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Abstract. In this work we study the fully developed turbulence described by the stochas-
tic Navier–Stokes equation with finite correlation time of random force. Inertial-range
asymptotic behavior is studied in one-loop approximation and by means of the field the-
oretic renormalization group. The inertial-range behavior of the model is described by
limiting case of vanishing correlation time that corresponds to the nontrivial fixed point
of the RG equation. Another fixed point is a saddle type point, i.e., it is infrared attractive
only in one of two possible directions. The existence and stability of fixed points depends
on the relation between the exponents in the energy spectrum E ∝ k1−y and the dispersion
law ω ∝ k2−η.

1 Introduction and description of the model

One of the possible ways to consider the fully developed turbulence within the framework of some
microscopic model is to study the stochastic Navier–Stokes equation with random external force [1].
It has the form

∂tvi + (vl∂l)vi + ∂i℘ = ν0∂
2vi + φi, (1)

where vi(x) is a transverse (owing to the incompressibility) velocity field, x ≡ {t, x}, ∂t ≡ ∂/∂t, ∂i ≡

∂/∂xi, ν0 is molecular kinematic viscosity, ∂2 = ∂i∂i is the Laplace operator, and ℘ = −∂−2(∂ivl)(∂lvi)
is pressure. The simplest way is to assume that random force φi is decorrelated in space and time [2].
In this case, we preserve the Galilean symmetry of the system, therefore this approach is very inter-
esting from the physical point of view. On the other hand, it is intriguing to consider such a model
with colored noise. At the microscopical level such correlations of the random force φi arise if the
noise is itself the result of removing “faster” degrees of freedom. In Fourier space these correlations
can be represented in the form [3]〈

φi(ω, k) φ j(ω
′, k′)
〉
∝ δ(ω + ω′)δ(k + k′)Pi j(k)Dφ(ω, k), (2)
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where Pi j(k) = δi j−kik j/k2 is the transverse projector. We choose the function Dφ(ω, k) in the form [4]

Dφ(ω, k) = D̃0
k8−d−y−2η

ω2 + ν20u2
0k4−2η

; (3)

here k ≡ |k| is the wave number, D0(k) = D̃0k8−d−y−2η is the zero-time (power-law) correlation function
of the extracted degrees of freedom, a new parameter u0 is needed for the reason of dimensionality,
and D̃0 > 0 is an amplitude factor. From (3) it follows that the energy spectrum of the velocity in the
inertial range has the form E ∝ k1−y, while the correlation time at the momentum k scales as k−2+η.

This means that the random force φi is simulated by the following statistical ensemble: it is as-
sumed to be Gaussian, homogeneous, with the zero mean and the following correlation function:

〈
φi(t, x)φ j(t′, x′)

〉
= D̃0

∫
dω
2π

∫
k>m

dk
(2π)d

Pi j(k)
k8−d−(y+2η)

ω2 + ν20u2
0k4−2η

eik·(x−x′)−iω(t−t′). (4)

Here d is an arbitrary (for generality) dimension of x space, and 1/m is an integral turbulence scale,
related to stirring. The function (4) involves two independent exponents y and η, which in the renor-
malization group (RG) approach play the role of two formal expansion parameters. Such ensemble
was employed in some models, studied in [4–8]. It was shown that, depending on the values of the
exponents y and η, the model reveals various types of inertial-range scaling regimes with nontrivial
anomalous exponents, which were explicitly derived to the first [4] and second [5] orders of double
expansion in y and η.

Depending on the parameter u0, the function (4) demonstrates two interesting limiting cases: if
u0 → 0, the situation corresponds to the independent of time (“frozen”) velocity field, the case u0 →

∞ corresponds to the rapid-change (zero-time correlated) model. The relations

D̃0/ν
5
0u2

0 = g̃0 ≡ Λ
y+2η (5)

define the coupling constant g̃0, which plays the role of the expansion parameter in the ordinary
perturbation theory, and the characteristic ultraviolet (UV) momentum scale Λ.

Such ensemble with arbitrary function Dφ(ω, k) ∝ f
(
Wk2/ω3

)
instead of (3) was used in [9] (here

W is dissipation rate of energy). The first order term of the expansion of viscosity in the turbulent
Reynolds number was obtained.

A very powerful method to study the various statistical models of turbulence is provided by the
field theoretic renormalization group; see the monographs [10, 11] and references therein. In a num-
ber of papers this approach was applied to the case of passive vector (magnetic) fields advected by
a turbulent flow with some prescribed properties: large-scale anisotropy, helicity, compressibility,
finite correlation time, non-Gaussianity, a more general form of nonlinearity, etc.; see [12–16] and
references therein.

2 Field theoretic formulation of the model

The stochastic problem (1) and (4) is equivalent to the field theoretic model of the set of two fields
Φ ≡ {u′, u} with the De Dominicis–Janssen action functional

S(Φ) =
1
2
v′i Dvv

′
k + v

′
k

[
−∂t − (vi∂i) + ν0∂2

]
vk. (6)

Here Dv is the correlator (4), the needed integrations over x = (t, x) and summations over the vector
indices are implied [10, 11]. The field theoretic formulation means that statistical averages of random
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quantities in the original stochastic problem coincide with functional averages with weight expS(Φ)
with the action (6).

The model (6) corresponds to a standard Feynman diagrammatic technique with the triple vertex
−v′k(vi∂i)vk and two bare propagators. In the frequency-momentum representation, the triple vertex
corresponds to the expression

Vi jk =
1
2

i
(
δik kv

′

j + δi j kv
′

k

)
, (7)

where kv
′

is the momentum of the field v′; in the diagrams it is represented by the point, in which three
lines connect with each other. The two propagators are determined by the quadratic (free) part of the
action functional and are represented in the diagrams as slashed straight (the slashed end corresponds
to the field v′) and straight (the end without a slash corresponds to the field v) lines, respectively. In
the frequency-momentum representation they have forms

〈
viv

′
j

〉
0

=
Pi j(k)

−iω + ν0k2
; (8)

〈
viv j

〉
0

= D̃0
Pi j(k)

ω2 + ν20k4

k8−d−(y+2η)

ω2 + ν20u2
0k4−2η

. (9)

From the analysis of canonical dimensions it follows that for any d > 2 superficial divergences can
be present only in the 1-irreducible functions of two types. The first example is the function 〈v′αvβ〉1−ir,
for which the formal index of divergence is dΓ = 2. Another possibility is the function 〈v′αvβvγ〉1−ir

with dΓ = 1.

3 Feynman diagrammatic technique

Consider the generating functional of the 1-irreducible Green’s functions:

Γ(Φ) = S(Φ) + Γ̃(Φ), (10)

where for the functional arguments we have used the same symbols Φ = {u, u′} as for the corre-
sponding random fields; S(Φ) is the action functional (6) and Γ̃(Φ) is the sum of all the 1-irreducible
diagrams with loops [11]. This means that

Γ
αβ

2 =
[
iω − ν0 p2

]
Pαβ(p) + Σαβ, (11)

where p is an external momentum, Pαβ(p) is the transverse projector and Σαβ is the “self-energy
operator,” diagrammatic representation of which is given in Fig. 1.

Figure 1. The one-loop approximation of the 1-irreducible response function 〈v′αvβ〉1−ir

Scalarization of the expression (11) produces

Γ2 = iω − ν0p2 + Σ, (12)
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and after calculations for the one-loop approximation of the scalar quantity Σ one obtains

Σ = −
1
16

p2 × g̃0ν0
u3

0d(d − 1) + 3u2
0d(d − 1) + 2u0(d2 − d + 2)

d(d + 2)(u0 + 1)3
Cd

m−y

y
, (13)

where Cd ≡ S d/(2π)d. Moreover, we use the minimal subtraction (MS) renormalization scheme, in
which all the anomalous dimensions γ are independent of the regularizers such as y and η, and we
may choose them arbitrary with the only restriction – our diagrams have to remain UV finite; see [5]
for a detailed discussion. The most convenient way which we adopt in what follows is to put η = 0.

The one-loop expansion of the second divergent function 〈v′αvβvγ〉1−ir has the form

〈v′αvβvγ〉1−ir = Vαβγ + (Δ1 + Δ2 + Δ3), (14)

where Vαβγ is the vertex (7), and diagrams Δ1, Δ2, and Δ3 are presented in Figs. 2a–2c.

Figure 2. The one-loop approximation of the 1-irreducible function 〈v′αvβvγ〉1−ir

Integrations over the momenta in the diagrams depicted in Figs. 1–2 are performed via averaging
over the angles: ∫

dk f (k) = S d

∫ ∞

m
dk kd−1 〈 f (k)〉 , (15)

where 〈· · · 〉 is the averaging over the unit sphere in the d-dimensional space, S d is its surface area,
and k = |k|.

For the divergent part of diagram 2a, which is proportional to an external momentum p, we have

Δ1 =
i
4
g̃0

u0(u0 + 2)
4(u0 + 1)2

(d + 1)pαδβγ − pβδαγ − pγδαβ
d(d + 2)

Cd
m−y

y
. (16)

Two remaining diagrams give

Δ2 = Δ3 = −
i
4
g̃0

u0(u2
0 + 3u0 + 4)

8(u0 + 1)3

(d + 1)pαδβγ − pβδαγ − pγδαβ
d(d + 2)

Cd
m−y

y
. (17)

Using the transversality condition ∂ivi = 0 together with expression (7) and moving the derivative in
the vertex from the field v′ to the field v (using integration by parts) one can conclude that the term
proportional to pα gives no contribution, therefore the sum of the three triangle diagrams gives

Δ1 + Δ2 + Δ3 =
i
8
g̃0

u0

(u0 + 1)3

pβδαγ + pγδαβ
d(d + 2)

Cd
m−y

y
. (18)
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4 Renormalization of the model and fixed points

The model (6) is multiplicatively renormalizable with two independent renormalization constants Z1

and Z2; the renormalized action functional has the form

SR(Φ) =
1
2
v′i Dvv

′
k + v

′
k

[
−∂t − Z1(vi∂i) + Z2ν0∂

2
]
vk. (19)

These renormalization constants can be found from the requirement of UV finiteness of the expres-
sions (12) and (14). Taking into account expressions (13) and (18) and introducing new coupling
g = g̃Cd/4d(d + 2) for the anomalous dimensions γ1 and γ2 one obtains

γ1 = g
u

(u + 1)3
; (20)

γ2 = g
u3d(d − 1) + 3u2d(d − 1) + 2u(d2 − d + 2)

4(u + 1)3
. (21)

Dimensionality considerations together with expressions (9) and (19) give

g0 = gμ
yZg, u0 = uμηZu; γg = 2γ1 − 3γ2, γu = −γ2, (22)

where μ is “reference mass” (additional free parameter of the renormalized theory) in the MS renor-
malization scheme. One of the basic RG statements is that the asymptotic behavior of the model
is governed by the fixed points {g∗, u∗}, defined by the relations βg = 0, βu = 0. From the expres-
sions (22) it follows that

βg = g(−y − 2γ1 + 3γ2); βu = u(−η + γ2). (23)

The type of a fixed point (IR/UV attractive or a saddle point), i.e., the character of the RG flow in the
vicinity of the point, is determined by the matrix Ωik = ∂βi/∂gk, where βi is a full set of β-functions
and gk is a full set of couplings. For an IR attractive fixed point, the matrix Ω has to be positive, i.e.,
the real parts of all its eigenvalues are positive.

From the analysis of β functions it follows that if 1
3 < α <

1
3 +

4/3
3d(d−1)+2 the system possesses fixed

point {g∗, u∗} with coordinates

u∗ =

−3 +
√

1 − 16(α−1)
d(d−1)(3α−1)

2
; (24)

g∗ =
3α − 1

2
y

(u∗ + 1)3

u∗
, (25)

where α = η/y; see Fig. 3.
Moreover, it turns out that one of the two eigenvalues of the matrixΩ for this point is less than zero,

thus, this fixed point is saddle one, i.e., it is IR attractive only in one of the two possible directions.
Another interesting case to be considered is u∗ → ∞. From (4) it follows that this case corresponds

to the rapid-change model; this means that in this situation one should obtain the well-known fixed
point of the model with zero-time correlations [2]. This is indeed so: taking into account that

γ2 = g̃
d(d − 1)

4
at u∗ → ∞, (26)

one can obtain that in this case

ĝ∗ = y
4(d + 2)
3(d − 1)

, (27)

where ĝ = g̃Cd/4. This fixed point is IR attractive if y > 0, η > y/3.
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α = 1/3

α = 1/3 + a∗

η

y

Figure 3. Domain of the existence of the fixed point in the model (6); a∗ = 4/3
3d(d−1)+2

5 Critical dimensions

In the leading order of IR asymptotic behavior, Green’s functions satisfy the RG equation with the
substitution g → g∗ and u → u∗. This feature, together with canonical scale invariance, gives us
critical dimensions of the fields in the model, which, in fact, govern the asymptotic behaviour of
arbitrary correlation functions.

If u∗ → ∞ one obtains
Δv = 1 − y/3, Δv′ = d − 1 + y/3, (28)

which is in agreement with [2].
The saddle fixed point (24)–(25) gives

Δv = 1 +
η − y

2
, Δv′ = d − 1 +

η − y

2
. (29)

6 Conclusion

We applied the field theoretic renormalization group to the analysis of the Navier–Stokes equation
with colored random force, i.e., to the model with arbitrary finite correlation time of the velocity field.
The critical dimensions of the fields are calculated. As it should be for the case of infinite fixed point,
they coincide with the zero-time rapid-change model considered earlier in [2].

One loop approximation provides that, depending on the two exponents y and η that describe
the energy spectrum E ∝ k1−y and the dispersion law ω ∼ k2−η of the velocity field, the possible
nontrivial types of the IR behavior appear to reduce to the only one limiting case: the rapid-change
type behavior, realized for y > 0, η > y/3. Another fixed point, realized for 1

3 < α <
1
3 +

4/3
3d(d−1)+2 ,

where α = y/η, is a saddle type point. The fact that the only IR attractive fixed point corresponds to
vanishing correlation time means, in particular, that the Galilean symmetry, violated by the colored
random force, is automatically restored in the IR limit. This gives a quantitative illustration of the
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general concept that the symmetries of the Navier–Stokes equation, broken spontaneously and by
initial or boundary conditions, are restored in the statistical sense for the fully developed turbulence;
see the discussion in [1].
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