(φ)

πrS
δ(r − rS)e−jωz/v

Table 2.3: Particle source currents.

The term m = 0, corresponds to a ring shaped current with radius rS and will be used as source
current for longitudinal impedance calculation. The term m = 1 is a cos(φ) modulated ring with
the same radius, and will be used to calculate the dipolar impedance.
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I II III IV

∇× E = −jωµ0H ∇× E = −jωµ0H ∇× E = −jωµ0µfH ∇× E = −jωµ0H

∇× H = jωε0E + Jb ∇× H = jωε0E + Jb ∇× H = jωε0εf E + σcE ∇× H = jωε0E + Jb

∇ · E = ρb
ε0

∇ · E = ρb
ε0

∇ · E = 0 ∇ · E = ρb
ε0

∇ · H = 0 ∇ · H = 0 ∇ · H = 0 ∇ · H = 0

Table 2.4: Maxwell’s equations in the sub-domains.

Source fields

For each of the sub-domains, Maxwell’s equations hold as resumed in Tab. 2.4. In I, II and IV the
source term is present. The solution in these sub-domains can be written as the superposition of
source fields and scattered fields, i.e.:

E
(tot)

= E
(source)

+ E
(scattered)

, (2.35)

H
(tot)

= H
(source)

+ H
(scattered)

. (2.36)

Since there is only one solution to the EM problem for a given beam excitation, we can choose as
source fields, the ones excited by a particle beam traveling in an infinitely long perfectly conducting
cylindrical beam pipe of radius b. In this way the tangential source fields continuity on S1 and S2

is automatically ensured, simplifying the matching operations2. It is understood that the scattered
fields must satisfy the source-free Maxwell’s equations in all the sub-domains.

The source fields corresponding to the longitudinal and dipolar current excitations of Tab.2.3,
have been derived in [25] and are summarized in Tab. 2.5 where

F0(u) = K0(u)− I0(u)K0(x)

I0(x)
, (2.37)

F1(u) = K1(u)− I1(u)K1(x)

I1(x)
, (2.38)

with Iν(u) and Kν(u) representing the modified Bessel function of order ν respectively of first and
second kind, αb = b ω/v, u = rαb/(bγ), x = αb/γ, s = rSω/(γv).

Scattered fields

For symmetry reason, in the longitudinal case, only TM fields can be scattered, while both TE
and TM should be considered in the transverse case.

In general, the modes propagating into the beam pipes depend on the radial mode number p
and azimuthal mode number ν, the modes in the insert depend on the longitudinal mode number
s and ν, the modes in the cavity depend on p, ν and s. We will consider only the scattered modes
with azimuthal mode number ν = 0 in the longitudinal case, and the modes with azimuthal mode
number ν = 1 in the transverse case3, and therefore we will suppress the ν index dependence from
the fields expansion.

2This approach would not be possible if the entrance beam pipe apertures would be different: in that case one
could consider as source fields the one produced by a beam traveling in vacuum. It is, by the way, also possible
to formulate the Mode Matching problem considering directly the source current Jb(r, φ, z) in place of the source
fields [17].

3This is not a restriction. It could be shown that modes with ν 6= 0 in the longitudinal case, and ν 6= 1 in the
transverse, do not couple with the source field and cannot be excited. From another point of view, they do not
contribute to the field matching procedure having null projection integrals.
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Source Longitudinal Dipolar

Er −QZoαb
2πbβγ

I0(s)
∂F0(u)

∂u
e−

jzαb
b −QZo

πβγ

α2
b

b2γ
cos(φ)I1(s)

∂F1(u)

∂u
e−

jzαb
b

Eφ 0
QZo
πβγ

α2
b

b2γ
sin(φ)I1(s)

F1(u)

u
e−

jzαb
b

Ez
jQZoαb
2πbβγ2

I0(s)F0(u)e−
jzαb
b

jQZo
πβγ2

α2
b

b2γ
cos(φ)I1(s)F1(u)e−

jzαb
b

Hr 0 − Q

πγ

α2
b

b2γ
sin(φ)I1(s)

F1(u)

u
e−

jzαb
b

Hφ −Qαb
2πbγ

I0(s)
∂F0(u)

∂u
e−

jzαb
b − Q

πγ

α2
b

b2γ
cos(φ)I1(s)

∂F1(u)

∂u
e−

jzαb
b

Hz 0 0

Table 2.5: Source field components for r > rS .

In the longitudinal case, the electric fields in the pipes and the insert (sub-domains I, II and
III) can be expressed as:

E
(I)

=
∑
p

CTM
p E

(I,TM)

p , (2.39)

E
(II)

=
∑
p

DTM
p E

(II,TM)

p , (2.40)

E
(III)

=
∑
s

ATM
s E

(III,TM)

s , (2.41)

and analogously for the magnetic fields. In the cavity we have, from Eqs. (2.23) and (2.24) :

E
(IV )

=
∑
p s

VTM
p s e(IV,TM)

p s +
∑
p s

Fp s f
(IV )

p s , (2.42)

H
(IV )

=
∑
p s

ITM
p s h

(IV,TM)

p s +
∑
p s

Gp s g
(IV )
p s (2.43)

The scattered fields for sub-domains I, II III and IV have been given in Tab. 2.6 where we defined
the following parameters:

• αp: pth zero of the Bessel function Jν (x) with ν = 0.

• βp: pth zero of the Bessel function J ′ν (x) with ν = 0.

• ko: characteristic constant in vacuum ko = ω
√
µoεo.

• kf : characteristic constant in the insert material kf = ω
√
µfεf .

• Zo: characteristic impedance in vacuum Zo =
√
µo/εo.

• Zf : characteristic impedance in the insert material Zf =
√
µf/εf .

• αo: normalized characteristic constant in vacuum αo = kob.

• αf : normalized characteristic constant in the insert material αf = kfb.

• α̃p: beam pipe normalized propagation constant α̃p =
√
α2
o − α2

p.
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CHAPTER 2. MODE MATCHING FOR COUPLING IMPEDANCE CALCULATIONS

• αs: longitudinal normalized cavity TM eigenvalue αs = sπ bL .

• βs: longitudinal normalized cavity TE eigenvalue βs = αs.

• α̃fs: radial normalized propagation constant in the insert α̃fs =
√
α2
f − α2

s.

• αp s: cavity TM eigenvalues αp s =
√
α2
p + α2

s.

• βp s: cavity TE eigenvalues βp s =
√
β2
p + β2

s .

• WTMs: radial TM wave function in the insertWTMs (r) = H
(2)
ν

(
rα̃fs
b

)
−
H

(2)
ν

(
cα̃fs
b

)
H

(1)
ν

(
cα̃fs
b

)H(1)
ν

(
rα̃fs
b

)
calculated in r = b with ν = 0.

• W ′TMs: derivative of WTMs (r) with respect to r calculated in r = b.

• VTM
p s : norm of solenoidal modes VTM

p s = b
√
π

√
L

εs
J1 (αp)

αp s
αp

.

• VE
p s: norm of electric irrotational modes VE

p s =
√
LJ1 (αp)αp s.

• VH
p s: norm of magnetic irrotational modes VH

p s =
√
π
√

L
εs
J0 (βp)βp s.

• T TM
p : transverse norm T TM

p =
√
παpJ1(αp).

• LTM
s : longitudinal norm LTM

s =
√
L/εs.

In the transverse case, the electric fields in the pipes and the insert (sub-domains I, II and III)
are:

E
(I)

=
∑
p

CTM
p E

(I,TM)

p +
∑
p

CTE
p E

(I,TE)

p , (2.44)

E
(II)

=
∑
p

DTM
p E

(II,TM)

p +
∑
p

DTE
p E

(II,TE)

p , (2.45)

E
(III)

=
∑
s

ATM
s E

(III,TM)

s +
∑
s

ATE
s E

(III,TE)

s , (2.46)

and analogously for the magnetic fields. In the cavity we have:

E
(IV )

=
∑
p s

VTM
p s e(IV,TM)

p s +
∑
p s

VTE
p s e

(IV,TE)
p s +

∑
p s

Fp s f
(IV )

p s , (2.47)

H
(IV )

=
∑
p s

ITM
p s h

(IV,TM)

p s +
∑
p s

ITE
p s h

(IV,TE)

p s +
∑
p s

Gp s g
(IV )
p s (2.48)

The scattered fields for sub-domains I, II III and IV have been given in Tabs. 2.7, 2.8, 2.9. The
parameters used are corresponding to the longitudinal case considering ν = 1 and the following
additional ones:

• WTEs: radial TE wave function in the insertWTEs (r) = H
(2)
ν

(
rα̃fs
b

)
−
H
′(2)
ν

(
cα̃fs
b

)
H
′(1)
ν

(
cα̃fs
b

)H(1)
ν

(
rα̃fs
b

)
calculated in r = b with ν = 1.

• W ′TEs: derivative of WTEs (r) with respect to r calculated in r = b.

• VTM
p s : norm of solenoidal modes VTM

p s = b

√
π

2

√
L

εs
J0 (αp)

αp s
αp

.
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• VTE
p s : norm of solenoidal modes VTE

p s = b

√
π

2

√
L

2

√
β2
p − 1J0 (βp)

βp s
βp

.

• VE
p s: norm of electric irrotational modes VE

p s =
1

2

√
π
√
Lαp sJ0 (αp).

• VH
p s: norm of magnetic irrotational modes VH

p s =

√
π

2
βp sJ0 (βp)

√
L

εs

√
β2
p − 1.

• T TE
p : transverse norm T TE

p =

√
π

2
βp
√
β2
p − 1J0 (βp).

• T TM
p : transverse norm T TM

p =

√
π

2
αpJ0 (αp).

• LTM
s : longitudinal TM norm LTM

s =
√
L/εs.

• LTE
s : longitudinal TE norm LTE

s =
√
L/2.

In order to correctly represent the reflected waves in the beam pipes we chose αp with Re (αp) > 0
and Im (αp) < 0: in this way the scattered waves below cut-off get attenuated in both sub-domains
I and II. Analogous considerations hold for βp.
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E
TM

p , H
TM

p E
TM

p , H
TM

p E
TM

s , H
TM

s ep s, hp s fp s, gp s

Er −
jα̃pJ1

( rαp
b

)
αpT TM

p

e
jzα̃p
b

jα̃pJ1

( rαp
b

)
αpT TM

p

e−
j(z−L)α̃p

b −
αsW ′TMs

(
rα̃fs
b

)
α̃fsLTM

s

sin
(
zαs
b

) αsJ1

( rαp
b

)
αpVTM

p s

sin
(
zαs
b

)
−
αpJ1

( rαp
b

)
bVE

p s

sin
(
zαs
b

)

Eφ 0 0 0 0 0

Ez
J0

( rαp
b

)
T TM
p

e
jzα̃p
b

J0

( rαp
b

)
T TM
p

e−
j(z−L)α̃p

b

WTMs

(
rα̃fs
b

)
LTM
s

cos
(
zαs
b

) J0

( rαp
b

)
VTM
p s

cos
(
zαs
b

) αsJ0

( rαp
b

)
bVE

p s

cos
(
zαs
b

)

Hr 0 0 0 0 −
βpJ1

(
rβp
b

)
bVH

p s

cos
(
zαs
b

)

Hφ

jαoJ1

( rαp
b

)
ZoαpT TM

p

e
jzα̃p
b

jαoJ1

( rαp
b

)
ZoαpT TM

p

e−
j(z−L)α̃p

b −
jαfW ′s

(
rα̃fs
b

)
Zf α̃fsLTM

s

cos
(
zαs
b

) αp sJ1

( rαp
b

)
αpVTM

p s

cos
(
zαs
b

)
0

Hz 0 0 0 0 −
αsJ0

(
rβp
b

)
bVH

p s

sin
(
zαs
b

)

Table 2.6: Scattered field components for longitudinal impedance calculation.
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Scattered fields Left pipe (I) Right pipe (II) Insert (III)
TM

Er −
j b J ′1

( rαp
b

)
cos(φ)α̃p

α2
pT TM
s

e−
j(z−L)α̃p

b
j b J ′1

( rαp
b

)
cos(φ)α̃p

α2
pT TM
s

e
jzα̃p
b −

αs cos(φ) sin
(
zαs
b

)
W ′TMs

(
rα̃fs
b

)
LTM
s α̃fs

Eφ
j b sin(φ)α̃pJ1

( rαp
b

)
rα2

pT TM
s

e−
j(z−L)α̃p

b −
j b sin(φ)α̃pJ1

( rαp
b

)
rα2

pT TM
s

e
jzα̃p
b

b αs sin(φ) sin
(
zαs
b

)
WTMs

(
rα̃fs
b

)
rLTM

s α̃2
fs

Ez
cos(φ)J1

( rαp
b

)
T TM
s

e−
j(z−L)α̃p

b
cos(φ)J1

( rαp
b

)
T TM
s

e
jzα̃p
b

cos(φ) cos
(
zαs
b

)
WTMs

(
rα̃fs
b

)
LTM
s

Hr −
j b αo sin(φ)J1

( rαp
b

)
rZoα2

pT TM
s

e−
j(z−L)α̃p

b −
j b αo sin(φ)J1

( rαp
b

)
rZoα2

pT TM
s

e
jzα̃p
b −

j b αf sin(φ) cos
(
zαs
b

)
WTMs

(
rα̃fs
b

)
rZfLTM

s α̃2
fs

Hφ

−j b αo cos(φ)J ′1
( rαp

b

)
Zoα2

pT TM
s

e−
j(z−L)α̃p

b
−j b αo cos(φ)J ′1

( rαp
b

)
Zoα2

pT TM
s

e
jzα̃p
b −

j αf cos(φ) cos
(
zαs
b

)
W ′TMs

(
rα̃fs
b

)
ZfLTM

s α̃fs

Hz 0 0 0

Table 2.7: TM scattered field components for transverse impedance calculation (sub-domains I, II and III).
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Scattered fields Left pipe (I) Right pipe (II) Insert (III)
TE

Er −
j b αo cos(φ)J1

(
rβp
b

)
rY0β2

pT TE
p

e−
j(z−L)β̃p

b −
j b αo cos(φ)J1

(
rβp
b

)
rY0β2

pT TE
p

e
jzβ̃p
b −

j b αf cos(φ) sin
(
zαs
b

)
WTEs

(
rα̃fs
b

)
LTE
s rYf α̃2

fs

Eφ −
j b αo sin(φ)J ′1

(
rβp
b

)
Y0β2

pT TE
p

e−
j(z−L)β̃p

b

j b αo sin(φ)J ′1

(
rβp
b

)
Y0β2

pT TE
p

e
jzβ̃p
b

j αf sin(φ) sin
(
zαs
b

)
W ′TEs

(
rα̃fs
b

)
LTE
s Yf α̃fs

Ez 0 0 0

Hr −
j b J ′1

(
rβp
b

)
sin(φ)β̃p

β2
pT TE
p

e−
j(z−L)β̃p

b

j b J ′1

(
rβp
b

)
sin(φ)β̃p

√
2πβ2

pT TE
p

e
jzβ̃p
b

αs sin(φ) cos
(
zαs
b

)
W ′TEs

(
rα̃fs
b

)
LTE
s α̃fs

Hφ −
j b cos(φ)β̃pJ1

(
rβp
b

)
rβ2
pT TE
p

e−
j(z−L)β̃p

b

j b cos(φ)β̃pJ1

(
rβp
b

)
rβ2
pT TE
p

e
jzβ̃p
b

b αs cos(φ) cos
(
zαs
b

)
WTEs

(
rα̃fs
b

)
LTE
s rα̃2

fs

Hz

sin(φ)J1

(
rβp
b

)
T TE
p

e−
j(z−L)β̃p

b

sin(φ)J1

(
rβp
b

)
T TE
p

e
jzβ̃p
b

sin(φ) sin
(
zαs
b

)
WTEs

(
rα̃fs
b

)
LTE
s

Table 2.8: TE scattered field components for transverse impedance calculation (sub-domains I, II and III).
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Scattered fields Cavity (IV)

Solenoidal TM Solenoidal TE Irrotational E Irrotational H

Er −
b αs cos(φ)J ′1

( rαp
b

)
sin
(
zαs
b

)
α2
pVTM

p

b βp s cos(φ)J1

(
rβp
b

)
sin
(
zαs
b

)
r β2

pVTE
p

cos(φ)J ′1
( rαp

b

)
sin
(
zαs
b

)
VEp

0

Eφ
b αs sin(φ)J1

( rαp
b

)
sin
(
zαs
b

)
r α2

pVTM
p

−
b βp s sin(φ)J ′1

(
rβp
b

)
sin
(
zαs
b

)
β2
pVTE

p

−
sin(φ)J1

( rαp
b

)
sin
(
zαs
b

)
r VEp

0

Ez
cos(φ)J1

( rαp
b

)
cos
(
zαs
b

)
VTM
p

0
αs cos(φ)J1

( rαp
b

)
cos
(
zαs
b

)
bVEp

0

Hr −
b αp s sin(φ)J1

( rαp
b

)
cos
(
zαs
b

)
r α2

pVTM
p

b αs sin(φ)J ′1

(
rβp
b

)
cos
(
zαs
b

)
β2
pVTE

p

0
sin(φ)J ′1

(
rβp
b

)
cos
(
zαs
b

)
VHp

Hφ −
b αp s cos(φ)J ′1

( rαp
b

)
cos
(
zαs
b

)
α2
pVTM

p

b αs cos(φ)J1

(
rβp
b

)
cos
(
zαs
b

)
r β2

pVTE
p

0
cos(φ)J1

(
rβp
b

)
cos
(
zαs
b

)
r VHp

Hz 0
sin(φ)J1

(
rβp
b

)
sin
(
zαs
b

)
VTE
p

0 −
αs sin(φ)J1

(
rβp
b

)
sin
(
zαs
b

)
bVHp

Table 2.9: Scattered field components for transverse impedance calculation (sub-domain IV).
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2.4.2 Longitudinal case: matching equations

We will now proceed to the matching procedure in order to find the missing coefficients. In the lon-
gitudinal case we have 7 vector unknowns CTM

p , DTM
p , ATM

s , ITM
p s , VTM

p s , Gp s, Fp s in 7 functional
equations: 3 equations can be obtained matching the magnetic field at the surfaces S1, S2 and S3

and the remaining 4 equations are provided by the Mode Matching Eqs. (2.28),(2.29), (2.30),(2.31).
By means of an ad-hoc projection (Ritz-Galerkin method [16]) each functional equation may be
transformed into an infinite set of linear equations.

We can immediately notice that Eq. 2.31 implies Fp s = 0 since the irrotational electric modes
fp s are null on the sub-domain IV boundaries.

Magnetic matching on S3

Between region III and IV we can impose the continuity of longitudinal and azimuthal magnetic
field components. In the longitudinal direction we have:

H(III)
z

∣∣∣∣
r=b

= H(IV )
z

∣∣∣∣
r=b

. (2.49)

The only longitudinal magnetic component comes from the irrotational modes H, and therefore we
have:

Gp s = 0. (2.50)

We conclude that the irrotational modes do not couple.
Azimuthally we have:

H
(source)
φ

∣∣∣∣
r=b

+H
(III)
φ

∣∣∣∣
r=b

= H
(IV )
φ

∣∣∣∣
r=b

. (2.51)

Substituting the azimuthal components in Tabs. 2.5 and 2.6 and projecting over cos(αsz/b), we
get: √

L
εs

∑
p

ITM
p s J1 (αp)

√
πb

−
jαb

(
1− (−1)se−

j(Lαb)
b

)
2π (α2

b − α2
s) I0

(
αb
γ

) = −
jATM

s αf

√
L
εs
W ′TMs (α̃fs)

Zf α̃fs
. (2.52)

Magnetic matching on S1

Between sub-domains I and IV we can impose continuity of the radial magnetic field components:

H(I)
r

∣∣∣∣
z=0

= H(IV )
r

∣∣∣∣
z=0

. (2.53)

Substituting the radial components and projecting over ∇tE(I)
zq we get:

∑
s

ITM
p s

√
εs =

j αo bCTM
p

√
L

Zo α2
p

. (2.54)

Magnetic matching on S2

We perform the same method for sub-domains II and IV and obtain

∑
s

ITM
p s (−1)s

√
εs =

j αo bDTM
p

√
L

Zo α2
p

. (2.55)
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Electric matching

According to the assumed expansion in the sub-domain IV, the tangential component of the electric
field on the boundary S = S1 ∪ S2 ∪ S3 = SE is null by definition and the expansion given by
Eqs. (2.42) and (2.43) will not converge uniformly on the boundaries. This difficulty may be
circumvented by resorting to the Eqs. (2.28) and (2.29) that simplify in:

ITM
p s =

j b αo

Zo
(
α2
o − α2

p s

) ∫
S

(E × h
∗(IV,TM)

p s ) · n̂0 dS, (2.56)

VTM
p s = −j Zo αp s

αo
ITM
p s . (2.57)

The surface integral has to be split for S1, S2 and S3. After some algebra it leads to:

ITM
p s =

j αo b

Zo
(
α2
o − α2

p s

)
j bCTM

p α̃p

α2
p

√
L
εs

+
j bDTM

p (−1)sα̃p

α2
p

√
L
εs

− 2
√
πATM

s J1 (αp)WTMs (α̃fs)

 . (2.58)

Equations (2.52), (2.54), (2.55) and (2.58), constitute four independent vector equations in four
vector unknowns. The longitudinal problem is formally solved.

Matrix manipulation

One way to simplify the system of equations is to proceed closing the sums that have analytical
known solution, either in the longitudinal index s or in the radial index p. Appendix A collects the
series used along the process: this will reduce the computational load and accelerate the numerical
convergence of the solution once this is implemented in a numerical code. Some of the series listed
in the appendix are known, other have been derived from the Kneser-Sommerfeld formula following
the approach of [26]. Inserting Eq. (2.58) in Eq. (2.52) and summing with Eq. (A.5) we get

ATM
s =

b αo√
πZoHs

(∑
p

α̃pJ1 (αp) CTM
p

α2
p

(
α2
o − α2

p s

) + (−1)s
∑
p

α̃pJ1 (αp) DTM
p

α2
p

(
α2
o − α2

p s

) )− jαb

(
(−1)se−

jLαb
b − 1

)
2π (α2

b − α2
s) I0

(
αb
γ

)
Hs

,

where we defined the quantity Hs:

Hs =
jαf
Zf α̃fs

√
L

εs
W ′TMs (α̃fs) +

jαo
Zoα̃s

√
L

εs

J1 (α̃s)

J0 (α̃s)
WTMs (α̃s) .

Truncating the number of longitudinal and radial modes to smax = S and pmax = P , the expression
can be put in the matrix formalism

ATM
S×1 = N1S×S ·M1S×P ·CTM

P×1 + N1S×S · IIS×S ·M1S×P ·DTM
P×1 +BS×1,

with correspondent matrix elements4

N1s s =
αob√
πZoHs

,

M1s p =
α̃pJ1 (αp)

α2
p

(
α2
o − α2

p s

) ,
IIs s = (−1)s,

Bs 1 = −
jQ I0(s)αb

(
(−1)se−

jLαb
b − 1

)
2πHs (α2

b − α2
s) I0

(
αb
γ

) .

4A matrix MS×P of dimension S × P has a matrix element generically noted as Mp s where p ∈ (1 . . . P ) and
s ∈ (1 . . . S) or s ∈ (0 . . . S) respectively for TE or TM modes.
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It may be noted that the convergence of the method is dependent on the number of longitudinal
S and radial P modes we choose for the matrix truncation. As we will see later the number
of modes mainly depends on the geometry and the frequency range under study. The term Bs 1

represents the beam driving term. Analogously, inserting Eq. (2.58) in Eq. (2.55) and summing
with series (A.1) and (A.2) we get:

CTM
p csc(Lα̃p/b)+DTM

p (cot(Lα̃p/b) + j) = −2 j

√
π

L
α2
pJ1 (αp)

∑
s

ATM
s (−1)s

√
εsWTMs (α̃fs)

α2
o − α2

p s

.

Inserting Eq. (2.58) in Eq. (2.54) and summing over s with series (A.1) and (A.2) we get:

CTM
p (cot(Lα̃p/b) + j) + DTM

p csc(Lα̃p/b) = −2 j

√
π

L
α2
pJ1 (αp)

∑
s

ATM
s

√
εsWTMs (α̃fs)

α2
o − α2

p s

.

The system can be solved to obtain CTM
p and DTM

p in function of ATM
s . After algebraic manipu-

lations we get

CTM
P×1 = N2P×P ·M2P×S ·ATM

S×1, (2.59)

DTM
P×1 = N2P×P ·M2P×S · IIS×S ·ATM

S×1, (2.60)

where we defined the matrix elements

N2p p =

√
πα2

p

L
J1 (αp) ,

M2p p =

√
Lεs

(
(−1)se−

jLα̃p
b − 1

)
α2
o − α2

p s

WTMs (α̃fs) .

Table 2.10 recapitulates the matrix matching equations. Since we have 3 vector equations in
3 independent vector variables, the problem is formally solved and the coefficients CTM

P×1, DTM
P×1

and ATM
S×1 can be found.

I) ATM
S×1 = N1S×S ·M1S×P ·CTM

P×1 + N1S×S · IIS×S ·M1S×P ·DTM
P×1 +BS×1

II) CTM
P×1 = N2P×P ·M2P×S ·ATM

S×1

III) DTM
P×1 = N2P×P ·M2P×S · IIS×S ·ATM

S×1

Table 2.10: Longitudinal vector matching equations.

2.4.3 Transverse case: matching equations

In the transverse case we have to include also the TE contribution to the scattered fields that
leads to 12 vector unknowns CTM

p , DTM
p , ATM

s , ITM
p s , VTM

p s , CTE
p , DTE

p , ATE
s , ITE

p s , VTE
p s ,

Gp s, Fp s in 12 functional equations: 6 equations can be obtained matching the magnetic field at
the surfaces S1, S2 and S3, 4 equations are provided by the Mode Matching Eqs. (2.28),(2.29) for
solenoidal modes and the remaining 2 are provided by Eqs. (2.31),(2.30) for the irrotational modes.
Analogously to Section 2.4.2, each functional equation will be transformed into an infinite set of
linear equations.

We notice that Eq. 2.31 implies also in this case Fp s = 0.

Magnetic matching on S3

Between region III and IV we impose the continuity of longitudinal and azimuthal magnetic field
components. In the longitudinal direction we have:

H(III)
z

∣∣∣∣
r=b

= H(IV )
z

∣∣∣∣
r=b

. (2.61)
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Only the TE solenoidal and H irrotational fields have non-null longitudinal magnetic component.
Substituting the longitudinal components from Tabs. 2.8 2.9, and projecting over sin(αsz/b), we
get:

ATE
s = −

√
2
παs

bWTEs (α̃f s)

∞∑
p=1

Gp sβp√
−1 + β2

p βp s
+

√
2
π

bWTEs (α̃f s)

∞∑
p=1

ITE
p sβ

2
p√

−1 + β2
p βp s

. (2.62)

In the azimuthal direction we have:

H
(IV )
φ

∣∣∣∣
r=b

+H
(source)
φ

∣∣∣∣
r=b

= H
(III)
φ

∣∣∣∣
r=b

. (2.63)

The azimuthal components, on the contrary, are non-null also for TM fields. Substituting the field
expressions from Tabs. 2.7, 2.8, 2.9 and projecting over cos(αsz/b), we get:√

2

π

√
L

εs

1

b

∞∑
p=1

Gp s βp√
β2
p − 1βp s

+

√
L

π

αs
b

∞∑
p=1

ITE
p s√

β2
p − 1βp s

+

−
√

2

π

√
L

εs

1

b

∞∑
p=1

ITM
p s +

jα2
b

(
(−1)se−

jLαb
b − 1

)
2π bγ (α2

b − α2
s) I1

(
αb
γ

) =

=

√
L

2

αsWTEs (α̃fs)

α̃2
fs

ATE
s −

√
L

εs

jαfW ′TMs (α̃fs)

Zf α̃fs
ATM

s . (2.64)

Magnetic matching on S1

Between sub-domains I and IV we can impose the continuity of the transverse magnetic field
components separately for TE and TM modes:

H
(IV )

t

∣∣∣∣
z=0

= H
(I)

t

∣∣∣∣
z=0

. (2.65)

For TM modes, projecting over ∇tE(I)
zq × ẑ0 we get:

∞∑
s=0

√
εs ITM

p s =
jb
√
Lαo

Zoα2
p

CTM
p . (2.66)

For TE modes, projecting over ∇tH(I)
zq we get:

∞∑
s=0

αs
√

2

βp s
ITE
p s +

∞∑
s=0

βp
√
εs

βp s
Gp s =

jb
√
L β̃p
β2
p

CTE
p (2.67)

Magnetic matching on S2

Analogously, between sub-domains II and IV, we have, for TM modes,

∞∑
s=0

(−1)s
√
εs ITM

p s =
jb
√
Lαo

Zoα2
p

DTM
p , (2.68)

and for TE modes:

∞∑
s=0

√
2 (−1)sαs
βp s

ITE
p s +

∞∑
s=0

(−1)sβp
√
εs

βp s
Gp s = −jb

√
L β̃p
β2
p

DTE
p . (2.69)
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Electric matching

Having adopted the same modal decomposition as in the longitudinal case, we get the following
relation between modal coefficients Ip s and Vp s:

ITM
p s =

j b αo

Zo
(
α2
o − α2

p s

) ∫
S

(E × h
∗(IV,TM)

p s ) · n̂0 dS, (2.70)

VTM
p s = −j Zo αp s

αo
ITM
p s , (2.71)

ITE
p s =

j b αo

Zo
(
α2
o − β2

p s

) ∫
S

(E × h
∗(IV,TE)

p s ) · n̂0 dS, (2.72)

VTE
p s = −j Zo βp s

αo
ITE
p s . (2.73)

This expression are the ones corresponding to Eqs. (2.56) and (2.57), taking into account, this
time, the eigenvalues for the transverse plane αp and βp. Solving the integral, we get

ITM
p s =

jb αo

Zo
(
α2
o − α2

p s

) (jb α̃p
α2
p

√
εs
L

CTM
p +

jb α̃p
α2
p

(−1)s
√
εs
L

DTM
p +

√
2πWTMs (α̃f s) ATM

s

)
,

(2.74)
and

ITE
p s =

jbαo

Zo
(
α2
o − β2

p s

)( jb αoαs
Y0β2

pβp s

√
2

L
CTE

p − jb αoαs
Y0β2

pβp s

√
2

L
(−1)s DTE

p +

−
j
√

2π αfβ
2
p (δs0 − 1)W ′TEs (α̃f s)

Yf
√
β2
p − 1βp sα̃fs

ATE
s −

√
παs
√
εs

(
α2
f − β2

p s

)
WTMs (α̃f s)√

β2
p − 1βp s α̃2

f s

ATM
s

)
. (2.75)

The Gp s coefficients of the irrotational modes H can be derived from Eq.(2.30) which, in this
context, may be rewritten as:

Gp s =
jb Y0

αo

∫
S

(E × g∗p s) · n̂0 dS. (2.76)

Solving the integral we have:

Gp s =
jbY0

αo

(
−

√
π
2βpεs

(
(δs0 + 1) α̃2

f s + α2
s

)
WTMs (α̃fs)√

β2
p − 1βp s α̃2

fs

ATM
s −

j
√
π αfβpαs

√
εsW ′TEs (α̃f s)

Yf
√
β2
p − 1βp sα̃f s

ATE
s +

+
jb αo

Y0βpβp s

√
εs
L

CTE
p − jb (−1)sαo

Y0βpβp s

√
εs
L

CTE
p

)
. (2.77)

Up to this point we collected 9 independent relations given by Eqs. (2.62), (2.64), (2.66), (2.67),
(2.68), (2.69), (2.74), (2.75), and (2.77) in 9 variables, CTM

p , DTM
p , ATM

s , ITM
p s , CTE

p , DTE
p , ATE

s ,

ITE
p s , Gp s. The VTM

p s coefficients are linearly related to the ITM
p s with Eq. (2.71) and similarly for

the VTE
p s ones.

Matrix manipulation

We now proceed to the sums saturation analogously to what done in Sec. 2.4.2. Inserting Eq. (2.74)
in Eq. (2.66) and summing over the s index with Eqs. (A.7) and (A.8) we get

CTM
p

(
cot

(
Lα̃p
b

)
+ j

)
+ DTM

p csc

(
Lα̃p
b

)
= j

√
2π

L
α2
p

∞∑
s=0

√
εsWTMs (α̃f s)

α2
o − α2

p s

ATM
s . (2.78)
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Inserting Eq. (2.74) in Eq. (2.68) we get:

CTM
p csc

(
Lα̃p
b

)
+ DTM

p

(
cot

(
Lα̃p
b

)
+ j

)
= j

√
2π

L
α2
p

∞∑
s=0

(−1)s
√
εsWTMs (α̃f s)

α2
o − α2

p s

ATM
s . (2.79)

Solving the system in the two variables CTM
p and DTM

p and passing to a matrix representation, we
have

CTM
P×1 = N1P×P ·M1P×S ·ATM

S×1,

DTM
P×1 = N1P×P ·M1P×S · IIS×S ·ATM

S×1,

with matrix elements

N1p p =

√
π

2

α2
p

L
,

M1p s =

√
L εs

(
1− (−1)se−

jLα̃p
b

)
WTMs (α̃fs)

α2
o − α2

p s

,

IIs s = (−1)s.

another system can be obtained inserting Eqs. (2.75) and (2.77) respectively in Eqs. (2.67) and (2.69).
Summing over the s index with Eqs. (A.9)-(A.12) we get

CTE
P×1 = N2P×P ·M2P×S ·ATE

S×1 + N2P×P ·M3P×S ·ATM
S×1,

DTE
P×1 = N2P×P ·M2P×S · IIS×S ·ATE

S×1 + N2P×P ·M3P×S · IIS×S ·ATM
S×1,

with matrix elements

N2p p = −
j
√
πβ2

p

4
√
LYf αoZo

√
β2
p − 1β̃p

(
cot
(
Lβ̃p
b

)
+ j
) ,

M2p s =
2αfβ

2
pαsεs

(
β2
p s − α2

oδs
)
W ′TEs (α̃f s)

(
cot
(
Lβ̃p
b

)
− (−1)s csc

(
Lβ̃p
b

)
+ j
)

β2
p sα̃f s

(
β2
p s − α2

o

) ,

M3p s =
2j
√

2εs Yf

(
α2
oα

2
s − α2

f β̃
2
p

)
WTMs (α̃f s)

(
cot
(
Lβ̃p
b

)
− (−1)s csc

(
Lβ̃p
b

)
+ j
)

α̃2
f s

(
α2
o − β2

p s

) .

Inserting Eqs. (2.74), (2.75) and (2.77) in Eq. (2.64) and summing over the index p making use of
Eqs. (A.19)-(A.23) we get

BS×1 + F1S×S ·ATE
S×1 + F2S×S ·ATM

S×1 − (T1S×S ·G1S×P + T2S×S ·G2S×P ) ·CTE
P×1+

+ IIS×S · (T1S×S ·G1S×P + T2S×S ·G2S×P ) ·DTE
P×1 + T3S×S ·G3S×P ·CTM

P×1+

+ IIS×S · T3S×S ·G3S×P ·DTM
P×1 = 0, (2.80)
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and the matrix elements

Bs 1 = −
jQ I1(s)α2

b

(
1− (−1)se−

jLαb
b

)
πbγ (α2

b − α2
s) I1

(
αb
γ

) ,

T1s s = b

√
2

π
,

T2s s =

√
2

π
α2
oα

2
s,

T3s s =

√
2

π

αo
Zo
,

G1s p =
1√

β2
p − 1β2

p s

,

G2s p =
1

β2
p

√
β2
p − 1β2

p s

(
α2
o − β2

p s

) ,
G3s p =

α̃p

α2
p

(
α2
o − α2

p s

) ,

F1s s =

√
Lαfαs (I0 (αs)− I2 (αs))W ′TEs (α̃fs)√

2YfαoZo (I0 (αs) + I2 (αs)) α̃fs
−
√
LαsWTEs (α̃fs)√

2α̃2
fs

,

F2s s = − j
√
L

2

(
1

αoZo

( √
2α2
oα

2
sJ2(α̃s)

α̃s(α2
f−α2

s)(α̃sJ0(α̃s)−J1(α̃s))
− 2α2

oJ2(α̃s)√
εsα̃sJ1(α̃s)

+
√

2(I0(αs)−I2(αs))(α2
fδs−α

2
s(δs−1))

(α2
f−α2

s)(I0(αs)+I2(αs))
+

4
√
εs(α2

f (I1(αs)−αsI0(αs))((α2
o+α2

s)J1(α̃s)−α2
oα̃sJ0(α̃s))+α2

s(α
2
o−α

2
s)I1(αs)(J1(α̃s)−α̃sJ0(α̃s)))

αsα̃s(α2
s−α2

f)(α2
s−α2

o)(I0(αs)+I2(αs))(J0(α̃s)−J2(α̃s))

)
WTMs(α̃fs)+

− 2αf
Zf
√
εsα̃fs

W′TMs(α̃fs)
)
.

Inserting Eqs. (2.75) and (2.77) in Eq. (2.62) making use of Eqs. (A.20) and (A.23)-(A.25) we get

F3S×S ·ATE
S×1 + F4S×S ·ATM

S×1 − (T4S×S ·G4S×P − T5S×S ·G5S×P ) ·CTE
P×1+

+ IIS×S · (T4S×S ·G4S×P − T5S×S ·G5S×P ) ·DTE
P×1 = 0. (2.81)

where the matrix elements are

T4s s = b αs

√
2

π

√
εs
L
,

T5s s =
2 b α2

oαs√
π
√
L
,

G4s p =
1√

β2
p − 1β2

p s

,

G5s p =
1√

β2
p − 1β2

p s

(
α2
o − β2

p s

) ,
F3s s =

αf (δs − 1) α̃2
s (J0 (α̃s) + J2 (α̃s))

YfαoZoα̃fs (J0 (α̃s)− J2 (α̃s))
W ′TEs (α̃fs) +WTEs (α̃fs) ,

F4s s =
jαs

(
α2
o − α2

f

)
(J0 (α̃s) + J2 (α̃s))

αoZoα̃2
fs (J0 (α̃s)− J2 (α̃s))

WTMs (α̃fs) .

Table 2.11 recapitulates the matrix matching equations. We have 6 vector equations in 6
independent vector variables, the problem is formally solved and the coefficients CTM

P×1, DTM
P×1,

CTE
P×1, DTE

P×1, ATM
S×1 and ATE

S×1 can be found.
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I) CTM
P×1 = N1P×P ·M1P×S ·ATM

S×1

II) DTM
P×1 = N1P×P ·M1P×S · IIS×S ·ATM

S×1

III) CTE
P×1 = N2P×P ·M2P×S ·ATE

S×1 + N2P×P ·M3P×S ·ATM
S×1

IV) DTE
P×1 = N2P×P ·M2P×S · IIS×S ·ATE

S×1 + N2P×P ·M3P×S · IIS×S ·ATM
S×1

V) F1S×S ·ATE
S×1 + F2S×S ·ATM

S×1 − (T1S×S ·G1S×P + T2S×S ·G2S×P ) ·CTE
P×1+

+IIS×S · (T1S×S ·G1S×P + T2S×S ·G2S×P ) ·DTE
P×1 + T3S×S ·G3S×P ·CTM

P×1+

+IIS×S · T3S×S ·G3S×P ·DTM
P×1 + BS×1 = 0

VI) F3S×S ·ATE
S×1 + F4S×S ·ATM

S×1 − (T4S×S ·G4S×P − T5S×S ·G5S×P ) ·CTE
P×1+

+IIS×S · (T4S×S ·G4S×P − T5S×S ·G5S×P ) ·DTE
P×1 = 0

Table 2.11: Transverse vector matching equations.

2.4.4 Impedance calculation

In the longitudinal case, the impedance can be calculated by means of Eq. (2.17). Dividing the
calculation for the 3 sub-domains I, II and IV, we have

Zl(ω) = − 1

Q

+∞∫
−∞

dz ejαbz/bEz = − 1

Q

0∫
−∞

dz ejαbz/bE(I)
z −

1

Q

L∫
0

dz ejαbz/bE(IV )
z − 1

Q

+∞∫
L

dz ejαbz/bE(II)
z .

(2.82)
Here we only consider the scattered fields produced by the longitudinal source current of Tab. 2.3.
For rS = 0 we can simplify the source matrix Bs 1 since I0(s) = 1 and we can normalize over the
charge Q. In sub-domain I we have:

Z
(I)
l (ω) = −

0∫
−∞

dz ejαbz/b
∞∑
p=1

CTM
p E(I)

zp = −
∞∑
p=1

 0∫
−∞

dz ejαbz/b CTM
p E(I)

zp

 .

Substituting E
(I)
zp from Tab. 2.6 and integrating, we get

Z
(I)
l (ω) = −

∞∑
p=1

jbCTM
p√

παpJ1 (αp) (α̃p + αb)
.

Truncating at pmax = P the number of radial modes we have

Z
(I)
l (ω) = ZI,CTM

1×P ·CTM
P×1, (2.83)

where we defined the matrix element

ZI,CTM
1 p =

j b√
παpJ1 (αp) (α̃p + αb)

. (2.84)

Analogously, in sub-domain II we have

Z
(II)
l (ω) = ZII,DTM

1×P ·DTM
P×1, (2.85)

with matrix element

ZII,DTM
1 p = − j b e

jLαb
b

√
παpJ1 (αp) (αb − α̃p)

. (2.86)
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In the cavity sub-domain IV we have

Z
(IV )
l (ω) = −

∞∑
p s

 L∫
0

dz ejαbz/b VTM
p s e

(IV )
zp s

 .

We can pass from the VTM
p s to the ITM

p s coefficients applying Eq. (2.57). Separating the radial p

and longitudinal s indexes dependence by means of Eq. (2.75), the impedance Z
(IV )
l (ω) can be

split into 3 contributions as function of CTM
p , DTM

p and ATM
s . Summing in p with Eq. (A.6) and

s with Eqs. (A.3) and (A.4), we get

Z
(IV )
l (ω) = ZIV,CTM

1×P ·CTM
P×1 + ZIV,DTM

1×P ·DTM
P×1 + ZIV,ATM

1×S ·ATM
S×1, (2.87)

where we truncated at pmax = P and smax = S. The matrix elements are

ZIV,CTM
1 p =

b
(
αb csc

(
Lα̃p
b

)(
cos
(
Lα̃p
b

)
− e

jLαb
b

)
+ jα̃p

)
√
παpJ1 (αp)

(
α2
b − α̃2

p

) , (2.88)

ZIV,DTM
1 p = −

b
(
αb csc

(
Lα̃p
b

)(
e
jLαb
b cos

(
Lα̃p
b

)
− 1
)
− jα̃p e

jLαb
b

)
√
παpJ1 (αp)

(
α2
b − α̃2

p

) , (2.89)

ZIV,ATM
1 s =

j b αbWTMs (α̃fs)
(

(−1)se
jLαb
b − 1

)
(α2
b − α2

s)
√

L
εs
J0 (α̃s)

. (2.90)

The longitudinal impedance is therefore calculated summing the contribution of Eqs. (2.83), (2.85)
and (2.87):

Zl(ω) = Z
(I)
l (ω) + Z

(II)
l (ω) + Z

(IV )
l (ω). (2.91)

The same procedure is followed to calculate the transverse dipolar impedance. From Eq. (2.21)
we have

Zdip(ω) =
j

Q rS

+∞∫
−∞

ds ejωs/v(Er(rS , rT = 0, s, ω)− βcµ0Hφ(rS , rT = 0, s, ω)). (2.92)

From now on we will consider a small source displacement, i.e. rS → 0, so that we can simplify
the source matrix Bs 1 since I1(s)/rS → 1/2 and we will normalize over the charge Q.
In sub-domain I we have

Z
(I)
dip(ω) = j

0∫
−∞

dz ejαbz/b
∞∑
p=1

CTM
p (E(I,TM)

rp − βcµ0H
(I,TM)
φp

)+

+ j

0∫
−∞

dz ejαbz/b
∞∑
p=1

CTE
p (E(I,TE)

rp − βcµ0H
(I,TE)
φp

).

Substituting the fields components from Tabs. 2.7 and 2.8 and integrating, we get

Z
(I)
dip(ω) =

∞∑
p=1

jbCTM
p (α̃p + βαo)√

2πα2
pJ0 (αp) (α̃p + αb)

+

∞∑
p=1

−jbCTE
p

(
ββ̃p + αo

)
√

2πYoβ2
p

√
β2
p − 1J0 (βp)

(
β̃p + αb

) . (2.93)

Analogously we can do for sub-domain II getting

Z
(II)
dip (ω) =

∞∑
p=1

−jbDTM
p e

jLαb
b (βαo − α̃p)√

2πα2
pJ0 (αp) (αb − α̃p)

+

∞∑
p=1

jbDTE
p e

jLαb
b

(
αo − ββ̃p

)
√

2πYoβ2
p

√
β2
p − 1J0 (βp)

(
αb − β̃p

) (2.94)
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Truncating at pmax = P radial modes we have

Z
(I)
dip = ZCTM

1×P ·C
TM
P×1 + ZCTE

1×P ·C
TE
P×1, (2.95)

Z
(II)
dip = ZDTM

1×P ·D
TM
P×1 + ZDTE

1×P ·D
TE
P×1, (2.96)

with matrix elements

ZI,CTM
1 p =

jb (α̃p + βαo)√
2πα2

pJ0 (αp) (α̃p + αb)
, (2.97)

ZI,CTE
1 p =

−jb
(
ββ̃p + αo

)
√

2πYoβ2
p

√
β2
p − 1J0 (βp)

(
β̃p + αb

) , (2.98)

ZII,DTM
1 p =

−jb e
jLαb
b (βαo − α̃p)√

2πα2
pJ0 (αp) (αb − α̃p)

, (2.99)

ZII,DTE
1 p =

jb e
jLαb
b

(
αo − ββ̃p

)
√

2πYoβ2
p

√
β2
p − 1J0 (βp)

(
αb − β̃p

) . (2.100)

In the cavity sub-domain IV, the fields are given by Eqs. (2.47) and (2.48). We will consider
separately the contribution of TM, TE and irrotational modes to the impedance.
Starting from the TM contribution we have:

Z
(IVTM)
dip (ω) =

∞∑
p s

j

L∫
0

dz ejαbz/b
(
VTM

p s e
(IV,TM)
rp s − βZoITM

p s h
(IV,TM)
φp s

)
.

To solve this expression we can write the coefficients VTM
p s as function of ITM

p s resorting to Eq. (2.71)

and substitute the ITM
p s by means of Eq. (2.74) in order to recollect the known coefficients CTM

p ,

DTM
p and ATM

s . Substituting the field expressions from Tab. 2.9 and summing over the p and s
indexes respectively using Eqs. (A.26), (A.13) and (A.14) we get

Z
(IVTM)
dip = ZIVTM,CTM

1×P ·CTM
P×1 + ZIVTM,DTM

1×P ·DTM
P×1 + ZIVTM,ATM

1×S ·ATM
S×1,

where we truncated at pmax = P and smax = S. The matrix elements are

ZIVTM,CTM
1 p =

b

(
αbα

2
p

(
− cot

(
Lα̃p
b

)
+ e

jLαb
b csc

(
Lα̃p
b

))
+ jα̃p

(
α2
b − α2

o

))
√

2παbα2
pJ2 (αp)

(
α2
b − α2

o + α2
p

) , (2.101)

ZIVTM,DTM
1 p =

b

(
jα̃pe

jLαb
b
(
α2
b − α2

o

)
+ αbα

2
p

(
− csc

(
Lα̃p
b

)
+ e

jLαb
b cot

(
Lα̃p
b

)))
√

2παbα2
pJ2 (αp)

(
α2
b − α2

o + α2
p

) , (2.102)

ZIVTM,ATM
1 s =

jb

(
−1 + (−1)se

jLαb
b

)
(α2
b − α2

s)
√

L
εs

(
α̃s

2J1 (α̃s)
− 1

)
WTMs (α̃fs) . (2.103)

In a similar way we can derive the TE contribution

Z
(IVTE)
dip (ω) =

∞∑
p s

j

L∫
0

dz ejαbz/b
(
VTE

p s e
(IV,TE)
rp s − βZoITE

p s h
(IV,TE)
φp s

)
.

The VTE
p s coefficients can be expressed in function of ITE

p s resorting to Eq. (2.73) and we can

substitute the ITE
p s by means of Eq. (2.75) in order to recollect the known coefficients CTE

p , DTE
p ,

ATM
s , and ATE

s . We get:

Z
(IVTE)
dip = ZIVTE,CTE

1×P ·CTE
P×1 + ZIVTE,DTE

1×P ·DTE
P×1 + ZIVTE,ATM

1×S ·ATM
S×1 + +ZIVTE,ATE

1×S ·ATE
S×1.
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It may be interesting to notice the presence of the cross-coupling term ATM
s . Substituting the field

expressions and summing over the p and s index using Eqs. (A.27), (A.28), (A.15) and (A.16) we
get

ZIVTE,CTE
1 p =

b
√
Lαo

(
jαb + βpcsch

(
Lβp
b

)(
cosh

(
Lβp
b

)
− e

jLαb
b

))
√

2πYoβ2
p

√
L
(
β2
p − 1

)
J0 (βp)

(
α2
b + β2

p

) , (2.104)

ZIVTE,DTE
1 p = −

bαo

(
Lβpcsch

(
Lβp
b

)
+ jLe

jLαb
b

(
αb + jβp coth

(
Lβp
b

)))
√

2π
√
LYoβ2

p

√
L
(
β2
p − 1

)
J0 (βp)

(
α2
b + β2

p

) , (2.105)

ZIVTE,ATE
1 s =

√
2bαfαs (δs0 − 1)

(
−1 + (−1)se

jLαb
b

)
W ′TEs (α̃fs)

√
LYf (α2

s − α2
b) (I0 (αs) + I2 (αs)) α̃fs

, (2.106)

ZIVTE,ATM
1 s =

jb
√
εs

(
−1 + (−1)se

jLαb
b

)(
α2
f

(
1

I0(αs)+I2(αs)
− 1
)

+ α2
s

)
WTMs (α̃fs)

√
L (α2

b − α2
s) α̃

2
fs

. (2.107)

The last impedance term is the one coming from the irrotational modes. Since we found Fp s = 0,
we will calculate only the contribution from the modes H, i.e. involving the Gp s coefficients. We
have:

Z
(IVH)
dip (ω) =

∞∑
p s

j

L∫
0

dz ejαbz/b
(
−βZoGp s gφp s

)
.

Substituting Eq. (2.77) we can write Gp s as function of the known coefficients CTE
p , DTE

p , ATM
s ,

and ATE
s . We get:

Z
(IVH)
dip = ZIVH ,CTE

1×P ·CTE
P×1 + ZIVH ,DTE

1×P ·DTE
P×1 + ZIVH ,ATM

1×S ·ATM
S×1 + ZIVH ,ATE

1×S ·ATE
S×1.

Substituting the field expressions and summing over the p and s index using Eqs. (A.27), (A.17)
and (A.18) we get

ZIVH ,CTE
1 p =

bαoZo

(
αbcsch

(
Lβp
b

)(
− cosh

(
Lβp
b

)
+ e

jLαb
b

)
+ jβp

)
√

2παbβp
√
β2
p − 1J0 (βp)

(
α2
b + β2

p

) , (2.108)

ZIVH ,DTE
1 p =

bβZo

(
αbcsch

(
Lβp
b

)
− e

jLαb
b

(
αb coth

(
Lβp
b

)
+ jβp

))
√

2πβp
√
β2
p − 1J0 (βp)

(
α2
b + β2

p

) , (2.109)

ZIVH ,ATE
1 s = −

bβ2αfαsβ
2
s εs

(
−1 + (−1)se

jLαo
bβ

)
W ′TEs (α̃fs)

√
2
√
LYf (2βsI1 (βs)− 2β2

sI0 (βs)) α̃fs (β2α2
s − α2

o)
, (2.110)

ZIVH ,ATM
1 s = −

jbβαbβ
2
s εs

(
−1 + (−1)se

jLαb
b

)(
(δs0 + 1) α̃2

fs + α2
s

)
WTMs (α̃fs)

2αo (α2
b − α2

s)
√

L
εs

(2βsI1 (βs)− 2β2
sI0 (βs)) α̃2

fs

. (2.111)

The impedance can therefore be written as:

Zdip(ω) = Z
(I)
dip(ω) + Z

(II)
dip (ω) + Z

(IVTM)
dip (ω) + Z

(IVTE)
dip (ω) + Z

(IVH)
dip (ω). (2.112)

2.5 Impedance benchmark and applications

In order to benchmark the procedure explained in the previous section for longitudinal and trans-
verse impedance calculations, we will study the Mode Matching convergence as function of the
matrix truncation parameters S and P , as well as the computed impedance for different conduc-
tivities, length and thickness and finally the “resonant-like” behavior at cut-off. We will conclude
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studying the behavior for non ultra relativistic beams. During the benchmark we will pay partic-
ular attention to those effects related to the device’s finite length, i.e. that could not be studied
within the usual infinite length approximation.

2.5.1 Convergence tests

The convergence of the Mode Matching depends on the number of longitudinal S modes and
radial P modes used in the matrix computation. We defined S and P as the maximum number
of longitudinal and radial cavity modes, differently from s and p, longitudinal and radial mode
indexes: once S and P are fixed, the modal index will be p ∈ (1, . . . , P ) and s ∈ (0, . . . , S − 1)
for TM modes and s ∈ (1, . . . , S) for TE modes. This is also the convention implemented in
the Matlab [27] code we implemented. A rule of thumb for a first estimation on the number of
modes required to study a given structure is given by Eq. (2.113). Given the geometry in terms of
beam pipe radius b, cavity thickness t and insert length L we can estimate the maximum number
of modes P and S needed in order to reach the maximum frequency fmax we are interested in
simulating. Figure 2.5a shows the impedance calculation for the case of a resistive insert with
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Figure 2.5: Convergence of Mode Matching as a function of the number of longitudinal modes
S, longitudinal (a) and transverse (b) case. Mode Matching parameters: b = 5 cm, t = 25 cm,
L = 20 cm, σc = 106 S/m, β = 1.
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Figure 2.6: Convergence of Mode Matching as a function of the number of longitudinal modes
P , longitudinal (a) and transverse (b) case. Frequency is normalized over the first beam pipe
propagating mode, the TM01 in (a) and the TE11 in (b). Mode Matching parameters: b = 5 cm,
t = 45 cm, L = 2 mm, σc = 10−10 S/m, β = 1.

σc = 106 S/m. Different choices of S are shown (S=5, 10, 15, 25) for the same number of radial
modes (P=5). If, for example, we consider the case (S=5, P=5), the mode frequencies calculated
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f0,p,s ss=1 ss=2 ss=3 ss=4 ss=5

pp=1 0.3825 0.8414 1.547 2.2807 3.0222
pp=2 0.8779 1.1543 1.7371 2.4138 3.1238
pp=3 1.3763 1.5672 2.035 2.6362 3.2988
pp=4 1.8754 2.0196 2.4008 2.9279 3.5362
pp=5 2.3747 2.4902 2.8082 3.2703 3.8245

Table 2.12: Resonant frequencies (in GHz) excited for different number of modes ss and pp.

with Eq. (2.113) are shown in Tab. 2.12. For ss = pp = 5, the maximum frequency fmax = f0,5,4

can be seen at the bottom-right corner and is 3.8245 GHz: Figure 2.5a shows a “decay” in the
impedance around fmax as expected, sign of lack of modes.
Similar considerations hold for the transverse case. In case of S=25 we fully cover the frequency
span we are interested in. It is interesting to note that, in this case, the number of radial modes P
is not relevant since the current flows mainly on the insert surface and therefore radial resonances
are not expected.
For low conductivity, resonant modes start to appear and the role of P modes become evident.
Figure 2.6 shows the case for a very narrow empty cavity (σc = 10−10 S/m). In this case S = 1 is
sufficient to cover the range of interest while, due to the thickness, we have to consider P = 20 in
order to appreciate a reasonable convergence.

2.5.2 Empty cavity: mode excitation

As described in Sec. 2.4.1, the TM modes excited in the pillbox cavity have azimuthal number
ν = 0 for the longitudinal impedance, and are given by

fTM
0,p,s =

c

2πb

√
α2

0,p + α2
s, with s∈(0,1,. . . ) and p∈(1,2,. . . ). (2.113)

The TM and TE modes for the transverse dipolar impedance calculation (ν = 1), are given by:
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Figure 2.7: (a) TM modes in longitudinal impedance and (b) TM and TE modes excited in the
dipolar impedance. Mode Matching parameters: b = 1 cm, t = 25 cm, L = 20 cm, σc = 10−7 S/m,
β = 1, P = 10, S = 10.

fTM
1,p,s =

c

2πb

√
α2

1,p + α2
s, with s∈(0,1,. . . ) and p∈(1,2,. . . ) (2.114)

fTE
1,p,s =

c

2πb

√
β2

1,p + α2
s, with s∈(1,2,. . . ) and p∈(1,2,. . . ). (2.115)

In order to perform this benchmark we choose a small beam pipe radius with respect to the
cavity thickness (b = 1 cm and t = 25 cm): in this way we can push the beam pipe cut-off
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frequency fco well above the first cavity resonant mode avoiding the resonant frequency shift
due to the coupling with the beam pipes. The conductivity σc, moreover, has been set to σc =
10−7 S/m in order to be able to appreciate the resonant shape in the real part of the impedance
(a null conductivity would give rise to Dirac functions at resonant frequencies). Figure 2.7 shows
the real part of the longitudinal and transverse dipolar impedance. Arrows are placed at the
frequencies calculated with Eq. (2.113) for the longitudinal impedance, and Eqs. (2.114), (2.115)
for the transverse one. A good agreement for the resonant frequency location is observed between
these predictions and the mode matching modes.. We note that, even if in the transverse case the
beam represents a TM-like excitation (there is no magnetic field component in z-direction), the TE
modes are anyway excited. The slow impedance growth towards low frequencies is due to the fact
that we had to choose a small, but non-zero, conductivity σc in order to make the modes visible:
this does not anyway affect the mode location whose frequency implies ωε0 >> σc.

2.5.3 Empty cavity: low frequency

The case of empty cavity impedance represents a classical study already analyzed by other authors.
In particular, here, we will compare the Mode Matching longitudinal and transverse impedance
with formulas given in [23] for the low frequency regime.
The longitudinal impedance of an empty cavity, at low frequency can be approximated by
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Figure 2.8: Comparison of Mode Matching with the classical low frequency longitudinal impedance
behavior in an empty cavity. fth = c

2π(b+t) . Mode Matching parameters: b = 5 cm, t = 25 cm,

L ∈ (10−6, 10−5, . . . , 0.1, 1) m, σc = 10−12 S/m, β = 1.

Zlow.freq.l =
j ZoLω

2πc
ln

(
1 +

t

b

)
, if L << 2t, (2.116)

Zlow.freq.l =
j Zotω

2πc
ln

(
1 +

t

b

)
, if L >> 2t. (2.117)

The frequency regime in which we can apply the approximation is f < fth = c/(2π(b + t)), i.e.
below the first cavity resonant mode. Figure 2.8 shows the comparison of Mode Matching and
Eqs. (2.116) and (2.117): the agreement is good below fth as expected, and we can distinguish
the two cases correspondent to L << 2t and L >> 2t. Since 2t = 50 cm, when L < 1 cm we are
closer to Eq. (2.116), when L < 1 cm we are closer to Eq. (2.117), while, for L = 10 cm we are in
an intermediate range in between the given formulas. We note that, for L < 1 cm all the curves
overlap being normalized over the insert length: in this range, therefore, the impedance scales
linearly with length.
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In the transverse case, the impedance at low frequency is [23]

Zlow.freq.dip = −j Z0L

πb2
S2 − 1

S2 + 1
, (2.118)

valid for L < π2 b
32 [28] and f < fTM010

with S = (b + t)/b. Figure 2.9 shows the convergence to

the theoretical value for small cavity length: from L < 0.001 the condition L < π2 b
32 is fulfilled

with 6% and Mode Matching and theory are closer. We note that at low frequency the impedance
does not scale linearly with the insert length.
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Figure 2.9: Comparison of Mode Matching with the classical low frequency longitudinal impedance
behavior in an empty cavity. Mode Matching parameters: b = 5 cm, t = 10 cm, L ∈
(10−4, . . . , 0.1) m, σc = 10−12 S/m, β = 1.

2.5.4 Conductive insert: benchmark on length, thickness and conduc-
tivity

The list of benchmarks performed on a conductive insert can be summarized in Tab. 2.13. We

Frequency range L > b, t < b L < b, t > b L < b, t < b L > b, t > b

f < fc , f < fskin Rewall-LF 2D-Axi 2D-Axi 2D-Axi

f < fc , f > fskin Rewall-IF Rewall-IF SCT Rewall-IF

f > fc - CST TMT CST

Table 2.13: Table of benchmarks performed in order to test the Mode Matching with the finite
length insert method for different frequency ranges and insert dimensions.

introduced the frequency parameters fc, fco and fskin. The parameter fc is the frequency limit at
which a metal with a given conductivity σc can be treated as a good conductor (σc > ωε0) and is
defined as

fc =
σc

2πε0
. (2.119)

We define fco as the beam pipe cut-off frequency and depends on the impedance under study: for
the longitudinal impedance, only TM modes are excited and we define

fTM
co = α0,1

c

b
, (2.120)
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where α0,1 ' 2.4048 is the eigenvalue correspondent to the TM01 propagating mode; for the
transverse impedance, both TE and TM modes are excited and we define

fTE
co = β0,1

c

b
, (2.121)

where β0,1 ' 1.8411 is the eigenvalue correspondent to the TE11 propagating mode. The parameter

fskin is the frequency at which the skin depth δskin =
√

2/(ωµσc) equals the insert thickness t.
It is important to notice that we can define a fskin only in the hypothesis of good conductor, i.e.
σc > ωε0 or f < fc. “Rewall” refers to the classical thick wall impedance formulas derived in
[9], [23] for intermediate frequencies IF (f > fskin) and low frequencies LF (f < fskin), “2D-Axi”
refers to the numerical code for multilayer beam pipes developed in [13], “SCT” refers to the
Shobuda-Chin-Takata model for the longitudinal impedance of small inserts [22], “TMT” refers to
the trapped mode theory developed in [29], “CST” refers to the commercial time domain numerical
simulator [10].

Case f < fc and t < b, L > b

For long devices and thin conducting layer the resistive wall theory can be applied both at LF and
IF. The classical resistive wall formulas in these regimes are summarized in the following Tab. 2.14.
Figure (2.10) shows the comparison between Mode Matching and the classical theory of resistive

LF IF

ZRewall

l

j Zotω

2πb c
L

1 + j

2πb σcδskin
L

ZRewall

dip

j Zot

πb3
L

βc

ω

1 + j

πσcδskinb3
L

Table 2.14: Classical resistive wall formulas as from [23].

wall impedance: the agreement is good within a wide range of frequencies and we can recover both
the LF and IF regimes.

Case f < fc and t < b, L < b

Decreasing the insert length we can compare our model for longitudinal impedance with Shobuda-
Chin-Takata’s one (SCT) one. In the SCT’s model the PEC boundary layer around the insert (the
layer around sub-domain III in Fig. 2.4) is not present and the field can propagate in free space.
Moreover, following the approximation of short insert length in the SCT theory, the longitudinal
field variation along ẑ0 has been neglected. The regime in which the two models are expected to
agree is above fskin. This behavior is shown in Fig. 2.11a where we compared the two models
varying the conductivity from σc ∈ (102 S/m, . . . , 104 S/m). Below the fskin the two models start
to differ: in our case, the transverse field approaches the cavity’s boundary and is reflected, in
SCT it is radiated to the external vacuum region. From fskin the two models start to converge to
the same impedance value. However, one may notice that the Mode Matching impedance slightly
oscillates around SCT’s one before converging to the same curve. A closer view of the oscillation
can be obtained from Fig. 2.11b. The discrepancy between the two models can be understood
considering that around fskin the skin depth is comparable with the insert thickness. This implies
that the backward wave slightly interferes with the outgoing wave producing a modest standing
wave pattern in the insert, therefore affecting the impedance. With increasing frequency, the
backward wave amplitude becomes smaller and smaller and this pattern vanishes. The discrepancy
at high frequency has to be compared with the impedance absolute value which becomes larger
and larger.
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Figure 2.10: Comparison between Mode Matching and the classical theory of resistive wall,
real (a) and imaginary (c) part of longitudinal impedance, real (b) and imaginary (d) part
of transverse impedance. Mode Matching parameters: b = 5 cm, t = 500µm, L = 20 cm,
σc ∈ (103, . . . , 106) S/m, β = 1, P = 10, S = 20.
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Figure 2.11: Comparison between Mode Matching and SCT model for longitudinal impedance
of short inserts (a) and impedance model difference (c). Mode Matching parameters: b = 5 cm,
t = 1 cm, L = 0.1 cm, σc ∈ (102, . . . , 104) S/m, β = 1, P = 40, S = 40.

Case f < fc and t > b

In case the thickness becomes comparable or greater with respect to the beam pipe radius, the
LF resistive wall formula does not hold any more since assumes t << b. In order to cover this
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range of frequencies we can compare our model with the “2D-Axi” code. The code was developed
at CERN in order to study multilayer beam pipes with particular attention to coatings and thin
conducting layers commonly used for impedance and electron cloud mitigation. The model is
developed within the infinite length approximation. Important notice is that “2D-Axi” does not
allow for the moment PEC layers: in order to simulate our boundary condition we chose therefore
an ideally highly conductive material with σc = 1010 S/m and infinite thickness.

When L < b, the transverse LF impedance in the Mode Matching finite length model becomes
higher up to a factor 2 with respect to the 2D-Axi infinite length model, as shown for the imaginary
part in Fig. 2.12. This effect, due to the fields at the edge of the structure, can be considered not
of particular concern being apparent only for short inserts at very low frequencies (10− 100 Hz).

No evidence of this effect is instead present in the longitudinal impedance as shown for the real
part in Fig. 2.13. This is probably due to the small effect of the edges on the longitudinal electric
field on axis Ez.
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Figure 2.12: Comparison between Mode Matching and the 2D-Axi model for the imaginary part
of the LF dipolar impedance. Mode Matching parameters: b = 5 cm, t = 25 cm, σc = 106 S/m,
β = 1, P = 10, S = 10.
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Figure 2.13: Comparison between Mode Matching and the 2D-Axi model for the real part of the
LF longitudinal impedance. Mode Matching parameters: b = 5 cm, t = 25 cm, σc = 106 S/m,
β = 1, P = 10, S = 10.

Highly conductive materials like copper or graphite are used in the LHC collimators (an example
is shown in Fig. 2.14). These are one of the main impedance sources in the whole machine and
efforts have been taken for their impedance reduction. One of the possible strategy consist in the
device longitudinal segmentation in shorter modules [30]. Within the limitations of our model, by
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the way, there is not an evident gain in impedance reduction as depicted in Fig. 2.12b.

  

Jaws

L

Jaws

Figure 2.14: Example of collimator. The two jaws are made of highly conductive material and
approach very closely the beam trajectory introducing high beam coupling impedance.

Case f > fc and L < b, t < b

Further reducing the cavity size, we can study the effect of small beam pipe perturbations to the
longitudinal impedance. When the thickness t and length L are small with respect to the radius
b, the first cavity resonant mode TM010 starts to approach the first beam pipe propagating mode
TM01. This cavity resonance is usually defined as a “trapped mode” extending the definition of
trapped modes to those ones slightly below cut-off [23]. The trapped mode frequency ftrap can be
estimated as ftrap ' fTM01 + ∆fTM01 with [29]

∆fTM01
= −fTM01

α2
0,1

2

(
A2

b

)2

, (2.122)

where A = L t is the longitudinal cross sectional area of the cavity. The approximation is found
to be valid for Aα2

0,1/b
2 << 1. In order to validate our method, we choose a series of cavity areas

A, detect the trapped mode below cut-off, and compare with Eq. (2.122). Figure 2.15a shows the
case of a longer than thicker cavity protrusion: the beam pipe radius is b = 5 cm, the thickness has
been set to 2 mm and L ∈ (1 mm, . . . , 5 cm). The agreement between theory and Mode Matching
is good until the length of the cavity reaches the value of the beam pipe radius: longer cavities
require the inclusion of higher order modes in the impedance calculation.

The case of a thicker than longer cavity discontinuity is shown in Fig. 2.15b where the length
has been fixed to 2 mm and the thickness t ∈ (1 mm, . . . , 2 cm). The agreement is good within a
shorter range with respect to the previous case. This is due to the approximations used in [29]
where the electric field dependence on the radial position is expressed as

Ez ∝ J0

(
α0,1

r

b

)
, (2.123)

and at the boundary r = c ' b, at first order,

Ez ∝ −
α0,1

b
J1 (α0,1) t. (2.124)
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For thickness close to the beam pipe radius (t ' 1 cm in our case), this approximation becomes
inaccurate and the field penetration in the cavity space needs to be taken into account.
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Figure 2.15: Comparison of trapped mode theory for longitudinal impedance and Mode Matching
for (a) longer than thicker cavities, and (b) thicker than longer ones. Mode Matching parameters:
b = 5 cm, σc = 10−8 S/m, β = 1, P = 5, S = 5.

Case f > fc and L > b, t > b

In case of low conductivities, i.e. σc ∈
(
10−5, . . . , 105

)
S/m, we can benchmark the Mode Matching

with CST Particle Studio Wakefield Solver [10]. As already introduced in Sec. 2.2.1, CST is a
time domain code in which a truncated Gaussian particle distribution ρ(s) can be tracked along
the device under test. The bunch length settles the maximum frequency simulated by means of
Eq. (2.15). For example, with a bunch length of σb = 3 cm we can reach fmax ' 3.5 GHz.

Figure 2.16 shows the Mode Matching benchmark with CST for σc = 10−2 S/m both for
longitudinal and transverse case. The agreement is good along the chosen frequency range even if
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Figure 2.16: Comparison of Mode Matching and CST for (a) longitudinal and (b) transverse
impedance. Mode Matching parameters: b = 5 cm, t = 25 cm, L = 20 cm, σc = 10−2 S/m, β = 1,
P = 15, S = 15. CST parameters: σb = 3 cm, Lwake = 20 m, Nmesh = 1.1 · 106.

a small but increasing mismatch tends to appear for higher frequencies. This is due to the chosen
bunch length: at fmax the bunch power spectrum has reduced to 1% making the impedance more
sensitive to the numerical noise. Choosing a smaller bunch length we can reduce this effect at
the expense of a longer simulation time due to the increased mesh number necessary to sample
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the bunch profile. Figure 2.17 shows the comparison between a σb = 3 cm and σb = 2 cm case.
For lower conductivities, e.g. σc = 10−3 in Fig. 2.18a, the losses in the insert get smaller when
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Figure 2.17: Comparison of Mode Matching and CST for (a) longitudinal and (b) transverse
impedance. Mode Matching parameters: b = 5 cm, t = 25 cm, L = 20 cm, σc = 10−2 S/m, β = 1,
P = 15, S = 15. CST parameters: σb = 2 cm, Lwake = 20 m, Nmesh = 3.8 · 106.

the resonance height in the cavity structure increases. As explained in Sec. 2.2.1 the impedance
calculated in CST is the Fourier transform of the wake potential induced by the bunch: if the wake
oscillation is not completely damped, the typical sinc-like oscillations start to appear around the
resonance frequencies. We therefore need a longer wake (i.e. longer simulation time) in order to
bring the wake oscillation to the noise level and correctly model the resonance. Figure 2.18b shows
the merit factor Q convergence for the first resonant mode in function of the wake length: as we can
see resonances for low conductivities are difficult to calculate in CST-PS. A more suitable solver
for this purpose is the CST Eigenmode solver. The benchmark studies are therefore restricted to
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Figure 2.18: Comparison of Mode Matching and CST for (a) longitudinal impedance with
σc = 10−3 S/m and (b) Q saturation of first impedance peak Vs simulated wake length for lower
conductivities. Mode Matching parameters: b = 5 cm, t = 25 cm, L = 20 cm, β = 1, P = 15,
S = 15. CST parameters: σb = 2 cm, Nmesh = 3.8 · 106

a short range of conductivities: if in the lower bound we are limited by the wake length to simulate
in order to cover the resonance damping time, for higher conductivities the wake field becomes
smaller and closer to the CST numerical noise. As an example we simulated a conductivity of
σc = 102 S/m: as shown in Fig. 2.19 a considerable discrepancy appears due to the small wake
potential amplitude.
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Figure 2.19: Comparison of Mode Matching and CST for (a) longitudinal and (b) transverse
impedance. Mode Matching parameters: b = 5 cm, t = 25 cm, L = 20 cm, σc = 102 S/m, β = 1,
P = 15, S = 15. CST parameters: σb = 2 cm, Lwake = 20 m, Nmesh = 3.8 · 106.

Case f > fc and L < b, t > b)

For short inserts and low conductivities we can compare our results with CST. Analogously to
what was done in Sec. 2.5.3 we can simulate a narrow insertion at low frequencies. Since we are
interested in low frequencies we can increase the bunch length to 20 cm to cover a range up to
350 MHz. Figure 2.20 shows a comparison with Mode Matching for different cavity length: the
agreement is good within a 5% of accuracy.
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Figure 2.20: Comparison of Mode Matching and CST for low frequencies and short inserts
impedance. Mode Matching parameters: b = 5 cm, t = 10 cm, σ = 10−8 S/m, β = 1, P=5,
S=5. CST parameters: σb = 20 cm, Lwake = 1 m, Nmesh = 2.3 · 106.
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2.5.5 Impedance kink at cut-off

An interesting effect we are going to separately explain, is the resonance-like kink appearing around
the cut-off frequency for short inserts. The impedance of a circular resistive insert can be studied,
in first approximation, with a 2D model, i.e. assuming infinite length and scaling the impedance
per meter to the device length [7], [25]. We have already shown that the approximation is not
valid for good conductors (f < fc) when the insert length L is smaller than the beam pipe
radius b in the low frequencies regime, and intuitively for dielectrics (f > fc) where longitudinal
resonances depend on the device length. Independently on the conductivity, when L < λco/2 with
λco = c/fco wavelength at cut-off frequencies, we can have a resonance-like peak just below the
cut-off frequency. Figure 2.21 shows a longitudinal impedance kink at the first cut-off frequency
mode TM01. For lower conductivities the effect becomes more evident. It is interesting to notice,
for example in Fig. 2.22, that the kink amplitude at cut-off frequency can also vanish if it is placed
in correspondence to the descending slope of the nearby resonance.
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Figure 2.21: Kink in the longitudinal impedance at the TM01 mode cut-off frequency (a)
and zoomed view around cut-off (b). Mode Matching parameters: b = 5 cm, t = 25 cm,
L ∈ (1/8, 1/4, 1/2, 1, 2)λTM

co , σ = 102 S/m, β = 1, P=5, S=25.
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Figure 2.22: Kink in the longitudinal impedance at the TM01 mode cut-off frequency (a) and
enlargement around cut-off (b). Mode Matching parameters: b = 5 cm, t = 25 cm, L ∈
(1/8, · · · , 2)λTM

co , σ = 10−2 S/m, β = 1, P=5, S=25.

In order to explain the observations we resort to a representation of the device with a trans-
mission line model. Below cut-off a semi-infinite pipe exhibits reactive input impedance which, for
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TM modes, is capacitive [31]: ZTM
pipe = 1/j ωCp where

Cp =
Yo

2π
√
f2
co − f2

(2.125)

is the equivalent beam pipe capacity with fco the cut-off frequency of the TM mode propagating
in the beam pipe. The impedance vanishes at cut-off and becomes resistive above it (ZTM

pipe = Rp).
According to the circuital representation in Fig. 2.23 the two pipe impedances are in parallel to
the “impedance of the insert”, where the quoted expression indicates the impedance of the insert
calculated replacing the two pipes with two PEC circular plates, which seal the insert and form
a closed cavity. Being L < λco/2, the insert impedance can be treated as a lumped impedance
in parallel to the beam pipes [16]. The definition of the parameters for the lumped element
would require a rigorous and complex study that deviates from the purposes of this thesis: we
will proceed with a semi-empirical explanation that, nevertheless, can give the reader a complete
understanding of the phenomenon. Since the longitudinal beam coupling impedance represents
power loss from conductivity (real part) and power exchanged with the cavity insert (imaginary
part) we assume that the lumped impedance element coincides with the beam coupling impedance
Zi = Ri + jXi = Zl.

(a) (b)

Figure 2.23: Transmission line model for kink at cut-off frequency. The insert Zi = Ri + jXi

represents the inductive resistive wall, the pipes are capacitive below cut-off (a), and resistive
above cut-off (b).

Focusing on Fig. 2.21, we may infer that the dissipation is such that we are in the regime
of resistive wall behavior, which is inductive (Zi = Ri + jωLi): the surface impedance is very
small and its phase angle is steadily π/4. At a certain frequency, just a bit smaller than fTM

co ,
the capacitive reactance of the pipe Cp becomes so small to equal the inductive reactance of the
wall Li. In this case we have the typical behavior of a parallel RLC circuit and that explains
the resonance sharp peaks appearing slightly before cut-off. At the cut-off frequency the pipe
impedance vanishes since Cp →∞ and the TL model is short-circuited.

Note that the Q-factor does not only depend on the amount of power losses but also on the
fast change of the capacitive reactance in the narrow domain close to fco. However, the Q-factor
decreases according to the increase of the power losses, namely according to the increase of the
insert length and, up to a certain extent, according to the decrease of the conductivity.

When the conductivity of the insert becomes smaller than a certain amount, since the skin
depth becomes comparable or larger than the sector thickness, the behavior of the insert changes:
the resonances of the insert itself, which are due to the interference of outgoing and reflected waves,
become apparent as depicted in Fig. 2.22.
The circuital model is valid only if the length L < λco/2. This may explain why from L ≥ λco/2
in Fig. 2.22 the effect becomes less and less evident.
One may notice that at cut-off frequency, the resonant behavior has disappeared, and only the cliff
to zero is apparent for the first 3 curves. One could infer that this phenomenon depends on the
conductivity. Figures 2.24 and 2.25 show that the possibility of two different states may happen
also in the case of constant conductivity and different thickness. Changing the value of t, the
standing wave pattern changes and the cut-off frequency moves from the left to the right of the
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closest resonance. A resonance is represented by

Z(ω) =
Rs

1 + j Q

(
ωr
ω
− ω

ωr

) , (2.126)

where Rs, Q, and ωr = 2πfr are respectively the shunt impedance, quality factor and resonance
frequency. For f < fr the behavior is inductive, while for f > fr it is capacitive. In the first case
we are just in the same condition as Fig. 2.21 since the closest resonance appears inductive, while,
in the second case, the kink flips from the resonant behavior to the opposite polarity because the
insert appears capacitive Zi = Ri + 1/jωCi and therefore there is no inductance to produce a
resonance with the capacitive beam pipe impedance Cp.
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Figure 2.24: Kink in the longitudinal impedance at the TM01 mode cut-off frequency (a) and
enlargement around cut-off (b) for thickness t = 15 cm. Mode Matching parameters: b = 5 cm,
t = 15 cm, L = 1/16λTM

co , σ = 10−2 S/m, β = 1, P=5, S=25.
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Figure 2.25: Kink in the longitudinal impedance at the TM01 mode cut-off frequency (a) and
enlargement around cut-off (b) for thickness t = 25 cm. Mode Matching parameters: b = 5 cm,
t = 25 cm, L = 1/16λTM

co , σ = 10−2 S/m, β = 1, P=5, S=25.

Similar considerations can be done for the transverse impedance. The lowest beam pipe cut-
off frequency fco is this time the one corresponding to the TE11 mode whose transmission line
impedance below cut-off is Zp = jωLp with

Lp =
Zo

2π
√
f2
co − f2

, (2.127)

45



CHAPTER 2. MODE MATCHING FOR COUPLING IMPEDANCE CALCULATIONS

and Zp = Rp above cut-off. The insert lumped impedance, associated with beam losses, can
be obtained from the transverse impedance via the Panofsky-Wenzel theorem [9]: Zi = ω/cZdip.
Figure 2.26 shows the classical resistive wall transverse impedance: the behavior appears capacitive,
but the corresponding insert lumped impedance is inductive and therefore a resonance cannot be
established at the TE11 cut-off. For lower conductivities, Figures 2.27 and 2.28 show the possibility
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Figure 2.26: Dipolar impedance normalized at the TE11 mode cut-off frequency. Mode Matching
parameters: b = 5 cm, t = 25 cm, L ∈ (1/8, · · · , 2)λTMco , σ = 10−2 S/m, β = 1, P=5, S=25.

of having a resonance slightly below cut-off. We may note that at exactly the cut-off frequency, i.e.
f/fTE

co = 1 in Figs. 2.27b and 2.28b the impedance appears unperturbed: this is not unexpected
since the pipe inductance given in Eq. 2.127 goes to infinity becoming an open circuit.
We notice also that in Fig. 2.27a the pipe inductance is in parallel to the inductive slope of the
closest resonance fr, while in Fig. 2.28a it is in parallel to the capacitive slope: we would therefore
expect a resonant behavior only in the second case, not in the first. This effect, from one side
settles the limitations in describing with a simple lumped circuit model a distributed system, and
on the other side confirms the Mode Matching as a valuable technique for studying very narrow
and localized resonances on the impedance.
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Figure 2.27: Kink in the dipolar impedance at the TE11 mode cut-off frequency (a) and enlargement
around cut-off (b) for thickness t = 12 cm. Mode Matching parameters: b = 5 cm, t = 12 cm,
L = 1/8λTE

co , σ = 10−2 S/m, β = 1, P=5, S=25.

These examples have enlightened the potentialities of the Mode Matching technique and are not
academical. A recent interest arose at CERN for materials with low losses. This is witnessed by
the study of the dielectric properties at high frequency of SiC (εr = 10 and tan δ = 0.2), oriented
to its use in accelerator devices: recently this material has been characterized [32]; its equivalent
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Figure 2.28: Kink in the dipolar impedance at the TE11 mode cut-off frequency (a) and enlargement
around cut-off (b) for thickness t = 14 cm. Mode Matching parameters: b = 5 cm, t = 14 cm,
L = 1/8λTE

co , σ = 10−2 S/m, β = 1, P=5, S=25.

conductivity would be estimated as σeq = ω0ε0εr tan δ = 0.1 S/m at f = 1 GHz which is in the
range of our examples. Furthermore, allowing for Alumina 96% (εr = 9.4 and tan δ = 10−4), its
equivalent conductivity is σeq ' 5·10−4 S/m at f ' 2.2948 GHz the cut-off frequency of a beam pipe
with radius b = 5 cm. Figure 2.29a shows the longitudinal impedance correspondingly to a 8 mm
long alumina insert that could represent a beam pipe flange: the characteristic resonance close to
cut-off can be appreciated at f ' 2.2946 GHz in the zoomed view of Fig. 2.29b. The presence of
the resonance at cut-off can be explained as it is the cut-off on the inductive impedance slope of
the most nearby resonance that corresponds in this case to the TM0,15,0 mode.
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Figure 2.29: Presence of cut-off resonance in a short accelerator beam pipe flange (a) and zoomed
view (b). Mode Matching parameters: b = 5 cm, t = 30 cm, L = 8 mm, insert in Alumina 96%
(εr = 9.4 and tan δ = 10−4), P=25, S=25.

Tests have been done also with CST-Eigenmode Solver, in order to verify if this behavior is
the signature of a trapped mode. Figure 2.30a shows a simple model simulated: an 8 mm long
alumina insert between two Lpipe long beam pipes, sealed by PEC plates on both ends. The
structure exhibits a TM0,15,0-like mode at 2.2955 GHz as shown in Fig. 2.30a which confirms
the Mode Matching expected mode of Fig. 2.29b. The small discrepancy in frequency could be
explained by the finite beam pipe length that we have chosen (Lpipe = 120 cm on both ends) in
the CST simulation: close to cut-off, the EM field expands into the pipes; therefore, by increasing
the beam pipe length, this discrepancy could be slowly reduced as shown in Figure 2.30b.
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Figure 2.30: CST-Eigenmode Solver simulation for the resonance near cut-off in a short accelerator
beam pipe flange (a) and convergence of the mode frequency in function of the beam pipe length
Lpipe (b). CST parameters: b = 5 cm, t = 30 cm, L = 8 mm, Lpipe = 120 cm, insert in Alumina
96% (εr = 9.4 and tan δ = 10−4), Nmesh = 25000 tetrahedrons.

2.5.6 Impedance dependence on relativistic β

We are going now to benchmark the Mode Matching method for impedance calculation in case
of not ultra relativistic beam velocities, i.e. β < 1. This problem is of relevant importance for
machines that work at the first stages of beam acceleration. For example, in the CERN PS-Booster
(PSB), the proton beam is first injected at 50 MeV and accelerated to 1.4 GeV kinetic energy, that
corresponds to βinj = 0.314 and βext = 0.916. At low β, effects like the space charge (SC) become
relevant in particle dynamics and play a key role in the overall beam stability.

The resistive wall impedance of circular vacuum chambers in low β regime was already studied
in the past in [7] and [33] and generalized within the “2D-Axi” code [13]. These approaches are
all valid for infinitely long beam pipes, i.e. where edges effects and/or cavity resonances are not
expected to appear. The Mode Matching approach does not present these limitations. We will,
nevertheless, proceed to the benchmark with the “2D-Axi” code in order to prove the method
reliability.

Since we considered as source fields for the impedance calculations, the fields produced by a
beam traveling in a perfectly conducting beam pipe (Tab. 2.5), the impedance calculated with
the Mode Matching in Sec. 2.4 does not take into account the direct and indirect space charge
(DSC and ISC): the DSC represents the direct interaction of the source particle field with the test
particle, the ISC the interaction of the perfectly conducting beam pipe scattered fields. Since in
the “2D-Axi” code the ISC impedance is included in the impedance calculation, we will add the
ZISC term to the impedance calculated with the Mode Matching. The ISC longitudinal impedance
per meter unit of round beam pipe of radius b is given by [25]

ZISCl =
j ωI2

0 (s)Zo
2πcβ2γ2

K0(x)

I0(x)
, (2.128)

and the transverse impedance per meter unit by

ZISCdip =
j I2

1 (s)Zo
βγ2πr2

S

K1(x)

I1(x)
, (2.129)

where we remind that αb = b ω/v, x = αb/γ, s = rSω/(γv). For rS → 0 the expressions simplify
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to:

ZISCl =
j ω Zo

2π cβ2γ2

K0(x)

I0(x)
, (2.130)

ZISCdip =
j ω2 Zo

4π c2β3γ4

K1(x)

I1(x)
. (2.131)

For small argument x we recover the well known formulas showing the 1/γ2 dependence:

ZISCl =
−j ω Zo
2π cβ2γ2

ln(x), (2.132)

ZISCdip =
j Zo

2πβγ2

1

b2
. (2.133)

Figures 2.31a and 2.31b show the comparison between the “2D-Axi” code and the Mode Match-
ing for a high conductivity material (σc = 106 S/m) that could model a collimator module.
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Figure 2.31: Comparison between the Mode Matching and the “2D-Axi” code for different rela-
tivistic β longitudinal (a) and transverse (b) impedance. The thick line is the real part, the dashed
line the imaginary part of the impedance. The transverse impedance is normalized over β. Mode
Matching parameters: b = 0.05 m, t = 0.5 mm, L = 20 cm, σ = 106 S/m, β = (0.2, 0.4, 0.6, 0.8, 1),
P=25, S=25.

The ultra relativistic beam approximation, commonly used in impedance calculations, consti-
tutes, in the case of the real part of the impedance, the worst-case scenario. It is interesting to
notice that the resistive wall transverse impedance scales with an additional β with respect to the
longitudinal case (see Tab. 2.14). The imaginary part of the impedance grows quadratically with
βγ.

The discrepancy at low frequencies is due to the PEC model in the “2D-Axi” code which is a

layer with high, but finite, conductivity (in the case under study we put σ
(2D−Axi)
c = 1014 S/m).

The decrease of the impedance at high frequency can be understood resorting to a perturbative
method which assumes that the longitudinal current on the insert is just equal to the one circulating
on a PEC pipe, i.e. in Leontovich approximation. According to Tab. 2.5 in an infinite smooth pipe
the magnetic field on the wall is given by the formula

Hsource
φ =

Q

2π b I0(ωb/(βγc))
e−

jzαb
b , (2.134)

which suggests that the maximum of the surface current is for frequencies which satisfy the following
approximate equation:

fmax ' 0.7
βγc

2πb
. (2.135)

49



CHAPTER 2. MODE MATCHING FOR COUPLING IMPEDANCE CALCULATIONS

The frequencies corresponding to the longitudinal impedance maxima, calculated with Eq. 2.135,
are indicated in Fig. 2.32a by vertical black lines and the intercepts with the impedance curves
by the corresponding colored dots. This approximation is found to be good also in the transverse
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Figure 2.32: Deviation of the non ultra relativistic beam impedance from the ultra relativistic
case and corresponding fmax frequencies. The transverse impedance is normalized over β. Mode
Matching parameters: b = 0.05 m, t = 0.5 mm, L = 20 cm, σ = 106 S/m, β = (0.2, 0.4, 0.6, 0.8, 1),
P=25, S=25.

case (Fig. 2.32b). A simple interpretation for this behavior is the following: since the impedance
is the electromagnetic response to the beam excitation, a short beam (i.e. for β ' 1) will excite a
high frequency spectrum while a long beam (i.e. for β << 1) will excite only a smaller part of it.

However, this behavior is no longer kept for lower conductivities, where resonances may appear
and the perturbative approximation in Eq. (2.135) cannot be used anymore.
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Chapter 3

Transverse impedance localization:
simulations

Having a reliable model of the beam coupling impedance is a mandatory requirement in circular
particle accelerators, and in particular for the CERN accelerator complex where the High Lumi-
nosity programme [34–36] implies new challenges in terms of beam performance and stability.

In addition to theoretical estimations based on numerical codes or analytical formulas as the
ones described in the previous chapter, impedance measurements can be done in order to monitor
and compare the machine status with the impedance model. Measuring the betatron coherent
frequency shift with intensity, for example, gives informations on the total reactive transverse
impedance according to Sacherer’s theory [37]. An extension of this method for measuring the
reactive part of transverse localized impedances was proposed the first time in 1995 at CERN [38]:
measuring the impedance-induced betatron phase advance shift with intensity, the LEP RF sec-
tions were found to be important impedance contributors. Figure 3.1 shows the measured phase
advance between beam position monitors (BPMs) in the horizontal (left) and vertical (right) planes:
two considerably big jumps in the accelerator phase advance that could be correlated with high
transverse impedance in the RF sections.

(a) (b)

Figure 3.1: LEP impedance localization: the steps can be correlated with high impedance in the
RF sections. (Courtesy of [38])

A similar method, based on the impedance-induced orbit shift with intensity, was proposed in
1999 in the Novosibirsk VEPP-4M electron-positron storage ring [39] and in 2001 in the Argonne
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APS synchrotron accelerator [40]. Later in 2002, the same method was tried in the Grenoble
ESRF [41].

The CERN research on the impedance localization method using phase advance shift with
intensity, was continued in 2004 in the SPS [42,43] and in BNL RHIC [44]. Even if the measurement
was proved to work, the results were of difficult interpretation and the impedance locations were
not univocally reconstructed.

In this and the following chapter, we will review the measurement technique and present the
simulations and measurements in the CERN machines, in particular PS, SPS and LHC, and in the
BNL RHIC. Even if the method is not new, the difference with the authors who already gave a
contribution to this type of measurement can be summarized in

1. quantification of the noise impact in the measurement,

2. refinement of the reconstruction technique,

both essential in order to establish the measurement feasibility and improve the results interpre-
tation.

3.1 Theoretical background

The connection between transverse beam coupling impedance and main accelerators observables
such as tune, phase advance between BPMs and orbit position was done starting from the work of
F.Sacherer [37] and J.L. Laclare [45].

The beam circulating in an accelerator executes the so-called transverse betatron oscillations
whose frequency ωβ , the betatron frequency, is given by the magnetic focusing force in the lattice.
We define the coherent betatron tune as the number of betatron oscillation of the center of mass
per turn, Qo = ωβ/ωo where ωo = βc/R with R radius of the accelerator machine.

On top of this oscillation, each particle in the beam executes longitudinal oscillations whose
frequency, the synchrotron frequency, is determined by the accelerator RF system.

Particles with different longitudinal momentum p′l = pl+∆pl will have slightly different betatron
tune with respect to the center of mass Q′ = Qo + ∆Qo. The relative ratio between ∆Qo and ∆pl
is defined as chromaticity :

ξ =
∆Qo/Qo
∆pl/pl

. (3.1)

The chromaticity sets a further relation between transverse and longitudinal motion that results
in a shift of the beam spectrum accordingly to the sign of ξ. The chromaticity can be set up
adjusting the current in the accelerator sextupoles. For the stability of the centroid motion against
the resistive wall impedance, chromaticity is usually set to be positive for machine operating above
transition, or negative below transition.

The natural beam oscillations may be considerably influenced by the beam interaction with
impedances. According to Eqs. (2.4) and (2.5) each particle in a beam experiences a kick pro-
portional to the wake potential and the total charge carried by the beam in the longitudinal and
transverse momentum. A positive transverse momentum kick ∆pt, for example, can be seen as an
equivalent additional defocusing in the lattice that provokes a reduction of the betatron frequency,
i.e. a negative shift of ωβ .

3.1.1 Impedance-induced coherent tune shift with intensity

A complete study of the beam frequency shift with intensity, involving azimuthal l and radial n
bunch oscillation modes decomposition, can be found in [9, 37, 46]. The tune corresponds to the
mode with l = n = 0. A simplified model for the tune shift with intensity with chromaticity ξ = 0
will be given in the following.

Let us consider a bunch distribution ρ(s) traveling at speed v = βc along the accelerator closed
orbit. The ith particle in the bunch executes betatron oscillations given by [47]

d

d2s
yi(s) +Ko(s)yi(s) = 0, (3.2)
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where Ko(s) = B1(s)/Bρ is the effective focusing function1 for the ideal lattice, Bρ is the so
called beam rigidity, with B the main dipole field strength and ρ bending radius, y denotes, for
example, the vertical coordinate. Applying a Floquet transformation we can find the Hill’s solution
of Eq. (3.2) in the form

yi(s) =
√
εyβy(s) cos(ψy(s) + θi), (3.3)

where βy is the betatron function (or β function) fixed by the lattice properties, εy is the single
particle invariant, θi is the betatron phase at t = 0 and ψy(s) the betatron phase advance given
by:

ψy(s) =

∫ s

0

1

βy(s)
ds. (3.4)

where the integral goes from s = 0, a conventional accelerator starting point. We define the tune
as the number of particle oscillation per turn given by

Qy =
1

2π

∫ C

0

1

βy(s)
ds, (3.5)

with C the accelerator circumference. Having ξ = 0 the particle motion is completely decoupled
from the synchrotron motion. When the particle motion is perturbed by the interaction with a
beam coupling impedance Eq. (3.2) becomes

d

d2s
yi(s) +Ko(s)yi(s) =

< Fi >

β2Eo
, (3.6)

where < Fi > is the average force experienced by the particle ith at distance si from the center
of the bunch, Eo = γmpc

2 is the energy of the traveling proton particle with mp the proton rest
mass.

Defining an average force < Fi > acting on each bunch particle is a consequence of the rigid
beam approximation in the impedance definition of Sec. 2.1: the test particle passing through a
device of length L preserves its distance from the source particle. We can therefore express the
transverse momentum change ∆pt,i as ∆pt,i =< Fi > L/v. Recurring to Eqs. (2.5) and (2.13),
setting the source beam charge at the center of mass ȳ we write Eq.(3.6) in terms of the wake
potential Wpot

d

d2s
yi(s) +Ko(s)yi(s) =

−q2

Lβ2Eo
Wpot(si) =

−q2

Lβ2Eo
(W ∗ ρ) (si), (3.7)

where W (s) is the wake function. Expanding the wake term at first order over test particle position
yi and the beam center of mass ȳ as in Eq. (2.7), we have:

d

d2s
yi(s) +Ko(s)yi(s) =

−q2

Lβ2Eo
((Wdipȳ(s) +Wquadyi(s)) ∗ ρ) (si), (3.8)

Since we are interested to the motion of the center of mass, we sum over the number of particles
to get:

d

d2s
ȳ(s) +Ko(s)ȳ(s) =

1

Np

Np∑
i=1

−q2

Lβ2Eo
((Wdipȳ(s) +Wquadyi(s)) ∗ ρ) (si), (3.9)

where

ȳ(s) =
1

Np

Np∑
i=1

yi(s). (3.10)

1Here we assume that all the particles see the same focusing function Ko(s) discarding secondary effects due to
the magnetic field imperfections.
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Tune shift from the indirect space charge with ξ = 0: smooth approximation

Let us now particularize for the case of the indirect space charge impedance (ISC) in a round
perfectly conducting beam pipe of radius b. The dipolar wake field can be derived from Eq. (2.133)
with a Fourier inverse transformation as defined in Eq. (2.11). We get

W ISC
dip (s) = −vβδ(s)Im(ZISCdip )C. (3.11)

It is important to notice that the ISC can be derived also using an image current approach, as
commonly depicted in literature [8], [46]: in this case the fields scattered by a source beam displaced
by ȳ1 from the center, can be calculated as the ones provoked by an image current set at distance
ȳ2 = b2/ȳ1 from the center. The quadrupolar impedance is therefore null: the image current of a
beam traveling at the center of the pipe will be pushed to infinity since ȳ1 → 0 and a test particle
will experience no scattered field.
Substituting the wakefield in Eq. (3.9) we have

d

d2s
ȳ(s) +Ko(s)ȳ(s) =

q2v

NpβEo
Im(ZISCdip )ȳ(s)

Np∑
i=1

(δ ∗ ρ) (si). (3.12)

Expanding the convolution integral we have:

Np∑
i=1

(δ ∗ ρ) (si) =

Np∑
i=1

∫ +∞

−∞
δ(s− si)ρ(s) ds. (3.13)

To solve the integral we can divide the longitudinal particle distribution in 2M slices of width ∆s
as depicted in Fig. 3.2. The jth slice counts Nj particles of the entire ensemble and is centered in
sj . The longitudinal beam distribution ρ(sj) can be seen as:
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Figure 3.2: Model used for the coherent tune shift computation: the bunch distribution ρ(s) is
divided in 2M slices. The jth slice has width ∆s and is centered in sj . In each slice Nj particles
of the total ensemble are contained. Each particle in the jth slice has a corresponding longitudinal
position sj,i.

ρ(sj) = lim
∆s→0

Nj
∆s

= lim
∆s→0

1

∆s

Nj∑
i=1

∫ +∞

−∞
δ(s− sj,i) ds. (3.14)

Equation (3.13) can be rewritten as:

M∑
j=−M

Nj∑
i=1

∫ +∞

−∞
δ(s− sj,i)ρ(sj) ds =

M∑
j=−M

Njρ(sj). (3.15)
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Multiplying and dividing by the slice width we have

M∑
j=−M

Nj
∆s

ρ(sj)∆s =

M∑
j=−M

ρ(sj)
2∆s, (3.16)

and taking the limit for ∆s→ 0 we get:

lim
∆s→0

M∑
j=−M

ρ(sj)
2∆s =

∫ +∞

−∞
ρ(s)2 ds. (3.17)

Equation (3.12) than becomes:

d

d2s
ȳ(s) +Ko(s)ȳ(s) =

q2v

NpβEo
Im
(
ZISCdip

)
ȳ(s)

∫ +∞

−∞
ρ(s)2 ds. (3.18)

In the smooth approximation Ko(s) ' Q2
yo/R

2 and we can write

d

d2s
ȳ(s) +

(
Qyo
R

)2

ȳ(s) =
q2v

NpβEo
Im
(
ZISCdip

)
ȳ(s)

∫ +∞

−∞
ρ(s)2 ds. (3.19)

If we consider now an equivalent focusing function K(s), including the effect of the impedance,
we can write

d

d2s
ȳ(s) +K(s)ȳ(s) = 0, (3.20)

whereK(s) = Ko(s)+∆K(s). In the smooth approximationK(s) ' Q2
y/R

2 whereQy = Qyo + ∆Qy.
Equation (3.20) reduces to

d

d2s
ȳ(s) +

(
Qy
R

)2

ȳ(s) = 0. (3.21)

Expanding and neglecting the quadratic term in ∆Qy we have

d

d2s
ȳ(s) +

(
Qyo
R

)2

ȳ(s) = −2
Qyo∆Qy
R2

. (3.22)

Comparing with Eq. (3.19) we get the tune shift ∆Qy

∆Qy = − q2R2v

2NpQyoβEo
Im
(
ZISCdip

) ∫ +∞

−∞
ρ(s)2 ds. (3.23)

For a uniform distribution we have

ρ(s) =
Np
2ẑ
rect2ẑ(s), (3.24)

where ẑ = vτ̂ is the half bunch length. This will produce a tune shift equal to

∆Qy =
−Npq2R2

2QyoβEo
Im
(
ZISCdip

) 1

2τ̂
. (3.25)

Defining the average beam current as Ī = qNp/To we have

∆Qy = − qĪToR

8πQyoβEoτ̂
Im
(
ZISCdip

)
C. (3.26)

This is the same result one could obtain following the Vlasov approach of [37] and [45] in the
particular case of transverse azimuthal mode 0 oscillation. This is expected since we are studying
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a particular case of rigid dipole oscillation and constant inductive impedance where the complete
set of bunch oscillations can be represented by Legendre modes. The calculated tune shift for a
uniform distribution is the same one could obtain with the image current approach described in
literature [8], [46].

For a Gaussian distribution we have

ρ(s) =
Np√
2πσz

e
− s2

2σ2
z , (3.27)

where σz = vστ is the rms bunch length. This will produce a tune shift equal to:

∆Qy = − qĪToR

8π3/2QyoβEoστ
Im
(
ZISCdip

)
C. (3.28)

Again, this result represents a particular case of the Vlasov formalism in the case of rigid dipole
oscillation and constant inductive impedance where the complete set of bunch oscillations can be
represented by Hermite modes.

This approach enables us to make estimations with measured bunch distributions with wall
current monitors, an alternative to the acquisition of the bunch spectrum.

Tune shift from the indirect space charge with ξ = 0: general case

If we do not consider a smooth approximation, we can calculate the tune shift applying the the-
ory of lattice imperfections [47] from which we have that a small perturbation ∆K(sk) in the
focusing function at longitudinal position sk with length dsk perturbs the focusing function by
K(s) = Ko(s) + ∆K(sk) and provokes a tune shift equal to

∆Qyk =
1

4π
βk(sk)∆K(sk)dsk (3.29)

In our case we have

∆K(sk) =
−q2v

NpβEo
Im
(
ZISCdip

) ∫ +∞

−∞
ρ(s)2 ds. (3.30)

that provokes a tune shift

∆Qyk =
1

4π
βk(sk)

−q2v

NpβEo
Im
(
ZISCdip

)
dsk

∫ +∞

−∞
ρ(s)2 ds (3.31)

integrating over the whole circumference and defining the average betatron function β̄y

β̄y =
1

C

∮
C

β(s)ds, (3.32)

we have:

∆Qy =
1

4π

−q2v

NpβEo
Im
(
ZISCdip

)
Cβ̄y

∫ +∞

−∞
ρ(s)2 ds. (3.33)

Equation (3.26) is modified in

∆Qy = − qĪToβ̄y
8πβEoτ̂

Im
(
ZISCdip

)
C, (3.34)

and Eq. (3.28) in

∆Qy = − qĪToβ̄y
8π3/2βEoστ

Im
(
ZISCdip

)
C. (3.35)

These expressions become the ones obtained in the smooth approximation case specifying β̄y = R/Qyo .
The approach here described was derived in the case of a constant inductive impedance. It is

possible to extend it in a general way defining the effective impedance as will be introduced in the
following section.
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Tune shift from a generic impedance with ξ = 0

Let us consider now a generic impedance Z(ω) and calculate the induced tune shift at a given
intensity. Since we are interested in real tune shifts, we will consider only the reactive part of the
impedance2.

From the convolution in Eq. (3.7) we have that

F (W ∗ ρ) (s) = Z(ω)S(ω), (3.36)

where F denotes the Fourier transformation and S(ω) the beam spectrum. If the impedance is
broad enough over the beam spectrum, we can define an effective impedance as

Zeff =

∫ +∞

−∞
Z(ω)‖S(ω)‖2 dω∫ +∞

−∞
‖S(ω)‖2 dω

, (3.37)

where ‖S(ω)‖2 is the beam power spectrum. For a Gaussian beam distribution we have

‖S(ω)‖2 = e−ω
2σ2
τ . (3.38)

Approximating now Z(ω) with Zeff the impedance will be constant over the spectrum as in the
previous case of the ZISCdip .

The quadrupolar impedance can be included in this frame considering that in a kicked beam
performing betatron oscillation yi(s) ' ȳ(s). Therefore (3.8) becomes

d

d2s
yi(s) +K(s)yi(s) '

−q2

LβEo
ȳ ((Wdip +Wquad) ∗ ρ) (si). (3.39)

Equation (3.31) is modified substituting ZISCdip → Zeff = Zeffdip +Zeffquad. Having, for example, a
series of lumped impedances of devices with length Lk along which the betatron function βyk can
be assumed to be constant, we can calculate a tune shift of

∆Qy =
1

4π

−q2v

NpβEo

(∑
k

βyk(sk)Im
(
Zeffk

)
Lk

)∫ +∞

−∞
ρ(s)2 ds (3.40)

where we considered only the imaginary part of Zeff since in this work we are interested only in
tune shifts and not in rise times. For distributed impedances, like the resistive wall, the sum is
replaced by an integral

∆Qy =
1

4π

−q2v

NpβEo

(∮
C

β(s)Im
(
Zeff

)
ds

)∫ +∞

−∞
ρ(s)2 ds (3.41)

Particularizing for a constant distribution we have:

∆Qy =


− qĪTo

8πβEoτ̂

∑
k βyk(sk)Im

(
Zeffk

)
Lk, for k lumped impedances

− qĪTo
8πβEoτ̂

∮
C

βy(s)Im
(
Zeff

)
ds. for distributed impedances

(3.42)

For a Gaussian distribution we have

∆Qy =


− qĪTo

8π3/2βEoστ

∑
k βyk(sk)Im

(
Zeffk

)
Lk, for k lumped impedances

− qĪTo
8π3/2βEoστ

∮
C

βy(s)Im
(
Zeff

)
ds. for distributed impedances

(3.43)

From these expressions we can see how the tune shift with intensity constitutes the first global
parameter used to estimate the total machine effective impedance of an accelerator.

2Our approach could easily be extended to include the real part of the impedance and calculate the rise time of
an instability.
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3.2 Impedance-induced phase advance shift with intensity

From Eq. (3.30) we learned how the impedance effect could be treated as an additional defocusing
quadrupolar strength from which the tune shift could be calculated. In the general case, an
impedance Zeffk of length Lk meters long placed at position sk in the accelerator, has an equivalent
quadrupolar strength

∆K =
−q2v

NpβEo
Im
(
Zeffk

)∫ +∞

−∞
ρ(s)2 ds, (3.44)

From a global point of view, this perturbation provokes a tune shift as given in Eqs. (3.42)
and (3.43), while, from a local point of view, it provokes a beating in the betatron function βy(s),
the so called betatron beating (or β beating).

The β beating induced by a quadrupole error is given by [47], [48]:

∆βy(s)

βyo
= − βk

2 sin(2πQyo)
cos(2|ψy(s)− ψy(sk)| − 2πQyo)∆KLk, (3.45)

where βy(s) and ψy(s) are the perturbed beta and phase functions, while the subscript “o” refers
to the unperturbed ones, ∆βy(s) = βy(s) − βyo(s) and βk = βyo(sk) is the beta function at the
impedance (or kick) location. To compute the phase advance beating at the s location we solve

ψy(s) =

∫ s

0

1

βy(τ)
dτ + ψy(0). (3.46)

Setting the initial phase ψy(0) = 0 and developing the βy(τ) function at first order, we get

ψy(s) =

∫ s

0

1

βyo(τ) (1 + ∆βy/βyo(τ))
dτ =

=

∫ s

0

1

βyo(τ)
dτ −

∫ s

0

∆βy(τ)

β2
yo(τ)

dτ = (3.47)

= ψyo(s) + ∆ψy(s),

where ∆ψy(s) = ψy(s)− ψyo(s). Inserting (3.45) in (3.47) we obtain

∆ψy(s) =

∫ s

0

βyo(sk)∆KLk
2 sin(2πQyo)

1

βyo(τ)
cos(2|ψyo(τ)− ψk| − 2πQyo) dτ =

=
βk∆KLk

4 sin(2πQyo)

∫ s

0

2ψ̇yo(τ) cos(2|ψyo(τ)− ψk|) cos(2πQyo) dτ+

+
βk∆KLk

4 sin(2πQyo)

∫ s

0

2ψ̇yo(τ) sin(2|ψyo(τ)− ψk|) sin(2πQyo) dτ = (3.48)

= C(s) + S(s), (3.49)

where ψk = ψyo(sk). Naming (C) the cosine part of the integral and (S) the sine one, we can
develop separately the equation for cases ψyo(s) > ψk and ψyo(s) < ψk.

When ψyo(s) > ψk for the (C) part we obtain

(C) =
βk∆K

2 sin(2πQyo)
cos(2πQyo) sin(ψyo(s)) cos(ψyo(s)− 2ψk). (3.50)

For the sine part (S), we split the integration as

(S) =
βk∆KLk

4

∫ s

0

2ψ̇(τ) sin(2|ψyo(τ)− ψk|) dτ =

=
βk∆KLk

4

{
−
∫ sk

0

2ψ̇yo(τ) sin(2(ψyo(τ)− ψk)) dτ +

∫ s

sk

ψ̇yo(τ) sin(2(ψyo(τ)− ψk)) dτ

}
=

= · · · = βk∆KLk
4

(2− cos(2ψk)− cos(2(ψyo(s)− ψk)) =

=
βk∆KLk

2
− βk∆KLk

2
cos(ψyo(s)) cos(2ψk − ψyo(s)). (3.51)
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Summing (3.50) and (3.51) we get

∆ψy(s) =
βk∆KLk

2
+

βk∆KLk
2 sin(2πQyo)

cos(2ψk − ψyo(s)) sin(ψyo(s)− 2πQyo). (3.52)

For ψyo(s) < ψk, following the same procedure as before, we obtain

∆ψy(s) =
βk∆KLk

2 sin(2πQyo)
sin(ψyo(s)) cos(ψyo(s)− 2ψk + 2πQyo). (3.53)

Considering the normalized phase µ(s) = ψ(s)/2π we get

∆µy(s, sk) =


βk∆KLk

4π
+

βk∆KLk
4π sin(2πQyo)

cos(2ψk − ψyo(s)) sin(ψyo(s)− 2πQyo), for s ≥ sk,

βk∆KLk
4π sin(2πQyo)

sin(ψyo(s)) cos(ψyo(s)− 2ψk + 2πQyo), for s < sk.

(3.54)

Recognizing the definition of tune shift from Eq. (3.29) we get

∆µy(s, sk) =


∆Qyk +

∆Qyk
sin(2πQyo)

cos(2ψk − ψyo(s)) sin(ψyo(s)− 2πQyo), for s ≥ sk,

∆Qyk
sin(2πQyo)

sin(ψyo(s)) cos(ψyo(s)− 2ψk + 2πQyo), for s < sk.
(3.55)

A quadrupole error, therefore, produces a phase beating wave whose amplitude is given by the
corresponding tune shift, and presents a step equal to the tune shift at the impedance location.
The step will be positive for focusing errors, or negative for defocusing ones. In most of the cases
an impedance behaves as a defocusing quadrupole error giving rise to a descending step into the
beating wave at the impedance location.

The analytical formula in Eq. (3.54) has been benchmarked with MAD-X [49]. Figure 3.3
shows the phase advance step and wave provoked by a quadrupole error in section 71 in the PS as
seen from the 40 beam position monitors: a good agreement between the analytical approach and
MAD-X can be appreciated.
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Figure 3.3: Phase advance beating provoked by a quadrupole error in section 71 in the PS calculated
with MAD-X and the analytical formula.

A distributed impedance like the resistive wall and the space charge, on the contrary, will
produce a smooth descent in the beating wave. Since the impedance is distributed, we can calculate
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the response in phase ∆µy(s) taking the limit of Eq. (3.54) for Lk → dsk. We have

dµy(s, sk) =


dQ(sk) +

dQ(sk)

sin(2πQyo)
cos(2ψy(sk)− ψyo(s)) sin(ψyo(s)− 2πQyo) dsk, for s ≥ sk,

dQ(sk)

sin(2πQyo)
sin(ψyo(s)) cos(ψyo(s)− 2ψy(sk) + 2πQyo) dsk, for s < sk,

(3.56)

with

dQ(sk) =
βy(sk)∆Kdistr

4π
dsk. (3.57)

The phase advance beating is therefore calculated as

∆µy(s) =

∮
C

dµy(s, sk). (3.58)

3.3 Noise impact on the phase advance measurement

Before proceeding to the reconstruction algorithm, we are interested in the accuracy reachable in
case of real phase advance measurements, where the unavoidable presence of noise sets a lower
limit in the magnitude of the impedance that can be localized with this technique.

We will consider a simple model in which the measured signal presents an additive Gaussian
noise n(t) of standard deviation σn. The phase advance is measured between two beam position
monitor from sinusoidal signals s1 and s2 of same frequency Qo, amplitude A and normalized
phases µ1 and µ2:

BPM1 → s1(N) = A cos(2πQoNTo + 2πµ1) + n(NTo), (3.59)

BPM2 → s2(N) = A cos(2πQoNTo + 2πµ2) + n(NTo), (3.60)

where N is the number of recorded turns and To the revolution period.
We can define the Noise over Signal Ratio NSR, as NSR = σn/A.

Since we are interested in the betatron tune shift with intensity, that is in the order of ∆Q ' 0.01
or less, we need sufficient frequency resolution. A classical FFT will resolve ∆Qmin ∝ 1/N while
accurate iterative methods like SUSSIX [50] and NAFF [51] can give higher resolution up to
∆Qmin ∝ 1/N4 in case of pure sinusoidal signals filtered with Hanning window.
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Figure 3.4: Normalized standard deviation of tune (a) and phase advance (b) measurements with
NAFF and SUSSIX. The algorithm runs over 100 measurements for N up to 5500 turns with
additive Gaussian noise with NSR ∈ (5%, 10%, 15%, 20%, 25%). Dots are the simulated data,
lines are the fit.

In the case of noisy signals, the accuracy becomes poorer but still higher than a normal FFT:
Figures 3.4a and 3.4b show the reconstructed tune and phase advance for increasing number of
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turns and noise levels. As we can see the two codes are comparable with a better accuracy for
SUSSIX that will be therefore used for the phase advance measurements. Fitting the curves we
get

σQ = FQ
NSR

N
√
N
, (3.61)

for the accuracy in tune determination,

σ∆µ = F∆µ
NSR√
N

, (3.62)

for the accuracy in phase advance determination, and, in analogous way

σa = Fa
NSR√
N

, (3.63)

for the accuracy in amplitude. The F coefficients depend on the noise distribution and the method
adopted for the parameter accuracy determination: in SUSSIX FQ ' 0.55, F∆µ ' 0.63 and
Fa ' 1.01; in NAFF FQ ' 1.46, F∆µ ' 1.12 and Fa ' 2.11.

What we are interested in, by the way, is not only the accuracy in phase advance measurements,
but the accuracy of the phase advance slope with intensity. If we imagine to have a set of M phase
advance measurements at different intensities X ∈ (X1, X2, . . . , XM ) with negligible uncertainty
in the intensity measurement, assuming the same accuracy in phase advance for each measurement
as given in (3.62), the accuracy in the phase advance slope with intensity σ∆µ/∆Nb will be given
by [52]

σ∆µ/∆Nb = F∆µ
NSR

σX
√
M
√
N
, (3.64)

where σX is the standard deviation of the intensity scan X. This equation deserves some comments.
In order to increase the resolution on phase advance (i.e. reduce σ∆µ/∆Nb) one could:

• Increase the number of turns N . This can be done settling the chromaticity ξ very close
to zero and reducing detuning with amplitude if necessary (with octupoles). In this way a
kicked beam will oscillate at almost constant amplitude and the BPM system can acquire
the transverse oscillations up to a limit given by the data storage memory. For example, the
maximum number of turns that can be stored in the CERN-PS machine is N = 5000.

• Increase the number of measurements M . If the machine refill time is negligible, this param-
eter can be pushed typically up to M = 100. A too long measurement time could be affected
by the machine parameter drift with time.

• Increasing the intensity scan σX . This is limited, at low intensity, by the BPM gain that
needs always to be adjusted to the intensity range under study, at high intensity, by machine
non-linearities that would affect the beam betatron motion, or by beam instabilities (TMCI,
etc.).

• Decreasing the NSR. This can be done up to some extent using an SVD noise reduction
to clean the noise correlated between BPMs, or enhancing the signal amplitude (kicking
more). This last option is limited by the machine physical aperture and non-linearities such
as detuning with amplitude.

• Decreasing the F∆µ. This factor is related to the noise distribution coming from the BPM
system, and to the method used to perform the FFT. The former can hardly be reduced
being linked to the machine hardware, as well as the second, related to the specific method
used to calculate the FFT.
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3.4 The impedance database: example of the PS machine

Modern accelerator machines are carefully monitored from the impedance point of view. We present
here the PS impedance database developed in order to keep track of the machine impedance and
compare the impedance measurements and the expectations.

Taking the example of a Gaussian beam, we defined the tune shift induced by an impedance
source in Eq. (3.43). Taking the derivative with respect to the intensity scan we can define the
tune shift with intensity ∆Qyk/∆Nb as

∆Qyk/∆Nb = − q2

8π3/2βEoστ
βyk(sk)Im

(
Zeffk

)
Lk, (3.65)

and for distributed impedances,

∆Qy/∆Nb = − q2

8π3/2βEoστ

∮
C

βy(s)Im
(
Zeff

)
ds. (3.66)

We estimated the phase advance signal induced from a localized impedance source in Eq. (3.55)
and we can define Ak as the impedance-induced phase advance beating amplitude as

Ak =
∆Qyk/∆Nb
sin(2πQyo)

=
βk∆K/∆NbLk
4π sin(2πQyo)

. (3.67)

If the impedance, on the other side, is distributed, the impedance-induced phase advance beating
signal will be a superposition of distributed sources whose result, as we will see later on, is a
decreasing slope in the phase advance versus intensity.

The amplitude Ak should be directly compared to the measurement accuracy Ath = σ∆µ/∆Nb

in order to predict the measurement feasibility. At the same way, considering both Eqs. (3.67)
and (3.65) we can define an impedance threshold Zth as

Zth = −Ath
8π3/2βEoστ
βy(s) q2

sin(2πQyo), (3.68)

where we immediately notice the inverse proportionality with the β function: increasing the β func-
tion increases the impedance-induced phase advance signal, reducing the corresponding impedance
threshold.

The impedance budget has been calculated for different energies: injection, (T = 1.4 GeV), flat
bottom (T = 2 GeV) and extraction (T = 25 GeV). We might notice that at different energies the
impedance changes accordingly to the relativistic β, and the indirect space charge, in particular,
can become a relevant source of distributed impedance.

The accelerator lattice parameters, such as the horizontal and vertical tunes Qx,y, the twiss
functions (phase advance µ(s), β function βx,y(s), dispersion Dx,y(s), etc.) change depending on
the energy and the lattice configuration. In particular, the variation of the β function can directly
affect the effect of the impedance on the transverse beam dynamics. Table B.1 resumes the most
important parameters relevant for the 2 GeV lattice.

The detrimental effect of the impedance is related to the spectrum sampled by the beam.
Recalling the effective impedance definition in Eq. (3.37), for a Gaussian beam we have

ρ(t) =
1√

2πσt
e
−
t2

2σ2
t , (3.69)

from which the spectrum

S(ω) = e−
(ωσt)

2

2 (3.70)

A typical beam used for high intensity scans is the TOF beam whose parameters are summarized
in the following table:

Once energy and beam parameters are defined the effective impedance corresponding to each
element in the accelerator lattice, lumped or distributed, can be quantified. In the following we
present the main elements that have been so far evaluated. The energy of interest is T = 2 GeV
as it is the one adopted for the transverse impedance localization measurements.
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TOF beam Parameter Value

Momentum spread dp/po 2 · 10−3

Bunch length 4 · σt 90 ns

Horizontal emittance εx 15µrad

Vertical emittance εy 8µrad

Table 3.1: TOF beam parameters used in the PS impedance budget.

Resistive wall and indirect space charge

The resistive wall impedance has been evaluated taking into account the different materials that
constitute the beam pipe: 20% of the machine beam pipe is made of 1.5 mm thick Inconel Al-
loy X750 (conductivity σc = 8.3 · 105 S/m) and 70% of 2mm thick stainless steel (conductivity
σc = 1.3 · 106 S/m). The remaining 10% is constituted by insertion devices treated separately. The
vacuum chamber, that has the so-called racetrack shape, has been considered to be round with
a radius of 35 mm or flat. The transverse effective impedance is about the same for the two ge-
ometries: 0.29 MΩ/m and 0.35 MΩ/m for respectively the round chamber (35 mm of radius) and
parallel plates. For the parallel plates, the dipolar and quadrupolar impedance contributions are of
same sign for the vertical plane and the total vertical impedance is increased by a factor 1.2 with
respect to the round chamber case, but for the horizontal plane the parallel plates model gives zero
total impedance due to the perfect compensation of dipolar and quadrupolar components of the
impedance. The impedance has been evaluated with the 2D − Axi code [13] taking into account
the indirect space charge contribution. In table 3.2 we have summarized the results of the indirect
space charge contribution for injection (T = 1.4 GeV), flat bottom (T = 2 GeV) and extraction
(25 GeV) kinetic energies. We assume that the parallel plates and the smaller round chamber can
be used for the vertical plane, while an intermediate value between the two round pipes can be
used for the horizontal plane. Focusing at 2 GeV, Figure 3.5 shows the vertical (i.e. equal to the

Kinetic energies 1.4 GeV 2 GeV 25 GeV

Flat chamber 6.0 MΩ/m 3.7 MΩ/m <0.5 MΩ/m

Round chamber (r=35 mm) 4.9 MΩ/m 3.0 MΩ/m <0.5 MΩ/m

Round chamber (r=73 mm) 1.1 MΩ/m 0.7 MΩ/m <0.1 MΩ/m

Table 3.2: Indirect space charge contributions to the total transverse effective impedance at dif-
ferent kinetic energies for round chamber and parallel plates.

horizontal) dipolar and quadrupolar impedance calculated with the 2D − Axi code. Operating a
Fourier transform we get the wakefields corresponding to the calculated impedances. Figure 3.6
shows both the calculated dipolar and quadrupolar wakefields.

Steps, vacuum ports, bellows

Other elements, such as bellows, connections between the beam pipe and the vacuum pumps
and other beam pipe step transitions have been evaluated because, notwithstanding their low
impedance, due to their number, the total contribution cannot be ignored. For the machine
impedance budget it has been evaluated the contribution of 200 bellows, 100 vacuum pumps and
60 vacuum chamber steps.
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Figure 3.5: Total dipolar (a) and quadrupolar (b) resistive wall impedance calculated for the PS
accelerator. The impedance includes the indirect space charge contribution at 2 GeV.
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Figure 3.6: Total resistive wall wakefield for the PS accelerator. The wakefield includes the indirect
space charge contribution at 2 GeV.

Kickers

Another important source of impedance is represented by the kickers. There are different kinds
of kickers which give different contributions to the transverse effective impedance. Some of them
(delay-line kickers) have a segmented ferrite inside, while others not. These kickers have been
simulated with CST Microwave Studio [10] and compared with measurements [53] revealing a very
good agreement in particular for the vertical plane. Also the other segmented kickers have been
simulated in the same way, while, at the moment, for the lumped inductance kickers, which are
not segmented, the impedance has been evaluated by using the field matching technique [11] also
taking into account the quadrupolar impedance component [54]. The contribution of all the kickers
is less than 0.03 MΩ/m in the horizontal plane, and about 1.4 MΩ/m in the vertical one.

Cavities

RF cavities have been also taken into account, but a first estimate of the contribution of the 10
MHz cavities does not seem to indicate a strong impact in the transverse plane.

Septa

Finally, a first estimate of the septa contribution (electrostatic and magnetic) does not seem to
dramatically change the total budget, giving an effective impedance of some kΩ/m.
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Figure 3.7: Vertical effective impedance for elements in the PS impedance model. Cavities are
called C, kickers KFA or BFA, septa SMH or SES.

According to the above analysis Figure 3.7 shows the calculation of the effective impedance
Zeffk for each element (its length Lk is included). The full impedance model is reported in App. C.
As already introduced, most of the impedance is dominated by the indirect space charge (in the
ReWall contribution) and the kickers. Figures 3.7 and 3.8 summarize the effective impedance and
the corresponding tune shift for the vertical plane.
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Figure 3.8: Vertical tune shift with intensity normalized to 1011 ppb for each element in the PS
impedance model.

Figure 3.9 shows the total impedance calculated summing the impedances of each element as
a function of frequency up to 1 GHz.
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3.5 The HEADTAIL code

HEADTAIL is a macro particle code in which the interaction of a beam with an impedance is
simulated. The existent version of HEADTAIL [55, 56] has been extended [57] in order to include
the possibility of having distributed impedance kicks in different accelerator locations: this is
important if one is interested in the study of the phase advance variation with intensity between
consecutive BPMs.
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Figure 3.10: Structure of the HEADTAIL code interface with wakefield manager and lattice man-
ager.

Figure 3.10 shows the HEADTAIL structure interface: the wakefields are stored in a wakefield
repository where these are managed and inserted in the accelerator lattice by a wakefield man-
ager. The lattice repository allows the user to choose between different accelerator machine and
the corresponding MAD-X descriptions. Once the machine and the wakefields are defined, the
HEADTAIL simulation can be executed and the output collected. A specific description of each
module will be given in the following.

• Wakefield Repository: The wake repository consists of a collection of .wake and .reso
files that respectively describe a generalized or a resonator wakefield: a generalized wakefield,
following the convention initiated in [58], is described by 9 columns (time T [ns], dipolar wakes
W dip
x [V/(mm pC)] and W dip

y [V/(mm pC)], quadrupolar wakes W quad
x [V/(mm pC)] and

W quad
y [V/(mm pC)], coupled terms W dip

x,y [V/(mm pC)] and W quad
x,y [V/(mm pC)], constant

terms W const
x [V/pC] and W const

y [V/pC], and longitudinal wake W long [V/pC]), over which a
subset can be chosen for simulation as specified in the wake manager ; a resonator impedance
is given by the definition of the transverse and longitudinal quality factor, resonant frequency
and shunt impedance.

• Wakefield Manager: In order to be able to run simulations with different impedances
(resistive wall, kickers, cavities, etc.), placed in different locations, the wakefield manager
will read a .info file that contains information about the impedance we want to place in
the lattice. As resumed in the example of Tab. 3.3 the wake specified by NAME can be
placed in an arbitrary POSITION in the lattice. Specified the kind of INTERACTION and the
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TABLE_TYPE (“0” for a resonator, “1” for a wake table with columns specified by TABLE_TYPE)
the wake can be scaled to match specified β functions (useful for wakes that represent lumped
description of long devices) or multiplied by a multiplication coefficient. In the given example

NAME: REWALL

POSITION: 201.06

INTERACTION: IMPEDANCE

TYPE: 1

TABLE_TYPE: 4

SCALE: 1

BETX: 17.35

BETY: 16.88

MULTIPLY: 0

MULTIPLY_COEFF: -

Table 3.3: Wake manager description for a resistive wall kick: example of a REWALL.info file.

the REWALL.info file will point to the REWALL.wake file where the wake table is given.
Specifying a different value for TABLE_TYPE it is possible to select a subset of the 9 columns
required for the generalized wakefield description. Table 3.4 specifies the components selected
corresponding to each choice of TABLE_TYPE.

TABLE TYPE Columns in the .wake file

1 T , W long

2 T , W dip
x , W dip

y

3 T , W dip
x , W dip

y , W long

4 T , W dip
x , W dip

y , W quad
x , W quad

y

5 T , W dip
x , W dip

y , W quad
x , W quad

y , W dip
x,y , W long

6 T , W dip
x , W dip

y , W quad
x , W quad

y , W dip
x,y , W quad

x,y

7 T , W dip
x , W dip

y , W quad
x , W quad

y , W dip
x,y , W quad

x,y , W long

8 T , W dip
x , W dip

y , W quad
x , W quad

y , W dip
x,y , W quad

x,y , W const
x , W const

y

9 T , W dip
x , W dip

y , W quad
x , W quad

y , W dip
x,y , W quad

x,y , W const
x , W const

y , W long

Table 3.4: Different table selection for wakefield components.

• Lattice repository: HEADTAIL is interfaced with MAD-X for the lattice generation and
machine parameters matching (like tune and chromaticity). The machine lattices are kept
inside a specific folder with the name of the machine. Once a machine is specified, HEADTAIL
will perform the following operations:

1. Reading the .info files specified in the configuration file.

2. Placing the impedances along the lattice and, if needed, installing new element in the
lattice.

3. Making a structure of each element to handle the twiss parameters easily.

4. Constructing the transport matrices from one element to the other.

5. If the impedances have to be lumped at one point in the ring, summing the total
wakefield and using the one turn map for transport.

Four types of elements are present at the moment:

– START: always present, it is the starting point of the machine.
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– H/VMONITOR: horizontal (H) or vertical (V) monitors corresponding to the BPM specified
in the MAD-X lattice.

– IMPEDANCE: element corresponding to the wakefield interaction point.

– AC DIPOLE: AC dipole beam excitation element.

Every element in the lattice is treated as a structure object: the lattice manager creates a
structure in HEADTAIL with all its optic functions. Once the lattice is created, each element
is characterized by a 4-D matrix associated to the optic transport from its point in the lattice
to the following one. HEADTAIL therefore transports the particles for the specified number
of turns updating synchrotron motion, chromaticity and octupole detuning as a rotation at
the end of each turn.

The process of lumping impedances in one location from different ring positions deserves
further explanation. From Eq. (3.65) we understand that the tune shift ∆Qyk/∆Nb is pro-

portional to the βyk(sk) function in the kick point sk and the impedance itself
(
Zeffk

)
Lk.

We can therefore write:
∆Qyk/∆Nb ∝ βykZkLk. (3.71)

Lumping the Zk impedance at the START where the β function is βo we would have

∆Qyo/∆Nb ∝ βyoZkLk. (3.72)

To have the same effect of the impedance in sk we need to scale Zk at START by

Zo = βyk/βyoZkLk. (3.73)

For an homogeneous distribution of impedance along the ring we would have

Zo =

∮
C

βy(s)/βyoZds = ZCβ̄/βyo , (3.74)

where β̄ is the average β function in the plane of interest.3

• HEADTAIL: The core part of the code is shown in Fig. 3.11. The simulation setup is
listed in a configuration (.cfg) file, where information like number of turns to be simulated,
wake manager directives, machine lattice, tune and chromaticities, etc., are specified (see
App. D.1 for an example of the PS HEADTAIL model at 2 GeV). After the file opening and
the lattice and bunch distribution initialization, the loop over the number of turns starts. For
each turn all the elements are processed and particles are transported between them. Before
each turn iteration the bunch is sliced in a specified number of slices and the macro particles
distributed among them. If the START element is processed, the prt.dat file is written with
useful centroid motion information. A restricted set of centroid motion information is written
on separate files when an element H/VMONITOR is processed. When an IMPEDANCE interaction
is modeled, the wake kick is calculated for each of the slice and then applied to each particle
in the bunch. When an AC DIPOLE excitation is set up the beam interacts is excited at the
AC dipole driving frequency (see Sec. 4.3 for more details).

• OUTPUT: All the simulation informations and results are collected in a specific folder in
which the following list of files are collected:

1. HDTL_average_lattice.dat: This file contains a MAD-X twiss file for the complete
machine simulated.

2. HDTL_selected_lattice.dat: This file contains a MAD-X file for the elements that
were selected for the tracking.

3. Prb.dat: This file contains a snapshot of the phase space (id, x,x′,y,y′,z,z′) at the turns
selected in the configuration file. 100 particles are taken randomly along the first bunch.

3One should note that β̄ is different from the β̂ = R/Q of the smooth approximation. In the SPS, for example,

with an integer tune of 26 in the vertical plane we get β̂ = 41m and β̄ = 52m, i.e. 25% more.
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Figure 3.11: Internal structure of the HEADTAIL code.

4. Pini.dat: This file contains a snapshot of the initialized phase space (x,x′,y,y′,z,z′),
1000 particles are taken randomly.

5. Bunchds.dat: This file contains a snapshot of the longitudinal distribution in space
s [m] and particle density Np(s) for the bunch after all the interaction have been made
at the turns selected in the configuration file. The bunch extends from -5σb to +5σb
where σb is the rms bunch length.

6. Prt.dat: General tracking information files referring to the START point in the lattice.
The columns are given by:

(a) Time step: sampled time in which the beam passes at START.

(b) X̄: average centroid X [m].

(c) X̄ ′: average centroid X ′ [rad].

(d) Ȳ : average centroid Y [m].

(e) Ȳ ′: average centroid Y ′ [rad].

(f) Z̄: average centroid Z [m].

(g) ¯dp/p: average centroid p/p.

(h) σ̄x: average horizontal beam size [m]4.

(i) σ̄y: average vertical beam size [m]4.

(j) σ̄z: average longitudinal beam extension [m].

(k) σ̄dp/p: average beam momentum spread.

(l) εxn : beam normalized horizontal emittance [mm mrad]5.

(m) εyn : beam normalized vertical emittance [mm mrad]5.

(n) εl: beam longitudinal emittance [eV s]5.

4since the starting point can have αx,y 6= 0, < σx,y > are not generally referred to a flat ellipse.
5Calculated as εy =

√
< y2 >< y′2 > − < y >< y′ >2 for a centered beam.
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(o) Jx: Horizontal action variable [m]6.

(p) Jy: Vertical action variable [m]6.

(q) εl = 4πσlσ∆E : beam longitudinal emittance [eV s]7.

(r) ρy,z: Y-Z correlation.

(s) Effective number of particles (Ntot −Nlost)/Ntot.
7. *.track: File containing the wake used in the simulated interactions sampled at each

slice where the interaction is calculated.

8. Sample.dat: Net bunch energy loss per turn in case of longitudinal impedance. The file
contains the turn number the energy loss per turn dpturn [MeV], referred to the bunch
under study.

9. Hdtl.dat: Headtail monitor emulator.

10. Inph.dat: Collects informations about the longitudinal matching number, total number
of macro particles, bunch and slices used in the simulation, the percent of beam loss
and the pipe average apertures.

11. lumped.wake: if the lump option is chosen, in this file will be printed the total wake
weighted at START.

3.5.1 Example: single impedance source

A first simple case was simulated in HEADTAIL: a single PS kicker impedance source corresponding
to the kicker KFA71 was placed at its position at 447.03 m from the START conventionally located
at the reference BPM named PR_UHV00. The PS is divided in 100 sections and the 71th corresponds
to the one hosting the KFA71 kicker.

A TOF bunch was simulated with the parameters reported in Tab. 3.1, over an intensity scan
from 2 · 1011 to 2 · 1012 ppb. The HEADTAIL configuration file is listed in App. D.1. The phase
advance from the reference BPM has been therefore measured for each intensity and the phase
advance shift calculated.

The black curve in Fig. 3.12 shows the phase advance shift with intensity. A clear step in the
phase beating signal is visible corresponding to the KFA71 location.
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Figure 3.12: Phase advance shift with intensity simulated with HEADTAIL in the case of the
KFA71 impedance.

We reconstruct the impedance position recurring to a least square matrix inversion using the
response matrix calculated with Eq. (3.54). Given a NBPM number of BPMs and Nk number
of reconstruction points where an impedance kick ∆K/∆Nb could be given, we define S as the
NBPM×Nk response matrix calculated with Eq. (3.54). In our case NBPM = 42, the total number
of simulated BPMs, and we placed the impedance reconstruction points in each of the 100 machine
sections, so that Nk = 100 and S has dimensions 42 × 100. We define the vector ~B the vector

6Calculated as Jx = 1
2βx

(x2 + (βx′ + αxx)2).
7This is an approx. for a beam whose dimension in longitudinal phase space are smaller in comparison to the

bucket dimension.
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containing the values of the phase advance shift with intensity at the BPM locations, and ~∆K/∆Nb
the vector of the impedance kick strength ∆K/∆Nb at the reconstruction points. We therefore
have

~B = S · ~∆K/∆Nb, (3.75)

and the problem of the impedance localization reduces to the pseudo-inversion of the matrix S in
order to get the correct value of ~∆K/∆Nb.

We can constraint the problem solution with the following observations coming from the physics
of beam-impedance interaction:
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Figure 3.13: Reconstruction of the kicker KFA71 impedance simulated with HEADTAIL. (a)
shows the reconstructed impedance-induced phase advance beating amplitude (in black) and the
accuracy threshold (in red); (b) shows the reconstructed impedance (in black), the expected from
the impedance model (in green) and the threshold by the Gaussian noise added to the BPM signals
(in red) which is zero in this case; (c) shows the simulated phase advance slope with intensity at
the BPM locations (in black) and the slope from the reconstructed impedance positions (in red).

1. Defocusing impedance: the observed tune shift negative is (at least in the vertical plane)
for a kicker device, we can constraint the reconstruction since imposing ∆K/∆Nb > 0
which means a defocusing impedance effect8. Imposing a ∆Kmax/∆Nb corresponding to
the impedance of 1 MΩ/m we can also set an upper limit to the values of ∆K/∆Nb.

2. Total impedance: The sum of the strength of each reconstructor should be close to the
total machine impedance measured with the tune shift measurement.

3. Impedance model: The reconstruction location can be constrained excluding those posi-
tions in which a high impedance is not expected to be present (drifts, dipoles, etc.).

Figure 3.13(a) shows with the black curve, the reconstructed impedance-induced phase advance
beating amplitude Ak, and with the red curve, the threshold of the measured accuracy, set in
this case to zero since we performed a noise-free simulation. Figure 3.13(b) shows the impedance
reconstructed values at the reconstructed positions (in black), together with the model expectation
(in green) and the measurement threshold (in red). The impedance is correctly found in section 71

8Conventionally ∆K < 0 corresponds to a defocusing element, here it is intended with sign.
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and the magnitude is close to the expected one from the impedance model (PE.KFA71 in App. C).
The good quality of the reconstruction can be appreciated in Fig. 3.13(c) comparing the simulated
(in black) and reconstructed (in red) phase advance slope.

Having virtually no noise in the simulation, the impedance threshold given by the accuracy
reachable in the phase advance measurement is zero. Artificially introducing additive Gaussian
noise to the measured BPM turn by turn signals, we can simulate the typical measured signal
from a BPM, and crosscheck accuracy and reconstruction from Eqs. (3.64) and (3.68) where we
considered for simplicity the machine average β function. In the following we will show the study of
the impedance reconstruction adding Gaussian noise with increasing standard deviation σn (0µm,
10µm, 30µm and 50µm) to the simulated BPM tracking signals.

Most of the information involved in the impedance localization measurement can be gathered
in a localization map where we directly compare the accuracy in the phase advance measurement
σ∆µ/∆Nb and the impedance induced phase advance amplitude Ak. Figure 3.14 shows the illus-
trated cases of σn ∈ (0µm, 10µm, 30µm and 50µm): in the first two cases, the accuracy reachable
is below the amplitude Ak calculated for the section 71 (i.e. hosting the kicker KFA71) and the
impedance, as shown in Fig. 3.15, can be localized; in the third case the accuracy starts to be com-
parable with the impedance and the reconstruction is not obvious; in the last case, the accuracy
is not enough and the impedance cannot be localized. It is important to notice that:

1. The predicted and measured (from simulations) accuracy are in good agreement.

2. Having added a constant σn does not imply a constant NSR since the BPM signal amplitude
varies with the β function at the BPM locations.

3. The accuracy points lie on a line which is defined by Eq. (3.64) when NSR is the independent
variable. If we imagine to fix the impedance to be localized, i.e. we fix the amplitude Ak,
we should set the number of measurements M , turns N , and the scan width σX , in a way
that the accuracy in phase advance slope is below the amplitude Ak. If we imagine to fix,
on the other side, the machine BPM system NSR, as it is often the case, we could infer the
maximum amplitude (and therefore the maximum impedance), that could be localized.
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Figure 3.14: Localization Map showing the impedance induced phase advance amplitude for
the kicker in section 71, the predicted and estimated phase accuracy in the different cases
σn ∈ (0µm, 10µm, 30µm and 50µm) and the accuracy line. If the phase accuracy is below the red
line, the impedance can be localized.

The localization map allows to quickly make predictions about the measurement requirements
unifying the information about the machine impedance model and the machine BPM characteris-
tics. For example we may infer that the maximum NSR allowed to localize the KFA71 kicker is
NSR ' 4%.
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Figure 3.15: Impedance localization (left side) and reconstruction (right side) for σn = 0 um (a,e),
σn = 10µm (b,f), σn = 30µm (c,g) and σn = 50µm (d,h). Below σn = 50µm the impedance can
still be reconstructed.

Figure 3.15, shows on the right side the phase advance slope in the four cases with the corre-
sponding reconstruction curve. The phase measured can still be reconstructed for σn = 10 um and
σn = 30 um while it appears to be corrupted in the last case. On the left side the corresponding
impedance reconstruction is shown with the same conclusions.

3.5.2 Example: resistive wall

In accelerator machines, especially at relatively low energies, the resistive wall and indirect space
charge impedance represent the major contribution to the machine impedance budget. The effect
on the impedance localization measurement is not negligible. If we consider the previous case of
Fig. 3.13 in which an impedance source was provoking a step at its impedance location, we can
imagine that a distribute impedance will provoke a monotonic downward slope in the measured
phase advance shift with intensity. This is illustrated in Fig. 3.16 where 100 kicks of resistive wall
impedance and indirect space charge (see Fig. 3.6) were simulated with HEADTAIL.

The choice of 100 kicks implies an impedance kick roughly every 6 m in the PS machine with
an average resistive wall kick given by 3 MΩ/m/100 = 30 kΩ/m.

The reconstruction method is for this case slightly different. Since we have only distributed
impedance, the condition ∆K/∆Nb > 0 is over constrained and would lead to long calculation
time for the minimization of the least square problem in Eq. (3.75). We can, instead, process the
measured phase advance slope subtracting the signal provoked by an homogeneously distributed
impedance. Given a value of Zdistr, we can calculate the equivalent ∆Kdistr/∆Nb from Eq. (3.44).
In particular, for a Gaussian bunch, we get

∆Kdistr

∆Nb
= − q2

2
√
πβEoστ

Im
(
Zdistr

)
. (3.76)
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Figure 3.16: Phase advance shift with intensity simulated in HEADTAIL in the case of resistive
wall and indirect space charge impedances.

Using this equivalent strength, we can calculate the response matrix from the whole accelerator
to calculate ∆µdistr(s)/∆Nb from Eq. (3.58). Once the phase advance calculated from distributed

sources is subtracted from the simulated one, the residual | ~B − S · ~∆K
distr

/∆Nb| can be inverted
following the procedure described in Sec. 3.5.1 where we set a maximum number of iterations of
Tmax = 1000 in the least square inversion. Figure 3.17 shows the values of the residual norm (a)
and the least square iterations (b) varying Zdistr. For values smaller than 2.8 MΩ/m the conver-
gence time sharply saturates to Tmax, while it is constant for higher values. On the other side,
the residual norm grows from 2.8 MΩ/m. Figure 3.18 shows the reconstruction of the phase ad-
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Figure 3.17: Evolution of the residual norm (a) and number of least square iterations (b) for
different values of Zdistr = 2.8 MΩ/m. The distributed impedance reconstruction is optimized at
the curve minimum between number of iterations and residual norm value.

vance slope (b) with the corresponding impedance distribution (a): the total impedance measured
with the tune shift (Ztot = 3.09 MΩ/m), is in good agreement with the reconstructed impedance
(
∑
Zk = 2.98 MΩ/m) which is the sum of the distributed impedance and the one calculated from

the residual. This value is close to the 3.2 MΩ/m calculated in App. C.
We may note that, with respect to the simulation, we cannot exactly reconstruct the 100

impedance kicks placed in the accelerator but we have a good approximation as sum of the dis-
tributed impedance and lumped residual one. This is not a limitation since the lumped residual
kicks are comparable in amplitude with the distributed impedance. The small discrepancy comes
from the discrete behavior of the simulated impedance which is only conceptually referring to the
distributed resistive wall since consists in 100 kicks in specific locations. In reality we are in the
case of really distributed impedance.

We will now simulate a more general case involving both lumped impedances and distributed
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Figure 3.18: Impedance reconstruction in the case of 100 resistive wall and indirect space charge
kicks HEADTAIL simulation.

ones.

3.5.3 Example: multiple impedance sources and resistive wall

The last example deals with the impedance localization of multiple impedance sources with re-
sistive wall and indirect space charge contribution. We simulated with HEADTAIL all the kicker
impedance sources in the PS, which wakefields were calculated for simplicity with the Tsutsui’s [11]
model9.
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Figure 3.19: Phase advance shift with intensity simulated in HEADTAIL in the case of kickers,
resistive wall and indirect space charge impedances.

The resistive wall impedance, and its indirect space charge component were simulated with 100
kicks equally spaced in the machine. The phase advance slope in Fig. 3.19, exhibits the contribution
coming from distributed kicks ∆Kdistr/∆Nb and a series of lumped kicks ∆Klump/∆Nb, in this
case corresponding to the kickers.

Trying to isolate the contribution of the distributed impedance like in the previous example
is this time not effective. As shown in Fig. 3.20 many different values for distributed impedance
correspond to acceptable values of the residual norm and number of least square iterations: when
the distributed impedance is not enough to describe the phase advance, the lumped impedance

9Some kicker have been simulated in CST to take into account the segmentation contribution (see App. C)
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overcomes the limitation and vice versa. This is, by the way, not a strong limitation for the
purpose of the measurement: a model is often available for the resistive wall and indirect space
charge impedance, that constitutes a starting point for the distributed impedance estimation and
the localization studies.
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Figure 3.20: Evolution of the residual norm (a) and number of least square iterations (b) for
different values of Zdistr. The interplay between many lumped impedances and the distributed
impedance does not allow for a not unique choice of Zdistr.

We show the impedance reconstruction in Fig. 3.21 allowing for the distributed impedance
value of Zdistr = 3 MΩ/m: both total and summed impedance are in good agreement as well as
the lumped impedance amplitude with the model.
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Figure 3.21: Impedance reconstruction in the case of all the kickers, resistive wall and indirect
space charge kicks HEADTAIL simulation.

Adding a Gaussian noise of σn = 5 um to the BPM data, we can study the reconstruction
problem in case of distributed impedance and lumped ones. The amount of noise we add is
sufficient to localize the highest kicker impedance sources in sections 21 and 71 as shown in the
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Figure 3.22: Localization Map showing the impedance induced phase advance amplitude for all
the kickers together with the predicted and estimated phase accuracy in the case of NSR 0.5%
and the accuracy line. If the phase accuracy is below the red line, the impedance can be localized.

localization map in Fig. 3.22. We may notice that the accuracy line is steeper than the one shown in
Fig. 3.14. This is because in the first case we have all the machine impedance model (restricted to
all the kickers and the wall impedance), while in the second case, only one of the machine kickers: in
the first case the increased impedance moves down the intensity threshold due to Transverse Mode
Coupling Instability (TMCI) therefore restricting the intensity scan available. As a consequence, as
shown in Eq. (3.64), restricting the intensity scan decreases the measurement accuracy resulting in
a steeper accuracy line. This effect, in reality, would be partially compensated by the direct space
charge: the center of mass oscillation (i.e. the tune) is not perturbed by the direct space charge
force being affected by internal forces, while the other modes are shifted downwards increasing the
TMCI threshold [8].
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Figure 3.23: Phase advance shift with intensity simulated in HEADTAIL in the case of kickers,
resistive wall and indirect space charge impedances with additive Gaussian Noise of σn = 5 um.

After the calculation of the phase advance shift with intensity from the BPMs shown in Fig 3.23,
we can reconstruct the impedance following the procedure of the noise-free case. We notice that, in
this case, the simulated phase advance slope ~B exhibits error bars ∆ ~B according to Eq. (3.64). In
order to take into account also the error bar information, we perform a sensitivity analysis of the
least square inversion perturbing ~B with a phase signal extracted by a Gaussian aleatory process
with standard deviation ∆ ~B and null average. The result of the inversion and the statistical
inversion is shown in Fig. 3.24 where we chose a distributed impedance of 3 MΩ/m. As we observe,
the kickers in sections 21 and 71 could be localized, and some hint of impedance is visible for the
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Figure 3.24: Impedance reconstruction in the case of all the kickers, resistive wall and indirect space
charge kicks HEADTAIL simulation and additive Gaussian noise. The distributed impedance is
set to 3 MΩ/m.

kicker in section 28. The kickers in the first sections are instead of small amplitude and could not
be uniquely localized.

We conclude the study noticing that, varying the distributed impedance from 3 MΩ/m to
2.5 MΩ/m and 3.5 MΩ/m, the picture gets basically unchanged for the impedance position point
of view, as reported in Fig. 3.25.
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Figure 3.25: Impedance reconstruction in the case of all the kickers, resistive wall and indirect
space charge kicks HEADTAIL simulation and additive Gaussian noise, changing the background
impedance from 3 MΩ/m to 2.5 MΩ/m and 3.5 MΩ/m.
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3.6 0-current optics

As a direct consequence of our analysis, we can derive the machine optic model virtually at
Nb = 0 ppb. The impedance localization measurement, in fact, searches for intensity dependent
errors that provoke a linear tune and phase shift with intensity. Extrapolating the intercept at
Nb = 0 ppb we recollect the machine optics and the static errors that are unavoidably present.

The knowledge of the model is essential in order to correctly perform the impedance recon-
struction. As we have shown in Eq. 3.54, knowing the measured phase at 0-current allows us to
construct the response matrix S for the problem inversion. Figure 3.26a shows the measured (from
simulation) phase advance for the last analyzed case of multiple impedance sources, resistive wall,
indirect space charge and additive noise. The comparison with the optic model reveals a phase
beating of ' 5% between the simulated and the MAD-X optical model. Since Eq. 3.54 takes into
account the phase advance at the BPM positions, we can directly use the measured phase advance
in place of the MAD-X one: this is very useful in case optical errors (like quadrupole misalignment,
field errors, etc.) are not taken into account in the MAD-X model. Moreover, the interpolation
of the measured model over the reconstructor positions allows to have a better estimation of the
phase advance at the kick position.

Figure 3.26b shows the measured (from simulation) β function and the comparison with MAD-
X. The β function is calculated using the 3-BPM method as in [59]. The comparison with the
optic model reveals a phase beating of ' 5% between the simulated and the MAD-X optical
model, which is expected since the method derives the β function from the phase advance between
BPMs. Unfortunately deriving the β function is not model independent, in the sense that a
knowledge of the MAD-X machine optics is required. Nevertheless, also the measured β functions
can be plugged into Eq. 3.54 allowing for an accurate description of the machine model and the S
response matrix.
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Figure 3.26: Measured (from simulation) phase beating (a) and β beating (b) in the case of of
all the kickers, resistive wall and indirect space charge kicks HEADTAIL simulation and additive
Gaussian noise.

3.7 The PS localization map

We conclude the chapter showing the localization map calculated for the kicker impedance sources
in the PS for a Gaussian bunch as in Tab. 3.1. The typical number of turns that can be recorded
by the BPM system is N = 5000, while typically M = 150 measurements can be done during one
measurement time slot. Figure 3.27 shows the accuracy line allowing for an intensity scan from
1011 to 1012 ppb (set by the BPM resolution downward, and by instabilities upward): in order
to localize the PS impedances we should have a noise level of the order of NSR ' 2%. In the
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machine NSR ' 5% or slightly less is usually achieved, that allows only for the localization of the
impedance sources in sections 21 and 71 as we saw in the simulations.
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Figure 3.27: Accuracy line for the PS machine with N = 5000, M = 150, and intensity scan from
1 · 1012 to 2 · 1012 ppb in function of the machine noise level.

Another way to enhance the possibility of reconstructing impedances, is to increase the impedance
signal Ak. From Eq.(3.67), it is clear that this can be done either increasing the tune shift, for ex-
ample by means of a shorter bunch length, or moving the working point close to the half integer. In
this last case, one could argue that operating close to the half integer would make the least square
inversion very difficult because of the machine optic model that usually gets more approximate due
to the machine errors enhancement (see for example [48]). Nevertheless, as we commented in the
previous sections, the optic model at 0-current can be inferred from the measurements themselves
allowing for an almost model independent analysis, as we will show in the next chapter.
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Chapter 4

Transverse impedance localization:
measurements

We present now the method benchmark and application in the CERN PS, SPS and LHC machines
and in the BNL AGS and RHIC accelerators.

We will start presenting the status of the total transverse PS machine impedance for different
energies. This will motivate the studies for the impedance localization method , in particular at 2
GeV energy.

The impedance localization method is then validated with an equivalent experiment done vary-
ing the current in two quadrupoles to provoke a tune shift analogous to the one provoked by an
increase of beam current.

In the following, two measurements at 2 GeV are presented with the corresponding impedance
reconstruction. The quality of the reconstruction will lead us to the study and the analysis of the
method performance at different working points in order to enhance the impedance signal.

4.1 Measurements in the PS

In order to assess the total transverse impedance in the PS, a first tune shift with intensity measure-
ment was done at different energies. If the bunch length remains approximately unchanged with
intensity, Eq. (3.43) predicts a linear tune shift with the bunch current, with a slope proportional
to the transverse total effective impedance.

Considering past analysis, several measurements of betatron tune shift as a function of beam
intensity have been reported: at T = 1.4 GeV injection energy [60], at T = 2 GeV flat bottom [61],
and at extraction energy [60,61].

At injection, a horizontal total effective impedance of 3.5 MΩ/m and a vertical one of 12.5 MΩ/m
were obtained in Ref. [60], where also a discussion and a comparison with older measurements can
be found.

At 2 GeV, other measurements, made only in the vertical plane during recent machine devel-
opment sessions in 2012-2013, give Zeffy = (9.6± 1.0) MΩ/m.

The observed difference in the vertical plane between these two sets of measurements could be
explained by the effect of the indirect space charge. If we approximate the PS vacuum chambers
as a round chamber of 35 mm of radius, we get 4.9 MΩ/m at injection energy and 3 MΩ/m at
2 GeV.

At the extraction energy of 25 GeV, as shown in Fig. 4.1 the contribution to the impedance of
the space charge becomes negligible. Indeed, at this energy, we are mainly dominated by resistive
wall and geometrical impedances. The measurements of Ref. [60] give Zeffx < 1 MΩ/m and
Zeffy = 6.1 MΩ/m, while our measurements give Zeffx ' 0.43 MΩ/m and Zeffy ' 4.7 MΩ/m.

We summarize in Tab. 4.1 the observations collected until now for the transverse vertical
impedance of the machine. The PS transverse impedance is therefore mainly dominated by the
space charge at injection and 2 GeV energies, but includes a not negligible contribution of '
5 MΩ/m which is due to pure resistive wall and insertion devices. Accounting for ' 1.4 MΩ/m from
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Figure 4.1: Measurements of tune shift in the two planes (X and Y) at the kinetic energy of 25
GeV.

Kinetic energies 1.4 GeV 2 GeV 25 GeV

Round chamber (r=35 mm) 4.9 MΩ/m 3.0 MΩ/m ≤0.5 MΩ/m

Measured Zeffy 12.5 MΩ/m (9.6± 1.0) MΩ/m (5.3± 0.8) MΩ/m

Table 4.1: Indirect space charge contributions to the total transverse effective impedance at dif-
ferent kinetic energies for round chamber and vertical total effective impedance.

the kicker of the impedance model, we miss ' 3.5 MΩ/m. The transverse impedance localization
method is therefore an essential method in order to get hints of possible high impedance locations.

4.1.1 Impedance localization test

Before applying the transverse impedance localization method to the machine, we made a test in
order to asses the method feasibility in a simpler well controlled case: we changed the current in
two equal quadrupoles (QLSF in section 29 and QSE in section 87) to provoke a tune shift with
quadrupole current and tried to reconstruct the quadrupole location.
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Figure 4.2: Current sweep in QSE and QLSF quadrupoles (a) and corresponding vertical tune shift
with current.

The current was increased from 0 to 15 A and provoked a tune shift of 0.02 as shown in
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Fig. 4.2. The tune shift induced by the quadrupoles is ∆Qy/∆I ' 12 · 10−4A−1rad/2π. Since
the two quadrupoles are equal we expect to be able to reconstruct the induced tune shift as half
of the total one. Calculating the phase advance shift with current we recollect the phase advance
slope signal1, which could be inverted as shown in Fig 4.3. The inversion leads to a value very
close to the expectation for the two quadrupoles: ∆Qyk/∆I ' 6 · 10−4A−1rad/2π. The third
spurious kick could be due to the fact that we do not reconstruct the quadrupole kick at exactly
its position but in the middle of the straight section: this can lead to some small phase mismatch
in the reconstruction, which is compensated by the least-square algorithm adding a third kick.
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Figure 4.3: Measurement of the two quadrupoles equivalent tune shift (a) from the reconstructed
phase advance slope with current (b).

4.1.2 Impedance localization measurements

We performed two sets of measurements on 05-02-2013 injecting a TOF beam, whose main char-
acteristics are listed in Tab. 4.2. The main machine parameters used in the measurement are
listed in App. B.1. After orbit correction, the beam was kicked at 2 GeV kinetic energy with the
help of a transverse feedback damper (ADT), a fast transverse kicker used for damping unwanted
unstable coherent motion: the device is able to excite the beam oscillations at a single frequency
which was set carefully close to the tune. Figure 4.4a shows the performed intensity scan and
and Fig. 4.4b the bunch excitation at low and high intensity: we observe the linear ramp on the
coherent oscillation due to the locking of the ADT exciting signal to the bunch coherent tune. The
BPM system counts 40 BPMs and is able to store up to N = 5000 coherent oscillation points.

NSR estimation

The turn-by-turn data were stored and analyzed for each intensity. The noise information can be
obtained both from time domain (TD) looking at the rms of the first 500 points in the coherent
oscillation, and from frequency domain (FD), applying the Parseval theorem. Figure 4.5 shows
the comparison between the two methods that are in good agreement. The noise level is set at
σn ' 0.1 mm. The frequency analysis on the BPM data was performed using SUSSIX [50].

A first measurement selection is therefore done deleting those measurements whose NSR is
higher than a certain threshold. Figure 4.6 shows the NSR in function of the beam intensity
and the BPM position along the accelerator: setting a cut at NSRth = 25% we restricted the set

1We remark that the last point in the slope, corresponding to the machine circumference, calculates the phase
advance shift between the reference BPM and itself, and therefore represents the tune shift with intensity.

83



CHAPTER 4. TRANSVERSE IMPEDANCE LOCALIZATION: MEASUREMENTS

TOF beam Parameter Set1 Set 2

Intensity Nb 5 · 1011 → 13 · 1011 ppb 5 · 1011 → 13 · 1011 ppb

Momentum spread dp/po 2 · 10−3 2 · 10−3

Bunch length σt 94 ns 112 ns

Horizontal emittance εx ' 15µrad ' 15µrad

Vertical emittance εy ' 8µrad ' 8µrad

Table 4.2: TOF beam parameters used in the two set of PS transverse impedance localization
measurements.
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of measurements before the final processing on the phase. We may note also, that the NSR on
average settles around NSR ' 5% excluding those intensities where the measurement turned out
to be too noisy.
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Figure 4.6: Measurement of the NSR as a function of the beam intensity (a) and BPM position
(b).

Phase advance shift with intensity

Once the measurements are deemed clean enough, the phase advance slope with intensity can
be calculated expecting the accuracy given by Eq. (3.64). A further threshold of NSR = 5%
was introduced before fitting the phase drift, preserving again a reasonable set of data points.
Figure 4.7a shows the localization map corresponding to the first set of measurements: the accuracy
looks to be enough for the localization of the impedance in sections 21 and 71. Furthermore, a small
gain could be achieved with noise clean reduction through the SVD eigenvalue analysis [62, 63] in
order to reduce the correlated noise between BPMs as shown in Fig. 4.7b.
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Figure 4.7: (a) PS localization map for the first set of measurements. The SVD cleaning allows the
NSR reduction and consequently the improvement of the measurement accuracy. (b) SVD noise
reduction for high and low intensities.

The phase advance slope was calculated considering the integrated phase advance from a ref-
erence BPM, namely the PR.UHV00 one. Figure 4.8 shows the phase advance shift with intensity
for the two sets of measurements. We immediately notice the effect of the shorter bunch length
in the first measurement set, which provokes a steeper phase drift and consequently a bigger tune
shift. The slope shows a decreasing behavior similar to what we simulated in Sec. 3.5.2 suggest-
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ing a strong contribution of distributed impedance. Moreover we expect a not negligible effect
of the indirect space charge, whose contribution to the total vertical tune shift (see Fig. 3.8) was
estimated to be ∆QISC/∆Nb ' 3 · 10−4.
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Figure 4.8: Integrated phase shift with intensity for the two sets of measurements: the impact of
the shorter bunch length in the first set, enhances the tune shift.

Tune shift with intensity

Figures 4.9a and 4.9b show the tune shift with intensity and the bunch profiles corresponding to
the two sets of measurements. The total impedance can be therefore estimated from Eq. (3.33)
using the measured profiles or from Eq. (3.35) in the Gaussian fit approximation. In the following
we will use the Gaussian fit approximation for consistency with the estimations in the impedance
model and the HEADTAIL simulations. We list the main results in Tab. 4.3. The variation of
the effective impedance is within the error bars for the two sets of measurements: as expected,
varying the bunch length, we linearly vary the tune shift. This means that the effective impedance
is almost constant within the bunch spectrum. This can be crosschecked in Fig. 3.9 where we
can see that the imaginary part of the impedance is constant up to ' 300 MHz while the bunch
spectrum extend up to σf = 1/σt ' 40 MHz.
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Figure 4.9: (a) Vertical tune shifts for the two sets of measurements in the PS at 2 GeV kinetic
energy, and (b) corresponding bunch profiles.

0-current model

As a direct consequence of our analysis, we can derive the machine optic model virtually at
Nb = 0 ppb. Figure 4.10 shows the phase advance and β beating for the first set of measure-
ment (it is similar for the second one). The measured beta beating is ' 10% which allows for a
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Bunch length [4σt] ∆Qy/∆Nb Zeffy [Ω/m]

Set 1 σt = 94 ns (−8.98± 0.08)10−4 (9.24± 0.09) MΩ/m

Set 2 σt = 112 ns (−7.68± 0.26)10−4 (9.39± 0.31) MΩ/m

Table 4.3: Measured PS vertical effective impedance at 2 GeV.

good estimation of the β function from phase advance measurements. The response matrix S, as
we commented in Sec. 3.6, can be constructed with the measured phase advances and β function.
The only dependence on the model is associated to the measurement of the β function for which
the 3-BPMs method requires the machine MAD-X model.
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Figure 4.10: Measured phase beating (a) and β beating (b) in the first set of measurement. The
beating is ' 10%.

Impedance reconstruction

We reconstruct the distributed and lumped impedances starting from a set of 100 equally spaced
reconstructors, each one placed in each of the 100 PS sections. Following the discussion of Sec. 3.5.3
we solve the least square problem

min
{∆Klump/∆Nb}

| ~B − S · ( ~∆K/∆Nb)|, (4.1)

after having subtracted from the measured phase advance slope the contribution of the distributed
impedance Zdistr ' 3 MΩ/m estimated from the PS impedance model. The reconstruction for
the first and second set of measurements is shown in Fig. 4.11. The first measurement shows a
lower impedance threshold with respect to the second one, which is consistent with the shorter
bunch length of the first case. This is calculated by means of Eq. (3.68) considering for simplicity
the machine average β function. The gray error bounds are calculated as in Sec. 3.5.3. The level
of noise and the error bounds are quite high in the second measurements and only the kicker in
section 71 seems to be correctly localized. In the first set the same kicker and the ones in sections
21 and 28 are visible while the ones in sections 4 and 9 appear with higher amplitude and displaced.
Some clear peak appears between sections 55 and 65 that might be correlated with the presence
of a localized impedance source.
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Figure 4.11: Measurement of localized impedance sources in the PS for the first (top) and second
(bottom) set of measurements.

4.1.3 Measurements close to the half integer

The measurements shown in the previous paragraph showed a strong impact of noise in the
impedance reconstruction.

As depicted in Eq. (3.64), the interplay of number of measurements, intensity scan width,
time available, kick amplitude and noise background make often the measurements challenging. A
way to overcome this difficulty is to enhance the impedance signal moving the fractional part of
the tune close to the half integer, as we commented also in Sec. 3.7. This was tried in another
measurement setting Qyo ' 0.47 in order to enhance the β beating and therefore the impedance
signal of a factor 1/ sin(2πQyo) ' 5. Unfortunately, the closer to the half integer, the worst become
the MAD-X optic model if the machine errors are not known: while the phase advance response
can be measured, the β functions rely on the model accuracy.

The reconstruction result is shown in Fig. 4.12. The Ak in Fig. 4.12a are basically a normalized
tune shift with intensity (cfr. with Eq. (3.67)), therefore proportional to βk Z

eff
k . Since, close to

the half integer errors are enhanced, the β function can have significant excursions: we therefore
calculated the response matrix referring to the average β function in the PS lattice without errors,
which is β̄y ' 16.68 m. This means that the amplitude of the impedance peaks in Fig. 4.12b may
be improperly scaled and some caution should be taken when looking at the plot. Some strong
impedance seems to be localized, in fact, close to sections 16, 64 and 92 where respectively a
magnetic septum (SMH16), a wirescanner (MBP64) and a 20 MHz cavity (C2092) are located.
The kicker positions are localized even if not perfectly centered.

The sections localized in the impedance localization measurements are being currently inves-
tigated considering the output of the measurements presented in this and the last sections. Lim-
itations come, in the first case, from the knowledge of the β function along the machine, in the
second, from the high level of noise introduced in the measurement.

Other impedance localization measurements are therefore planned for the post-LS1 period
attempting to reach a lower NSR. In particular, tests are planned at injection, flat bottom and
top energy in order to evaluate the effect of the indirect space charge impedance contribution. The
measurements at top energy should minimize the space charge contribution: if this is the main
source of homogeneously distributed impedance along the machine, the reconstruction of localized
impedance sources could improve.
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Figure 4.12: Measurement of localized impedance sources in the PS close to the half integer.

4.2 Measurements in the SPS

The SPS machine is an accelerator of ' 6.9 km that serves as the LHC injector accelerating the
beam ejected from the PS up to the total energy of E = 450 GeV.

Comparison with previous years
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Figure 4.13: SPS impedance status from 2000 to 2007. The impedance reduction campaign of
2000 and the serigraphy on the MKE kickers show a strong impact on the total SPS transverse
impedance budget (courtesy of H.Burkhardt).

The tight beam parameters constraints required from the LHC and in the future, from the High
Luminosity LHC, motivated deep studies of the machine impedance and actions for the impedance
reduction. As shown in Fig. 4.13, starting from 2000, an impedance removal campaign was started:
this implied for example the removal of old lepton cavities and the shielding of the numerous
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pumping ports. The reduction effect can be appreciated from the tune shift curve of 2001 where
the impedance estimated was reduced to 22 MΩ/m. The following installation of 9 MKE kickers,
5 in 2003, and other 4 in 2006, increased again the impedance motivating the surface serigraphy
in order to reduce their impedance contribution. The kicker serigraphy has been progressively
continued along the years and it will be completed for the run after the first long shutdown (LS1).
Already from 2006 to 2007 the beneficial effect can be appreciated.

Figures 4.14a and 4.14b show the updated impedance budget for the SPS in the horizontal and
vertical planes. The horizontal tune shift measurements were taken on 15-01-2013 and shows a
small positive tune shift due to the contribution of the detuning impedance of the kickers [64]. The
vertical tune shift measurement was taken on 22-01-2013 showing a reduction of the impedance
budget according to the kicker serigraphy. We note here, that the effective impedance is eval-
uated with the smooth approximation for back-compatibility to the older measurements shown
in Fig. 4.13: the average vertical β function β̄y is different from the β̂y = R/Q of the smooth

approximation. In the SPS Q26 optics2 in the vertical plane we get β̂y ' 41m and β̄y ' 54m, i.e.
25% more. This means that the real effective impedance accounting for the machine optics would
scale to ' 15.5 MΩ/m.
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Figure 4.14: Tune shift measurements in horizontal (a) and vertical (b) plane for the SPS.

The transverse machine impedance budget includes a ' 40% of the impedance coming from the
kickers, ' 25% from the wall, indirect space charge, cavities and BPMs. The remaining 35% was
still unknown until recent developments showed that the numerous step transitions could explain
almost the totality of the missing impedance [66].

The impedance localization measurement was tried in the SPS in order to establish the method
itself and contribute to the machine impedance identification. Unfortunately, in spite of the joint
efforts of the beam instrumentation experts and machine operators, the machine BPM system
could not operate in good condition, affecting the quality of the measured phase advance slope.

As an example, we describe the measurement operated in 22-01-2013 where a LHC-type of
beam whose characteristic are resumed in Tab. 4.4 was injected and excited with a tune kicker
at the injection energy of 26 GeV. The machine parameters used in the measurement are listed
in App. B.2. The vertical chromaticity was carefully set the closest to 0 as possible in order to
ensure a sufficiently high number of betatron oscillations as shown in Fig. 4.15a. After calibration,
the BPM system was set up and 1024 turns recorded. The multi-turn data acquisition have been
therefore processed and Fourier transformed and the phase advance calculated. Figure 4.15b shows
an example of phase advance drift with intensity from the reference BPM BPV.60108 from which
the phase advance is calculated to the BPV.12708 BPM.

2The name “Q26” refers to the integer art of the tune which is 26. This is specifically mentioned to distinguish
from an other optics, the “Q20” that has been recently developed in order to increase the slip factor η, parameter
involved in various intensity limiting effects, such as the TMCI threshold, and now in operation [65].
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LHC-INDIV beam Parameter

Intensity Nb 1 · 1010 → 1 · 1011 ppb

Momentum spread dp/po ' 3 · 10−3

Bunch length σt ' 0.7 ns

Horizontal emittance εx ' 2µrad

Vertical emittance εy ' 2µrad

Table 4.4: INDIV beam parameters used in the SPS transverse impedance localization measure-
ments.

Analogously to the PS case, only those measurement with a low NSR were kept during the
analysis: typically, a NSR' 5− 10% could be achieved in the SPS measurements.
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Figure 4.15: Example of coherent beam center of mass oscillation excited by the kicker at low and
high intensity.

0 1000 2000 3000 4000 5000 6000
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Position [m]

∆µ
/∆

N
b [1

e−
11

 r
ad

/2π
]

Figure 4.16: Integrated phase shift with intensity measured in the SPS with Q26 optics.

According to these considerations the phase advance slope along the machine was calculated
and it is shown in Fig. 4.16. With respect to the PS case, there is not a smoothly decreasing slope,
but some spikes are visible and points in which the phase slope tends to rise up. This behavior
could be due to some intensity dependent additional effects either coming from the BPM system
calibration, or from beam dynamics effects not yet considered.
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Figure 4.17: Phase advance beating measured in the SPS with Q26 optics.

A first inversion was anyway attempted. Figure 4.17 shows the phase beating in the machine
at ' 5% level: a good indication of the optic model description of the machine. As distributed
impedance we adopted Zdistr ' 9 MΩ/m as from the most recent estimations accounting for
resistive wall, indirect space charge and step transitions opportunely weighted by the lattice average
vertical beta function [66].
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Figure 4.18: Reconstruction of the SPS impedance sources (b) and corresponding induced phase
advance beating amplitude (a) for the measured phase advance shift with intensity (c). The kicker
positions are noted with green vertical lines. The distributed impedance is set to 9 MΩ/m.

The inversion is shown in Fig. 4.18: as we can see at the bottom the quality of the reconstruction
is poor due to the distorted signal. Some impedance peak is by the way visible close to the MKE
and MKP kicker position: among the kickers, which contribute for 7 MΩ/m to machine impedance
budget, the MKP and MKE give the highest impedance contribution. This suggests that the
method could be potentially able to localize impedance sources in the SPS, in particular after the
LS1 long shutdown when part of the BPM system is planned to be upgraded.
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Figure 4.19: SPS localization map: MKP and MKE are close to the measurement accuracy thresh-
old.

We conclude the paragraph showing the localization map in Fig. 4.19 where, analogously to the
PS case, we compare the impedance-induced phase advance amplitude and the accuracy obtained
in the measurement. Again, we could be able to localize at least the MKP if the signal quality
could be improved.
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4.3 Measurements in the LHC

The impedance localization technique was as well applied to the LHC. Since the AC dipole was
used as exciter, we briefly introduce the advantage of this device with respect to the beam kick as
applied in the PS or the SPS.

4.3.1 Driven oscillations with an AC dipole

An AC dipole is a radio frequency dipole that produces an oscillating field that excites driven
oscillations in the beam. While a normal kick would naturally excite the coherent tune oscillation
and sidebands, with an AC dipole it is possible to drive the beam oscillation at different frequencies
so that to avoid emittance growth and maintain coherent oscillations for many turns therefore
improving the quality reproducibility of the optics measurement.

The AC dipole was first introduced and studied in the AGS in the Brookhaven National Labo-
ratories [67]. Studies on the linear and non linear particle motion in the presence of an AC dipole
were done in [68,69]. First measurements of resonance driving terms were done in the SPS [70] and
RHIC [71]. The device was applied for accurate optics measurements in Tevatron [72], RHIC [73]
and recently in the LHC [74].

The concept behind the use of an AC dipole is the following: if an equivalent accelerator optics
at a driven frequency Qd (in tune units) can be measured, it is possible to reproduce with some
transformation the natural accelerator optics at Qnat. Figure 4.20a shows the typical excitation
pattern of a driven oscillation at frequency Qd simulated in HEADTAIL: the ramp before and
after the flat oscillation allows for reduced emittance growth and accurate optics measurements.
Figure 4.20b shows the driven Qd and the natural Qnat frequencies. As we can see the signal
corresponding to the driven frequency is much stronger than the natural tune.
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Figure 4.20: (a) Typical excitation pattern of a driven oscillation at frequency Qd as simulated
in HEADTAIL: the signal presents a ramp before and after the flat oscillation allowing for small
losses and emittance growth; (b) FFT of the AC dipole signal showing driven Qd and natural Qnat
tunes.

The AC dipole frequency of operation defines the parameter δ = Qd − Qnat, the distance
between natural and driven frequencies. It can be proved [75] that once the accelerator optics is
measured at the driving frequency, it is possible to reconstruct the optics at the natural frequency
applying the following relation

tan(2πµd − πQd) =
1 + λd
1− λd

tan(2πµnat − πQnat) (4.2)

where µd is the measured phase advance (in tune units) from the AC dipole location at the driven
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frequency and µnat the phase advance at the natural frequency, and λd is given by

λd =
sin(π(Qd −Qnat))
sin(π(Qd +Qnat))

. (4.3)

Analogously, the optics at the driven frequency, can be modeled as the natural optics including
a quadrupole error of strength ∆KACd at the AC dipole location. The strength ∆KACd is given
by [75]

∆KACd = 2
cos(2πQnat)− cos(2πQd)

βACd sin(2πQnat)
(4.4)

with βACd the beta function at the AC dipole location.

4.3.2 Tune shift measurements with AC dipole

As we showed in Fig. 4.20a, it is possible to measure very clean and highly coherent signals at
the driven frequency of an AC dipole. This is particularly important in large accelerators like the
LHC were it is difficult to achieve the same oscillation quality with a kicked beam due to very
stringent machine protection constraints, beam losses and chromaticity set up. Figure 4.20b shows
also that it is difficult to correctly detect the natural tune when a driven oscillation takes place
and in particular the tune shift with intensity. This is particularly true for machines like the LHC
where the total tune shift is very small (on the order of 1.5 · 10−3) and the one induced by each
impedance source even smaller (collimators in the LHC induce a tune shift on the order of 10−4).
This would complicate the turn by turn analysis since, in Eqs. (4.2) and (4.3) we would need a very
accurate information on the tune for each step of the intensity scan. One could think to perform
a kick excitation before the AC dipole in order to detect the correct tune, but this would provoke
losses spoiling the beam quality for the following AC dipole excitation.

Part of these issues can be overcome focusing on Eq. (4.4). At virtually 0-current, i.e. Nb = 0 ppb,
the AC dipole would interfere with the natural optics as a quadrupole error with a strength

∆K0
ACd = 2

cos(2πQ0
nat)− cos(2πQd)

βACd sin(2πQ0
nat)

. (4.5)

Increasing the intensity by ∆Nb a linear tune shift with intensity would modify the coherent natural
tune as

Qnat = Q0
nat +

∆Qnat
∆Nb

∆Nb. (4.6)

Plugging this information in Eq. (4.4) we have

∆KACd = 2
cos(2π(Q0

nat + ∆Qnat
∆Nb

∆Nb))− cos(2πQd)

βACd sin(2π(Q0
nat + ∆Qnat

∆Nb
∆Nb))

' (4.7)

' 2
cos(2πQ0

nat)− 2π sin(2πQ0
nat)

∆Qnat
∆Nb

∆Nb − cos(2πQd)

βACd sin(2πQ0
nat) + βACd2π cos(2πQ0

nat)
∆Qnat
∆Nb

∆Nb
(4.8)

where we considered small tune shifts ∆Qnat
∆Nb

. In the denominator appears the quantity

sin(2πQ0
nat) + 2π cos(2πQ0

nat)
∆Qnat
∆Nb

∆Nb. (4.9)

Considering a working point Q0
nat close to 0.25 and a small tune shift, then

sin(2πQ0
nat)� 2π cos(2πQ0

nat)
∆Qnat
∆Nb

∆Nb (4.10)
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and Eq. (4.7) can be approximated as

∆KACd ' ∆K0
ACd −

4π

βACd

∆Qnat
∆Nb

∆Nb. (4.11)

Considering the variation over the intensity, we have

∆KACd

∆Nb
= − 4π

βACd

∆Qnat
∆Nb

. (4.12)

Equation (4.12) says that measuring at the fixed natural tune Q0
nat, whatever tune variation will

be compensated at the AC dipole location. From Eq. (3.55) the step in the phase advance beating
at the AC dipole location sACd will therefore be

∆µ(s, sACd)

∆Nb
= −∆Qnat

∆Nb
= −

∑
k

∆Qimpk

∆Nb
, (4.13)

where

∆µ(s, sACd)

∆Nb
=
βACd

4π

∆KACd

∆Nb
. (4.14)

This result was benchmarked with HEADTAIL. The B1 ring was modeled as in the configuration
file in App. D.2 We placed a broadband resonator close to the IP7 in the LHC lattice model whose
tune shift was expected around 5 · 10−3 per 1011 ppb. It was first simulated with a kick excitation,
and after with an AC dipole excitation as shown in Fig. 4.20a. Figure 4.21 shows the phase advance
measured at the natural tune in the case of a kick (a) or AC dipole (b) excitation. In the first case
the procedure to derive the phase advance is the same used in chapter 3, in the second case we used
Eq. (4.2) to calculate the natural phase advance from the AC dipole driven one. The amplitude of
the oscillation which is roughly the tune shift is close to what expected (5 · 10−3). The step in the
phase advance at the impedance location is compensated as expected in the case of using an AC
dipole as exciter. This can be intuitively understood also considering that we are measuring at the
AC dipole frequency and calculating the effect at the natural tune Q0

nat, therefore not allowing for
any tune shift.
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Figure 4.21: HEADTAIL simulations of a broadband impedance placed close to the IP7 in LHC
at 19900 m, with a kick (a) and AC dipole (b) excitation. The AC dipole tune shift compensation
is visible.

4.3.3 Estimations for the LHC

The considerations suggest a method for measuring both impedance and total tune shift in circular
accelerator with an AC dipole. The machine could be filled with a certain number of bunches with
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different intensities, the tune could be measured for the lowest intense one, coherent oscillation
excited with the AC dipole and the oscillations acquired for all the bunches at the same time.
Alternatively, a single high intensity bunch could be scraped progressively in order to scan different
intensities. Ensuring a reasonable amount of measurement points, the impedance-induced phase
advance tune shift could be calculated and observed as depicted in the previous section.

In this frame, a first measurement was done on 28-11-2012 in the LHC for the determination
of the measurement accuracy from multi-turn data acquisition. The machine parameters used in
the measurement are listed in App. B.3. A single high intensity bunch of Nb ' 3 · 1011 ppb was
progressively scraped to Nb ' 1011 ppb with M = 14 AC dipole induced oscillations. Figures 4.22a
and 4.22b show the steps in the beam intensity together with the shortening of the bunch length
from the scraping. The measurement was done at injection energy E = 450 GeV over 20 minutes.
The machine natural tunes wereQ0

nat,y = 0.3085 andQ0
nat,x = 0.2743 and the AC dipole oscillations

were driven at Qd,y = 0.32 and Qd,x = 0.27. A number of N = 2200 of coherent driven oscillations
was recorded by the BPM system. Figure 4.23 shows the localization map where the accuracy
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Figure 4.22: Scraping of a single bunch (a) and bunch length reduction (b) during multi-turn data
acquisition with an AC dipole.

predicted and measured from the measured phase advances is compared with the impedance-
induced phase advance amplitude of Eq. (3.67) from the current impedance model of the most
relevant collimators at the interaction points (IPs) both for the horizontal and vertical planes.
As we can see a good measurement accuracy is potentially achievable and the impedance of the
collimators could, in principle, be localized in dedicated future measurements.
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Figure 4.23: Localization map for the LHC.

Particular care should be taken in the correction of the tune drift with time which is in the
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order of 0.005 every ' 15 minutes especially at injection [76]. Since we are measuring signals which
amplitude is one order of magnitude less, this effect becomes important and can overcome the
impedance signal as we will also show in more detail in the next section.
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4.4 Measurements in the AGS and RHIC machines

4.4.1 Introduction to the BNL particle accelerators

The RHIC luminosity upgrade program [77] aims for an increase of the polarized proton luminosity
by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The
beam coupling impedance represents a source of detrimental effects for beam quality and stability
at high bunch intensities. In this section, we evaluate the global transverse impedance in both the
AGS and RHIC with recent measurements of tune shift as a function of bunch intensity. Attempts
of impedance localization measurements are shown as well.

The Brookhaven accelerator complex is showed in Fig. 4.24. The accelerator machines operate
primarily with gold ions and with polarized protons. Focusing on the proton operations, the
particles are injected into the Linac and accelerated through the Booster and the AGS up to the
total energy of about 25 GeV.

The AGS machine can be considered as the CERN-PS twin accelerator where the concept
of alternate gradient focusing had its origin through the pioneering work of E. Courant, M. S.
Livingston, and H. Snyder. Built in 1960, the AGS accelerator has served the Physics community
through the discovery of subatomic particles such as the muon neutrino and the J/Ψ particles. It
is today, with the AGS booster, part of the injector accelerator system for RHIC.

The extracted beams are therefore injected into RHIC. The RHIC collider consists of two 3.8
km circumference hexagonally shaped rings, named Blue and Yellow. Each ring is constituted of
six straight sections and six arcs, where particles circulate through 1740 superconducting magnets.
The main purpose of the collider is to provide collisions at 100 GeV per beam of heavy gold ions
into the two main experiments, STAR and PHENIX. These are located at the straight sections
enumerated by clock positions, respectively at 6 o’clock (injection point) and 8 o’clock. RHIC
provides also collisions for lighter ions down to protons at the energy of 250 GeV.

Figure 4.24: BNL accelerator complex.

4.4.2 AGS measurements

In the AGS accelerator the absence of a multi-turn BPM system allowed only for the measurement
of the total effective impedance through the observation of the transverse tune shift with intensity.
A measurement in the vertical plane could be performed while time constraints didn’t allow for the
horizontal one (which is anyway believed to be small due to the vacuum chamber elliptical shape).
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The measurement has been performed at flat top before extraction with the machine parameters
listed in App. B.4. The used beam parameters are reported in Tab. 4.5. Figure 4.25 shows the
beam profile measured at the bunch shape monitor (BSM) and the rms bunch length σb with a
Gaussian fit is σb = (5.8± 0.1) ns, over 25 measurements.

AGS beam Parameter Value

Intensity Nb 5 · 1010 → 25 · 1010 ppb

Momentum spread dp/po 2 · 10−4

Bunch length σt 5.8 ns

Normalized 95% Horizontal emittance εxn 13.5µrad

Normalized 95% Vertical emittance εyn 13.5µrad

Table 4.5: AGS beam parameters.
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Figure 4.25: Example of acquired bunch shape (a) and rms bunch length from Gaussian fit from
25 measurements (b) in the AGS.

An intensity scan was set up from 5 · 1010 ppb up to 25 · 1010 ppb and the beam was excited
with a transverse kicker synchronized with a dedicated high-resolution BPM from which 300 turns
of coherent betatron oscillation were stored. The acquired tune data are shown in Fig. 4.26: a
tune shift of 5 · 10−5 per 1011 ppb could be measured. Recurring to Eq. (3.43) in the smooth
approximation we obtain

Zeffy = (1.3± 0.1) MΩ/m. (4.15)

From past measurements [78] it has been considered a longitudinal effective impedance Zeffl /n = 10 Ω
where we recall the longitudinal effective impedance definition

Zeffl

n
=

∫ ∞
−∞

Zl(ω)

ω/ωo
S(ω) dω∫ ∞

−∞
S(ω) dω

, (4.16)

with ωo = 2πfrev. Assuming the longitudinal impedance as prevalently due to the resistive wall,
we can extrapolate the transverse effective impedance comparing the impedances from Tab 2.14
at the intermediate frequencies IF

Zt(ω) =
βc

ω

2

b2
Zl(ω), (4.17)
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Figure 4.26: Example of acquired bunch shape (a) and rms bunch length from a Gaussian fit over
25 measurements (b) in the AGS.

where b is the beam pipe radius of about 5 cm. Integrating over the beam spectrum S(ω) we get

Zefft =
2R

b2
Zeffl

n
' 1.5 MΩ/m (4.18)

which is very close to the measured one.
In case the value of the longitudinal effective impedance Zeffl /n = 10 Ω is confirmed, most of

the AGS impedance could be considered due to the resistive wall contribution.

4.4.3 RHIC measurements

The impedance measurements in RHIC were performed on 24-04-2013, 1-05-2013 and 15-05-2013
in collaboration with the machine operation team. Both total and local machine impedance could
be in principle measured thanks to the high-performance of the BPM system. Focusing on the
phase advance measurement for impedance localization, considering Eq. (3.64), the machine BPM
system can be characterized as in Tab. 4.6. The phase advance slope accuracy σ∆µ/∆Nb should be

Best BPM performance Parameter Value

Maximum number of turns N 1000

Noise level σn 15µm

Kick amplitude Akick 2 mm

Number of measurements M 100

Intensity scan X 0.5 · 1011 → 2 · 1011 ppb

Phase advance slope accuracy σ∆µ/∆Nb 6 · 10−5 10−11 rad/2π

Table 4.6: Phase advance slope accuracy estimation for the RHIC BPM system.

compared to the impedance-induced phase advance beating amplitude Ak from Eq. (3.67). Since
Eq. (3.67) takes into account the tune shifts from the element by element impedance model of the
accelerator ∆Qyk/∆Nb, and are not always available, we could only assume a fraction of the whole
accelerator tune shift ∆Qy/∆Nb in order to assess the feasibility of the localization measurement.
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Total impedance measurements

The total accelerator impedance could be derived from the tune shift with intensity for both
accelerators, Blue and Yellow.

The measurements for Blue where performed on 24-04-2013 and 15-05-2013. The measurements
were done injecting a train of bunches at different intensities, from 0.5 · 1011 ppb to 1.8 · 1011 ppb
with average rms bunch length σb ' 5 ns. The beam was excited with a transverse kick in both
planes, and the betatron oscillations were recorded for 1024 turns. Chromaticity was set as close as
possible to 0 on both planes, requiring a long machine set-up time. An example of betatron signal
from a BPM is shown in Fig. 4.27 were we can see a fast damping after 100 turns and coherent
oscillations up to 1024 turns. The signals are analyzed with SUSSIX after an SVD noise cleaning
and the tune shift with intensity is therefore computed.
The tune shifts for both X an Y plane are presented in Fig. 4.28.
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Figure 4.27: Example of recorded traces from 15-05-2013 from the “B06-BV15” BPM for X (a)
and Y plane (b).

Analogously, on 01-05-2013, the same measurement was done in the Yellow ring injecting train
of bunches at different intensities, from 0.5 · 1011 to 2.5 · 1011 ppb with average rms bunch length
σb ' 4 ns. The analyzed tune shifts are presented in Fig. 4.29 for a set of 2 good fills in Yellow. The
deduced effective impedance is reported in Tabs. 4.7 and 4.8 and is calculated using Eq. (3.35).

Measurement Zeffx [MΩ/m] Zeffy [MΩ/m] dQx/dNb (·10−11) dQy/dNb (·10−11)

24-04-2013 (7.06± 1.29) (9.06± 1.56) (−4.74± 0.86) · 10−4 (−5.88± 1.01) · 10−4

15-05-2013 (20.51± 1.98) (19.07± 1.15) (−13.53± 1.30) · 10−4 (−12.16± 0.73) · 10−4

Average (13.79± 6.72) (14.01± 5.00) (−9.13± 4.39) · 10−4 (−9.02± 3.14) · 10−4

Table 4.7: Tune slope and effective impedances measured in RHIC Blue ring.

We might notice that, for the tune shift measurement, the drift of the machine with time has
been taken into account: at injection, the exponential decay for the current in the magnets affects
the machine parameters as depicted in Fig. 4.30 resulting in wrong tune shift estimations (up to
10%).
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Figure 4.28: Tune shift measurements in RHIC Blue ring from 24-04-2013 X plane (a) and Y plane
(b), 15-05-2013 X plane (c) and Y plane (d) with a bunch length σb ' 5 ns.
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Figure 4.29: Tune shift measurements of two injection fills in the RHIC Yellow ring taken on
01-05-2013 X plane (a) and Y plane (b) with a bunch length σb ' 4 ns.
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Measurement Zeffx [MΩ/m] Zeffy [MΩ/m] dQx/dNb (·10−11) dQy/dNb (·10−11)

01-05-2013 #1 (2.47± 0.30) (3.22± 0.27) (−2.32± 0.29) · 10−4 (−2.92± 0.25) · 10−4

01-05-2013 #2 (3.87± 0.85) (3.14± 0.62) (−3.64± 0.80) · 10−4 (−2.85± 0.56) · 10−4

Average (3.17± 1.15) (3.18± 0.89) (−2.98± 1.09) · 10−4 (−5.77± 0.81) · 10−4

Table 4.8: Tune slope and effective impedances measured in RHIC Yellow ring.
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Figure 4.30: Example of tune drift with time for the vertical tune measured on 15-05-2013 on Blue.
On top the train of injected bunches from high to low intensities; on bottom the correspondent
measured tunes (dots) and the linear drift with time (thick lines).

Localized impedance measurements

The RHIC BPM system [79], [80] consists in 160 23-cm cryogenic striplines per plane per ring. Most
of the devices are made of by two opposite striplines oriented vertically or horizontally accordingly
to the higher beta function. In critical areas, close to the interaction points, BPMs record both
plane (i.e. two pairs of striplines). The system is able to record up to 1024 turns. During operation
a noise of σn ' 10µm rms was measured in the turn by turn data.

From the measured tune shift with intensity we measured higher impedance for the Blue ring
with respect to the Yellow one. We tried therefore to apply the impedance localization method
in order to get an estimate of the main impedance sources in the Blue ring. The main Blue ring
machine parameters used in the measurement are listed in App. B.5

The data recorded during 15-05-2013 were analyzed with SUSSIX and the integrated phase
advance calculated starting from the STAR interaction point. At different intensities the phase
advance was expected to shift linearly (analogously with the tune) as can be seen in Fig.4.31a.
The measured data presented an average noise level NSR ' 5%. Using Eq. (3.64) we can estimate
the accuracy for the phase advance slope ∆µ/∆Nb measurement and compare with the expected
one. Figure 4.31b shows the measured and predicted accuracy compared with the tune shift with
intensity (i.e. the total integrated phase advance slope with intensity). A high margin is present
and suggests that an impedance of the order of 20% the total machine impedance could be localized.

Extrapolating the phase advance at 0-current Nb = 0 ppb, we can study the machine optics
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Figure 4.31: (a) example of phase advance slope with intensity measured in Blue; (b) comparison
of the measured and predicted accuracy with the NSR level for all the measured phase advances
(dots) and comparison with the tune slope (thick line) and its accuracy (dashed lines).

and quantify the accuracy of the MAD-X model used for its description. Figure 4.32 shows the
comparison between model and measurement as well as their relative ratio. The model is in
agreement within 30% to the measured one: this is a limitation for the impedance reconstruction
algorithm, where the interpolation over a reliable (less than 5%) model is required in order to
localize the most probable impedance sources.
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Figure 4.32: Measured phase advance in Blue compared with the MAD-X model (top) and relative
beating (bottom).

The measured phase advance slope is shown in Fig. 4.33. In order to reconstruct the possible
impedance positions we considered a set of impedance reconstruction points coincident with the
BPM position. This choice is imposed by the model accuracy. As it has been shown, the model
is accurate only within 30%: choosing the reconstruction points at the BPM position enables to
calculate the response matrix S by means of Eq. (3.54) using the measured phase advances in place
of the model ones, being able to calculate a more reliable response matrix.

Measured and reconstructed slopes are shown in Fig. 4.34 as well as the impedance position.
As we commented in Sec. 3.6 while the phase advance ∆µ can be measured independently from
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Figure 4.33: Measured phase advance slope in Blue.

the model, the β function measurement is more involved: if derived from the measured oscillation
amplitude it could be affected by the BPM gain calibration, if derived from the phase advance it
depends on the model accuracy. Most of the impedance-induced phase advance beating is produced
by localized impedance sources around s ' 2500 m in the machine. This is only a preliminary
conclusion due to the limited accuracy of the lattice model of the machine. It is known that part
of the complication is due to the difficult modeling of the Snakes, special magnets used to preserve
the beam spin direction along acceleration. For this reason new measurements are planned without
the use of the Snakes and at flat top in order to mitigate te tune drift with time effect.
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Figure 4.34: Measured phase advance slope in Blue placing reconstruction kicks at the BPM
positions. (a) The reconstructed amplitude of the impedance-induced phase advance beating (in
black) with accuracy threshold (in red); (b) The reconstructed impedance locations (in black)
with corresponding accuracy threshold (in red); (c) Measured phase advance slope and LSQR
reconstruction.
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Chapter 5

Conclusions

In this thesis we presented a contribution for improved techniques of impedance calculation and
localization in particle accelerators.

The Mode Matching technique was presented and applied to the calculation of the impedance
of an azimuthally symmetric device of finite length loaded with a toroidal insert. This model was
successfully benchmarked with theory, CST simulations and other already existing theories over a
wide range of geometrical and electromagnetic parameters confirming the Mode Matching method
as a powerful numerical tool.

The study of the impedance dependence on the device length with respect to the approaches
which assume an infinite length, introduced two interesting effects: the increase of the transverse
dipolar impedance for short highly conductive inserts at low frequencies, and the possible presence
of a resonance at the beam pipe cut-off frequency.

The first effect is believed to be of academical interest because of the very low frequency range
in which it is apparent: for longer devices there is indeed no appreciable difference between the
infinite length approximation and the finite length approach studied in this thesis. Within the
limits of our model we demonstrated that an impedance reduction by longitudinal segmentation of
particle collimators is not effective and other methods should be considered (increase of collimator
aperture, increase of conductivity, reduction of the β function at the collimator positions, etc.) as
shown in Fig. 2.12.

The second effect can be observed in short inserts like beam pipe flanges filled with dielectrics
of equivalent conductivity in the order of 10−2 S/m. The presence of the resonant mode at cut-off
was explained, for the longitudinal impedance case, with a simplified equivalent circuital model in
which the reactive beam pipe impedance below cut-off resonates with the most nearby resonance
produced in the insert as shown in Figure 2.29. It has also been demonstrated how the presence of
the impedance kink at-cut off depends on the relative position of the insert resonances with respect
to the cut off frequency. The existence of the mode has also been confirmed with CST Eigenmode
Solver simulations. Since a high number of insulating beam pipe flanges is very common in particle
accelerators, this effect could play a significant role in driving beam instabilities due to the beam
interaction with the resonant impedance modes and should be taken into account.

The impedance localization method was also improved. With respect to the previously applied
methods we studied the method accuracy considering the noise introduced by the BPM system
on the measured signal, the range of intensity scan, the number of measurements and the number
of recorded turns. The accuracy estimation has been benchmarked both with simulations and
measurements showing good agreement.

The estimations of the impedance-induced phase advance signals was also studied in detail for
the CERN PS machine where an impedance model of the accelerator was built taking into account
the impedance of the beam pipe, the kickers, the cavities and other accelerator elements.

The PS impedance model was used for performing HEADTAIL simulations in order to validate
the impedance localization method. This gave us the opportunity of refining the technique of
impedance reconstruction taking into account the contribution of distributed localized impedances:
the first are typically related to the beam pipe and indirect space charge, the second to high
impedance elements such as kickers, collimators, etc. The reconstruction of a distributed impedance
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would require in principle, infinite number of reconstructors all over the machine and for this
reason it is suggested to calculate its contribution from the machine model, and subtract it from
the measurement.

Measurements were done in the CERN PS. A first validation measurement varying the current
in two quadrupoles demonstrated the impedance localization method in the case of two highly
localized equivalent impedance sources. Measurements with beam were performed especially in
the vertical plane at 2 GeV kinetic energy. The global impedance has been estimated to be about
9 MΩ/m, revealing that 40% is still missing with respect to the impedance model prediction. The
impedance localization measurements were strongly affected by the high impact of noise as shown
in Fig. 4.12. Choosing a working point closer to the half integer, we could enhance the impedance
signal and have clearer impedance reconstructions at the kicker positions and in sections 16, 64 and
92. As a drawback, the machine β functions strongly depend on the unavoidable presence of errors
in the machine, complicating the impedance reconstruction. In order to complete the machine
impedance model a series of new impedance localization measurements is planned at injection, flat
bottom and extraction energies: the measurements at extraction, in particular, will reduce the
contribution of the indirect space charge, i.e. the distributed impedance, helping the process of
reconstructing localized impedance sources.

The method was applied in the CERN SPS where an accurate and almost complete impedance
model has been recently developed. The highest impedance contributors in the machine are
the kickers. Unfortunately the impedance localization measurements could not reconstruct the
impedance positions due to the poor quality of the current BPM system. The substantial upgrade
foreseen for the post-shutdown period will allow more accurate measurements.

A new method for the impedance localization was presented for the LHC machine were an AC
dipole excitation is used. This device is used for optics measurements with highly coherent signals
and could be used for very accurate measurements of the machine impedance. The proposed
study demonstrates how the local and total impedance can be measured through phase advance
measurement at the unperturbed 0-current natural tune. New measurements applying the AC
dipole are foreseen for the LHC in the post-shutdown period. We remark the fact that, due to the
small impedance-induced expected tune shifts, other effects, like the tune drift with time, should
be taken into account and correctly compensated.

A campaign of impedance measurements was also done in the AGS and RHIC accelerators.
In the AGS we could measure the total vertical imaginary part of the impedance estimated close
to 1.3 MΩ/m. A rough estimation suggests that almost all the impedance could be due to the
contribution of the beam pipe accordingly to past measurements of the longitudinal impedance.

A series of measurements was done in RHIC. The estimations of tune shift with intensity showed
a strong difference between the two, in principle identical, accelerator rings, Blue and Yellow.
Since the impedance in Blue seems to be much higher than the one in Yellow, we performed and
impedance localization measurement revealing probable high impedance sources at about 2500 m
from the STAR interaction point. The result is, by the way, only approximated due to the accuracy
of the optics model (' 30% beating) and new measurements are planned without the contribution
of the Snakes that considerably complicate the machine optics. Since an AC dipole is available in
the machine, it could be applied for impedance measurements as depicted in the case of the LHC.
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Series summations

Here we list the sums of series used to simplify the mode matching in the longitudinal and transverse
case:

A.1 Longitudinal series

Sum of series in s.
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Sum of series in p derived from the Kneser-Sommerfeld formula [26].
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A.2 Transverse series

Sum of series in s.
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Sum of series in p.
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Appendix B

Machine parameters

In the following the main machine parameters used during the impedance quantification and lo-
calization measurements can be found.

B.1 PS

Settings for the PS impedance measurements and budget at 2 GeV. These parameters were used
during the measurements in 2012, and from the start of 2013 to the machine shutdown.

Parameter Value

Circumference C 628.318 m

Revolution period To 2.212 µs

Vertical Tune Qy 6.23

Horizontal Tune Qx 6.12

Energy (total) E 2.93 GeV

Energy (kinetic) T 2 GeV

Gamma γ 3.12

Gamma transition γt 6

Average βx(s) β̄x ' 17.3 m

Average βy(s) β̄y ' 16.8 m

Vertical Chromaticity ξy ' 0

Horizontal Chromaticity ξx ' 0

Harmonic number h 8

RF frequency fRF 3.616 MHz

Synchronous phase φs 0

RF voltage VRF 200 kV

Synchrotron tune Qs 2.69 · 10−3

Table B.1: PS machine parameters.
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B.2 SPS

Settings for the SPS impedance measurements at E = 26 GeV. These parameters were used during
the measurements in 2012, and from the start of 2013 to the machine shutdown.

Parameter Value

Circumference C 6911.50 m

Revolution period To 2.3 µs

Vertical Tune Qy 26.18

Horizontal Tune Qx 26.13

Energy (total) E 26 GeV

Energy (kinetic) T 25 GeV

Gamma γ 27.72

Gamma transition γt 22.77

Average βx(s) β̄x ' 54.6 m

Average βy(s) β̄y ' 54.5 m

Vertical Chromaticity ξy ' 0

Horizontal Chromaticity ξx ' 0

Harmonic number h 4620

RF frequency fRF 200 MHz

Synchronous phase φs π

RF voltage VRF 3 MV

Synchrotron tune Qs 7 · 10−3

Table B.2: SPS machine parameters.
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B.3 LHC

Settings for the LHC impedance measurements in the B1 ring at E = 450 GeV. Set up of the
28-11-2012, fill n.3338.

Parameter Value

Circumference C 26658.88 m

Revolution period To 88.92 µs

Vertical Tune Qy 59.3085

Horizontal Tune Qx 64.2743

Energy (total) E 450 GeV

Energy (kinetic) T 449.06 GeV

Gamma γ 479.58

Gamma transition γt 55.75

Average βx(s) β̄x ' 9.25 m

Average βy(s) β̄y ' 101.36 m

Vertical Chromaticity ξy ' 0.1

Horizontal Chromaticity ξx ' 0.09

Harmonic number h 35640

RF frequency fRF 400 MHz

Synchronous phase φs π

RF voltage VRF 6 MV

Synchrotron tune Qs 4.89 · 10−3

Table B.3: LHC machine parameters.
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B.4 AGS

These settings were used in the AGS tune shift measurements with protons. This set up refers to
the MD of 17-04-2013.

Parameter Value

Circumference C 807.1 m

Energy (total) E 23.81 GeV

Energy (kinetic) T 22.87 GeV

Gamma γ 25.38

Gamma transition γt 8.5

Revolution period To 2.69 µs

Vertical Tune Qy 8.87

Horizontal Tune Qx 8.71

Average βx(s) β̄x 16 m

Average βy(s) β̄y 16 m

Vertical Chromaticity ξy ' 0.16

Horizontal Chromaticity ξx ' −0.83

Harmonic number h 8

RF frequency fRF 2.969 MHz

Synchronous phase φs π

RF voltage VRF 200 kV

Synchrotron tune Qs 3.6 · 10−4

Table B.4: AGS machine parameters.
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B.5 RHIC

These settings were used in the RHIC tune shift and impedance localization measurements with
protons. This set up refers to the MD of 24-04-2013 and 15-05-2013 in Blue ring and to the MD
of 01-05-2013 of Yellow Ring. The two accelerator rings are in principle specular.

Parameter Value

Circumference C 3833.8451 m

Energy (total) E 25 GeV

Energy (kinetic) T 24.06 GeV

Gamma γ 26.64

Gamma transition γt 23.50

Revolution period To 12.79 µs

Vertical Tune Qy 29.691

Horizontal Tune Qx 28.695

Average βx(s) β̄x ' 57.3 m

Average βy(s) β̄y ' 50.2 m

Vertical Chromaticity ξy ' 0.07

Horizontal Chromaticity ξx ' 0.07

Harmonic number h 2520

RF frequency fRF 197 MHz

Synchronous phase φs π

RF voltage VRF 300 kV

Synchrotron tune Qs 6.47 · 10−5

Table B.5: RHIC machine parameters.
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PS impedance model at 2 GeV

PS impedance budget for each analyzed element. Within the kickers, starred elements have been
studied with CST, the remaining ones with the Tsutsui’s model.

Element name position [m] βx[m] βy[m] Zeffx [Ω/m] Zeffy [Ω/m]

PE.BFA09S 57.33 22.85 13.14 −1.92 · 104 8.65 · 104

PE.BFA09P 57.33 22.85 13.14 −2.41 · 104 1.10 · 105

PE.BFA21S 132.17 19.27 12.75 −1.92 · 104 8.65 · 104

PE.BFA21P 132.17 19.27 12.75 −2.41 · 104 1.10 · 105

PE.KFA04* 25.86 12.11 22.47 8.33 · 103 7.38 · 104

PE.KFA13* 82.69 20.69 12.54 1.75 · 104 1.61 · 105

PE.KFA21* 133.51 18.82 12.81 1.75 · 104 1.61 · 105

PE.KFA71 447.03 19.17 12.75 −9.33 · 104 3.85 · 105

PE.KFA79* 497.15 23.59 12.57 1.75 · 104 1.61 · 105

PI.KFA28 176.99 14.64 20.33 −3.00 · 104 1.07 · 105

PI.KFA45 283.24 23.00 11.60 −4.10 · 104 1.74 · 105

PR.C8008 51.33 13.49 22.44 7.45 · 102 7.45 · 102

PR.C8088 553.98 12.39 23.22 7.45 · 102 7.45 · 102

PR.C8089 559.98 19.62 13.56 7.45 · 102 7.45 · 102

PR.C4077 485.15 24.54 11.44 6.16 · 102 6.16 · 102

PR.C4078 491.15 14.16 21.00 6.16 · 102 6.16 · 102

PR.C1011 70.04 20.90 12.00 6.09 · 102 6.56 · 102

PR.C1036 227.11 13.94 18.92 6.09 · 102 6.56 · 102

PR.C1046 289.95 12.57 19.61 6.09 · 102 6.56 · 102

PR.C1051 321.36 21.79 11.70 6.09 · 102 6.56 · 102

PR.C1056 352.78 12.21 19.79 6.09 · 102 6.56 · 102

PR.C1066 415.61 11.99 20.35 6.09 · 102 6.56 · 102

PR.C1076 478.44 13.26 19.54 6.09 · 102 6.56 · 102

PR.C1081 509.86 18.17 12.86 6.09 · 102 6.56 · 102

PR.C1086 541.27 13.88 19.22 6.09 · 102 6.56 · 102

PR.C1091 572.69 20.26 11.82 6.09 · 102 6.56 · 102

PR.C1096 604.11 12.40 19.94 6.09 · 102 6.56 · 102

PR.C02406 38.82 12.28 19.46 9.74 · 102 9.74 · 102

PE.SMH16 101.45 12.36 20.15 7.25 · 103 1.86 · 103

Rewall-RC-35mm-2GeV - 17.35 16.89 3.20 · 106 3.20 · 106

Pumps - 17.35 16.89 1.37 · 104 1.63 · 105

Bellows - 17.35 16.89 3.17 · 102 1.77 · 105

Steps - 17.35 16.89 −2.33 · 104 1.43 · 105

Total - - - 3.01 · 106 5.31 · 106
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HEADTAIL configuration files

D.1 PS configuration file

Flag_for_bunch_particles_(1->protons_2->positrons_3&4->ions): 1

Number_of_particles_per_bunch: 1e11

Machine PS

Observation_points: PR.UHV

Interaction_points: PE.KFA71

Custom_impedance: REWALL1

ACdipole: NONE

Lump_impedance_(1->Yes,0->No): 0

Bunch_length_(rms_value)_[m]: 6.74533031

Normalized_horizontal_emittance_(rms_value)_[um]: 15

Normalized_vertical_emittance_(rms_value)_[um]: 8

Longitudinal_momentum_spread: 0.002

Synchrotron_tune: 0.00270163997

Relativistic_gamma: 3.126961

Number_of_turns: 1000

Longitud_extension_of_the_bunch_(+/-N*sigma_z) 2.

Horizontal_tune: 6.12

Vertical_tune: 6.23

Horizontal_chromaticity_[Q’x]: 0

Vertical_chromaticity_[Q’y]: 0

Flag_for_synchrotron_motion: 1

Number_of_macroparticles_per_bunch: 100000

Number_of_bunches: 1

Number_of_slices_in_each_bunch: 5000

Switch_for_bunch_table: 0

Switch_for_wake_fields: 1

Number_of_turns_for_the_wake: 1

Switch_for_initial_kick: 1

x-kick_amplitude_at_t=0_[m]: 0.001

y-kick_amplitude_at_t=0_[m]: 0.001

z-kick_amplitude_at_t=0_[m]: 0.

Switch_for_amplitude_detuning: 0

Linear_coupling_switch(1->on_0->off): 0

Linear_coupling_coefficient_[1/m]: -

Sextupolar_kick_switch(1->on_0->off): 0

Switch_for_losses_(0->no_losses_1->losses): 0

Main_rf_voltage_[V]: 2e5

Main_rf_harmonic_number: 8
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D.2 LHC configuration file

Flag_for_bunch_particles_(1->protons_2->positrons_3&4->ions): 1

Number_of_particles_per_bunch: 1.8e11

Machine: LHCB1

Observation_points: BPM

Interaction_points: NONE

Custom_impedance: BB_LHC

ACdipole: MKQA.6L4.B1

Lump_impedance_(1->Yes,0->No): 0

Bunch_length_(rms_value)_[m]: 0.108

Normalized_horizontal_emittance_(rms_value)_[um]: 2.5

Normalized_vertical_emittance_(rms_value)_[um]: 2.7

Longitudinal_momentum_spread: 0.00032

Synchrotron_tune: 0.0048991

Relativistic_gamma: 479.5817

Number_of_turns: 350

Longitud_extension_of_the_bunch_(+/-N*sigma_z) 2.

Horizontal_tune: 64.27

Vertical_tune: 59.31

Horizontal_chromaticity_[Q’x]: 0

Vertical_chromaticity_[Q’y]: 0

Flag_for_synchrotron_motion: 41

Number_of_macroparticles_per_bunch: 1000

Number_of_bunches: 1

Number_of_slices_in_each_bunch: 500

Switch_for_bunch_table: 0

Switch_for_wake_fields: 1

Number_of_turns_for_the_wake: 1

Switch_for_initial_kick: 1

x-kick_amplitude_at_t=0_[m]: 0.001

y-kick_amplitude_at_t=0_[m]: 0.001

z-kick_amplitude_at_t=0_[m]: 0.

Switch_for_amplitude_detuning: 0

Linear_coupling_switch(1->on_0->off): 0

Linear_coupling_coefficient_[1/m]: -

Sextupolar_kick_switch(1->on_0->off): 0

Switch_for_losses_(0->no_losses_1->losses): 0

Main_rf_voltage_[V]: 6e6

Main_rf_harmonic_number: 35640
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