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Résumé

La recherche en informatique quantique a pris de l’ampleur dans les deux dernières décennies,
notamment grâce aux financements massifs des gouvernements et de l’industrie dans les
technologies quantiques. L’ordinateur quantique promet de résoudre des problèmes qui
jusqu’à présent restaient insurmontables à cause du temps déraisonnable qu’il faudrait
pour les résoudre sur les ordinateurs classiques les plus puissants. L’idée de l’ordinateur
quantique consiste à utiliser des propriétés quantiques de la matière, telles que l’intrication
et la superposition quantique des états, pour effectuer des calculs d’une nouvelle manière.
L’informatique quantique requiert un nouveau type d’ordinateur où les bits d’information
classique, généralement représentés par la présence ou non de courant à l’entrée d’un
transistor, sont remplacés par des bits quantiques aussi appelés qubits, et qui sont représentés
par l’état d’un système quantique. De plus, il est nécessaire de développer de nouveaux
algorithmes capables d’être implémentés sur un ordinateur quantique et capables de tirer
parti de l’avantage quantique. Cette thèse porte sur ces deux composantes complémentaires
: la construction de portes logiques, un bloc fondamental de tout ordinateur, et la création
de meilleurs algorithmes pour résoudre des problèmes pertinents sur ces machines.

Parmi les plateformes les plus avancées pour l’ordinateur quantique, on trouve les circuits
supraconducteurs, qui sont la plateforme sur laquelle ont misé Google, IBM, Alice&Bob,
Nord Quantique et bien d’autres compagnies. Malgré les avancées des dernières décennies,
de nombreux défis restent à être relevés pour que les machines existantes soient en mesure
de résoudre des problèmes pertinents et surpassent les ordinateurs classiques. L’un des défis
auquel cette thèse s’attaque est la réalisation de portes logiques à deux qubits rapides et à
haute fidélité. La rapidité est cruciale pour pouvoir réaliser le plus d’opérations possible
avant que les qubits ne perdent leur cohérence quantique, et une haute fidélité est requise
pour minimiser les erreurs de calcul et permettre d’implémenter de la correction d’erreurs
quantiques. De plus, certains qubits supraconducteurs sont connus pour être affectés par une
interaction indésirable, l’interaction ZZ qui, même si relativement faible, affecte la fidélité
des portes logiques quantiques, empêchant d’atteindre des fidélités supérieures à 99.9%
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nécessaires à la correction d’erreurs.

En parallèle avec l’amélioration des composantes de l’ordinateur quantique, il est impor-
tant de développer des applications pour ce nouveau type de machine. Parmi les approches
étudiées, les algorithmes quantiques variationnels (VQA) sont ceux qui sont les plus suscep-
tibles d’être déployés sur les ordinateurs quantiques de petites tailles existants. Ce sont des
algorithmes hybrides qui nécessitent à la fois de la puissance de calcul classique et quan-
tique. Ces algorithmes semblent prometteurs pour résoudre de nombreux problèmes concrets
d’intérêt industriel, comme obtenir les propriétés de molécules ou trouver les solutions de
problèmes d’optimisation combinatoire. En effet, ces problèmes peuvent être formulés sous
forme d’un Hamiltonien et résolus en déterminant son état fondamental. Dans ce but, les
VQAs utilisent un circuit quantique paramétré appelé ansatz, dont les paramètres sont
optimisés pour s’approcher de l’état fondamental. Un premier défi consiste à trouver un
ansatz qui permette, pour un problème donné, de converger le plus efficacement possible
vers la solution. Un deuxième défi est de trouver un circuit fait de portes logiques facilement
implémentables sur les plateformes physiques actuelles.

Les travaux effectués dans cette thèse apportent des contributions à ces deux défis. Dans
la première partie de la thèse, nous introduisons le dispositif que nous avons conçu et qui
permet de réaliser des portes d’intrication paramétrique entre deux qubits supraconducteurs.
Cette approche a permis à nos collaborateurs du groupe d’Andrew Houck de l’Université
de Princeton de réaliser expérimentalement une opération de type

√
iSWAP en 15 ns avec

une fidélité de 98.8%, et ce dans un dispositif où l’interaction ZZ est supprimée. Dans
la seconde partie de la thèse, nous avons développé un ansatz pour les VQAs permettant
de résoudre le modèle de Fermi Hubbard. Ce nouvel ansatz utilise les avantages de deux
ansätze préexistants, et permet d’obtenir l’énergie et l’état fondamental du FHM avec une
précision de plusieurs ordres de grandeur supérieure aux ansätze standards, et ce en réduisant
significativement le nombre de portes d’intrication CNOT qui sont généralement imparfaites
et longues à implémenter.



Summary

Quantum computing has gained momentum over the last two decades, thanks in particular to
massive government and industry funding for quantum technologies. The quantum computer
promises to solve problems that are currently untractable because of the unreasonable
time it would take to solve them on the most powerful classical computers. The idea of
the quantum computer is to use quantum properties of matter, such as entanglement and
quantum superposition of states, to perform calculations in a new way. Quantum computing
requires a new type of computer in which classical information bits, generally represented by
the presence or absence of current at the input of a transistor, are replaced by quantum bits,
also known as qubits, which are represented by the state of a quantum system. In addition,
it is necessary to develop new algorithms that can be implemented on a quantum computer
and that are able to benefit of the quantum advantage. This thesis focuses on these two
complementary components: the construction of logic gates, a fundamental building block of
any computer, and the design of algorithms for solving relevant problems on these machines.

Among the most advanced platforms for quantum computing are superconducting
circuits, which are the platform on which Google, IBM, Alice&Bob, Nord Quantique and
many other companies have decided to bet on. Despite the advances of recent decades,
many challenges remain to be overcome before existing machines are able to solve relevant
problems and outperform classical computers. One of the challenges this thesis tackles is the
realization of fast and high-fidelity two-qubit gates. Speed is crucial to be able to perform
as many operations as possible before the qubits lose their quantum coherence, and high
fidelity is required to minimize computational errors and enable quantum error correction
to be implemented. In addition, some superconducting qubits are known to be affected
by an undesirable interaction, the ZZ interaction, which, although relatively weak, affects
the fidelity of quantum logic gates, making it challenging to achieve fidelities above 99.9%
required for quantum error correction.

Alongside the improvement of quantum computer components, it is important to develop
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applications for this new type of machine. Among the approaches explored, variational
quantum algorithms (VQA) are the family of algorithms most likely to be applied on existing
small-scale quantum computers. These are hybrid algorithms that require both classical and
quantum computing resources. VQAs seem promising for solving many concrete problems
of industrial interest, such as obtaining the properties of molecules or finding solutions to
combinatorial optimization problems. Indeed, these problems can be formulated in terms
of a Hamiltonian and solved by determining its ground state. To this end, VQAs use a
parameterized quantum circuit called ansatz, whose parameters are optimized to approximate
the ground state. A first challenge is to find an ansatz which, for a given problem, converges
as efficiently as possible to the solution. A second challenge is to find a circuit made of logic
gates that can be easily implemented on current physical platforms.

The work carried out in this thesis tackles both of these challenges. In the first part of the
thesis, we introduce a device we have designed that enables the implementation of parametric
entanglement gates between two superconducting qubits. This approach has enabled our
collaborators in Andrew Houck’s group at Princeton University to experimentally realize
a
√
iSWAP operation in 15 ns with a fidelity of 98.8%, and this in a device where the ZZ

interaction is suppressed. In the second part of the thesis, we developed an ansatz for VQAs
to solve the Fermi Hubbard Model. This new ansatz uses the advantages of two pre-existing
ansätze, and makes it possible to obtain the energy and ground state of the FHM with
an accuracy several orders of magnitude better than standard ansätze, while significantly
reducing the number of CNOT gates, which are generally imperfect and time-consuming to
implement.
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Chapter 1

Quantum computing with
superconducting circuits

In this first chapter, we introduce the basic concepts of superconducting circuits that will
be useful for the following chapters. In Sect. 1.1, we explain how an electrical circuit can
be formulated in the form of a Lagrangian and subsequently expressed as a Hamiltonian.
The procedure that takes us from a circuit to a quantized Hamiltonian is known as circuit
quantization. We provide an overview of the basic concept using the approach of Devoret
[1, 2]. In Sect. 1.2, we describe three commonly used superconducting qubits and which will
be useful in the next chapters: the fixed-frequency transmon, the flux-tunable transmon
and the generalized flux qubit. Finally, in Sect. 1.3 we provide an overview of the different
strategies that can be used to implement two-qubit gates between superconducting qubits.

I hope that this chapter will provide valuable context on how our work relates to the
current state-of-the-art research.

1.1 Circuit quantization

In this section, we present the approach of Devoret to quantize an electrical circuit [1, 2].
The electrical circuits that we consider in the following are two-pole elements connected
at nodes in simple networks. The most common elements are capacitances, inductances
and Josephson junctions. The Josephson junction (JJ) is ubiquitous in quantum computing

2
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with superconducting circuit because it is the best nonlinear element that is also non-
dissipative at sub-Kelvin temperatures. This nonlinearity plays an important role for
designing superconducting qubits.

a)

mode

Two-pole element

Node

Branch

Loop

b)

Figure 1.1 a) Diagram of a two-pole element on branch b, with a current I flowing through
it and a voltage V across the branch. The branch flux Φ is defined between
the flux nodes φn and φn′ . b) Diagram of an electrical circuit made of two-pole
elements. The nodes are indicated by dots and the branches are the path between
two consecutive nodes.

The branch charge and branch flux of any two-pole element are described by the voltage
V (t) and the current I(t) that flows through it:

Φ(t) =
∫ t

−∞
dt′V (t′) (1.1)

Q(t) =
∫ t

−∞
dt′I(t′), (1.2)

where the branch flux can also be written as Φ = φn − φn′ , with φi the flux node at the
nodes i ∈ {n,n′}, see Fig. 1.1. The energy absorbed by the element is given by:

E(t) =
∫ t

−∞
dt′I(t′)V (t′). (1.3)

Using basic equations relating the voltage and the current, such as V = LdIdt and I = dQ
dt =

C dV
dt for a linear inductor (resp. capacitor) with inductance L (resp. capacitance C), one

can determine the voltage and current flowing through a circuit element, and the energy
stored in it, as a function of the branch flux and branch charge. In the following, we express
those quantities in terms of the branch flux (see Table 1.1), note, however, that they could



4

be expressed in terms of the branch charge instead without loss of generality. Using this
convention, one can identify the capacitive energies as the kinetic energies and the inductive
energies as the potential energies.

Two-pole element Current Voltage Energy Symbol

Linear capacitor IC = CΦ̈ VC = Φ̇ C
2 Φ̇2

Linear inductor IL = 1
LΦ VL = Φ̇ 1

2LΦ2

Josephson Junction IJ = 2e
h̄ EJ sin( 2e

h̄ Φ) VJ = Φ̇ −EJ cos
(

2e
h̄ Φ

)

Table 1.1 Common superconducting elements. For each circuit element, we define the current
and the voltage flowing through the dipole, the energy stored in it and its symbol.
For the linear capacitor, C is the capacitance, for the linear inductor, L is the
inductance, and for the Josephson junction EJ is the Josephson energy.

Due to the constrains imposed by Kirchhoff’s laws, the number of degrees of freedom of
the circuit is smaller than the number of branches in the circuit. To get rid of the redundancy
of variables when deriving the Hamiltonian of a superconducting circuit, we use the approach
of Vool and Devoret [2], known as the method of nodes. Note that other methods exist to
derive the Hamiltonian for a circuit which can better describe certain device circuits [3, 4].

The first step of the method of nodes is to define a spanning tree T for the circuit. This
step consists in defining a reference node which is set to the ground, and identifying a set
of branches that connect every node of the circuit to the ground through branches with a
capacitance. The tree T should not form any loop. Also, note that the choice of spanning
tree is not unique. To satisfy Kirchhoff’s laws, the branch fluxes are defined as:

Φb∈T = φn − φn′

Φb∈T = φn − φn′ + Φb
ext

(1.4)

where T is the complement of T and, φn and φn′ are the flux nodes of the branch b. If the
branch b is not in the spanning tree, but belongs to a loop, then the external static flux Φb

ext

enclosed by the loop, is added to the flux branch.
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The Lagrangian is obtained by subtracting the potential energy from the kinetic energy:

L = Ekin −Epot =
∑
b∈BC

Cb
2 Φ̇2

b −
∑
b′∈BL

Φ2
b′

2Lb′
+

∑
b′′∈BJ

EJb′′ cos
(

2πΦb′′

Φ0

)
, (1.5)

where Bc, BL and BJ are the branches that have respectively a capacitance, an inductor or
a Josephson junction. We introduced the quantum flux Φ0 = h

2e . The flux branches Φb, Φb′

and Φb′′ in Eq. (1.5) are written as Eq. (1.4) depending on whether the branches are in T or
T . The Lagrangian is thus written in terms of the generalized coordinates

{
φ, φext, φ̇, φ̇ext

}
,

where φ and φext are vector notations of the flux nodes and of the external flux. If one
does the exercise and applies Euler-Lagrange equations to the Lagrangian, one will find the
equations of motion of the circuit, which are equivalent to Kirchhoff’s laws.

To derive the circuit Hamiltonian from the Lagrangian in Eq. (1.5), we first define the
conjugate variable of the flux nodes which here corresponds to the charge nodes:

qn =
∂L
∂φ̇n

. (1.6)

The Hamiltonian finally reads:
H =

∑
n

qnφ̇n −L. (1.7)

From the Hamiltonian description of the circuit, it is then straightforward to quantize
the Hamiltonian. One simply needs to replace φn, qn and H by the operators φ̂n, q̂n, Ĥ
respectively, and replace the Poisson brackets by the commutator relation [φ̂n, q̂m] = ih̄δnm,

In the laboratory, to observe quantum behavior in those systems, dissipation has to be
much smaller than the separation between two levels of the Hamiltonian, which is not the case
for dissipative circuits operated at room temperature. The circuits that we are considering
are made of superconductors operated at milliKelvin temperatures. These superconducting
circuits are non-dissipative, making it possible to measure quantum properties.
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Figure 1.2 a) Diagram of the lumped element circuit of a fixed-frequency transmon, b) Diagram
of the lumped element circuit of a flux-tunable transmon (bottom) threaded by
a magnetic flux Φext. c) One well of the cosine potential of the transmon qubit
(full line), V (ϕ) = −EJ cos(ϕ), compared to the quadratic potential of the LC
oscillator (dashed lines), V (ϕ) = −ϕ2. The eigenstates of the transmon are denoted
{|g〉, |e〉, |f〉, · · · }, and ωq is the qubit frequency. d) Illustrates the charge dispersion
in the first energy levels of the transmon Hamiltonian Eq. (1.8) versus the charge
bias ng. The three plots are for different EJ/EC ratios, for a fixed plasma frequency
ωp/2π = 5 GHz. c) and d) are adapted from Ref. [5].

1.2 Existing Superconducting qubits and couplers

1.2.1 The transmon qubit

One of the most commonly used superconducting qubits is the transmon qubit [5, 6]. This
qubit is made of a capacitance in parallel with a Josephson junction, see Fig. 1.2 a). Using
the procedure mentioned in the previous section one can find the transmon Hamiltonian:

Ĥ =
(q̂− qg)2

2C −EJ cos
(

2π Φ̂
Φ0

)
= 4EC(n̂− ng)2 −EJ cos (ϕ̂)

(1.8)
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where q̂ = 2en̂ is the charge operator, which is related to the operator representing the
number of Cooper pairs on the superconducting island, n̂. The charging energy is defined as
EC = e2

2C , with C = CJ +CS the sum of the junction’s capacitance (CJ) and of the shunt
capacitance (CS). The parameter ng represents a classical charge bias on the superconducting
island of the transmon that is induced by its capacitive coupling to the environment or to
a voltage source. Since n̂ is discrete, the phase operator ϕ̂ = 2πΦ̂/Φ0 is compact and its
eigenvalues are defined on [0, 2π[. The commutation relation is [ϕ̂, n̂] = i.

The cosine potential of a transmon qubit of frequency ωq is plotted in Fig. 1.2 c) (solid
line) along with the quadratic potential of an LC oscillator of same frequency (dashed line).
While the quantized energy levels of an LC oscillator are equally spaced, the transmon levels
are anharmonically separated. The anharmonicity is defined as the amount by which the
second transmon energy level deviates from the one of a harmonic oscillator. We will show in
a moment that the anharmonicity of the transmon is, to first approximation, equal to −EC.
The number of levels confined in the transmon potential depends on the height of the well
(2EJ), and can be estimated by counting the number of harmonic levels that could fit in
the well, i.e. ∼ 2EJ/

√
8ECEJ. The transmon potential generally contains about 8 energy

levels. Compared to the harmonic oscillator, the ground state and the first excited state of
the transmon can be isolated and used as a qubit. In the absence of anharmonicity or in the
case of small anharmonicity, the control of the qubit would cause unwanted transitions to
higher energy levels.

Looking at the spectrum of the electrical circuit, in the left plot of Fig. 1.2 d) one can
see that its energy levels depend on the offset charge ng. Because of its coupling to the
environment, the device of Fig. 1.2 a) can thus be sensitive to charge noise. We refer to the
variations of the energy levels with ng, max[E(ng)]−min[E(ng)], as the charge dispersion.
The choice of EJ and EC is of critical importance to control the transmon’s sensitivity
to charge noise, as the charge dispersion decreases exponentially with the square root of
EJ/EC [6]. Fig. 1.2 d) shows the transmon spectrum as a function of the offset charge for
different ratios EJ/EC. When the charging energy is comparable to the Josephson energy, i.e.
EJ ∼ EC, variations in ng significantly change the spectrum of the device. Such variations
in the qubit frequency are to be avoided because they lead to dephasing. To mitigate this
issue, transmons are designed in the regime where EJ/EC � 1, commonly known as the
transmon regime. In this regime, see right panel in Fig. 1.2 d), the first transmon levels are
to a very good approximation insensitive to charge fluctuations with a charge dispersion
almost equal to zero. Note, however, that having a large EJ/EC ratio comes at the cost
of reducing the transmon anharmonicity. The ratio EJ/EC should therefore remain below
100 to keep some anharmonicity in the spectrum level. A small anharmonicity makes it
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complicated to isolate the two lowest energy levels used as a qubit, since driving the qubit
leads to unwanted transitions to higher energy levels.

We now write the charge number and phase operators in terms of the creation and
annihilation operators:

ϕ̂ = ϕZPF(b̂+ b̂†),

n̂ = nZPF(b̂− b̂
†),

(1.9)

where we set the characteristic magnitude of the zero-point fluctuations of the charge number
and the phase to:

ϕZPF =

(2EC
EJ

) 1
4

,

nZPF = − i2

(
EJ

2EC

) 1
4

.
(1.10)

In the transmon regime (EJ/EC � 1), ϕZPF is small and one can thus expand the cosine
and approximate the Hamiltonian to fourth order in ϕ̂:

Ĥ ≈ 4ECn̂
2 +EJ

ϕ̂2

2 −EJ
ϕ̂4

4!
. (1.11)

Notice that we dropped the offset charge term in Eq. (1.11) since the transmon is charge
insensitive in this regime. The two first terms in Eq. (1.11) represent a harmonic oscillator
and the last term appears as a non-linearity. Replacing ϕ̂ and n̂ by the creation and
annihilation operators, the Hamiltonian can be rewritten as follows:

Ĥ =
√

8EJECb̂
†b̂− EC

12
(
b̂† + b̂

)4
. (1.12)

It is reasonable to apply the rotating-wave approximation (RWA) and remove the terms with
unequal number of b̂† and b̂, since those terms will be oscillating fast in the frame rotating
at the plasma frequency ωp =

√
8EJEC compared to the prefactor EC. The transmon

Hamiltonian can thus be approximated by a Kerr non-linear oscillator (KNO):

Ĥ = h̄ωq b̂
†b̂+

α

2 b̂
†2b̂2, (1.13)

with a qubit frequency ωq =
√

8EJEC/h̄−EC/h̄ and an anharmonicity α = −EC. The
ground-to-first excited state transition has a frequency of ωq and the first-to-second excited
state transition is detuned from ωq by the anharmonicity −EC, which is negative for a
transmon. This small nonlinearity in the spectrum makes it possible to control the ground
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and first excited states without populating the higher excited states. Therefore the two first
levels of the transmon can be used as a qubit. The transmon is a multi-level system with a
spectrum that is anharmonically spaced, it is for this reason often said to behave like an
artificial atom. Notice that the higher transmon levels could be used to form a qudit instead
of a qubit [7] [8] [9].

Transmon qubits have relaxation times T1 of the order of tens to hundred of microseconds,
with state-of-the-art T1s around 300 to 500µs [10–12]. The dephasing time T2 is typically
of the same order or magnitude than the T1.

1.2.2 The flux-tunable transmon

The transmon can be rendered flux-tunable by integrating two JJs shunted in parallel instead
of a single JJ, see Fig. 1.2 b). The two JJs form a SQUID loop. Following the approach
introduced in Sect. 1.1, one finds the following Hamiltonian:

Ĥ = 4ECn̂
2 −EJ1 cos (ϕ̂)−EJ2 cos (ϕ̂−ϕext) , (1.14)

where EJi is the Josephson energy of junctions i in the SQUID loop and EC represents
the charging energy, encompassing the capacitances of the junctions as well as the shunt
capacitance. The operators n̂ and ϕ̂ represent the charge number and phase across the
circuit branch. The parameter Φext is the external flux threaded through the SQUID loop,
and ϕext = 2πΦext/Φ0. By the means of trigonometric manipulation, the Hamiltonian can
be rewritten with a single cosine potential as [6]:

Ĥ = 4ECn̂
2 −EJ(ϕext) cos (ϕ̂−ϕ0) (1.15)

with

EJ(ϕext) = (EJ1 +EJ2) cos
(
ϕext

2

)√
1 + d2 tan2

(
ϕext

2

)
, (1.16)

where d = (EJ2 −EJ1)/(EJ1 +EJ2) is the junction asymmetry and

tan(ϕ0) =
EJ2 sin(ϕext)

EJ1 +EJ2 cos(ϕext)
tan

(
ϕext

2

)
. (1.17)

Note that ϕ0 differs from the definition in Ref. [6], where tan(ϕ0) = d tan
(ϕext

2
)
. This

difference arises from the fact the method of nodes is used here to derive the Hamiltonian
while Ref. [6] uses the method of branches. Nevertheless, the Hamiltonians are equivalent up
to a gauge transformation. The phase ϕ0 can anyway be eliminated by a shift of variables
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in the case where the external flux Φext is constant.

Because of the external flux the transmon now has an effective Josephson energy which
depends on ϕext. This renders the transmon frequency tunable with,

h̄ω(ϕext) =
√

8EC|EJ(ϕext)| −EC (1.18)

and the anharmonicity remains fixed and negative as for the fixed-frequency transmon.
The flux-tunable transmon is widely used as a qubit or a coupler [13–20]. One advantage
of using the flux-tunable transmon as a qubit is that it allows for more flexibility in the
device parameters, as current nanofabrication errors can typically shift the capacitances
by 1− 5% and the Josephson energies by ∼ 5− 20% [21–23]. Flux-tunable transmons are
also frequently used as couplers, where their frequency is tuned such as to turn on or off
interactions between the qubits [14, 24]. The tunability of the qubits or the coupler is also
used to implement gates, more details on how two-qubit gates are performed will be given in
Sect. 1.3. It is important to note, however, that this flexibility in the flux-tunable transmon
comes at the expense of increased sensitivity to flux noise. This flux noise ultimately leads
to a decrease in the qubit phase coherence compared to fixed-frequency transmons. An
additional drawback of flux-tunable qubits is the need for calibrating the device parameters,
which can be a challenging task, especially for chips with a large number of qubits [25, 26].

1.2.3 The Generalized Flux Qubit

a) b)

...

θ0

Eb
J ∼ Eb

C Φext

θ1 θ2 θ3 θ4 θN

Ea
J ≫ Ea

C

Figure 1.3 a) Diagram of the lumped element circuit of a generalized flux qubit, adapted from
Ref. [27]. b) Anharmonicity of the GFQ αGFQ in the KNO approximation versus
flux. Each plot corresponds to a different N and each line to a different anisotropy
ratio α = 1/N , 1/2N and 1/3N .

The generalized flux qubit (GFQ) is a variation of the flux qubit, where instead of a simple
SQUID, one of the branches of the loop has an array of N Josephson junctions, as shown in
Fig. 1.3 [28–33]. This circuit is also known as a Superconducting Nonlinear Asymmetric



11

Inductive eLement (SNAIL) developed by Frattini et al. [29]. The circuit branch with a single
junction is called the black-sheep junction, and we will refer to the branch with multiple
junctions as the junction array.

In principle, this circuit contains N + 1 modes, defined by the flux branches θi. Under
some assumptions it is possible to approximate the array of junction by a single mode,
φ =

∑N
m=1 θm, usually called the superinductance mode [27]. The Hamiltonian of the GFQ

derived from circuit quantization can then be expressed as follows:

Ĥ(t) = 4ECn̂
2 − αEJ cos [ϕ̂+ ϕext]− βNEJ cos

[
ϕ̂

N

]
, (1.19)

with ϕ̂ = φ/φ0 where φ0 = h̄
2e , and n̂ respectively the superconducting phase difference

and the Cooper pair number operators. The parameter EC is the charging energy of the
superinductance mode, which can be written in terms of the charging energies of the black
sheep junction EbC, and of the array EaC as EC =

NEaCE
b
C

NEaC+EbC
. We assume that all the Josephson

junctions are identical in the array and that each individual Josephson energy is EJ. The
parameter β corresponds to a renormalization of the superinductance due to disorder in the
junction array and to finite zero-point fluctuations. This quantity can be approximated as
β ∼ exp

(
−N−1

4N

√
8EaC/EaJ

)
, see Ref. [34]. The parameter α is simply the ratio between the

Josephson energy of the black sheep junction and the Josephson energy of the junction array
EJ. It parametrizes the anisotropy between the two branches of the loop. Finally, the loop
can be threaded by an external flux ϕext =

φext
φ0

.

The Hamiltonian in Eq. (1.19) is obtained by assuming that [29]:

• All the Josephson junctions are identical in the N-junction array, with a Josephson
energy EJ and a capacitance CJ .

• The external flux ϕext is constant.

• The capacitance to the ground of each junction between the islands can be neglected.
This is valid if the capacitance to the ground is much smaller than CJ/N2.

• The single-mode approximation is valid if the plasma frequency of a junction, h̄Ωp =√
8EJECJ , is higher frequency than the dynamics that is being studied. This is usually

the case because the devices are designed with Ωp/2π ≡ [20− 40]GHz, which is to be
compared with dynamics occurring in the GHz range.

• The phase slip rate in the array, which is proportional to e−
√
EJ/ECJ , is small compared

to the inverse of the relevant timescale. This is usually the case because of the shunting
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capacitor.

As for the transmon, the cosine potentials in Eq. (1.19) can be Taylor expanded and then
expressed in terms of creation and annihilation operators. For EJ/EC large and α < 1/N ,
the generalized flux qubit can also be expressed as a KNO with frequency and anharmonicity:

ωGFQ(ϕext) =

√
8EJEC

[
α cos (ϕext) +

β

2N cos
(
ϕext
N

)]
(1.20)

αGFQ
2 = −1

2EC

[
α cos (ϕext) +

β
N3 cos

(ϕext
N

)
α cos (ϕext) +

β
2N cos

(ϕext
N

)] . (1.21)

In the limit where β → 0 one recovers the transmon. For the GFQ, the anharmonicity can
be made positive when cos(ϕext) is negative if the number N and the anisotropy ratio α
between the Josephson energy of the two branches is appropriately chosen. In Fig. 1.3 b),
we show the anharmoticity of the GFQ in the KNO appromixation versus ϕext, for different
N and α. We see that it is easier to obtain positive anharmonicities for larger value of N
and for α < 1/N . Note that for α < 1/N (resp. α > 1/N), the potential of the GQF in
Eq. (1.19) features a single (multiple) well versus the superconducting phase ϕ.

It has been shown for qubits with opposite anharmonicities that it is possible to suppress
unwanted ZZ interactions between the qubits [35–37]. The ZZ interaction is generated by
a term in σZ1σZ2 in the Hamiltonian which shifts the qubit frequencies when both qubits
are in the first excited state. While this ZZ term can be desired to generate CZ gates, it
can also be unwanted. Spurious ZZ interaction is one of the main factors limiting current
gate fidelities and a great deal of efforts have been made to address this issue [35–39]. In
Chapter 3, we show that by using a GFQ as a coupler between transmon qubits, it is possible
to cancel this ZZ interaction.

1.3 Two-qubit gates

There exist multiple approaches of generating two-qubit gates for superconducting qubits [5].
In this section, we briefly describe three ways of implementing gates in superconducting
qubit architectures, depending on the presence of a coupler and on the tunability of the
qubits.
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1.3.1 Flux-tuned gates

The general idea of flux-tuned gates is to keep the qubits far detuned from any resonance
when the gate is off and to tune specific energy levels into resonance to implement a certain
gate. Here we consider one of the simplest architectures to implement a gate, that is, one or
two flux-tunable qubits which are directly coupled through a capacitance. This system is
described by a beam-splitter Hamiltonian:

Ĥ =h̄ω1b̂
†
1b̂1 +

α1
2 b̂†21 b̂

2
1 + h̄ω2b̂

†
2b̂2 +

α2
2 b̂†22 b̂

2
2

+ h̄J(b̂†1b̂2 + b̂1b̂
†
2),

(1.22)

where J depends on the Josephson and charging energies of the qubits, and on the coupling
capacitance. This Hamiltonian describes the coherent exchange of an excitation between the
two qubits.

By tuning the qubits at some specific frequencies, different gates can be activated using
this Hamiltonian. For instance, by tuning the qubits on resonance, ω1 = ω2, it is possible to
generate an iSWAP gate. This becomes evident by treating the qubits as two-level systems
and moving to the rotating frame at the qubit frequencies:

Ĥeff = h̄J(σ̂+1σ̂−2 + σ̂−1σ̂+2). (1.23)

An iSWAP gate can thus be implemented with this Hamiltonian by letting the system evolve
for a time tiSWAP = π/(2J).

Still using the Hamiltonian in Eq. (1.22), it is also possible to implement a controlled-
phase gate (C-Phase). This can be achieved by taking advantage of the higher energy levels
of the qubits [5, 40]. In fact, when J 6= 0, the energy level h̄ω11 associates to the state with
both qubits in the first excited state is no longer equal to the sum of the qubit energies
h̄(ω01 + ω10). The amount by which the energies differ is denoted ζ = ω11 − ω01 − ω10 and
is generally referred to as the ZZ interaction. In the spectrum, this shift translates in an
avoided crossing between the computational level |1112〉 and the second excited state of
one of the qubits |0122〉, when tuning ω1. Tuning the qubits in and out of this avoided
crossing leads to the following unitary operation: diag(1, eφ01 , eφ10 , eφ11), where φab =

∫
dtωab

is the dynamical phase accumulated during the flux excursion by the state |a1, b2〉 with
a b ∈ {0, 1}. Up to single qubit phase gates, this operation is equivalent to a C-Phase gate,
CPHASE(φ) = diag(1, 1, 1, eiφ), where φ = φ11 − φ01 − φ10 =

∫
dtζ(t). For φ = π, this

operation leads to a controlled-Z gate (CZ).
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One of the main issues of this type of gate is that activating a gate can lead to frequency
collisions when tuning the qubit frequency. These frequency collisions can be with other
qubits, resonators, and couplers, or with to two-level defects that are almost ubiquitous in
superconducting chips [41].

Above we showed how two-qubit gates can be performed by tuning the qubit frequencies
at some resonance frequencies. The same principle can be applied using a resonator bus or a
flux-tunable coupler instead of tunable qubits to turn on and off interactions [14, 24, 42, 43].
Using this approach, some of the best iSWAP-like gates have been implemented in about
12 ns with ∼ 99.5% fidelity [24] and CZ gate in 30 ns with 99.07% fidelity [42]. Typical
iSWAP times are around a few to tens of nanoseconds and CZ gate are generally in the
order of tens of nanoseconds.

1.3.2 All-microwave gates

Previously we have shown how gates can be activated by changing a control parameter of
the qubits and/or a coupler, like a flux line. Here, the idea is to turn on and off interactions
using a microwave drive on the qubits and/or the coupler. These types of gates can be
implemented with flux-tunable and fixed-frequency qubits and/or couplers.

As an example, we consider the cross-resonance (CR) gate [44, 45]. The CR gate is
implemented between two detuned qubits that are either capacitively coupled or connected
via a resonator bus. The main idea is to drive a qubit at the frequency of the other, thereby
activating the CR term in σ̂z1σ̂x2. This CR term can ultimately be used to realize a CNOT
gate.

Considering two transmons approximated as KNOs (see Sect. 1.2), the driven Hamilto-
nian can be expressed as follows:

Ĥ =h̄ω1b̂
†
1b̂1 +

α1
2 b̂†21 b̂

2
1 + h̄ω2b̂

†
2b̂2 +

α2
2 b̂†22 b̂

2
2 + h̄J(b̂†1b̂2 + b̂1b̂

†
2)

+ h̄ε(t)
[
b̂†1e
−iωdt + b̂1e

iωdt
]

,
(1.24)

where ωi and αi are respectively the frequency and anharmonicity of qubit i ∈ {1, 2}, and
J describes the coupling amplitude between the qubits. The term on the second line of
Eq. (1.24) represents a drive of frequency ωd on qubit 1 with a time-dependent envelop
ε(t). Moving to the rotating frame at the qubit frequencies and applying a Schrieffer-Wolff
transformation (see Appendix B) to second order in J to diagonalize the undriven part of
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the Hamiltonian, one arrives at the following Hamiltonian [5]:

Ĥ =
h̄δ1
2 σ̂z1 +

h̄δ2
2 σ̂z2 + χ12σ̂z1σ̂z2

+ h̄ε(t)

[
σ̂x1 − J ′σ̂x2 −

EC1
∆12

J ′σ̂z1σ̂x2

] (1.25)

where the transmons are truncated to their two first energy levels at the end of the full
calculation, and where:

δ1
2 = ω1 +

J2

∆12
+ χ12 − ωd χ12 =

J2

∆12 +EC2
+

J2

∆12 +EC1
(1.26)

δ2
2 = ω2 −

J2

∆12
+ χ12 − ωd J ′ =

J

∆12 −EC1
. (1.27)

In Eq. (1.25), the CR term σ̂z1σ̂x2 appears with a prefactor that is relatively small. One
therefore wants the detuning between the qubits to be small compared to the anharmonicity
EC1, but large enough compared to J . On the other hand, a small qubit-qubit detuning
is not ideal on multiqubit-device, as frequency crowding might become an issue. Driving
qubit 1 gives rise to an effective drive term in J ′ε(t) on qubit two, however, protocols
exists to eliminate this term [46, 47]. Note that the term χ12, referred to as the ZZ cross-
Kerr term, only appears when taking into account the higher transmon levels. This ZZ
interaction term is one of the main factors limiting current gate fidelities [35–39]. It has to
be made as small as possible, which, on the other hand, compromises the gate speed. Note,
however, that mitigation strategies exist to cancel χ12, for instance it can be dynamically
suppressed by using a microwave drive [39] or by using qubits and/or couplers with opposite
anharmonicities [35, 36, 48].

Using this scheme, CR gates are generated in about 200− 400 ns for relatively low
gate fidelities (94− 96%) [46] compared to flux-tuned gates. However, an advantage of
all-microwave gates is that they can be performed on fixed-frequency qubits, reducing the
qubit sensitivity to noise and ultimately increases their lifetimes. Moreover, fixed-frequency
qubits simplify the chip design, it namely reduces the electronics, as the same drive lines
can be used for single- and two-qubit gates.

1.3.3 Parametric gates

The main idea of parametric gates is to activate off-resonant interactions by modulating a
parameter of the device at a specific frequency. The device parameters that are typically
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modulated are the qubits or coupler frequencies (if tunable), or a coupling parameter. By
appropriately choosing the frequency of the modulation, it is possible to generate transitions
between energy levels which otherwise would be far off resonant and weakly coupled. To
understand how a parametric gate is performed, we illustrate it with an example.

Let’s consider a fixed-frequency qubit capacitively coupled to a frequency-tunable qubit:

Ĥ =
h̄ω1(t)

2 σ̂z1 +
h̄ω2

2 σ̂z2 + Jσ̂x1σ̂x2, (1.28)

where we suppose ω1(t) = ω1 + ε sin(ωdt). Moving to the rotating frame at the frequency of
the qubits with the unitary:

Û = e−
ih̄
2

∫ t
0 dt
′ω1(t′)σ̂z1e−

ih̄
2 ω2σ̂z2 , (1.29)

and using the Jacobi-Anger expansion eiz cos(θ) =
∑∞
n=−∞ i

nJn(z)einθ, where Jn is the
nth-order Bessel function, the effective Hamiltonian can now be expressed as follows:

Ĥ ′ = J
∞∑

n=−∞
inJn

(
ε

ωd

) [
ei(ω1−ω2−nωd)tσ̂+1σ̂−2 + ei(ω1+ω2−nωd)tσ̂+1σ̂+2 + h.c.

]
. (1.30)

We see that the modulation of the qubit frequency in Eq. (1.28) induces sidebands in
Eq. (1.30), making it possible to activate interactions between the qubits by putting into
resonance nωd = (ω1±ω2). When the modulation of the qubit frequency is off (ε = 0), only
the first order Bessel remains in Eq. (1.30), and if the qubits are far detuned from each other
compared to J , then the qubit interaction is weak. Note also that the sidebands have an
effective coupling JJn

(
ε
ωd

)
which decreases with n.

In the example above, modulating the qubit frequency at ωd = ω1 − ω2 generates a√
iSWAP gate. For more complex Hamiltonians, additional interaction terms, other than

σ̂+1σ̂−2 and σ̂+1σ̂+2, will appear in the effective Hamiltonian, making it possible to activate
other gates by modulation the tunable parameter at the appropriate frequencies [19, 49–51].
Conditional phase gates (CZ) can typically be performed in about 100-400 ns with fidelities
below 98%, and iSWAP gates in 40-250 ns and fidelities ∼ 99% and below [19, 51]. Ref. [51]
reports a 44 ns iSWAP gate and a 124 ns CZ gate with an average process fidelity of 99.3%
and 97.9% respectively, by performing a parametric-resonance gate.



Chapter 2

Floquet theory to extract gate
properties

One of the most direct approaches to numerically determine the time of a gate involves
solving for the system dynamics. For instance, to determine the time of an iSWAP gate
between two qubits, one would analyze the qubit populations and identify the moment at
which the qubits have exchanged states. When optimizing the device parameters, for instance,
to maximize the gate speed, solving for the system dynamics for different parameters is a
resource-intensive process. Moreover, as the drive amplitude increases, the frequency at
which the gate should be driven to achieve a high-fidelity gate, changes due to ac-Stark
shifts [52] and Bloch-Siegert shifts [53]. Consequently, the gate dynamics has to be repeated
for different drive frequencies to identify the one that results in a high-fidelity gate. Based
on the need to efficiently explore device parameters, we have developed a method based
on Floquet theory that enables us to extract gate rates significantly faster than standard
numerical methods. This method takes advantage of the fact that gates we consider are
activated by periodically driving the system.

In the first part of this chapter, we introduce the basic concepts of Floquet theory. In the
second part, we explain how one can obtain interaction amplitudes using only the Floquet
spectrum.

17
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2.1 Floquet theory

In solid-state physics, Bloch’s theorem is used to describe the behavior of electrons in
periodic lattices [54]. More precisely the theorem states that the solutions to the Schrödinger
equation of a space periodic Hamiltonian can be written as a product of a plane wave and a
periodic function. Floquet’s theorem is the analog of Bloch’s theorem, with the difference
that the Hamiltonian is now time-periodic instead of space-periodic [55, 56]. The theorem is
formulated as follows:

Theorem 1 (Floquet’s theorem)

Let H(t) be a continuous and T -periodic Hamiltonian in the Hilbert space H, and
let |Ψ(t)〉 be a solution to the Schrödinger equation:

ih̄
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉. (2.1)

There exists a complete set of solutions to Eq. (2.1), { |Ψα(t)〉 |α ∈ [1, · · · , dim(H)]},
that can be written as:

|Ψα(t)〉 = e−
i
h̄
εαt|Φα(t)〉, (2.2)

where |Φα(t)〉 are T -periodic functions called the Floquet modes, and εα are the Floquet
quasi-energies which are time-independent. The solutions |Ψα(t)〉 are called Floquet
states.

A certain number of properties and implications can be derived from this theorem [56–58].
We enumerate some of the properties here:

Properties:

1. The Floquet modes inherit the completeness of the Floquet states, for a given time t,
since

∑
α |Ψα(t)〉 〈Ψα(t)| =

∑
α |Φα(t)〉 〈Φα(t)| = I, and the modes are orthogonal:

〈Φα(t)|Φβ(t)〉 = δαβ ∀t for α,β ∈ [1, · · · , dim(H)]. (2.3)

2. The Floquet modes and quasi-energies are not unique, there exists an equivalence class
of modes and quasi-energies that lead to the same Floquet state.
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For any k ∈ Z: |Φα,k(t)〉 = eikωt |Φα(t)〉

εα,k = εα + kω
(2.4)

with ω = T
2π , the Floquet mode and quasi-energy |Φα,k(t)〉 and εα,k lead to the same

Floquet state |Ψα(t)〉. Because the quasi-energies are defined modulo ω, the Floquet
spectrum is folded in what we can call the first Briouillin zone in analogy to Bloch’s
theorem.

3. Inserting Eq. (2.2) in Eq. (2.1), one finds that the Floquet modes and quasi-energies are
solution to the eigenvalue problem of the Floquet Hamiltonian HF =

[
H(t)− ih̄ d

dt

]
:

HF |Φα(t)〉 =
[
H(t)− ih̄ d

dt

]
|Φα(t)〉 = εα |Φα(t)〉 . (2.5)

HF exists in the tensor product space of H and of the square-integrable T -periodic
functions space HT , which we call HF = H⊗HT . We define the inner product in the
composite space as:

〈〈Φα,n|Φβ,m〉〉 =
1
T

∫ T

0
dt〈Φα,n(t)|Φβ,m(t)〉 = δαβδnm. (2.6)

4. If two Floquet Hamiltonians
(
Ĥ ′(t)− i∂t

)
and

(
Ĥ(t)− i∂t

)
are unitarily equivalent,

i.e.:
Ĥ ′(t)− i∂t = e−Ŝ(t)

[
Ĥ(t)− i∂t

]
eŜ(t), (2.7)

with e−Ŝ(t) a time-dependent unitary transformation, then their quasi-energies are
identical.

The Floquet modes and quasi-energies are obtained by diagonalizing the evolution
operator U (t) at the first period of the drive, since:

U (T )|Ψα(0)〉 = |Ψα(T )〉 ⇔ U (T )|Φα(0)〉 = e−
i
h̄
εαT |Φα(0)〉. (2.8)

The quasi-energies are εα = i h̄ω2π log(eigα) (mod ω), where eigα is the eigenvalue of U (T )
associated to |Φα(0)〉. The Floquet modes at time t ∈ [0,T ] can then be obtained by evolving
|Φα(0)〉 up to a time t and multiplying it by e

i
h̄
εαT . The fact that the Floquet energies are

solutions to the eigenvalue problem of the Floquet Hamiltonian in Eq. (2.5) means that they
hold information about the time dependence of the Hamiltonian. In fact, the quasi-energies
contain information such as ac-stark shifts and Bloch-Siegert shifts. We show in the next
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section how one can take advantage of this knowledge to extract interaction amplitudes.

An analogy can be made between the solutions of a time-independent Hamiltonian and
the solutions obtained from a time-periodic Hamiltonian. Let H be a time-independent
Hamiltonian, and {|φn〉,En} the solutions to the time-independent Schrödinger equation.
Any solution to the time-dependent Schrödinger equation can be written in the form:

|Ψ(t)〉 =
∑
n

cne
− i
h̄
Ent|φn〉 (2.9)

with cn ∈ C. Similarly, any solution of Eq. (2.1) can be written as:

|Ψ(t)〉 =
∑
α

cαe
− i
h̄
εαt|Φn(t)〉, (2.10)

where the eigenenergies are replaced by the quasi-energies and the static eigenstates by
the time-periodic Floquet modes. In the limit where the Hamiltonian is time independent,
Eq. (2.10) converges to Eq. (2.9).

In Property 2, we see that for any k, εα,k is associated to the same physical Floquet
state |Ψα(t)〉, and should therefore be observable. These Floquet levels will be exper-
imentally observed provided that a matrix element exists for the transition of interest
∆αβk = εα − εβ + kωd, where k ∈ Z can be interpreted as the number of photons added or
removed by the drive. In the framework of Floquet theory, the matrix elements are defined
as:

Xαβk =
1
T

∫ T

0
dte−ikωdt〈Φβ(t)|Xαβk|Φα(t)〉. (2.11)

Now that we have introduced some basic concepts of Floquet theory, we explain how
one can obtain interaction amplitudes using only the Floquet quasi-energies.

2.2 Extracting interaction amplitudes

As we will see in Chapter 3, approximate analytical descriptions of superconducting devices
are often insufficient to reach quantitative agreements with experiments, and numerical
simulations become unavoidable. Moreover, exploring the parameter space searching for
device parameters that lead to fast and high-fidelity gates can becomes a resource intensive
process. For these reasons, we have developed a method based on the concepts of the previous
section, which allows us to extract gates rates, and more generally interaction amplitudes,
significantly faster than standard numerical method.
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To explain the intuition behind this approach, we first introduce an illustrative example:
a two-level system (TLS) coupled to a quadrature of a quantized field. This problem is
time-independent, however, as we will see later, it can be related to a periodically driven
TLS. The objective of this example is to provide insights on how the Floquet quasi-energies
are related to the dressed spectrum.

A two-level system coupled to a field:

Such a system can be modeled by the Rabi Hamiltonian [59]:

H =
ωq
2 σz + ωdâ

†â+ g
(
â+ â†

)
σx, (2.12)

where the two first terms respectively represent the Hamiltonian of a qubit of frequency ωq
and a field of frequency ωd. The last term on the right corresponds to the qubit-field coupling
of amplitude g. We denote the eigenstates of the qubit {|g〉, |e〉}, and the field eigenstates
{ |N〉 for N ∈N}. If we consider that the qubit and the field are uncoupled (i.e. g = 0),
then the eigenstates of the Hamiltonian are |q,N〉 ≡ |q〉 ⊗ |N〉 for q ∈ {e, g} and N ∈N. In
the case where the field is on resonance with the qubit, the unperturbed spectrum exhibits
degeneracies between the bare levels |g,N + 1〉 and |e,N〉 for any N , see Fig. 2.2 a). In
Fig. 2.1 b), this degeneracy translates in an exact crossing of the eigenstates (dashed lines)
at the resonance. Turning on the coupling, the eigenstates |e,N〉 and |g,N + 1〉 interact and
hybridize, leading to the dressed states |g(N )〉 and |e(N )〉 which are linear combinations of
the bare states, see Fig. 2.2 a). The hybridization of the states leads to level repulsion which
removes the degeneracy at resonance and translates in an avoided crossing of the dressed
states (solid lines) in Fig. 2.1 b). An exact expression can be found for the energy separation
Ω between the two levels in the case where the Rabi Hamiltonian is treated in the RWA.
The Rabi Hamiltonian in the RWA is nothing else than the Jaynes-Cummings Hamiltonian,

H =
ωq
2 σz + ωdâ

†â+ g
(
âσ̂+ + â†σ̂−

)
, (2.13)

which is exactly solvable, and for which the energy separation of the avoided crossing reads
[5, 59]:

Ω =
√

Ω2
1 + ∆2, (2.14)

where Ω1 = 2g
√
N is the Rabi frequency, which we will also refer to as the interaction

amplitude, and ∆ = ωd − ωq is the qubit-field detuning. When the field frequency is on
resonance with the qubit, ωd = ωq, the interaction leads to a perfect swap of excitation
between the two energy levels in a time that is inversely proportional to Ω1/2. In the case
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Figure 2.1 a) Illustration on a two-level system (gray) of interacting with a field (red). The
excitation exchange happens with a rate Ω. The blue (yellow) level corresponds to
the qubit ground (excited) state. b) Energy diagram of the qubit spectrum dressed
by the drive as a function of the field frequency. The minimum distance in the
avoided crossing is equal to 2Ω1. The dashed lines correspond to the undriven
spectrum while the solid lines are the driven spectrum. As the field and the
qubit become off-resonant, the energy levels can be identified to the states at the
extremities.

where the coupling becomes large compared to the qubit and coupler frequencies, Eq. (2.14)
does not hold anymore for the Rabi Hamiltonian and the minimum distance in the avoided
crossing is shifted from ωq due to an important dressing of the energy levels, known as the
Bloch-Siegert shift. This shift is of the order of g2/(ωq + ωd).

For any Hamiltonian, if the energy separation can be determined at the minimum
distance in the avoided crossing then the interaction amplitude can be found. This is the
main idea on which our method is based on, as it is adapted to a time-periodic system.

A driven two-level system:

An analogy can be made between the Rabi Hamiltonian in Eq. (2.12) and a driven
qubit in the case where the field can be treated classically. Indeed, by moving the Rabi
Hamiltonian to the rotating frame at ωd, then displacing the field mode as â→ â+ α with
α ∈ C, and dropping quantum fluctuations (â) in favor of the classical part (α), one obtains
the Hamiltonian of a driven qubit:

H(t) =
ωq
2 σz +A cos(ωdt)σx, (2.15)

with A the amplitude of the drive. The spectrum of the driven system is dressed by the drive
and as in Fig. 2.1 exhibits an avoided crossing as a function of the drive frequency. Even
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Figure 2.2 a) Diagram of the spectrum of a qubit coupled to a field. On the left the levels
correspond to the uncoupled spectrum (g = 0) and on the right coupled spectrum
(g 6= 0) with the dressed states |g(N )〉 and |e(N )〉. The letters g and e refer to the
qubit ground state and excited states, and N to the number of excitations. ∆ is
the qubit-field detuning and Ω is the Rabi splitting. b) Diagram of the Floquet
spectrum of a driven qubit. The energy levels in dashed lines correspond to Floquet
energies modulo ωd. If the drive couples the ground (g) and excited (e) states,
then the quasi-energies εe,k and εg,k+i will repel each other when the drive is on
resonance.

though the field mode (â† and â) does not appear anymore in Eq. (2.15), some of its features
can be found in the quasi-energies. In particular, in the quasi-energy εα,k = εα + kωd, the
integer k can be thought of as the number of excitations originating from the drive, similar
to the number of field excitations N in the previous example.

As mentioned in Sect. 2.1, the quasi-energies account for drive effects and therefore
effectively reproduce the dressed spectrum. By determining the Floquet energies at the
minimum distance in the avoided crossing, we can extract the interaction amplitude, between
the levels in question and ultimately determine the gate time. In the following chapters, we
will use the term gate rate to denote the interaction amplitude. As seen previously, finding
the quasi-energies only involves the numerical computation of the evolution operator of
Eq. (2.15) for a single period of the drive. In Chapter 3, we consider gates using GHz drives,
which typically corresponds to drive periods of T ∼ 1 ns. The drive period is thus around 1
to 3 orders of magnitude shorter than typical gate times. Extracting the gate rates with this
Floquet method is thus significantly more efficient than standard numerical methods based
on evolving the gate dynamics for times much longer than T . This method can naturally be
extended to any time-periodic Hamiltonian and proves to be useful as long as the gate time
is shorter than the period.

Also, more generally, other interactions such as cross-Kerr interactions can be formulated
as linear combinations of the quasi-energies. For instance, in the undriven case, the ZZ
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cross-Kerr interaction between two qubits is written as:

ZZ = E11 −E01 −E10 +E00 (2.16)

where Eij is the energy of the computational state |ij〉, with i, j ∈ {0, 1}. This relation can
be extended to the driven case using the quasi-energies:

ZZ = ε11 − ε01 − ε10 + ε00, (2.17)

to extract the dynamical ZZ that is introduced by the drive.

Note that the Floquet spectrum can also be used to find the optimal drive frequency to
implement a gate, as the frequency might be altered due to Bloch-Siegert shifts in the case
of a strong drive. This is done by plotting the avoided crossing as a function of the drive
frequency to find ωd at which the avoided crossing is minimal and the interaction therefore
maximal.

In the following chapter, we apply this Floquet method to numerically determine the
gate time and the dynamical ZZ of a superconducting device, and to extract the shift in the
drive frequency as the case of strong drives.



Chapter 3

Fast and high-fidelity parametric
two-qubit gate design

The work presented in this chapter of the thesis was done in collaboration with the group of
Andrew Houck at Princeton University and with members of the Blais group at the Université
de Sherbrooke. In Sherbrooke, Alexandru Petrescu, Catherine Leroux and Agustin Di Paolo
contributed in designing and developing the device model presented below. Alexandru
Petrescu is one of the main contributors who developed the time-dependent Schrieffer-Wolff
perturbation theory to analytically describe the designed device. At Princeton University,
Pranav Mundada, Andrei Vrajitoarea, Sara Sussman and Charles Guinn, contributed to this
chapter with useful discussions related to the device design.

The architecture we explore is illustrated in Fig. 3.1. It consists in two fixed-frequency
transmon qubits labeled a and b (green) and a coupler labeled c (blue). The coupler is made
of an array of Josephson junctions in parallel with a single JJ, which are shunted with a
capacitance. The loop formed by the JJs can be threaded by a magnetic flux, and as we
will see later, we will activate gates by modulating the flux through the loop. The qubits
and the coupler are capacitively connected to each other. The Hamiltonian of this circuit is
derived in Appendix A by using the standard approach [1, 2] and reads:

Ĥ(t) = Ĥa + Ĥb + Ĥc(t) + Ĥg, (3.1)

25
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φext

a b

c

Figure 3.1 Device design. The qubits a and b (green) are fixed-frequency transmons capacitively
coupled to a SNAIL used as a coupler (blue). The coupler c has a superconducting
loop, made of N JJs in parallel with a black sheep junction, that is threaded by a
magnetic flux ϕext.

where the transmons and the coupler are described by,

Ĥj = 4ECj n̂2
j −EJj cos(ϕ̂j), for j = a, b,

Ĥc(t) = 4ECcn̂2
c − αEJc cos [ϕ̂c + µαϕext(t)]− βNEJc cos

[
ϕ̂c

N
+ µβϕext(t)

]
.

(3.2)

and where the coupling between the qubits and the coupler is,

Ĥg = 4ECabn̂an̂b + 4ECbcn̂bn̂c + 4ECacn̂an̂c. (3.3)

The operators ϕ̂j and n̂j are canonically conjugate and represent the superconducting phase
difference, resp. the Cooper pair number for the bare mode of the transmons for the indices
j = a, b and of the coupler for j = c. They satisfy the commutation relations [ϕ̂j , n̂k] = iδjk,
where we set h̄ = 1. The parameters ECj are the charging energies, which depend on the
device capacitances (see Appendix A). The Josephson energies are denoted EJa, EJb for
the transmon modes, whereas βEJc is the Josephson energy of one of the junctions in the
N-junction array of the coupler. The parameter β corresponds to a renormalization of the
superinductance due to disorder in the junction array and to finite zero-point fluctuations, as
mentioned in the subsection about the generalized flux qubit in Sect. 1.2 [34]. The parameter
α is a factor parametrizing the anisotropy between the two branches of the coupler, and
accounts for a renormalization of the small junction energy due to hybridization with the
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modes in the junction array. The two branches of the coupler involving Josephson junctions
form a loop that can be threaded by an external flux, which we take to be:

ϕext(t) = ϕext + δϕ sin(ωdt) (3.4)

where ϕext is a dc flux, ωd is the frequency of the modulation and δϕ is its amplitude, which
is assumed to be small compared to the flux quantum. As shown in Sect. 1.3, two-qubit
gates can be activated by varying ϕext, or by parametrically modulating ϕext. In the context
of our work and in the following subsections, we only focus on parametric gates.

To provide intuition about the device properties, we first approximate the qubits and
the coupler as Kerr nonlinear oscillators in a model which we refer to as the 3KNO model.
This simple toy model captures the essential features of the Hamiltonian, and will give us a
first intuition of the device properties. As part of the analytical description of the device,
we introduce a new method based on a time-dependent Schrieffer-Wolff transformation to
derive an effective Hamiltonian. This method allows us to identify the contribution of each
normal mode (dressed by the drive) to the different effective interaction constants [48]. After
studying the toy model, we apply the time-dependent Schrieffer-Wolff method to the full
device model and extract the relevant interaction terms.

3.1 Toy model: three Kerr non-linear oscillators

3.1.1 Analytics

A) The model

As seen in Sect. 1.2, the transmon qubit can be approximated as a Kerr nonlinear
oscillator (KNO) when operated in the transmon regime (EJ � EC):

Ĥj = ωj ĵ† ĵ +
αj
2 ĵ†2 ĵ2 for j ∈ {a, b}, (3.5)

where ωj =
√

8EJ,ECj −ECj is the frequency of qubit j ∈ {a, b} and its anharmonicity is
αj = −ECj < 0. Similarly, we approximate the SNAIL coupler as a Kerr non-linear oscillator
with a tunable frequency,

Ĥc(t) = ωc(t)ĉ†ĉ +
αc
2 ĉ†2ĉ2. (3.6)
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Because of the flux tunability of the coupler, its parameters can be varied in time, we
therefore model its frequency as:

ωc(t) = ωc + δ sin(ωdt), (3.7)

where ωc can be tuned with a dc flux and, where ωd and δ parametrize the frequency and
the amplitude at which the coupler frequency is modulated in time. We will refer to the
modulated term in Eq. (3.6) as the drive and will call ωd and δ the drive frequency and
amplitude. Because the coupler potential in Eq. (3.2) is a cosine, a periodic modulation
of the flux will generate multiple harmonics of the coupler frequency ωc(t). Here we have
neglected higher harmonics of ωc(t) and assume the coupler frequency to be of the form
above. Also, for the sake of simplicity we neglect the time dependence of the coupler anhar-
monicity in the toy model but we will take it into account in the full device model in Sect. 3.2.
Importantly, in contrast to the transmons, the anharmonicity of the coupler αc can be positive.

Now, dropping all photon number nonconserving terms in the coupling,

Ĥg = −gacâ†ĉ− gbcb̂†ĉ− gabâ†b̂ + h.c., (3.8)

the full Hamiltonian of this toy model finally reads:

Ĥ3KNO =ωaâ†â +
αa
2 â†2â2 + ωbb̂†b̂ +

αb
2 b̂†2b̂2 + ωc(t)ĉ†ĉ +

αc
2 ĉ†2ĉ2

−
(

gacâ†ĉ + gbcb̂†ĉ + gabâ†b̂ + h.c.
)

.
(3.9)

The modes in bold used until now are the bare qubit and coupler modes. The bare frequencies,
anharmonicities and couplings are also indicated in bold.

B) Black-box quantization approach

To correctly take into account for the couplings between the circuit modes in our
model, we use a black-box quantization approach [60]. The idea consists in treating the
anharmonicities pertubatively and diagonalizing the rest of the Hamiltonian which includes
the coupling terms, such as to re-express the Hamiltonian in the dressed basis. We thus
decompose the Hamiltonian in two parts Ĥ = Ĥ (0) + λĤ (1) with:

Ĥ (0) = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ−
(

gacâ†ĉ + gbcb̂†ĉ + gabâ†b̂ +H.c.
)

λĤ (1) =
αa
2 â†2â2 +

αb
2 b̂†2b̂2 +

αc
2 ĉ†2ĉ2 + δ sin(ωdt)ĉ†ĉ,

(3.10)

where λ is a dimensionless parameter that we will set to 1 later, but will be useful to
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keep track of the order of the perturbation theory. To find the normal modes dressed
by the couplings, we diagonalize Ĥ (0) to eliminate the coupling terms gij . This leads to
Ĥ (0) = ωaâ

†â+ ωbb̂
†b̂+ ωcĉ

†ĉ, where ωj and ĵ for j ∈ {a, b, c}, are the dressed frequencies
and modes. The bare and dressed modes can be expressed in relation to another as
α̂ =

∑
β=a,b,c uαββ̂, where the hybridization coefficients uαβ , are either obtained numerically

or by using symbolic computation tools like the Sneg package in Mathematica [61]. Even
for a 3-mode problem, the analytical expressions for uαβ are rather complicated functions of
ωj and gij and are therefore not reproduced here. Expressing the perturbation λH (1) in
terms of the normal modes, we have:

λĤ (1) =
∑

j=a,b,c

αj
2
(
ujaâ+ ujbb̂+ ujcĉ

)†2 (
ujaâ+ ujbb̂+ ujcĉ

)2

+ δ sin(ωdt)
(
ucaâ+ ucbb̂+ uccĉ

)† (
ucaâ+ ucbb̂+ ujcĉ

)
.

(3.11)

This approach is valid if the anharmonicities and the drive amplitude can be treated pertu-
batively compared to the qubit-coupler couplings.

C) Time-dependent Schrieffer-Wolff transformation

In the previous subsection, we diagonalized the unperturbed Hamiltonian and expressed
the perturbed Hamiltonian in the dressed-mode basis. As can be seen in Eq. (3.11), in this
basis the perturbation now possesses counter-rotating terms. We now remove those fast
oscillating terms by transforming the perturbed Hamiltonian. An effective Hamiltonian can
be derived by performing a perturbative expansion of the unitary transformation, generally
known as Schrieffer-Wolff perturbation theory (SWPT), to successively correct for the fast-
rotating terms. More details can be found about the SWPT in Appendix B. In the context
of Eq. (3.11), the perturbation is time-dependent, we will therefore perform a time-dependent
SW transformation as explained below.

Keeping the partition of the Hamiltonian chosen in Eq. (3.10), the next step now consists
in moving the Floquet Hamiltonian to the interaction picture with respect to the unperturbed
Hamiltonian:

λĤ
(1)
I (t)− i∂t = Û0(t)

[
Ĥ − i∂t

]
Û †0 (t)

= Û0(t)λĤ
(1)(t)Û †0 (t)− i∂t.

(3.12)

where Û0(t) = e−i
∫ t

0 dt
′Ĥ(0)

. In order to get an effective Hamiltonian while getting rid of the
fast-oscillating terms in Eq. (3.12), we apply a Schrieffer-Wolff (SW) transformation on the
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interaction-picture Floquet Hamiltonian:

ĤI,eff − i∂t = e−iŜ(t)
[
λĤ

(1)
I (t)− i∂t

]
eiŜ(t). (3.13)

The exponentials are Taylor expanded and reordered with the Baker-Campbell-Hausdor
(BCH) expansion. The generator Ŝ(t) can be written in powers of λ and solved iteratively
to perform the RWA, see Appendix B for more details. Note that according to Property 4
of Chapter 2, the Floquet Hamiltonians

(
ĤI,eff − i∂t

)
and

(
λĤ

(1)
I (t)− i∂t

)
are unitarily

equivalent and therefore have the same quasi-energies. In a certain sense, the perturbative
expansion of e−Ŝ(t) that we perform in Eq. (3.13) can be seen as an iterative approach to
finding the Floquet spectrum. This procedure leads to:

ĤI,eff = λĤ
(1)
I + λ2 ¯̂H (2)

I + · · · , (3.14)

where Ĥ
(1)
I is the time-independent part of Ĥ (1)

I ,

Ĥ
(1)
I = lim

T→∞

1
T

∫ T

0
dtĤ

(1)
I (t) (3.15)

and which together with the oscillatory part ˜̂H (1)
I , gives:

λĤ
(1)
I (t) = λĤ

(1)
I + λ ˜̂H (1)

I (t). (3.16)

The generator Ŝ(t) at order one is chosen such as to cancel ˜̂H (1)
I . This procedure can be

repeated iteratively order by order. The second order RWA term in the effective Hamiltonian
then reads:

λ2Ĥ
(2)
I =

1
i

[
Ĥ

(1)
I ,

∫ t

0
λ ˜̂H (1)

I (t′)dt′
]
+

1
2i

[
λ ˜̂H (1)

I (t),
∫ t

0
λ ˜̂H (1)

I (t′)dt′
]
. (3.17)

D) Effective Hamiltonian

As an example we consider a drive modulation ωd = ωb−ωa. This modulation frequency
will bridge the energy difference between the two qubits, allowing the iSWAP interaction
−i
(
â†b̂− b̂†â

)
to be resonant. We now apply the time-dependent SW transformation
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described above on the 3KNO Hamiltonian and obtain:

λĤ
(1)
I = −iJ (1)

ab

(
â†b̂− b̂†â

)
+
α
(1)
a

2 â†2â2 +
α
(1)
b

2 b̂†2b̂2 +
α
(1)
c

2 ĉ†2ĉ2

+ χ
(1)
ab â

†âb̂†b̂+ χ
(1)
bc b̂
†b̂ĉ†ĉ+ χ(1)ca ĉ

†ĉâ†â,

(3.18)

where

J
(1)
ab = ucaucb

δ

2 (3.19)

α
(1)
j =

∑
i=a,b,c

u4
ijαi for j = [a, b, c] (3.20)

χ
(1)
jk =

∑
i=a,b,c

2u2
iju

2
ikαi for j, k = [a, b, c] and j 6= k. (3.21)

The first term of Eq. (3.18) corresponds to the iSWAP interaction of amplitude J (1)
ab , which

is linear in the drive amplitude δ, meaning that the interaction is off when undriven. The
second line of Eq. (3.18) corresponds to the mode anharmonicities (the self-Kerr) and χ(1)jk
the cross-Kerr interactions between modes j and k. The latter correspond to state-dependent
frequency shift of mode j due to the presence of an excitation in mode k. The cross-Kerr
interaction between the qubits, χab, is usually referred to as the ZZ interaction.

In order to perform a fast and high fidelity iSWAP gate one wants to respectively
maximize J (1)

ab while minimizing χ(1)jk . The presence of the unwanted ZZ interaction results
in a shift in the qubit frequencies, which prevents the flawless implementation of the iSWAP
gate and ultimately diminishes the gate fidelity. If we first take a look at the gate rate in
Eq. (3.19), we see that increasing the drive amplitude increases J (1)

ab , thereby decreasing
the gate time. However, the drive amplitude cannot be infinitely increased to speedup
the gate, as the drive can then no longer be treated perturbatively and Eq. (3.19) breaks
down. Now considering the cross-Kerr interactions in Eq. (3.21), we see that they are
independent on the drive amplitude to first order in the RWA. Moreover they are written as
linear combinations of qubits and coupler anharmonicities, with positive prefactors. This
implies that the only way to get rid of the ZZ interactions is to have qubits and a coupler
with opposite anharmonicities. Since transmons have by nature negative anharmonicities, a
coupler with positive anharmonicity is necessary to cancel the cross-Kerr. However, a positive
anharmonicity coupler alone is not a sufficient condition, as it also needs to compensate the
hybridization coefficients uij that appear in the sum.

We now derive second order corrections to the effective Hamiltonian. Going to second
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order in perturbation theory, we find that the iSWAP rate gets no additional contribution(
J
(2)
ab = 0

)
, while the cross-Kerr interaction between the qubit is modified by:

χ
(2)
ab =2

(∑
j=a,b,c uajubju

2
cjαj

)2

ωa + ωb − 2ωc
+ δ

uacubc
∑
j=a,b,c uajubj

(
u2
aj − u2

bj

)
ωa − ωb

+ 4

(∑
j=a,b,c uaju

2
bjucjαj

)2

ωa − ωc
+ 4

(∑
j=a,b,c u

2
ajubjucjαj

)2

ωb − ωc

− 2

(∑
j=a,b,c u

3
ajubjαj

)2

ωa − ωb
+ 2

(∑
j=a,b,c uaju

3
bjαj

)2

ωa − ωb
.

(3.22)

The dominant terms are on the first line. As will be seen later, the coupler is generally
placed between the two qubit frequencies and since in our case the qubits are far detuned in
frequency and the coupler is close to the qubit frequencies, the denominator (ωa + ωb − 2ωc)
will be small. Notice also that the second term of the first line is the lowest order contribution
to what we call the dynamical cross-Kerr interaction, which is induced by the drive. Indeed,
χ
(1)
ab does not inherit any feature from the drive while χ(2)ab shows a linear dependence with

the drive amplitude δ. The drive induces a change in the ZZ interaction which is only
captured to second order in perturbation theory.

E) Improving the effective Hamiltonian

The effective Hamiltonian derived above is already a good approximation and gives us
some intuition of how the quantities of interest (Jab and χab) depend on the system and
drive parameters. As mentioned earlier, one could have chosen other partitions for the
(un)perturbed Hamiltonian in Eq. (3.10). For instance, using a partition inspired from the
corrections obtained from the previous perturbation theory, we can get better agreements
with exact numerics. More precisely, we choose a new partition where Ĥ (0) now also contains
the terms from the perturbation Ĥ (1) of the previous partition that are diagonal in Fock
space (Eq. (3.11)). The unperturbed Hamiltonian in the new partition reads:

Ĥ (0) = ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ

+ δ sin(ωdt)
[
u2
caâ
†â+ u2

cbb̂
†b̂+ u2

ccĉ
†ĉ
]

+
α
(0)
a

2 â†2â2 +
α
(0)
b

2 b̂†2b̂2 +
α
(0)
c

2 ĉ†2ĉ2

+ χ
(0)
ab â

†âb̂†b̂+ χ(0)ac â
†âĉ†ĉ+ χ

(0)
bc b̂
†b̂ĉ†ĉ

(3.23)

where α(0)
j and χ(0)ij are the anharmonicities and cross-Kerr interactions obtained in Eq. (3.19)-
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Eq. (3.21) that we relabeled to keep track of the order in the perturbation theory. The
perturbed Hamiltonian now includes all the terms that appear in the expansion of Eq. (3.11)
that are not diagonal in Fock space. Following the same procedure as before but with the
new partition, we obtain:

J
(1)
ab =

δ

2ucaucb

J0

(
δu2

ca

ωd

)
J0

(
δu2

cb

ωd

)
+ 3J1

(
δu2

ca

ωd

)
J1

(
δu2

cb

ωd

), (3.24)

χ
(1)
ab = 0 (3.25)

J
(2)
ab =

iδ2

2 ucaucbu
2
cc

( 1
ωa − ωc

− 1
ωb − ωc

)
J1

(
δu2

cc

ωd

) ∏
j=a,b,c

J0

(
δu2

cj

ωd

)
+ . . . (3.26)

χ
(2)
ab contains too many terms to be written here, but can easily be calculated using symbolic

computation. For clarity reasons, we only wrote a few terms of J (2)
ab . The Bessel functions

appear from a Jacobi-Anger expansion of the drive term in Ĥ (0), when moving to the inter-
action picture. In fact, when moving to the interaction picture with Û0(t) = e−i

∫ t
0 dt
′Ĥ(0)(t′),

we expand the time-dependent exponentials using the Jacobi-Anger identity:

e
iÔ δ

ωd
cosωdt = J0

(
Ôδ

ωd

)
+ 2

∞∑
n=1

inJn

(
Ôδ

ωd

)
cosnωdt, (3.27)

for any operator Ô, and where Jn (z) is the nth Bessel function of the first kind. Since
ωdδ � 1, we truncate the expansion after the first Bessel function. We see that Eq. (3.24)
reproduces similar results to the one obtained in Eq. (3.19), up to linear terms in δ. The
cross-Kerr interaction between the qubits gets corrections to χ(0)ab to second order only.

F) Comparison to exact numerics

To evaluate the accuracy of the time-dependent perturbation theory described above,
we compare it at different orders to numerical results. In Fig. 3.2, we show the gate rate
and, the static and dynamical ZZ interaction versus the coupler frequency, for a given set of
device parameters which can be found in the caption. In Fig. 3.2 a), the ZZ interaction is
plotted versus the coupler frequency, in the absence of a drive. The blue dots are obtained
numerically from the exact diagonalization of the Hamiltonian using 5 levels per qubit and
coupler, while the full lines correspond to the analytical formulae of Eq. (3.21) and Eq. (3.22),
considering first- and second-order perturbation theory. We find that to second order, the
analytics and the numerics are already in very good agreement. The resonances at 4 and
5.5 GHz correspond to the qubit frequencies, and the resonance that appears approximately
at ωc ≈ (ωa + ωb)/2 = 2π× 4.75GHz, corresponds to a virtual two-photon excitation of
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Figure 3.2 a) Static cross-Kerr interaction χab(ωc), from first (black) and second-order RWA
(blue), and from the full diagonalization of Eq. (2.5) (light blue points) for: ωa/2π =
4.0, ωb/2π = 5.5, αa/2π = −0.3, αb/2π = −0.2, αc/2π = 0.25, gab/2π = 0.12,
gbc/2π = −0.12, and gac/2π = 0, all in GHz. b) Analogue of a) for the dynamical
cross-Kerr interaction at δ/2π = 0.3 GHz. c) Same as b) for the gate interaction
rate Jab(ωc). Inset: Jab(δ) at ωc/2π = 4.25 GHz. From Ref. [48].

the coupler mode.

Fig. 3.2 b) and c) depict the ZZ cross-Kerr interaction and the gate rate as a function of
the coupler frequency, but now at δ 6= 0. For the numerical results, we now use the Floquet
numerics described in Chapter 2. First we find that the gate rate is in excellent agreement
with exact Floquet numerics and this for any reasonable drive strength that can be treated
perturbatively. The inset of Fig. 3.2 c) illustrates that for a given coupler frequency, the gate
rate follows the expected linear behavior for increasing drive amplitudes. Unlike for Jab, the



35

second-order perturbation theory is not sufficient to capture the effects of the drive on the ZZ
interaction, even for moderate drive strength. Although we expect higher-order perturbation
theory to replicate the numerical results, we did not go deeper into the analytics due to the
substantial memory Mathematica requires.

Because the qubits are far off resonant the iSWAP rate is zero when the drive is off,
however, as seen in Fig. 3.2 a) the ZZ interaction is always on. As we will see in Sect. 3.1.2,
if the device parameters are appropriately chosen, one can find a coupler frequency for which
the ZZ interaction vanishes during idle time and even during the gate. With the set of
device parameters used in Fig. 3.2, we see that the cross-Kerr interaction can be canceled by
tuning the coupler at a specific point between the qubit frequencies.

3.1.2 Numerical results

In this next section, we numerically explore the toy model without doing the RWA. As
before, we will focus on the interaction rate of the iSWAP gate and the ZZ cross-Kerr
interaction. In particular, we study the behavior of these two quantities as a function of the
device parameters: qubit/coupler frequencies (ωa,ωb,ωc), anharmonicities (αa,αb,αc) and
couplings (ga, gb, gc). In the upcoming, we will perform a parameter exploration starting
from the following typical device parameters:

ωa/2π = 4 GHz αa/2π = −0.2 GHz ga/2π = 0.05 GHz

ωb/2π = 5.5 GHz αb/2π = −0.2 GHz gb/2π = −0.05 GHz (3.28)

ωc/2π = [2.5, 7]GHz αc/2π = 0.1 GHz

by varying one or two parameters at a time.

As a first step, we focus on the static properties of the device obtained from exact
diagonalization of the Hamiltonian. Fig. 3.3 shows the ZZ interaction as the coupler frequency
is varied a) for multiple coupler anharmonicities, spanning from negative to positive values,
and b) for multiple coupling strength. We identify three main resonances which appear at the
qubit frequencies ωc/2π = 4 and 5.5 GHz, and close to ωc ≈ (ωa + ωb)/2 = 2π× 4.75GHz.
The resonance appearing between the two qubit frequencies results from an avoided crossing
between the second coupler level with the state |1a1b0c〉 where |iaibic〉 is a dressed state
of the full Hamiltonian that has maximum overlap with the bare qubits and coupler Fock
state |i〉a|i〉b|i〉c. States near resonances are strongly hybridized, making them challenging
to distinguish. As a result, we will focus our attention on the regions slightly away from
these resonances.
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As expected from the results of Sect. 3.1.1, we see in Fig. 3.3 a) that for negative coupler
anharmonicities there is no coupler frequency at which the ZZ interaction is zero. On the
other hand, positive anharmonicities can result in multiple coupler frequencies where the
ZZ interaction is zero. The zero-ZZ points appear when the coupler is close to the qubit
frequencies. Such operation points are generally found when the coupler is between the
qubit frequencies, however, it is not excluded to find such operation points when the coupler
is placed above or below the qubit frequencies.

Fig. 3.3 b) shows again χab as a function of the coupler frequency but now for different
values of the coupling ga. Varying instead the coupling gb leads to qualitatively the same
conclusions. As expect, the stronger the coupling ga, the larger the cross-Kerr interaction
becomes in absolute value. Interestingly, the zero-ZZ point remains relatively unchanged
when varying the coupling strength as long as it is smaller or comparable to the coupler
anharmonicity. This is true for most sets of parameters. Otherwise, the zero-ZZ point can
get shifted or can eventually disappear. Moreover, increasing the detuning between the
qubits, the effective coupling between the qubits decreases, leading to a qualitatively similar
behavior as observed in Fig. 3.3 b).

As seen in Fig. 3.3, for realistic device parameters, the toy model typically leads to
cross-Kerr interactions ranging from a few to tens of kHz. For transmon qubits, this is about
an order of magnitude smaller than the typical dephasing time. In other words, any ZZ
cross-Kerr interaction below 10 kHz would not be experimentally measurable. That being
said, we will see below that using a model of the device based on its full Hamiltonian, the
ZZ interaction is, in fact, on the order of a few MHz. It is therefore crucial to find operation
points where this interaction can be turned off.

We now turn our attention to the driven case. In this context, we numerically obtain
the results using the Floquet method described in Chapter 2. In Fig. 3.4 a) we plot in
solid (dashed) lines the dynamical (static) ZZ cross-Kerr interaction as a function of the
coupler frequency, for a drive amplitude δ/2π = 0.1GHz (δ/2π = 0GHz). In Fig. 3.4
b) we plot the iSWAP gate rate Jab as a function of the coupler frequency for a drive
amplitude δ/2π = 0.1GHz. Each colored line in Fig. 3.4 corresponds to a different coupler
anharmonicity. A first observation that can be made is that the gate rate Jab, remains
relatively unchanged when the coupler anharmonicity is varied. This is to be expected
from Eq. (3.19) since the hybridization coefficients only depend on the qubits and coupler
frequencies and the couplings. The gate rate is roughly an order of magnitude larger than
the ZZ interaction. The iSWAP rate is largest close to the qubit-coupler resonances, which
suggests that the two-qubit gate should ideally be operated when the coupler is between
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a)

b)

ωa/2π ωb/2π

ωa/2π ωb/2π

Figure 3.3 Toy model: static Cross-Kerr interaction. Cross-Kerr interaction as a function of
the coupler frequency in the undriven case: a) for multiple coupler anharmonicities
ranging from αc/2π = [−0.1, 0.2]GHz, and b) for multiple coupling strength
ranging from gc/2π = [0.03, 0.11]GHz. The other device parameters are the ones
indicated in Eq. (3.28). The horizontal black line at 0 is a guide to the eye and the
vertical dashed gray lines indicate the qubit frequencies.

the qubit frequencies or slightly above or below them. Additional resonances appear away
from the qubit frequencies, especially at large drive amplitude. These are due to avoided
crossings with higher energy levels.

Turning our attention to the cross-Kerr interaction, in Fig. 3.4 a) we compare the static
ZZ in the absence of a drive (dashed lines) and the dynamical ZZ in the presence of a drive
(solid lines). We note a small variation of the cross-Kerr interaction between the static and
the dynamical ZZ. This variation is further accentuated as the drive amplitude increases.
Ideally, we want the ZZ interaction to be zero during the gate and idle time. As an example,
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ωa ωb

ωa ωb

a)

b)

Zero-dynamical-ZZ

Zero-static-ZZ

Figure 3.4 Dynamical device properties. a) Cross-Kerr interaction and, b) iSWAP interaction
rate as a function of the coupler frequency for multiple coupler anharmonicities.
The full lines correspond to the driven case with amplitude δ/2π = 0.1 GHz, while
the dashed lines correspond to the static case. For αc/2π = 0.1GHz, we indicate
with red dots the points where the static and dynamical ZZ are zero for a given
coupler frequency. The other device parameters are the ones indicated in Eq. (3.28).
The horizontal black line at 0 is a guide to the eye and the vertical dashed gray
lines indicate the qubit frequencies.

we indicate with red dots, in Fig. 3.4, the points where the static and dynamical ZZ are
zero, for αc/2π = 0.1GHz. This observation implies that it is possible to find operation
points where both the static and dynamical ZZ interactions are zero by tuning the coupler
at the zero-static-ZZ point during idle time, and by shifting the coupler frequency at the
zero-dynamical-ZZ point when operating the iSWAP gate. In the toy model, the dynamical
ZZ can sometimes be canceled at a sweet spot with respect to the coupler frequency.

The iSWAP rate can be enhanced by increasing the drive amplitude or the qubit-coupler
coupling rates. In Fig. 3.5 we show how the gate rate and the dynamical ZZ vary as the drive
amplitude is increased. As expected from the results of Sect. 3.2.1 the gate rate increases
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ωa ωb

ωa ωb

a)

b)

Figure 3.5 Dynamical device properties. a) Cross-Kerr interaction as a function of the coupler
frequency for multiple drive amplitudes. b) iSWAP interaction rate as a function
of the coupler frequency for multiple drive amplitudes. The results are plotted
for δ/2π = [0, 0.1, 0.2, 0.3] GHz. For different drive amplitudes, we indicate with
red dots the points where the dynamical ZZ are zero for a given coupler frequency.
The device parameters are the ones indicated in Eq. (3.28). The horizontal black
line at 0 a guide to the eye and the vertical dashed gray lines indicate the qubit
frequencies.

almost linearly with δ. Introducing a drive also raises the ZZ cross-Kerr, but a zero-ZZ
point can generally still be found. With the particular parameter configuration that we
have chosen here, the coupler can be operated between the two qubits while keeping the ZZ
cross-Kerr interaction to zero.
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3.2 Full device

3.2.1 Analytics

In the previous section, to gain intuition on the workings of the coupler of Fig. 3.1, we have
studied a toy model of the circuit. However, this model is significantly simplified and does
not capture the quantitative features of the full device. For this reason, in this section, we
derive the effective gate Hamiltonian of the full device and from it, extract the interaction
terms. In contrast to the toy model, we go a step further and include the effects of the
parametric drive on the bare modes. As a first step, we express the circuit Hamiltonian in
terms of the creation and annihilation operators of the bare circuit modes. We then follow
the approach used above for the toy model to derive the effective Hamiltonian and deduce
the interaction rates. Finally, we compare our perturbation theory to the numerical analysis
of the full model.

In the following, we focus on the parametric activation of an iSWAP interaction by
modulating the flux through the coupler at the qubit-qubit detuning frequency.

A) Bare-mode Hamiltonian

Starting with the full-circuit Hamiltonian in Eq. (3.2), we express the bare charge
number and phase operators in terms of the creation and annihilation operators:

ϕ̂j =

√
ηj
2 ( ĵ + ĵ†),

n̂j = −i
√

1
2ηj

( ĵ− ĵ†),
(3.29)

where ĵ ∈ {â, b̂, ĉ} are the bare qubit or coupler modes, and ηj are chosen such that the
quadratic terms, ĵ2 and ĵ†2, vanish in the time-averaged qubit or coupler Hamiltonian. In other
words, we insert the modes of Eq. (3.29) in the qubit and coupler Hamiltonians, and after time-
averaging these Hamiltonians, we eliminate the quadratic modes by appropriately choosing
ηj . Mathematically speaking, this is equivalent to solving the following transcendental
equation:

F(ηj)η2
j = 8ECj/EJj , (3.30)



41

for j = a, b, c, and with:

F(ηa(b)) ≡ e−
ηa(b)

4 ,

F(ηc) ≡ αe−
ηc
4 J0(µαδϕ) cos (µαϕext)

+
β

N
e−

ηc
4N2 J0(µβδϕ) cos (µβϕext) ,

(3.31)

which are solved numerically. Note that in the transmon regime, F(ηa(b)) ∼ 1 and we recover
Eq. (1.10) of the transmon qubit. Furthermore, F(ηc) depends on the drive amplitude, such
that the coupler modes will capture drive effects like the ac-Stark shift already at low order
in perturbation theory. Compared to the toy model, here, we go a step further and included
the effects of the parametric drive on the bare modes.

Now that the bare modes are defined, we normal order expand the cosines and sines in
Eq. (3.1) using:

cosϕ̂j = e−
ηj
4

∑
m,n≥0

m+n= even

(
−ηj

2
)m+n

2 ĵ†m ĵn

m!n!
,

sin ϕ̂j = e−
ηj
4

√
ηj
2

∑
m,n≥0

m+n= odd

(
−ηj

2
)m+n−1

2 ĵ†m ĵn

m!n!
.

(3.32)

Note that the sines appear in the coupler Hamiltonian when expanding the cosine potentials
of sums. Furthermore, for the coupler Hamiltonian, we expand the trigonometric functions
of ϕext in Jacobi-Anger series over the harmonics of the frequency of the drive. The specific
choice of ηj we made finally allows us to rewrite the transmon Hamiltonians up to fourth
order as:

Ĥa = ωaâ†â +
αa
2 â†2â2

+
αa
12
(

â4 + â†4
)
+

αa
3
(

â†â3 + â†3â
)
+ · · ·

(3.33)

with analogous equations for modes b̂, and where the mode frequency and anharmonicity
are defined as:

ωa(b) =
4ECa(b)
ηa(b)

+
1
2F(ηa(b))ηa(b)EJa(b),

αa(b) = −ECa(b).
(3.34)

In the first line of Eq. (3.33), we recover the KNO used for the toy model, and the second
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line contains the contribution of quartic counter-rotating terms, which are number-non
conserving.

In contrast to the qubit Hamiltonians, the coupler is time-dependent, we thus choose
ηc such that the quadratic terms ĉ2 and ĉ†2, vanish in the time-averaged Hamiltonian. By
“time-averaged” Hamiltonian, we mean Ĥc = limT→∞

1
T

∫ T
0 dtĤc(t). Now, expressing the

coupler Hamiltonian as Ĥc(t) = Ĥc(t) +
˜̂Hc(t), in terms of the creation and annihilation

operators we obtain:

Ĥc =ωcĉ†ĉ +
αc
2 ĉ†2ĉ2

+
αc
12
(

ĉ4 + ĉ†4
)
+

αc
3
(

ĉ†ĉ3 + ĉ†3ĉ
)

+ gc,3
(

ĉ3 + ĉ†3 + 3ĉ†ĉ2 + 3ĉ†2ĉ
)

+ gc,1
(

ĉ + ĉ†
)
+ · · ·

(3.35)

where the coupler mode frequency and anharmonicity are defined as in Eq. (3.34) by replacing
a→ c, and the cubic and monomial counter-rotating terms:

gc,3 =− αεe−
ηc
4 η3/2

c J0(µαδϕ) sin (µαϕext)EJc/(12
√

2)

− β

N2 e
− ηc

4N2 η3/2
c J0(µβδϕ) sin (µβϕext)EJc/(12

√
2),

gc,1 =αεe−
ηc
4 η1/2

c J0(µαδϕ) sin (µαϕext)EJc/
√

2

+ βe−
ηc

4N2 η1/2
c J0(µβδϕ) sin (µβϕext)EJc/

√
2.

(3.36)

The time-dependent part of the Hamiltonian ˜̂Hc(t), contains many terms, making it im-
practical to list them all here. These expressions can be found in appendix D of Ref. [48]
which we included in Appendix C of this thesis. A major difference between Eq. (3.33) and
Eq. (3.35) is the presence of monomials (ĉ and ĉ†) and cubic terms, which appear because
the coupler Hamiltonian breaks the parity symmetry due to the presence of an external flux.

Now that the bare modes have been defined, the coupling Hamiltonian in Eq. (3.3) can
be rewritten as:

Ĥg = −
2ECab√
ηaηb

(â− â†)(b̂− b̂†)− 2ECac√
ηaηc

(â− â†)(ĉ− ĉ†)− 2ECbc√
ηbηc

(b̂− b̂†)(ĉ− ĉ†). (3.37)

Notice that due to the presence of ηc, the couplings account for the effects of the drive.

Finally, the full-circuit Hamiltonian that we numerically simulate to compare the an-



43

alytical results obtained in the following subsections is the sum of Eq. (3.33) for the two
qubits, Eq. (3.35), Eq. (3.37) and the time-dependent part of the coupler Hamiltonian found
appendix D of Ref. [48] which can be found in Appendix C of this thesis.

B) Displace the Hamiltonian

We now want to derive the effective gate Hamiltonian from the circuit Hamiltonian
obtained above. Before performing the time-dependent SW transformation to derive the
effective model, we displace the Hamiltonian in Eq. (3.1) to remove the contributions that
are linear in ϕ̂j and n̂j . Intuitively, this procedure corresponds to performing the Taylor
expansion around the classical minimum of the potential energy. We consider a unitary
displacement of Eq. (3.1) according to which ϕ̂j → ϕ̂j + ϕj(t) and n̂j → n̂j + nj(t), with
j = a, b, c. The linear terms of the Hamiltonian can be eliminated by choosing ϕj(t) and
nj(t) such that they obey the classical equations of motion associated with the full circuit
Hamiltonian of Eq. (3.1). Writing down the Heisenberg equations of motion,

dϕ̂j(t)

dt
= i[Ĥ,ϕ̂j ] and dn̂j(t)

dt
= i[Ĥ, n̂j ] for j = a, b, c (3.38)

and then changing the Heisenberg-picture operators to classical variables ϕ̂j(t)→ ϕj(t) and
n̂j(t)→ nj(t), we find the displacements by solving the following differential equations:

ϕ̇a = 8ECana + 4ECacnc + 4ECabnb, ṅa =−EJa sin(ϕa),

ϕ̇b = 4ECabna + 8ECbnb + 4ECbcnc, ṅb =−EJb sin(ϕb), (3.39)

ϕ̇c = 4ECacna + 4ECbcnb + 8ECcnc, ṅc =− αEJc sin [ϕc + µαϕext(t)]

− βEJc sin
[
ϕc
N

+ µβϕext(t)

]
.

These equations can be solved approximately by considering a trial form, ϕj = ξj +

ζj sin(ωdt), and equating the coefficients of the zeroth and first harmonics of the drive
frequency ωd. More details are given in appendix D of the paper Ref. [48] which can be
found in Appendix C. Ultimately, the displaced variables can be seen as the fluctuations
around a classical trajectory. Note that we expect the displacements for the transmons to
be much smaller than for the coupler (ζa,b � ζc and ξa,b � ξc).



44

C) Driven black-box quantization approach

Just as for the toy model, we define the normal modes by partitioning the Hamiltonian
into a perturbed and unperturbed part, Ĥ = Ĥ (0) + λĤ (1), where we define:

Ĥ (0) = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ + Ĥg

≡ ωaâ†â+ ωbb̂
†b̂+ ωcĉ

†ĉ.
(3.40)

The second line is written in terms of the dressed modes and frequencies (not in bold). The
bare and normal modes are related to each other by:

ϕ̂α =
∑

β=a,b,c

uαβ√
2
(β̂ + β̂†) , n̂α =

∑
β=a,b,c

vαβ

i
√

2
(β̂ − β̂†), (3.41)

where the hybridization coefficients uαβ and vαβ are defined in appendix E of Ref. [48] which
can be found in Appendix C. The perturbed term λĤ (1) is made of the remaining terms.

D) Effective Hamiltonian

Following the same method as for the toy model, we move to the interaction picture
defined by the Hamiltonian Ĥ (0) of Eq. (3.40). For a modulation frequency ωd = ωa − ωb,
we obtain the effective Hamiltonian of the full device after a time-dependent Schrieffer-Wolff
transformation at first order in the RWA, the effective Hamiltonian of the full device:

Ĥeff = λĤ
(1)
I = J

(1)
ab (−iâ

†b̂+H.c.) (3.42)

+
α
(1)
a

2 â†2â2 +
α
(1)
b

2 b̂†2b̂2 +
α
(1)
c

2 ĉ†2ĉ2 (3.43)

+ χ
(1)
ab â

†âb̂†b̂+ χ
(1)
bc b̂
†b̂ĉ†ĉ+ χ(1)ca ĉ

†ĉâ†â (3.44)

+ J
(1)
ab;a(−iâ

†ââ†b̂+H.c.) (3.45)

+ J
(1)
ab;b(−ib̂

†b̂â†b̂+H.c.) (3.46)

+ J
(1)
ab;c(−iĉ

†ĉâ†b̂+H.c.) (3.47)

+K
(1)
ab (â

†2b̂2 +H.c.). (3.48)
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The interaction terms that appear in the above Hamiltonian are:

J
(1)
ab = −uaauab2 J1(ζa) sin(ξa)EJa −

ubaubb
2 J1(ζb) sin(ξb)EJb (3.49)

−ucaucb2 αJ1(ζc + µαδϕ) sin(ξc + µαϕext)E
(α)
Jc

−ucaucb2
β

N
J1

(
ζc
N

+ µβδϕ

)
sin
(
ξc
N

+ µβϕext

)
E

(β)
Jc ,

α
(1)
j = −1

8
∑

i=a,b,c
u4
ijE
′
J,i, (3.50)

χ
(1)
jk = −1

4
∑

i=a,b,c
u2
iju

2
ikE
′
J,i, (3.51)

J
(1)
ab;j = −

u2
cj

4 J
(1)
ab , (3.52)

K
(1)
ab = −u

2
aau

2
ab

16 J2(ζa) cos(ξa)EJa −
u2
bau

2
bb

16 J2(ζb) cos(ξb)EJb (3.53)

−u
2
cau

2
cb

16 αJ2(ζc + µαδϕ) cos(ξc + µαϕext)E
(α)
Jc

−u
2
cau

2
cb

16
β

N3J2

(
ζc
N

+ µβδϕ

)
cos

(
ξc
N

+ µβϕext

)
E

(β)
Jc ,

for j, k ∈ {a, b, c}, and with the effective Josephson energies:

E′Ja ≡ e−
u2
aa
4 −

u2
ab
4 −

u2
ac
4 J0(ζa) cos(ξa)EJa,

E′Jb ≡ e−
u2
ba
4 −

u2
bb
4 −

u2
bc
4 J0(ζb) cos(ξb)EJb,

E′Jc ≡ αJ0(ζc + µαδϕ) cos(ξc + µαϕext)E
(α)
Jc

+
β

N3J0

(
ζc
N

+ µβδϕ

)
cos

(
ξc
N

+ µβϕext

)
E

(β)
Jc ,

E
(α)
Jc ≡ e

−u
2
ca
4 −

u2
cb
4 −

u2
cc
4 EJc,

E
(β)
Jc ≡ e

− u2
ca

4N2−
u2
cb

4N2−
u2
cc

4N2EJc.

(3.54)

We notice that Eq. (3.42)–(3.44) also appear in the effective model of the 3KNO. The
full model, however, presents additional interactions corresponding to photon-number-
conditioned iSWAP terms, Eq. (3.45)–(3.47), and a coherent two-photon exchange Eq. (3.48).
In Eq. (3.48), the occurrence of second order Bessel functions indicates that K(1)

ab is generated
by the second harmonic of the drive. Furthermore, considering that the terms are also fourth
order in the hybridization coefficients, the contribution from the two-photon exchange term
is minor in comparison to the resonant interaction.
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All the interaction terms depend on the drive, either directly with the presence of
the Bessel function of δϕ and ζj , or indirectly through the hybridization coefficients. It is
important to remember that in contrast to the toy model, the drive amplitude now appears
in the hybridization coefficients, as we take into account the effect of the drive when rewriting
the Hamiltonian in terms of the dressed modes. Moreover, the drive frequency implicitly
depends on ωd since the dressed qubit frequencies ωa, ωb do. In Chapter 2, we introduced a
numerical method to find the adjusted parametric drive frequency.

As for the toy model, we performed the perturbation theory up to second order. Because
of the complexity of the full-device model, we do not improve the starting point of the
perturbation theory to better partition the (un)perturbed Hamiltonians, as we did for the
toy model. Nevertheless, we further corrected the effective Hamiltonian to second order in
perturbation theory, using Eq. (3.17). Because the parity-breaking terms in ϕ̂3 significantly
dress the coupler frequency, the qubit-coupler resonances are shifted. We chose to take
into account the corrections to the coupler poles at second order in perturbation theory, by
reparametrizing the external flux as ϕext → ϕ′ext(ϕext) such that ωc(ϕ′ext) = ω

(2)
c (ϕext). In

other terms, we redefine the dressed coupler modes in a self-consistent way to better capture
the qubit-coupler resonances. We will see below that these corrections are validated by the
numerics.

E) Comparison to exact numerics

We compare the analytical results obtained from the second-order perturbation theory,
with the exact Floquet numerics described in Chapter 2. The Hamiltonian used for the
numerics is the one derived at the end of Sect. 3.2 B). In Fig. 3.6, we study the behavior of the
iSWAP rate (Jab) and the ZZ cross-Kerr interaction (χab) versus the dc flux ϕext, for a realistic
set of parameters defined in the figure caption. For Jab, we observe excellent agreement
between the numerical results and the second-order perturbative results. Remarkably, the
agreement persists even at large drive amplitudes. The two main resonances located at
ϕext/2π = 0.29 and 0.37 correspond to the qubit-coupler resonances. Note that the coupler
frequency lies above (below) the qubits frequencies for ϕext/2π < 0.29 (> 0.37). The
additional poles appearing when ωc > ωa/b and ωc < ωa/b are expected to be captured at
higher order within the perturbation theory. For the given device parameters and a relatively
strong drive, the gate rate can reach approximately Jab ∼ 20 MHz, corresponding to a ∼ 25
ns
√
iSWAP gate which is relatively fast for a two-qubit gate. Shifting the focus to the ZZ

interaction, we see that the analytical predictions only match well the numerical results in
the absence of drive. Similarly to the toy model, the effect of the dynamical ZZ is expected
to emerge at fourth order in perturbation theory. Within this parameter configuration, the
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Figure 3.6 Interaction rates of the full circuit as a function of the external dc flux ϕext. The
dots represent exact numerical simulations obtained from the Floquet method
described in Chapter 2, with Hilbert space dimension 10 per mode. The lines
correspond to the analytical second-order RWA calculations. Color (see legend)
encodes parametric drive amplitude δϕ/2π. Parameter choices: Ca = 134.205
fF, Cb = 134.218 fF, Cc = 75.987 fF, Cac = 11.11 fF, Cbc = 11.22 fF, Cab = 0,
EJa/2π = 37 GHz, EJb/2π = 27 GHz, EJc/2π = 50 GHz, α = 0.258, β = 1,
and N = 3, µα = 5/6 and µβ = −1/18. We attribute large discontinuities in the
numerical curves to state tracking errors near avoided crossings. From Ref. [48].

ZZ cross-Kerr interaction does not exhibit a dc flux point for which χab = 0 in the static
case. However, multiple zero ZZ points emerge with sufficiently large drive amplitudes.

As mentioned, the Hamiltonian used for the numerical results is the one derived at the
end of Sect. 3.2 B). Note, however, that the spectrum of this latter Hamiltonian differs
from that of the full cosine Hamiltonian in Eq. (3.1) by tens to hundreds of MHz. This
discrepancy specially affects the cross-Kerr interaction by a few to tens of MHz. In Sect. 3.2.2
and Chapter 4, we will consequently use the full Hamiltonian in Eq. (3.1) to study more
accurately the device properties and to compare our model to the experimental data.

F) Other parametric gates

According to the frequency of the parametric flux modulation, multiple interactions can
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Gate Bosonic operator Drive frequency Dominant unwanted interaction

iSWAP/beam-splitter −iâ†b̂+ ib̂†â ωa − ωb â†âb̂†b̂

Two-mode squeezing −iâ†b̂† + ib̂â ωa + ωb â†âb̂†b̂

CZ/Ising-ZZ â†âb̂†b̂ no drive

CNOT −i(â− â†)b̂†b̂ ωa −i(â− â†)â†â

Table 3.1 List of the most accessible gate Hamiltonians realizable with a parametric drive in
the analyzed architecture. Adapted from Ref. [48].

be activated. This device is not limited to the iSWAP gate. For instance, by modulating the
coupler flux at ωd = ωa + ωb the dominant activated interaction is a two-mode squeezing
term â†b̂† + âb̂. For this modulation, the derivation of the effective Hamiltonian with the
method previously described, leads to the same Hamiltonian as the one in Eqs. (3.42)–(3.48),
with the difference that â†b̂ is replaced by â†b̂†, in Eq. (3.42) and Eqs. (3.45)–(3.48). The
interaction constants remain identical to Eqs. (3.49)–(3.54), with the difference that the
values of the hybridization coefficients differ due to their dependence on the modulation
frequency.

A CNOT gate can also be parametrically activated by modulating the flux at ωd = ωa,
where qubit b is the control qubit and qubit a is the target. Applying the above method
with this modulation choice of frequency, we find the following effective Hamiltonian:

λĤ
(1)
I = −iΩa;b(â− â†)b̂†b̂− iΩa;c(â− â†)ĉ†ĉ

− iΩa(â− â†)− iΩa;a(â
†ââ− â†â†â),

(3.55)

where the rates Ωi;j depend on the device parameters. The first term of the first line of
Eq. (3.55) corresponds to the cross-resonance interaction used to perform the CNOT gate.
The second term is conditioned on the state of the coupler and it is generally neglected
because the coupler is in the ground state with 〈ĉ†ĉ〉 ≈ 0. The other terms of the second
line contain single qubit operations which can typically be corrected for by using additional
single qubit rotations.

Table 3.1 summarizes some of the gates which can be implemented in this architecture.
For instance, even without flux modulation, but simply by tuning the dc flux within a region
where the ZZ cross-Kerr interaction is large, it is possible to generate a CZ gate. Gates not
listed in this table include the possibility of activating more advanced native gates using
multiple drive tones.
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3.2.2 Numerical results

In Sect. 3.2.1 we have seen that it becomes difficult to gain an intuition about the dependence
of the gate rate and the cross-Kerr interaction on the parameters of the device. Moreover in
order to be in quantitative agreement with experiments, performing numerical simulations
of the full device Hamiltonian in Eq. (3.1) becomes necessary.

As a first step, we study the static (undriven) device properties as a function of its
parameters. We focus on a set of qubit and coupling parameters, and vary the coupler
parameters α, ECc, EJc, N around the following typical device parameters:

ECa/2π = 0.2 GHz EJa/2π = 18 GHz

ECb/2π = 0.2 GHz EJb/2π = 34 GHz (3.56)

ECac/2π = −0.2 GHz ECbc/2π = 0.2 GHz ECab/2π = 0.

In Fig. 3.7 a), we plot the smallest value of the absolute value of the ZZ interaction that
is obtained in the range ϕext/2π = [0, 0.5] as a function of EJc (x-axis) and ECc (y-axis).
Every plot corresponds to a different number of Josephson junctions in the array N = 2, 3, 4
and 5 (left to right columns), and a ratio between the Josephson energies of the branches of
the coupler loop α = 1/2N (first line), 1/(N + 1) (third line) and the intermediate value
1
2 (

1
2N + 1

N+1 ) (second line). Note that we want α < 1/N such that the coupler potential
exhibits a single well. All the plots use the same color scale, with values ranging from 0 to
1MHz, and any point in the maps that has a minimum ZZ above 1 MHz is plotted in white.

A first observation is that for any choice of N between 2 and 5, it is possible to find
multiple coupler parameters that allow a zero-ZZ point. In fact, in almost all the cases
considered here, there exist large regions in parameter space where ZZ can be canceled.
However, even though multiple choices of N feature zero-ZZ regions, it is easier to find the
latter for larger values of N . In all the plots, we also identify regions where ZZ is non-zero
due to an avoided crossing of higher energy states. We will get back to these features below.

These large zero-ZZ regions are particularly promising as it indicates that a deviation in
the coupler parameters, which are typically ∼ 1− 10% for ECc and ∼ 5− 10% for EJc, will
not prevent the device to have a zero-ZZ point, assuming that the qubit parameters are fixed.
We have further studied the impact of deviations of all the device parameters on the existence
of a zero-ZZ point. We numerically explored 106 devices with N = 4, assuming a Gaussian
distribution of all the parameters around the mean values of Eq. (3.56), EJc/2π = 90GHz
and EJs/2π = 15GHz for the black sheep junction with a standard deviation of 10%. We
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a)

b)

Figure 3.7 a) Plot of the minimum ZZ and b) Plot of the overlap between the dressed qubit
state and the bare coupler state at minimum ZZ, for coupler parameters along
ECc/2π = [0.2, 0.5]GHz and EJc/2π = [60, 100]GHz. Each plot corresponds to a
number of JJs in the array N = 2, 3, 4 or 5 with a ratio α between the Josephson
energies of the branches of the coupler loop. The plots in each column correspond
to a specific N . The plots in the top row correspond to α = 1/2N , the last row
to α = 1/(N + 1) and the row in middle to α = 1

2 (
1

2N + 1
N+1 ). All the plots are

at the same scale and any value of |ZZ| > 1MHz is plotted in white. The qubit
and coupling parameters used in this figure are the ones indicated in Eq. (3.56).
The two blue boxes in the subfigure representing N = 4 with α = 13/80 in a) are
the regions for which we explore the spectra and the ZZ interaction versus flux in
Fig. 3.8.
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found that over 106 parameter sets, 50% have zero-ZZ operating points.

In addition to having zero-ZZ points, we also require fast gates with low leakage. For
instance, if the coupler parameters are chosen such that the coupler frequency is very far
from the qubits then it is rather easy to set ZZ to zero, however, the gate is then typically
slower. To better understand the different regions of the plots of Fig. 3.7 and develop some
intuition, we plot the spectra and the static ZZ versus flux for multiple device parameters.
In Fig. 3.8, we consider devices with 4 JJs in the coupler array and α = 13/80. The top
figures represent the ZZ interaction χab versus flux, for a fixed value ECc/2π = 0.25 in a)
and 0.45GHz in b). The colored lines correspond to a different EJc/2π ranging from 60 to
100 GHz. As a guide to the eye, the regions explored in Fig. 3.8 correspond to the blue boxes
in Fig. 3.7 a) for N = 4 and α = 13/80. The bottom plots of Fig. 3.8 represent the energy
levels versus flux for a fixed ECc and multiple EJc. The first excited state of the qubit a is
indicated in red, while that of qubit b in orange. The first (second) excited states of the
coupler are plotted in multiple colors, each corresponding to a with different EJc, in solid
(dashed transparent) lines. As expected, the coupler frequency increases with ECc and EJc.
Depending on the device parameters, the coupler can either cross both qubit frequencies,
cross a single qubit or none of them.

For ECc/2π = 0.25GHz, the coupler frequency is mainly below the qubits and the
second level of the coupler can in some cases cross the higher frequency qubits, something
which should be avoided to prevent qubit leakage to coupler states. In the upper plot of
Fig. 3.8 b), we observe the presence of resonances in the ZZ interaction that correspond to
avoided crossings between qubits (|1a0b0c〉 or |0a1b0c〉) and the coupler (|0a0b1c〉), or between
the level |1a1b0c〉 and a state involving the first or second excited state of the coupler (|qaqb1c〉
or |qaqb2c〉). Since the higher energy spectrum is very crowded, this region is not shown.
From Fig. 3.7 a) for N = 4 and α = 13/80, and in the region where ECc/2π = 0.25GHz,
we expect a zero-ZZ point for the Josephson energies EJc/2π = 60 and 100GHz. In Fig. 3.8,
we do observe zero-ZZ points for EJc/2π = 60, 90 and 100GHz, while for EJc/2π = 70 and
80GHz we see that the presence of a resonance leads to a finite ZZ interaction. Note that
the existing zero-ZZ points are located where the coupler is below the qubit frequencies.

Now looking at Fig. 3.8 b), for ECc/2π = 0.45GHz, we see that an avoided crossing for
EJc/2π = 80 and 90GHz prevents the appearance of a zero-ZZ point. This avoided crossing
is responsible for the large feature in the upper right corner in Fig. 3.7 a) for N = 4 and
α = 13/80. Interestingly, we find that for ECc/2π = 0.45GHz and EJc/2π = 100GHz, a
zero-ZZ point can be found close to a sweet spot with respect to the flux (i.e. ∂χab/∂ϕ̄ext = 0),
meaning that the ZZ interaction is first order insensitive to flux in the coupler flux line. Note
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a) b)

Figure 3.8 Spectra (bottom) and ZZ cross-Kerr interaction (top) in the flux range ϕext/2π =
[0.4, 0.5] for a) ECc/2π = 0.25GHz (left) and b) ECc/2π = 0.45GHz (right), for
multiple values of EJc. Each lines in the top figures represent the ZZ interaction
for different values of EJc/(2π) ranging from 60 to 100 GHz. The horizontal black
line at 0 is a guide to the eye. The bottom figures represent the device spectra,
where the first excited states of the qubits are indicated in fixed red and orange
colors, while the first (second) excited states of the coupler are plotted in multiple
colors each associated to a device with different EJc, in solid (dashed transparent)
lines. We denote Eabc the energy level of a state |aabb, cc〉. The qubit and coupling
parameters for these figures are the ones indicated in Eq. (3.56), and the fixed
coupler parameters are N = 4 with α = 13/80. This figure explores the spectra
and the ZZ interaction for the parameter regimes indicated by the blue boxes in
Fig. 3.7.

also that for ECc/2π = 0.45GHz the existing zero-ZZ points are located where the coupler
is between the qubits. This is interesting as it allows the coupler to be simultaneously close
in frequency to both qubits, maximizing the qubit-coupler interaction and, consequently,
the effective qubit-qubit interaction.

By studying more extensively the spectra for the other plots of Fig. 3.7 a), we notice
that the zero-ZZ regions are often located where the coupler is close in frequency to one of
the qubits. Strong qubit-coupler hybridization can be responsible for shorter qubit lifetimes,
since the coupler decay would impact the qubit due to qubit-coupler entanglement. In
Fig. 3.7 b), we characterize this hybridization by plotting for the same parameters as Fig. 3.7
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a) the overlap between the dressed qubit states and the bare coupler state at the flux value
that minimizes the absolute value of the ZZ interaction. Fig. 3.7 b) is obtained for the
same parameter regimes as in a). The larger the overlap is, the stronger the qubits and the
coupler are hybridized. We see that in almost all the regions where zero-ZZ points exist, the
qubits and the coupler are strongly hybridized. This is due to the fact the zero-ZZ points
appear when the coupler approaches the qubit frequency. For N = 2 and 3, no regions can
be found where ZZ is canceled while keeping the qubits and the coupler weakly hybridized.
On the other hand, for N = 4 and 5 it is possible to both have zero-ZZ points and a small
overlap between the dressed qubit and the bare coupler. This is for instance the case with
N = 5 and α = 1/10 in the lower left corner. However, these regions generally correspond to
situations where the coupler is relatively far below the qubit frequencies, which is expected
to reduce the speed of the gate. Moreover, as mentioned previously, the strong hybridization
that exists between the qubits and the coupler at the zero-ZZ point can become an issue for
the qubit coherence time. Indeed, the Purcell-type decay of the qubit due to the coupler
is roughly given by the square of the qubit-coupler overlap times the coupler decay rate.
Given the large overlaps that are observed, it it thus important for the coupler to have a
large quality factor.

While the above results were obtained for the undriven system, we now turn out attention
to the properties of the device in the presence of a drive. Namely, we now characterize the
gate rate. In Fig. 3.9, we plot in a) to d), for a given choice of N and α, the minimum ZZ
points, the overlap of the dressed qubits with the bare coupler state, and the iSWAP rate Jab
at the minimum ZZ point when the coupler is modulated with an amplitude δϕ/2π = 0.01.
Fig. 3.9 a) to d) correspond to different N = 1, 2, 3 and 4, and we chose α according to the
observation of zero-ZZ regions in Fig. 3.7 and from the study of the spectra in those regions.
Since simulating the gate rates take a significant amount of time, for each N and α, we only
evaluate the gate rate in the regions surround by the blue box in the plots of ZZ and of
the overlaps in Fig. 3.10. The gate rates Jab are plotted on the same scale and we do not
evaluate Jab when the minimum ZZ point is larger than 0.1MHz, those points are indicated
in white. The maximum gate rates obtained for N = 2, 3, 4 and 5 are respectively 35.7,
15.4, 27.6 and 14.4 MHz, corresponding to

√
iSWAP gates of around 14 ns, 32 ns, 18 ns and

35 ns. These gates are fast compared to typical parametric two-qubit gate times as shown
in Sect. 1.3.3. For instance, cross-resonance gates are typically performed in a few hundreds
of nanoseconds and CZ gates in 40− 250 ns. Note that Ref. [51] has achieved an iSWAP
gate in 44 ns by performing a parametric-resonance gate. Faster two-qubit gates have been
implemented using flux-tunable qubits or couplers. Note that in our case the drive amplitude
could be increased, further reducing the gate times. The regions where the gate rate is
the largest appear when the coupler is located between the qubit frequencies. When the
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a)

b)

c)

d)

Figure 3.9 Colormap of ZZ, the overlap and Jab versus ECc and EJc for multiple (N ,α): a)
N = 2&α = 1/3, b) N = 3&α = 1/6, c) N = 4&α = 13/80 and d) N = 5&α =
1/10. All the colormaps are at the same scale and any value of |ZZ| > 1MHz
is plotted in white. For each N and α, the gate rate is simulated in the regions
surround by the blue box in the colormaps of ZZ and of the overlaps. We omit
to simulate Jab where the minimum ZZ point is above 0.1MHz, those points are
indicated in white. The qubit and coupling parameters used in this figure are the
ones indicated in Eq. (3.56).

coupler is simultaneously close in frequency to both qubits, it maximizes the qubit-coupler
interaction and, consequently, the effective qubit-qubit interaction. As mentioned earlier, the
decrease in the gate rate in the lower left (upper right) corner of the plots can be explained
by the fact that the coupler frequency decreases (increases) further away below (above) the
qubits frequencies.

We now focus on a specific set of device parameters to study how the gate rate and the
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a)

b)

Figure 3.10 a) iSWAP gate Jab rate and b) dynamical ZZ interaction χab versus flux. Each
colored line corresponds to a different drive amplitude δϕ/2π ranging from 0.005
to 0.015. The two main resonances at ϕext/2π = 0.4 and 0.4725 correspond to
the avoided crossing between the qubits and the coupler. The device parameters
used in this figure are the ones indicated in Eq. (3.56).

dynamical ZZ vary as the drive amplitude increases. For this, we use the first parameter fit
of a device that was experimentally fabricated by our collaborators from the Houck Lab at
Princeton University:

ECa/2π = 0.205 GHz EJa/2π = 19.65 GHz ECac/2π = −0.175 GHz

ECb/2π = 0.205 GHz EJb/2π = 34.4 GHz ECbc/2π = 0.185 GHz (3.57)

ECc/2π = 0.4 GHz EJc/2π = 91.2 GHz ECab/2π = 0 GHz

N = 4 α = 0.164 .

Note that the qubit and coupling parameters are relatively close to the ones used in Eq. (3.56).
In Fig. 3.10 a), we show the iSWAP gate rate Jab versus flux and in b) the dynamical ZZ
cross-Kerr interaction. We see that the gate rate is the largest around ϕext/2π = 0.35 and
0.5, where the coupler is the closest to the qubits. Each line corresponds to a different drive
amplitude δϕ. The static zero-ZZ point is located between the qubits at ϕext/2π = 0.45.
The gate rate increases linearly with δϕ and reached 25MHz corresponding to a 20 ns√
iSWAP gate. This gate time is comparable to what is achieved with flux-tuned two-qubit
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gates, but is particularly fast for a parametric two-qubit gate. The gate time also has to
be compared to the qubit lifetime. Considering that fast gates can be implemented with
this device, the impact of Purcell decay caused by the coupler may not be as significant if it
remains within reasonable limits.



Chapter 4

Theoretical support to experiment

The work presented in this chapter of the thesis was done in collaboration with the group
of Andrew Houck at Princeton University and with members of the Sherbrooke group. At
Princeton University, Pranav Mundada, Andrei Vrajitoarea, Sara Sussman and Charles
Guinn fabricated and measured the devices which will be presented below. Alex Place also
contributed in fabricating the devices. In Sherbrooke, Alexandru Petrescu, Catherine Leroux
and Agustin Di Paolo contributed in analyzing the experiments presented below.

In this section, we present and analyze the experimental results obtained together with
our collaborators from the Houck Lab at Princeton University. We consider two generations
of the experiment, corresponding to two devices which we refer to as device 1 and device 2
below. We first show in Sect. 4.1 a theoretical fit of the spectra of these two devices and of
the static ZZ interaction versus flux, after which we reproduce in Sect. 4.2 Autler-Townes
spectroscopy experiments using the Floquet quasi-energy spectrum to calibrate the drive
amplitude. Finally, in Sect. 4.3 we characterize

√
iSWAP gates implemented on the two

devices. More details about the device fabrication and experiments can be found in the
thesis of Sara Sussman in Ref. [62].

57
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4.1 Parameter fit

As mentioned previously, the circuit parameters achieved experimentally deviate from the
targeted parameters. The device is characterized using electromagnetic simulations to
determine the circuit capacitances, and witness JJs are fabricated next to the device to
determine the Josephson energies in the circuit. The parameter fit is then fine-tuned by
fitting the device spectrum obtained from spectroscopy experiments. Following this approach,
we find that the parameters of device 1 are:

ECa/2π = 0.205 GHz EJa/2π = 19.65 GHz ECac/2π = −0.18 GHz

ECb/2π = 0.205 GHz EJb/2π = 34 GHz ECbc/2π = 0.18 GHz (4.1)

ECc/2π = 0.4 GHz EJc/2π = 91.2 GHz ECab/2π = 0 GHz

N = 4 α = 0.164 .

In the experimental setup, only the qubits have readout resonators, the coupler energy levels
are measured by strongly driving through the qubit readout lines [62]. In Fig. 4.1, we plot the
device spectrum and the ZZ interaction measured experimentally versus flux along with a fit
(dashed lines) obtained from numerical diagonalization of the Hamiltonian of Eq. (3.1) using
the above parameter values. The fit is in good agreement with the spectrum and the ZZ
interaction over a large flux range. A zero-ZZ point can be found at ϕ̄ext/2π = 0.45 which
appears when the coupler is between the qubit frequencies. We remind from Sect. 3.2.2 that
the gate rate is generally maximized when the zero-ZZ point is located where the coupler
is between the two qubits. In Fig. 4.1 b), we observe two resonances in the ZZ interaction
around ϕ̄ext/2π = 0.43 and 0.47, which are respectively due to the crossing of levels |110〉
and |002〉, and the crossing of the first excited state of the qubit a with the coupler. Despite
a small shift in the location of the second resonance, the two resonances are well captured
by the numerical simulations.

Following the above mentioned approach to fit the parameters of device 2, we find:

ECa/2π = 0.205 GHz EJa/2π = 13.65 GHz ECac/2π = 0.085 GHz

ECb/2π = 0.208 GHz EJb/2π = 26.55 GHz ECbc/2π = −0.08 GHz (4.2)

ECc/2π = 0.445 GHz EJc/2π = 67.5 GHz ECab/2π = 0.01 GHz

N = 4 α = 0.1888 .

The Josephson energies of the qubits are smaller in this second device to reduce their
frequencies and detune them further from the readout resonators. The qubit-coupler
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a) b)

a
b

c) d)
k

Figure 4.1 a) Spectrum of device 1 obtained from spectroscopy with an overlaid fit versus flux.
The colored dashed lines correspond to the fitted spectrum using the parameters in
Eq. (4.1). The energy levels are labeled as Eabc. b) ZZ cross-Kerr (χab) interaction
of device 1 versus flux. The blue and gold dots are the ZZ interaction measured
through qubit a and b respectively. The black line is the fit obtained of device 1
and the dashed colored lines are the same energy levels as in a) and are provided
as a visual aid to understand the resonances in the ZZ curve. The dashed vertical
line indicated the zero-ZZ point. c) Same as a) but for device 2. d) Same as b) but
for device 2.

couplings ECac and ECbc are lower in this device compared to device 1, but this is due to
a fabrication error. The spectrum and the ZZ interaction are plotted in Fig. 4.1 c) and d)
along with a fit. Note that for device 2 the ZZ interaction was measured in a smaller flux
range around the zero-ZZ point compared to device 1. This might give the wrong impression
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a) b)

φ̄ext /2π

Device 3

Figure 4.2 Qubit lifetime and ZZ cross-Kerr interaction (χab) as a function of flux φext =
ϕ̄ext/2π. a) For device 2 presented in Eq. (4.2). b) For a third device for which
the parameters were not fitted. In both a) and b), qubit a (b) are the low (high)
frequency qubits. Figures from Ref. [63].

that the ZZ interaction is overall smaller than for device 2 since the scale is now in kHz. For
device 2 the zero-ZZ point is located at ϕ̄ext/2π = 0.457, where the coupler frequency is
here again between the qubits.

The qubit lifetimes for device 1 measured at ϕ̄ext/2π = 0 are T (a)
1 ∼ 80µs for qubit

a and T
(b)
1 ∼ 8µs for qubit b. The dephasing times of the qubits are T (a)

2 = 20µs and
T
(b)
2 = 4µs. The poor lifetime of qubit b is attributed to the readout resonator which is

closer to the qubit than targeted, leading to a fast qubit decay via the Purcell effect. Because
the coupler was not coupled to a readout resonator, its lifetime was not measured. As long
as the coupler and the qubits states are not too strongly hybridized, the qubits should not
be affected by the lifetime of the coupler. Note, however, that at the flux point where the
ZZ interaction is zero, we suspect qubit a to be strongly hybridized with the coupler since
they are near an avoided crossing (e.g. see Fig. 4.1 b) at ϕ̄ext/2π = 0.45). The qubit-coupler
entanglement could therefore have an impact on T (a)

1 and T (a)
2 at the zero-ZZ point. For

device 1 the qubit lifetimes has, however, not been measured at this point. It has nevertheless
been measured over larger flux ranges for other devices than device 1 and 2.
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The upper plot of Fig. 4.2 a) depicts the qubit lifetimes close to a zero-ZZ point for
device 2. The plot below represents the ZZ interaction in the same flux range together with
a fit (black line) obtained with the parameters in Eq. (4.2). The qubit T1s are ∼ 23µs and
30µs, and T2s ∼ 35µs, and remain relatively unchanged with flux. These qubit T1s and T2s
are relatively low for typical fixed-frequency transmon qubits. We suspect these short qubit
lifetimes to be due to fabrication errors rather than to the strong qubit-coupler hybridization
because the T1s and T2s remain constant with flux around the zero-ZZ point [62]. Fig. 4.2
b) also shows the qubit lifetime and the ZZ interaction in a flux range close to the zero-ZZ
point for a third device for which the parameters were not fitted but are expected to be
similar to those of device 2. Here, we see in Fig. 4.2 b) that the T1 and T2 of qubit a are cut
by half as we get closer to the zero-ZZ flux point. This is to be expected if qubit a and the
coupler are strongly hybridized.

4.2 Autler-Townes spectroscopy

Autler-Townes spectroscopy is used in the present work to convert the drive power (in dBm)
to flux quanta (in units of Φ0). With this conversion factor in hand, it is possible to ensure
that the drive power corresponds to a small fraction of the quantum flux. The Autler-Townes
spectroscopy corresponds to two-tone spectroscopy [59], where a first drive of frequency ωd
is used to activate an interaction, while a second drive of frequency ωp, which we will refer
to as the probe, is used to probe the spectrum dressed by the first drive. This experiment
provides a spectroscopy plot which shows how an energy level is affected by a drive ωd due to
ac-Stark and Bloch-Siegert shifts. Ultimately, it reproduces the avoided crossing of Fig. 2.1
shown in the Floquet section.

Here, the first drive is activated by modulating the flux through the coupler at the
zero-ZZ point ϕ̄ext/2π = 0.45 and the dressed spectrum is probed by measuring the qubits
as in Sect. 4.1. Fig. 4.3 shows the results of the Autler-Townes spectroscopy of device 1
around the coupler and qubit frequencies. The Floquet quasi-energy associated to the
qubit and coupler states are overlaid (red dots) on the experimental data. We see that the
quasi-energies are in excellent agreement with the experimental data, for δϕ/2π = 0.01. For
qubit a, see Fig. 4.3 a), the avoided crossing around ωd/2π = 0.5GHz corresponds to an
interaction with the coupler. This drive frequency ωd/2π = 0.5GHz corresponds to the
detuning between qubit a and the coupler at the zero-ZZ point. The avoided crossing around
ωd/2π = 1.9GHz corresponds to the qubit-qubit interaction as it appears at the qubit-qubit
detuning at the zero-ZZ point. As explained in Sect. 2.2, the minimum distance in the
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avoided crossing along ωd corresponds to the interaction amplitude between two states. The
gate time can thus be obtained from the Autler-Townes experiment.

Similarly, in Fig. 4.3 b), we observe two avoided crossing in the qubit b spectroscopy at
ωd/2π = 1.9 and 1.4 GHz, respectively corresponding to the qubit-qubit and qubit b-coupler
detunings. For the coupler, in Fig. 4.3 c), the experimental data is qualitatively reproduced
by the Floquet energies, however, quantitatively there is an overall shift of ∼ 10MHz of
the quasi-energies along ωp. Because the coupler does not have its own readout line, it
is indirectly probed through the drive line of qubit a (which is closer in frequency to the
coupler than qubit b) using a stronger drive amplitude. We attribute the frequency shift
with the experimental data to the resulting strong ac-Stark. Nevertheless, the quasi-energies
reproduce correctly the main avoided crossings at ωd/2π ≈ 0.55GHz and 1.44GHz. Multiple
lines appear in the coupler spectrum which we were not able to explain, but which we also
attribute to the strong probe drive.

Experimentally calibrating the power of the drive, i.e. making the correspondence
between the drive power applied experimentally and the drive amplitude δϕ of Eq. (3.1),
is not an easy task. We use the quasi-energies to fit the avoided crossings and determine
what fraction of a flux quantum, δϕ, the drive power corresponds to. The stronger the
drive amplitude is, the larger the avoided crossings are. In the particular case of Fig. 4.3,
we reproduced the experimental data with a drive amplitude δϕ/2π = 0.01, which we now
know is associated to drive power applied experimentally.

4.3 Gate characterization

4.3.1 Chevron pattern

In the present work, we focus on the implementation of a
√
iSWAP gate. While an iSWAP

gate exchanges the states of the qubits and introduces a relative phase between the states
|01〉 and |10〉, as:

|10〉 → i|01〉 , |00〉 → |00〉

|01〉 → i|10〉 , |11〉 → |11〉
(4.3)



63

a) b) c)

Figure 4.3 Autler-Townes spectrum close to the coupler and qubit frequencies, with an overlaid
fit (red dots) of the Floquet quasi-energies for a drive amplitude δϕ/2π = 0.01.
For the coupler plot, there is an overall shift of the quasi-energies of about 10MHz
along ωp.

the
√
iSWAP is realized in half the time of an iSWAP gate and maximally entangles the

qubits states

|10〉 → (|10〉+ i|01〉) /
√

2

|01〉 → (i|10〉+ |01〉) /
√

2
(4.4)

while keeping |00〉 and |11〉 unchanged.

As discussed in Chapter 3, the
√
iSWAP gate is generated by modulating the flux through
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a) b)

Figure 4.4 Plot of the population in qubit a versus the pulse time for multiple drive frequencies
ωd for device 1. a) Experimental data b) Simulated data using the device parameters
in Eq. (4.1) and δϕ/2π = 0.01.

the coupler at ωd = ωb − ωa. As soon as the interaction is turned on, the qubits exchange
excitations leading to a swap of the population between the qubits. Because of the ac-Stark
and Bloch-Siegert shifts, the optimal drive frequency that leads to a perfect exchange of the
qubit populations is shifted from the undriven qubit detuning. Experimentally, the optimal
drive frequency is obtained by measuring the qubit population in time for multiple ωd around
ωb − ωa and identifying the frequency that leads to a maximum population exchange.

In Fig. 4.4, we plot, for device 1, the population of qubit a as a function of time and
along the drive frequency, when initializing the state in |0a1b0c〉 at t = 0. Fig. 4.4 a)
and b) respectively correspond to the experimental data and the simulated data. Note
that both figures are plotted on different time scales. Each point is obtained by using a
flat-top Gaussian pulse, with a ramp up/down time of Nσσ where σ = 3 ns is the standard
deviation of the Gaussian and Nσ = 2, and a flat top time of tf . The gate duration is thus
tgate = 2Nσσ + tf . The pattern observed in Fig. 4.4 is referred to as a chevron. For a given
ωd we see that the qubit population oscillates in time. When the drive is off-resonant the
oscillations gradually disappear and the qubit returns to its ground state. Conversely, on
resonance, the oscillations repeat until the qubit decays. A full population swap occurs in
tgate = 32 ns around ωd/2π = 1.97GHz, for both the simulation and the experiment. This
corresponds to a 16 ns

√
iSWAP gate, which makes it a fast two-qubit gate compared to

state-of-the-art parametric gates.



65

a) b)

Figure 4.5 Simulation of the population in qubit a versus the pulse time tgate for multiple
drive frequencies ωd for device 2 with δϕ/2π = 0.01. a) Simulated data using the
device parameters in Eq. (4.2) b) Simulated data using the device parameters in
Eq. (4.2) but with larger couplings ECbc/2π = −ECac/2π = 0.15GHz.

For device 2, the time evolution of the qubit population has been measured for a few drive
frequencies only, therefore we do not have a complete figure of the chevron pattern. However,
the population at the optimal drive frequency showed slow

√
iSWAP gates of ∼ 190 ns for

an uncalibrated drive power. In Fig. 4.5 a), we simulate the chevron for device 2 using the
same drive amplitude as for device 1. A full population exchange occurs for tgate = 132 ns,
which is to be compared to the tgate = 32 ns obtained with the device 1 using the same drive
amplitude. The reason for the gate being slow, is the low qubit-coupler couplings ECac and
ECbc, which are half the size as those in device 1. Following this observation, Fig. 4.5 b)
shows the expected results for a device that has the same parameters as device 2 but with
larger couplings ECbc/2π = −ECac/2π = 0.15 GHz. We see that the oscillations are more
rapid, with a

√
iSWAP obtained in 33 ns.

4.3.2 Gate fidelity and leakage

Before studying the leakage and the fidelity of the gate for device 1 and 2, we introduce and
define some concepts used to characterize gates [64, 65].

In the device that we consider, the Hilbert space H spanned by the qubits and the
coupler is larger than the qubit subspace in which the ideal dynamics occurs. To study the
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leakage to the non-computational subspace, we split the Hilbert space into two subspaces
χ1 and χ2. We define χ1 the 4-dimentional qubit subspace made of the states |qaqb0c〉 with
qa, qb ∈ {0, 1}, and χ2 the (d− 4)-dimensional leakage subspace comprising all the other
states, where d = dim(H). The full Hilbert space is written as a direct sum of the latter
two subspaces, H = χ1 ⊕ χ2. The state leakage of a density matrix ρ ∈ D(H) in the set of
density matrices of the full Hilbert space is defined as:

L(ρ) = Tr [I2ρ] = 1−Tr [I1ρ] (4.5)

where I1 and I2 are respectively the projectors onto the subspaces χ1 and χ2.

Any quantum operation on ρ, including the leakage errors, can be described by a
complete positive trace preserving (CPTP) map [64]. We call E the CPTP map describing a
leakage error introduced by an imperfect gate. Note that a leakage error can be divided
in two categories, leakage and seepage errors, which transfer population to and from the
leakage subspace respectively. In the following work, we focus on the leakage and define the
leakage rate L1 as the average leakage of E [65]:

L1(E) =
∫
dψ1L (E (|ψ1〉〈ψ1|)) = L

(
E
(

I1
d1

))
(4.6)

where d1 = dim(χ1) = 4, and the integral is taken over the Haar measure of all states in χ1.

While characterizing leakage informs us about losses to the leakage subspace, it does
not inform us about the performance of the gate within the computational subspace. To
address this, we introduce a commonly used metric, the average gate fidelity [65]:

F (E) =
∫
dψ1 〈ψ1 |E (|ψ1〉〈ψ1|)|ψ1〉

=
d1Fpro(E) + 1−L1(E)

d1 + 1

(4.7)

where the integral is taken over the states of χ1 and Fpro(E) is called the process fidelity of
E with the identity map on χ1, defined as [64]:

Fpro(E) =
1
d2

1
Tr [(I1 ⊗ I1)SE ] (4.8)

where SE is the superoperator representation of E .

In this section, we compare the gate operation including leakage Ugate with the unitary
of a perfect gate operation Utarget. The map of the leakage error is E = U†targetUgate, where
Utarget is the CPTP map associated to the targeted gate and Ugate the map represents the
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a) b) c)

Figure 4.6 Simulation of a) the population in qubit a, b) the average gate fidelity and c) the
leakage L1 versus the pulse time tgate and as a function of the drive frequencies ωd
for device 1. The time tgate corresponds to the duration of the full gate pulse. The
data is obtained using the device parameters in Eq. (4.1).

imperfect gate.

In Fig. 4.6 a), b) and c), we respectively show the population in qubit a, the average
gate fidelity of a

√
iSWAP gate and the leakage L1 as a function of time and of the drive

frequencies ωd for device 1. Note that panel a) is identical to Fig. 4.4 b), where we observe
a full population swap occurs in tgate = 32 ns around ωd/2π = 1.97GHz. The simulated
average gate fidelity is maximized at t√iSWAP = 20 ns, including the ramp times, with
F = 99.6% and a leakage L1 = 1× 10−4. The fidelity can be improved to F = 99.8% by
correcting for single-qubit rotations.

Overall the leakage is relatively low with a maximum value L1 = 6× 10−4. We see
a fringe structure in the leakage which is due to leakage into the coupler. A population
exchange still occurs between the qubits when the coupler is in its higher excited energy
levels, i.e. between |1a0b1c〉 ↔ |0a1b1c〉 and |1a0b2c〉 ↔ |0a1b2c〉. The frequency of these
transitions are respectively ωd/2π = 1.991 and 1.992GHz when the drive if off, but we
suspect the drive to dress the energy levels, thereby shifting the frequency for a perfect swap
of excitations between those levels. A wider simulation of the chevron for ωd/2π > 1.99 GHz
shows a chevron pattern in the leakage plot.

More generally, the generated gate operation can be compared to an fSim gate represented



68

by the unitary matrix [66]:

fSim(θ, ξ,χ, γ,ϕ) =

|00〉

|10〉

|01〉

|11〉



1 0 0 0

0 e−iγ−iξ −ie−iγ+iχ 0

0 −ie−iγ−iχ e−iγ+iξ 0

0 0 0 e−2iγ−iϕ


, (4.9)

where the parameters (θ, ξ,χ, γ,ϕ) respectively parametrize an iSWAP gate, (ξ,χ, γ) single-
qubit gate angles and ϕ a CZ gate. By optimizing all the parameters of the fSim to maximize
the fidelity with the imperfect Ugate we have obtained, it is possible to uncover its iSWAP,
CZ and single-qubit gate components. For instance, the optimized parameters (ξ,χ, γ) of
the fSim can then be used to correct for single-qubit rotations, which can further improve
the gate fidelity. Here, the advantage of comparing our gate to the fSim is that it captures
the dominant interactions of our Hamiltonian while having fewer free parameters to optimize
over than an arbitrary two-qubit unitary. The fSim gate with the highest fidelity to Ugate

may not necessarily be the intended target gate, but it can still be a maximally entangling.
Optimizing the parameters of the fSim gate in the context of the numerical simulation of
the gate implemented with device 1, we now find a fidelity of 99.99(8)%.

For device 1, an fSim gate close to
√
iSWAP has been experimentally achieved in 15 ns

with a fidelity of 98.8% using a combination of two-qubit cross-entropy benchmarking with
single-qubit randomized benchmarking as is done in Ref. [66]. Given the coherence times
measured in Sect. 4.1, a fidelity of 99.8% would be expected for a 15 ns gate. Assuming that
the optimized fSim gate is the closest resembling the implemented gate, the fSim fidelity
suggests the existence of leakage. Leakage has been explored by benchmarking the purity of
the two-qubit gate and it has been found to be lower than what is expected from noise, in
agreement with the difference found between the coherence-limited fidelity and the measure
fidelity. Moreover, the purity decay for the single-qubit gates observed is similar to the
two-qubit gate purity decay, even though the two-qubit gate is about 4 times faster than
single-qubit gates. In device 1, the gate fidelity is therefore limited by leakage. This could
be explained by a decrease of the qubit coherence times induced by the presence of a strong
drive, or by the population of the coupler at the end of the pulse. Compared to typical
parametric two-qubit gates, our gate is one of the fastest that exist, and this for a fidelity
comparable to some of the best parametric gates.

In Fig. 4.7 a), b) and c) we show the same plots as in Fig. 4.6 but for simulations of
device 2. As shown in the previous section, for this device a full population exchange occurs
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a) b) c)

d) e) f )

Figure 4.7 Simulation of a) the population in qubit a, b) the average gate fidelity and c) the
leakage L1 versus the pulse time tgate and as a function of the drive frequencies ωd
for device 2. The data is obtained using the device parameters in Eq. (4.2). d),
e) and f) are the same as a), b) and c) respectively, but for device 2 with larger
couplings ECbc/2π = −ECac/2π = 0.15GHz.

for tgate = 132 ns. The simulated average gate fidelity is maximized at t√iSWAP = 64 ns,
including the ramp times, with F = 98.4% and a leakage L1 = 3× 10−6. It is unclear why
the fidelity is lower compared to device 1, since dissipation is not accounted for in these
simulations, and the L1 leakage is very low. However, the closest fSim gate gives a fidelity of
99.99(9)%. In terms of gate time and gate fidelity, device 2 is not as favorable as device 1.

In Fig. 4.7 d), e) and f) we show the same plots as in a), b) and c) for the same device
but with larger couplings ECbc/2π = −ECac/2π = 0.15GHz. Here, the simulated average
gate fidelity is maximized at t√iSWAP = 29 ns, including the ramp times, with F = 99.6%
and a leakage L1 = 2× 10−5, similar to device 1. We note the appearance of leakage around
ωd/2π = 1.96GHz which could be due to a transition between the levels |2a1b0c〉 ↔ |1a2b1c〉.
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The closest fSim gate gives a fidelity of 99.99(8)%. It is here again unclear why the fidelity
is high compared to device 2 with lower coupling.



Conclusion

In Part I of this thesis, we have introduced a new superconducting circuit design that
allows for the cancellation of the unwanted ZZ interaction between the qubits and enables
the execution of parametric gates in less than 50 ns. Our design is made of far-detuned
fixed-frequency transmons capacitively coupled through a generalized flux qubit used as a
coupler, see Fig. 3.1. The ingredient which makes it possible to cancel the unwanted ZZ
interaction between the qubits is the positive anharmonicity of the coupler. In Chapter 3,
we have shown that it is possible to cancel the ZZ interaction in the case where the qubits
and the coupler have opposite anharmonicities. To the best of our knowledge, qubits with
opposite anharmonicities have been used to cancel the ZZ interaction, but not couplers with
opposite anharmonicities to the qubits. We chose the qubits to be far detuned such as to
strongly suppress qubit-qubit interactions during idle time. However, this also comes at the
cost of reducing gate interactions. To overcome this, we activate gates by parametrically
modulating the flux through the coupler loop. This modulation provides the necessary
energy to bridge the gap between energy levels which otherwise would be far off-resonant.

We developed a theoretical model to describe the superconducting device in Fig. 3.1.
Together with Alexandru Petrescu, we developed a time-dependent Schrieffer-Wolff pertur-
bation theory which to second order in the perturbation already reproduces well numerical
simulations in the case of moderate to strong drive amplitudes. Despite the qualitative
agreements of the perturbation theory with the full circuit Hamiltonian in Eq. (3.1), full
numerical simulations are in order to quantitatively predict experimental results. Also, one
of my personnal contributions was the development of a numerical method based on Floquet
theory which allows us to determine the interaction amplitudes been two energy levels when
activating a gate, significantly faster than standard methods based on simulating the gate
dynamics.

We studied the behavior of relevant quantities like the ZZ interaction, the gate rate
or the qubit-coupler hybridization, with the device parameters. The simulation shown in
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Chapter 3 and Chapter 4 were conducted by myself. In our exploration for finding favorable
device parameters, we have shown that for any number of JJs between 2 and 5 in the array of
the coupler can exhibit a zero-ZZ operating point provided that the charging energy ECc, EJc

and the anisotropy ratio α between Josephson energies of coupler branches are appropriately
chosen. However, we have seen that it is easier to find a device with a zero-ZZ point for
N = 4 and N = 5 and α ∼ 1/2N . Note that fabricated devices always deviate from the
targeted parameters with a Gaussian distribution of all the parameters with a 10% standard
deviation. We showed that starting with a set of target parameter that exhibits a zero-ZZ
point, out of 106 device 50% of the fabricated device will still have a zero-ZZ operating point.
When a zero-ZZ point exists, it is always located between ϕ̄ext/2π = [0.3, 0.5], where the
coupler anharmonicity is positive, and the coupler frequency is generally close to one of the
qubits or between the two qubits. Situations where the zero-ZZ point is located where the
coupler is between the qubit frequencies are particularly interesting as they allow the coupler
to be simultaneously close in frequency to both qubits, thereby maximizing the qubit-coupler
interaction and, consequently, the effective qubit-qubit interaction. We show that it is
possible to reach

√
iSWAP gate times in 10 to 40 ns using a moderate drive amplitude. An

issue though of the coupler being close to the qubit frequencies is that they can strongly
hybridize with the coupler, ultimately leading to a reduction of the qubit lifetime due to
Purcell-type decay through the coupler. In the case of strong qubit-coupler hybridization, it
is thus important for the coupler to have a large quality factor. This might be one of the
main limiting factors of this architecture.

Our experimental collaborators have achieved a 15 ns fSim gate close to
√
iSWAP with

a fidelity of 98.8%, making it a state-of-the-art parametric two-qubit gate. They have shown
that the gate fidelity is limited due to leakage. Despite the leakage limitation, this gate
is one of the fastest that exists for a fidelity comparable to some of the best parametric
gates. One of the major challenges, though, is the fabrication of those devices. First because
parameter deviations can significantly change the device properties, and second because
fabrication errors affect the qubit lifetimes. The devices that were fabricated typically had
qubit lifetimes about T1,T2 ∼ 20− 40µs at the zero-ZZ point. A way to increase the qubit
lifetime would be to further decrease the qubit frequencies, as the quality factor, which
depends on the material used for fabricating the qubit is roughly given by the qubit frequency
time its relaxation rate. In the present work, we have mainly focused on qubits detuned by
about 2GHz, but such large detuning might not be necessary, this could be further explored.
Moreover, given that the qubit lifetimes are comparable to flux-tunable qubit, we could
also consider building a similar device as in Fig. 3.1 but with flux-tunable transmon qubits
instead. This would also alleviate some of the fabrication issues. In this work, we only
focused on iSWAP like gates, however, as shown in Chapter 3 other interactions are available
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on this device. It would be interesting to explore other gates. Using two drive modulations
of the coupler flux can further diversify the implementable gates.



Part II

Variational Quantum Algorithm

74
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Before relevant problems can be solved on quantum computers, numerous challenges
need to be overcomed both on the hardware and software sides. In Part I of this thesis, we
introduced a superconducting device aimed at improving the speed and fidelity of two-qubit
gates, which shows our efforts in improving quantum hardware. In Part II, our focus shifts
to one of the software aspects of quantum computing: quantum algorithms. Quantum
algorithms have garnered interest for their possible applications in cryptography, quantum
chemistry, combinatorial optimization, machine learning, quantum materials, finance, etc.,
where classical algorithms struggle to provide solutions. In fact, certain problems are
currently very resource intensive and require excessively long simulation times, thus the need
for exploring alternatives beyond classical methods. A wide range of classically intractable
problems can be formulated in terms of Hamiltonians, with their resolutions relying on the
determination of its ground state. For instance, numerous problems relevant for industry
applications can be mapped to the graph coloring problem in combinatorial optimization.
The Quadratic Unconstrained Binary Optimization (QUBO) technique [67] which can be used
to solve the graph coloring, Max-Cut, and scheduling management problems, is unfortunately
known to be an NP-hard problem. Remarkably, it turns out that the objective function
formulated by the QUBO problem can be expressed as an Ising model [68], which ultimately
can be written as a Hamiltonian [69]. Finding the ground state of the problem Hamiltonian
on a quantum processor thus amounts to solving the problem at hand.

Variational algorithms (VA) are already extensively used in physics and chemistry [70],
for instance, to find the ground states of some molecule or to study the time evolution
of a quantum system. The idea behind VAs is to design a parametrized variational form,
also called an ansatz, describing the wave function of the system. The parameters of the
variational form are then optimized by minimizing a cost function until convergence. The
convergence of VAs in terms of speed and precision highly depends on the structure of the
ansatz and its ability to explore the Hilbert space, its design is thus of major importance. The
advantage of VAs compared to exact solutions obtained through Schrödinger’s equation is
that VAs only explore a relevant subspace of the Hilbert space, if the ansatz is appropriately
chosen. This approach partially addresses the challenge of solving Schrödinger’s equation,
which becomes exponentially complex on classical computers as the system size increases.
VAs have shown to be effective to solve some problems, however, as soon as the optimal
solution is highly entangled, the variational forms struggle to efficiently approximate the
wave function. Quantum algorithms have been introduced as a new strategy to tackle these
issues. In fact, it has been shown that the spectrum and the eigenstates of a Hamiltonian can
be obtained using the phase estimation algorithm introduced by Kitaev in the 90s [71]. Based
on this work, a certain number of algorithms have been developed, some showing for example
that molecular energies can be computed with a polynomial scaling [72, 73]. Unfortunately,
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despite the progress of the last decades to reduce the resources needed to implement those
quantum algorithms, in terms of the number of qubits and gates, they remain unrealistic to
implement on today’s noisy intermediate-scale quantum (NISQ) devices.

In this context variational quantum algorithms (VQA) were developed to get around
these challenges. Inspired from their classical analog, VQAs may be the family of algorithms
most susceptible to show quantum advantage on NISQ devices [74]. Similarly to VAs, the
idea consists in designing a parametrized quantum circuit, also called an ansatz (or ansätze
in the plural), that prepares a quantum state from some initial state. The circuit parameters
are then optimized such that the final state converges towards the solution of the problem
being addressed. VQAs are hybrid quantum-classical algorithms, where the quantum state
is prepared on a quantum processor but the parameter optimization is performed classically
until convergence, as shown in Fig. 5.0. Similar to VAs, the convergence of the algorithm
highly depends on the structure of the ansatz, meaning the choice and the order of the
operations in the ansatz, and is thus of critical importance. In the last decades, different
types of ansätze were proposed in the literature to address various problems, each having
its own set of strengths and weaknesses. In this second part of this thesis, we will focus
on a new type of ansatz which we will apply to the Fermi-Hubbard problem. This ansatz
is a hybridization of a pre-existing ansatz, the Quantum Optimal Control inspired Ansatz
(QOCA) [75], and a protocol for designing ansätze, the Adaptive Derivative-Assembled
Problem-Tailored ansatz Variational Quantum Eigensolver (adapt-VQE) [76], which we will
describe in the following chapters.

In Chapter 5, we will first introduce the building blocks and the basic concepts of
VQAs and will present the Fermi-Hubbard model (FHM). Chapter 6 will describe our newly
developed ansatz, adapt-QOCA, as well as the two algorithms on which it is based on, i.e.
adapt-VQE and QOCA. Finally, in Chapter 7, we benchmark our ansatz on the FHM.
We will study how adapt-QOCA performs in terms of energy, fidelity and two-qubit gate
counts compared to QOCA and adapt-VQE. We also explain the ingredients that allows
adapt-QOCA to outperform other ansätze.
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Figure 5.0 Variational Quantum Algorithm. Illustration of the main blocks of a VQA: the
PQC or ansatz, the measurement and estimation of a cost function represented
by an operator Ô, and the classical optimization. A state |ψ(θ)〉 is prepared by
applying the ansatz U (~θ) on an initial state |ψ0. A cost function is estimated by
measuring some operator Ô on the prepared state. The parameters of the PQC
~θ = (θ1, · · · , θd) are then classically optimized and updated until the algorithm has
converged.



Chapter 5

Introduction

In this section we describe the main building blocks of VQAs [74], see Fig. 5.0:

1. The variational form or parametrized quantum circuit (Sect. 5.1),

2. The cost function to be minimized (Sect. 5.2),

3. The measurement of the cost function (Sect. 5.3),

4. The classical optimization (Sect. 5.4).

5.1 Parametrized Quantum Circuits

The central part of a VQA is the Parametrized Quantum Circuits (PQC), which is also
referred to as variational form or ansatz (or ansätze in the plural). It is described by a
unitary operation U (~θ) that depends on a certain number of parameters ~θ = (θ1, θ2, · · · ).
The PQC takes as an input an initial state |ψ0〉 and outputs a state that depends on the
circuit parameters, |ψ(θ)〉 = U (θ)|ψ0〉. Ultimately we want to find the parameters that will
lead to the solution of the problem that is being solved. In VQAs, these parameters are
found by optimizing a cost function using a classical subroutine.

The initial state |ψ0〉 can be any state within the Hilbert space, but ideally, it is chosen
to be close to the optimal solution, to facilitate the convergence of the VQA. For instance,
in quantum chemistry one would choose the Hartree-Fock state. In some cases no educated
guess for the initial state is known or is easy to prepare. In those cases, a reference state
such as |0〉⊗n, or a random state can be chosen.
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a) b)

Figure 5.1 Standard ansätze. Illustration of a single layer of two well-known ansätze: a)
the hardware efficient ansatz (HEA) and b) the variational Hamiltonian ansatz
(VHA). a) The ansatz is made of single-qubit rotations R(n)

σ (θσd,n) of angle θσd,n
around the axis associated to the Pauli matrix σ ∈ {Y ,Z} on qubit n. At the
end of a layer of HEA an unparametrized entangling gate is applied to all the
qubits. The main block of HEA is repeated L times. b) The ansatz is decomposed
in a set of parametrized operations Hpk with variational parameters {θd,k} and
where the terms Hpk come from a decomposition of the problem Hamiltonian
Hp =

∑K
k=1 ckHpk with {ck∀k ∈ {1, 2, · · · ,K}} a set of coefficients. The main

block of VHA is repeated L times.

The performance of a VQA, in terms of speed and precision of convergence, highly
depends on the form of the ansatz. However, its optimal structure is not known beforehand.
Just as the choice of initial state can be informed by an educated guess, the PQC can be
designed by leveraging the knowledge we possess about the problem we aim to solve. In
this sense, PQCs can be divided in two broad categories: hardware-efficient ansätze and
problem-inspired ansätze. The first is designed such as to adapt to hardware constraints,
while the latter is designed taking into account the physics of the problem, generally requiring
long and highly connected circuits (i.e. circuits with multiple entangling gates and requiring a
high qubit connectivity). We now take a quick overview of two standard ansätze to illustrate
these two categories, and provide some context on how our work relates to the existing
ansätze.

Hardware Efficient Ansatz:

The hardware efficient ansatz (HEA) consists in a sequence of parametrized single-qubit
rotations on each qubit, followed by an unparametrized entangling gate on all the qubits
[77] (see Fig. 5.1 a)):

UHEA(θ) =
L∏
d=1

[
Uent

N∏
n=1

R
(n)
Z (θZd,n)R

(n)
Y (θYd,n)

]
. (5.1)
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Here, R(n)
σ (θ) = e−iθσ/2 denotes a single-qubit rotation of angle θ around the axis associated

to the Pauli matrix σ ∈ {Y ,Z} on qubit n. Note that the operators in the product in
Eq. (5.2) are ordered by decreasing d, i.e.

∏L
d=1 Ud = UL · · ·U1. The unitary Uent represents

an entangling gate on the N qubit. In practice, the specific entangling gates that are used
depend on the physical platform on which the VQA is run: one simply chooses those gates
that can be realized with high fidelity. This choice explains the name of the ansatz. The
block in brackets in Eq. (5.1) is sequentially applied L times, with L the circuit depth.

Since the HEA ansatz is problem-agnostic and intended to address a wide range of
problems, it has to be able to cover a large part of the Hilbert space by varying the circuit
parameters. The ability of an ansatz to generate states from the Hilbert space is generally
characterized by its expressibility [78], a metric that compares the distribution of states
obtained from sampling the parameters of a PQC to the ensemble of Haar-random states.
As appealing as highly expressive ansätze may sound to explore vast Hilbert spaces, this
feature has been shown to lead to issues that may hinder efficient optimization, such as
the presence of barren plateaus [79], i.e. where the optimization landscape is flat. We will
provide a brief discussion of this matter in Sect. 5.2. Unfortunately, it has been shown that
HEA exhibits barren plateaus because of its high expressibility [79, 80].

Variational Hamiltonian Ansatz:

The variational Hamiltonian Ansatz (VHA) implements a parametrized version of the
evolution of the problem Hamiltonian Hp that we are trying to solve [81]. The evolution
operator U = e−iHpt is generally approximated using the Suzuki-Trotter expansion [82]:

e−iHpt = lim
n→∞

[∏
k

e−ickHpk
t
n

]n

=

[∏
k

e−ickHpk
t
n

]n
+O

(
t2

n

)
,

(5.2)

where we decompose Hp =
∑
k ckHpk, with {Hpk} a set of operators which do not commute

with each other, and {ck} a set of coefficients. The decomposition is ideally chosen such
that e−ickHpk can be easily implemented with single- and two-qubit gates. Following this
intuition, the VHA is designed by replacing the fixed coefficients ck in Eq. (5.2) by variational
parameters. The variational form of VHA thus writes:

UVHA(θ) =
L∏
d=1

[∏
k

e−iθd,kHpk

]
(5.3)
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where L layers of the block in brackets are sequentially applied, and θ = {θd,k} are the
variational parameters (see Fig. 5.1 b)). We note that the Suzuki-Trotter expansion does
not provide any prescription on the order in which different Hpk should appear in the
decomposition of Eq. (5.3). In practice, this choice can lead to widely different convergence
properties of the VQA.

Note that there exist many more ansätze. For instance, a well-known problem-inspired
ansatz for chemistry is the Unitary Coupled Cluster (UCC). It is inspired from classical
computation to describe the electronic structure of molecules in quantum chemistry [83]. This
ansatz aims to capture the electron correlation effects that are missing in the Hartree-Fock
approximation, and which are necessary to predict and accurately describe certain chemical
properties. Another well-known ansatz for solving combinatorial optimization problems such
as the Max-Cut problem is the Quantum Approximate Optimization Algorithm (QAOA) [84].
There also exist different methods for designing an ansatz instead of having a fixed-structure
ansatz. For instance, the Adaptive Derivative-Assembled Problem-Tailored ansatz Variational
Quantum Eigensolver (adapt-VQE) [76] introduced a strategy to dynamically build an ansatz
based on the operations that have the biggest impact on the energy of the prepared state.
We will describe this algorithm in more detail in Sect. 6.2. A review of existing PQCs can
be found in Ref. [74].

5.2 The cost function

The cost function, also called objective function, is another central component of VQAs,
as it is the function that will be optimized. In the context of VQAs, the cost function is
formulated in terms of an operator, and is evaluated by measuring its expectation value.
The cost function is very frequently the Hamiltonian of a given problem, for which we want
to minimize to find the ground state energy. It can, however, happen that one does not
want to optimize the energy of a Hamiltonian but rather wants to reach a target state, in
other words, optimize the state fidelity. For instance, the excited state algorithms [85] and
other algorithms in quantum machine learning [86] use the fidelity as part of the objective
function. Other objective functions such as the Gibbs cost function [87] or the conditional
value-at-risk function [88] have also shown to do at least as well for solving some combinatorial
optimization problems. Regardless of the quantity being measured, in the end, it boils down
to expressing an objective function C(θ) as the expectation value of an operator Ô on the
prepared state:

C(θ) = Tr
[
ÔU (θ)ρ̂0U

†(θ)
]
= 〈Ô〉ψ (5.4)
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where U (θ) is the unitary of the parametrized circuit, ρ̂0 = |ψ0〉〈ψ0| is the initial input
state in the n-qubit Hilbert space, and |ψ〉 = U (θ)|ψ0〉 is the output state of the PQC. If
the cost function is the state fidelity, then Ô is the projector of the target state. When
minimizing the energy, the cost function Ô is rather the problem Hamiltonian. The objective
function may have to be decomposed in a linear combination of operators that can actually
be measured experimentally.

VQAs are confronted by many challenges that need to be overcome, especially regarding
the optimization task. For example, it has been shown that classically training VQAs is,
under certain assumptions, a NP-hard problem and that the optimization will generally
stay trapped in local minima [89]. Another important limitation is the possible existence of
barren plateaus [79, 90]. A cost function is said to exhibit barren plateaus if, when training
its parameter over the optimization landscape, the gradients of the cost function with respect
to the variational parameters are exponentially suppressed (on average) with the number of
qubits. Therefore, if a cost function exhibits barren plateaus it will be complicated to run an
optimization to converge for more than a few qubits. Barren plateaus thus specially affect
gradient-based optimization methods, but it has also been shown that even gradient-free
methods can be sensitive to barren plateaus [91, 92]. Note that the cost function does not
only depend on Ô, but also depends on the prepared state since C(θ) = 〈ψ(θ)|Ô|ψ(θ)〉,
its optimization is thus influenced by the structure of the PQC. In particular, it has been
shown that the higher the expressibiliy of a circuit is, the most likely it will exhibit barren
plateaus [90, 93]. A lot of efforts are currently made to alleviate these challenges [90, 94–96].

5.3 The measurement

After a quantum state |ψ(θ)〉 has been prepared with a PQC, the cost function has to be
evaluated. As mentioned in Sect. 5.2, the cost function is estimated by measuring, on the
prepared state, the expectation value of the objective function described by an operator
Ô, as seen in Eq. (5.4). Ideally, one would directly measure Ô in its eigenbasis, however
quantum computers are generally constrained to measure qubits in the Z-basis only. To
measure Ô, one can in principle perform a basis change by applying a unitary transformation
(involving multiple qubits) on the state at the end of the PQC. However, this is usually a
complicated and expensive operation. Moreover, Ô does not always have to be an observable,
and in such a situation its measurement is more complicated. To simplify the discussion,
in what follows we will focus on observables, and more specifically on the case where Ô is
a Hamiltonian. Fortunately, there exists different methods that allow us to evaluate the
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a) b)

Figure 5.2 Measurement of Pauli matrices. a) Illustrates the gates that need to be applied
on a state |ψ〉 to measure the Pauli matrices σx, σy and σz, in the Z basis. b)
Illustrates an example to measure the Pauli string σx ⊗ σz ⊗ σy, on a state |ψ(θ)〉
prepared by a PQC U (θ). H and S are respectively the Hadamard and the phase
gates.

expectation value by breaking down the cost function observable into a sum of operators
that can be measured more easily. In what follows we will explain one of the most commonly
used measurement procedures which consists in decomposing Ô into Pauli strings.

Measurement of Pauli strings:

One of the simplest ways to estimate expectation values on current devices is to decompose
the operator Ô associated to the cost function into a sum of Pauli strings, consisting in a
tensor product of Pauli matrices, and then measure the individual Pauli strings. In fact, any
operator can be uniquely decomposed into Pauli strings as Ô =

∑M
k=1 ckP̂k, with ck ∈ C

and M the number of Pauli strings P̂k in the expansion of Ô. The k-th Pauli string in the
expansion is written as P̂k = ⊗ni=1σ̂

(i)
k , with σ̂(i)k ∈ {Î, σ̂x, σ̂y, σ̂z} the Pauli matrix that is

applied on qubit i. The expectation value of Ô is then simply a linear combination of the
expectation values of the individual Pauli strings, 〈Ô〉ψ =

∑M
k=1 ck〈P̂k〉ψ.

As mentioned earlier, Pauli strings can easily be evaluated on NISQ devices, as the Pauli
Z basis is their natural measurement basis. For a single qubit, measuring the expectation
value of the X and Y Pauli matrices implies moving from the Z to the X/Y basis, which can
easily be done using the identity:

σ̂x = Hσ̂zH,

σ̂y = SHσ̂zHS
†,

(5.5)

with H = (σ̂x+ σ̂y)/
√

2 the Hadamard gate and S =
√
σ̂z the phase gate. These transforma-

tions are equivalent to applying H (resp. HS†) on the state to be measured, see Fig. 5.2 a).
The expectation value of a Pauli operator is then estimated by repeating the measurements a
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certain number of times and extracting the probability p of measuring the qubit in state |0〉.
The measurement probability is related to the expectation value by 〈σ̂z〉ψ = 2p− 1. For a
n-qubit Pauli string P̂ , its expectation value is then simply 〈P̂ 〉ψ =

∏
k∈K(2p(k)− 1), with

K the ensemble of qubits on which Pauli operations (other than the identity) are applied,
and p(k) is the probability of measuring qubit k in state |0〉.

In principle, the number of Pauli strings to measure in Ô could scale as 4n with n the
number of qubits, i.e. the maximum number of Pauli strings. For physical problems, or by
taking advantage of symmetries of the problem, the scaling is generally not as dramatic. For
instance, for chemistry problems, the number of Pauli strings to measure in Ô, typically
scales as n4 with the number of qubits. This scaling is due to the fact that the Hamiltonian
is generally only written with two-body interaction terms. Nevertheless, it can quickly
become prohibitively large. The measurement overhead has to be considered seriously, as
it can become a limiting factor for quantum algorithms. Previous work by Wecker et al.
[81] has shown, for example, that ∼ 1013 measurements would be required for each energy
evaluation of the Fe2S2 molecule with a milliHartree precision. Approaches exist to reduce
the measurement overhead, for example by simultaneously measuring Pauli strings that
commute by measuring them in a common basis [97, 98]. Note though that moving to this
shared basis comes at the cost of adding a unitary (involving multiple qubits) at the end
of the PQC. Also, finding and optimally assembling the terms that commute, and that
can hence be measured simultaneously, is equivalent to the minimum clique cover problem.
This task is thus inherently NP-hard. Fortunately, good heuristics exist for assembling the
operators [99–101].

There exist other alternatives that are more efficient than measuring Pauli strings. For
instance, an approach based on a Cartan subalgebra has shown one of the largest reductions
in the required number of measurements for chemistry problems [102]. Note, however, that
most of the existing methods that enable the reduction of the number of measurements
generally rely on knowledge of the underlying problem. For an overview of other methods,
we refer the reader to Ref. [74].

Measurement precision:

Intuitively, one would like to minimize the number of terms in the decomposition of
Ô =

∑
k hkÔk such that fewer operators have to be measured. However another factor worth

considering comes into play: the measurement precision. In principle any partition of Ô,
even if non-optimal, will lead to the same final result. However, the number of measurements
to reach a certain precision of the cost function can change significantly. The precision is
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defined by the variance of the estimator of the cost function:

ε2 = Var
[
Ĉ(θ)

]
= Var

[
〈̂Ô〉ψ

]
(5.6)

where 〈̂Ô〉ψ denotes the estimator of 〈Ô〉ψ. In statistics, the estimator of an expectation
value is an approximation of the actual expectation value for a finite number of samples.
The estimator converges to the expectation value in the limit of an infinite number of
measurements. Just as for the expectation value, one can write the estimator as a sum of
estimators 〈̂Ô〉ψ =

∑
k hk 〈̂Ôk〉ψ. Using this expression, the variance of the measured cost

function is:

Var
[
〈̂Ô〉ψ

]
=
∑
k

h2
kVar

[
〈̂Ôk〉ψ

]
+
∑
j 6=k

hihjCov
[
〈̂Ôj〉ψ, 〈̂Ôk〉ψ

]
(5.7)

where Cov[A,B] denotes the covariance of two random variables A and B, in our case the
estimators of the expectation values of 〈Ôj〉ψ and 〈Ôk〉ψ. If the terms Ôk are sampled
by independent measurements of the state |ψ〉, then the second term on the right side of
Eq. (5.7) vanishes because the estimators are then uncorrelated. On the other hand, if the
terms Ôk are estimated using the same measurements, then the covariances remain and
can ultimately increase or decrease the variance of 〈̂Ô〉ψ. A change in the variance affects
the required number of measurements to reach a certain precision. In fact, if we consider
that the terms Ôk are normalized such that the eigenvalues are smaller than one, and if
we assume that each term in Ô is measured the same number of times, then the maximum
number of total measurements m required to reach a precision of ε is related by [81]:

m ≤ M

ε2

M∑
k=1

h2
j . (5.8)

This shows that finding the best partitioning of Ô to minimize the number of measurements
is far from trivial.
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5.4 Classical optimization

VQAs are hybrid quantum-classical algorithms, which means that one part of the algorithm
is performed on a quantum processor and another part on a classical computer. Subsections
Sect. 5.1 to Sect. 5.3 have focused on the parts that are performed on a quantum processor.
We have seen how parametrized circuits are designed, and have shown how the cost function
can be defined and evaluated via measurements. Now remains the question of how to update
the parameters of the PQC. There exists many methods to do this, and it generally involves
classical resources which we briefly cover in this subsection.

The task of the classical optimizer consists in updating the circuit parameters to minimize
a cost function which generally is a complicated non-linear function that can live in a very
large parameter space. To achieve quantum advantage in the NISQ era, it is essential to
minimize the number of evaluations of the cost function (done on a quantum processor). In
fact, remember that the cost function can only be estimated up to a given precision that
depends on the number of qubit measurements and on the operator being measured. This
means that a single iteration of the classical optimization requires to prepare and measure
the quantum state several times, which can take a long time. Moreover, the cost function
evaluation can be affected by errors in the preparation of the state due to noise, qubit
coherence times, etc. It is therefore crucial to choose an optimization method that minimizes
the function evaluations and that is resilient to noise. The different optimizers can typically
be divided in two categories: gradient-based and gradient-free optimization.

Among the gradient-based approaches, the simplest way of updating the parameter
vector at a step (n+ 1)-th of the optimization is using the rule θ(n+1) = θ(n) − η∇θC(θ),
where η is the learning rate of the optimizer and C(θ) the objective function to be minimized.
The gradient with respect to each parameter can then be obtained, for example, using the
finite difference method: ∂θiC(θ) = (C(θ+ hei)−C(θ−hei))/2h, with h a small coefficient
and ei the unit vector with 1 at the i-th element such that the parameter θi is varied by h.
This method approximates best the gradient when h tends to zero, which can only be done
at the cost of increasing the number of measurements. There exist many variations of this
method, and other gradient-based methods, like stochastic gradient descent, Hessian-aided
gradient descent, quantum natural gradient descent, quantum imaginary time evolution
among others [74]. Methods also exist where the gradient is evaluated directly on the
quantum processor by calculating the analytical gradient [103–106].

Among the gradient-free approaches, the first experimental implementation of a VQA
used the Nelder-Mead method [107]. More advantageous methods have been used since,
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that are more resilient to statistical noise like the simultaneous perturbation stochastic
approximation (SPSA) algorithm which require fewer evaluations of the cost function regard-
less of the dimensions of the parameter space [77, 108]. Optimization using reinforcement
learning and neural networks have also been explored [109–112]. Surrogate model-based
optimization, often used when a function evaluation is costly, have in the last years shown to
be promising for VQAs with limited quantum resources [113]. For a more complete review
of optimizers commonly used for PQC optimization see Ref. [74]. Generally speaking, the
efficiency of classical optimization routines highly depends on the problem that is being
solved, on the objective function, on the initial parameters, on the form of the PQC, on
state preparation errors etc. Work has been done to compare different approaches in specific
contexts [99, 104, 114].

Note that optimization-free quantum algorithms are also being developed to address
the problem of classical optimization in VQAs. Those algorithms update the parameters
of the PQC layer-by-layer using a feedback loop conditioned on the qubit measurement of
the previous layer. The parameter update follows a feedback law generally inspired from
quantum control theory and which under some assumptions guarantees to the algorithm
to asymptotically converge to the solution of the problem that is being solved. Feedback-
based quantum algorithm also referred to as FQAs have for example been used to solve
combinatorial problem [115–117] and finding the ground state of the Fermi-Hubbard model
[118]. A caveat is that those methods currently require very deep quantum circuits in order
to reach high accuracy.

In our work, we are interested in improving the performance of the QOCA ansatz, which
will be described in Sect. 6.3, compared to existing ansätze for solving the Fermi-Hubbard
model. We did not insist on finding the best possible optimizer, and rather chose to compare
the ansätze for similar numerical conditions. In the following sections, the optimizer we
use to test the performance of different ansätze is the Constrained Optimization BY Linear
Approximations COBYLA. It is a derivative-free optimization method that approximates
the objective function and constraints using a linear model to explore the parameter space
for the optimal solution. The search is done in a trust region and the distance by which the
search can move from the current parameters in each iteration is set at the beginning of the
optimization but adapts dynamically based on the performance of previous iterations.
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5.5 Fermi-Hubbard model

5.5.1 The model

The Fermi-Hubbard model (FHM) is widely used in condensed matter physics to study
strongly correlated materials. It is one of the simplest model that exists to describe interacting
electrons on a lattice, it can for example be used to describe high-critical temperature
superconductors. The FHM is of major interest to explain and predict important properties
of matter such as conductor-isolator phase transitions. Because of its importance in physics,
we use this model to benchmark the performance of our ansatz compared to other standard
VQAs.

The FHM describes the interaction of fermions on an S-site lattice, where each site can
be occupied by at most two fermions, provided that they satisfy Pauli’s exclusion principle.
In this model, the Coulomb repulsion between electrons that are not on the same sites are
neglected. Translated mathematically, the Fermi-Hubbard Hamiltonian takes the form:

ĤFHM = −t
∑
〈i,j〉

σ={↑,↓}

â†iσâjσ

︸ ︷︷ ︸
≡T

+U
S∑
i=1

n̂i↑n̂i↓ − µ
∑

i={1···S}
σ={↑,↓}

n̂iσ

︸ ︷︷ ︸
≡V

, (5.9)

where i, j are the indices of the lattice sites, and σ represents the spin degree of freedom of
the electrons. The operator â(†)iσ is the fermionic annihilation (creation) operator removing
(creating) an electron with spin σ on site j, while the occupation operator of the spin orbital
iσ is defined as n̂iσ = â†iσâiσ.

The first term of the Hamiltonian, T , typically referred to as the kinetic term, corresponds
to the hopping of an electron (more generally a fermion) between sites i and j at a rate −t.
An electron with spin σ is removed from site j and created on site j, conserving the spin and
the total number of particles. Notice also that the summation is done over nearest-neighbor
sites 〈i, j〉 only, limiting hopping to neighboring sites.

The second term corresponds to the on-site Coulomb repulsion when two electrons (with
opposite spins) are on the same site. This term hinders double occupancy with an energy
penalty U . The last term is proportional to the chemical potential and sets the number of
particles. The two last terms are generally referred to as the potential terms, V .

Unfortunately, the FHM is only exactly solvable for a 1D chain [119]. For higher-
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dimensional lattices, this model has been extensively studied by numerical means on classical
computers [120]. However, solving the FHM becomes exponentially complex as sites are
added to the model. The largest lattices that can be solved exactly via exact diagonalization
contain around 24 sites [121]. Naturally, the complexity of solving the FHM also depends on
the parameter regime. For example, the kinetic and potential terms are both individually
solvable as they are diagonal in the momentum and position space, respectively, and their
ground states are made of delocalized plane waves, resp. localized wave functions. This makes
the intermediate coupling regime, where U/t ∼ 1, a particularly interesting case to study as
the two processes compete. In this context, neither of the two parts of the Hamiltonian can
be treated perturbatively, as they now contribute equally to the Hamiltonian, making it a
particularly complicated regime to solve.

5.5.2 Mapping ĤFHM to a qubit Hamiltonian

The Fermi-Hubbard Hamiltonian presented in Eq. (5.9) is formulated using fermionic
operators. To be able to solve the FHM on a quantum computer, the Hamiltonian first has
to be reformulated in terms of the qubit operators, usually the Pauli matrices. The two
main ingredients for mapping the problem Hamiltonian to a qubit Hamiltonian consist in:

1. mapping the quantum states,

2. rebuilding the fermionic algebra in terms of the Pauli operators.

Multiple methods exist for mapping a Hamiltonian such as the Jordan-Wigner (JW) map-
ping [122], the parity mapping [123] and the Bravyi-Kitaev mapping [124]. The JW mapping
is one of the simplest and intuitive transformation one can think of to perform this task.
Through this mapping, the occupation of a site is directly mapped on two qubits as
(0, ↑, ↓, ↑↓)→ (|00〉, |01〉, |10〉, |11〉). An S-site lattice is thus mapped onto 2S qubits, where
we arrange the qubits as |q1 · · · q2S〉 = |p↑1 · · · p

↑
S ; p↓1 · · · p

↓
S〉 with pσj representing a particle

of spin σ ∈ {↑, ↓} on site j ∈ {1, · · · ,S}. The fermionic operators are mapped to Pauli
operators as:

âjσ →
(
X̂jσ + iŶjσ

) j−1⊗
k=1

Ẑkσ

â†jσ →
(
X̂jσ − iŶjσ

) j−1⊗
k=1

Ẑkσ

(5.10)
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Figure 5.3 FHM lattice sites. Illustration of a: a) 2× 2 lattice and b) 2× 3 lattice, with
labeling of the sites. c) Diagram of the qubits representing a 2× 2 lattice. The
4 first (last) qubits represent spin up (down) particles. The lines connecting
the qubits represent the qubit interaction terms appearing in the Fermi-Hubbard
Hamiltonian: ZZ (dashed gray), XX + Y Y (blue), X1Z2Z3X4 + Y1Z2Z3Y4 and
X5Z6Z7X8 + Y5Z6Z7Y8 (green).

for all σ ∈ {↑, ↓} and j ∈ {1, 2, · · · ,S}, and with X̂, Ŷ , Ẑ the Pauli matrices. Note from
Sect. 5.5.2 that as the number of lattice sites increases, the number of qubit operations in
the Pauli strings that are not the identity increases linearly, ultimately leading to more
two-qubit gates to simulate them. There exist more efficient ways of mapping the problem
to a qubit Hamiltonian, as for instance the Bravyi-Kitaev mapping which involves fewer
qubits to simulate a fermionic operator than the JW transformations.

In the following chapters, we benchmark different VQAs on a 2× 2 and a 2× 3 lattice,
in the intermediate coupling regime with t = 1, U = 4 and at half-filling, i.e. µ = U/2.
Organizing the lattice sites as in Fig. 5.3, the qubit Hamiltonian takes the form:

Ĥqb
FHM = − t2

∑
〈i,j〉,j<i
σ={↑↓}

(
X̂iσX̂jσ + ŶiσŶjσ

) j−1⊗
k=i+1

Ẑkσ +
U

4

S∑
i=1

Ẑi↑Ẑi↓. (5.11)

Note that the single Ẑs that appear from the onsite interaction and the chemical potential
cancel each other at half-filling.



Chapter 6

Adaptive approaches for QOCA

The work presented in this chapter greatly benefitted from discussions with Maxime Dion
from the Algo Lab of the Institut Quantique at the Université de Sherbrooke and from
Alexandre Choquette-Poitevin presently at IBM Quantum.

6.1 Quantum Optimal Control inspired Ansatz

The Quantum Optimal Control inspired Ansatz (QOCA) has shown promising results for
the Fermi-Hubbard Model (FHM) and the water molecule [75]. The QOCA ansatz is an
adapted form of the VHA, exploiting its problem-inspired nature to confine the variational
search within a specific symmetry sector of the Hilbert space. Conversely, QOCA introduces
additional terms to the ansatz that break the problem’s symmetry, aiming to discover
potential shortcuts within the Hilbert space.

As seen in Sect. 5.1, the VHA implements a parametrized version of the trotterized time
evolution of a given problem Hamiltonian, Hproblem. The QOCA ansatz draws inspiration
from quantum optimal control by constructing the ansatz not only from the problem
Hamiltonian but from an extended Hamiltonian that incorporates a set of drive terms:

ĤQOCA(t) = Ĥproblem +
∑
k

ck(t)Ĥdk, (6.1)

with {Ĥdk} a set of drive terms and ck(t) the time-dependent amplitudes of the control
drives. The drive terms are chosen such that [Hproblem, Ĥdk] 6= 0 ∀k. The drive terms here
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play the role of the control Hamiltonian in quantum optimal control. The state-preparation
unitary of QOCA is then simply the trotterization of Eq. (6.1), which reads:

ÛQOCA
(
~θ,~δ
)
=

L∏
l=1

∏
j

eiθj,lĤj
∏
k

eiδk,lĤdk

 , (6.2)

where the problem Hamiltonian is decomposed as Ĥproblem =
∑
j Ĥj , and θj,l is the parameter

of the term Ĥj in the l-th layer. Similarly, δk,l is the parameter of the drive term Ĥdk in the
l-th layer, which represents the amplitude of the control drives. This unitary implements L
blocks of the QOCA ansatz, where L is the circuit depth. One such block is represented at
the top of Fig. 6.1 a).

The presence of symmetry-breaking terms in the drive part allows the VQA to search
for the ground state by temporarily exiting the intended symmetry sector of the problem
Hamiltonian. This ability to venture outside the symmetry sector has the advantage that
the optimizer can find shortcuts in the Hilbert space, thereby accelerating the convergence
process. Moreover, QOCA is for this reason also expected to be resilient to symmetry-
breaking errors. In fact, for the VHA ansatz, if such errors occur, the inability of the ansatz
to return to the symmetry sector, prevents the algorithm from finding the ground state.

In the paper introducing QOCA [75], this ansatz is used to solve the FHM for an
(n×m)-lattice (with S = n×m sites), using linear drives for fermions:

Ĥd1 =
S∑
j=1

(â†j + âj) and Ĥd2 =
S∑
j=1

i(â†j − âj), (6.3)

which are separately applied on both spins. This drive has no physical meaning but is chosen
because it does not conserve the number of particles, and thus also does not commute with
Hproblem. By applying the Jordan-Wigner transformation to map the fermionic linear drive
to a qubit Hamiltonian, one obtains the following drive terms:

Ĥd1 =
S∑
j=1

X̂(j)
⊗
k<j

Ẑ(k) , Ĥd2 =
S∑
j=1

Ŷ (j)
⊗
k<j

Ẑ(k), (6.4)

with Â(j) ∈ {X̂, Ŷ , Ẑ} the Pauli matrices applied on qubit j. In other words, the drive terms
are X̂ and Ŷ applied on each qubit j with a chain of Ẑs on the qubits with k < j.
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b) c)

a)

Figure 6.1 QOCA ansatz a) One layer of the QOCA ansatz represented by a parametrized
quantum circuit. The ansatz is divided in two parts: one block of VHA (blue)
parametrized by ~θ and one block comprising the drive terms (red) parametrized
by ~δ. The circuit below is the QOCA ansatz for a 2× 2 FHM. It contains a block
of VHA involving ZZ and XX + Y Y Pauli operations on the given qubits, which
respectively correspond to the potential and kinetic part of the Hamiltonian in
Eq. (5.11). The second block (red) comprises the drive terms involving single- and
multi-qubit Pauli operations of Eq. (6.4). The 4 top (bottom) qubits represent the
4 sites with spin up (down). b) State infidelities with respect to the target state as
a function of the number of layers L of the HEA, the VHA and the QOCA ansatz.
Top (resp. bottom) panel is for a 2× 2 (resp. 2× 3) lattice. The initial state
is |+〉⊗N in both cases. c) Maximum fidelity with respect to the ground state of
the FHM, attained for L ansatz layers, each requiring a number nθ/L of variational
parameters and nCX/L CNOTs per layer, assuming an all-to-all connectivity. b)
and c) are adapted from Ref. [75].
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For a 2× 2 and a 2× 3 lattice, Ref. [75] variationally optimizes the energy and reports
the infidelity of the final state compared to the exact ground state, as shown in Fig. 6.1 b).
The simulations were conducted for the Hamiltonian in Eq. (5.11), with µ = U/2 and
U/t = 4, and with the state initialized in |+〉⊗n which is already in the symmetry sector
of the ground state of the Hamiltonian. The QOCA ansatz is compared to the VHA and
the HEA ansatz in terms of fidelity, circuit depth, number of parameters and number of
CNOTs. The table in Fig. 6.1 c) shows that while HEA improves the state fidelity up to
10−2 with 9 circuit layers, VHA, on the other hand, fails to improve at all the infidelity even
though the ansatz possesses all the necessary terms to explore the symmetry sector of the
problem Hamiltonian. In contrast, QOCA does significantly better than both VHA and
HEA in terms of fidelity, and this for shallow circuits, i.e. for a small number of layers than
HEA. In terms of the number of variational parameters per layer, QOCA is comparable to
HEA. However, one of the major drawbacks of QOCA, especially for NISQ devices, is that
it requires many CNOT gates in each layer.

The QOCA ansatz shows better convergence in terms of speed and accuracy than
standard approaches, but a certain number of questions remain. Are all the drive terms
necessary or can the ansatz be made shallower? Is there a better way of ordering the
operators in the ansatz? Also, the results obtained in Ref. [75] by optimizing the parameters
of all the layers at once but, do better optimization strategies exist? In our work we have
investigated those questions. In particular, we draw inspiration from an adaptive method to
build ansätze, called adapt-VQE [76], which we briefly describe in the following section.
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6.2 Adapt-VQE

The Adaptive Derivative-Assembled Problem-Tailored ansatz Variational Quantum Eigen-
solver (adapt-VQE) was introduced in Ref. [76] as a method to dynamically design an
ansatz. It was initially used to solve chemistry problems and has shown to outperform the
well-known UCCSD ansatz in terms of accuracy, of the number of variational parameters and
of the number of two-qubit gates. The general idea of Adapt-VQE is to build and optimize
an ansatz as follows (see Fig. 6.2):

Step 0. Start with an empty circuit corresponding to the unitary Û = I. Choose a set of
operators O =

{
Ôk | Ôk = −Ô†k

}
, called the operator pool, which will be used to

iteratively build the ansatz. The initial state that is applied on the circuit is noted |ψ0〉,
and should ideally be an educated guess, such as the Hartree-Fock state for chemistry
problems.

Step 1. I. For each Ôk ∈ O, evaluate the energy gradient of the state |ψ(θ1)〉 = eθ1Ôk |ψ0〉, with
respect to the parameter θ1, if the operator Ôk were to be added to the ansatz. The
energy gradient is the derivative of the expectation value of the problem Hamiltonian
Ĥp, which can be estimated by measuring the commutator of Ĥp with Ôk on the state
|ψ0〉 since:

∂E

∂θ1

∣∣∣∣
θ1=0

=
∂

∂θ1
〈ψ0|e−θ1ÔkĤpe

θ1Ôk |ψ0〉
∣∣∣∣
θ1=0

= 〈ψ0|[Ĥp, Ôk]|ψ0〉. (6.5)

The gradient is generally estimated at θ1 = 0. Finally, the operator in the pool which
maximizes the norm of the energy gradient in Eq. (6.5), Â1 = maxÔk∈O

∣∣∣ ∂∂θ1 〈Hp〉
∣∣∣, is

then added to the PQC, leading to the unitary Û (θ1) = eθ1Â1 . In principle, all the
commutators [Ĥp, Ôk] could be measured in parallel on different quantum processors.

II. The parameter θ1 is then classically optimized to minimize the energy 〈Ĥp〉 on
the prepared state Û (θ1)|ψ0〉 using a VQE subroutine. The parameter θ1 is generally
initialized to zero but note that it does not have to be the case. We refer to the
optimized parameter as θopt1 = minθ1〈Hp〉 and define |ψ1〉 the state after this first
optimization.

Step 2. I. For each Ôk ∈ O, estimate the energy gradient of the state |ψ(θ2)〉 = eθ2Ôk |ψ1〉, with
respect to the parameter θ2. This is equivalent to measuring 〈ψ1|[Ĥp, Ôk]|ψ1〉. The
pool operator which maximizes the energy gradient norm, Â2 = maxÔk∈O

∣∣∣ ∂∂θ2 〈Hp〉
∣∣∣,

is then added to the circuit, leading to the updated ansatz Û (θ1, θ2) = eθ2Â2eθ1Â1 .
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II. The parameters (θ1, θ2) are then classically optimized to minimize the energy 〈Ĥp〉
on the prepared state Û (θ1, θ2)|ψ0〉 using a VQE subroutine. The parameters are
generally initialized to (θ1, θ2) = (θopt1 , 0). We refer to the optimized parameters as
(θopt1 , θopt2 ) = minθ1,θ2〈Hp〉, where θ1 is also reoptimized, and define |ψ2〉 the state after
this second step. Note that θopt1 is redefined after the optimization, therefore it does
not correspond to the initialization value.

Step d. The PQC is adaptively built by repeating this process up to a given layer which
depends on the chosen convergence criterion. The convergence criterion can, for
instance, be a threshold on the energy or on the values of the measured commutators.
The adapt-VQE procedure can be written recurrently at step d as:

I. For each Ôk ∈ O, estimate the energy gradient of the state |ψ(θd)〉 = eθdÔk |ψd−1〉,
with respect to the parameter θd, where |ψd−1〉 is the optimized state found at the
previous step. This is equivalent to measuring 〈ψd−1|[Ĥp, Ôk]|ψd−1〉. The operator in
the pool which maximizes the energy gradient norm on |ψ(θd) is then added to the
circuit, leading to Û (~θ) = eθdÂdeθd−1Âd−1 · · · eθ1Â1 , with ~θ the parameters written in
vector form.

II. The parameters ~θ are then classically optimized to minimize the energy using a
VQE subroutine. The newly added parameter is generally initialized to zero while the
other parameters are set to the values found from the optimization at step (d− 1).
Note that different optimization strategies of the parameters are possible.

Dynamically growing the ansatz through iterative selection of the pool operator that has the
largest impact on the energy offers the advantage of generating what appears to be a nearly
optimal ansatz, with a minimum number of operators and parameters. Nevertheless, this
advantage comes at the cost of increasing the number of measurements. In fact, compared
to fixed-structure ansätze like the HEA and VHA, adapt-VQE requires evaluating the
commutators of the problem Hamiltonian with each pool operator. Since this task has to be
performed at each iteration, it ultimately results in a substantial increase of the measurement
overhead. Efforts are made to reduce the number of measurements [125, 126]. Another
advantage of adapt-VQE is that it is expected to be more resilient to barren plateaus and
less susceptible to local minima [127]. Several variations of adapt-VQE have been developed
since its invention to further improve its performance in solving specific problems, ranging
from chemistry to combinatorial optimization [125, 126, 128–130].

Originally, the operator pool consisted of fermionic operators present in chemistry
Hamiltonians [76], however, alternative pools have been utilized since. For instance, Ref. [128]
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Figure 6.2 Procedure for implementing adapt-VQE Each step is decomposed into two parts I
and II. In part I, all the commutators [Hp, Ôk] with Ôk ∈ O are evaluated on a
prepared state. The pool operator that has the largest variation in the state’s energy
is then added to the circuit in part II. All the circuit parameters are then optimized
in part II using a VQE subroutine. Step 1, all the commutators are evaluated on
the initial state |ψ0〉 . The operator that maximizes the expectation value of the
commutator, Â1, is added to the circuit. The parameter θ1 is optimized, leading
to the state |ψ1〉. Step 2, all the commutators are evaluated on |ψ1〉. The pool
operator that maximizes the expectation value of the commutator, Â2, is added
to the circuit with a parametrization θ2. All the parameters are then optimized,
leading to the state |ψ2〉. Step d The PQC is iteratively grown and optimized up
to a certain layer d.

suggested a more hardware efficient operator pool made of the individual Pauli strings that
appear from the fermionic operators mapping. As this pool constitutes a decomposition of
the fermionic operator pool, it encompasses a significantly larger number of terms. However,
it was shown that the number of operators within the pool could be further reduced to
exhibit linear scaling with the number of qubits. Ref. [128] demonstrated that although
the parameter count required for convergence increased, this particular pool substantially
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reduced both the circuit depth and the two-qubit gates count.

Another strategy to further reduce the circuit depth consists in adding multiple operators
in a single adapt-VQE iteration [130]. In fact, it can happen that multiple pool operators
acting on separate qubits exhibit large energy gradients. This strategy has been shown to
lead to shallower circuits while keeping a similar number of two-qubit gates for chemistry
problems.

Adapt-VQE has also been implemented alongside the Quantum Approximate Opti-
mization Algorithm (QAOA) to address combinatorial problems [84, 129]. Similarly to
the QOCA, the ansatz in QAOA consists of alternating layers of two unitaries generated
by a cost Hamiltonian and a mixer Hamiltonian. The cost Hamiltonian is specific to the
optimization problem in hand, while different choices are possible for the mixer Hamiltonians.
In Ref. [129], the mixer part of the QAOA ansatz is constructed adaptively built by adding
operators from a pool, employing a strategy similar to the adapt-VQE approach. In this
particular case, the operator pools used comprise single- and/or two-qubit gates, making it
more hardware-efficient. This combination of adapt-VQE and QAOA, named adapt-QAOA,
has shown to converge faster than QAOA, while reducing the required number of CNOT
gates and parameters.

6.3 Adaptive approaches for QOCA

One of the motivations that led us to introduce an adaptive approach for QOCA is related
to the structure of the drive part. More precisely, we wanted to understand if all the drive
terms were necessary for QOCA to converge well or if it could be made shallower, and
understand if a better way of ordering the operators in the ansatz existed.

6.3.1 Adapt-drive QOCA

To investigate the question related to the structure of the drive part of QOCA, we combine
QOCA with an adaptive method similar to adapt-VQE. As described in Sect. 6.1, a layer
of QOCA is made of a block of VHA and a block composed of drive terms. In adapt-drive
QOCA, we instead iteratively build the drive part by adding one operator at a time, from a
predefined pool, as it is done in adapt-VQE. More precisely, adapt-drive QOCA follows the
subsequent step:
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1. Predefine a pool of operators O which will be used to build the ansatz.

2. Prepare an initial state |ψ0〉, and start with an empty circuit.

3. Add a block of the VHA to the empty PQC.

4. Perform a VQE subroutine to optimize all the parameters in the PQC.

5. a) For each Ôk ∈ O, estimate the expectation value of the commutator of the problem
Hamiltonian with Ôk on the state prepared by the PQC. The pool operator maximizing
the expectation value of the commutator is then added to the PQC with its own
parameter.

b) Perform a VQE subroutine to optimize all the parameters in the ansatz. As an
initial guess, we use the parameters found from the preceding optimization and assign
a zero value to the newly added parameter.

6. Repeat step 5 to iteratively grow the PQC until the chosen convergence condition is
attained. The condition can for instance be a threshold on the measured energy or on
the values of the commutators.

7. Go back to step 3 until a second chosen convergence criterion is not yet reached. The
condition can for instance be a threshold on the measured energy or the number of
operators added to the circuit.

Just as QOCA, this algorithm can in principle be utilized for any cost minimization problem.
In the following, we benchmark this method on the Fermi-Hubbard model, allowing us to
compare to known results for QOCA [75].

6.3.2 Adapt-QOCA

Let’s now consider a second strategy to adaptively build an ansatz, which we call adapt-
QOCA. The idea here is to adaptively grow the ansatz by adding to the PQC the pool
operator that has the biggest impact on the energy, just as in adapt-VQE. However, a
key distinction lies in the fact that when the commutator of the problem with all the pool
operators falls below a certain threshold, a layer of VHA is added to the circuit. This
strategy was inspired from the observation that adapt-VQE1 failed to find the ground state
of the FHM and by noticing that adding a layer of VHA in adapt-drive QOCA generally
kickstarted the convergence of the state.

1Using a pool containing all the terms present in QOCA.
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Figure 6.3 Procedure for implementing adapt-drive QOCA Each layer of adapt-QOCA is
iteratively built and optimized. In the first layer, a first block of VHA (blue) is
added to the circuit with parameters ~θ(1), where the upper index indicates the
layer of adapt-drive QOCA. The circuit is then optimized via a VQE subroutine.
The ansatz is then iteratively grown using the adapt-VQE approach up to a step
k defined by the user. Each of the added operators has a parameter δ(1)j for
j ∈ {0, · · · , k}, where the upper index indicates the adapt-drive QOCA layer and
the lower index the step in the adapt-VQE procedure. All the circuit parameters
are optimized via a VQE subroutine before adding a new operator to the PQC. An
L-layer adapt-drive QOCA circuit is built layer by layer repeating the procedure in
layer 1.



Chapter 7

Benchmark adapt-QOCA

The work presented in this chapter greatly benefitted from discussions with Maxime Dion
from the Algo Lab of the Institut Quantique at the Université de Sherbrooke and from
Alexandre Choquette-Poitevin presently at IBM Quantum.

In this chapter, we benchmark the ansätze presented in Sect. 6.3 on the Fermi-Hubbard
Model (FHM) for a 2× 2 and a 2× 3 lattice, in the intermediate coupling regime with t = 1,
U = 4 and at half-filling, i.e. µ = U/2, see Eq. (5.11).

In Sect. 7.1 we define various possible pools and establish the context in which the simu-
lations were done, including optimization conditions, initial state etc. Sect. 7.2 subsequently
investigates the convergence of the states prepared by adapt-drive QOCA and adapt-QOCA,
comparing their energy and fidelity to the original QOCA. Finally, in Sect. 7.3, we examine
the pool operators selected by both approaches and study their performance in terms of
circuit depth, before summarizing the results in Sect. 7.3.2.
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7.1 Setting up the simulations

7.1.1 Operator pools

Various options of pools can be considered:

1. Drive pool: This pool is made of the drive terms of the original QOCA ansatz as
described in Eq. (6.4). For clarity, we only show the pools for the 2× 2 FHM:

Odrive = {(X1 +X5), (Z1X2 + Z5X6), (Z1Z2X3 + Z5Z6X7), (Z1Z2Z3X4 + Z5Z6Z7X8)}

∪ {(Y1 + Y5), (Z1Y2 + Z5Y6), (Z1Z2Y3 + Z5Z6Y7), (Z1Z2Z3Y4 + Z5Z6Z7Y8)} .
(7.1)

The qubits are ordered as q1q2q3q4q5q6q7q8 = p↑1p
↑
2p
↑
3p
↑
4p
↓
1p
↓
2p
↓
3p
↓
4 with pσj representing

a particle of spin σ ∈ {↑, ↓} on site j ∈ {1, 2, 3, 4}, see the ordering in Fig. 6.1. The
qubits corresponding to a spin up (down) particle are represented in blue (gray).

2. VHA pool: This pool is made of the terms present in VHA, and therefore also present
in QOCA. For the FHM, these terms are obtained from Eq. (5.11) and are represented
in Fig. 5.3. For a 2× 2 lattice, the VHA pool is:

OVHA = {Z1Z5,Z2Z6,Z3Z7,Z4Z8}

∪ {(X1X2 + Y1Y2) + (X5X6 + Y5Y6)}

∪ {(X3X4 + Y3Y4) + (X7X8 + Y7Y8)}

∪ {(X2X3 + Y2Y3) + (X6X7 + Y6Y7)}

∪ {(X1Z2Z3X4 + Y1Z2Z3Y4) + (X5Z6Z7X8 + Y5Z6Z7Y8)} .

(7.2)

3. QOCA pool: Contains all the terms present in QOCA: OQOCA = OVHA ∪Odrive. For
a 2× 2 lattice, the QOCA pool possesses 16 operators with 8 terms in OVHA and 8
terms in Odrive.

Notice that the above pool operators respect the spin symmetry by simultaneously performing
the same operations on qubits representing fermions with opposite spins. For example, when
an operation X is applied to qubit 1 (site 1 spin ↑) it is also applied on qubit 5 (site 1 spin
↓), and they will both share the same parameter in the PQC. As suggested in Ref. [131],
alternative drive Hamiltonians could be used in QOCA. In adapt-QOCA and adapt-drive
QOCA, they would lead to different drive pools.
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In the context of adapt-drive QOCA, the drive part is built adaptively. A choice has
therefore to be made for the number of operators Nops the drive part of a single layer of
adapt-drive QOCA should contain. To guide this choice, it is worth noting that the drive
part in the original QOCA ansatz comprises 8 (resp. 13) terms for the 2× 2 (resp. 2× 3)
FHM. We explore the consequence of using different values of Nops, ranging from 1 to 10
(up to 12 for the 2× 3 FHM). Furthermore, we have established a criterion: if, during the
adaptive growth of the drive part (as described in steps 5 to 6 of the procedure in Sect. 6.3.1)
the commutators fall below a given threshold, we do not add any additional operators to the
drive part. Instead, we proceed to the next layer of adapt-drive QOCA by adding a VHA
block. In other words, an adapt-drive QOCA layer will possess at most Nops operators in
the drive part.

7.1.2 Thresholds

In the context of adapt-drive QOCA, we need to establish two convergence criteria at step 6
and 7 of the procedure outlined in Sect. 6.3. At step 6.b., the criteria for adding an additional
operator to the drive part are as follows: if Nops operators have been added to the drive
part, or if the largest expectation value of the commutators of the problem Hamiltonian
with the pool operators fall below 10−6, then the algorithm moves to step 8. In the case
of step 7, we consider that convergence has been reached when 5 layers (resp. 10 layers) of
adapt-QOCA have been added to the PQC for the FHM 2× 2 (resp. 2× 3).

For adapt-QOCA, we consider that if the largest expectation value of the commutators
of the problem Hamiltonian with the pool operators falls below 10−6, then a block of VHA is
added to the PQC. The algorithm stops when Nops operators have been added to the PQC.

7.1.3 Initial state

Following Ref. [75]We initialize the quantum state in |+〉⊗n with n = 8 or 12 for a 2× 2
and 2× 3 lattice, respectively. This state is half-filled, ensuring that it starts in the correct
particle-number symmetry sector of the Hilbert space, with the average site occupation
〈N̂〉 = S, where N̂ =

∑S
i=1,σ={↑,↓} n̂iσ. We know from Fig. 7.1 b) that even though this

initial state lies in the right symmetry sector VHA and HEA converge poorly, while QOCA
exhibits better convergence. Better initial guesses are possible, but QOCA and its variations
are designed to converge to the ground state even when starting from an initial state that
has minimal overlaps with the target state.
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7.1.4 Circuit simulation and optimization

The circuit simulations were performed using the opensource Qiskit package [132]. The
circuits are built by transpiling the exponential of the Pauli operators in the ansatz into
Hadamard, CNOTs, RZ rotation, S and S† phase gates using built-in Qiskit functions. A
house made code is used to build the ansätze and perform the VQE subroutines.

The results presented for adapt-drive QOCA and adapt-QOCA in the following sections,
are obtained using the classical optimizer COBYLA. We set the tolerance of the final accuracy
at tol = 10−9 and allow COBYLA to evaluate the cost function at most maxiter = 106

times for the 2× 2 FHM, and 105 times for a 2× 3 lattice. Note that we have reduced the
maximum number of function evaluations for the latter case as simulations are very long
for PQCs with many parameters. Based on a study of the energy landscape with respect
to the variation of ansatz parameters, we estimated reasonable values for the distance in
parameter space by which the search can move from the current parameters. This distance is
denoted rhobeg in Qiskit. We obtained the best results for values between rhobeg = π/1.05
and π/0.95. All the other optimizer options were set to the default values.

The results obtained in Sect. 7.2 for the QOCA ansatz are obtained using COBYLA with
tol = 10−9, maxiter = 106 and rhobeg = π/8 (resp. π/0.95) for the FHM 2× 2 (resp. 2× 3).
For an L-layer QOCA ansatz, we initialize all the parameters at zero and subsequently
optimize them all at once as it is done in Ref. [75]. Note that using these optimization
parameters the results are improved compared to Ref. [75]. It is worth mentioning that we
also experimented with a layer-wise optimization, but it did not yield as favorable results.

Note that COBYLA is only efficient for a moderate number of variational parameters,
around hundreds. To simulate larger lattices, other optimizers could be more advantageous.

7.2 Fermi-Hubbard model

In this section, we examine how the energy and fidelity of the state prepared by the adapt-
drive QOCA and adapt-QOCA, approach the ground state when adding operators to the
PQC. In particular, we will focus on the FHM.
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7.2.1 FHM 2× 2

Fig. 7.1 a) shows the error in the energy compared to the exact energy for the 2× 2 FHM,
as a function of the number of operators/parameters in the circuit, while Fig. 7.1 b) shows
the state infidelity compared to the ground state. As a reference, the results obtained for the
original QOCA are represented by the gray line, with dots at multiples of 16 on the x-axis
corresponding to the number of parameters in a single QOCA layer. Note that the energies
and the infidelities achieved here surpass those reported in Ref. [75] as we have further
explored the optimization parameters. The results of adapt-drive QOCA with the drive pool
Odrive are represented in solid colored lines for different values of Nops. Each dot corresponds
to the results of a VQE subroutine, i.e. each time a pool operator or a block of VHA is added
to the circuit. For a given line, the large gaps that appear between dots (along the x-axis)
occur when a layer of VHA is added to the circuit, which involves adding 8 parameters at
once. Additionally, as previously mentioned in the adapt-drive QOCA protocol (step 6),
it is important to note that there are instances where, for a given layer in adapt-QOCA
and for a given Nops, the values of the commutators

(
[Hp, Ôk] ∀Ôk ∈ Odrive

)
fall below the

chosen threshold before the number of operators added to the drive part reaches Nops. This
is visible, for example in Fig. 7.1 a) for Nops = 8 at 30 on the x-axis, where only 3 operators
are added to the drive part. Note also that the results are identical for Nops > 8 as no more
than 8 operators are added in the drive part. A first observation is that regardless of the
number of operators added to the drive part using the adapt-VQE approach, adapt-drive
QOCA always does significantly better than QOCA in terms of accuracy and number of
parameters. In fact, the error in the energy and the infidelity already fall below 10−4 for the
same number of operators than in a 2-layer QOCA ansatz. In terms of highest accuracy,
Nops = 1 does better than the others. However, if we consider that a precision of 10−7 in
the energy is sufficient, then Nops = 2, 7 or 8 do better in terms of the number of operators
in the ansatz. In short, it is difficult to make a definitive judgment on which Nops performs
best because the results vary a lot depending on the parameters of the optimizer. Note,
however, that regardless of the optimizer parameters that we tested, adapt-drive QOCA
still systematically did better than QOCA. Ultimately, these results show that all the drive
operators in QOCA are not necessary and that a better ordering exists. In Sect. 7.3, we
will study in more detail the occurrence of the operators chosen by adapt-drive QOCA, and
will compare the convergence of the algorithm in terms of the circuit depth and number of
CNOTs in the ansatz.

Knowing that adapt-drive QOCA does better than QOCA, it raises the question whether
directly using adapt-VQE could do even better than adapt-QOCA. To answer this question,
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Figure 7.1 Ansätze performance for the 2x2 FHM. a) Error in the energy compared to the
exact energy (in units of the hopping term t) and b) State infidelity compared to the
ground state, as a function of the number of operators in the ansatz. As a reference,
the vertical dashed black lines correspond to the number of operators in layers 1 to
4 of the QOCA ansatz. The gray dotted line corresponds to the results obtained
using the QOCA ansatz with simultaneous optimization of all the parameters, while
the solid black line is the result of iterative parameter optimization. The colored
dotted lines represent the results obtained with adapt-drive QOCA with the drive
pool, for multiple Nops ranging from 1 to 8. Results from adapt-QOCA are depicted
as a green dashed line with star markers.

we have implemented adapt-VQE using the QOCA pool OQOCA. In our exploration of
optimization parameters, and even by relaxing the convergence criteria, adapt-VQE builds an
ansatz that is unable to reduce the energy error. In fact, at every iteration the commutator
values never exceed 10−6, except for the first operator chosen, and adapt-VQE remained
stuck in a local minimum from the start. As a result, and based on the observation that
adapt-drive QOCA sometimes drastically improves in accuracy after a block of VHA is
added to the PQC, we have tested another variation of adapt-drive QOCA which we refer
to as adapt-QOCA (see Sect. 6.3.2). The idea is to add a layer of VHA to the circuit
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when the values of the commutators fall below a chosen threshold, here 10−6. The results
of adapt-QOCA are plotted as a green dashed line with star markers. We notice that
adapt-VQE adds a block of VHA at the beginning, providing a first small kick that proves to
be necessary for convergence. For the FHM 2× 2, adapt-QOCA performs better in terms of
accuracy than adapt-drive QOCA. The advantage of adapt-drive QOCA over adapt-QOCA
is that it requires fewer evaluations of the commutators and therefore fewer measurements.
For the FHM 2× 2, and as we will see with the FHM 2× 3, adapt-QOCA converges better
than QOCA and seems to be a lower limit to adapt-drive QOCA.

The parameter optimization strategies differ between QOCA and the adapt-VQE-type
approaches. In fact, QOCA optimizes all its parameters at once, whereas in the adaptive
approaches, parameters are optimized sequentially each time a new operator is added to the
circuit. To verify that the performance disparities between QOCA and both adapt-drive
QOCA and adapt-QOCA do not solely stem from their optimization strategies, we compare
the results in the case where the parameters of QOCA are first all set to zero, and are then
iteratively optimized one after another. We refer to this strategy as "QOCA step by step",
which is depicted in Fig. 7.1 in a solid black line. We see that the optimization strategy plays
an important role in the convergence of the ansatz. In fact, the step by step optimization
shows significantly better results than the original optimization strategy. When prioritizing
the highest accuracy, QOCA step by step outperforms adapt-drive QOCA for most choices
of Nops. However, if we consider that a precision of 10−5 in the energy is sufficient, then
adapt-drive QOCA and adapt-QOCA still exhibit better or comparable performance in
terms of the number of operators.

Other choices of pools:

We also tested adapt-drive QOCA using the QOCA pool, OQOCA, to give it more
flexibility and ensure fairness in comparison to adapt-QOCA. We have depicted the results
in Fig. 7.2 for Nops ranging from 1 to 5. For Nops > 5 the results for the QOCA pool become
identical. As one could expect, the QOCA pool generally does better than the drive pool
as it allows for more flexibility in the choice of operators. In Sect. 7.3, we will study the
occurrence of the operators in the circuit grown by adapt-drive QOCA and adapt-QOCA.
This will provide insights into which operators play an important role for the convergence
of the prepared state. Building on our observation in Sect. 7.3.2 that only few drive terms
were select from OQOCA, we also tested adapt-drive QOCA and adapt-QOCA with the VHA
pool OVHA. However, it became evident quite rapidly that this pool did not lead to any
improvement in the energy error for the latter ansätze, highlighting the critical role played
by the drive terms in quick starting the convergence process.



108

Figure 7.2 Adapt-drive QOCA with different pools. Error in the energy compared to the exact
energy (in units of the hopping term t) as a function of the number of operators in
the ansatz. As a reference, the vertical dashed black lines correspond to the number
of operators in layers 1 to 4 of the QOCA ansatz. The gray dotted line corresponds
to the results obtained using the QOCA ansatz with simultaneous optimization
of all the parameters. The solid colored lines represent the results obtained with
adapt-QOCA with the pool Odrive, and in transparent dashed line with the pool
OQOCA, for multiple Nops ranging from 1 to 5.

7.2.2 FHM 2× 3

We now illustrate the above results on a larger lattice, the 2× 3 FHM. In Fig. 7.3, we
present the same quantities as in Fig. 7.1, with the distinction that the QOCA pool is used
for adapt-drive QOCA instead of the drive pool. This choice is motivated by the fact that
the QOCA pool generally yielded better results than the drive pool for the FHM 2× 2. It
is important to note that we have, nonetheless, tested adapt-drive QOCA with the drive
pool and have drawn similar conclusions as for the FHM 2× 2. Furthermore, for the sake
of clarity we plot the results for odd values of Nops only, but note that even values of Nops

exhibit the same trend.

Similar to the findings for the FHM 2× 2, we observe that adapt-drive QOCA and
adapt-QOCA outperform QOCA in terms of energy and fidelity. Additionally, the energy
and infidelity of the state prepared by adapt-QOCA once again serves as a lower bound for
adapt-drive QOCA. We also tested adapt-VQE with the QOCA pool and, as previously,
found improvement in the energy error and the state fidelity.
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Figure 7.3 Ansätze performance for the 2× 3 FHM. Same figure as in Fig. 7.1 for the 2× 3
FHM, and with the difference that adapt-drive QOCA was grown with the QOCA
pool, and only for odd values of Nops ranging from 1 to 9.

7.3 Chosen operators and gate count

7.3.1 Number of CNOTs

As demonstrated in the preceding section, both adapt-QOCA and adapt-drive QOCA achieve
higher accuracy while requiring fewer operators compared to QOCA. Nevertheless, having
fewer operators does not necessarily mean fewer CNOTs in the ansatz or smaller circuit depth.
In fact, if the operators selected from the pool require more two-qubit gates, particularly the
operators involving many qubits, these ansätze can require more CNOTs. In Fig. 7.4, we
show how the total number of CNOTs increases as the energy error improves. The CNOT
gate count is obtained by first transpiling the ansätze from the exponentiation of the Pauli
operations to Hadamard, CNOTs, RZ rotations and, S and S† phase gates using built-in
Qiskit functions, assuming all-to-all qubit connectivity. Note that Qiskit automatically
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FHM 2x2

FHM 2x3

Figure 7.4 Gate count and circuit depth. Error in the energy compared to the exact energy
(in units of the hopping term t) as a function of the number of CNOTS in the
ansatz for: a) FHM 2× 2, b) FHM 2× 3. The gray dotted line corresponds to the
results obtained using the QOCA ansatz with simultaneous optimization of all the
parameters. The solid colored lines represent the results obtained with adapt-drive
QOCA with the pool Odrive for multiple Nops ranging from 1 to 8. Results from
adapt-QOCA are depicted as a green dashed line with star markers.

simplifies the circuit by performing back-to-back gate cancellation when possible. For
both the FHM 2× 2 and 2× 3, we see that adapt-QOCA and adapt-drive QOCA require
substantially fewer CNOT gates than QOCA to reach a same precision, adapt-QOCA and
adapt-drive QOCA are comparable. Nevertheless, we observe that there exist values of Nops

for which adapt-drive QOCA reaches the same energy error with fewer two-qubit gates than
adapt-QOCA. This is particularly visible for the FHM 2× 2 (resp. 2× 3) with Nops = 2
and 8 (resp. Nops = 3).

7.3.2 Chosen operators

Our investigation now delves into the occurrence of the operators within the circuits grown
by adapt-drive QOCA and adapt-QOCA. This study aims to provide insights into which
operators contribute to the convergence of the prepared state and to understand the reasons
that cause the adaptive approaches to outperform QOCA. In Fig. 7.5, the bar charts
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represent, for the FHM 2× 2, the number of times the operators in OQOCA appear in the
ansatz built by adapt-QOCA (left) and in adapt-drive QOCA for Nops = 7 (right). For
clarity, the labels over the bar charts are associated to the operators in the legend. Going
from the left to the right, the 8 first operators, are the operators present in OVHA and are
ordered in the way they would appear in VHA. The 8 following operators are the drive
operators in Odrive. The tables below the bar charts show the order in which the operators
are added to the PQCs following the arrow that represents the operator ordering in the
ansatz. Each block of VHA that is added can be visually seen in the table as a series of
light blue cells appearing in a diagonal shape. Fig. 7.6 shows the same figure for the FHM
2× 3, and with the difference that Nops = 9 for adapt-drive QOCA. Note that OVHA now
contains 13 operators (13 first from the left to right in the table) and 17 terms in the drive
pool Odrive.

As a first observation, we see that for both adapt-drive QOCA and adapt-QOCA some
pool operators are never selected. This is the case for the FHM 2× 2 and 2× 3, and can be
expected to extend to larger lattices. The operators in question are: ∑

σ={↑,↓}

i−1⊗
j=1

ZjσYiσ | ∀ odd i ∈ {1, 2, · · · ,S}

 (7.3)

and  ∑
σ={↑,↓}

i−1⊗
j=1

ZjσXiσ | ∀ even i ∈ {1, 2, · · · ,S}

 (7.4)

with Ajσ ∈ {X,Y ,Z} the Pauli matrix applied on the qubit representing a particle on site j
and spin σ. Note that even though the operators ZZXIII and ZZZZXI were not selected
in the particular case of Fig. 7.6, i.e. with Nops = 9 for adapt-drive QOCA, these operators
appear for other choices of Nops.

We observe that very few drive operators are added to the ansätze. For the FHM 2× 2,
the drive terms represent 5 to 25% of the circuit operators, while for the FHM 2× 3 they
only represent only 5 to 10%. In the particular case of Fig. 7.6, the drive terms only appear
at the beginning of the ansatz, but note that for some choices of Nops they can appear later.
Even though few drive terms are selected, those appear to be necessary for the convergence
of the algorithm. In fact, as we tested adapt-QOCA and adapt-drive QOCA with the VHA
pool, we noticed that the algorithm did not convergence at all. The drive terms seem to
give a kick for the ansatz to be able to start converging.

Turning our attention to adapt-QOCA, we observe that in the early phase of the PQC,
only drive operators have non-zero commutators and are therefore added to the circuit before
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all the commutators fall below 10−6. A block of VHA is thus added rather soon in the
circuit for both FHM lattices. This layer of VHA is of major importance, as without it, the
procedure would reduce to performing the original adapt-VQE using the QOCA pool which,
as mentioned earlier, fails at improving the energy and state fidelity. Constructing the ansatz
solely by selecting the next best operator appears to have its limitations in this context.
Adding an appropriately chosen combination of operators instead of a single operator at a
time could maybe help to see further away and help better organize the operators in the
ansatz. Note that we do not have a good criterion for what an appropriate combination
would be, even though VHA seemed to be sufficient to outperform the original adapt-VQE
and adapt-QOCA in this context. Finally, we observe that adding a single layer of VHA at
the beginning is sufficient to induce the converge. Note that in Fig. 7.5, the following layers
of VHA are introduced after adapt-QOCA has already reached an energy error below 10−10.
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perator ordering

Legend:

Figure 7.5 Operator occurrence FHM 2× 2. The bar charts represent the number of times
the operators in OQOCA appear in the circuit built by adapt-QOCA (left) and in
adapt-drive QOCA for Nops = 7 (right). The labels on the bar chart are defined
in the legend. The 8 first operators (from the left to the right) are the operators
of OVHA and the 8 following are the operators in Odrive. The tables below the
bar charts show the order in which the operators are added to the PQC along
the operator ordering arrow. When a block of VHA is added to the ansatz the 8
first operators on the left are added one after another (in blue). The number of
operators added from a VHA block is also indicated in blue in the bar chart.
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perator ordering

Legend:

Figure 7.6 Operator occurrence FHM 2× 3. The bar charts represent the number of times
the operators in OQOCA appear in the circuit built by adapt-QOCA (left) and in
adapt-drive QOCA for Nops = 9 (right). The labels on the bar chart are defined in
the legend, where ~I6 is an abbreviation for IIIIII . The 13 first operators (from the
left to the right) are the operators of OVHA and the 13 following are the operators
in Odrive. The tables below the bar charts show the order in which the operators
are added to the PQC along the operator ordering arrow. When a block of VHA is
added to the ansatz the 13 first operators on the left are added one after another
(in blue). The number of operators added from a VHA block is also indicated in
blue in the bar chart.



Conclusion

During my thesis, I developed two new approches to build ansätze, namely adapt-drive
QOCA and adapt-QOCA, which are combinations of the QOCA ansatz with an adapt-VQE
approach. Originally, I designed adapt-drive QOCA with the idea to better design the drive
part of the QOCA ansatz while keeping the VHA part fixed. The drive part is adaptively
designed by choosing the operators from a pool which have the largest impact on the energy
gradient of the state prepared by the ansatz. The outcomes presented in Sect. 7.2 and
Sect. 7.3 showed that the ansätze grown by adapt-drive QOCA enable the convergence to
the ground state with higher accuracy than QOCA. Furthermore this is achieved using
fewer operators and parameters, which I have shown also led to fewer CNOTs and shallower
circuits. These statements are true for any choices of Nops. It is nevertheless important
to note that some values of Nops enable a better convergence than others. However, it
is complicated to make a definitive judgment on which Nops performs best as the results
vary substantially depending on the parameters of the optimizer. Based on the results of
adapt-drive QOCA and knowing that adapt-VQE failed for the FHM when preparing the
initial state in the |+〉⊗n state, I came to develop adapt-QOCA. Adapt-QOCA is comparable
in performance if not better than adapt-QOCA for most Nops. In fact, for the FHM 2× 2
and 2× 3, it seemed to effectively serve as a lower bound on the energy error and infidelity
for adapt-drive QOCA. An additional advantage of adapt-QOCA is that it does not require
to choose a value for Nops. Nevertheless, a disadvantage of adapt-QOCA over adapt-drive
QOCA is that it necessitates more measurements to evaluate the commutators.

I have tested adapt-drive QOCA and adapt-QOCA using three different pools: Odrive,
OVHA and OQOCA. The VHA pool showed to be insufficient to enable any improvement
in the energy error for the latter ansätze, highlighting the critical role played by the drive
terms in quick starting the convergence process. On the other hand, the drive pool showed
a significant improvement over QOCA. As one could expect, the QOCA pool generally did
better than the drive pool as it allows for more flexibility in the operator choice. From the
examination of the operators selected from the pool we noticed that some drive operators
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were never chosen. Building on our observations for the FHM 2× 2 and 2× 3, we expect that
the unselected drive operators could be extended to larger lattices as described in Eq. (7.3)
and Eq. (7.4). Furthermore we notice that using the QOCA pool; rather few drive operators
are selected, only 5 to 25% of the time for a 2× 3 lattice, and 2 to 10% for a 2× 3 lattice.
These few drive terms are nevertheless necessary for the algorithms to convergence to the
ground state.
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appendix A

Circuit quantization of the full device

a) b)

Figure A.1 Device design. Compared to Fig. 3.1, a) indicates the circuit parameters. Qubit a
is shown in green, qubit b in orange and the coupler in blue. b) Shows in orange
the spanning tree used here to quantize the circuit. The circuit parameters are
indicated in black.

To quantize the circuit illustrated in Fig. A.1, we follow the approach described in Sect. 1.1
using the method of nodes [2]. As a first step, we introduce the circuit modes φa, φb, φca
and φcb , see Fig. 1.3 a) and define a spanning tree which is shown in orange in Fig. 1.3
b). As described in Sect. 1.1, we can express the kinetic and potential components of the
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Lagrangian as follows:

Ekin =
∑
b∈BC

Cb
2 Φ̇2

b

=
1
2Caφ

2
a +

1
2Cbφ

2
b +

1
2Cab(φa − φb)

2

+
1
2Cc (φca − φcb)

2 +
1
2Cac (φa − φca)

2 +
1
2Cbc (φb − φcb)

2

(A.1)

Epot =
∑
b′∈BL

Φ2
b′

2Lb′
+

∑
b′′∈BJ

EJb′′ cos
(

2πΦb′′

Φ0

)

= −EJa cos
(
φa
φ0

)
−EJb cos

(
φb
φ0

)
− αεEJq cos

(
(φca − φcb) + φext

φ0

)
−NβEJq cos

(
(φca − φcb)

Nφ0

)
.

(A.2)

The Lagrangian finally reads:

L = Ekin −Epot =
1
2 φ̇†Cφ̇ +EJa cos (ϕa) +EJb cos (ϕb)

+ αεEJc cos ((ϕq1 −ϕq2) + ϕext)−NβEJc cos
(
(ϕq1 −ϕq2)

N

)
,

(A.3)

where we have introduced the vector notation for the flux nodes, φt = (φa,φb,φca ,φcb) and
define ϕn = φn/φ0 with n ∈ {a, b, ca, cb}, and Φ0 = h/2e = 2πφ0. The capacitance matrix
reads:

C =

φa

φb

φca

φcb



Ca +Cac +Cab −Cab −Cac 0

−Cab Cb +Cbc +Cab 0 −Cbc

−Cac 0 Cc +Cac −Cc

0 −Cbc −Cc Cc +Cbc


. (A.4)

We now perform a basis change such that φ+ = φca + φcn and φ− = φca −ϕcn , resulting in:

L =
1
2 φ̇′†C′φ̇′ +EJa cos (ϕa) +EJb cos (ϕb)

+ αεEJc cos (ϕ− + ϕext)−NβEJc cos
(
ϕ−
N

)
,

(A.5)
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with φ′t = (φa,φb,φ+,φ−) and

C′ =

φa

φb

φc+

φc−



Ca +Cac +Cab −Cab −1
2Cac 0

−Cab C2 +Cbc +Cab −1
2Cbc 0

−1
2Cac

1
2Cbc Cq +

1
4Cac +

1
4Cbc

1
4 (Cac −Cbc)

−1
2Cac −1

2Cbc
1
4 (Cac −Cbc)

1
4 (Cac +Cbc)


. (A.6)

We now proceed with a Legendre transform to obtain the charge nodes, which we denote
q = ∂L

∂φ̇′
= C′φ̇′ in vector notation. Remarquably, the charge node q+ is a constant of

motion, because d
dt

(
∂L
∂φ̇+

)
= q̇+ = 0. This variable can be seen as a net charge distribution

on the qubits and coupler pads, and can therefore be ignored. Accordingly, the Hamiltonian
takes the form H = 1

2 q†C̃−1q +Epot where C̃ is a 3× 3 matrix corresponding to the matrix
presented in Eq. (A.6), with the exclusion of the third row and column.

Finally, we write the quantized Hamiltonian as follows:

Ĥ =4ECan̂
2
a −EJa cos(ϕ̂a) + 4ECbn̂

2
b −EJb cos(ϕ̂b)

4ECcn̂
2
c − αεEJc cos (ϕ̂c + ϕext)−NβEJc cos

(
ϕ̂c
N

)
+ 4ECabn̂an̂b + 4ECbcn̂bn̂c + 4ECacn̂an̂c

(A.7)

where n = 1
2eq and the coupler mode q̂c− (φ̂c−) is renamed q̂c (φ̂c). The charging energies

ECj for j ∈ {a, b, c} and the couplings ECij for i, j ∈ {a, b, c} and i 6= j, are defined by the
elements of the inverse of the capacitance matrix:

ECj = [C̃−1]jj

ECij = [C̃−1]ij .
(A.8)

Note that the function that relates the capacitances to the charging energies and couplings
is not bijective because a mode has been removed by going from C ′ to C̃. It can sometimes
be complicated to recover the capacitances from a set of charging energies and couplings.



appendix B

Appendix: Schrieffer-Wolff
transformation

The Schrieffer–Wolff (SW) transformation is a technique used to derive an effective Hamil-
tonian by perturbatively diagonalizing a Hamiltonian to finite order in the interaction
[133].

B.1 Time-independent Schrieffer-Wolff transformation

Let’s now consider a time-independent Hamiltonian H = H0 + λH1, which can be written
in terms of an unperturbed diagonal Hamiltonian H0 retaining most of the physics and λH1

a small off-diagonal perturbation. The parameter λ is introduced here to keep track of the
order in the perturbation theory, and will be set to one at the end of the calculation.

The SW transformation is a unitary transformation on H, commonly written:

Heff = e−SHeS (B.1)

with S the generator of the transformation, satisfying S† = −S, and chosen such that Heff

is diagonal to first order in the perturbation. Since λH1 is small, S is also expected to be
small, it can therefore be assumed that the generator can be expanded as a series in λ:

121



122

S = λS(1) +O(λ2). The effective Hamiltonian Heff can now be expanded in powers of λ
using the Baker-Campbell-Haussdorf (BCH) formula:

Heff = H + [S,H ] +
1
2 [S, [S,H ]] + · · ·

= H0 + λ
(
H1 + [S(1),H0]

)
+ λ2

(
[S(1),H1] +

1
2
[
S(1), [S(1),H0]

])
+O(λ3).

(B.2)

To remove the first-order term in the equation above, the generator has to be chosen such
that H1 + [S(1),H0] = 0. Finally, the SW transformation yields:

Heff = H0 +
1
2 [S

(1),H1] +O(λ3). (B.3)

Note that in principle the expansion of Eq. (B.1) in λ can be truncated at any order to
obtain the effective Hamiltonian.

B.2 Time-dependent Schrieffer-Wolff perturbation theory

Let’s consider a time-dependent Hamiltonian Ĥ(t) = Ĥ (0)(t) + λĤ (1)(t), where Ĥ (0)(t) is
the exactly solvable unperturbed part of the Hamiltonian and λĤ (1)(t) is a small perturbation.
The Floquet Hamiltonian is defined as:

HF = Ĥ(t)− i∂t. (B.4)

We apply a time-dependent SW transformation on the Floquet Hamiltonian:

Ĥeff(t)− i∂t = e−Ŝ(t)
[
Ĥ(t)− i∂t

]
eŜ(t) (B.5)

where Ŝ(t) is the time-dependent generator, which we again assume can be expanded as a
series in λ: Ŝ(t) = λŜ(1)(t) + λ2Ŝ(2)(t) + · · · . The effective Hamiltonian Heff , can then be
expanded in powers of λ by using the BCH expansion:

Ĥeff(t)− i∂t = e−Ŝ(t)
(
Ĥ(t)− i∂t

)
eŜ(t)

= Ĥ − i ˙̂S +
[
Ĥ, Ŝ

]
− i

2
[

˙̂S, Ŝ
]
− i∂t + · · ·

=
∞∑
k=1

λk
[
Ĥ (k)(t)− i ˙̂S(k)

]
− i∂t

(B.6)
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where λkĤ (k)(t) = λkĤ
(k)

+ λk ˜̂H (k)
(t) can be written with a time-averaged part Ĥ

(k)
and

an oscillatory part ˜̂H (k)
(t). The effective Floquet Hamiltonian can recursively be corrected

for, order by order, by iteratively finding λkŜ(k) and λkĤ (k). The kth-order term in the
generator λkŜ(k) is chosen such that λkĤ (k) is time independent at order k and less. In
other words, the generator has to satisfy:

λkŜ(k) = −i
∫ t

0
dt′λk ˜̂H (k)

(t′) ∀k. (B.7)

In the context of Sect. 3.2.1, the effective Hamiltonian at second order is shown in Eq. (3.17).
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The ability to perform fast, high-fidelity entangling gates is a requirement for a viable quantum pro-
cessor. In practice, achieving fast gates often comes with the penalty of strong-drive effects that are not
captured by the rotating-wave approximation. These effects can be analyzed in simulations of the gate
protocol, but those are computationally costly and often hide the physics at play. Here, we show how to
efficiently extract gate parameters by directly solving a Floquet eigenproblem using exact numerics and a
perturbative analytical approach. As an example application of this toolkit, we study the space of paramet-
ric gates generated between two fixed-frequency transmon qubits connected by a parametrically driven
coupler. Our analytical treatment, based on time-dependent Schrieffer-Wolff perturbation theory, yields
closed-form expressions for gate frequencies and spurious interactions, and is valid for strong drives.
From these calculations, we identify optimal regimes of operation for different types of gates including
iSWAP, controlled-Z, and CNOT. These analytical results are supplemented by numerical Floquet computa-
tions from which we directly extract drive-dependent gate parameters. This approach has a considerable
computational advantage over full simulations of time evolutions. More generally, our combined ana-
lytical and numerical strategy allows us to characterize two-qubit gates involving parametrically driven
interactions, and can be applied to gate optimization and cross-talk mitigation such as the cancelation of
unwanted ZZ interactions in multiqubit architectures.

DOI: 10.1103/PhysRevApplied.19.044003

I. INTRODUCTION

With considerable advances in state preparation, gate
operation, measurement fidelity, and coherence time,
superconducting qubits have become one of the leading
platforms for quantum information processing [1–3]. Sys-
tems consisting of up to a few dozen qubits have been
recently deployed by a number of research groups [4–6].
As these architectures are scaled up, a challenge is to engi-
neer two-qubit interactions to realize gates that are fast
enough compared to the decoherence times of the qubits,
while at the same time obtaining operation fidelities that

*alexandru.petrescu@minesparis.psl.eu; Current affiliation:
LPENS, Département de physique, École normale supérieure,
Centre Automatique et Systèmes (CAS), MINES ParisTech, Uni-
versité PSL, Sorbonne Université, CNRS, Inria, 75005 Paris,
France.

†camille.le.calonnec@usherbrooke.ca
‡Current affiliation: Research Laboratory of Electronics, Mas-

sachusetts Institute of Technology, Cambridge, MA 02139, USA.

are sufficiently high to satisfy a threshold for quantum error
correction [7,8]. To realize fast and high-fidelity two-qubit
gates, precise modeling of the dynamics of small multi-
qubit systems is necessary, but becomes computationally
difficult as the number of degrees of freedom increases.
Moreover, to achieve fast gates, drives that are strong in
the sense of the rotating-wave approximation (RWA) are
necessary, in which case beyond-RWA corrections become
relevant.

A dominant source of infidelity in gate operation con-
sists of cross-Kerr interactions, or the ZZ terms in Pauli-
matrix notation. These terms are either static due to the
connectivity of qubits, or dynamically generated by control
drives. In the case of many two- and single-qubit gates, ZZ
terms produce spurious entanglement that cannot be mit-
igated by local single-qubit operations. There are active
experimental efforts to reduce the effect of ZZ interactions
[9–14]. Moreover, the presence of nonlocal ZZ interac-
tions, and of higher-order cross-Kerr terms, can indicate
the onset of quantum chaotic behavior in systems of many
coupled qubits [15].

2331-7019/23/19(4)/044003(23) 044003-1 © 2023 American Physical Society
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(a)

(b)

FIG. 1. (a) Graph representation of the model. The three bare
modes have mutual capacitive couplings (light gray edges);
mode c is parametrically driven. (b) Superconducting circuit
implementation: modes a and b are transmon qubits; the coupler
mode c is implemented as a generalized capacitively shunted flux
qubit (see text).

In this paper, we present a computationally efficient set
of analytical and numerical tools to characterize and tai-
lor gate Hamiltonians. As an example application of these
tools, we consider flux-tunable parametric coupler archi-
tectures [16,17] schematically illustrated in Fig. 1. We
develop two complementary approaches, both of which
start from a treatment of the Floquet Hamiltonian, which
can capture non-RWA effects exactly [18–20]. Our ana-
lytical approach starts from the quantization of the driven
superconducting circuit. More specifically, while we adopt
a normal-mode picture such as in black-box quantiza-
tion [21] or energy-participation-ratio approaches [22], the
mode frequencies and impedances, and as a result self-
and cross-Kerr interactions, depend on the strength of the
drive. This dependence is accounted for in an expansion
over the harmonics of the drive. From this, we obtain
analytical expressions of ac-Stark shifted transition fre-
quencies and interaction strengths. Of note, as compared
to previous work, normal modes are defined here by tak-
ing into account drive-induced corrections [23] to the
Josephson potential [24]. Due to its similarity to black-
box quantization, this analytical technique can be eas-
ily generalized to circuits containing multiple qubits and
couplers.

To obtain corrections to the effective interaction
strengths, our approach relies on a time-dependent
Schrieffer-Wolff perturbation theory [25–27], which con-
sists of a hierarchy of unitary transformations applied
to the time-dependent Floquet Hamiltonian [26,28]. We

make the explicit choice to work in the transmon limit
of small anharmonicity [29], expressed in terms of the
small dimensionless parameter

√
8EC/EJ , whereas drive

effects are included in a series expansion over the harmon-
ics of the drive frequency and then integrated into the exact
treatment of the normal-mode Hamiltonian. This approach
allows us to identify the contribution of each driven normal
mode to the different effective interaction constants.

Our formalism is equally applicable to strong anhar-
monicities, where one has to formulate the Hamiltonian
in the energy eigenbasis. The cross-resonance gate [30,31]
has been modeled [27] with such methods, with the notable
difference that drive effects were included in the pertur-
bative expansion, something which requires the calcula-
tion of higher-order corrections as the drive strength is
increased. In contrast, here we show that by effectively
performing a series resummation over drive-amplitude
contributions, we can model effects such as gate-rate sat-
uration with drive power that are frequently observed (see
e.g. Refs. [31,32]) without the need to evaluate high-order
terms in perturbation theory.

On the other hand, with our numerical approach, we
show how gate parameters and, more precisely, the data
from a two-tone spectroscopy experiment, can be extracted
from a solution of the Floquet eigenproblem [18,19]. This
is efficient by comparison to the simulation of Hamiltonian
dynamics over the full duration of the gate protocol: Flo-
quet methods rely on integrating the dynamics over one
period of the parametric drive, on the order of 1 ns, which
is typically 3 orders of magnitude shorter than the gate
duration. By construction, the parameters extracted from
this approach account for renormalization by the drives.
We are then able to benchmark the convergence of the
analytical approach by direct comparison to the numerical
result. In the context of superconducting circuit architec-
tures, Floquet numerical methods have also been used to
model instabilities in transmon qubits under strong drives
[23,33], to obtain corrections beyond linear-response the-
ory for the bilinear interaction between two cavities medi-
ated by a driven ancilla [34], to model a strongly driven
controlled-phase gate between transmon qubits [35], or to
enhance the coherence of fluxonium qubits [36,37].

The remainder of this paper is structured as follows.
In Sec. II we introduce the circuit model, as well as a
pedagogical toy model from which all qualitative features
of the full theory can be extracted, and illustrate how to
obtain the different gate Hamiltonians. In Sec. III we intro-
duce the basic concepts for second-order RWA, based on
a Schrieffer-Wolff transformation of the Floquet Hamilto-
nian. Section IV captures in more detail the complexity
of the problem with an analysis of the three-mode theory
derived from the full-circuit Hamiltonian. In Sec. V, we
describe in detail a method to extract effective gate Hamil-
tonians from a Floquet analysis. In Sec. V B, we compare
all previous approaches using simulations based on the
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numerical integration of the Schrödinger equation. Finally,
we summarize in Sec. VI.

II. MODEL HAMILTONIAN

As a concrete example of our approach, we consider a
model for a parametric coupler consisting of three non-
linear bosonic modes interacting capacitively [16], see
Fig. 1(a). The qubit modes â and b̂ are assumed to be far-
detuned, making the beam splitter (or iSWAP) qubit-qubit
interactions negligible in the rotating-wave approximation.
Those modes are capacitively coupled to a third mode, the
coupler ĉ. The latter can be parametrically modulated in
order to activate interactions between the two qubit modes,
for example a iSWAP-type gate on which we mostly focus
here.

A. Superconducting circuit

A possible realization of this three-mode system is
shown in Fig. 1(b) and consists of two fixed-frequency
transmon qubits interacting via a capacitively shunted flux
qubit whose two branches contain one and N Josephson
junctions, respectively [38–40]. In a single-mode approxi-
mation, this generalized flux qubit plays the role of coupler
mode and the parametric drive is realized by modulating
the reduced external flux ϕext = 2π�ext/�0, with �ext the
flux threading the coupler loop and �0 the flux quantum.
For certain values of the static external flux, the coupler
has a positive anharmonicity, which is helpful in obtaining
gates with a vanishing ZZ interaction [10,14,41,42]. We
stress that we use this specific circuit implementation for
illustration purposes only, and that the methods presented
here apply beyond the weakly anharmonic regime.

Quantizing the circuit of Fig. 1(c) using the standard
approach [43,44] yields the Hamiltonian (see Appendix B
for a detailed derivation)

Ĥ(t) = Ĥa + Ĥb + Ĥc(t) + Ĥg , (1)

where the transmons and the coupler are described by

Ĥj = 4ECj n̂2
j − EJj cos(ϕ̂j ), j = a, b,

Ĥc(t) = 4ECcn̂2
c − αEJc cos

[
ϕ̂c + μαϕext(t)

]

− βNEJc cos
[
ϕ̂c

N
+ μβϕext(t)

]
. (2)

These expressions use pairs of canonically conjugate
superconducting phase difference and Cooper-pair number
for the bare modes,

[
ϕ̂j , n̂k

] = iδjk for the mode indices
j , k = a, b, or c, and we set � = 1. The Josephson ener-
gies are denoted EJa, EJb for the transmon modes, whereas
βEJc is the Josephson energy of one of the N -array junc-
tions in the coupler, and α is a factor parametrizing the
anisotropy between the two branches. The parameter β

is a renormalization of the superinductance due to disor-
der in the junction array and finite zero-point fluctuations
(see Appendix B). Moreover, the parameter α accounts
for a renormalization of the small junction energy due to
hybridization with the modes in the junction array. Fur-
thermore, ECa, ECb, and ECc are charging energies. In the
transmon regime, EJa/ECa and EJb/ECb � 50 [29].

The coupler loop is threaded by an external flux ϕext,
which can be modulated in time with a modulation ampli-
tude δϕ, taken to be small compared to the flux quantum

ϕext(t) = ϕext + δϕ sin(ωdt). (3)

As discussed by You et al. [45], quantization of the coupler
loop under time-dependent flux imposes that the external
flux be included in both branches of the potential energy
in Ĥc(t), with weighting factors μα,β determined by the
capacitive energies of the two branches (see Appendix B
for a detailed derivation). This subtlety is significant, as
the details of the flux modulation determine the parametric
interactions between the two qubit modes.

Finally, the three bare modes interact through linear
terms induced by the capacitive coupling

Ĥg = 4ECabn̂an̂b + 4ECbcn̂bn̂c + 4ECcan̂cn̂a. (4)

The introduction of normal modes will eliminate this linear
coupling Hamiltonian.

B. Toy model for circuit Hamiltonian

In this subsection, we introduce a simple model, which
captures the essential qualitative features of the Hamilto-
nian of Eq. (1). Our toy model consists of three linearly
coupled Kerr-nonlinear oscillators and has the form given
in Eq. (1) now with

Ĥa = ωaâ†â + αa

2
â†2â2,

Ĥb = ωbb̂
†
b̂ + αb

2
b̂

†2
b̂

2
,

Ĥc(t) = ωc(t)ĉ
†ĉ + αc

2
ĉ†2ĉ2,

Ĥg = −gabâ†b̂ − gbcb̂
†
ĉ − gcaĉ†â + H.c. (5)

Comparing to the full-circuit model, note that ωa(b) ≈√
8EJa(b)ECa(b) − ECa(b) whereas the anharmonicities of

the transmon qubits are negative and amount to αa(b) ≈
−ECa(b). In an experimental implementation, the param-
eters defining the coupler—the anharmonicity αc and
the frequency ωc(t)—can be varied by applying a time-
dependent external flux to activate a chosen gate.

The parametric drive resulting from the flux modula-
tion of Eq. (3) is modeled by a modulation of the coupler
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frequency at a frequency ωd

ωc(t) = ωc + δ sin(ωdt). (6)

In a more detailed analysis of the coupler (see Sec. IV),
we take into account the time dependence of the anhar-
monicity αc, but we choose to neglect it in this toy
model.

Note that we reduce the complexity of the problem
in a few ways: we truncate the Josephson expansion to
include only quartic terms. All photon-number noncon-
serving terms are dropped. Higher harmonics of the drive
of Eq. (6) are neglected, and we do not consider the ac-
Stark shifts of the various coupling constants. All of these
contributions are taken into account in the analysis of the
full circuit Hamiltonian in Sec. IV. Thus the toy model
is significantly simpler than the full circuit theory, but
nonetheless still contains the necessary ingredients that
allow us to illustrate the general method introduced in this
paper.

III. PERTURBATIVE EXPANSION

In this section, we introduce a perturbative expansion
to obtain successive corrections to the effective Hamilto-
nian in the rotating-wave approximation. To simplify the
discussion, we focus on the toy model and come back
to the full circuit Hamiltonian in the next section. Our
approach relies on a sequence of unitary transformations
amounting to a time-dependent Schrieffer-Wolff treatment
of the Floquet Hamiltonian in the normal-mode repre-
sentation, an approach used before to derive corrections
to the lifetime of driven transmon qubits [26,28]. Time-
dependent extensions of Schrieffer-Wolff transformations
have been shown to be necessary to capture effects of
drives in the dispersive regime of circuit QED [25], with
quantitative agreement with experiment in the analysis of
the cross-resonance gate [27]. A notable difference from
prior work on microwave-activated two-qubit gates is that,
in performing a normal-mode transformation, we are able
to obtain good agreement with exact numerics already at
second order in perturbation theory. For example, the cal-
culation in Ref. [27] relies on an expansion in capacitive
couplings and drive power, which would require us, in
the setup presented here, to go to higher order (fourth)
in the calculation to obtain results comparable to the
normal-mode approach.

A. Formalism

As usual, our starting point is a decomposition of the
system Hamiltonian into an unperturbed, exactly solvable
part, and a perturbation:

Ĥ = Ĥ (0)(t) + λĤ (1)(t). (7)

Here, we introduce the dimensionless power-counting
parameter λ to keep track of the order in perturbation the-
ory, to be set at the end of the calculation to unity, λ →
1. Now we move to the interaction picture with respect
to Ĥ (0). Letting Û0(t) = T e−i

∫ t
0 dt′Ĥ (0)(t′), where T is the

time-ordering operator, we find for the interaction-picture
Floquet Hamiltonian

λĤ (1)
I (t) − i∂t = Û†

0(t)
[
Ĥ (0) + λĤ (1)(t) − i∂t

]
Û0(t)

= Û†
0(t) λĤ (1)(t) Û0(t) − i∂t. (8)

In the above we assume only that the unperturbed time-
evolution operator Û0(t) is known. Equation (8) can be
seen as a unitary transformation between two Floquet
Hamiltonians [19]. Thus, the Floquet quasienergies cor-
responding to λĤ (1)

I (t) − i∂t must be identical to those of
Ĥ (0) + λĤ (1)(t) − i∂t, while the eigenstates are related by
Û0(t).

In an iterative Schrieffer-Wolff approach, we treat the
operator λĤ (1)(t) as a small perturbation from which we
derive corrections to the known Floquet quasienergies of
Ĥ (0) [26,28]. To this end, we consider a unitary trans-
formation on the interaction-picture Floquet Hamiltonian
ĤI (t) − i∂t ≡ λĤ (1)

I (t) − i∂t, and the corresponding Baker-
Campbell-Hausdorff (BCH) expansion in powers of the
generator of this unitary, that is

ĤI ,eff − i∂t ≡ e−ĜI (t)[ĤI (t) − i∂t]eĜI (t)

= ĤI − i ˙̂GI + [ĤI , ĜI ] − i
2

[ ˙̂GI , ĜI ] − i∂t + · · ·
(9)

This equation defines the effective Hamiltonian, whose
spectrum is equal (up to a desired precision in λ) to that
of the original driven theory. The generator ĜI (t) can be
solved for iteratively in powers of λ (see Appendix A),
which allows us to perform the rotating-wave approxima-
tion order by order

ĤI ,eff = λĤ
(1)

I + λ2Ĥ
(2)

I + . . . (10)

where the terms on the right-hand side are defined below.
To obtain a lowest-order term of the effective Hamil-

tonian, λĤ
(1)

I , we separate the interaction picture Hamil-
tonian into oscillatory and nonoscillatory terms with the
notation

λĤ (1)
I (t) ≡ λĤ

(1)

I + λ
˜̂H

(1)

I (t), (11)

where we define the constant part of a time-dependent
operator Ô(t) by [46]

Ô ≡ lim
T→∞

1
T

∫ T

0
dtÔ(t), (12)
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whereas the oscillatory part of the operator is

˜̂O(t) ≡ Ô(t) − Ô. (13)

Since the time-averaging operation removes all terms that

are oscillatory in time, Ĥ
(1)

I is the first-order RWA Hamil-

tonian [46], whereas ˜̂H
(1)

I is canceled by an appropri-
ate choice of the corresponding term at order λ in the
generator.

One can iterate this procedure at every order, collect-
ing terms that are oscillatory and then canceling them.
The second-order RWA Hamiltonian (for a derivation, see
Appendix A) reads

λ2Ĥ
(2)

I = 1
i

[
Ĥ

(1)

I ,
∫ t

0
λ
˜̂H

(1)

I (t′)dt′
]

+ 1
2i

[
λ
˜̂H

(1)

I (t),
∫ t

0
λ
˜̂H

(1)

I (t′)dt′
]

. (14)

This form becomes analogous to the second term in the
Magnus expansion [46,47] when the perturbation has a

vanishing mean, i.e., Ĥ
(1)

I = 0.

B. Black-box quantization approach to the toy model

Expressing the toy-model Hamiltonian as the sum of
static quadratic terms, Ĥ (0), and of time-dependent and
Kerr terms, Ĥ (1)(t), the first step in deriving parametri-
cally activated interactions between the transmon modes
is to diagonalize the former, which we write as

Ĥ (0) =
(

â† b̂
†

ĉ†
)
⎛

⎝
ωa gab gca
gab ωb gbc
gca gbc ωc

⎞

⎠

⎛

⎝
â
b̂
ĉ

⎞

⎠ . (15)

This diagonalization is achieved with an orthonormal
transformation α̂ =∑β=a,b,c uαββ̂, for α = a, b, c, and
which is chosen such that Ĥ (0) takes the form

Ĥ (0) = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ, (16)

where â, b̂, and ĉ are the normal modes and ωa,b,c the cor-
responding mode frequencies. The uαβ are hybridization
coefficients encoding the connectivity of the three modes
through the capacitive couplings Ĥg entering in Ĥ (0). In
this normal-mode basis, the remainder of the Hamiltonian

reads

λĤ (1)(t)

=
∑

j =a,b,c

αj

2
(ujaâ + ujbb̂ + ujcĉ)†2(ujaâ + ujbb̂ + ujcĉ)2

+ δ sin(ωdt)(ucaâ + ucbb̂ + uccĉ)†(ucaâ + ucbb̂ + uccĉ).
(17)

The expression above illustrates that coupling between
the normal modes arises from the nonlinearity and the
parametric drive.

Our choice of unperturbed Hamiltonian Ĥ (0) and per-
turbation λĤ (1) in Eqs. (16) and (17), respectively, is
guided by black-box quantization [21]: the unperturbed
Hamiltonian is linear and diagonal in the normal-mode
basis, whereas the perturbation consists of Kerr-nonlinear
terms, on the one hand, and quadratics appearing from the
normal-mode expansion of the parametric drive, on the
other hand. As we show below, while better choices are
possible (see Sec. III C), this choice leads to a simple and
intuitive form for the effective Hamiltonian.

As an example of the many common types of interac-
tions that can be activated by a parametric drive [3], an
iSWAP interaction between the transmon modes arises if
we set the modulation to be at the frequency difference
between the two transmon modes

ωd = ωb − ωa. (18)

This choice yields the first-order RWA Hamiltonian

λĤ
(1)

I = J (1)

ab

(
−iâ†b̂ + H.c.

)

+ α(1)
a

2
â†2â2 + α

(1)

b

2
b̂†2b̂2 + α(1)

c

2
ĉ†2ĉ2

+ χ
(1)

ab â†âb̂†b̂ + χ
(1)

bc b̂†b̂ĉ†ĉ + χ(1)
ca ĉ†ĉâ†â. (19)

The first row of this equation contains the iSWAP interac-
tion of amplitude J (1)

ab . The second row contains the mode
anharmonicities, and the third row contains cross-Kerr
interactions, the first of which is the ZZ term.

The coupling constants in the above effective Hamilto-
nian result from the normal-mode transformation of the
quadratic part of the toy model and take the form

J (1)

ab = ucaucb
δ

2
, α

(1)
j =

∑

i=a,b,c

u4
ij αi,

χ
(1)

jk =
∑

i=a,b,c

2u2
ij u2

ikαi, (20)

for all j , k = a, b, c, and j �= k. In practice, one wants to
maximize J (1)

ab to obtain a fast gate, while minimizing
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the cross-Kerr interactions χ
(1)

jk to avoid the accumulation
of coherent errors. Cross-Kerr interactions are a source
of infidelity for a iSWAP-type gate, as well as in other
gate implementations [10–14,48]. In the first-order RWA
Hamiltonian, to cancel the cross-Kerr interaction between
the two transmons, we use a coupler with a positive anhar-
monicity [42] αc > 0, together with αa, αb < 0, which
is distinct from using qubits of opposite anharmonicities
[10,41], or couplers with negative anharmonicity [14,49].
Equation (20) forms the basis for the optimization of the
gate parameters. Before pursuing this further, we first
derive useful corrections to the gate Hamiltonian from

the oscillatory part of the Hamiltonian, ˜̂H
(1)

I (t). Finally,
note that the first-order term χ

(1)

jk is only a static, i.e.,
δ-independent, cross-Kerr interaction.

At second order in perturbation theory, there is no
correction to the iSWAP gate frequency J (2)

ab = 0. In the
regimes of interest, where the coupler frequency is close
enough to the qubit frequencies for the interaction between
the coupler and the qubits to be non-negligible, the dom-
inant contribution to the second-order RWA correction to
the cross-Kerr interaction χ

(2)

ab is

χ
(2)

ab ≈ 2

(∑
j =a,b,c uaj ubj u2

cj αj

)2

ωa + ωb − 2ωc

+ δ
uacubc

[
u3

aaubaαa − u3
bbuabαb

]

ωa − ωb
. (21)

The full expression for χ
(2)

ab can be found in Appendix C.
Inspecting the hybridization coefficients uαβ and the
denominators in Eq. (21), we deduce that the second-order
correction to the static cross-Kerr interaction, correspond-
ing to the first term in Eq. (21), arises from a virtual
two-photon excitation of the coupler (generated by the
commutator [âb̂ĉ†2, â†b̂†ĉ2]). This correction would not be
present in a two-level approximation [16]. On the other
hand, the second term in Eq. (21) is the lowest-order
contribution to the dynamical cross-Kerr interaction.

C. Improving the starting point of the perturbation
theory

As mentioned in the previous subsection, other choices
for Ĥ (0) and λĤ (1) are possible, which give better accu-
racy in comparisons with exact Floquet numerics. In this
subsection, we take the unperturbed Hamiltonian Ĥ (0)(t)
to consist of the Fock-space diagonal part of Ĥ(t), namely

Ĥ (0)(t) = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ

+ δ sin(ωdt)
[
u2

caâ†â + u2
cbb̂†b̂ + u2

ccĉ†ĉ
]

+ α(0)
a

2
â†2â2 + α

(0)

b

2
b̂†2b̂2 + α(0)

c

2
ĉ†2ĉ2

+ χ
(0)

ab â†âb̂†b̂ + χ(0)
ac â†âĉ†ĉ + χ

(0)

bc b̂†b̂ĉ†ĉ,
(22)

where the quartic couplings in the last two rows are exactly
those defined in Eq. (20), with the superscript now changed
from 1 to 0 to reflect their presence in the unperturbed
Hamiltonian.

We expect this starting point, Eq. (22), to lead to more
precise results, because of two reasons. Firstly, the pertur-
bation Ĥ (1) is now off diagonal in Fock space. The effects
of the anharmonicities of the modes are now included at
the level of Ĥ (0), and, in particular, we expect a dressing
of contributions corresponding to two-photon excitations,
such as Eq. (21). Secondly, due to the second row of Eq.
(22), we can derive the effect of harmonics of the drive fre-
quency through a Fourier expansion of the time-evolution
operator Û0(t), defined below.

Following the steps of the previous subsections, we
evaluate the time-evolution operator with respect to the
unperturbed Hamiltonian Ĥ (0)(t), that is

Û0(t) = e−i
∫ t

0 dt′Ĥ (0)(t′), (23)

with [Ĥ (0)(t), Ĥ (0)(t′)] = 0. The time dependence in the
exponent is handled via the Jacobi-Anger identity [50]

eiÔ δ
ωd

cos ωdt = J0

(
Ôδ

ωd

)

+ 2
∞∑

n=1

inJn

(
Ôδ

ωd

)

cos nωdt,

(24)

for any operator Ô, where Jn(z) is the nth Bessel func-
tion of the first kind [50]. This expansion allows us to
keep track of all harmonics of the drive. In practice, since
the modulation amplitude is small, δ/ωd 	 1, only a few
terms will be necessary.

We obtain to first order (and truncating after the first
Bessel function)

J (1)

ab = δ

2
ucaucb

[
J0

(
δu2

ca

ωd

)
J0

(
δu2

cb

ωd

)

+ 3J1

(
δu2

ca

ωd

)
J1

(
δu2

cb

ωd

)]
, (25)

which agrees, up to linear terms in δ, with the expression
in Eq. (20). On the other hand, the cross-Kerr interaction
at this order is vanishing χ

(1)

ab = 0.
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To second order in perturbation theory, the dominant
contributions to J (2)

ab are

J (2)

ab = iδ2

2
ucaucbu2

cc

(
1

ωa − ωc
− 1

ωb − ωc

)

× J1

(
δu2

cc

ωd

) ∏

j =a,b,c

J0

(
δu2

cj

ωd

)

+ . . . . (26)

We do not reproduce here the full form containing 20
terms. The second-order contribution χ

(2)

ab is nonvanishing,
and contains approximately 450 terms in expanded form.
Despite the complexity of these full expressions, they are
easy to derive and manipulate with symbolic computation
tools [51]. Focusing on the static cross-Kerr interaction,
i.e., in the δ → 0 limit, the dominant correction result-
ing from the above changes amounts to our previous Eq.
(21), but replacing the denominator of the first term of that
expression by a form that faithfully includes the contribu-
tion from the anharmonicities, as expected in the case of a
virtual two-photon excitation of the coupler mode. That is,
approximately

ωa + ωb − 2ωc → ωa + ωb − (2ωc + u4
ccαc). (27)

The full expression for the corrected static cross-Kerr
interaction can be found in Appendix C.

In Fig. 2 we compare analytical results to numerical
results obtained from exact diagonalization (at δ = 0), or
a solution of the Floquet eigenspectrum at δ �= 0 (see Sec.
V). We find that the agreement between numerics and ana-
lytics is excellent for the gate interaction strength, as well
as for the static δ = 0 cross-Kerr interaction. However, we
find that second-order perturbation theory is insufficient to
reproduce the effects of the drive on the cross-Kerr inter-
action, even for modest drive amplitudes. We expect that
higher-order perturbation theory should correctly capture
the drive-amplitude dependence of the anharmonicities,
but these contributions have been inaccessible in our study
due to the large memory demands of the computer algebra
manipulations.

IV. FULL-CIRCUIT HAMILTONIAN

Building on the previous results, we now turn to deriv-
ing an effective Hamiltonian for the full-circuit Hamil-
tonian of Eqs. (1) and (2). The full-circuit model goes
beyond the toy model in that it systematically includes
the effects of the parametric drive on all of the coupling
constants. Although the simplicity of the toy model is use-
ful in developing an intuitive understanding of the effect
of parametric drives on the system, the full-circuit model
can lead to more accurate comparisons with experimental
data.

(a)

(b)

(c)

First order

Second order

Numerics

FIG. 2. (a) Static cross-Kerr interaction χab(ωc), from first-
(black) and second-order RWA (blue), and from the full diag-
onalization of Sec. V (light blue points) for ωa/2π = 4.0,
ωb/2π = 5.5, αa/2π = −0.3, αb/2π = −0.2, αc/2π = 0.25,
gab/2π = 0.12, gbc/2π = −0.12, all in GHz, and gca/2π = 0.
(b) Analogue of (a) for dynamical cross-Kerr interaction at
δ/2π = 0.3 GHz. (c) Same as (b) for the gate interaction rate
Jab(ωc). Inset: Jab(δ) at ωc/2π = 4.25 GHz.

The full-circuit theory is constructed with the following
steps: we first introduce creation and annihilation opera-
tors for the bare circuit modes starting from the first-order
RWA driven circuit Hamiltonian in Sec. IV A. Because the
drive is taken into account at that level, the frequencies and
zero-point fluctuations of these bare modes will be explic-
itly corrected by the drive. In Sec. IV B, we perform a
normal-mode transformation amounting to a driven black-
box quantization approach. We then show in Sec. IV C how
a variety of quantum gates can be addressed by appro-
priate choices of the parametric drive frequency. Lastly,
we find corrections to the desired gate Hamiltonian using
a time-dependent Schrieffer-Wolff perturbation theory in
Sec. IV C.

A. Bare-mode Hamiltonian

To define the bare modes, we begin with the full-circuit
model Hamiltonian of Eqs. (1) and (2). We normal order
expand the Josephson cosine potentials in this Hamiltonian
over a set of creation and annihilation operators, which we
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define as follows:

ϕ̂a =
√

ηa

2
(â + â†

),

n̂a = −i

√
1

2ηa
(â − â†

), (28)

with analogous equations for modes b̂ and ĉ. The coef-
ficients ηa,b,c are chosen such that terms proportional to
â2, b̂

2
, and ĉ2 vanish in the time-averaged Hamiltonian.

This amounts to three transcendental equations:

F(ηj )η
2
j = 8ECj /EJj , (29)

for j = a, b, c, where we define the form factors

F(ηa(b)) ≡ e−ηa(b)/4,

F(ηc) ≡ αe−ηc/4J0(μαδϕ) cos
(
μαϕext

)

+ β

N
e−ηc/4N 2

J0(μβδϕ) cos
(
μβϕext

)
. (30)

Note that in the transmon limit F(ηa(b)) ≈ 1 we recover
the usual expression ηa(b) ≈ √8ECa/b/EJa/b. Secondly, the
parameter ηc depends on the parametric drive amplitude
δϕ, which indicates that the mode c impedance is drive
dependent. This has consequences for the precision of the
calculation of coupling constants dressed by the parametric
drives. In particular, it allows us to capture the ac-Stark
shift of the coupler mode at the lowest order in perturbation
theory. In what follows, sine and cosine functions of the
phase are normal order expanded according to Eq. (D7) of
Appendix D. In turn, trigonometric functions of the flux
modulation are expanded in Jacobi-Anger series over the
harmonics of the frequency of the drive.

Using the above definitions, the transmon Hamiltonian
Ĥa takes the familiar form

Ĥa = ωaâ†â − EJa

(

cos ϕ̂a + e−ηa/4 ϕ̂
2
a

2

)

. (31)

The second term on the right-hand side contains the nonlin-
ear part of the Josephson potential, i.e., the inductive part
is subtracted. Up to quartic order, Ĥa takes the form

Ĥa = ωaâ†â + αa

2
â†2â2

+ αa

12

(
â4 + â†4

)
+ αa

3

(
â†â3 + â†3â

)
+ · · · (32)

The first row of this expression is a Kerr-oscillator Hamil-
tonian as in the toy model of Sec. II, whereas the sec-
ond row contains corrections from quartic counter-rotating

terms. Here, we have introduced the mode frequency and
anharmonicity, which take the forms [29]

ωa = 4ECa

ηa
+ 1

2
F(ηa)ηaEJa ≈

√
8ECaEJa − ECa,

αa = −ECa. (33)

Note that for the approximate equality in the first row we
use a Taylor expansion of Eq. (29) for ηa. The equations
for mode b̂ are identical from the above with a change of
subscripts and operators a → b.

The coupler Hamiltonian differs from that of the trans-
mon modes in two fundamental ways: it breaks parity
symmetry due to the external flux, and it is time dependent.
Following Eqs. (13) and (12), we write this time-dependent
Hamiltonian as

Ĥc(t) = Ĥ c(t) + ˜̂H c(t). (34)

The creation and annihilation operators of the coupler
mode can then be defined by extracting the quadratic part
of the time-averaged coupler Hamiltonian. Using Eq. (28)
where a → c together with

cos
[
ϕ̂c + μαϕext(t)

] = cos(μαϕext)J0(μαδϕ) cos(ϕ̂c)

(35)

and a similar relation for the second branch of the cou-
pler [see Eq. (2)], we find in analogy to Eq. (31) for the
Hamiltonian of the transmon mode

Ĥ c = ωcĉ†ĉ

− αEJcJ0(μαδϕ) cos(μαϕext)

(

cos ϕ̂c + e−ηc/4 ϕ̂
2
c

2

)

− βNEJcJ0(μβδϕ) cos(μβϕext)

×
(

cos
ϕ̂c

N
+ e−ηc/4N 2 ϕ̂

2
c

2N 2

)

+ αEJcJ0(μαδϕ) sin(μαϕext) sin ϕ̂c

+ βNEJcJ0(μβδϕ) sin(μβϕext) sin
ϕ̂c

N
. (36)

Crucially, in this first-order rotating-wave approximation
of the parametric drive, the Josephson energy is renor-
malized by the factor J0(μα,βδϕ), see also Ref. [23]. We
interpret this as an effective reduction of the Josephson
potential barrier, and consequently an increase of phase
fluctuations, in the presence of drives. Moreover, the pres-
ence of the nonzero external flux results in the parity
breaking sine terms in Eq. (36).
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The second term of Ĥc(t) in Eq. (34), the oscillatory part,
take the form

˜̂H c(t) = −αEJc
˜cos

[
ϕ̂c + μαϕext(t)

]

− βNEJc

˜
cos
[
ϕ̂c

N
+ μβϕext(t)

]
, (37)

which can be expanded in a Jacobi-Anger series in har-
monics oscillating at the frequency nωd, where n is an
integer.

As above, the next step is to expand the coupler Hamil-
tonian up to quartic terms in the creation and annihilation
operators. In contrast to the transmon Hamiltonian of Eq.
(32), parity breaking leads to the appearance of monomials
of odd order. The nonoscillatory part is

Ĥ c = ωcĉ†ĉ + αc

2
ĉ†2ĉ2

+ αc

12

(
ĉ4 + ĉ†4

)
+ αc

3

(
ĉ†ĉ3 + ĉ†3ĉ

)

+ gc,3

(
ĉ3 + ĉ†3 + 3ĉ†ĉ2 + 3ĉ†2ĉ

)

+ gc,1

(
ĉ + ĉ†

)
+ · · · . (38)

The first row of the above expression takes the form
of the coupler Hamiltonian in the approximation of the
toy model of Sec. II, while the remaining rows contain
number-nonconserving terms up to quartic order. Here, the
parametric drive-dependent mode frequency and anhar-
monicity read

ωc = 4ECc

ηc
+ 1

2
F(ηc)ηcEJc,

αc = −ECc, (39)

while the prefactors of the counter-rotating terms are

gc,3 = −αεe−ηc/4η3/2
c J0(μαδϕ) sin

(
μαϕext

)
EJc/(12

√
2)

− β

N 2 e−ηc/4N 2
η3/2

c J0(μβδϕ) sin

× (μβϕext
)

EJc/(12
√

2),

gc,1 = αεe−ηc/4η1/2
c J0(μαδϕ) sin

(
μαϕext

)
EJc/

√
2

+ βe−ηc/4N 2
η1/2

c J0(μβδϕ) sin
(
μβϕext

)
EJc/

√
2.
(40)

The contribution from the oscillatory part ˜̂H c(t) is too
lengthy to be reproduced here, and is given up to the sec-
ond harmonic of the parametric modulation frequency ωd
in Table II of Appendix D.

Finally, the last term of the full circuit Hamiltonian to
consider is the linear interaction Ĥg induced by the capac-
itive coupling. Using Eq. (28), this Hamiltonian takes the
form

Ĥg = − 2ECab√
ηaηb

(â − â†
)(b̂ − b̂

†
) + . . . (41)

where the ellipsis represents two more terms correspond-
ing to the cyclic permutations of the mode indices.

The Hamiltonian specified by Eq. (32) and its equivalent
for the b transmon mode, together with Eq. (38), the terms
summarized in Table II of Appendix D, and Eq. (41), form
the basis of the full-circuit numerical simulation performed
in Sec. V.

B. Driven black-box quantization approach for
parametrically activated interactions

We now follow the procedure developed with the toy
model in Sec. III B to obtain effective gate Hamiltonians
under parametric modulations. To do so, we first displace
the Hamiltonian of Eq. (1) by approximate solutions to
the corresponding classical equations of motion, with the
aim of removing all contributions linear in the coordinates
ϕ̂j , n̂j . As such, this avoids keeping the linear terms as part
of the perturbative expansion. This procedure is detailed
in Appendix D and amounts to making the following
replacement in Eq. (1):

ϕ̂j → ϕ̂j + ξj + ζj sin(ωdt). (42)

The parameters ζj , ξj are found numerically. The proce-
dure above can best be understood as a change of frame
in which all coordinates ϕ̂j , n̂j represent quantum fluc-
tuations about a known classical trajectory. In particular,
should the amplitude responses ζj be neglected, then ξj
would be the amount by which phase variables need to
be displaced such that the subsequent Taylor expansion is
performed around the classical minimum of the potential
energy.

Next, we collect under Ĥ (0) the time-independent
quadratic terms, in a procedure analogous to the one above.
We then eliminate the linear coupling Ĥg of Eq. (41) from
Ĥ (0) through a normal-mode transformation

Ĥ (0) = ωaâ†â + ωbb̂
†
b̂ + ωcĉ†ĉ + Ĥg

≡ ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ. (43)

The linear transformation is determined by a set of 18
hybridization coefficients that relate bare mode coordi-
nates to normal-mode coordinates (see Appendix E for the
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procedure to compute these coefficients)

ϕ̂α =
∑

β=a,b,c

uαβ√
2
(β̂ + β̂†),

n̂α =
∑

β=a,b,c

vαβ

i
√

2
(β̂ − β̂†), (44)

for α = a, b, c. We stress that the hybridization coeffi-
cients uαβ , vαβ depend on the amplitude of the parametric
drive. As a result, drive effects such as the ac-Stark shift
of the nonlinear oscillators are accounted for already at
the level of the normal-mode decomposition of the circuit
Hamiltonian.

In analogy with our treatment in Sec. II of the toy
model, we take Ĥ (0) to be the unperturbed Hamiltonian
with respect to which the interaction picture is defined. Pri-
marily in order to keep the expressions more concise, we
opt to neglect the corrections analyzed in Sec. III C. With
Ĥ (0) the unperturbed Hamiltonian, the remaining interac-
tion terms are λĤ (1)(t) ≡ Ĥ − Ĥ (0). Expressing these in
the interaction picture with respect to Û0 = e−iĤ (0)t as in
Eq. (8), we find

λĤ (1)
I (t) = Û†

0(t)
[
Ĥ(t) − Ĥ (0)

]
Û0(t), (45)

which, as before, is decomposed into oscillatory and
nonoscillatory parts.

As a first example, to realize a beam-splitter interaction,
the first-order RWA Hamiltonian is obtained in the form of
Eq. (19) for a modulation frequency that satisfies

ωd = ωb − ωa. (46)

Of note, as already mentioned, the right-hand side of the
above definition depends implicitly on the drive frequency
ωd, since it is defined in terms of ac-Stark shifted normal-
mode frequencies. In Sec. V we present a numerical
procedure to obtain the parametric drive frequency.

With this choice of modulation frequency, the effective
Hamiltonian takes the form

λĤ
(1)

I = J (1)

ab (−iâ†b̂ + H.c.)

+ α(1)
a

2
â†2â2 + α

(1)

b

2
b̂†2b̂2 + α(1)

c

2
ĉ†2ĉ2

+ χ
(1)

ab â†âb̂†b̂ + χ
(1)

bc b̂†b̂ĉ†ĉ + χ(1)
ca ĉ†ĉâ†â

+ J (1)

ab;a(−iâ†ââ†b̂ + H.c.)

+ J (1)

ab;b(−ib̂†b̂â†b̂ + H.c.)

+ J (1)

ab;c(−iĉ†ĉâ†b̂ + H.c.)

+ K (1)

ab (â†2b̂2 + H.c.). (47)

In contrast to the effective gate Hamiltonian Eq. (19)
obtained for the toy model, there are additional terms in the
last four rows, namely photon-number-conditioned beam-
splitter terms and a photon-pair beam-splitter term. The
couplings appearing in the above Hamiltonian are

J (1)

ab = −uaauab

2
J1(ζa) sin(ξa)EJa

− ubaubb

2
J1(ζb) sin(ξb)EJb

− ucaucb

2
αJ1(ζc + μαδϕ) sin(ξc + μαϕext)E

(α)
Jc

− ucaucb

2
β

N
J1

(
ζc

N
+ μβδϕ

)
sin

×
(

ξc

N
+ μβϕext

)
E(β)

Jc ,

α
(1)
j = −1

8

∑

i=a,b,c

u4
ij E′

J ,i,

χ
(1)

jk = −1
4

∑

i=a,b,c

u2
ij u2

ikE′
J ,i,

J (1)

ab;j = −u2
cj

4
J (1)

ab , for j = a, b, c,

K (1)

ab = −u2
aau2

ab

16
J2(ζa) cos(ξa)EJa

− u2
bau2

bb

16
J2(ζb) cos(ξb)EJb

− u2
cau2

cb

16
αJ2(ζc + μαδϕ) cos(ξc + μαϕext)E

(α)
Jc

− u2
cau2

cb

16
β

N 3 J2

(
ζc

N
+ μβδϕ

)
cos

×
(

ξc

N
+ μβϕext

)
E(β)

Jc , (48)

where we use

E′
Ja ≡ e−u2

aa/4−u2
ab/4−u2

ac/4J0(ζa) cos(ξa)EJa,

E′
Jb ≡ e−u2

ba/4−u2
bb/4−u2

bc/4J0(ζb) cos(ξb)EJb,

E′
Jc ≡ αJ0(ζc + μαδϕ) cos(ξc + μαϕext)E

(α)
Jc

+ β

N 3 J0

(
ζc

N
+ μβδϕ

)
cos
(

ξc

N
+ μβϕext

)
E(β)

Jc ,

E(α)
Jc ≡ e−u2

ca/4−u2
cb/4−u2

cc/4EJc,

E(β)
Jc ≡ e−u2

ca/4N 2−u2
cb/4N 2−u2

cc/4N 2
EJc. (49)

The above expressions depend on the drive both explic-
itly, through the arguments of the Bessel functions, and
implicitly, through the hybridization coefficients ujk. While
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the amplitude responses on the two transmon qubits are
expected to be small, i.e., ζa,b 	 ζc and ξa,b 	 ξc, these
contributions show that, through hybridization, all Joseph-
son elements contribute to the resonant parametric interac-
tion. The first three lines of Eq. (48) are similar in form
to those obtained for the toy model in Eq. (20). Of the
two additional classes of terms possible in the full-circuit
model at this order in perturbation theory, the photon-pair
beam-splitter term, in the last row of Eq. (47), is generated
by the second harmonic of the drive. However, since this
term is fourth order in the hybridization coefficients, it can
only become comparable to the beam-splitter interaction
at vanishing external flux ϕext ≈ 0, or if δϕ is set to cancel
J (1)

ab .
As in the case of the toy model, going to second order

in perturbation theory using Eq. (14) we find corrections to
the coupling constants derived above to first order. Noting
that parity-breaking terms significantly dress the coupler
0 → 1 transition frequency, we absorb this renormaliza-
tion into a reparametrization of the external flux ϕext →
ϕ′

ext(ϕext) such that ωc(ϕ
′
ext) = ω(2)

c (ϕext), i.e., we absorb
the corrections to the coupler pole at second order in per-
turbation theory into a redefinition of the coupler normal
mode, in a self-consistent approach that can be further
validated with exact numerics.

FIG. 3. Coupling constants in the effective Hamiltonian for the
full circuit as a function of external dc flux ϕext. Dots (lines)
represent Floquet two-tone spectroscopy data with Hilbert-
space dimension 10 per mode (second-order RWA calculations).
Color (see legend) encodes parametric drive amplitude δϕ/2π .
Parameter choices: Ca = 134.205 fF, Cb = 134.218 fF, Cc =
75.987 fF, Cac = 11.11 fF, Cbc = 11.22 fF, Cab = 0, EJa/2π =
37 GHz, EJb/2π = 27 GHz, EJc/2π = 50 GHz, α = 0.258, β =
1, and N = 3, μα = 5/6 and μβ = −1/18. We attribute large
discontinuities in the numerical curves to state tracking errors
near avoided crossings (see Sec. V).

In Fig. 3 we show a comparison between exact Flo-
quet numerics (see Sec. V) and second-order perturbation
theory for the full-circuit model. We find that the analyt-
ics reproduce with good accuracy the numerical results
for the gate interaction rate Jab in the region where the
coupler 0 → 1 frequency lies between the two transmons:
ωa < ωc < ωa. There are poles in the numerical gate rate
Jab for ωc < ωa or for ωb < ωc that we expect to capture
only at third order in perturbation theory. The numerical
cross-Kerr interaction, as in the case of the toy model,
only agrees well with analytics in the static case δϕ = 0.
Focusing our attention on the curves obtained from Flo-
quet numerics, we see that with a typical set of parameter
gate rates as large as Jab/2π ∼ 20 MHz (equivalent to a
25 ns

√
iSWAP gate) can be achieved while maintaining a

vanishing dynamical cross-Kerr interaction. The tools pre-
sented in this paper feed into a larger scale optimization of
the circuit parameters, which forms the subject of a future
study.

C. Other parametric gates

The space of parametric gates is not limited to beam-
splitter-type, or red sideband, terms. Indeed, different inter-
actions can be activated by appropriate choices of the
frequency of the parametric drive [16,52–58]. For exam-
ple, if instead the modulation frequency targets the blue
sideband,

ωd = ωa + ωb, (50)

then the resulting interaction is a two-mode squeezing
term. The effective gate Hamiltonian is formally the same
as Eq. (47) with the simple modification

â†b̂ → â†b̂†, (51)

in the first line and in the last four lines of Eq. (47). The
coupling constants remain formally as in Eq. (48). Note,
though, that quantitatively the rates will differ, since the
classical responses and the hybridization coefficients are
dependent on drive frequency. As opposed to the beam-
splitter interaction, we expect [59] nonadiabatic effects
at the larger modulation frequency Eq. (50), which will
require higher orders in perturbation theory beyond the
scope of this work.

It is also possible to obtain a CNOT interaction induced
by a parametric drive at ωd = ωa, which makes the a
transmon mode into the target mode of a cross-resonance
protocol [30,31]. Following the same procedure as in
the preceding subsection, with this choice of modulation
frequency we arrive at the effective gate Hamiltonian

λĤ
(1)

I = −i�a;b(â − â†)b̂†b̂ − i�a;c(â − â†)ĉ†ĉ

− i�a(â − â†) − i�a;a(â†ââ − â†â†â). (52)
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The first term of above expression generates the cross-
resonance gate, while the second term is a coupler-state
conditional drive on mode a, which is negligible for
〈ĉ†ĉ〉 ≈ 0. On the other hand, the second row contains local
operations on qubit a.

The coupling constants in Eq. (52) take the form

�a = ucaE′′
J ,c, �a;a = u3

caE′′′
J ,c/2,

�a;b = ucau2
cbE′′′

J ,c, �a;c = ucau2
ccE′′′

J ,c, (53)

where we define

E′′
J ,c = α√

2
J1 (ζc + μαδϕ) cos

(
ξc + μαϕext

)
E(α)

J ,c

+ β√
2

J1

(
ζc

N
+ μβδϕ

)
cos
(

ξc

N
+ μβϕext

)
E(β)

J ,c ,

E′′′
J ,c = − α√

2
J1 (ζc + μαδϕ) cos

(
ξc + μαϕext

)
E(α)

J ,c

− β√
2N 2

J1

(
ζc

N
+ μβδϕ

)
cos
(

ξc

N
+ μβϕext

)
E(β)

J ,c .

(54)

For brevity, in the expressions above we drop the smaller
contributions proportional to J1(ζa,b). While in the stan-
dard cross-resonance gate protocol the gate is activated by
a microwave tone on one of the qubits [30,31], here it is the
coupler mode c that is parametrically driven. This protocol
to achieve a CNOT gate is advantageous if the coupler mode
is much more strongly coupled to the transmon modes a
and b than their direct capacitive coupling. In the standard
cross-resonance protocol [31,32], the CNOT gate rate �a;b
saturates as a function of the amplitude of the paramet-
ric drive; in this model saturation could be in part due to
the Bessel function J1. Table I summarizes the different
interactions that can be obtained for different choices of
modulation frequencies.

V. FLOQUET NUMERICS

In this section we use exact numerical Floquet methods
to extract the effective gate Hamiltonian from quasienergy
spectra. Floquet theory validates the results obtained using
perturbation theory in Secs. III and IV C. On the other
hand, this numerically exact method is applicable beyond

the regime of validity of perturbation theory. In this
section, we first briefly introduce the method and the nota-
tion in Sec. V A and, as an example application, return
to our toy model to extract the cross-Kerr interaction χab
and the

√
iSWAP gate amplitude Jab. Using these results,

we show how to adjust the system parameters such as
to cancel the dynamical cross-Kerr interaction during an√

iSWAP gate. Then, in Sec. V B, we apply the method to
the full-circuit Hamiltonian. In particular, we perform a
numerical experiment analogous to two-tone spectroscopy
for the parametrically driven circuit. For completeness, an
introduction to Floquet theory is presented in Appendix F.

A. Effective Hamiltonian from Floquet spectra

Our analysis starts from the observation that the effective
Hamiltonian is unitarily equivalent to the Floquet Hamil-
tonian according to Eqs. (8) and (9), and therefore their
quasienergy spectra (see Appendix F) are identical. In the
laboratory frame, we can write

Ĥeff − i∂t = e−Ĝ(t)
[
Ĥ(t) − i∂t

]
eĜ(t). (55)

The perturbative expansion for e−Ĝ(t), and consequently
that for Ĥeff, is therefore an iterative approach to finding
the Floquet spectrum.

In this section we compute the Floquet spectrum exactly
and show how the parameters of the effective Hamiltonian
can be extracted from it. ac-Stark shifted normal-mode
frequencies, self- and cross-Kerr interactions, and gate
amplitudes are formulated as linear combinations of appro-
priately identified eigenvalues of the Floquet Hamiltonian.
For illustration, in this subsection we confine our attention
to the Floquet analysis of the toy model of Eq. (5).

To identify states in the Floquet quasienergy spectrum,
we find eigenvectors that have a maximum overlap with a
set of known, unperturbed states. We let the state |iaibic〉
be the eigenstate of the time-independent Schrödinger
equation for the undriven Hamiltonian, that has maximum
overlap with the Fock state |ia〉 |ib〉 |ic〉, and denote its
eigenenergy by Eiaibic . Finally, we define |iaibic〉F as the
Floquet eigenmode having maximum overlap with |iaibic〉,
and we denote its quasienergy with εiaibic . In what fol-
lows, we label kets by three integers as above, in the order
a − b − c.

TABLE I. List of the most accessible gate Hamiltonians realizable with a parametric drive in the analyzed architecture.

Gate Bosonic operator Drive frequency Dominant unwanted interaction Equation

iSWAP and beam splitter −iâ†b̂ + ib̂†â ωa − ωb â†âb̂†b̂ Eq. (47)
Two-mode squeezing −iâ†b̂† + ib̂â ωa + ωb â†âb̂†b̂ Eqs. (47) and (51)
CZ and Ising ZZ â†âb̂†b̂ No drive Eq. (47)
CNOT −i(â − â†)b̂†b̂ ωa −i(â − â†)â†â Eq. (52)
CSWAP −iĉ†ĉ(â†b̂ − b̂†â) ωa − ωb −iâ†b̂ + ib̂†â Eq. (47)
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FIG. 4. Quasienergies of the Floquet modes with maximum
overlap with eigenstates |0a1b0c〉 and |1a0b0c〉, for the toy model.
The light and dark blue dashed lines correspond to the eigenen-
ergies of the uncoupled system. The inset shows the population
of the Floquet states, Pnanbnc(t) = |F〈nanbnc|ψ(t)〉|2, compared
to the state populations of a two-level system (dots), driven
resonantly with Rabi rate Jab, where Jab is the gate amplitude
obtained from the avoided crossing in the Floquet spectrum.

With these definitions, the gate amplitude Jab has a nat-
ural interpretation in the Floquet formalism. As shown
above, the

√
iSWAP interaction arises in the toy model if

ωd = ωb − ωa ≡ E100 − E010. (56)

Since the parametric drive enters via a term proportional
to ĉ†ĉ, which couples the undriven eigenstates in the two-
state manifold {|100〉 , |010〉}, there is an avoided crossing
between the Floquet modes |100; k + 1〉F and |010; k〉F , as
shown in Fig. 4. Because the gate operation is analogous to
Rabi oscillations in the two-state manifold {|100〉 , |010〉},
the size of the avoided crossing is twice the effective gate
amplitude, 2Jab. For example, if an excitation is origi-
nally prepared in the transmon b, then population dynam-
ics would obey P010(t) ≡ |F〈010|ψ(t)〉|2 = sin2 (Jabt) and
P100 = 1 − P010, in full agreement with exact numerics
(inset of Fig. 4). Away from the avoided crossing, the dif-
ference between the dressed states and the undriven states
corresponds to the ac-Stark shift of the transmon normal
modes due to the off-resonant drive.

Note that, in practice, the two-state manifold {|100〉 ,
|010〉} is coupled by the drive to other levels. The resonant
drive frequency ωd is then slightly shifted from Eq. (56)
due to the ac-Stark effect induced by these additional cou-
plings, and the exact value can be determined numerically
by minimizing the size of the anticrossing.

The dynamical cross-Kerr interaction χab is written in
terms of a Walsh transform [15] of the quasienergies

χab(δ) = ε110 − ε100 − ε010 + ε000, (57)

and reduces to the static cross-Kerr when the parametric
drive is turned off:

χab(0) = E110 − E100 − E010 + E000. (58)

Along with Jab and χab, any ac-Stark-shifted quantity per-
taining to the effective Hamiltonian can, in principle, be
obtained by taking appropriate linear combinations of the
quasienergies in the Floquet spectrum.

Since the Floquet quasienergy spectrum can be obtained
from the propagator Û(2π/ωd, 0) over one period of the
drive (Appendix F), the Floquet method is numerically effi-
cient as compared to the simulation of the dynamics over
the complete gate time. The period of the drive is on the
order of 1 ns, which is between 2 and 3 orders of magnitude
shorter than the gate times studied here. Due to its rela-
tively small computational footprint, the Floquet method
allows us to efficiently search for optimal gate parame-
ters, e.g., a maximal Jab with a minimal residual cross-Kerr
interaction, χab. As an example, in Fig. 5 we study the
behavior of Jab and χab as a function of the bare coupler
frequency ωc for different choices of drive amplitude, δ,
and bare coupler anharmonicity, αc.

From these studies we can, for example, find parame-
ters for which the cross-Kerr interaction χab vanishes. As

(a)

(b)

(c)

FIG. 5. (a) Static χab interaction at δ = 0 for the toy model
versus the coupler frequency for different values of the cou-
pler anharmonicities, with remaining parameters ωa/2π =
4.0, ωb/2π = 5.75, αa/2π = αb/2π = −0.2, and gac/2π =
−gbc/2π = 0.05 GHz. (b) Dynamical χab versus bare coupler
frequency for the parameters above and αc/2π = 0.12 GHz, for
different values of the drive amplitude. (c) Gate amplitude Jab
for the parameters in (b). The Hilbert-space dimension for each
mode is 5.
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already mentioned, this is helpful to obtain high-fidelity
two-qubit gates and relies on choosing a positive coupler
anharmonicity, αc. In Fig. 5 we find that, while varying
αc does not affect Jab to lowest order in perturbation the-
ory, it has a considerable impact on χab. Indeed, Fig. 5(a)
shows the static χab for multiple values of αc, and illus-
trates that it is possible to fine tune αc to cancel χab. We
observe empirically that, in the RWA, whenever the bare
anharmonicities obey α−1

a + α−1
b + α−1

c = 0, one can find
ωc for which χab = 0 at a sweet spot, where ∂χab/∂δ ≈ 0.

For the dynamical cross-Kerr interaction χab one
observes complex variations with δ. The main resonances
appear for ωc ≈ ωa, ωb, and (ωa + ωb)/2 but the slopes
and the sign of χab change and additional resonances
appear away from the qubit frequencies, especially when
the drive amplitude and coupling strengths gab,ac are suf-
ficiently large. As illustrated in Fig. 5(b), by tuning the
drive amplitude it is possible to find a bare coupler fre-
quency, ωc, for which the effective χab(δ) = 0. On the
other hand, as seen in Fig. 5(c), the gate rate increases
with δ without qualitative changes of its dependence on
ωc. Therefore, as the gate is turned on or off by varying δ,
one can adjust the bare coupler frequency ωc to maintain
the instantaneous χab(δ) = 0. This defines a cross-Kerr-
free curve in the parameter space (ωc, δ) connecting the
“off” point δ = 0, χab(0) = 0, Jab(0) = 0 to the “on” point
δ �= 0, χab(δ) = 0, Jab(δ) �= 0. We study this in detail on
the realistic full-circuit model in Sec. V B.

B. Full-circuit simulation

In this section, we apply the Floquet numerical method
to the full-circuit Hamiltonian of Sec. IV A. We study the
dependence of the coupling constants in the effective gate
Hamiltonian versus dc flux and as a function of the drive
amplitude.

Figure 6 shows the analogues of the plots in Fig. 5
for the gate amplitude Jab(ϕext) and of the cross-Kerr
χab(ϕext) now for the full-circuit Hamiltonian. State track-
ing is performed as described in the previous subsection.
However, in the vicinity of avoided crossings, it is impos-
sible to identify with certainty the states generated by the
relatively large capacitive couplings considered here. We
therefore introduce exclusion regions where state tracking
is unreliable. Even though the tracking is expected to be
complicated by the presence of counter-rotating terms cou-
pling states with different photon numbers in the full device
Hamiltonian of Sec. IV A, we find that this is not a signifi-
cant source of tracking error, as compared to errors due to
large hybridization.

In Fig. 6(b), we represent χab versus the dc flux ϕext for
different values of the flux-drive amplitude. Unlike the toy
model, χab does not go to zero away from the qubit-coupler
resonances. This is because the qubit-coupler detuning sat-
urates as a function of ϕext, as opposed to the toy model

(a)

(b)

(c)

FIG. 6. Same parameter choices as Fig. 3. Gate amplitude Jab
(a) and cross-Kerr χab (b) for different parameteric drive ampli-
tudes δϕ (encoded in curve color) and as a function of the
static flux ϕext from Floquet simulations. Data has been excluded
where deficient state tracking in the vicinity of avoided crossings
led to unphysical discontinuities in the quantities. (c) for regions
I , II , and III identified in (a) and (b), we eliminate the common
parameter ϕext and plot Jab(χab). This allows us to identify those
regimes in which the

√
iSWAP gate interaction can be turned on,

while maintaining a vanishing dynamical χab.

where the detuning could be increased arbitrarily. In the
undriven case (black), we see that for this set of device
parameters there does not exist a flux value for which χab
vanishes. However, increasing the drive amplitude allows
for an active cancelation of the dynamical χab at some
flux value. The corresponding behavior of Jab is shown in
Fig. 6(a). In Fig. 6(c), we synthesize the numerical results
into three favorable regions of operation for the parametric
gate, denoted I , II , and III , respectively [see (a)]. For these
regions, we eliminate the external flux and plot directly the
gate amplitude Jab against the dynamical cross-Kerr inter-
action χab. This allows us to determine regimes of optimal√

iSWAP gate operation. We conclude that gate amplitudes
as high as 40 MHz, corresponding to a gate time of 12.5
ns, can be achieved with vanishing cross-Kerr interaction
for these parameter choices.

For both Jab and χab there exist peaks away from the
qubit-coupler resonances, situated at ϕ̄ext/2π ≈ 0.13, 0.42.
These correspond to avoided crossings appearing in the
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FIG. 7. Two-tone spectroscopy data from Floquet numer-
ics. Each point corresponds to a possible transition and its
size is weighed by the matrix element of the charge oper-
ator of bare qubit a, X̂ = n̂a. Parameters chosen as in
Fig. 3 with δϕ/2π = 0.0 (black dots) and 0.03 (crosses).
The subscripts α, β sweep over the subset of Floquet modes
{|000〉F , |100〉F , |010〉F , |001〉F}, whereas the drive photon
number k takes integer values between −15 and 15.

driven Floquet spectrum, corresponding to the hybridiza-
tion of Floquet levels involving distinct numbers of drive
photons. For example, the Floquet level |100, k〉F can
couple to the Floquet level |001, k − 1〉F . This can be
seen by unfolding the Floquet spectrum in spectroscopy
simulations (see Fig. 7).

To exemplify the full extent of the Floquet analysis,
we generate two-tone spectroscopy data from our simula-
tions according to Eqs. (F2) and (F3) in Appendix F, by
focusing on the experimentally relevant situation where
the parametric drive is on, while the (second) probe tone
acts on the bare charge operator n̂a. In Fig. 7 we rep-
resent the numerically computed spectrum close to the
two-qubit transition frequencies. The size of each point
is proportional to the absolute value of the correspond-
ing matrix element. The black dots correspond to transition
frequencies in the undriven spectrum. As expected, the dot
sizes are larger for the transitions involving the probed
qubit a. The large avoided crossings around ϕext/2π ≈
{0.32, 0.38} result from the capacitive couplings between
the coupler and the qubits. Secondary avoided crossings
appear between the coupler mode and the transmons near
ϕ̄ext/2π ≈ {0.13, 0.42} in the driven spectrum, and are
responsible for the secondary poles mentioned in the dis-
cussion of the coupling constants of the effective Hamil-
tonian, Fig. 6. Furthermore, as we detail in Appendix G,
counter-rotating terms induce corrections when attempt-
ing an accurate comparison with spectroscopic data from
experiments.

VI. CONCLUSION

In summary, we present two complementary meth-
ods for the analysis of parametrically activated two-qubit
gates, one based on analytical time-dependent Schrieffer-
Wolff perturbation theory, and one based on numerical

Floquet methods. Although we mostly focus on coupler-
mediated parametric

√
iSWAP gates, a larger collection of

gates can be generated in the same model Hamiltonian.
The methods presented here allow one to efficiently evalu-
ate the terms present in the effective gate Hamiltonian.

For the
√

iSWAP interaction, we show that with exper-
imentally accessible parameters, a gate frequency of
approximately 40 MHz corresponding to a gate time as
short as 12.5 ns can be obtained with vanishing dynamical
cross-Kerr interaction. This fast gate is achieved by work-
ing with large capacitive couplings between the qubits and
the coupler, while canceling the cross-Kerr interactions by
setting the coupler anharmonicity to positive values, and
choosing the right modulation amplitude. Optimization
of realistic device parameters based on close agreements
between the Floquet simulations and the experimental data
will be published elsewhere [60].

We argue that the analytical method introduced here
and which is based on a drive-dependent normal-mode
expansion is a computationally efficient strategy to orga-
nize the perturbation theory as compared to an energy
eigenbasis calculation, for it allows the parameters of the
effective Hamiltonian to be obtained at lower orders in
perturbation theory. Moreover, this strategy is suitable in
the regime of comparatively large linear couplings, where
the dispersive approximation breaks down. Nonetheless,
we show that higher orders in analytical perturbation the-
ory are needed for full agreement with exact numerical
results, especially for higher-order interactions, such as the
dynamical cross-Kerr. Generating higher-order contribu-
tions efficiently using computer algebra techniques is the
subject of future studies. On the other hand, this work indi-
cates that Floquet numerical methods, as compared to full
time-dynamics simulations, is a numerically efficient and
exact method for minute optimization studies of parametric
gates.
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APPENDIX A: TIME-DEPENDENT
SCHRIEFFER-WOLFF TRANSFORMATION

To obtain equations for ĜI (t), we assume that the gener-
ator can be expanded as a series in λ, that is

ĜI (t) = λĜ(1)
I (t) + λ2Ĝ(2)

I (t) + · · · , (A1)
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and collect powers of λ in the BCH expansion of Eq. (9)

e−ĜI (ĤI − i∂t)eĜI = λĤ (1)
I − iλ ˙̂G(1)

I

+ [λĤ (1)
I , λĜ(1)

I ] − i
2

[λ ˙̂G(1)
I , λĜ(1)

I ] − iλ2 ˙̂G(2)
I

− i∂t + O(λ3). (A2)

The above expansion can be expressed compactly

e−ĜI (ĤI − i∂t)eĜI =
∞∑

k=1

λk
[
Ĥ (k)

I (t) − i ˙̂G(k)
I

]
− i∂t.

(A3)

Provided a prescription for λkĜ(k)
I (t), we have a recursive

way of determining higher-order corrections to the inter-
action Hamiltonian: knowledge of λĤ (1)

I (t) allows one to
determine λ2Ĥ (2)

I , then λ3Ĥ (3)
I etc.

The kth-order term in the generator, λkĜ(k)
I (t), is deter-

mined by the condition that the Hamiltonian be free of
oscillatory terms of order λk or less. This condition can
be formulated explicitly if we write, as in Eq. (11),

λkĤ (k)
I (t) = λkĤ

(k)

I + λk ˜̂H
(k)

I (t). (A4)

Then oscillatory terms λk ˜̂H
(k)

I are canceled for every k if

λkĜ(k)
I (t) = 1

i

∫ t

0
λk ˜̂H

(k)

I (t). (A5)

Note that, in the above expression, we impose the bound-
ary condition Ĝ(k)

I (0) = 0 by specifying the lower limit of
the integration. Noting that Eq. (A5) implies

λk˜̂GI
(k)

(t) = 1
i

∫ t

λk ˜̂H
(k)

I (t),

λkĜI

(k)
(t) = 1

i

[∫ t

λk ˜̂H
(k)

I (t)
]

t=0
. (A6)

The dc part of the generator, λkĜI

(k)
, is nonvanishing

here as a result of the boundary condition in Eq. (A5),
as opposed to the zero time-average property of kick
operators, to which the generator studied here is related
[47].

With the above formalism in place, we are now ready to
compute perturbative corrections. From Eq. (9) we identify

the λ2 correction to the interaction-picture Hamiltonian

λ2Ĥ (2)
I (t) = [λĤ (1)

I , λĜ(1)
I ] − i

2
[λ ˙̂G(1)

I , λĜ(1)
I ]. (A7)

Going ahead and solving the RWA condition in Eq. (A5)
at order λ1, we find the order-λ2 RWA Hamiltonian

λ2Ĥ
(2)

I = 1
i

[
Ĥ

(1)

I ,
∫ t

0
λ
˜̂H

(1)

I (t′)dt′
]

+ 1
2i

[
λ
˜̂H

(1)

I (t),
∫ t

0
λ
˜̂H

(1)

I (t′)dt′
]

. (A8)

This procedure can be iterated to higher orders, with
increasing complexity due to the proliferation of terms
from nested commutators in the BCH expansion.

APPENDIX B: CIRCUIT QUANTIZATION

In this Appendix we derive the model Hamiltonian
of Eq. (1) from the circuit Lagrangian corresponding to
Fig. 8. Assuming the individual modes of the junction
array have small impedance, guaranteed by sufficiently
large Josephson energy, the junction array can be described
by an effective one-dimensional Lagrangian where the total
phase difference across the array is spread evenly through
the junctions. The effective one-dimensional Lagrangian
associated with the bare coupler mode is

Lc =
∑

k=α,β

Ck

2
φ̇

2
k + αEJc cos

[
ϕα

]+ βNEJc cos
[
ϕβ

N

]
,

(B1)

where φα is the branch flux across the small junction and
the shunt capacitor with total capacitance Cα , φβ is the
branch flux across the junction array with effective capac-
itance Cβ , and ϕk = 2πφk/�0 are the associated reduced
phase variables, and �0 is the superconducting flux quan-
tum. The phases ϕα and ϕβ are constrained by the fluxoid
quantization, ϕα + ϕβ = ϕext. We define the alternative
coordinates

ϕα = ϕc + μαϕext,

ϕβ = −ϕc − Nμβϕext, (B2)

with μα − Nμβ = 1, such that the capacitive energy in the
Lagrangian is now purely quadratic in φ̇c. We thus require
Cαμα + CβNμβ = 0. We obtain

μα = Cβ

Cα + Cα

,

μβ = − 1
N

Cα

Cα + Cβ

. (B3)
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FIG. 8. Circuit schematic and notations used in the derivation
of the circuit Lagrangian in Appendix B. The coupler consists of
two branches of total capacitances Cα and Cβ (not indicated in
the figure). The α branch consists of a single Josephson junction,
while the ‘β’ branch contains N junctions in series. The bare
coupler and transmon modes are connected capacitively through
coupling capacitances Cab,bc,ca.

Up to time-dependent scalar terms, we obtain the form

Lc = Cc

2
φ̇

2
c + αEJc cos

[
ϕc + μαϕext

]

+ βNEJc cos
[ϕc

N
+ μβϕext

]
. (B4)

Moreover, for the two bare transmon modes j = a, b the
Lagrangian reads

Lj = Cj

2
φ̇

2
j + EJj cos ϕj . (B5)

The total Lagrangian of the system then takes the form

L = La + Lb + Lc + Lg , (B6)

where we introduce the capacitive coupling between the
three bare modes

Lg = Cab

2
φ̇aφ̇b + Cbc

2
φ̇bφ̇c + Cca

2
φ̇cφ̇a. (B7)

APPENDIX C: PERTURBATION THEORY FOR
THE TOY MODEL

In this section, we reproduce expressions for the cross-
Kerr interaction obtained to second-order in perturbation
theory for the toy model. The full expression of the second-
order RWA correction to the cross-Kerr interaction in Sec.

III B reads

χ
(2)

ab,Sec. III B =
4
(∑

j =a,b,c u2
aj ubj ucj αj

)2

ωb − ωc

+
4
(∑

j =a,b,c uaj u2
bj ucj αj

)2

ωa − ωc

+
2
(∑

j =a,b,c uaj ubj u2
cj αj

)2

ωa + ωb − 2ωc

−
2
(∑

j =a,b,c u3
aj ubj αj

)2

ωa − ωb

+
2
(∑

j =a,b,c uaj u3
bj αj

)2

ωa − ωb

+
uacubc

∑
j =a,b,c uaj ubj

(
u2

aj − u2
bj

)

ωa − ωb
δ.

(C1)

The second-order correction to the static cross-Kerr inter-
action as calculated in Sec. III C is

χ
(2)

ab,Sec. III C =
4
(∑

j =a,b,c u2
aj ubj ucj αj

)2

ωb − ωc +∑j =a,b,c 2u2
aj

(
u2

bj − u2
cj

)
αj

+
4
(∑

j =a,b,c uaj u2
bj ucj αj

)2

ωa − ωc +∑j =a,b,c 2u2
bj

(
u2

aj − u2
cj

)
αj

+
2
(∑

j =a,b,c uaj ubj u2
cj αj

)2

ωa + ωb − 2ωc +
(

2u2
aj u2

bj − u4
cj

)
αj

−
2
(∑

j =a,b,c u3
aj ubj αj

)2

ωa − ωb +∑j =a,b,c

(
u4

aj − 2u2
aj u2

bj

)
αj

+
2
(∑

j =a,b,c uaj u3
bj αj

)2

ωa − ωb +∑j =a,b,c

(
2u2

aj u2
bj − u4

bj

)
αa

.

(C2)

The expression for the dynamical cross-Kerr interaction,
χ

(2)

ab,Sec. III C at δ �= 0, is available from the formalism, but
it is too lengthy to be reproduced here. In the main text,
an evaluation of this expression is used in making direct
comparisons to exact numerics.
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APPENDIX D: DETAILS FOR FULL-CIRCUIT
HAMILTONIAN

In this Appendix, we record a number of results used
in Sec. IV, in particular solutions to classical equa-
tions of motion in Appendix D 1, the formulae used
for normal-ordered expansions in Appendix D 2, and
the time-dependent terms in the coupler Hamiltonian in
Appendix D 3.

1. Classical equations of motion

We consider a time-dependent unitary displacement of
Eq. (1) according to which

ϕ̂j → ϕ̂j + ϕj (t), n̂j → n̂j + nj (t), (D1)

with j = a, b, c. Requiring that the Taylor expansion of
the displaced Hamiltonian do not contain any linear terms
amounts to having ϕj (t), nj (t) obey the classical equations
of motion associated with the Hamiltonian of Eq. (1). We

obtain these by writing down the six Heisenberg equa-
tions of motion dϕ̂j /dt = i[Ĥ , ϕ̂j ], dn̂j /dt = i[Ĥ , n̂j ] for
j = a, b, c, then passing Heisenberg-picture operators to
classical variables ϕ̂j (t) → ϕj (t), n̂j (t) → nj (t).

ϕ̇a = 8ECana + 4ECcanc + 4ECabnb,

ϕ̇b = 4ECabna + 8ECbnb + 4ECbcnc,

ϕ̇c = 4ECcana + 4ECbcnb + 8ECcnc,

ṅa = −EJa sin(ϕa),

ṅb = −EJb sin(ϕb),

ṅc = −αEJc sin [ϕc + μαϕext(t)]

− βEJc sin
[ϕc

N
+ μβϕext(t)

]
. (D2)

Differentiating the first three equations we eliminate the
charge coordinates to obtain a set of second-order equa-
tions for the phase coordinates

ϕ̈a + ω2
pa sin ϕa + 4ECabEJb sin ϕb + 4ECcaEJc

{
α sin [ϕc + μαϕext(t)] + β sin

[ϕc

N
+ μβϕext(t)

]}
= 0,

ϕ̈b + ω2
pb sin ϕb + 4ECabEJa sin ϕa + 4ECbcEJc

{
α sin [ϕc + μαϕext(t)] + β sin

[ϕc

N
+ μβϕext(t)

]}
= 0,

ϕ̈c + αω2
pc sin [ϕc + μαϕext(t)] + βω2

pc sin
[ϕc

N
+ μβϕext(t)

]
+ 4ECcaEJa sin ϕa + 4ECbcEJb sin ϕb = 0, (D3)

where we define three plasma frequencies ωpj = √8ECj EJj for j = a, b, c. These equations can be solved approximately
by considering a trial form

ϕj = ζj sin(ωdt) + ξj , (D4)

and equating coefficients of the zeroth and first harmonics of the drive frequency ωd. This leads to six coupled
transcendental equations

ω2
pa sin(ξa)J0(ζa) + 4ECabEJb sin(ξb)J0(ζb)

+ 4ECcaEJc

[
α sin(ξc + μαϕext)J0(ζc + μαδϕ) + β sin

(
ξc

N
+ μβϕext

)
J0

(
ζc

N
+ μβδϕ

)]
= 0,

ω2
pb sin(ξb)J0(ζb) + 4ECabEJa sin(ξa)J0(ζa)

+ 4ECbcEJc

[
α sin

(
ξc + μαϕext

)
J0 (ζc + μαδϕ) + β sin

(
ξc

N
+ μβϕext

)
J0

(
ζc

N
+ μβδϕ

)]
= 0,

αω2
pc sin(ξc + μαϕext)J0(ζc + μαδϕ) + βω2

pc sin
(

ξc

N
+ μβϕext

)
J0

(
ζc

N
+ μαδϕ

)

+ 4ECcaEJa sin(ξa)J0(ζa) + 4ECbcEJb sin(ξb)J0(ζb) = 0,

− ω2
dζa + 2ω2

pa cos(ξa)J1(ζa) = 0,

− ω2
dζb + 2ω2

pb cos(ξb)J1(ζb) = 0,

− ω2
dζc + 2αω2

pc cos(ξc + μαϕext)J1(ζc + μαδϕ) + 2βω2
pc cos

(
ξc

N
+ μβϕext

)
J1

(
ζc

N
+ μβδϕ

)
= 0. (D5)
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The equations above are solved numerically by search-
ing for the root closest to the response of the decoupled
system (ECab = ECca = ECbc = 0) to a static external field
(δϕ = 0), i.e., zero amplitude response ζj = 0, in addition
to ξa,b = 0 and ξc the minimizer of the static potential of
the coupler defined by the current conservation condition

α sin(ξc + μαϕext) + β sin
(

ξc

N
+ μβϕext

)
= 0. (D6)

We finally make the assumption that displacing the quadra-
tures by the classical solutions obtained above will remove
from the Hamiltonian, to a good approximation, the terms
that are linear in the quadratures ϕ̂j , n̂j for j = a, b, c.

2. Normal-ordered expansions of trigonometric
functions. Jacobi-Anger expansions

Sine and cosine are expanded in normal order using
the following two expressions [61] [recall that ϕ̂a =√

ηa/2(â + â†)]:

cos ϕ̂a = e−ηa/4
∑

m,n≥0
m+n= even

(− ηa
2

)m+n/2 â†mân

m!n!
,

sin ϕ̂a = e−ηa/4
√

ηa

2

∑

m,n≥0
m+n= odd

(− ηa
2

)m+n−1/2 â†mân

m!n!
, (D7)

with analogous expressions for the operators b̂ and ĉ.

3. Time-dependent terms in the coupler Hamiltonian

Terms corresponding to the Jacobi-Anger expansion up
to the second harmonic of the drive in the bare coupler
Hamiltonian ˜̂H c(t) in Sec. IV are listed in Table II. The
operator monomial at the beginning of each row is to be
multiplied by the sum of the two following columns, and
then results from all rows are to be summed. The coeffi-
cients of the missing monomials ĉ, ĉ2, ĉ3, ĉ†ĉ2, ĉ4, ĉ†ĉ3 are
obtained by Hermitian conjugation.

APPENDIX E: NORMAL-MODE
TRANSFORMATION

In Sec. IV, we make use of a normal-mode transfor-
mation that eliminates the off-diagonal capacitive coupling
terms from the time-independent quadratic Hamiltonian. In
this section we provide the steps to obtain the normal-mode
coefficients.

Consider the quadratic form (repeated indices are
summed over):

Ĥ = Aαβ
ˆ̄nα

ˆ̄nβ + Bαβ
ˆ̄ϕα

ˆ̄ϕβ . (E1)

We make a simplification by assuming that there are no
off-diagonal inductive terms, Bαβ ∝ δαβ , which is valid for
the circuit studied here. The diagonalization involves three
steps:

Step 1. Rescale the variables so that the diagonal part
of the Hamiltonian, the inductive part, contains terms
with the same inductive energy. For this, let us define
the square root of the product of the inductive ener-
gies B = (∏α Bαα

)1/2 and the dimensionless coefficients

TABLE II. Time-dependent terms, up to quartics, in the bare coupler Hamiltonian.

Monomial J1(δ) J2(δ)

ĉ† √
2αεe−ηc/4√ηcEJcJ1 (δμα) sin (tωd) cos

(
μαϕext

)+ √
2αεe−ηc/4√ηcEJcJ2 (δμα) cos (2tωd) sin

(
μαϕext

)+√
2βNe−ηc/4N 2√

ηc/N 2EJcJ1
(
δμβ

)
sin (tωd) cos

(
μβϕext

) √
2βNe−ηc/4N 2√

ηc/N 2EJcJ2
(
δμβ

)
cos (2tωd) sin

(
μβϕext

)

ĉ†ĉ† − 1
2αεe−ηc/4ηcEJcJ1 (δμα) sin (tωd) sin

(
μαϕext

) 1
2αεe−ηc/4ηcEJcJ2 (δμα) cos (2tωd) cos

(
μαϕext

)

−βηce− ηc
4N2 EJcJ1

(
δμβ

)
sin (tωd) sin

(
μβϕext

)
/2N +βηce− ηc

4N2 EJcJ2
(
δμβ

)
cos (2tωd) cos

(
μβϕext

)
/2N

ĉ†ĉ −αεe−ηc/4ηcEJcJ1 (δμα) sin (tωd) sin
(
μαϕext

) +αεe−ηc/4ηcEJcJ2 (δμα) cos (2tωd) cos
(
μαϕext

)

−βηce− ηc
4N2 EJcJ1

(
δμβ

)
sin (tωd) sin

(
μβϕext

)
/N +βηce− ηc

4N2 EJcJ2
(
δμβ

)
cos (2tωd) cos

(
μβϕext

)
/N

ĉ†ĉ†ĉ† −αεe− ηc
4 η

3/2
c EJcJ1 (δμα) sin (tωd) cos

(
μαϕext

)
/6

√
2 −αεe− ηc

4 η
3/2
c EJcJ2 (δμα) cos (2tωd) sin

(
μαϕext

)
/6

√
2

−βηce− ηc
4N2
√

ηc
N 2 EJcJ1

(
δμβ

)
sin (tωd) cos

(
μβϕext

)
/6

√
2N −βηce− ηc

4N2
√

ηc
N 2 EJcJ2

(
δμβ

)
cos (2tωd) sin

(
μβϕext

)
/6

√
2N

ĉ†ĉ†ĉ −αεe− ηc
4 η

3/2
c EJcJ1 (δμα) sin (tωd) cos

(
μαϕext

)
/2

√
2 −αεe− ηc

4 η
3/2
c EJcJ2 (δμα) cos (2tωd) sin

(
μαϕext

)
/2

√
2

−βηce− ηc
4N2
√

ηc
N 2 EJcJ1

(
δμβ

)
sin (tωd) cos

(
μβϕext

)
/2

√
2N −βηce− ηc

4N2
√

ηc
N 2 EJcJ2

(
δμβ

)
cos (2tωd) sin

(
μβϕext

)
/2

√
2N

ĉ†ĉ†ĉ†ĉ† 1/48αεe−ηc/4η2
c EJcJ1 (δμα) sin (tωd) sin

(
μαϕext

) −1/48αεe−ηc/4η2
c EJcJ2 (δμα) cos (2tωd) cos

(
μαϕext

)

+βη2
c e− ηc

4N2 EJcJ1
(
δμβ

)
sin (tωd) sin

(
μβϕext

)
/48N 3 −βη2

c e− ηc
4N2 EJcJ2

(
δμβ

)
cos (2tωd) cos

(
μβϕext

)
/48N 3

ĉ†ĉ†ĉ†ĉ 1/12αεe−ηc/4η2
c EJcJ1 (δμα) sin (tωd) sin

(
μαϕext

) −1/12αεe−ηc/4η2
c EJcJ2 (δμα) cos (2tωd) cos

(
μαϕext

)

+βη2
c e− ηc

4N2 EJcJ1
(
δμβ

)
sin (tωd) sin

(
μβϕext

)
/12N 3 −βη2

c e− ηc
4N2 EJcJ2

(
δμβ

)
cos (2tωd) cos

(
μβϕext

)
/12N 3

ĉ†ĉ†ĉĉ +1/8αεe−ηc/4η2
c EJcJ1 (δμα) sin (tωd) sin

(
μαϕext

) −1/8αεe−ηc/4η2
c EJcJ2 (δμα) cos (2tωd) cos

(
μαϕext

)

+βη2
c e− ηc

4N2 EJcJ1
(
δμβ

)
sin (tωd) sin

(
μβϕext

)
/8N 3 −βη2

c e− ηc
4N2 EJcJ2

(
δμβ

)
cos (2tωd) cos

(
μβϕext

)
/8N 3
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fα = √
B/Bαα . Then we introduce alternative canonically

conjugate coordinates:

ϕ̂′
α = f −1

α
ˆ̄ϕα , n̂′

α = fα ˆ̄nα . (E2)

In terms of the alternative coordinates, and letting A′
αβ =

Aαβ/(fαfβ) (no implicit summation), we have

Ĥ = A′
αβ n̂′

α n̂′
β + Bδαβϕ̂′

αϕ̂′
β . (E3)

Step 2. Diagonalize the capacitive coupling matrix A′. We
assume here that this is possible and is achieved by an
orthonormal matrix S, such that

A′
αβ = (ST)αμDμνSνβ = SμαDμνSνβ , (E4)

with Dμν a diagonal matrix. Rewriting the above as
A′

αβ(ST)βγ = (ST)αμDμνSνβ(ST)βγ = (ST)αμDμγ , or A′ ·
ST = ST · D, then the matrix S contains the eigenvectors
of A′ on its rows. This diagonalization leads to

Ĥ = SμαDμνSνβ n̂′
α n̂′

β + Bδαβϕ̂′
αϕ̂′

β . (E5)

Inspecting the first term, we again define alternative coor-
dinates

n̂′′
μ = Sμα n̂′

α , ϕ̂′′
μ = Sμαϕ̂′

α . (E6)

One can verify that the alternative double-primed coor-
dinates are canonically conjugate because the trans-
formation is orthonormal: [n̂′′

μ, ϕ̂′′
ν ] = SμαSνβ[n̂′

α , ϕ̂′
β] =

iSμαSνβδαβ = iSμαSνα = iδμν . With this, we obtain a diag-
onal form for the Hamiltonian

Ĥ = n̂′′
αDαβ n̂′′

β + Bδαβϕ̂′′
αϕ̂′′

β , (E7)

where in the second term we use the fact that the orthogo-
nal transformation preserves the inner product.

Step 3. Finally, we need to undo the rescaling transfor-
mation of step 1. That is, introduce a third and last pair
of canonically conjugate coordinates, the normal-mode
coordinates

ϕ̂α = fαϕ̂′′
α , n̂α = f −1

α n̂′′
α . (E8)

At last the quadratic Hamiltonian reads

Ĥ = n̂αfαfβDαβ n̂β + Bδαβ

fαfβ
ϕ̂αϕ̂β

= n̂αfαfβDαβ n̂β + ϕ̂αBαβϕ̂β . (E9)

This is the final normal-mode Hamiltonian.
Hybridization coefficients. It is helpful to summarize

the normal-mode transformation by skipping over the

intermediate variables (primed, and double primed). For
this we have to invert the definitions of the intermediate
coordinates to obtain

ˆ̄ϕα =
∑

β

fαSβαf −1
β ϕ̂β ≡

∑

β

Uαβϕ̂β ,

ˆ̄nα =
∑

β

f −1
α Sβαfβ n̂β ≡

∑

β

Vαβ n̂β , (E10)

where we use ϕ̂′
α = Sμαϕ̂′′

μ and n̂′
α = Sμα n̂′′

μ. Note that U ·
VT = 1, i.e., the transformation from bare to normal modes
is canonical.

Creation and annihilation operators. Lastly, we con-
sider the creation and annihiliation operators. In order for
squeezing terms to disappear in the Hamiltonian, we need

ˆ̄ϕα =
∑

β=a,b,c

uαβ√
2
(β̂ + β̂†),

ˆ̄nα =
∑

β=a,b,c

vαβ

i
√

2
(β̂ − β̂†), (E11)

where

uαβ = Uαβ

√
εβ , vαβ = Vαβ√

εβ

. (E12)

Finally, we obtain the hybridization coefficients entering
Eq. (44) in the main text. The approach given in this
Appendix generalizes to an arbitrary number of modes
with off-diagonal coupling in either the capacitive matrix,
or in the inductive matrix.

APPENDIX F: FLOQUET THEORY

This Appendix provides a practical summary of Flo-
quet theory. The spectrum of a monochromatically driven
system can be obtained from the Floquet formalism
[20], according to which the time-dependent Schrödinger
equation for a periodically driven Hamiltonian Ĥ(t) =
Ĥ(t + 2π/ωd) can be recast into a numerically solvable
eigenproblem for the so-called Floquet Hamiltonian [19]

[
Ĥ(t) − i∂t

]
|φα(t)〉 = εα |φα(t)〉 . (F1)

The eigenvalues are the quasienergies εα , and whose
eigenvectors are the Floquet modes, which are periodic
functions of time with |φα(t)〉 = |φα(t + 2π/ωd)〉. In terms
of these, the solution to the time-dependent Schrödinger
is |ψα(t)〉 = e−iεα t |φα(t)〉. Of note, the solutions to Eq.
(F1) are only defined up to an integer multiple k of the
drive frequency ωd, for if {εα, |φα(t)〉} is a solution, then
so is {εαk ≡ εα + kωd, |φαk(t)〉 = e−iωdt |φα(t)〉}, which is
a consequence of the periodicity of the Floquet modes.
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Information about the monochromatically driven system
can be obtained from the quasienergy spectra. For exam-
ple, two-tone spectroscopy experiments where a weak tone
is used to probe the spectra of the driven system can be
modeled in the linear response regime [23]. In such exper-
iments, probe-tone-induced transitions occur at frequency
differences

�αβk = εα − εβ + kωd, (F2)

provided that the operator corresponding to the probe tone,
denoted generically as X̂ , has a nonzero matrix element
between the corresponding Floquet modes. With the above
notation, the corresponding matrix elements read

Xαβk = 1
T

∫ T

0
dt e−ikωdt〈φβ(t)|X̂ |φα(t)〉, (F3)

where T = 2π/ωd is the period of the drive. This
takes the form of a Fourier series coefficient fk =
1/T
∫ T

0 dt′e−ik(2π/T)t′ f (t′) of the matrix element of the oper-
ator X between the two Floquet modes

∣∣φα,β(t)
〉
.

Numerically, the Floquet spectrum is efficiently
obtained from the time-evolution operator over one period
of the drive, which has a compact expression in terms of
the Floquet modes [20]

Û(t + T, t) = T e−i
∫ t+T

t Ĥ(t′)dt′

=
∑

α

e−iεαT |φα(t)〉 〈φα(t)| , (F4)

where T is the time-ordering operator. According to
the above expression, the Floquet modes at time t =
0, |φα(0)〉, are the eigenvectors of U(T, 0), whereas the
quasienergies are obtained modulo an integer multiple of
ωd from the eigenvalues. The time-dependence over one
period of the drive is obtained by propagating each mode
|φα(0)〉 with the time-evolution operator Û(t, 0) in the
interval 0 < t ≤ T.

To summarize, the steady-state dynamics can be
obtained from the propagator Û(t, 0) over a single period
of the drive, which makes the Floquet method an efficient
alternative to numerical simulation of the dynamics over
the complete gate time. Indeed, the period of the drive, on
the order of 1 ns is between 2 to 3 orders of magnitude
shorter than the typical gate times. In this work we obtain
the quantities above by using the QuTip implementation of
the Floquet formalism [62], to which we have contributed
[63], amended by a numerically efficient evaluation of the
time-evolution operator developed by Shillito et al. [64].

APPENDIX G: NON-RWA EFFECTS IN FLOQUET
SIMULATIONS OF THE FULL DEVICE

In this Appendix we briefly discuss the role of counter-
rotating terms in the Floquet simulations of the full device

FIG. 9. Floquet eigenspectrum for a rotating-wave approxi-
mation in which all photon-number nonconserving terms are
removed from the full-circuit Hamiltonian analyzed in Sec. V B.
This figure is to be compared to the analogous result for the full
Hamiltonian in Fig. 7.

Hamiltonian. Counter-rotating terms (among which the
parity-breaking cubic terms play a significant role) in the
coupler Hamiltonian induce a helpful correction to the cou-
pler frequency, as can be seen by comparing Figs. 9 to 7.
This indicates, among other things, that a mere approx-
imation of the coupler Hamiltonian as a Kerr nonlinear
oscillator, as done in the case of the toy model, would
be insufficient for precise comparisons with experimental
data. Moreover, the speedup obtained by using the Floquet
method, together with the numerically efficient method
for computing the time-evolution operator, enables us to
study non-RWA effects efficiently as compared to full time
dynamics.
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