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Abstract

The standard model (SM) can explain most of the experimental results. However,
there are some pieces of evidence that indicate beyond the standard model (BSM)
physics. We mainly focus on neutrino oscillation in this thesis. It necessarily indicates
BSM couplings to the lepton sector and gives reliable and strong hints of BSM physics.

The neutrino oscillation is explained by neutrino Dirac/Majorana masses. See-
saw models are well-known ones which derive the Majorana masses. Seesaw models
generally contain (heavy) BSM particles which couple to the SM lepton sector. On
the other hand, the lepton number symmetry is broken in the Majorana mass terms,
though it is (classically) unbroken in the SM. In the Majoron models, the origin of
the symmetry-breaking scale is explained, and the associated Nambu-Goldstone boson
(Majoron) appears. The heavy BSM particles and/or the Majoron may describe other
BSM physics. Throughout this thesis, we discuss the relationships between the neutrino
Majorana mass and other physics, for example, the muon g-2 anomaly [1], the observed
dark matter relic density [2,3], and the strong CP problem [3].

First, we explain the neutrino oscillation and the muon g-2 anomaly by Type II see-
saw model. In order to explain the muon g-2 anomaly, we introduce the double charged
scalar to Type II seesaw model. Then the constraints from lepton flavor violation
indicate that discrete lepton flavor symmetry exists.

Second, we consider the production mechanism for TeV scale Majoron dark matter.
TeV scale Majoron dark matter can explain the anomalous results in the positron
fraction detected by the cosmic ray observations. However, its production mechanism
is not clear. We show three scenarios in which TeV scale Majoron is produced as much
as the observed dark matter relic density.

Third, we construct the minimal model in which the lepton number symmetry break-
ing in the seesaw model is identified as the Peccei-Quinn one in the axion model. Some
radiative seesaw model contains colored heavy particles coupling to the SM lepton
sector. This is identified as heavy colored fermions in the KSVZ axion scenario.
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Part 1
Introduction

The standard model (SM) can explain most of the experimental results. However, there
are some evidences which indicate the beyond standard model (BSM). For example, there
are the experimental results which can not be explained by SM; dark matter (DM), dark
energy, inflation (the horizon problem), neutrino oscillation, anomalous results in flavor
experiments, baryon asymmetry and etc. Furthermore, SM has the theoretical problems;
the strong CP problem, hierarchy problem and etc.

We mainly focus on the BSM physics which explain the neutrino oscillation. The
existence of neutrino oscillation is very reliable. It will not be denied by the future
experiments. Furthermore, The neutrino oscillation indicates the BSM particles which
couples to the SM lepton sector. It is the very strong hint of BSM.

Neutrino oscillation is the transition from one weak eigenstates |v,) to the other one
|vg). In order to explain it, the weak eigenstates and the mass eigenstates of neutrinos
must be different:

Vo) = Z Ugilvi)- (0.1)

Here, U,,; is Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [4,5], and it is parametrized

as follows:
C12€13 512€13 s13€” 0P
_ i is
Uai = | —512€23 — €12523513€"°°P  C12C23 — 512523513€"°CF 523C13
5 5
512823 — €12C23513€"°°F  —C12523 — 512C23513€"°°T  C23C13
x diag(1, e'21/2 ¢ias1/2), (0.2)

0”- € [O, 7T/2), (5CP = [0, 27T), Cij = COSQZ']', Sij = sin@ij.

The parameters in the PMNS matrix are measured by experiments using solar, atmo-
spheric, reactor and accelerator neutrinos.



NuFIT [6] shows the global fits of these parameters: '

sin” 015 = 0.30470015, sin’ a3 = 0.57370050, sin” 013 = 0.022197 5 Hooea

—0.00063

197+27
dcp = T}f“w, Am3, = 7.427020 % 107%eV? Am32, = 2.51775920 x 107 3eV?
(Normal Ordering /with SK atmospheric data) (0.4)
sin? 015 = 0.30479013 . sin® O3 = 0.57570015, sin? A3 = 0.0223870-09063

282+26
dcp = 18630”’ Am3, = 7.427020 % 107%eV?, Am3, = —2.498 70928 x 1073 V?
(Inverted Ordering /with SK atmospheric data) (0.5)

This global fits is based on the following experiments:

e Solar experiments (Homestake [7], Gallex & GNO [8], SAGE [9], SK [10-13],
SNO [14], Borexino [15-17], Standard Solar Model (external information) [18])

e Atmospheric experiments (IceCube [19,20], SK [21], Atmospheric neutrino fluxes
(external information) [22])

e Reactor experiments (KamLAND [23], Daya Bay [24], Double-Chooz [25, 26],
Daya-Bay 2 [27], Reno [28,29])

e Accelerator experiments (MINOS [30,31], T2K [32,33], NOvVA [34,35])

Next, we review the BSM physics which explain the neutrino oscillation. There are two
well-known methods to explain neutrino oscillation: Dirac mass and Majorana mass.
In Dirac mass method, massless right-handed neutrinos vz are introduced:

L£L>—yLHvp +He, (0.6)

Here, L is the doublet SM lepton, H is the SM Higgs particle and H = (ioo) H*. After
electroweak symmetry breaking, the neutrinos obtain nonzero Dirac masses.

Another method is Majorana mass method. The dimension-5 higher dimensional
operator is allowed by SM gauge symmetry:

1— =
Log D — KLCHHTL + H.c. (0.7)

After electroweak symmetry breaking, the neutrinos obtain nonzero Majorana masses.
The simplest UV completions for this operator are known as ”seesaw models”: Type I

! Here, Am2, := Am3, > 0 for NO, Am2, := Am3, < 0 for 10.
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seesaw (right-handed fermion Ny € (1, 1, 0) %) [36-40], Type II seesaw (complex scalar
A € (1, 3, +1)) [41-43] and Type I1I seesaw (right-handed fermion Xy € (1, 3, 0)) [44].
The coefficient of the effective operator is suppressed by heavy BSM scale, it explains
the smallness of neutrino masses.

There are models which give the neutrino masses at loop level. They are called as
"radiative seesaw models”. Zee model [45,46] and Zee-Babu model [47,48] are well-
known radiative seesaw models. Furthermore, there are radiative seesaw models with
dark matters; KNT model [49], the scotogenic model [50] and etc. In these models, dark
matter is stabilized by extra Zs symmetry.

The important feature of the neutrino Majorana masses is that they break the lep-
ton number symmetry. This symmetry is classically and accidentally conserved in SM.
Therefore, we want to know the origin of the breaking. Majoron models [51,52] is well
known models which explain the origin of lepton number symmetry breaking. In Majoron
models, this breaking is identified as the vacuum expectation value (VEV) of complex
scalar. Majoron is the pseudo Nambu-Goldstone (NG) boson of the lepton symmetry
breaking.

In this thesis, we show the relationships between the neutrino Majorana masses and
the other BSM physics. Seesaw models contain the heavy particles coupling to SM lepton
sector. Therefore, they may explain the problems relating to lepton; such as muon g-2
anomaly ( [1], Part I1). Furthermore, the origin of the lepton number symmetry breaking
also relates other physics. Majorons have no electromagnetic charge, therefore, it can
become dark matter ( [2], Part III). On the other hand, the lepton number symmetry
breaking can be identified as the other symmetry breaking ( [3], Part V).

In Part 11, we show the relationship between the neutrino oscillation and the muon
g-2 anomaly. We briefly review the muon g-2 anomaly in §1. In §2, we show the methods
explaining both muon g-2 anomaly and neutrino oscillation. In §2.1, we show that Type
IT seesaw model cannot explain the muon g-2 anomaly, because the contribution from
Type II seesaw has the opposite sign to Aa, = ag® — aEM, which is the known facts
shown in [53]. In §2.2 and §2.3, we explain our idea to solve it. In §2.2, it can be solved by
a double charged complex scalar k™ € (1, 1, +2). In this extended model, the discrete
lepton flavor symmetry must be imposed, in order to avoid LFV constraints (§2.3). In
§3 and §4, we concretely construct two models, and show that they can explain both the
muon g-2 anomaly and the neutrino oscillation, and avoid all LF'V constraints.

In Part 11, we show the relationship between the neutrino oscillation and the exis-
tence of dark matter. In this part, we identify the (TeV scale) Majoron as dark matter.
In §6, we review the Majoron dark matter. There are a lot of researches on Majoron dark
matter with GeV scale or lighter masses (§6.1). In §6.2, we show that TeV scale Ma-

2 X € (m, n, p) means that X are in SU(3)¢ m-plet and SU(2)., n-plet, and its U(1)y charge is p.



joron dark matter is interesting, because it can explain the anomalous results in positron
fraction detected by cosmic ray experiments. However, it is not obvious that the TeV
scale Majoron can be produced as much as the DM relic density. In §7, we illustrates
the difficulty and our solutions of it. In §8, 9 and 10, we explain three scenarios in
which TeV Majoron is produced as much as the observed dark matter relic density. In
these sections, we show the Lagrangian of Majoron models, Boltzmann equations, the
approximation formulae and numerical results for the Majoron dark matter density.

In Part IV, we show that the lepton number symmetry can be identified as Peccei
Quinn (PQ) symmetry in axion model. First, we review the strong CP problem (§12.1),
axion models (§12.2) and their experimental constraints (§12.3). In §13, we show previous
works in which the PQ symmetry in the QCD axion model is identified as the lepton
number symmetry in the Majoron model (L=PQ models). In §14.1, we construct the
minimal L=PQ models, by identifying the heavy quark in KSVZ axion model with the
heavy fermion in (radiative) seesaw model. We call this as ”Ma-xion” model. In §14.2,
we show the particle contents and their Lagrangian in Ma-xion model. In §14.3, we derive
the axion-SM-SM coupling by the redefinition of fields, and the experimental constraints
on them. In §14.4, we show that Ma-xion models can explain the dark matter relic
density and the neutrino oscillation.



Part 11
The muon g-2 anomaly and the
neutrino oscillation

1 The review of the muon g-2 anomaly

1.1 The muon g-2 anomaly

Recent results about muon g — 2 anomaly are summarized in [54]. This section is based
on this.
The lepton ¢~ has the magnetic dipole moment (MDM):

e
—g—s. 1.1
n=gy s (1.1)

This g is called as Lande g-factor. g = 2 in tree-level, and differ from 2 in loop-level.

It is useful to define the parameter a as a = 9—52. It was precisely measured by BNL
3.

experiment [55]
a,(exp) =116 592 089(63) x 10~ (1.2)

The Standard Model prediction of a contains the contributions from QED), electro-weak,
hadron vaccum porlarization (HVP) and hadron light by light (HLbL). The latest results
of QED are calculated by [57,58]:

a?"P(a(Cs)) =116 584 718.931(104) x 10~ (1.3)

The contribution from electro-weak is calculated by [59,60]:
a;" =153.6(1.0) x 107"\, (1.4)

There are two methods to calculate HVP contribution: data-driven (or phenomenolog-
ical) evaluation and lattice QED-QCD calculation. First, we show data-driven results.
The leading order contribution from HVP is calculated by [61-66]:

ay, V"0 =6931(40) x 1071, (1.5)
The NLO contribution [66] and NNLO contribution [67] are shown as follows:

GEVP’NLO = —98.3(7) x 107, GEVPvNNLO = 12.4(1) x 107, (1.6)

3 Here, we used the latest value of A = y,,/u, = 3.183345142(71) [56].
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Therefore, the HVP contribution calculated by the data-driven evaluation are:

ap "’ =a RO 4 qVENEO g gV RRLO — 6845(40) x 1071, (1.7)

The HVP contribution calculated by lattice QED-QED are shown follows [68-76]:
a; VPO =7116(184) x 1071 (1.8)

This has large uncertainty, therefore, we do not use in this thesis. In the last year,
BMW-2020 [77] calculates the HVP contribution by lattice, with small uncertainty:

ay, V10 =7087(28)(45) x 1071, (1.9)

This result consists with no new physics. In this thesis, we do not use this results, and
we wait other lattice HVP results with small uncertainty:.

The HLbL contribution are calculated by the data-driven evaluation and the lattice
calculation. The data-driven result [78-90] and next to leading order result [91] are
shown as follows:

allPPl =(69.3(4.1) + 20(19) + 3(1)) x 107! = 92(19) x 107, (1.10)
a, P NO =2(1) x 107 (1.11)

Lattice results of HLbL [92] are shown as follows:
a, Pt =78.7(30.6)stat (17.7)sys x 1071 (1.12)
Then, HLbL results are shown as follows [54]: *

HLbL(phenomenology + Lattice) =90(17) x 101, (1.13)

aIPPL (phenomenology + Lattice) + a™P NLO —92(18) x 107, 1.14
1 1

Total SM contribution is given by QED + EW 4+ HVP + HLbL, therefore,

SM QED
o

HVP,LO HLbL + aHLbL NLO (115)

a +a +a +a +a

:116 591 810(43) x 107, (1.16)

HVP,NLO + CLEVP’NNLO

Here, we used HVP results given by data-driven evaluation, it is because the uncertainties
of lattice results are large. Then, the difference between SM prediction and experiment
results are shown as follows:

Aa, =a®P — M = 279(76) x 1071, 1.17
H W %

This suggests that there is 3.7¢0 discrepancy. This is called as "muon g-2 anomaly”.

4 Here, we take into account that c-quark contributions are not contained in lattice results.

11



1.2 The contribution from the BSM dipole effective action to the
muon g-2 anomaly

The muon g-2 anomaly can be explained by BSM physics. In this section, we evaluate the
contribution from effective Hamiltonian (generated by heavy BSM particles) to lepton
g-2 and electric dipole moment (EDM). We assume that the effective Hamiltonian is
given as follows:

H=—- /d?’a:FWZU’W(ALPL + ARPR)E, (AR = Az) (1.18)

Here, ¢ is SM charged lepton field, F),, is the electro-magnetic field strength and o
is defined as o = i[y*, v¥]/2. We evaluate this effective Hamiltonian by lepton state
vectors |[((p, s)) and background electro-magnetic fields, then, we can get the BSM con-
tributions to lepton g-2 and electric dipole moment (EDM).

First, we evaluate the dipole operator as follows ° (assuming F},, does not depend on
X):

/ By, )" (ALPy + ApP)l0(p, 7)) (1.19)

A3k A3k
= [ & \/2E +/2E,, 1.20
/ m(27r)3\/2Ek(27r)3\/2Ek/§ A (1.20)

X [ﬂsl(k:’)a“”(ALPL + ApPr)u® (k)e "= (0lar) (ag) T ag (al)F]0)

+ 0% (Ko™ (AL Py + ARPR)US<k)e+i<’f*’f’>w<0|a;ib8’,(bz)f(a;)woﬂ (1.21)

&Pk K
= [ &x mﬁ,/zEppr, (1.22)

x [ar’(k’)gMALPL + ApPp)u’ (k)e P71 83(k — p)§* (K — p')

LT (K)o (AL Py, + ApPr)v (k)07 6% (k — K83 (p — p')] (1.23)
=T ()0 (AL Py + ArPr)W (p) x (27)*6%(p — p') (1.24)
(Here, we ignore 2nd term). (1.25)

° Here, we use the following notations: ¥(z) = [ (g:rz)’g\/;fzs (aius(p)e " + b3fv®(p)etir™).

EP
The spinors u(p) and v(p) is defined as follows: u(p) = Aru(m, 0),v(p) = Aiv(m, 0), u*(m,0) =

1
3
N (?’) , v5(m,0) = /m (77;] ) ,El¢s = 0,5, nins = 6,5. Here, A% is Lorentz transformation of spinors
defined as follows A1 = exp(—iw,, S"/2), SM = i[y*, v"]/4, Ailfy“A% = A7, p*A” = (m, 0)Y. The

one particle state vector of W is defined as [¥(p, s)) = \/2E,a3'|0)

12



Then, we can evaluate the effective Hamiltonian by lepton state vectors and background
electro-magnetic fields :

(', AP, ) 11
(@', r)e(p, r)) o 2E,

__ %[ _2i(A — AR)E' — 2(Ap + Ap)B| (€N o', (1.27)

" (o™ (AP + ArPr)u’ (p) (1.26)

Therefore, the BSM contributions to EDM and MDM are: *
(Aay)e

my

dPM = — 2i(Ap — Ap)s, p®M = —2(AL + Ag)s = s, (1.28)

therefore, we can get the formulae for BSM contribution to Aa, and EDM:

ng

Aap = (AL + Ag), |de| = | —i(AL — AR)|. (1.29)

e
There are a lot of BSM models which explain the muon g-2 anomaly; for example the
extra gauge boson [93-110], the two Higgs doublet model [111-119] and so on. We
explain the muon g-2 anomaly by the Type II seesaw model.

2 The relationship between the neutrino oscillation and
the muon g-2 anomaly

In this section, we show the relationship between muon g-2 anomaly and neutrino oscil-
lation.

Type I and III seesaw contain one coupling: LN R(;NS and LY ng, respectively. On
the other hands, type II seesaw contains ”two” couplings ya L°AL and ju1¢" (ico) Afg.
Therefore, type Il seesaw can explain neutrino mass with TeV scale BSM particles and
O(1) Yukawa couplings, by setting p1 as small value. We want to use these TeV particles
and O(1) Yukawa couplings to explain muon g-2 anomaly.

In §2.1, we show that Type II seesaw model cannot explain the muon g-2 anomaly,
because the contribution from Type II seesaw has the opposite sign to Aa,, = a};? — aEM.
It is shown in [53].

In §2.2 and §2.3, we explain our idea to solve it. In §2.2, it can be done by a double
charged complex scalar k*+ € (1, 1, +2). In this extended model, the discrete lepton
flavor symmetry must be imposed, in order to avoid LF'V constraints (§2.3).

6 Ar = (¢, A)#, FOi = Ei, Giijij = —2Bk,FHVO"uV = —QZE’L <U —O'i> - 23k2k7 O'Oi =

(ot
. i
" When EDM is d and MDM is g, the Hamiltonian under background electro-magnetic field is given as

follows: H=—-d-E — u - B.

.. .. g'k
0 = ekyk ik = 5
o

13



2.1 Type II seesaw and muon g — 2

Type II seesaw model has BSM particle A € (1, 3)41. Then, the Yukawa coupling of A

8 are shown as follows:

Ly = — yRLe(ioy) ALy + Hee. (2.1)
1 VA + 00 + 001 — . 1 _
= - 5@2&)%%% + V2yR (Upnins )56 05 vi + 5(2%")5**6%@&5 +H.c.

(2.2)

Here, L,(a = e, u, 7) is the SM doublet lepton field. The first term in (2.2) gives
neutrino Majorana masses. The second and third terms in (2.2) give the contribution to
the lepton g-2.

The VEV of A is given by u¢™ (ioy) AT, after electro-weak symmetry breaking. The
p parameter depends on va:

omiy B 1+ 203 /v
p_?nQZCOSQeW IRV

(2.3)

The experimental value of p is 1.00038 4 0.00020 [120]. Therefore, va < O(1) GeV.
In appendix §A.1.2, we calculate the lepton g-2, by using the following Lagrangian:

LOHMC(f2 P, + PR, + b H (C v, + Hee. (2.4)

By comparing this with Type II seesaw model, Hf * H;r , f,—f, i‘}g, h?j are given as

follows:
z'aLb = yiﬂa ia}g =0, h?j = \/éyzb(UPMNS)bj, H;FJF =5, H;r =", (2.5)

Then, lepton g-2 and the coefficient of dipole operators can calculated from the formula

o 5+/\/§ §t+
A ﬂ_((’UA-F(So—F’L'(Sl)/\/i —5+/\/§)'

14



in §A.1.2:

2
Aag, = — (A + AR)™, App = Al + ALY (2.6)
[h; hT a“m e [yAyT Jaa
AH+aa :AH+aa — bo A 9.7
L R 4ﬂ. 2 Z 12(4%)2 M52+ s ( )
Ht"aa ~ € 1 J[ac a Tac ca
+{—=3+6In(M"?/mj ) }my.f T“Cf“:} (2.8)
2e g, [yhya]™
= a 2.9
3(m? M2, (2.9)
Httaa € 1 fac tac
Ap ~3(dr)? Z M [ngaf r+2m, fip fin
+{ = 34 6In(M;2/m? ) by, 2 } (2.10)
2 my, [yhyal™ 2.11)

T3(m? M2,

Here, A L. R is the contribution from single charged scalar, A¥ R is the one from double
charged scalar. Therefore, *

[yayh]eom? < 1 8 )
Aay, = — = + 2.12
sam? \arZ TR (2.12)

This implies that the contributions from 6% and 6™ have minus sign. Therefore, they
cannot explain the muon g-2 anomaly, which has plus sign. In Type II seesaw model,
d7 couples to only left handed lepton. This is reason why Aq, has minus sign.

In next section, we add a douple charged scalar field k*+ € (1, 1, +2) to Type II
seesaw model. Then, the Yukawa coupling between double charged scalar and "right”-
handed lepton also exists. It will explain the plus sign of the experimental Aa,, value.

O ya =yk, [yayh]®® = [yhyal® = 3, &

15



2.2 Type II seesaw model with £+

Let us consider Type II seesaw model with double charged scalar k™. First, we consider

the scalar potential 'V '!:

Vg, A K] =45 (67¢) + MATH(ATA) + M. [k
+ [ (io2) AT + Hecl] + [k ™ Tr(ATAT) + Hoc.]
+ A 10)2 + M (0T)Tr(ATA) 4+ A [Tr(ATA)? 4+ AsTr[(ATA)?]
+ MOTAATG + A5 ol kT2 + N Tr(ATA) KT
+ M@t AGk™ + Hee] + Aglk T (2.13)

We assume that the couplings of ¢ are chosen so that ¢ gets nonzero VEV. After electro-
weak symmetry breaking, ¢ gets VEV as (¢) = L (1?) Then, A also get VEV as
¢

V2
B 5+/\/§ 5+t
a ((UA+50+i(51)/\/§ —(5+/\/§

). va is given by the stationary condition:

v? 1
B S om2 M)vilua + O(v3), (2.14)

vac \/§ 2

0_8_50

le,

Mwi
V2[ME + (v + Aa)e2/2]

N +O(v3). (2.15)

When g is much smaller than weak scale, the mixing between ¢y and Higgs becomes
tiny. We ignore this mixing effect.

0 TTAAATAT = ITTAATYATAT, THAATAAT] = (TrAAT? — ITrAATIATAT, 6TAATS + ¢TATAG =
dTPTrATA, TTAATAT =0
11/, and A7 can be real value by redefinition of kt+ and A.
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Mass terms of scalar particles are given as follows:

1
=5 [MR + (A 4+ M)v3/2] (8 + 07) + [MR + (A1 + Ag/2)v3 /2] 67

102 A2
M? ! <z> 2% ott

+ (5__ k__) ( A,\ v} ’ A v2> ( ++) (2.16)

et

N 7 M3 + A“"ﬁ A;”i co sg\ (Hi"

+(H{ ™ Hy") <89 o > A% i A% <_Se 09> (H;+> (2.17)
:Mé;+|H1++|2 + M?12++|H2++|2> (2.18)
MIQJ# = ch — 289cgC + sgB, Mifﬁ = s%A + 259coC + czB, (2.19)

)\1 2 /\57); 9

2C

tan(20) = 15 —7m/4 <0 <7/4. (2.21)

Here, 6 is mixing angle between 671 and k*". 6 depends on the scalar coupling
)\7§5TA¢]€__. The BSM contribution of the muon g-2 has a strong dependence on ¢
(ie. A7). H{§ are defined as the mass ecigenstates.

Next, we consider the Yukawa couplings of the model. These are shown as follows:

Ly = — yNL(iog) ALy — y&0% (rpk ™™ + Hee, (2.22)
1 p VA + 0o + 251_
— (922 70T O
1 — 1 S
+ 5(2?Jib)(00H1++ +sHy )07,y — 5(29§b)(—89H1++ +coHy ), lry, (2:23)
5++ = C@HiH_ + SgHéH_, /{J++ = —80H1++ + C@H;+, Vg = <UPMNS)aiVi- (2.24)

b+ V2R (Upnins )oid 05 v

Here, double charged scalars couple to both left-handed leptons (by ya) and right-handed
ones (by yg). Then, Aa can have positive sign.

Next we evaluate the lepton g-2 and the lepton flavor violating (LFV) decay widths
in type II seesaw model with £™+. When comparing the Yukawa couplings in this model
with one in §A.1.2:

LOHMC(f2P, + PR, + b H (Cvp; + Hee., (2.25)

Ht, HF, f&b, fab h;-” are given as

7 )

o (HT +_ st
H™ = Hit) H =07, (2.26)
e =vV2yR (Upnns )by, £ =y& (co s0),. i =y& (s0 —co), - (2.:27)
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Then, the muon g-2 and the decay widths of LF'V processes in type II seesaw with kTF
are evaluated as follows:

2
Aag, = — e (Ap 4 Ap)e, (2.28)
(m?a - m? )3 a a
L(ly — byy) :—47rm3 2 (JAF)? + |AR]?), (2.29)
[h; hJr “bmg e [yAyT ] my
AT ba b A b 2.
L 47r 2 Z 12(4m)2 M2, (2:30)
h~hT]“bmg e [yAyT ] my
Al b € il Mt _ Al T, 92.31
R 24(47)? Z Miﬁ 12(47)2 M (2:31)

b e 1 . .
A 23(47T)2ZM++2 2 SIS+ 2me Sl S
+{ = 34 6In(M; 2 /m2 ) by, flte ] (2.32)

1
Ag++ba ~ (& |:2m€ f’i‘bc ca _|_ 2 Zaf'i'bc
3(4r)2 ; M b

+{ =34+ 6In(M;2/m? ) b, f1° ] (2.33)
AH a0 _ gH a0y gH e (2.34)
€ 1 ac ac
S 2 (e, £l £t + dme £l 15
+{- 3+61n(M++2/m )b, (flac pea 4 floc pea )] (2.35)

€ 1 ca ca
s (s b <l
1

+—{——3+—6hmﬂ4r+%hnz>}nugquyEWyﬁ~+ykwysw} (2.36)

tac_ ca

1 ac
+ 15 N [4méa39?JTA YR+ dm, GGy ys

{8 OO ) b sl + 50 | 20

The terms in (2.36) and (2.37) are important for muon g-2 anomaly. These term can
have negative value, it is because these contain both yg and ya. Furthermore, they
contain the chirality flip my, in internal Fermion line. When /. = 7, they have large
value. Therefore, Aa, can be large positive value in this model.
However, dangerous LFV processes occur in this model. We show the plot of I'(y —
ey)/T(p = evuvg) vs M+ in Figure 1. The parameter settings in Figure | are shown
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Figure 1:  The plane of I'( — ) /T'(1n — ev,¢) vs My++. Both the muon g-2 anomaly
and the neutrino mass matrix are explained at the blue points. The horizontal line is
the experimental limit of I'(x — ev)/I'(p — er,v¢), and the vertical line is the CMS
limit of Mp++ (See §A.4).
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as follows:
va =1071GeV, Ma = 900GeV, A\; =0, Ay = 0.1, A5 = 0. (2.38)

Furthermore, we vary the parameter M}, and choose A7 such that we can explain muon
g-2 anomaly. I'(p~ — e7)/I'(p~ — e"v,v¢) is much larger than the experimental limit.
Furthermore, other LF'V processes (1~ — e~ e"et, 7= — p~v and etc.) can also occur.
Therefore, we must reduce the LF'V process.

In next subsection, we introduce the lepton flavor symmetry to the model.

2.3 The discrete flavor symmetry

LFV processes are shown as follows:

o=y, uT —e e e, T ey, T = Y, (2.39)
T e ee, T e pet, T —we et (2.40)
T et T et T =t (2.41)
When assigning Zs charges on SM leptons:
ZsLe = +Le, ZsL, = +wlL,, Z3L; = +WL-, (2.42)
Zzer = +eR, L3lip = +WHR, L3Tr = +WTR, (2.43)

only 77 — e"e ut and 77 — p pe’ are allowed under this symmetry. We impose

this symmetry on Type II seesaw model with k*+.

We can not explain the neutrino oscillation under the exact Zs. Therefore, we allow
the soft breaking terms of Zs which cause the neutrino mass matrices.

In §3 and §4, we concretely construct two models: the model with k), (a = e, p, 7)
(Model I) and the model with A,, (a = e, u, 7) (Model IT). Model I has the soft breaking
term uabkjk;k__, and it causes Zee-Babu type neutrino mass matrix [47,48]. Model II
has the soft breaking term p,¢" (io9) Al ¢, and it causes neutrino mass matrix as Type
IT seesaw.

3 Modell

In this section, we explain Model I. The fields contents of Model I are shown in Table 1.
kT and A gives the positive contribution to muon g-2. Only with k** and A, neutrino
oscillation can not be explained due to Zs symmetry. We introduce k) (a = e, pu, 7),
then, neutrino can gain Zee-Babu type neutrino mass.
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| | SUB)c | SUQ2)L | UQ)y | Zs |
kT 1 1 2 1
A 1 3 1 1
kT 1 1 T [ 1
O 1 1 1 |w
kit 1 1 I |

Table 1: Field contents in Model 1

Yukawa couplings in Model I are shown as follows:

ﬁY = — yZbL_fL(iUQ)ALb — ygb@ERkarJr — yZEGbck:L_g(iJQ)LC + H.c.
1 UA + (50 + 251_
— —(2 ab _ 1% 3.1
et i, 3.1)
+ V2R (Upnins )pid 05 vi + 2056 (Upnins )ils  vik,”

1 - 1 _
+ —<2y2b)(09H1++ + 89H2++)£%a€u, — 5(2yg,b)(—39H1++ + CgH;+)f%a£Rb,

2
00 v 00
yR=10 0 y |, 4¢=(0 0 v,
0 yA' 0 U
ot :CQHiH— + SQH;_+, EtT = —SoHiH— + CoHéH—, V, = (UPMNS)m’Vi- (3.2)

The term in (3.1) contributes neutrino mass as Type II seesaw, however, it can not
explain neutrino oscillation data, because ya is restricted by Zs symmetry. ya, y4 and
ys cause the neutrino mass as Zee-Babu models.

Scalar potential of ¢ (SM Higgs), A, k™ is shown as follows: *

V[, A K] =pd (670) + MATr(ATA) + ME o[k + (ME ) aks Ky
+ (10" (io9) ATp + Hoel] + [pok ™ Tr(ATAT) + Hoc.]
+ [pank k™ + Hee]
+ AM610)2 + M (¢Td)Tr(ATA) + Xo[Tr(ATA)? + A3 Tr[(ATA)?
+ BT AATG + 50Tk + A Tr(ATA) k)2
+ [MOTAGE™ + H.c.] + Ag|kT |
+ Xoak kg '+ Aoak kg TrATA
+ Miak kBT 4+ Mok o' AT + Hoe ]
+ [M3aveaky ki ko k; +H.c] (3.3)

1244, and A7 can be real value by redefinition of K™+ and A.
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We assume the couplings of scalar potential so that ¢ gets nonzero electro-weak VEV.
When j11¢" (io9) AT¢ is nonzero, A obtains nonzero VEV. uabk;rkgr k=~ is Zs soft breaking
term, and it causes neutrino oscillation by Zee-Babu mass matrix. >\7QETA¢/€__ causes
kTT-5T% mixing, and it explains muon g-2 anomaly.

For simplicity, we assume the following condition:

M;fmb :M]?;F(Saba pr = p2 =0, (3.4)
A1 =5 = Agg = Aoa = AMia = A2e = AM3abed = 0. (3.5)

We set 1 = 0, therefore, the VEV of A becomes zero. Then, the scalar masses are given
as follows

)\41)2
M2 =M3 + T¢’ M2 = M2, (3.6)
M7 =cgA — 2s9cyC + s3B (3.7)
Mé;+ =55 A+ 259cgC + 3B, (3.8)
A=M3, B= M., C=Mv}/2, (3.9)
2C
20)=— ——, —n/4 <0< n/4 q
tan(20) = — o — =, ~m/A<0<7/ (3.10)

Here, Hf“ 3 are defined as the mass eigenstates. 6 is the mixing angle between §*+ and

k*. 6 depends on the scalar coupling /\7($TA¢I<:__. The BSM contribution of the muon
g-2 has a strong dependence on 6 (i.e. \7).

Next we evaluate the lepton g-2 and the lepton flavor violating (LFV) decay widths
in type II seesaw model with k**. When comparing the Yukawa couplings in Model I
with one in §A.1.2:

LOHHC(f Py + fEPR) + hY H (Cvp; + Hee, (3.11)

H H, fab fab b are given as follows:

Hi 5+
Hi+ Hy ki
Hi—i_—‘_ = (H3+) ) HZ_F - Hjjr - ki_ (312)
i %
wi), \k/,
h = (V2y 2y5e® 2y 2y7e™) (Upnins)sy (3.13)
i =YX (Ce 89)2-, iaﬁzyfqb (Se —Ce)i- (3.14)

In §A.1.2, we calculate muon g-2 and LFV processes, by using the Yukawa couplings in
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(3.11). When using them, muon g-2 are shown as follows:

2 2 2 2
m 21y ar 2 T
AaH+ ~_ i < ‘yA | + |yAe| + ’yAN | ) (mg <K MH+)7

" 3(4m)? Ml?i Mé M52+
A 2m,, {4mu(|y27|203 + Y5 [2s5) + me (YA ys™ + y§ YA )seco{6 (M, /m?) — 3}
a ~ —
Z 3(4r )2 MZ,
Amy (lys™Pc; + [AT1Ps5) — m- (YA us™ + y§Tya ) soco {6 In(M7, ., /m?) — 3} }
M
(3.15)
pT 0T 2
Yn Vg SecomumzAM ms r our
~ 5 M3 ;2 In M2 , (MH2++ — MH1++ = AM, when yg ,yg & R)
HtT HT
(3.16)

Here, Aaf ! (AafH) are the contribution from singly (doubly) charged scalar, respec-

tively. Aaf++ contains the large contribution with m, chirality flip. It depends on
Yukawa couplings y\" and v% , mass difference of doubly charged scalars AM, and the
mixing angle #. In order to explain muon g-2 anomaly, these Yukawa couplings, mixing
angle (i.e. A7) and mass difference must be large. We will discuss these later.

The branching ratios of LFV process conserving Zs symmetry (7 — eefi, T — [i/1€)
are given as follows:

Br(r — eept) /Br(t — pv,m,) (3.17)
1 s2 c2 2 c2 s2 2
e WP (g + )+ WP P (e + 5 )
40%{ S M]%II++ Méﬁ M]%Il++ Méﬁ
1 1’
+ (W& lys™ 7 + 1§ P lys” 2)83@3(M2 - P ) } (3.18)
H++ H++
1 2
Br(r — ppe)/Br(t — pv;v,) = 0. (3.19)

In order to reduce Br(r — een)/Br(t — uv,v,), we choose yg* and y% as small (we
choose these as y&© = 0, y& = 0.001 later).
Neutrino mass matrices are given as

(M) ab =V 2y va (3.20)
(Mw)ab = = 16(y5 €™ Jme, (y5) e, (e ™)™

x {sgls(mt, me,,mf me, mit) + gIs(my),, me,,m me,, m3T)} (3.21)
(Ma,v)ab =16500 (53" ) (Y1 )ea(y5€™ Vi

X {J5(m:;,mgc,m:{,mgd,mf+) - J5(m$,mgc,m;t,mgd,m;+)} (3.22)
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Here, I5 and J; are defined as follows

I5(mg, My, Me, Mg, me) (3.23)
:(ﬁ.l)ze/ dPp dPq 1
B (2m)P (2m)P (p? — m2)(p? — m})(q* — m2)(¢*> — m3){(p+ q)*> — m2}’
(3.24)
J5(mg, my, me, mg, me) (3.25)
_ 2 [ dPp dPq P-q
=0 | G e 2+ 0F —m2}
(3.26)

The diagrams of (M, ,)a and (Ma ,)ae are given in Figure 2 and Figure 3, respectively.

+
kOé /T\ kg—

s N
e \
/ I \
YL —>—’—He<—|—>%e>—\—<—yg
c 14

o B
O
;b | \
[ 5++I \
0 73 G W E— «— V¢
oG

Figure 3: The diagram of neutrino mass (Ma ,)ap

13 Here, m is 't Hooft cale. Please see §A.3 for a detail. The physical values do not depend on this.
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We show the plots of I'(T — een®)/I'(7 — evivy) vs Mp++ in Figure 4 Moy vs M+
in Figure 5, and A7 vs M Hit in Figure 6. Here, we set parameters as:

T T T T T T T T T
o -7 L |
N 10 F
f 3
Q-) L
T 10-8 | E
\b 3
—
> |
01 10—9 - i
O r
\S)
T I e0 000 00 00000000 ee0 0000 00 000 00 ¢
=~ 10_10 3 |
— r
10—11 7 . . . | . . . | . . . | . . .
400 600 800 1000 1200
H++ (GGV)

Figure 4:  The plane of I'(7 — eep)/T(T — eviv,) vs Mys+. Both the muon g-2
anomaly and the neutrino mass matrix are explained at the blue points. The horizontal

line is the experimental limit of I'(7 — eepu®)/I'(1 — evtr,), and the vertical line is the
CMS limit of M+ (See §A.1).

y§ =0, ys" =1, y& = 0.001, y\" = 0.2, (3.27)
YAe :yAM = Yar = 0.1, )\4 = 0.1, MA = 9OOGeV, (3.28)

My =2000GeV, My = 2200GeV, M+ = 2400GeV, Myws = Ma + M. (3.29)

We vary dM from —299 to 281 GeV, and choose A7 and u® such that we can explain
muon g-2 and neutrino mass matrix. Then LF'V decay rate, muon g-2, M Hit and M Hi
vary with oM.

In Figure 4, we can see that LE'V constraint of I'(T — eeu®) can be avoided. The
reason why we can avoid is we choose y%° and yg° as small.

In Figure 5 and 6, we can see that there is a parameter region where A7 ~ O(1) and
the CMS constraint on My, ,: MHH 2 537GeV (Please see §A.4). The constraints on
doubly charged scalars is very crucial. In our models, doubly charged scalars mainly
decay to 7" channel. Our model will be tested by this channel in future experiments.

14 7 — ppe® does not occur in Model 1.
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Figure 5: The plane of Ay vs M H Both the muon g-2 anomaly and the neutrino mass

matrix are explained at the blue points. The horizontal line is |A\7| < V47 (perturbativity
constraint), and the vertical line is the CMS limit of M+ (See §A.4).
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500 600 700 800 900 1000 1100 1200
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Figure 6: The plane of A\; vs M HiH Both the muon g-2 anomaly and the neutrino mass

matrix are explained at the blue points. The horizontal line is |\;| < v/47 (perturbativity
constraint), and the vertical line is the CMS limit of My g+ (See §A.4).

27



4 Model 11

In this section, we explain Model II. Model II contains the particles listed in Table 2.
kT and A, give the positive contribution to muon g-2. Only with k™ and A., neutrino

L [ SUB)c [ SUQR), [U)y | Zs |
A 1 1 2 |1
A. 1 3 1 |1
A, 1 3 1 | w
A, 1 3 1 | @

Table 2: Field contents in Model 11

oscillation can not be explained due to Zs symmetry. We introduce A, (a = u, 7), then,

neutrino oscillation can be done.
The scalar potential of ¢, A, and k™" is given as follows:

VIg, A, k] =13 (670) + (MR, Tr(ALA,) + M|k
+ (09" (i02) Al + Hael] + [oak™ " Tr(AgA,) + Heel
+ M019)? + Ma(0!p)Tr(AfA,)
+ [Noabed Tr (AT A Tr(ALA) + Hoc.]
+ N3aped Tr(ATALATA ) 4+ Hec]
+ MaadT AuAL G + AsdTdlE T2 + Moo Tr(AL AL )2
+ A0 Ak~ + Hoe] + Ag|kTH % (4.1)

We assume the couplings of scalar potential so that ¢ gets nonzero electro-weak VEV.
Furthermore, Mia and p9, are assumed to be diagonal. Zjg is softly broken by u,. When
(a9 " (io3) Al ¢ is nonzero, A, obtains nonzero VEV. Then, neutrino gains Majorana mass
terms as type II seesaw model. By redefinition of kT, A7 can be real. A\7¢! A ¢k~ causes
k-0t mixing, and it explains muon g-2 anomaly.

After EWSB, A, gain nonzero VEV: 1°

(4.2)

1 , [aV?
62 :_(UaA + h2a + Zn2a)a VaA = ‘0

V2 VO,

We assume va < vg, then, the mixing angle between ¢ and A becomes tiny. We ignore
this effect.

or (W e
¢ (Van + Ga0 +10a1)/V2 =65 /V2
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Masses of scalar fields are
M?—If :(Mie + )\167)2/2 + )\461)2/4),
M2+ :(Mi + )‘1NU2/2 + )‘4NU2/4)
M? it =(MZ_+ Mr0% /2 + Mgp0?/4),

MIQ_I;,_I.F —CQA - 280090 + SoB, M?_I;,_;_ - Mi# + >\1,LL,U2/27
MIQ_IEJr :MiT + A17U2/2, M?_I;Jr = SzA + ZSQCQC + CgB,
A :Mie + )\167)2/2, B = Ml? + )\51)2/2 C= )\77)2/2,

5++ :C0H++ + SQH_H— 5-0—-!— H;—Q—F, 57-_|-+ Hl_g+7
Kt = — spHT + c0H++ HF =5,
20!

tan(?@) = — m,

(—m/4 < 0 <m7/4).

The Yukawa couplings in Model II are given as follows:
_ 1 _
Ly = — YLE (i09) ALy — 5(2 YV Crpk ™ + Hec.

1 C Ci C
= — 5( chab) (U A +(\5/0§+ io 1 — \/_(S+€c oV — 5++£cLa€Lb)

— Y&, Cppk™T + Hec.
1 VeA + 600 + 1501

el
© 0 ~ O Ot e W

(4.
(4.
(4.
(4.
(4.
(4.
(4.
4.

)
)
)
)
)
)
)
(4.10)
)

(4.11

Here, Hlf 5.3 are the mass eigenstates of singly charged scalar fields. When va, < vy,
these are same as singly charged scalars in A,: H{ ~ §F, Hy ~ 5; and Hy ~ 4.
Hij1 12,132 are the mass eigenstates of doubly charged scalar fields.
Hi5" ~ 6 and Hf5" ~ 61 67+ and k™ mix with the mixing angle 6. 6 depends on
the coupling A\7¢pt Ak~

When va, < vy,

(4.12)

(4.13)

(4.14)

=— 5(2be) /s VS vy + V2Y. 28, H (Upnins )i 05 4 Vr
++
Co 0 0 S ZlJru
+Y®10 10 0 v | ety — Y2 (—sgHy™ + coHy ) Priy,.
0010/, H;f’ )
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Here, Yukawa couplings are restricted by the discrete lepton flavor symmetry Zs:

ye 00 ye 00

yd=10 0 o] ,¥Y*=(0 0 | , (4.16)
0 ygT 0 ab 0 yZT 0 ab
0 0 o7 0 yd' 0

YO=(0 g 0o ,Y*=|y¥ 0 0| . (4.17)
ye 0 0/, 0 0 yx/,

The first term in (4.15) gives the neutrino Majorana mass. The other terms in (4.15)
give the contributions to muon g-2. H{|" and H, " couple both the left-handed leptons
and the right-handed ones. Therefore, the contributions from A 1+1+2 to the muon g-2 can
be positive.

When comparing the Yukawa couplings in Model II with the ones in §A.1.2:

LOHHC(f2 P, + fRPr), + R Hf (Cup; + Hec., (4.18)

Ht, HF, &, fab h{’ are given as follows:

H-H—
HEJF Hf Co 00 S

Hit = Hlf+ CHF = HS | f=v®l0 10 0], (4.19)
H;g | HY) . 0010/,

fiaé) = — ygb (—89 0 0 Cg)l. s h?j = \/é}/;ab@'c(UpMNs)bj. (420)

In §A.1.2, we calculate muon g-2 and LFV processes. When using them, Aa,, I'(T —
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eepf) /T(1 — evfr,) and T(1 — ppe)/T(T — eviy,) are shown as follows:

Aa, =M + Aal, (4.21)
my R T )
AN — ( + + ) (4.22)
1% 2 2 2 2 )
3(4mP\ M2, T MZ T ME
2
HTt mu 1 T2 T  KUT
Aau =T o { M121 {4|y | — 3(Ya ysu + ys yA ")sgco
] 2 2 V2.2 |yeu ? ’yW °
% (my/m,)[1 — 2In(M 4 }
(m /mﬂ) |: n( H;LlJr/mT):I + |y | _'_ M123 + M122
o (4l 55 + BATYE + yTR ) sece
H++
X (e /my) [1 = 2(M2 o /m2)] + 4]yl Pe } } (4.23)
[(1 — eeps) 1

ee|2 uT 2 2M2 M2
U(r — eviv,)  AGL(M H++)4(MH2++)4{‘UA [|?JA (sg i+ T Co )2

Iy PR (ME e — M2 2| + s | (M + sEME )
I PO - 3] (124)

U(r = ppe)  [yX Plyd')?
(1 — eviv,)  4G2 MEH'
12

(4.25)

We can see that Aaf " has negative values. On the other hands, Accfil++ contains the
terms proportional to (m,/m,)(yx yd" + ys yA'"). They can be large positive value,
therefore, the muon g-2 anomaly can be explained.

The decay width of I'(T — ppe®) can be much smaller than LF'V experimental limit,
by choosing y/\ and y& as small. We will do this later by choosing v, as O(107%) GeV.
I'(t — eeu®) depends on Yx g and yZT, g- They can not be chosen as tiny, when explaining
both muon g-2 anomaly and neutrino oscillation. Therefore, the constraint on I'(7 —
eeyf) is important.

We show the planes of I'(T — eep®)/T'(T — evgrr) vs Mp++ in Figure 7, I'(1 —
pe) /T(T — evivr) vs My++ in Figure 8, A7 vs M+ in Figure 9, and A7 vs M4+ in
Figure 10.
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Figure 7. The plane of I'(7 — eep)/T(t — eviv;) vs Mys+. Both the muon g-2
anomaly and the neutrino mass matrix are explained at the blue points. The horizontal
line is the experimental limit of I'(T — eeu)/T'(7 — evty,), and the vertical line is the
CMS limit of M+ (See §A.4).
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Figure 8:  The plane of I'(r — ppue)/I'(7 — eviv:) vs Mys+. Both the muon g-2
anomaly and the neutrino mass matrix are explained at the blue points. The horizontal

line is the experimental limit of I'(7 — ppe®)/I'(7 — evfr,), and the vertical line is the
CMS limit of M1+ (See §A.4).
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matrix are explained at the blue points. The horizontal line is |A\7| < V47 (perturbativity
constraint), and the vertical line is the CMS limit of Mg+ (See §A.4).
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constraint), and the vertical line is the CMS limit of M+ (See §A.4).
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Here, we set parameters as:
ys =0, 45" =1,
Vea =1.3 x 1070GeV,v,a = 1.0 x 107°GeV, v,4 = 1.0 x 107°GeV,
Me =0, A1y = 0.2, Air = 0.4, Age = 0.1, Ay, = 0.3, A4r = 0.5, A5 =0,
Ma, =900GeV, MAu = 2000GeV, Ma, = 2500GeV, My++ = Ma, + 0M. (4.26)

We vary 6M from —799 to 46 GeV, and choose \; and y% such that we can explain
muon g-2 and neutrino mass matrix. Then LF'V decay rate, muon g-2, M Hit and M Hit
vary with oM.

In Figure 7 and 8, we can see that LF'V constraint can be avoided. The constraint on
T — eepf is crucial as Figure 7. It is because yx ¢ and yZT’ g can not be chosen as tiny.

The constraint on 7 — ppe® is not crucial as Figure &, because we can choose yi and

pig

yx as small.

In Figure 9 and 10, we can see that there is a parameter region where \; ~ O(1) and
M i, 2 537GeV. The constraints on doubly charged scalars are very crucial. In our
models, doubly charged scalars mainly decay to 7% channel. Our model will be tested
by this channel in future experiments.

5 Summary of Part II

We can construct the models which can explain both the neutrino oscillation and the
muon g-2 anomaly. In these models, we introduce double charged scalar k™ into Type
IT seesaw model, to explain the muon g-2 anomaly. Furthermore, we must impose the
discrete lepton flavor symmetry Z3 to avoid LFV constraints. Then, there are parametric
regions, in which the LF'V constraints and the CMS constraints on double charged scalars
can be avoided and A7 ~ O(1). Our model will be tested by muon g-2 experiments, LFV
constraints and the decays from doubly charged scalars to ut + 7.
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Part II1
The TeV scale Majoron dark matter

6 The relationship between the neutrino oscillation and
the dark matter

In this part, we consider the relationship between neutrino oscillation and the dark
matter. There are radiative seesaw models with dark matters; KNT model [49], the
scotogenic model [50] and etc. In these models, dark matter is stabilized by extra Zs
symmetry. Majoron models can also explain both neutrino oscillation and the observed
dark matter relic density. We focus on the Majoron dark matter in this Part.

We review the previous works about Majoron dark matter lighter than TeV scale in
§6.1. In §6.2, we show that TeV scale Majoron dark matter is interesting, because it can
be detected by the cosmic ray experiments.

6.1 The Majoron dark matter lighter than TeV scale

Neutrino oscillations are detected by experiments using solar [7-17], atmospheric [19-21],
reactor [23-29] and accelerator [30-35] neutrinos. There are two methods to explain
them. One is Dirac mass method, and the other is Majorana mass method. In the
Majorana mass method, the following dimension-5 operator is generated by integrating
out heavy particles

1— .
Log D — KLCHHTL + H.c. (6.1)

This term breaks the lepton number symmetry. Majoron models [51,52] is well known
models which explain the origin of lepton number symmetry breaking. In Majoron
models, this breaking is identified as the VEV of complex scalar. Majoron is the pseudo
NG boson of the lepton symmetry breaking.

Particle contents of the Majoron model are shown in Table 3. Yukawa couplings of

field SU(Q)L U(l)y U(l)BfL
L, (SM doublet lepton) 2 -1 —1
€%, (SM singlet lepton) 1 +1 +1
H (SM Higgs) 2 3 0
Ve, 1 0 1
) 1 0 +2

Table 3: field contents
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the Majoron models are given as:

LD — %(I)VTRZ.VRj — % LoHvp; + He. (6.2)
Here, f;; can be real diagonal by redefinition of v;z. After (®) = %, the Lagrangian
becomes as: '
My, + fi (5 N
5 o ¢ XNivs (6.3)
- (y;iL_af]PRNi + H.c.) (6.4)

N; =vp; + V]C%i, P = %(Uqf) + ¢+ iX), My, = fL\/Q;
Then, N gets Majorana masses, therefore, after integrating out N, we can explain neu-
trino oscillation. y is a pseudo NG boson of the lepton number symmetry breaking, and
it is called as Majoron.

There are a lot of papers which identify ”GeV scale or lighter” Majoron as dark
matter. When Majoron is dark matter, Majoron must have non-zero mass. We can
give the explicit Majoron mass [121,122] or the one from quantum gravity [123-125].
In [121,122,126-131], the phenomenology of Majoron DM is discussed. The recent
constraints on Majoron DM are given in [132,133]. The constraints by indirect detections
are given in [132] (see Figure 11 and 12), and the ones by Majoron emission processes
in [133] (see Figure 13). The production of Majoron dark matter is discussed in [122].
In [122], Freeze-in mechanism [134] is used for the production.

As above, a lot of papers of "GeV scale or lighter” Majoron dark matter exist. On
the other hand, there are anomalous results in the positron fraction (flux of et /flux of
e™ +e7) detected by the cosmic ray experiments. This can be explained by ” TeV” scale
Majoron dark matter. We explain them in next section.

(6.5)

16 ®’s VEV can be real by redefinition of ®. Then, fi;vs; becomes real diagonal matrix.
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Figure 11: The experimental bounds from the J — vv processes [132]. Here, J is
Majoron, and f is lepton number breaking scale (it is the same as vy).
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6.2 The cosmic ray observation and the TeV scale Majoron dark
matter

Recent days, there are anomalous results in positron fraction (flux of e /flux of e™ +¢7)
detected by the cosmic ray experiments. In Figure 14, [135] shows the observed positron
fraction by AMSO02 [136-138], HEAT [139], PAMELA [140, 141]. The black line is pure
secondary production [142].

0.25

T TTTTT T TTTTT I T TTT

B AMS02
® HEAT
0.20 # PAMELA

0.15

o Lo

0.10

0.05

Positron Fraction - ®o+/(®e- + D +)

[T T 11

I_I_

Ll Lol
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Energy [GeV]
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Figure 14: The plot of the energy of cosmic ray vs positron fraction [135]. The black
line is pure secondary production [142]. The excess of the positron fraction can be
explained by dark matter decay [143] (green line), propagation physics [144] (blue line)
and production in pulsers [145] (red line).

We can see the tension between the observed results and the one predicted by pure
secondary production. There are some solutions to explain this tension; dark matter
decay [143], propagation physics [144] and production in pulsers [145]. We explain this
tension by TeV scale Majoron dark matter decay, as [143].

When Majoron is GeV scale or lighter, the main process which contributes to DM
indirect detections is xy — bb (x: Majoron) as Figure 12. However, when Majoron is TeV
scale, other processes of Majoron decay are opened, such as x — W*W =, ZZ, h°h°, ZhO, tt.

The decay widthes of x — WTW =, ZZ, h°hY, Zh° are 152 x O(mZm3 /mj; ), and much
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smaller than y — bb. The decay width of y — ¢ is shown as follows (please see §3.2):

Q v 2
Fx—nff _4(?))(:;\271_3 W /\/_ M [Z| a2| fiM ] : (6.6)

IR E suppressed by factor Mb2 /M2, Therefore, when the TeV scale Majoron is DM,
the main process which contributes to DM indirect detections is x — tt.

Furthermore, y — vv processes are also important. The decay width of x — vv is
given by:

2

m, me,
8_7: . (1-— 4m,%i/mi)3/2. (6.7)
¢

Fx—nw =

This decay rate is constraited by IceCube experiment 'y, < 1/(0(10%°72%)sec) [146,
147]. When m,, ~ 0.1eV, this constraint can be rewrite as:

vy 2 O(107°719)GeV. (6.8)

In Figure 15 and 17, we show the plot of positron fraction vs positron energy and
antiproton EZ flux. '” Here, we use the PPPC4DMID package [148,149] and the formulae
for the primary and secondary flux of e~ and the secondary one of e [150]. Furthermore,
we show the antiproton E? flux detected by AMS-02 [151] in Figure 16.

Comparing Figure 15 with Figure 14 (positron fraction), we can explain the excess
of positron fraction by the TeV scale Majoron dark matter with v, = O(10'%) GeV,
my = O(1) TeV and my = 3m,. In the Majoron model, the mass of N is given as

7

My, = f\’;’;. Therefore, f ~ O(10~(11712) when the excess is explained. Comparing
Figure 17 with Figure 16 (antiproton E,% flux), we can obtain the upper limit of f;:
|fi] < O(10' — 10'%). Please see [152,153] for details of the constraints of f; and vy.

Combining the above results, the TeV scale Majoron dark matter with f ~ O( 10_(11_12))
and vy, ~ O(10°71%) GeV may be observed in future cosmic-ray experiments. In this
thesis, we consider the production mechanism of TeV scale Majoron dark matter in the
early universe.

I7E,: antiproton kinetic energy.
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Figure 15: The plot of the energy of cosmic ray vs positron fraction. Here we assumed
that DM is the TeV scale Majoron.
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decay
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7 An introduction to the production of the TeV scale
Majoron dark matter

In §6.2, we show that TeV scale Majoron dark matter is interesting, because it can be
detected by the cosmic ray experiments. However, it is not obvious that the TeV scale
Majoron can be produced as much as the DM relic density. In this section, we illustrate
the difficulty and our solutions of it.

First, we show the Lagrangian of Majorana models. The Yukawa couplings of Ma-
joron models are

LD— %(I)VTRZ-VRJ' - ygiL_aﬁuRi + H.c. (7.1)
_ My, - S (ngNi +¢XE»V5Ni) - ( v ToH PpN; + 1. c) (7.2)
2 2\/5
1
Ni =vpi + V5, ® = ——(vy + 6+ ix), M; = Jig (7.3)

V2 V2

The lepton number symmetry is broken by the VEV of ®. This breaking gives the
Majorana masses of N;. Then, SM neutrino gains the Majorana mass as type I seesaw
model. The generation of IN; cannot be changed by the couplings ¢N; N; and xN;v5N;.
The VEV of @ is given by the following scalar potential:

2 2 2
L 2 M2 Ao m .
V== A = el L \H\ + Ao H?| @ + \<1>| - [+ (@7)7].
(7.4)
The stationary conditions (before EWSB) of ¢ is
ov
—0 o g2 = Al —m? (75)

a_¢ vac

Using this condition, we replace ug by other parameter. After ® gets nonzero VEV,
potential becomes as follows:

m2 m2 m2 m2
V =m}|H|* + TXXQ + —%52 + 2—¢X2¢ + 2—%53 + Amavso| H|? (7.6)
Vg Vg
my my A A
242 4 a4 A2y oy Mg
— H —\H 7.7
+82X+42X¢ 82¢ 2( +¢)||+2||, (7.7)
m2
mi = 77127 Ao = 7)_2(;57 ,u%[ = —Qm% + )\Hqﬂ};. (78)
@
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We assume f; ~ O(1071) and v ~ O(10°71%) GeV, m, ~ O(10%) GeV. These con-
ditions are imposed by DM indirect detection, shown as §6.2. Furthermore, we must
impose m, < 2my, in order to avoid x — NN channel.

Next, we show the difficulty of Majoron dark matter production.

When Age = 0, Majoron is produced from N or ¢. The interaction yN;y5N; cannot
cause No — Ny process. x can be produced by NN — ¢ — xx (s-channnel) process.
This process has a resonance at s ~ my, therefore, Yy must be somehow large at T ~ m.

When A\ge # 0, x can be created by HH — yx. This process is suppressed because
X is (pseudo) NG boson. Therefore, we cannot produce x by freeze-"out” mechanism.

Last, we show three scenarios in which TeV scale Majoron can be produced as much
as the observed DM relic density:

e Scenario A: We introduce Lepton number soft breaking term —%miijRiz/Rj, then
Ny — Nix occurs. We can produce x via this process by freeze-in mechanism [134].

e Scenario B: y can be produced via HH — yx process, by UV freeze-in mechanism
[134,155].

e Scenario C: x is produced from N at T" ~ my, by freeze-in mechanism [134]. Yy
must be somehow large at T' ~ m.

8 Scenario A

8.1 The Lagrangian

In Scenario A, we introduce lepton number soft breaking term —%mijl/]c%il/Rj. Then,

Ny — Nipx is happen, therefore, x can be generated by this process. We assume My, >
(M, + My,) > My, > M, /2. '® The Lagrangian in Scenario A is shown as follows:
1

BIf 2My, < M., x — 2Ny can occur. Then, we cannot avoid cosmic-ray constraints.
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Here, f;; can be real and diagonal (f;; = f;d;;) by redefining vg;. When denoting vy, as
mass eigenstate (vg; = Ujjvg;), the Lagrangian becomes as follows:

]. _C —_—~
L= ~3 Usr. (fUCI) + mZ])UﬂV}% Vi — yh U Lo Hugy, + Hec. (8.2)
1 — .
= — §MNZNZPRN — 57(@5 + ZX)NkPRNl YaViLaHPRNk =+ H.c. (83)
c ijU
<Nk =V i + V' gy Fro = Ui f3;Us1, M, O = Uiy (f\j/; + mij) Ujl) (8.4)
1 — 1
— _ _MyNN, — —— N(FP +F*P>N 8.5
5 M, 2\/§¢ k| FruPr+ FPr ) Ny (8.5)
y— .
_ N(F P —F*P)N—(YO’;LQHPN +H.c.), 8.6
2\/§X E\LkiLR kAL )4V RIVE ( )
YOZ = \/_Z UPMNS mf}lag d1ag i’ (OOT = I) (87)

Here, N} is Majorana particle with Majorana mass My, . XM(FMPR — F}PL)N; can
have off-diagonal part. It is due to lepton number soft breaking term —%mijVTRiVRj. This
off-diagonal part causes Ny — Npx. In Scenario A, Majoron is produced via this process.
In (8.7), we write Y, by other parameters (the Casas-Ibarra parametrization [156]). It
is useful for numerical estimation.

8.2 The Boltzmann equation

The evolution of the number density of particles is described by Boltzmann equations.
The Boltzmann equations in Scenario A are shown as follows:

H(m,)s(m,)dYy, —

SR d;V = — [Ny < Nix] — § [Ny ¢ LoH, T,H], (8.8)
H(m,)s(m,) dYn, —

P d;V =[Ny ¢ Nix] — § [Ny ¢ L,H, T H], (8.9)
H(m,)s(my) dY,

Xx4 : d:z:X =[N2 & Niy]. (8.10)
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Here, we define the following quantities:

My oMy Me o Ya
x_T7rX_mX7Ya_87ya_Y(l(eq)a (811)
R T A R e (8.12)
’yab :/dHa...de... X (27T)454(pa_|_.. _pb_ ...)

><!z’/\/l(a—i—---—)b—i—---)}zfgq---, (8.13)

(degree of freedom are summed in ]M|2)

d3p,

dll, :(zﬁ)ﬁ, (degree of freedom g, is contained in |M|?). (8.14)

s is entropy density, n, is number density of a, f, is the distribution function of a, (eq)
means equilibrium, and H(m, ) and s(m,) are Hubble parameter and entropy density at
T = m,, respectively. Y, is called as the "yield” of a.

In Scenario A, Nj ¢ are produced from thermal bath (SM lepton and Higgs) by the
term [Ny o <> LoH, L,H|. X is produced via the decay process No — Njy. In next
section, we evaluate [a--- <> b---].

8.3 The evaluation of [a--- <> b-- -]

In this subsection, we evaluate [a--- <> b---]. First, [Ng > le] is written by the
decay width I'n, -,y

Yn,

[NQ S Nl)d :Yﬁg

7N (g < 1) (8.15)

B 2m2s(my,) gNm, Do Vi x
gnymy, (rn, ) 2Ky (1, ) 272
_s(my )TNy nyy K (rw, )

= Y. . 8.17
x3 Ks(rn,x) N ( )

(rn,x) Ky (rn,@) Yy,  (8.16)

Here, we assume y, < 1. It is natural assumption in freeze-in mechanism.  is produced
by this process.
Next we evaluate [NZ- > LQH} + [NZ- fam. It is written by the decay width
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F]\Q—)LGH,Z&F:
[N; <> LeH]+[N; <> L H]
:yNi'YNiLaH - yLanyYLaHNi + yNiVNizaﬁ — YL, Yg7 N,
=(yn, — yr,ym)V o + (N, — vy YNt (CPT)
z(yNz‘ - 1)7NiLaH7ZQﬁ7 (yLa ~YH ~ 1)
s(m)Un, 1w 7.7 Ki(rn, @)

= Ya, — Y29).
x3 K2(7’NZ.33)( N x.)

N; is produced from SM thermal bath via this process.
Next, we evaluate the decay widths I'n,,n,y and 'y, ,; 5 7 77 as follows:

11 2
‘iMN2—>N1X|2 :Z ’U(le) s
spin \/§

=2mp, En, | Fi2|* — my,mn, [F122 + ( 1*2)2}7

11
o A1 2 2 ) 2
29N, N, 87T\/ (1, m%, /my,, m3/my,)

X {(m?\h - m?vl — mi)|F12|2 — MN,MN, [F122 + (Fl*Q)z} }:

(Aa, b, ¢) = (a—b—c)* — 4bc),

(Fi1oPr — Fi53Pp)

u(pNQ)

FNQ—)le -

1 1 dp? dp?
U'NisL.n = / Pe / Po 2m)*0(My, — B, — Ey)

gn, 2my, | 2E(2n)2 | 2E4(27)?
— 2
x 6%(pe + Po) X 2IY 5P Julpe) Pru(py))|
spin
_ ’Yolc/i|2mNi
160
Ni—»LoH,L.H —  g-

(8.28)

(8.29)

(8.30)

(8.31)

Fio in I'y,— N, are chosen as 0(10_11) so that freeze-in mechanism occurs. Yy, , reach

thermal equilibrium at T ~ my, , via N; <> L,H, L, H.
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8.4 The approximation formula of dark matter relic

It is useful to derive an approximation formula of the dark matter relic density. First,
we integral the Boltzmann equations of Y,:

> 't s(my )TNy Ny K1 (7N, )
Y, = d XJ- T X 270y 8.32
(o) / THmys(my) 2 Kalrge) (8.52)
| AN /°° 2Ky (rn,z)
2 NeoNix [ g PRTNT) 8.33
Himy) |y ™ Folryr) (8.33)

In order to evaluate this integral, we must rewrite Yy, by the equilibrium yield (Y*9).
The term K (ry,x)Yn,/Ko(rn,z) also appears in the Boltzmann equation of Yy,. When
it is integrated with the boundary condition Yy,(c0) = Yn,(zr) = 0, we can get the
following formula:

o0 4 K
0=— / ’ s(my) 1<TN23“’) (8.34)
e H(my)s(my)  Ks(ry,x)a
X [(Cnaosmvix + Uy om0 Yoo = Dnpsro i T Y N (8.35)
ie,
00 K r S o K
/ do "KL TT)y Ne=Loff, L7 / dp TN e (g a6
TR Ko (rn,) Inysnix + FN2—>LQH,ZGH TR Ky (rn,z)
Therefore, the approximation of Y, (co) can be evaluated as follows:
I 2 1 r LoH 1 o K
Y, (00) = 2N Noos Lo, LTl / dzZELTNT) e (8.37)
UNgsviy T Unyspom 2,10 H(my) Jop Ko(rn,)
- T 'ypsremzm 1 / * K () g (ry,x)? Ko (ry,x)
1—11\72—>N1X + FNg—)LaH,faF H(mx) TR K2(TN2J:) 27T25<mx)
(8.38)
Unos v vy b, 200 T&QQszi /OO
= —— : d<TN2$)K1(TN2x)<TN2x)3
FN2—>N1X + FNQ*)LQH,ZQF 27r28<mx)H(mX) TNyZR
(8.39)
r r LH  SrN.gN.m
N No—Nix!t No—LoH, L H Ny N2 TV (2r — 0) (8.40)
Uy vy + FNQ*)LO,H, T.H 47T5(mx)H<mx)
405v/5gn, T )
gNyL Na— Ny ’ ( No—s Lo H, Lo > FN2—>N1><)- (841)

~ 1/2
167/2g. 59, G1/2m3,

Using this formula, we show the parametric region where the y density is equal to the
dark matter relic density, in Figure 18 and 19.
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Figure 18: The plot of Fi2 vs m, when my, = 5TeV and the present density of x is equal
to DM relic density
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Figure 19: The region of my, vs my, when the present density of x is equal to DM relic
density.
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In Figure 18, we set my, = 5TeV and vary my,. We can see that F5 has lower limit
as Fio Z 0(10711).

In Figure 19, we show the region where Majoron DM is sufficiently produced and
Fio < 1071, 107197 107104 We can see my, and my, have upper limit.

8.5 The numerical simulation of the production of yx

We show the numerical results for the Boltzmann equation in Figure 20. In this Figure,

10.000

0.001 - 1 R YN1 (1‘)
i Vi)

E 10 .
S~ YN2 (l‘)
10~ 1 — Yy(o)

/ \ \ o

10—15 L ﬁ
Il ! ! ! ! ! I - Y)?q<x)

104 0.001 0.010 0.100 1 10 100

_ My

Figure 20: The solution for the Boltzmann equations. Dashed line is the observed DM
relic density.

we set parameters as follows:

0 0
O=11 0| (Cassas — Ibarra), (8.42)
01

cos(0.3 —sin0.3
sin0.3 co0s0.3

m, =3TeV, fi =107 fo =4 x 107", v, = 10GeV, (8.44)

_yrx pgdiagrrx fijve
my; =Ug My, “Uj, — ok
We choose f; and v in order to avoid the constraints from cosmic ray experiments. U is
chosen as rotating matrix, then the lepton number soft-breaking term m;;v%.vg; becomes
non-diagonal. Then, Ny — Njx can occur.

) (diagonization matrix for mass of V), (8.43)

my, = 0, neutrino parameter is normal hierarchy.  (8.45)
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In Figure 20, we can see that y is produced at T" ~ my,. At this temperature, Yy,
is sufficiently large. Therefore, y can be produced as much as the observed DM relic
density. Combining above results, Scenario A is possible.

9 ScenarioB

9.1 The Lagrangian

In Scenario B, y is produced from Higgs: HH' — yy. This process occurs due to
Aol H|?|®[* coupling. However, this process is highly suppressed by vs, because x is
pseudo NG boson. Therefore, we use the UV freeze-in mechanism for the dark matter
production. In Scenario B, we assume that the reheating temperature Ty is smaller than

M.
In Scenaro B, the Yukawa couplings are shown as follows:
LD— %(I)VTRZ-VRJ‘ — yZiL_a-FIVRi + H.c. (91)

Here, f;; can be real diagonal by redefinition of v;r (fi; = fidi;). After (®) = %, the
19

Lagrangian becomes as:

My, — fi ==
5 o ¢ X Nis (9.2)
- ( v T H PrN; + H.c.) (9.3)
1 i
N; =vg; + I/-CRZ'7 o = —(U(z) —+ ¢—|—iX), M; = w (94)

V2 V2

N gets Majorana masses by the VEV of ®. Then, we can explain the neutrino oscillation
as type I seesaw model.
Scalar potential is given as follows:

m2

L ) APSEIRAVATe L 202 1 22 gt _
V== HH = e[ + o [H] + Ao HI |0 + ZH[@] — =

[@% + (2*)7].
(9.5)

The couplings in the potential is chosen so that ® gains nonzero VEV. The stationary
condition of ¢ (before EWSB) is

v
a¢ vac

19°®’s VEV can be real by redefinition of ®. Then, f;;vs becomes real diagonal matrix.

=0 — pg = Aov; —m”. (9.6)
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Using them, we replace ug by other parameter. After ® gets nonzero VEV, potential
becomes as follows:

2 L ?c 2 mi 2 mi 2 mé 3 2
Vv H — — — A H 9.7
mH\ ‘ 5 —X" + 5 o° + 2U¢X o+ 2U¢¢ + H<1>1J¢¢| | ( )
m2 m2 m2 A A
¢ 4 ¢ 2,2 ¢ 4 H® , 2 2 2 H 4

— — — —_— H —I|H 9.8
+8v§X+4v;X¢+SU;¢+2(X+¢)’ "+ 5 1A (9.8)

2 2 mi 2 2 2
my =m", Ao = —5, fify = —2my + Agovy. (9.9)

]

The couplings Agax?|H|?/2!, Agoved|H|* and (m¢/v¢) 2¢ /2! occur the production pro-
cess of x (HHT — xx).

9.2 The Boltzmann equation

The Boltzmann equation of x is given as follows:

x dx
Y2
== 2{(y 1) .
LT d TK (52 TONL, m2 s, m2 [s), (9.12
7 Xpmt = 91 39774 SUQX—>HHT( )5 1(5 / ) ( ) mx/57 mx/5)7 ( . )
(Ma, b, c) = (a—b—c)*—4bc). (9.13)

At the temperature T', the main contribution comes from s < T. It is because the
integral contains the modified Bessel function K(s'/2/T).
x is produced via HH' — 2. The cross-section of yy — HH' is given as follows:

2

iMoot :_Zf"S - _imi % (—idirovs)0S @ — iAol @ (9.14)
—iApaby mis_ - (9.15)
Oyt (s) = 12 2517rs \/)\ m21/5 Y% /d(cos&)\./\/l(s, cos ) |? (9.16)
~ ! ! \AMP—Q (s ST < Tr < my). (9.17)

8mst/z [ 4m? m;ﬁ’ ~
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We assume that m,, is larger than reheating temperature 7. Therefore, s in propagator
of ¢ is negligible.

On the other hands, the cross section increases with s. It is because x is (pseudo)
NG boson. Therefore, this process is the most dominant at 7' ~ Tx. It is the feature of
UV freeze-in. Using the above results, we can get the formula of 72"

HHT
2x mip‘H‘I’P BN 2
Y HHt :Wx MelgerG[{{}, {_2}}7 {{_7/27 _1/27 1/2}7 {}}7I } (918)
T m¢
3m8|)\H¢)]2
:—X —6 . 1
i 06 (9.19)

3m§ | A ms|?
InPnel - We

4CK8 .

The production of x occurs at T' ~ Tg. At this temperature, ’y?j‘m ~ X
o

can get the approximation formula for the dark matter relic density by integrating the
Boltzmann equation:

T 1‘4 3m8|>\Hq>|2
Y, (x) ~2 X 9.20
() /xR H(my)s(my) 2m5mga® (9:20)
m8|/\H<1>|2
= X PR =m,/TR). 9.21
7T5H(mx)s(mx)mé (IR Z )7 (IR mx/ R) ( )

Using this formula, we show the parametric region where the present y density is
equal to the DM relic density (Figure 21).

oy — T =10 CGeV
0.0011 106 GeV
o 10°5F 10% GeV
T
,<
107 | — 10" GeV
— 12
100 10 GeV
— 10" GeV
10—11 L
‘ : ‘ L 16
1000 106 10° 1012 1015 — 10"° GeV

me (GGV)

Figure 21: The parametric region where the density of x is equal to DM relic density
and m, = 103GeV. Here, we vary Ty from 10*GeV to 10'°GeV. Dashed line is my = Tk.
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For example, when m, = 10° GeV, my = 10° GeV, Ago = 107* and Ty = 106
GeV, x will be sufficiently produced. Using these parameters, we estimate the numerical
solution for Boltzmann equation in Figure 22.

X is mainly produced at T ~ Tg. It is the feature of UV freeze-in mechanism. We
can see that the present density of y is equal to the observed DM relic density, therefore,
Scenario B is possible.

103} .

108 | .

—~ 1013 C i
8
§< — Y(z)

10-18 | . .
V(@)

10—23 L 4

10—28 I I I I
0.001 0.010 0.100 1 10 100

Figure 22: The solution for the Boltzmann equations. Dashed line is the observed DM
relic density.

10 Scenario C

In Scenario C, we produce x by the processes NN(— ¢) — xx (s-channel) and NN — ¢
(real particle) — 2x. Both NN — xx (s-channel) and NN — ¢ mainly occur at 7" ~ m.
We choose T as Tr > my in order to use this processes. Furthermore, Yy, must be large
at T' ~ mg. In order to realize it, we assume that /V; is non-thermally produced from
inflaton or my is light (O(10°) GeV). We denote the former as ”Scenario C-nt” (non-
thermal) and the latter as ”Scenario C-t” (thermal). We assume the mass hierarchy as
Mg > My, > My,.
In Scenario C, we assume the following Yukawa couplings:

Ly=— %CI)I/TRZ-VR]' - yZiL_aﬁVRi + H.c. (10'1)
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5 can be real diagonal by redefinition of v, (fi; = fi0;;). After (®) = 2. the Yukawa
fj g Yy J J

_, V2
couplings become as follows: 2"

My, — fi (=~ o
5 o ¢ XNivs (10.2)
(ymL_HPRNZ- n H.c.) (10.3)

1 . fi"l)qg

N; =vp; + V5, ® = —(vy + ¢ +ix), M; = 2=, 10.4
R R \/§( ® d) X) \/E ( )

The couplings of Y N;vsN; and ¢ N;N; are diagonal. Therefore, Ny — Ny process cannot
occur. These couplings occur the processes 2N; — 2x and 2N; — ¢. The left-handed
neutrino gains Majorana mass as type I seesaw model.

Scalar potential (before electro-weak symmetry breaking) is given as follows

2 2 2
M 2 M 2 g 4 Ao 4 m *
V== H| = el + T E[ + el - [0 + (9)7] (10.5)
m2 m2 2 2
2 1 H? 4 My o My My o My 3
_ H ¢ - 10.6
my|H|” + 2x+2¢+2%x¢+%¢¢ (10.6)
mi 242 4 4 AH | 14
_9 H 10.
+8U§X 42><¢ 82¢ - I (10.7)
m2
mi:mz, Ao = v_j’ p3 = —2m3,. (10.8)
]

Here, the couplings of & are chosen so that ® gains nonzero VEV. The processes of
¢ — 2x and 2N; < 2x are occurred by the coupling (mj/vs)x*¢/2!.

10.1 The Boltzmann equation

In Scenario C, Boltzmann equation becomes as follows:

H(mif(mx) ddlgqs ——[po 2] - Z [¢ <> 2NV;] (10.9)
H(mz)j(mx) d;;vi —2[ ¢ 2N;] — 2[2N; ¢ 2)] (10.10)

— [Ni <> LH] — [N; +» LH]| (10.11)
H(mxx)f(mx) ddix —2[¢ + 2x] +2 Z [2N; + 2y]. (10.12)

20 ®’s VEV can be real by redefinition of ®. Then, fijvg becomes real diagonal matrix.
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N; is produced from doublet lepton and Higgs in thermal bath. It is also done from
inflaton in Scenario C-nt. ¢ and x are produced from N; by freeze-in mechanism (2N; —
¢ and 2N; — 2, respectively) at T' ~ my. x is also produced by the decay of ¢ produced
by freeze-in mechanism (¢ — 2x).

Next we consider the right-hand side of Boltzmann equations. First, vV LH.TH 18
given as follows:

_ 9N, _
’Y "LHTH = o gm?V-FNv%LH,ﬁ(rNix) 1K1(TN1-9C): (10.13)
il *m
Un o zm = Z 87r : (10.14)

N; is produced from SM thermal bath via this process.
Second, 7%, N, 1s given as follows:

7¢2NZ~ 2%2 m¢F¢—>2N (rox) ' Ki(ryx), (10.15)
3 ) L = 2 ) 1016
spin

1 / 4m?\,_
Pqﬁ%?Ni :m 1— m—il X ff(mé — 4m?\h) (10.17)
fimg (1 47"3“)3 (similar as ¢ — 2) (10.18)
=0\ 1- : similar as ¢ — 2x). .
3279, my

¢ is produced from N; via this process at T ~ my, and it decays as ¢ — 2x. In order
to produce ¢ (i.e. x) as much as the observed DM relic density, Yy, must be somewhat
large at T' ~ my. It is realized when m is light (~ O(10°) GeV) or N; is non-thermally
produced from inflaton.

Third, 7¢2x is given as follows:

g
7¢2X 2¢2m¢r¢—>2x<r¢37) 1K1(7’¢x>a (10.19)
1 11 d3py ps
Loy =—5—o 10.2
O 2my, 2! / 2 (27)3 / 2F,(2m)3 (10.20)
X (27?)45(m¢ — E1 — E2)53(p1 + pg) X |mé/v¢|2 (1021)
m3 4m?
=y [L - (10.22)
327Tg¢v¢ mg

X is produced from ¢ via this process (or directly done from N; via 2N; — 2x).
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Last, ’yZNiQX can be evaluated by narrow width approximation (See §B.9):

72Ni2x ~ 72Ni¢B¢2>< = 7738, B%2 ~ 7o, (10.23)
Here, the branching ratio of ¢ — 2y is

¢ T2 mg

B?, = . = ~ 1. 10.24

X Loy + > Tomon, mi +2>, m%\h ( )
X is directly produced from N; via this process (or indirectly done from 2N; — ¢ — 2x).
This process occurs at T" ~ m. Therefore, in order to produce x as much as the observed
DM relic density, Yy, must be somewhat large at T' ~ my. It is realized when m,, is light
(~ O(10%) GeV) or N; is non-thermally produced from inflaton. It is same as indirectly

production of y.

10.2 The approximation formula

Next, we derive the approximation formulae of the present density of y. We consider
two scenarios: Nj is produced by inflaton (non-thermally produced/Scenario C-nt) or
Standard Model particles (thermally produced/Scenario C-t).
First, we define Yp := Y, +2Y, + > . Yx,. The Boltzmann equation of Y} is given as
follows:
H{(my)s(my) d¥Yp

. = > [N; <+ LH, LH). (10.25)
T i

1

Next, we integrate it with the boundary conditions Yy(co) = Y, (00) = Y, (zr) =
Ys(xg) = 0 shown as follows:

Y, (00) =Yp(o0) (10.26)
— Z Yy, (zR) — Z m/ 2*[N; & L,H, L,H| (10.27)

=2 {YNz-(l“R) + [Yivi(00) = Vv (xr)] (10.28)

1 o0
— 2—/ z*([¢p < 2N;] — [2]N; <> 2] } (10.29)
H(my)s(my) Jop ( )
(Here, we use the Boltzmann equasion of NV;, ) (10.30)
S n o
~— at ———=(— %N, — 7 on,Br :
H(my)s(my) < Jup Yﬁ?(:p)z 2N N
4 g¢mzr¢_>2Nz /OO 4YN. (x)? )
= T — rex)  Ki(rex). 10.32
H(mx)s(mx)z oz, Yﬁf,‘(:{:)Q( o) Halrgr). (1032)

3
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In order to evaluate the present DM yield Y, (c0), we must estimate Yy, ().
In Scenario C-nt, Yy, (z) can be approximated as the initial condition Yy, (zr). By
using (10.32), the approximation formula for the present yield of x is given as follows:

4 gomiiLysan, [ Y, (g)° -
Ynontherm(oo) _ x4 : (7"¢$) 1K1(7“ x)
X H(m,)s(m,) ; 272 0 (7r*2gNim§’<s(mX)*l)2 ’
(10.33)
Z 31 ggs(my )T pman, Y, (93R)2 (10.34)
- 2 H(m,)m2m |
9N, X/ Hegttox
2
[filPges (1 — 4mi, /m
Z 1/2 /) Yiv (zr)”. (10.35)
32\f G129,/ g3, my

Using this formula, we show the parametric region where the present x density is equal
to the DM relic density (Figure 23). For example, when m, = 6TeV, mys = 108GeV and
fYy(zg) = 107'2, the present density of y is equal to the observed DM relic density.

We show the numerical solution for the Boltzmann equations with these parameter, in
next subsection.

1011 L
109 L
?‘5 — f-Yn(zg)=10""
= 107f _
g f . YN(xR) =10 12
woof | f-Yy(zg) =101
1000 n 1 n n n 1 n n n 1 n n n 1 n n n
2000 4000 6000 8000 10000
my, (GeV)

Figure 23: The parametric region where the density of x is equal to DM relic density.
Here, we vary fYy(zg) from 1071 to 10713,

Next we estimate the present yield of x in Scenario C-t. We can estimate Yy, (x) by
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integrating the Boltzmann equation for N; as follows:

Yy e (g) o — 7 (mx; ) /x : 2*[N; < LH, TH| (10.36)
~ ot (mxis ) gN"m?VfEZ;%H’”’ / R 2 ry,2) T Ky (ryw) (10.37)
g (1039)

x (4ry))Meijer [{{1}, {}}, {{3/2, 5/2}, {0}}, (r},27)/4] (10.39)
3 _
=+ (mxis ) gNimNil;g;%H’ L ;; +0(2). (10.40)

Using this formula and (10.32), we can get the approximation formula for Y, (oco) in
Scenario C-t:

b, therm
4 gomgLoson, [ , Yy (x) _
Ytherm(oo) ~ / .134 i (T¢$) 1K1(7”¢$)
X H(m,)s(m,) Z 272 0 (W*QgNimisgli)Q
(10.41)
4m3;, \ 3/2 U212

37.59/2. 72 [ filPm, (1= 52) "7 o0 vl

T ol721/2 379 34/52 7 ' (10.42)
& i G / g« gxsT

¢

Using this formula, we show the plot of my vs ,/Qcpy (Figure 24). Here, we set the
parameters as follows:

fir=2x10"" fo=7x 107" f3 =9 x 107!, vy = 10"GeV, m, = 6TeV,

cos(m/3)  sin(m/3) 1
O = | —sin(7/3) cos(7/3) cos(m/4)  sin(m/4)
1 —sin(7/4) cos(m/4)
cos(m/5) sin(m/5)
X 1 , (Casas — Ibarra parametrization. ),
— sin(7/5) cos(m/5)
my, =0, neutrino parameter is normal hierarchy. (10.43)

These parameters are set so that the constraints from cosmic ray experiments can be
avoided. In Figure 24, We can see that the present yield of x is the same as the observed
DM relic density when m, = 10°GeV. We show the numerical solution for the Boltzmann
equations with these parameters, in next subsection.
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Figure 24: plot of mg vs Q, /Qcpy. Here, we set the parameters as (10.43). For simplicity,
we set 7 as ¢ = 1.

10.3 The numerical solutions for the Boltzmann equations

Using the parameters in (10.43), my = 108GeV and the initial condition Yy (zg) =
10712/ f1, we estimate the numerical solutions for Boltzmann equation of Scenario C-nt
in Figure 25. x is produced at T ~ mgy by the resonant NN — xx process. The decay
of ¢ also occurs the production of y.

Using the parameters in (10.43), m, = 10°GeV and the initial condition Yy (zg) = 0
(thermal Ng production), we estimate the numerical solutions for Boltzmann equation
of Scenario C-t in Figure 26. x is produced by NN — xx and ¢ — xYx, the same as
Figure 25. Both the production of ¢ by NN — ¢ and the one y by NN — yx occur
at T' ~ mg. Therefore, Y must be large at 7" ~ my. This is the reason why ¢ must be
light (105 GeV) 2.

Combining the above results, both Scenario C-nt and C-t are possible.

11 Summary of Part III

In the above sections, we show that TeV scale Majoron can be produced as much as the
observed dark matter relic density. We consider three scenarios.

In Scenario A, we introduce the coupling m;;v$,vr; which softly breaks the Lepton
number symmetry. These couplings occur the Ny — Ny process, then, the Majoron

2l When N is non-thermally produced, ¢ can have heavy mass, shown as Figure 23
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1073 1 = Yy(2)
— Yy'(z)

& 107 i
g/ — Yy (2)
—_— y;q<x)

10—11 i
— Yy(x)
X — qu T
10_15 / L \ \ \\ \ | yi ¢ < )

0.001 0.100 10 1000
X

Figure 25: The solution for the Boltzmann equations in Scenario C-nt. Dashed line is
the observed DM relic density.

103 N YN(af:)
— Yy'(z)
= 107
‘E’ _ Yx(»"U)
— y;q@)
10"
— Yy(2)
R Y(;Cl(x)
10—15 L

Figure 26: The solution for the Boltzmann equations of Scenario C-t. Dashed line is the
observed DM relic density.
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can be produced via this process.

In Scenario B, the Majoron can be produced via HH' — xx. These couplings are
weak because y is pseudo Nambu Goldstone boson, therefore, we use the UV freeze-in
mechanism.

In Scenario C, the Majoron can be produced via NN — ¢ — xx processes. In this
scenario, x and ¢ are produced at T' ~ mg. Yy must be large at this temperature so
that Majoron is produced as much as the observed DM relic density. When N is non-
thermally produced (Scenario C-nt) or m, ~ O(10°) GeV (Scenario C-t), Yy can be
large at T ~ m,.

In all of these scenarios, we can see that Majoron is produced as much as the observed
DM relic density.
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Part IV
The QCD axion and the lepton
number symmetry

12 The strong CP problem and the QCD axion models

In this section, we briefly explain the strong CP problem and the QCD axion models.
See [157,158] for a detailed review of these themes.

12.1 The strong CP problem

The standard model has the following theta terms: *

0> ~ 03>
29 TrWW + 395

6 [ GG (12.1)

»CSM D

We can set 65 = 0 by Baryon number transformation, however cannot set 63 = 0. We
would naively expect that 65 has O(1) value.
On the other hand, the neutron electric dipole moment depends on #5:

d, =2.4(1.0) x 10703 ¢ - cm. (12.2)

Here we use the results from QCD sum-rules [159]. There are different methods to
estimate the neutron EDM: chiral perturbation theory: [160-162], holography [163] and
lattice QCD [164, 165]. The latest constraint for d,, is given by [166]:

\d,| < 1.8 x 10"%%¢ - cm. (12.3)

Therefore, 63 is unnaturally small: |03 < 1071°. This smallness is called as ”strong CP
problem”.

QCD axion model is the well-known solution for the strong CP model. We explain
this model in next subsection.

12.2 The QCD axion models
12.2.1 Peccei-Quinn-Weinberg-Wilczek (PQWW) axion model

In this section, we explain the QCD axion models.

22 v _ 1 po
X = 5€uwpe X
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PQWW axion model [167-170] is the original model of axion. The Yukawa couplings
of PQWW axion are given as follows:

LD —yQrury — yaQpdrHy — y.LegHsy + Hec. (12.4)

Here, H; and H, are different Higgs particles. When these get nonzero electro-weak
VEVs, H; o are written as follows:

7)1G+71)2A+ szJr+v1A+

. v o v _ 2 2

H]_ = v1+ha exp i(vlgofvga) s H2 = va+ho exp i(vzgo+v1a) , U= Ul + U2‘ (125)
V2 V1Y V2 V2V

This Model has the following symmetry:

Qr =€ RLQr, up — € “Rup, dp — " “Rdp, L — L L, (12.6)
er —e%ep Hy — ¢ Hy, Hy — €2 H,, (12.7)
0=—agr+ aur — a1, 0 = —agr + agr + a9, (12.8)
0=—ap+ qer + ao, a0y = —ay /vy, ag = +auy/vs. (12.9)

This symmetry is called as ”Peccei-Quinn (PQ) symmetry”. This is broken by electro-
weak VEVs, and its (pseudo) NG boson is called as "axion”.
By the redefinition: v — e‘iv?aVS/(%l”)u, d — e_i“1a75/(2“2”)d, e — e‘”lws/@”“)e, we

can derive the effective couplings of aTrGG (N,(= 3): the number of generation):

2

Js a ~
LD 672 l@ — (v1/ve + vg/vl)NgE] TrGG. (12.10)

Then, the energy density of axion potential is written as follows:
V(a) :A4{1 — Ccos [9— (Ul/v2+U2/U1)Ngg}}. (12‘11)
v

Therefore, the VEV of axion is (a) = 6(vy /va+wv2/v1)/v. Then, QCD theta term becomes
Z€10:

2

9s a ~
L 21602 lG—Ng(vl/vg—i—vg/vl);] TrGG — 0. (12.12)

Therefore, the strong CP problem can be solved.
Next, we consider the coupling between axion and SM particles. By redefinition:
u — e‘i”‘ws/@”l“)u, d— e_i“1“75/(2“2”)d, e — e‘wlms/(%”)e, we can derive the couplings

67



between axion and SM particles: %*

L DLy + Lag + Lae, (12.13)
e? 2 U ~
Low =20 . ( —) 3.N,-2 FF, 12.14
21}17) au'y fy “ 872 * 3 g2vlva ( )
Log =—28,adr"+*d ¢ ( 1)2 3.N,~ L aFF (12.15)
ad = a — — =) -3-N,——aFF, .
4= 21}2 L 872 3 9209v
2
e
Lo =29 _ 12N, oFF. 12.16
209 haey” Ve 87r2( ) nggva ( )

These couplings correspond to cg and gg7 in §C.2. f, in §C.2 is given as f, ' = (vy/ve +
va/v1)Ny/v in this model.

The couplings cq and goy in PQWW model are given as cq = c — Qu, Yoy =
g(w 47T2 7 5+ N.TrQ?*Q,. These couplings are O(v™1), because PQ symmetry is broken by
electro-weak VEV. Therefore, PQWW axion model is ruled out by the axion experiments
(please see §12.3 for a detail).

12.2.2 Kim-Shifman-Vainshtein-Zakharov (KSVZ) model

Next, we explain the invisible axion models. In these models, PQ symmetry is broken
by the large VEV, and the axion-SM-SM couplings are suppressed by it. We can avoid
the constraint by the axion experiments.
Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [171,172] and Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) models [173,174] are well-known invisible axion models.
First, we explain KSVZ model. KSVZ model contains colored Fermions: Wy, Uy €
(3, 1, +y), and complex scalar S. These particles have PQ charges: PQU = —axV, PQUp =
—(x+1)Ug, PQS = +S. PQ symmetry is broken by the VEV of S( = \%(fa#'p)em/fa).
The Yukawa coupling of KSVZ axion models is given as follows:

LD —ySU Vg + He. (12.17)

By the redefinition ¥y — e "/ falp = e~ia7"/ fapy R, the effective coupling of aTrGG is
given as follows:

gs . i ~
L2765 [0 fa}TrGG. (12.18)

Then, the strong CP problem is solved as PQWW axion model.

The axion-gluon-gluon coupling is suppressed by f,(~ O(10371%)GeV). It occurs
axion-nucleon-nucleon coupling g,nyn as §C.2, and it is also suppressed by f,.

In §12.3, we explain the experimental constraint on them.

23 Here, we omit aTrGG term.
24They are defined in §C.2.

68



12.2.3 Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model

Next, we explain DFSZ model [173,174]. DFSZ model is similar as PQWW axion model.
The Yukawa couplings of DFSZ axion are given as follows:

L o — yu@LuRﬁl - deLdRHQ - yefeRHQ - H(ST)2HIHQ + H.c. (1219)

H,, Hy, S are written as follows:

UlG+—U2A+ U2G++U1A+
J— . v _ . v
Hy = v1+p1 eﬁ(leo—ngo)/v ) Hy = va+p2 ei(UQGo-HIlAO)/U , (12.20)
V2 V2

g :J'?L_\/J;eixo/fa7 0= Jv? + o2, (12.21)

This Model has the following symmetry:

QL —>€iaQLQL, UR — em“RuR, dr — eiadeR, L — eiaLL, (12.22)
erp —e%ren Hy — ¢ Hy, Hy — "2 H,y, S — €S (12.23)
0=—agr+oyr —oq, 0 = —agr + agr + ag, (12.24)
0=—ap+ g+ ao, a1/ag = —v%/v%, 0= 20— aj + as. (12.25)
Therefore, a; = —QQL%QOA, g = 2 ”%2(1. PQ transformation shift yy and Ag as follows:
v +v3 Chi s
X0 = X0 + fa, (12.26)
2
AO _>AO — Mal = AO -+ UIUQOZ, (1227)
V2
2
<A0 — Ay + @O{Q = Ay + UvaCV.) (12.28)
1 v

Therefore, axion a and other CP odd scalar A" are defined as follows:

fa’U 2010 A

Xo = a+ (12.29)
V (fav)? + (20102)? V (fa0)? + (2v109)?
2
Ay = VU2 0 fav m (12.30)
\/(fav>2 + (21}11}2)2 \/(faU)Z + (2U1U2)2
By the redefinition (after the electro-weak symmetry breaking):
u _>€—z'aw5u, d— eimﬂuﬁd, e — e*iamse, vy — eiiamsl/L (12.31)
2 2
vy a vi a
=T e M T M= T 12.32
Qy +v2 A Qg = Qy +U2fa’ ( )
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. . . =4
we can derive axion-SM-SM coupling: 2

03 Oya_ e? 2\2 V3 a
Loy vg ﬁm“v‘r’u - @(ﬂL g) 3 Ngv_gEFR (12.34)
v?0,a e? 12 via -
P L T __(__> 3N, L= FF 12.35
d v2 fa 872 3 gUQ fa ’ ( )
2 2 2
vy Opa_ e v a o~

These couplings correspond to cg and gg,7 in §C.2. f, in §C.2 is given as f, ! — Ngfa’1
in this model. The couplings ¢, and gq, Y in PQWW model are given as ¢, = cg — Qu,
Jay = o+ mNCTrQQQa. Furthermore, there are axion-nucleon-nucleon couplings
gann as §C.2, and they are suppressed by f,. In §12.3, we explain the experimental
constraint on them.

12.3 The experimental constraints on the couplings between the
QCD axion and the SM particles

In this section, we explain the experimental constraints on the couplings between axion
and standard model particles.
We define these couplings as follows:

Ya —= Ja -
Lags Zﬁ(aua)fv“v"’f, Loy = —=TaFF. (12.37)

Gay~ 18 constrained by the axion helioscope (CAST [175]): gayy < 6.6 X 10~1'GeV ™! for
me < 0.02 eV, the haloscopes (ADMX [176-178]): m, < 1.9ueV or 3.53ueV < m,, and
the horizontal branch (HB) [179,180]: g4y, < 6.6 x 107'1. We show the constraints on
Garry in Figure 27 and 28.  gapny is constrained by neutron star [182]: g2, < 7.7 x 107%.
We show the constraints on gu,, in Figure 29. g, is constrained by neutron star
[183]: ggpp + 1.6¢2,, < 1 x 107, We show the constraints on g, in Figure 30. ggee
is constrained by the red giants [184]: |gaee| < 4.3 x 10713, the white dwarf [185]:
|gace| < 2.8 x 10713, We show the constraints on gue. in Figure 31. PQ scale f, is
restricted by these constraints: f, > O(10%) GeV.
Axion behaves as dark matter. The relic density is given as follows [181, 186]:

1.165
0.12 <#> , (PQis broken after reheating

1.165
0.12 - §* (W) , (PQis broken before reheating)

25 Here, we omit aTrGG term.
26They are defined in §C.2.
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Therefore, f, must be f, < O(102)GeV when 6 ~ O(1).
Please see [157,181] for a detailed review of axion experiments.

1)



field | SUB3)e SU(2), U(l)y U(1l), |spin
L 1 2 —1/2  +1 | 1)2
er 1 1 1 1|12
H 1 2 41/2 40 0
Ne | 1 1 +0 1| 1/2
vy, 3 1 +z +x 1/2
Vg 3 1 +r  H(x-2)| 1/2
o 1 1 +0 +2 0

Table 4: The particle contents in [187]

13 The relationship between the neutrino oscillation
and the strong CP problem

Axion is NG boson of PQ symmetry. In this section, we show the relationship between
neutrino oscillation and the strong CP problem.

Neutrino oscillations are detected by experiments using solar [7—17], atmospheric
[19-21], reactor [23-29] and accelerator [30-35] neutrinos. There are two well-known
methods which explain neutrino oscillation: ”Dirac mass method” and ”Majorana mass
method”. In Majorana mass method, neutrino masses are explained by the following
dimension-5 effective operator:

1— =
LC— KLCHHTL +H.c. (13.1)

This operator breaks lepton number symmetry. In Majoron model [51,52], this symmetry
breaking is explained by VEV of a complex scalar field. This model contains the NG
boson of the lepton number symmetry breaking, called as ”Majoron”.

We can identify the lepton number symmetry and Majoron with the PQ symmetry
and axion.

In [187], the axion in KSVZ model is identified as Majoron. The particle contents
in [187] are shown in Table 4. In this model, both the masses of right-handed neutrino
Ny and vector-like heavy quark W are generated by the VEV of (= (v, + po €'V /1/2).
The field a works as axion, as KSVZ axion model. Furthermore, left-handed neutrino
gains Majorana mass, as Type I seesaw model.

There are other models in which lepton number symmetry is identified as PQ sym-
metry (early researches [188-191] motivated by GUT, ones [186, 187,191-200] by Type I
seesaw, ones [201,202] by Zee Model, ones [203-207] by Type II (III) and other radiative
seesaw models and ones by Dirac masses [208-211]). They are summarized in [157].

Next section, we construct the minimal model with L = PQ).
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14 The minimal L = P model

14.1 The identification of the colored fermion in the radiative see-
saw model with the heavy quark in KSVZ axion model

KSVZ axion model contains heavy quark. Seesaw model also contains BSM heavy
fermion (for example, Ng in type I seesaw). In order to construct minimal model with
L = PQ, we identify heavy quark in KSVZ axion model with heavy fermion in seesaw
model.

There are some radiative seesaw model with colored fermion [212-217]. " In this
section, we identify the octet colored fermion in [212] as the colored heavy fermion in
axion model. The particle contents of [212] are color-octet fermion Uy € (8, 1, +0)
and complex doublet scalar n € (8, 2, +1/2). In this model, neutrinos gain one-loop
Majorana mass, as the scotogenic model [50]. In order to reconstruct this model as axion
model, we introduce new complex scalar S, and give the Majorana mass of Wy by the
VEV of S. The axion model with color-octet Majorana Fermion is considered in [219].
We call the model constructed here as ” Ma-xion model”.

14.2 The field contents and the interactions in Ma-xion model

The field contents of Ma-xion model is shown in Table 5. The Yukawa couplings in

field SU(?))C SU 2)L U(l)y U(l)L = U(l)pQ spin
T, | 8 1 0 +1 1/2
D 8 2 11/2 +0 0
S 1 1 +0 -2 0

Table 5: The particle contents in Ma-xion model.

Ma-xion model are shown as follows:

Lovg, =97 Qs AT ujp + g7 Q0 T4 djy + Heoc. (14.1)

Liow, =hg*T WAL + He. (14.2)
1. —

Lsvpvn == 5% S (UA )T, + He. (14.3)

The coupling ¢ and gfij may occur FCNC processes. Here, we set these couplings as
zero, for simplicity.

27 For detail of them, please see §5.4 in [218].
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Scalar potential in Ma-xion model is given as follows:
V =—p?H'H — p25*S + Mo o4 + \(HTH)?
+ Ag(5*8)?2 + \gyy (S*S)(HTH) 4 Aga(5*S) A
1
+ X\ (HTH)DY A + )\ | HTD > + 5{/\5(}]*(1)‘4)2 +Hel}+-- (14.4)

We set the parameters of scalar potential so that S gains nonzero VEV: § = %( fa +

p)efa Tt breaks lepton number symmetry (=PQ symmetry). After that, Uy gains
Majorana mass: My, = y5(S) = 4% f./v/2 and the angular part of S works as axion.

HHA
oA = ( (HA +i A% \/§> gains the following masses after electro-weak symmetry break-
ing:
2 s 1 o 1 2
MH,A = M(I) + 5)‘S¢fa + 5()\3 + )\4 + )\5)12 (14,5)
1 1
M = Mg + 5/\S<I>f3 + 5)\3@2 (14.6)

14.3 The interactions between the QCD axion and the SM parti-
cles, and the constraints on them
-a(x) -a(x) sa(x)
By the redefinition ¥4 — ¢~ *2/a 75\1%7 L — eHW”SL, er — 6_1W7563, we can derive
28

the axion-gluon-gluon coupling:

2

9s a nq;CL(I) a ~a
Lo (eTrT3T§ -5 TrT8T§;>G GV (14.7)
2
= (9—M)TGG 14.8
1672 7, St (14.8)
and the axion-lepton coupling:
Ol (+ 4 5 = 5
LD— 2 (Lv‘W L —egyHy eR) (14.9)
—oud (E’y“e + ﬁL'y“VL>. (14.10)
21,
Then axion potential is written as follows:
Va:A4{1—cos (Q—M‘Pf—a(gj»}. (14.11)
28 ny is defined as the number of U,z (j =1, ,ng).
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Then, QCD 6 term becomes zero, therefore, the strong CP problem is solved:

2 ~
J (9 - M)TrGG 0. (14.12)

~ 1672 U

Next, we consider the experimental constraint from the axion-electron coupling. First, we
define the axion emission diagram from electron line as ¢k, M*. When replacing the axion
emission with the photon one, the replaced amplitude is given as z'q(f)/\/l. Therefore, the
axion emission amplitude becomes zero: ik, M* — 0, by using Ward-Takahashi identity.
Therefore, there are no experimental constraints from the axion-electron coupling.

Therefore, f, is constrained by only the axion-nucleon-nucleon coupling. The con-
straint on this coupling from supernova is given as follows [183]:

Ja

3n\1;

> 4.4 % 10%GeV. (14.13)

14.4 The explanation of the neutrino oscillation and the dark mat-
ter relic density

The invisible axion can explain the dark matter relic density. It is given as follows (; is
the misalignment angle of the axion): [181]

fa/<3n\1]) )1.165'

QO h? ~ 0.12 - 92(—
9 x 1011GeV

(14.14)
Here, we assume that the PQ symmetry is broken during inflation, so that the axion
domain wall problem does not happen. *’

Furthermore, the Ma-xion model can explain the neutrino oscillation. The neutrino

mass matrix is generated by the 1-loop diagram in Figure 32. It is evaluated as follows:
30

R
(M.)ij = s hq’fh{qu,k<
k

Mi; M M

M2
H In In e
Uk

Mgy — My Mg, Mg, — Mj

). (14.15)

In the limit of 2\50% < m$ = (M3 + M3)/2, this becomes as follows:

M\%k 2 2

(M\%k: - m%)z

M\%k In

1 o
(My)ij =~ 4—7T2)\5U2 > highdy My, (14.16)
k

29 If the PQ symmetry is broken after inflation, the axion domain wall problem happens. It is because the
domain wall number 3ny is larger than 1.
30 Here, we define mg as M + M3 = 2m3, and use M — M3 = \sv?.
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Figure 32: Neutrino mass

Furthermore, using the another limit: My 4 < My, , this becomes similar to the neutrino
mass in Type I seesaw:

2 ik, Jk
47‘(’2 A M\pk

(My)ij (14.17)

15 Summary of Part IV

We can construct the minimal model, in which we identify the Peccei Quinn symmetry
in the KSVZ axion model with the lepton number symmetry in Majoron model. We
use the radiative seesaw model with the color octet fermion, and we identify this as the
heavy quark in the KSVZ axion model. Then, the neutrino oscillation can be explained
by the 1-loop diagram of neutrino mass. Both the strong CP problem and the existence
of dark matter are explained by the QCD axion. In order to avoid the domain wall
problem, the PQ symmetry must be broken before reheating temperature. The scale of
PQ scale is mainly constrained by the supernova.
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Part V
Conclusion

Neutrino oscillation is the strong hint which indicates the BSM physics coupling to SM
lepton sector. Furthermore, the other problems of SM are also serious (for example,
muon g-2 anomaly, dark matter, strong CP problem, and etc). Therefore, we focus on
the relationships between neutrino Majorana mass and other physics.

In Part II, we focus on the muon g-2 anomaly. It indicates the BSM physics which
couple to SM lepton sector. Therefore, they may be identified as the BSM in seesaw
models. We use the type II seesaw model to explain the muon g-2 anomaly. It is because
it can explain neutrino mass with O(1) Yukawa couplings and TeV scale BSM particles.
In order to make the Aa positive definite, a double charged scalar k™ is introduced.
Then, LFV constraints indicates the existence of the discrete lepton flavor symmetry Zs.
Furthermore, double charged scalars mainly decay to 4~ 4+ 7~ in our model. Therefore,
the muon g-2 anomaly and the neutrino oscillation indicate the importance of the Zg
conserving LFV processes and the decay processes from double charged scalar to = +7~
final states.

In Part III, we focus on the dark matter. Among the models explaining neutrino
oscillation and dark matter, we consider the TeV scale Majoron dark matter. TeV scale
Majoron dark matter can solve the anomalous results in positron fraction detected by
the cosmic ray experiments. Furthermore, the Majoron dark matter can be tested by the
neutrino telescopes (x — vv). However, it is not obvious that the TeV scale Majoron can
be produced as much as the observed dark matter relic density. We can see that three
production mechanisms for the TeV scale Majoron dark matter are possible. Therefore,
the observed dark matter may be TeV scale Majoron. The neutrino oscillation and the
dark matter relic density indicate the importance for the indirect detections of dark
matter by the cosmic ray experiments.

In Part IV, we focus on the strong CP problem. Lepton number symmetry is broken in
seesaw models, and PQ symmetry is done in axion models. Therefore, it is important to
identify them. Some seesaw models contain heavy fermions, therefore, we identify them
as the heavy ”colored” fermion in KSVZ axion models. In this model, axion can explain
the observed dark matter relic density. In order to avoid the domain wall problem in this
model, the PQ symmetry breaking must occur before reheating temperature. Combining
the above results, the neutrino oscillation and the strong CP problem indicate that the
observed dark matter is axion (= Majoron) coupling to SM lepton and nucleons, SM
lepton couples to heavy colored particles, and the PQ (=L) scale of this model constrains
the reheating temperature.

Throughout this thesis, we consider what is indicated by neutrino oscillation and

81



other BSM physics. They can be tested by future experiments; colliders, cosmic ray
experiments, axion detectors, neutrino telescopes, and so on. We want to discover these
new physics in future.
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A Appendix for Part 11

A.1 The calculation of the lepton g-2 and the LFV processes

We want to lepton g-2 and LFV process in this part.
In §A.1.1, we derive the contribution to lepton g-2 and ¢, — ¢y from the effective
dipole operator

L =00 (AP PL+ AR Pr)laFy, (0" = S 7), Al = ARY). (A1)

In §A.1.2, we calculate the coefficient of effective dipole operator A%“ R, from somewhat
general Yukawa couplings:

L :H;L+@(f¢%PL + fiaRbPRWb + h?jH;L@VLj + He. (A.2)

In §A.1.3, we calculate Br({, — £7y)/Br(fy — vileTe) and Br(l, — (yl.ly)/Br(f, —
vole;) (b # ¢, a # €), under the above general Yukawa couplings. In §A.1.4, we evaluate
the loop integral used in §A.1.2. In §A.1.5, we evaluate the integral over n-body phase
space used in §A.1.3.

A.1.1 The calculation from the effective dipole operator

In this section, we consider the dipole effective action

L =00 (AP PL+ AR Pa)laFi, (0" = S 7), Al = ARY). (A3)
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It is useful to rewrite this Lagrangian in momentum space *'

dPk dPk dPk
/deﬁ _z/dD / 1 / 12i)/(27r)3 Ty(ks) o™ (AL Py + A% PR) 0 (Ky)
x {—iksz, A V(kg) ik, Ay () e ikthatha)e

_ del de? oM ( Abe ba
=2 [ G [ (o ko AP+ A PR ()
X (—kl + kg)#Ay(—k'l + kz) (A4)

Then, we can calculate the amplitude of ¢,(k,) — Cp(ks)y(ka — kp) from the dipole
Lagrangian

iM =26, (ko — ky)u(ky)o"" (AT Pp + A% Pr)u(ka) (ks — ka)y (A.5)
=2i€l (ko — ko)u(ky) (me, — ka)y" (Al Py + A% Pr)u(kq). (A.6)

Then, squared amplitude are

Z |M|2 = - 4T1"%—|— m(b)%_ mfb)’)/u(Al},aPL + A%PR)

d.o.f
x (o + ma, ) (AY* Pr + A% Py, (ke — ma,) (A7)
=8(mj, —mi, ) (|AT|* + |AR ). (A.8)
Therefore, Decay width of ¢, — (v is
11 d3ky, 3k, A
2m) 6 (kg — kp — k
Plta = 67) =5 =51 / (27)32E,, / @rypzE,, 70 R =k = k)
x 8(mj, —mi, ) (JAT]” +AR]?) (A.9)
L1 m2 )2 b2 by 2 (mi, —mj)
= — AY AR|) ————— Al
2m€ 2'8( Zb) (| L | + | R| )27T 8m%a ( O)
(mj, —mf,)’ ba|2 ba)|2
Z‘——Z;;é—L—(L4L|'+|AR|)- (A.11)

The contribution to lepton anomalous dipole moment from effective action is written as
follows (see §1.2)

Aag, = — e (A, + Ap)e. (A.12)

D . D . . ina
31 A((L’) = f(gﬂi)pDA(P)eﬂpz, F,uu(x) = a,uAu - 81/Au = f(QdTri)pD(_ZpNAV + lpVAIL)e P =
| G5 B (p)e™ "
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A.1.2 The calculation of the lepton g-2 and the LFV processes from Yukawa
coupling

In this section, we calculate the coefficient of the effective action in §A.1.1 (A%“ r), from
the following general Yukawa coupling *

L :H;L+@<fi(ILl)PL + f{#Pr)ly + h?jHj@VLj + Hee. (A.13)
First, we rewrite the amplitude of £,(p3) — £s(—p2)y(—p1) written by the effective action

M :262(—p1)ﬂ(—p2)0””(A%aPL + A% PR)u(ps)(—p2 — p3) (A.14)
=2iu(—p2)¢(—p1)
x {(me, AT + mg, AR) P+ (my, A% + me, A") Pr }u(ps)
+ di{ pac™ (=p1) u(=p2) (AL Pr + AR Pr)u(ps). (A.15)

Please pay attention that this amplitude contain the term with ¢“(—p;) and the one with
p2€*(—p1).

We will calculate the amplitude from the general Yukawa interaction. Then, we can
write A“Lb r as a function of Yukawa coupling, even if we keep only poe*(—p1) terms.
Therefore, we will ignore ¢*(—p1) terms in this subsubsection.

First we calculate the H™’s contribution to the LFV amplitude

My =) [ o5 =a) P Pru(pa)e (—pa)
i (2m) 1
l :
X —ie

7
(g - p3)2 - Miﬁ

—2e[h;h]®(Cag — Oy + C2)(0, MHJ){p2€*(—P1)}U(—p2)(mebPL + my, Pr)u(ps)
(A.17)

—20 — po —f—pg)u} (A.16)

Here, — means that we ignore the ﬁ’{(—pl) terms. Cyg, Coo and etc. are defined in §A.1.4.
When we compare iM ,+ with the amplitude written by the effective action (A.15), we

32H T and H; are written in mass basis.
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can write the contribution from H;" to Ay g as

All"ba :412, X 2e Z[hihﬂ“b(@g — Gz + Co) (0, Mg+ ymy, (A.18)
s o s, (A1)
Ao :4%, X zez[hih}]ab(cm — G+ C3)(0, My, (A.20)
47T g Z it abmg . (A.21)

Next, we calculate the contributions to dipole effective coupling from H. ;“Jr Yukawa cou-
pling. Two contributions from H;'" exist. We define iM gy N which a photon emits
from the internal scalar line, 1M HE 2 in which a photon emits from the internal Fermion
line. First, we calculate i M 1 shown as follows

dPr
IMpi+ :/Wﬂ(—pg){i@f PR+2fTbCPL)}éZJ_F—ZZC){ (2f{ Pr + 2f{#Pr) yu(ps)
X €*H(—py) ETDE ! Mé++ { — 2ie(—20 — po +p3)u} = p3>21_ M_r2-1,++

(A.22)
—>166{p26* —p1)}(022 — Coz + Cy) (L, MH++)

X T(—p2) { (g, £ £S04 mu, fI0 FER)Pr + (g, i F28 4 me, 17 F60) Pr Yu(ps)

— 166{p2€ _pl)}(ZCQ + Co)(fc, MH;r+)mgcu( pQ)(fTbcf ap 4 fTbCf aPR)u(p

(A.23)

We compare this with (A.15), then, we can know the effective coupling which correspond
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tO MH;r+1

1 C rca C
AH++1ba _E X ]_66 2(022 — 023 + 02)(&:; MHZ-F-F)(m[bfTb il + my fTb )

1 c
v X 1662 202 + Co)(éc, MH:—JF)mngTb

X o 158+ S S8+ 6 T
47T 2 M?IH ’

1 c c
Ag++1ba = % 16e 2(022 — Co3 + C9) (L, MH;rJr)(mzbfTb my, fTb

1 c
T X 16e 2(202 + Co)(gc, MH;rJr)mgchb

. Z mfbfg%c @ omy, [I°F8 4 6my, [ foa
47)2 M?IH

Next, we calculate iM j++, shown as follows:
: . dPl _
iMyg+g =€"(=p1) / WU(—Z?Q)
X {QZ(fZTbCP —f—fTbCP } ) MZ(;Z/%—Fch)

iey
€+p ? (0 —p3)? —mj.

7
X{QZ PL—f—fl PR }up3W
HT

—>8e{p26* )}(022 — Ca3 + Cy) (M H+ U )

A(—p2) L (ma, F11F58 4 e, FI0 FE8) P+ (g, f 58 + m, f1° fE8
+ 16emy, {poe”(—p1) } Co( My v, ma, Ju(—pa) (fl Fi7 Pu + [P
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(A.24)

(A.25)

)

(A.26)

(A.27)

(A.28)

) Pr fu(ps)

Pr)u(ps)
(A.29)



After comparing this with (A.15), we can get the effective couplings as follows:

1 C pca C
AT 20 =15 X 8e E (Coz2 — Cog + Co) (M y+,my, (e, £ 155+ me £ Fi)
1 c
+ F X 16e E my,Cao(M Hj+s méc)fﬂ) (A.30)

Z m&f e f Tbc
4ﬂ- 2 M-H—Q

{3 —2In(M;"?/m2 ) ymy, f1H e g
(47)? Z Mi++2£ ’

(A.31)
1 ¢ c
A{{*””“ = 8e§ : (Cyy — Coz + Co) (M H mZC)(mgbfTb o+ meafTb fiT)

—|— — X 16627714 CQ His mgc)fj;jc iCI% (A.32)

'|'bC TbC ca
Z my, fig ik +mufip fiT
47-(- 2 M++2

be
REE L e
47T 2 M~++2 ’

Using the above results, total contribution from H™ (Aggba = Af e Aﬁg%“)

can be written as follows:

Aff b :AH*“’” AH**%G (A.34)
9 Tbc a om Tbc
+ { —3+6 ln(Mj”/m?C)}mech’%cffi‘} , (A.35)
AH++ba = |:me fTbC 5 + 2 Ea fTbc
R 47T 2 Z Miﬁ* b
+{—=3+6In(M"?/mj ) }mq £} e ZR} (A.36)

A.1.3 The branching ratio of the LFV processes

In this subsubsection, we calculate Br(f, — £)/Br (¢, — vol.g) and Br(l, — €yl.Lly)/Br(f, —

voleTs) (b # ¢, a # e).
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First, we calculate the amplitude of £4(ps) — £ (pp)le(pe)la(pa):

iM(Cy — plly) (A.37)
= u 2 Z.d“P + 2 Z.dap u(p, ‘ offbep. L ofibep )
ST CH P+ 2FR PR ) sy RS P+ 24P
(A.38)
Then, the decay width of €4(pa) — €5(ps)Le(pc)la(pa) is given as follows *:
Ty — 00T7) (A.39)

1 1 d3pb d3p dgpd ,
—_—— C 2 54 - B -
22my, / (2m)32Ey (2m)32E. (27r)32Ed( m)°0"(Pa = Po = Pe — Pa)

1 1
{(py +pc)? — M? ++} {(py +pc)? — M? ++}

X 16T1”(f PL+f PR (p/—f—mf fTadPR+fTadPL)(pff+m€d)
x Te(f17°Pr + 15 Po)(pe — me ) (f5.PL + finPr) (ps+ my,) (A.40)
ol Y (e f“‘d)(f“” + [ (A41)

- 6(4m)? fe i MI21++M12{++

X

Next, we calculate the decay width of ¢,(p1) — va(p2)ly(ps)V(ps), (a # b). The ampli-
tude is given as follows:

iM =L a(pa)y Pru(pr) x —=ti(ps)y” Pro(ps)

va e V2

X (s~ p1)? — iy X {0 = (p3 4 pa) u(p3 +p4)u/m%1/}- (A.42)

Then, we can calculate the decay width:

T (fa — Vafbu_b)

1 1 1

my,
“29m, %/2 dm3,d®s(p1, p3a, p2)dP2(p3s, p3, pa)
a m

Ly

4
X gZTfPﬂ”’ Pr(pr — mu,) Pry"Tr(pg — my, )7" PLpaPry”
1

X W{mv — (P34 pa)u(p3 + P /103y }{po — (D3 + Pa) o (D3 + Pa)o/miy }
GFm
3(47r; (A.43)

33 Here, we used the formulae for the integral over n-body phase space in §A.1.5.
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Using the above results, Br(¢, — ¢yy)/Br(¢, — v.l.7;) is given as follows:

Br(¢, — lyy)/Br(ly, — vl ve) (A.44)
(m% : >3 ba |2 b 3(4m)?

= AP AW A4

o (A A1) x G (A45)
and Br(l, — (yl.ly)/Br(ly — voles) (b# ¢, a # e) is given as follows:
Br(ly, — yl.ly)/Br(ly — voloT;) (A.46)
1 5 1 tad fad Tbc the 3(4m)°

- - - —— (A4

6(4@37% Z T (RELE + SRSt + FR SR % G (AT
1

Tad tad Jrbc tbe cb A4

2G2 Z YT S+ BRI G 15 + £ 1) (A.48)

A.1.4 The calculation of the loop integral

In this section, we evaluate the loop integral in the LF'V process ¢,(p3) — p(—p2)y(—p1).
First, we define loop integral Co(M;y, Ms) and C5(My, Ms) as folows:

Co( My, Ma)pay, + Cs(My, Ma)ps, (A.49)
dDE 14
_'/ 2 2 Y 2 2 (A.50)
D2 — M7) 6‘*‘1’2) — My H{(ps — €)* — My}
1—x o -
~2 d:r dy (P2 = yps)u (my < My or my < My)
2 2 213
{q - Mi(l—z—y)— (I+y)M2}
(A.51)
Therefore, Cy and C3 are written as follows:
Co(My, My)
~ —C3(My, M)
1—x
T
= —2/ dx/ dy/ . 13
¢? = Mi(l -z —y)— (l‘JFl/)Mz}
11—z
x
dx dy
MP(1 -z —y) + (x +y)M;
i —3M{+AMEMZ — My — 2M{! ln(M22/M12) (A52)

~ (4n)? 4(M7 — M3
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Next, we define Cyg, Cog, Cy3, Cs3 as follows:

Coo(My, M2)n, + Coa( My, Ma)paypoy
+ Cog(My, M) (p2upsv + p3upav) + Cas(My, Ma)ps,ps,

_/ dDe 0,0
(0 +p2)? — M3}H{(ps — €)% — M3}

lx D
—Q/d:z:/ dy/d

{q — (xpa — yp3) }{q — (vp2 — yp3) }o

(A.53)

(A.54)

{q — :)szm%b

—ay(mj +mj ) —y*mi — Mi(1 —x —y) +x(mj —
@*Gu /D + (zp2 — yp3) u(zp2 — yps)y

M)+ y(m2 — M)}
(A.55)

1 1—x D
d”q
:2/ d:z:/ dy/
0 0 (QW)D
2

{¢? - w?mi —xy(mi +mi) —y?mi — Mi(1—z—y)+a(m] —

M2) +y(m2 — M)V’

(A.56)
5 / s / e d / d” 24 29/ D + 2 paupay — 2y (paupav + P3ubav) + Y P3uPav
(@ =M1~z —y)— (x+y) M3}
(A.57)
Therefore, Cyy, Co3 and Cs3 are written as follows:
Coz (M, M)
~ Cs3(My, My)
11—z 2
= 2/ dm/ dy/ 5 ’ 3
—Mi(l—2—y)— (x+y)M2}
o 1M — 18M{1M2 + 9M1 M§ — 2MS$ + 6 MY In(M2/M?)
- (4m)? 18(M7 — M3)*
Coz(My, M)
11—z —
a 2/ da:/ dy/ td 13
=M1 —z—y)— (v +y) M}
i 1IMP —18MY M2 + 9M§M§ — 2MS$ + 6 MP In(M3 /M%) (A58)

~ (4n)? 36(M7 — M3)*
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At last, we define Cy as follows:

Co(M1, M) (A.59)
dPe 1
:/ (2m)P (02 — ME){(L + p2)? — M3} (ps — 0)? — M3} (A.60)
i M M- MPMOMAR)
 (4r)2 (M? — M2)2 : (A.61)

A.1.5 The integral of the n-body phase space

In this section, we evaluate the integral over n-body phase space. The integral over
3-body phase space is written by 2-body phase space as follows:

dq)3(P7p17p2>p3) <A62)

d’py d’py d*ps A4
_/ (27)32E; (27)32F, (27)32E; (2m)°0°(P = p1 — p2 — ps) (A.63)

d3p3 4 4 4cd d3p1 d3p2
~ ] @n)32E; —p1 = p2)(2m) 0N (P = pra — A.64
/ <2”>32E3d pradi(pe = = pa) O e p3)<27r)32E1 (27)32E, (A.64)
1 (\/1?2—m3)2
:% ( - dmfgd(I)Q(P, P12, pg)dq)g(pu,pl,pQ), (A65)
mi-+mo
Here, 2-body phase space is written as follows:
/dq)2(p1;p2,p3) (A.66)
d*py d*ps
= [ 28 (1 —p2 - A67
/( m)"0"(p1 — p2 — p3) (27)32E, (27)32E; ( )
1 d3p2
~(2m) / 1B M \/1022 +my \/ p2” +mj) (A.68)
SN NN T 22
2m 8m?2
X 5(|p2| - ’p226r0|)- (A69)

A.2 The two loop integral

In this section, we calculate 2-loop integral for Zee-Babu type diagrams. Our calculation
refers to [220] and [221].
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First, we define I5 and rewrite it by other integrals: **

[5(ma7mbamcamd7me) (A7O)

:(&)*26 / de dD 1
B (2m)P 2m)P (p? — m2)(p? — mP)(q® — m2)(¢* — mH){(p + ¢)* — m?}
(A.71)

_ (A.72)

% ()2 d"p d"q I 11 1
@2m)P 2m)P\p* —mZ  p?—mj )\ —mi @ —-mi)(p+q)?—m?
(A.73)

“ I D) = m?) {I3(ma, me, me) — I3(ma, ma, me) — I(my, me, me) + I (my, ma, me) }-

(A.74)

Here, I3 is defined as follows:
I3(M,, My, M.) (A.75)

~ dP dP 1
E(m)_Qe/ pD / qD 9 9 9 2 5 o1° (A76)
2m)P ) 2m)P (p* — M2)(¢*> — M) {(p + ¢)* — M2}

Next we define J5 as follows:

J5(ma7mbamcamd7me) (A77)

P dPp dP p-q
=(m) / (2m)P (2m)P (p2 — m2)(p? — m3)(q* — m2)(¢* — m3){(p + q)* — m2}

(A.78)

1 m2
5 (maamb)IQ(mwmd) + 7]5<ma7mb)m67md7me> (A79)

1 1
_ - A.80
2m2 —m; 2m2 — m?i ( )
{ m? 4+ m?) I3(mq, me, me) — (M2 4+ m2) I3(mg, mg, me) (A.81)
— (m§ 4+ m2) I3(my, me, me) + (Mg +m2) I3(my, mq, me)}. (A.82)
Here, I is defined as follows:
dPp 1

L(M,, My) = ()¢ . A.83
( b) = (M) / (2m)P (p? — M2)(p? — M}) (A83)

34 Here, m is 't Hooft cale. Please see §A.3 for a detail. The physical values does not depend on this.
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I, is divergent. Zee-Babu masses (i.e. I5(M,, My, M., My, M) and J5(M,, My, M., My, M. )—
J5 (Mg, My, M., Mg, My)) will not depend on Is.
Next we evaluate I3:

I5(Ma, My, Mc) (A.84)
_ () —2¢ de qu 1
[ e | G (A5
D D 2D Z 0 (gpu g%)
() —2€ d p d q H= Pu du
_(m) /(271')17 / (27T)D (pQ — M(g)(q — ME){(erq)? — Mc2} (A.86)
1 . o dP dP 1
_B(m) /(27T)D / (2m)P (p? — M2)(¢? — Mb2>{(p+q>2 — MCZ} (A.87)
P’ ¢ (p+q)?
X{p2—M3+q2—MbQ+(p+q)2—M§} (A.88)
= 5 1M M 200+ (N2 (M My M)+ ML (M M M) + MMy, My, 3)
(A.89)
Is (M“’M”’M ) (A.90)

=5 3{M214 Mg, My, M) + M Lo(My, M, My) + MZ1y(M., My, My)}. (A.91)

Here, I, is defined as follows:

[\ —2¢€ de qu 1
0k 09 =60 [ o5 [ oG s v oy
(A.92)

Using the above results, I5(M,, My, M., M4, M,) and
J5 (Mg, My, M, Mg, M) — Js (Mg, My, M., My, My) are written by I, (and I5). 14 is eval-
uated as follows:

I4<Ma7 Mb7 MC)

L dD dD 1
=(m) / (27r)D / (2m)P (p* = M2 = M) {(p+ q)* — M2}

—F 4 — D)( —2¢ i {a: (1- x>}2—D/2y1fD/2(1 —y)
 (4n) DM2(4 D) / ! / dy z(1—z) {(1 —y)+ y,uQ(a:)}Ll*D’ (4.93)

GO xM2<1+£1x;A§3M2>'
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Here, integral over y are given as follows (D =4+ ¢ (e < 0)):

1 1-D/2(1 )
dy Y _ (A.94)

/0 y{(l —y) +yp2(z)}
:_2—14—{%—Lig(l—u2)+%}€+o(€2)~ (A.95)

Therefore, 14 is written by the divergent part I4; and the finite part I42, shown as follows:

I‘*(M“’Mb’M) (A.96)
—F 4 — D)(m)~% {z(1 D/2—2y1fD/2(1 —y)
(47) 2(4 D) / dit/ dy ((1—y) + (e )}4717 (A.97)
:<471r>4 [_ 2t QIH(EMg/m - % B 7{—2 + In(M/m?) —In*(Mg/m?) | (A.98)
iy ], ] - -+ 2 e v
=11 (M,) + Lio(M,, My, M,). (A.100)

Here, m = (47)'/2¢77%/?m, and the I; and I are defined by (A.98) and (A.99), respec-
tively. Using the above results, I5(M,, My, M., My, M.) and J5(M,, My, M., My, M) —
J5 (Mg, My, M., Mg, My) are written by finite parts Iso, and infinite parts I, and I, are
canceled:

IS(Ma;MbaM07Md7Me) (Al()l)
1
(M2 — M) (M2 — M)

(A.102)

MZ{Lio(My, Me, M) — Lip(My, My, M)} — MZ{ Lin(My, M, M) — Lio(My, My, M)}
o+ M2{Lip(Me, Mo, My) — Lip(Me, Me, My) } — MF{ Lio(Ma, My, M,) — Lis(Mg, Me, My)}

+ M3{142(M67 MCL7 MC) - I4Q(Me7 Ma; Md) - I42<M€7 Mb7 MC) + -[42(M€7 Mb7 Md)}7
(A.103)
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J (Ma7Mb7MC7Md7 ) J5(Ma7Mb7MC7Md7Mf)

1
2(Mg — M) (M2 — M)

(A.104)
(A.105)

{Mj(Mg + M7 — M2)Lip(My, M, M) — M7 (M + M7 — M7)Lip(Mq, M., My)

— M*(M? 4+ M3 — M?)Ij5(M,, My, M,) + M2 + M3 —
— ME(ME + M? — M?)145( My, M., M,) +
+ ME(ME + M? — M2)Lip(My, My, M,) —
+ M2(M? + M? — M?)I5(M,, M,, M,) — M?
— MZ(MZ + M7 — M7)Lp(M., My, M) +
— M2(M? + M3 — M?)15(My, M,, M,) +
+ M§<M3 + M7 — M) Lio(Ma, My, M,) —
M2(M? + M? — M?)145(M,, M,, M,) — M*(

— M2(M}E + M? — M?)15(M,, My, M) + M*(M? + M? —
— MF(MZ + M7 — M7)Lip(My, My, M) + M7(M; + M —
+ Mj( (

A.3 ’t Hooft scale

)I4Q(Ma, Mg, My)
)142(Mb, M., My)
)[42(]\/[1,, Mg, My)
M?2)Ijo(Me, M., M,)

Lio(M., My, My)

M3) Lo
@)[42<Md7 M€7 Mb)
2)]42(Md, My, My)

Lo

) MeaMlde)
M?) 14

(
(Me, My, M)

f)I42(Mf7 Ma7 Md)

(A.106)

Under the dimensional regularization D = 4 + ¢, the mass dimensions of parameters are

35

[mass| =1

D —
[boson field ¢] =————

D_
[fermion field V] ==
[¢"s coefficient] = — D +4 = —e

(oW W's coefficient| = — D 1o _¢

D
[¢%'s coefficient| = — 5 $3=1-°

35We denote the mass dimension of A as [A]
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After redefinition:

Yukawa coupling y — yim /> (A.113)
(scalar)®'s coupling yt — g~/ (A.114)
(scalar)¥s coupling A — Am ¢ (A.115)
gauge coupling g — g ~/2, (A.116)

the mass dimensions of couplings become as
] =0, [u]=1,[A]=0,[g]=0 (A.117)

It is convenient to define m as

(4m)Y /2 1E/ 2 (A.118)

m is known as 't Hooft scale.

A.4 The mass bound on H™

In this subsection, we assume this Lagrangian:

1 _ _ _ _
L :§H++(2hLeecLeL + 2hpeeher) + HY T (2hpur i 4 2hpuriGmr) + Heee (AL119)

H*"’s decay widths are

d*p1 d*ps
DO A.120
( erer) QMH++ 2 Z / om)32F (27)32F,; ( )
. 2
X (2%)464(13 — p1 — p2)[2hel*|[u(pr) Pro(pa))| (A.121)
e Myiv (A.122)
8 .
hre|*M
D(H™" —egeR) = e Mirre |8 e (A.123)
T
hiue|?M
F(H++ %mﬁ) :| Ly |4 H++ (A124)
T
hgur|? M
gy e w9
T
In the parameter setting in this thesis, |hr ge|* < |hr gur>. *° Therefore, Hﬁg’s

main decay mode is Hﬁz — purTr. ATLAS and CMS search doubly-charged Higgs

36 |hp, pur|? is large (O(0.1 — 1)), because Aa contains hy, g,r. Furthermore, hy, g, is small (O(1072 —
107?)), because we assume normal hierarchy and m,, = 0. Using this smallness, we can avoid the experi-
mental limit of 7 — eep®.
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boson in three or four lepton final states. The lepton final states in ATLAS’s search are
0 = e,y [222]. The ones in CMS consider final states are ¢ = e, u, 7 [223]. We use limit
for pair production (H*+H~") in [223], because the main decay modes of H;}, contain

T.
The limit for double charged scalar mass is given as follows *7 %
Mys > 537 GeV. (A.126)
B Appendix for Part 111
B.1 y—wv
We assume the following Lagrangian:
My, — fi (~ =
L—— 2NN, — (MM+ZM M) B.1
5 m@¢ XNivs (B.1)
—QgZﬁ&M+Hg) (B.2)
I ;
Ny —vi + Vi, ® = —— (05 + 6 + i), M; = J14Y%. (B.3)

V2 V2

Then, N gets Majorana masses, therefore, after integrating out N, we can explain neu-
trino oscillation. This y is called as Majoron. Here, EOM of N; are given as follows:

M, Ni = — L6+ ixs) Ny — (VILEH + VI HITL). (B.4)
V2
Using these equation,
My, fi (= g
cﬁ:—4mm+——(mm+zm M) B.5
5 e ¢ xNivs (B.5)
— WZ{MNiNi + %(Cﬁ +ixys) Ny + YELEH + Yai[:[TLa} (B.6)
YRR L
§m[1 + %(¢+ZX)] VLaVLb+H.C. (B?)
+ dim 7 or higher, (H — (H)) (B.8)
1 imy‘ 1 imy' —
s——XVi(Pr — PL)Vi = 5——XVisVi, B.
32 v X7i(Pr L)V, 2 0 XTiVsV. (B.9)
Vi =i, + V- (B.10)

3TPlease see Table 6 in [223].
38This is not exact limit, because H 1+1+ and H2+ * are couple to SU(2) gauge bosons in different ways.
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Therefore, The amplitude of x — v;1; is:

. - —my,
M) —vi (pa)vs(ps) =U(P2) s Y5u(ps), (B.11)
) My,
> M| =2 Tr(pg -+ mu, )5 (pg + 1, ) (=5) (B.12)
d.o.f. é
2m?,
ZW(mi — dmy,). (B.13)

Therefore, the decay rate of x — v;1; is given as follows:

1

FX—n/iui :%/dHQdH3<27r)454<pl — P2 — p3)|MX—>ViVi 2 (B'14)
X
2
my My, 2 /. 2\3/2
:——2(1 —4myi/m ) . (B15)
8T v X

B.2 y —tt

In this section, we estimate the decay width of x — tt. First, the decay width is written
by the amplitude:

1 d*ps d*ps 4
Ft = / o 7 / e (o) 8y — By = (B.16)
x 8(p2+p3) X Y |iM il (B.17)
fin
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Here, the amplitude is evaluated as follows

e

( mw + p“‘p“)

. __cab
ZMX—)I% —53 X

Tr—= S
enP e 2 fe-My 2P

Z{M—I— My, } —iYOZ*vP iL=pi)i e
(52 — pl) ]\42 V2 L(E — )% 2cwsw

% (~1) x / PP il ZVap p W+ M) fi

1 — 1 2
S e IR LV A
w W
( my+p“‘p1”)
X 2 2
M2 — M2

y / aPe 1
(2m) P 02(02 — MZ){(€ — p1)? = MR, } (£ — p1)?

X Tef Pr(f + My,)ys{(L—p1) + My, } PLUL—p1)7" Pp.

Here, the loop integral can be evaluated as follows

/ iy £(0)
@2m)P 22 — ME){(l —p1)? — ME (£ —p1)?

_31/ da:/l mdy/l - yd’z/ de [Zj:(j)ﬁzr

inAi =(1—a—y—2)C+ (> = ME) +y(l —p1)* +2{(l — p1)*

=+ (y+2) (1 —y—2)M] — (z + 2) Mz,
(q =(— (y+2)p1).

Furthemore, the trace of gamma matrices is

TefPr(f + My,)vs {(L—p1) + My, } PLU—p1)7" P

~My,q*p}
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WU(pz) lQPL_g ] (ps) x Y

_MJQ\Q}

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)



Finally, the loop integral can be evaluated as

/ dPe 1
(2m)P 02(£2 — M3 ){(€ = p1)? = MR, } (€ — p1)?
X Tef Pr(f — My, )ys{(L—p1) — My, } PLU—p1)7" PL

R Y Nl R (U
< [ | d/ [ 1
/ 2m)P (¢ — A)!

ZMN p1
~ M, < M
sz ZMJQW (M < My,).

Combining the above results, the amplitude is given as follows:

E— 1 2
Y2 P0? fru(pa)y" EPL — 53%/[/]“(]93)

iMx—)tf 4\/— 3 W W
( N + p“‘p”) iMyp? 1
M2 M2 8m?  2M%,

1 ab ‘ |2 2f MN 1

f %V ’2M2 " 82 M2

X

“u(p2)y5v(ps).

The squared amphtude is

Z |Z.Mxﬁtf|2
fin

3 1 - 1 2
M }
~ 32 (872)2 chWM4[Z| il figngg M

k3

M?2
X —tTT(PH Mi)vs(ps + Mi)(—s)

31 1 S ]2 MEM:?

~324 (3m2)2 4M4{Z| |fiMNi] 2 * (M < My).

Finally, the decay width can be evaluated as follows

1 d*ps dps 4
U= 21)45(m, — Ey — E
X om, / (27)32E, / (277)32E3( m) 0(my = B> = By)

X 53(p2 + p3) X Z {Z’Mx—ﬁfff
fin
NBM ozwv/\/_‘LM2 9 1]
409673 [Z’ g flMNi] '
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(B.30)
(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)



B.3 The Casas Ibarra Parametrization
First, neutrino Majorana mass and PMNS matrix are

1
LD— §(Mu>abDLaVEb + H.c.,

Vo =(UpMns)aiVLi (Vi @ mass engenstate),

1 C13 Slge_iécp
Upnmns = Co3 523 1
5
—S93 €23 —sygetrocp c13
cl2  S12 etim
X —S192 C12 €+2n2
1 1
miE =Uf, s MU
v —UpunsMrUpnNs

In our model, neutrino Yukawa and Npi’s mass are shown as follows:

1 —
~Ny,Ng Np, + Hee.

L D — YuilraNpgi(ioe) H* — 5

-— 1 0
— — Yail Lo NRi (_1 ) (UEW/\/_) NNN NR + H.c.

the equation of motion (EOM) for Ng; (without kinetic term) is

1 YuveEw .

Np = — —Z27—"1¢ .
f MNi \/§ La
Therefore,
2 2
YaiYbi Vaw YaiYbi VEw
LD+ %VL&VE(J — %VLGI/& + H.c.
2
YailYbiV
=+ —GZA;N?W VLavi, + H.c.
1
= — §(M JavVLaVi, + Hoc.,
YailYbi v
(M) ap = _ UMW = (Upmns) aimuw, (UpMns ) bi-
2My;,

Therefore, y,; can be written as follows (Casas Ibarra parametrization):

y :_UPMNS \ my*80\/ My, (00T =

89 (H) = (0,vw/V2)T.
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(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

(B.54)

(B.55)
(B.56)

(B.57)

(B.58)



B.4 Energy density, number density, entropy density

Energy density, numeber density, pressure are given as follows:

D)y p = 5 [ @) (B.59)
p= / |p|2 fp)dp, f(p) = ! , (+: Fermi, — : Bose).
(27?) 3E(p) exp [B(E — p)] £1
(B.60)
When p < T, entropy density is given as:
p—np+p ptp
= ~ . B.61
s T T (B.61)
In relativistic limit 7" > m and p < T,
7r—;gT4 (Bose) S)gT?’ (Bose) p
p= T (Fermi) | | 3@078 (Fermi) 7 3 (B.62)
830g (Fermi) 12509 (Fermi)
Then total energy density and total entropy density is given as follows:
s T4 7 T4
ot — o~ *T4, * — z(_z) - z(_l) 5 B63
Prot =359 g b%ng T +fe§m A ( )
272 T;\3 7T TiN\3
AT TS e = (_) ‘ (_) . B.64
s =2=0:5T", gus bgng - +fe§on8g - (B.64)

When using Maxwell-Boltzmann distribution with ¢ < T, number density is given as
below (this is useful for solving Boltzmann equation):

4 oS TK T
0 [ i o e - TR T) (5.65)
- T
n nm? gm®T2Ky(m/T) _gm S12 Ky (x)
yed -0 — = = T). B.66
s s(m)T3 27125(m) 27m2s(m) (z=m/T) (B.66)

B.5 The Boltzmann equation

Boltzmann equation is (z = my/T):

4
% _ m /dl‘[wdﬂa o dTTdTL, - - - (B.67)
x (2m)*6* (py +pat - —pp—pe— ) (B.68)
% [Mytaroprore2fufas - (LE f)(1E f) - (B.69)
— Mot gpran 2 fofer - (LE fp) (L £ fo) -+ . (B.70)
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Here, |[M| is "summed” over freedom of the initial and final states "’ Y is defined as
Y =n/s.
We define an interaction density v as below:

Ve 2Vt at o btet ) (B.71)
:/dﬂwdﬂa--dﬂdeC\M(X tat+-obtet) (B.72)
X (27)* 0 (py + Pat - =Py —pe— - ) A (B.73)

When 1+ f~ fand f, ~ fFO%,
—H(mqif(mw % ==y e =YY ) (B.74)
——[Ya-- o btc], (B.75)
[ba b+ ] =gy e = YA s Y = %. (B.76)

B.6 The integrals of (thermal-averaged) phase spaces

In this section, we evaluate the integrals of (thermal-averaged) phase spaces. These are
used in Boltzmann equations. First, we evaluate the integral of 2-body phase space,
which used in the integral over phase space of final states. The evaluation is shown as
follows:

/ AT, dTT,(27)* 6% (k — p1 — pa) (B.77)

=0[s — (my + mg)z]%\/)\ 1,m?/s, m2/5)/d(0080), (Ma,b,¢) = (a —b—c)* — 4be).
(B.78)

Next, we evaluate the integral of thermal averaged (2-body) phase space, which used in
the integral over phase space of initial states. The evaluation is shown as follows:

/ dIT, dlTge P E1HE2) £ (5) (B.79)
1 / s2K 5\/_
= ds' A(1,m?%/s,m3/s). (B.80)
2674 s'>(m1+mz)? \/ ! 2

40 Tt depends on the definition of dII;. In my notation, dIl; = ﬁ%
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B.7 Jabcd(S)

In this subsections, we evaluate the cross section of ab — cd (6%.4(s)). It is written as
follows: *!

ab 1 1 / 454 2
. = dIL,dI1,(27)*0% (py + Pp — Pe — M(s, cos @
7 d(S) gangf! 4\/(papb)2 - mgmg b( ﬂ-) (p ey pd)’ (S )‘
(B.81)
_ 1 1 /\(ng/svm?i/s) 2
= oS s \//\(1, 2/ m%/s)e[s — (me +ma)?] (B.82)
X /d(cos@)|/\/l(s, cosf)[%. (B.83)

B.8 The evaluation of 7%, and 7%,

In this section, we evaluate 7%, and v*,;. These are used in Boltzmann equations.
First, 7%, is evaluated as follows: **

Yoo = / AT, dTT,dTT.(27) 6% (pa — b — Pe)| Ma—spe| e 7 (B.84)
3T

:gam; ;%bcxglKl(xa), (:L’a = ma/T>' (B‘85)
™

Next, we evaluate v*_; as follows **:

a 1 - ab|?
Y ea = 5,151 / dI,, dI, dTL, d1T,,, (270) 6 (pa + py — pe — pa)e PFe M (B.86)
3/2 ¢, (541/2
9aGb / s 1(8s7/7) 2 2
= ds A1, mg /s, mi/s)Tap—scals),
257"45’1! s>max [(ma—i—mb)Q7 (mc—ﬁ—md)z} ﬁ b -

(B.87)
(AMa, b, ¢) = (a — b— c) — 4bc).

B.9 The narrow width approximation

In this section, we approximate v*_, by narrow width approximation. We assume that
the process ab--- — cd--- contains the intermediate state B as ab--- — B — cd---.

a1g ¢ is the symmetric factor of final state phase space. gq, gy are the degrees of freedom of a and b,
respectively.

42Here, we use the formulas in §inttheravephasespsec.

438, S¢ is the number of identical particles.
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Through out this section, |M]|? is ”summed” over d.o.f of the initial and final states.

First, we evaluate the following integral by narrow width approximation: ** *°
2

/ dlledlly - - (27) 6" (pp — e — Pa — ) [ Mabsca.-| (B.90)
_ 2

:gBl /dHcde tet ‘Mab-naB‘ (27‘()454(])3 —Pe—Pd— - ) (B.91)

, 2
x ' Mpoea|’ (B.92)
S — M2 + iMFtOt

~|Map..—B| (5 M2+ (Mo ? (When pp = s ~ M? (on-shell)) (B.93)
I'B—scd..
—| My 5| 276 (s — M?) x 2292 (s — M?| > MT). (B.94)

Ftot

Here, Iy is the total decay width of the intermediate state B. Then, v, . is approx-
imated as follows:

Y e = / d,dILy - - - dldlly - - - (2m) 6" (o + pp + - - = pe — Pa) (B.95)
X | Moo | e FPatFot) (B.96)

~ / dl,dTTy - - | M| (B.97)

X (2m)d(s — Mz)e_ﬁ(EaJrE”'") X Bra_sed... (B.98)

=y Brp_eg.... (B.99)

Here, Brp_,.q... is the branching ratio of the process B — c¢d - - -.

44 _ 1 1 1 _ 1

6(35) — 2m (;c—ie - $+ie> - ;:()2-6"-62'

45 When B have nonzero spins or inertial degree of freedom, we need sum over B’s degree of freedom. (cf.
Do UusTls = P —m, Yo €nyeun = — (N — kuky,/m?).) Therefore,

2

2 7
’Mabm%cdu-’ E Mabm%BS MBed...

B.
— M? + iMT ot (B.88)

B’s degree of freedom

1( 3 |Mab..ﬁBﬁ>

9B B’s d.o.f

1
S_M2 +iMrt0t

2( 3 |MB%di..|2>. (B.89)

B’s d.o.f

Here, we ignore the coherences of B’s different state in (B.89). Overline means average over spin.
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C Appendix for Part IV

C.1 Fujikawa Method

First, we assume the following Lagrangian:

L=Ui(ip)v — (FL) (C.1)

Here, we assume that the gauge anomaly of ¥ is cancelled with other contributions of
the gauge anomaly.

Under the local transformation: W, — W), = ete@y, = e’ia(x)75\IfL, the La-
grangian is transformed as follows:

§La =0,0(x) W'y Wy (C.2)

Next, we evaluate the measure of path integral: *°
DU, DU, D (Ve @)D (e @ g ) (C.3)
=(detzJ) '(detrJ) ' DY DV . (C.4)

Here, Jacobian J is given as follows:

1

J(x,y) =6(z — y)e_io‘(g’:)75 = Z E( - ioz(x)lxy'yg’)n = exp ( - z'oz(a:)lxy'y5) (C.5)

Using this definition, we can evaluate (det;.J)(detz.J):
(det.J)(detnJ) = exp [ / deTy{ — ia(x)d(z - x)75PL}] (C.6)
X exp l/der{ —ia(r)d(x — x)75PR}] (C.7)
— exp l/mer{ —ia(x)d(x — x)75}1 : (C.8)

Though Trvs = 0 and 0(z — x) = oo, we can evaluate by Fujikawa method. First, we
replace delta function as follows: **

. dr .
iz —y) —>e(lp§)2/M25(x —y) = / B )46(1%2/]”26““@_?/) (C.9)
T
d4k ik -1/\2 2
— ik(z—y) ,—(D+if)> /M 10
/ (277)46 e : (C.10)
46 Naively, In [[], e @@etia@] = —4 [, Trys = 0. However, [ 1 = oo, therefore, [ Trys can have

non-zero values.

AT getkr = etk (9 + ik), 9" = g~ 1e™* T (9 4 ik) = e (0 + ik)™, therefore, f(0)e*® = e f(0 + ik).
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Here,

(D + i) =p* — k> +i{ D, ¥} (C.11)
=D? — gF,,0" /2 — k* + 2ik - D. (C.12)

Therefore, the trace of §(z — x)7° is evaluated as follows:

d4k 2 g 2 . 2
Te[5(x — )] :/ 5 >4Tre* (D290 /2- K2 +2ik-D] /M % (C.13)
T
d*k [M‘2D2 M=2F.  oh /921 2i M1 D]
T
(C.14)
4 d4’<“ K2 g2 wv __po 5 -5
=M (2@46 2'22M4TrFWFpgTra v +O0(M™)| (C.15)
9 -
= — @TI'FMVFMV. (016)

Then, the determinant of Jacobian is written by field strength, as follows:

(detyJ) *(detpJ) ™' =exp l— /d:r:Tr{ —ia(x)d(x — :(:)75}1 (C.17)
— exp [—i%; / dm(a;)TrFF]. (C.18)

Therefore, path integral is written as follows:
Z = / DU DS = / DV, DY, ") (C.19)

:/D\I/_LD\I!L exp {’L[S +05] } (C.20)

g*a

SL =(0,0)W L yH "W, — 162 TrFE. (C.21)

When assuming the following right-handed Lagrangian:

L —Tr(iD)Up— i(pgy)z, (C.22)

and the local transformation: ¥p — e @) = e~ i@’ R, the path integral is written

107



as follows

= / DU LDV RS W) = / DU, DY) (C.23)

- / DU DY exp {z [S 4 65] } (C.24)

2

5L =(0,0) Ty Tp — 196:2 ToFF. (C.25)

C.2 The couplings in the QCD axion models and the chiral La-
grangian

This subsection is based on [157,158].

C.2.1 PQWW axon model or DFSZ axion model

In this section, we assume the following axion effective Lagrangian ( q = (u, d)T, cg =
diag(c?, ), M, = diag(m,, ma) ):

2 -1 . d,a
Lo (aa) filg;QTrGG+ L9, aFF o+ I

When ¢ is transformed as ¢ — 7922 %ag (Qq: Hermite, ¢ is the first generation), L is
transformed as £ — £ + 0L:

qe'y g — qMyq. (C.26)

2

oa
oL =— _2f gty 89 357 TrQaTrGG (C.27)
2 . . o
+ ‘8(;2' : Nc'g?'TrQaQQFF — e %a % Mye5 25 Vg, (C.28)

When choosing Tr@), = 1, aTrGG is canceled:

1 1 ~
L Dg(@a)Q + ngaFF —1— 2f qc(ﬁ voq — Mg, (C.29)
ga'y :gafy f Cq - Qa, (030)
M, =e""25 Qane%ﬁQa. (C.31)

In order to choose @),, we consider the following effective Lagrangian:

L =Lyin + Liass (C.32)
2

_Jx {Tr(DU) (DU) + 2B, Te(UM] + M, U )] (C.33)

U =exp [i(7°0" + 1)/ fx], M, = "% [2Je) M etaQa/Rla) N = diag(my, mg).  (C.34)
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Here, Lhas is expanded as follows:

2
Lonass 3]; (2By) Tr(UM] + M,UT) (C.35)
2

L (230){(77% el S )] = o = m ] (€30
2f LT [U{Qa My} —He] — 7 Tr[M Q ]} + higher order (C.37)

2 _ 2
=_ %(w‘ﬂ +1?) — mi%w% — %cﬁ + higher order. (C.38)
Here, we choose Qq as Qq = M, ! /Tr(M, ) so that the term aTr[U{Qq, My} — H.c] is

canceled. ¢4, g,y are written by this Qa

Next, we consider the mass term of 1 and a from anomaly. Ly, has the symme-
try: SU(Q)L & SU(?)R U — RUL! (qL — Lqr, qp — RqR). When L = et/2f)
and R = e/ (ie q —> e~m 122/ @f7) ) [ s transformed as £ — £ + 6L, 6L O
87?2 3 TI'lQXQTI'GG =
anomaly:

65 7 2ITrGG. Therefore, ) and a get the following mass terms from

m% 2
Eanomaly 9 [77 + afw/<2fa)} : (CSQ)

is given as follows: [224]

Cup = — 0.47(3) 4 0.88(3)c" — 0. 39( )¢ — Ca,seas (C.40)
Can = — 0.02(3) + 0.88(3)c) — 0.39(2)% — Ci.sea, (C.41)
Ca.sea =0.038(5) + 0.012(5)c 4 0.009(2)¢}) + 0.0035(4)c. (C.42)

C.2.2 KSVZ axion model

In this section, we assume the following axion effective Lagrangian ( q=(u, d)T, & =
diag(c%, ¢5), M, = diag(m., maq) ):

1 ) a g; 5, 1o AN
L Di(aa) = 7 1602 TrGG + ngaFF —qMyq. (C.43)

n and a get the following mass terms from anomaly:

m2
Lanomaly = = 7"0 [0+ afe/2fa)]" (C.44)

Axion- % f is given as follows: [224]

Cap = —0.47(3), Cap = —0.02(3). (C.45)
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