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Abstract

The standard model (SM) can explain most of the experimental results. However,
there are some pieces of evidence that indicate beyond the standard model (BSM)
physics. We mainly focus on neutrino oscillation in this thesis. It necessarily indicates
BSM couplings to the lepton sector and gives reliable and strong hints of BSM physics.

The neutrino oscillation is explained by neutrino Dirac/Majorana masses. See-
saw models are well-known ones which derive the Majorana masses. Seesaw models
generally contain (heavy) BSM particles which couple to the SM lepton sector. On
the other hand, the lepton number symmetry is broken in the Majorana mass terms,
though it is (classically) unbroken in the SM. In the Majoron models, the origin of
the symmetry-breaking scale is explained, and the associated Nambu-Goldstone boson
(Majoron) appears. The heavy BSM particles and/or the Majoron may describe other
BSM physics. Throughout this thesis, we discuss the relationships between the neutrino
Majorana mass and other physics, for example, the muon g-2 anomaly [1], the observed
dark matter relic density [2, 3], and the strong CP problem [3].

First, we explain the neutrino oscillation and the muon g-2 anomaly by Type II see-
saw model. In order to explain the muon g-2 anomaly, we introduce the double charged
scalar to Type II seesaw model. Then the constraints from lepton flavor violation
indicate that discrete lepton flavor symmetry exists.

Second, we consider the production mechanism for TeV scale Majoron dark matter.
TeV scale Majoron dark matter can explain the anomalous results in the positron
fraction detected by the cosmic ray observations. However, its production mechanism
is not clear. We show three scenarios in which TeV scale Majoron is produced as much
as the observed dark matter relic density.

Third, we construct the minimal model in which the lepton number symmetry break-
ing in the seesaw model is identified as the Peccei-Quinn one in the axion model. Some
radiative seesaw model contains colored heavy particles coupling to the SM lepton
sector. This is identified as heavy colored fermions in the KSVZ axion scenario.
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Part I

Introduction

The standard model (SM) can explain most of the experimental results. However, there

are some evidences which indicate the beyond standard model (BSM). For example, there

are the experimental results which can not be explained by SM; dark matter (DM), dark

energy, inflation (the horizon problem), neutrino oscillation, anomalous results in flavor

experiments, baryon asymmetry and etc. Furthermore, SM has the theoretical problems;

the strong CP problem, hierarchy problem and etc.

We mainly focus on the BSM physics which explain the neutrino oscillation. The

existence of neutrino oscillation is very reliable. It will not be denied by the future

experiments. Furthermore, The neutrino oscillation indicates the BSM particles which

couples to the SM lepton sector. It is the very strong hint of BSM.

Neutrino oscillation is the transition from one weak eigenstates |να〉 to the other one

|νβ〉. In order to explain it, the weak eigenstates and the mass eigenstates of neutrinos

must be different:

|να〉 =
∑
i

U∗αi|νi〉. (0.1)

Here, Uαi is Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [4,5], and it is parametrized

as follows:

Uαi =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13


× diag(1, eiα21/2, eiα31/2), (0.2)

θij ∈ [0, π/2), δCP = [0, 2π), cij = cos θij, sij = sin θij. (0.3)

The parameters in the PMNS matrix are measured by experiments using solar, atmo-

spheric, reactor and accelerator neutrinos.
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NuFIT [6] shows the global fits of these parameters: 1

sin2 θ12 = 0.304+0.012
−0.012, sin2 θ23 = 0.573+0.016

−0.020, sin2 θ13 = 0.02219+0.00062
−0.00063,

δCP =
197+27

−24

180
π, ∆m2

21 = 7.42+0.21
−0.20 × 10−5eV2, ∆m2

3` = 2.517+0.026
−0.028 × 10−3eV2

(Normal Ordering /with SK atmospheric data) (0.4)

sin2 θ12 = 0.304+0.013
−0.012, sin2 θ23 = 0.575+0.016

−0.019, sin2 θ13 = 0.02238+0.00063
−0.00062,

δCP =
282+26

−30

180
π, ∆m2

21 = 7.42+0.21
−0.20 × 10−5eV2, ∆m2

3` = −2.498+0.028
−0.028 × 10−3eV2

(Inverted Ordering /with SK atmospheric data) (0.5)

This global fits is based on the following experiments:

• Solar experiments (Homestake [7], Gallex & GNO [8], SAGE [9], SK [10–13],

SNO [14], Borexino [15–17], Standard Solar Model (external information) [18])

• Atmospheric experiments (IceCube [19, 20], SK [21], Atmospheric neutrino fluxes

(external information) [22])

• Reactor experiments (KamLAND [23], Daya Bay [24], Double-Chooz [25, 26],

Daya-Bay 2 [27], Reno [28,29])

• Accelerator experiments (MINOS [30,31], T2K [32,33], NOvA [34,35])

Next, we review the BSM physics which explain the neutrino oscillation. There are two

well-known methods to explain neutrino oscillation: Dirac mass and Majorana mass.

In Dirac mass method, massless right-handed neutrinos νR are introduced:

L ⊃− yLH̃νR + H.c. (0.6)

Here, L is the doublet SM lepton, H is the SM Higgs particle and H̃ = (iσ2)H∗. After

electroweak symmetry breaking, the neutrinos obtain nonzero Dirac masses.

Another method is Majorana mass method. The dimension-5 higher dimensional

operator is allowed by SM gauge symmetry:

Leff ⊃−
1

Λ
LcHH̃†L+ H.c. (0.7)

After electroweak symmetry breaking, the neutrinos obtain nonzero Majorana masses.

The simplest UV completions for this operator are known as ”seesaw models”: Type I

1 Here, ∆m2
3` := ∆m2

31 > 0 for NO, ∆m2
3` := ∆m2

32 < 0 for IO.
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seesaw (right-handed fermion NR ∈ (1, 1, 0) 2) [36–40], Type II seesaw (complex scalar

∆ ∈ (1, 3, +1)) [41–43] and Type III seesaw (right-handed fermion ΣR ∈ (1, 3, 0)) [44].

The coefficient of the effective operator is suppressed by heavy BSM scale, it explains

the smallness of neutrino masses.

There are models which give the neutrino masses at loop level. They are called as

”radiative seesaw models”. Zee model [45, 46] and Zee-Babu model [47, 48] are well-

known radiative seesaw models. Furthermore, there are radiative seesaw models with

dark matters; KNT model [49], the scotogenic model [50] and etc. In these models, dark

matter is stabilized by extra Z2 symmetry.

The important feature of the neutrino Majorana masses is that they break the lep-

ton number symmetry. This symmetry is classically and accidentally conserved in SM.

Therefore, we want to know the origin of the breaking. Majoron models [51, 52] is well

known models which explain the origin of lepton number symmetry breaking. In Majoron

models, this breaking is identified as the vacuum expectation value (VEV) of complex

scalar. Majoron is the pseudo Nambu-Goldstone (NG) boson of the lepton symmetry

breaking.

In this thesis, we show the relationships between the neutrino Majorana masses and

the other BSM physics. Seesaw models contain the heavy particles coupling to SM lepton

sector. Therefore, they may explain the problems relating to lepton; such as muon g-2

anomaly ( [1], Part II). Furthermore, the origin of the lepton number symmetry breaking

also relates other physics. Majorons have no electromagnetic charge, therefore, it can

become dark matter ( [2], Part III). On the other hand, the lepton number symmetry

breaking can be identified as the other symmetry breaking ( [3], Part IV).

In Part II, we show the relationship between the neutrino oscillation and the muon

g-2 anomaly. We briefly review the muon g-2 anomaly in §1. In §2, we show the methods

explaining both muon g-2 anomaly and neutrino oscillation. In §2.1, we show that Type

II seesaw model cannot explain the muon g-2 anomaly, because the contribution from

Type II seesaw has the opposite sign to ∆aµ = aexp
µ − aSM

µ , which is the known facts

shown in [53]. In §2.2 and §2.3, we explain our idea to solve it. In §2.2, it can be solved by

a double charged complex scalar k++ ∈ (1, 1, +2). In this extended model, the discrete

lepton flavor symmetry must be imposed, in order to avoid LFV constraints (§2.3). In

§3 and §4, we concretely construct two models, and show that they can explain both the

muon g-2 anomaly and the neutrino oscillation, and avoid all LFV constraints.

In Part III, we show the relationship between the neutrino oscillation and the exis-

tence of dark matter. In this part, we identify the (TeV scale) Majoron as dark matter.

In §6, we review the Majoron dark matter. There are a lot of researches on Majoron dark

matter with GeV scale or lighter masses (§6.1). In §6.2, we show that TeV scale Ma-

2 X ∈ (m, n, p) means that X are in SU(3)C m-plet and SU(2)L n-plet, and its U(1)Y charge is p.
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joron dark matter is interesting, because it can explain the anomalous results in positron

fraction detected by cosmic ray experiments. However, it is not obvious that the TeV

scale Majoron can be produced as much as the DM relic density. In §7, we illustrates

the difficulty and our solutions of it. In §8, 9 and 10, we explain three scenarios in

which TeV Majoron is produced as much as the observed dark matter relic density. In

these sections, we show the Lagrangian of Majoron models, Boltzmann equations, the

approximation formulae and numerical results for the Majoron dark matter density.

In Part IV, we show that the lepton number symmetry can be identified as Peccei

Quinn (PQ) symmetry in axion model. First, we review the strong CP problem (§12.1),

axion models (§12.2) and their experimental constraints (§12.3). In §13, we show previous

works in which the PQ symmetry in the QCD axion model is identified as the lepton

number symmetry in the Majoron model (L=PQ models). In §14.1, we construct the

minimal L=PQ models, by identifying the heavy quark in KSVZ axion model with the

heavy fermion in (radiative) seesaw model. We call this as ”Ma-xion” model. In §14.2,

we show the particle contents and their Lagrangian in Ma-xion model. In §14.3, we derive

the axion-SM-SM coupling by the redefinition of fields, and the experimental constraints

on them. In §14.4, we show that Ma-xion models can explain the dark matter relic

density and the neutrino oscillation.
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Part II

The muon g-2 anomaly and the
neutrino oscillation

1 The review of the muon g-2 anomaly

1.1 The muon g-2 anomaly

Recent results about muon g− 2 anomaly are summarized in [54]. This section is based

on this.

The lepton `− has the magnetic dipole moment (MDM):

µ =g
e

2m`
s. (1.1)

This g is called as Lande g-factor. g = 2 in tree-level, and differ from 2 in loop-level.

It is useful to define the parameter a as a = g−2
2 . It was precisely measured by BNL

experiment [55] 3:

aµ(exp) =116 592 089(63)× 10−11. (1.2)

The Standard Model prediction of a contains the contributions from QED, electro-weak,

hadron vaccum porlarization (HVP) and hadron light by light (HLbL). The latest results

of QED are calculated by [57,58]:

aQED
µ (α(Cs)) =116 584 718.931(104)× 10−11. (1.3)

The contribution from electro-weak is calculated by [59,60]:

aEW
µ =153.6(1.0)× 10−11. (1.4)

There are two methods to calculate HVP contribution: data-driven (or phenomenolog-

ical) evaluation and lattice QED-QCD calculation. First, we show data-driven results.

The leading order contribution from HVP is calculated by [61–66]:

aHVP,LO
µ =6931(40)× 10−11. (1.5)

The NLO contribution [66] and NNLO contribution [67] are shown as follows:

aHVP,NLO
µ =− 98.3(7)× 10−11, aHVP,NNLO

µ = 12.4(1)× 10−11. (1.6)

3 Here, we used the latest value of λ = µµ/µp = 3.183345142(71) [56].
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Therefore, the HVP contribution calculated by the data-driven evaluation are:

aHVP
µ =aHVP,LO

µ + aHVP,NLO
µ + aHVP,NNLO

µ = 6845(40)× 10−11. (1.7)

The HVP contribution calculated by lattice QED-QED are shown follows [68–76]:

aHVP,LO
µ =7116(184)× 10−11. (1.8)

This has large uncertainty, therefore, we do not use in this thesis. In the last year,

BMW-2020 [77] calculates the HVP contribution by lattice, with small uncertainty:

aHVP,LO
µ =7087(28)(45)× 10−11. (1.9)

This result consists with no new physics. In this thesis, we do not use this results, and

we wait other lattice HVP results with small uncertainty.

The HLbL contribution are calculated by the data-driven evaluation and the lattice

calculation. The data-driven result [78–90] and next to leading order result [91] are

shown as follows:

aHLbL
µ =(69.3(4.1) + 20(19) + 3(1))× 10−11 = 92(19)× 10−11, (1.10)

aHLbL,NLO
µ =2(1)× 10−11. (1.11)

Lattice results of HLbL [92] are shown as follows:

aHLbL
µ =78.7(30.6)stat(17.7)sys × 10−11. (1.12)

Then, HLbL results are shown as follows [54]: 4

aHLbL
µ (phenomenology + Lattice) =90(17)× 10−11, (1.13)

aHLbL
µ (phenomenology + Lattice) + aHLbL,NLO

µ =92(18)× 10−11. (1.14)

Total SM contribution is given by QED + EW + HVP + HLbL, therefore,

aSM
µ =aQED

µ + aEW
µ + aHVP,LO

µ + aHVP,NLO
µ + aHVP,NNLO

µ + aHLbL
µ + aHLbL,NLO

µ (1.15)

=116 591 810(43)× 10−11. (1.16)

Here, we used HVP results given by data-driven evaluation, it is because the uncertainties

of lattice results are large. Then, the difference between SM prediction and experiment

results are shown as follows:

∆aµ =aexp
µ − aSM

µ = 279(76)× 10−11. (1.17)

This suggests that there is 3.7σ discrepancy. This is called as ”muon g-2 anomaly”.

4 Here, we take into account that c-quark contributions are not contained in lattice results.
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1.2 The contribution from the BSM dipole effective action to the
muon g-2 anomaly

The muon g-2 anomaly can be explained by BSM physics. In this section, we evaluate the

contribution from effective Hamiltonian (generated by heavy BSM particles) to lepton

g-2 and electric dipole moment (EDM). We assume that the effective Hamiltonian is

given as follows:

H =−
∫
d3xFµν`σ

µν(ALPL + ARPR)`, (AR = A∗L). (1.18)

Here, ` is SM charged lepton field, Fµν is the electro-magnetic field strength and σµν

is defined as σµν = i[γµ, γν ]/2. We evaluate this effective Hamiltonian by lepton state

vectors |`(p, s)〉 and background electro-magnetic fields, then, we can get the BSM con-

tributions to lepton g-2 and electric dipole moment (EDM).

First, we evaluate the dipole operator as follows 5 (assuming Fµν does not depend on

x): ∫
d3x〈`(p′, r′)|`σµν(ALPL + ARPR)`|`(p, r)〉 (1.19)

=

∫
d3x

d3k

(2π)3
√

2Ek

d3k′

(2π)3
√

2Ek′

∑
s, s′

√
2Ep

√
2Ep′ (1.20)

×
[
us
′
(k′)σµν(ALPL + ARPR)us(k)e−i(k−k

′)x〈0|ar′p′(as
′

k′)
†ask(a

r
p)
†|0〉

+ vs
′
(k′)σµν(ALPL + ARPR)vs(k)e+i(k−k′)x〈0|ar′p′bs

′

k′(b
s
k)
†(arp)

†|0〉
]

(1.21)

=

∫
d3x

d3k√
2Ek

d3k′√
2Ek′

√
2Ep

√
2Ep′ (1.22)

×
[
ur
′
(k′)σµν(ALPL + ARPR)ur(k)e−i(p−p

′)xδ3(k− p)δ3(k′ − p′)

+ vs(k′)σµν(ALPL + ARPR)vs(k)δr
′rδ3(k− k′)δ3(p− p′)

]
(1.23)

→ur′(p′)σµν(ALPL + ARPR)ur(p)× (2π)3δ3(p− p′) (1.24)

(Here, we ignore 2nd term). (1.25)

5 Here, we use the following notations: Ψ(x) =
∫

d3p
(2π)3

1√
2Ep

∑
s

(
aspu

s(p)e−ipx + bs†p v
s(p)e+ipx

)
.

The spinors u(p) and v(p) is defined as follows: u(p) = Λ 1
2
u(m, 0), v(p) = Λ 1

2
v(m, 0), us(m,0) =

√
m

(
ξs
ξs

)
, vs(m,0) =

√
m

(
ηs
−ηs

)
, ξ†rξs = δrs, η

†
rηs = δrs. Here, Λ 1

2
is Lorentz transformation of spinors

defined as follows Λ 1
2

= exp(−iωµνSµν/2), Sµν = i[γµ, γν ]/4, Λ−1
1
2

γµΛ 1
2

= Λµνγ
ν , pµΛµ

ν = (m, 0)ν . The

one particle state vector of Ψ is defined as |Ψ(p, s)〉 =
√

2Epa
s†
p |0〉
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Then, we can evaluate the effective Hamiltonian by lepton state vectors and background

electro-magnetic fields 6:

〈`(p′, r′)|Ĥ|`(p, r)〉
〈`(p′, r′)|`(p, r)〉 =− 1

δrr′
1

2Ep
Fµνu

r′(p′)σµν(ALPL + ARPR)ur(p) (1.26)

=− 1

2

[
− 2i(AL − AR)Ei − 2(AL + AR)Bi

]
(ξr)†σiξr. (1.27)

Therefore, the BSM contributions to EDM and MDM are: 7

dBSM =− 2i(AL − AR)s, µBSM = −2(AL + AR)s =
(∆a`)e

m`
s, (1.28)

therefore, we can get the formulae for BSM contribution to ∆a` and EDM:

∆a` =− 2m`

e
(AL + AR), |d`| =

∣∣− i(AL − AR)
∣∣. (1.29)

There are a lot of BSM models which explain the muon g-2 anomaly; for example the

extra gauge boson [93–110], the two Higgs doublet model [111–119] and so on. We

explain the muon g-2 anomaly by the Type II seesaw model.

2 The relationship between the neutrino oscillation and

the muon g-2 anomaly

In this section, we show the relationship between muon g-2 anomaly and neutrino oscil-

lation.

Type I and III seesaw contain one coupling: LNRφ̃ and LΣRφ̃, respectively. On

the other hands, type II seesaw contains ”two” couplings y∆Lc∆L and µ1φ
T(iσ2)∆†φ.

Therefore, type II seesaw can explain neutrino mass with TeV scale BSM particles and

O(1) Yukawa couplings, by setting µ1 as small value. We want to use these TeV particles

and O(1) Yukawa couplings to explain muon g-2 anomaly.

In §2.1, we show that Type II seesaw model cannot explain the muon g-2 anomaly,

because the contribution from Type II seesaw has the opposite sign to ∆aµ = aexp
µ −aSM

µ .

It is shown in [53].

In §2.2 and §2.3, we explain our idea to solve it. In §2.2, it can be done by a double

charged complex scalar k++ ∈ (1, 1, +2). In this extended model, the discrete lepton

flavor symmetry must be imposed, in order to avoid LFV constraints (§2.3).

6 Aµ = (φ, A)µ, F0i = Ei, εijkFij = −2Bk, Fµνσ
µν = −2iEi

(
σi

−σi
)
− 2BkΣk, σ0i =

−i
(
σi

−σi
)
, σij = εijkΣk, Σk :=

(
σk

σk

)
.

7 When EDM is d and MDM is µ, the Hamiltonian under background electro-magnetic field is given as
follows: H = −d ·E− µ ·B.
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2.1 Type II seesaw and muon g − 2

Type II seesaw model has BSM particle ∆ ∈ (1, 3)+1. Then, the Yukawa coupling of ∆
8 are shown as follows:

LY =− yab∆L
c
a(iσ2)∆Lb + H.c. (2.1)

=− 1

2
(2yab∆ )

v∆ + δ0 + iδ1√
2

νcaνb +
√

2yab∆ (UPMNS)biδ
+`cLaνi +

1

2
(2yab∆ )δ++`cLa`Lb + H.c.

(2.2)

Here, La (a = e, µ, τ) is the SM doublet lepton field. The first term in (2.2) gives

neutrino Majorana masses. The second and third terms in (2.2) give the contribution to

the lepton g-2.

The VEV of ∆ is given by µφT(iσ2)∆†φ, after electro-weak symmetry breaking. The

ρ parameter depends on v∆:

ρ =
m2
W

m2
Z cos2 θW

=
1 + 2v2

∆/v
2
φ

1 + 4v2
∆/v

2
φ

. (2.3)

The experimental value of ρ is 1.00038± 0.00020 [120]. Therefore, v∆ � O(1) GeV.

In appendix §A.1.2, we calculate the lepton g-2, by using the following Lagrangian:

L ⊃H++
i `Ca (fabiLPL + fabiRPR)`b + haji H

+
i `

C
a νLj + H.c. (2.4)

By comparing this with Type II seesaw model, H++
i , H+

i , f
ab
iL , f

ab
iR, h

aj
i are given as

follows:

fabiL = yαβ∆ , fabiR = 0, haji =
√

2yab∆ (UPMNS)bj, H
++
i = δ++, H+

i = δ+. (2.5)

Then, lepton g-2 and the coefficient of dipole operators can calculated from the formula

8 ∆α
β =

(
δ+/
√

2 δ++

(v∆ + δ0 + iδ1)/
√

2 −δ+/
√

2

)
.
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in §A.1.2:

∆a`a =− 2m`a

e
(AL + AR)aa, AL,R = AH

+

L,R + AH
++

L,R , (2.6)

AH
+aa

L =AH
+aa

R =
e

24(4π)2

∑
i

[hih
†
i ]
aam`a

M2
H+
i

=
e

12(4π)2

[y∆y
†
∆]aam`a

M2
δ+

, (2.7)

AH
++aa

L ' e

3(4π)2

∑
i

1

M++2
i

[
2m`af

†ac
iL f

ca
iL + 2m`af

†ac
iR f

ca
iR

+
{
− 3 + 6 ln(M++2

i /m2
`c)
}
m`cf

†ac
iR f

ca
iL

]
(2.8)

=
2e

3(4π)2

m`a[y
†
∆y∆]aa

M2
δ++

, (2.9)

AH
++aa

R ' e

3(4π)2

∑
i

1

M++2
i

[
2m`af

†ac
iR f

ca
iR + 2m`af

†ac
iL f

ca
iL

+
{
− 3 + 6 ln(M++2

i /m2
`c)
}
m`cf

†ac
iL f

ca
iR

]
, (2.10)

=
2e

3(4π)2

m`a[y
†
∆y∆]aa

M2
δ++

. (2.11)

Here, AH
+

L,R is the contribution from single charged scalar, AH
++

L,R is the one from double

charged scalar. Therefore, 9

∆a`a =− [y∆y
†
∆]aam2

`a

3(4π)2

(
1

M2
δ+

+
8

M2
δ++

)
(2.12)

This implies that the contributions from δ+ and δ++ have minus sign. Therefore, they

cannot explain the muon g-2 anomaly, which has plus sign. In Type II seesaw model,

δ++ couples to only left handed lepton. This is reason why ∆aµ has minus sign.

In next section, we add a douple charged scalar field k++ ∈ (1, 1, +2) to Type II

seesaw model. Then, the Yukawa coupling between double charged scalar and ”right”-

handed lepton also exists. It will explain the plus sign of the experimental ∆aµ value.

9 y∆ = yT
∆, [y∆y

†
∆]aa = [y†∆y∆]aa =

∑
i |yai∆ |2
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2.2 Type II seesaw model with k++

Let us consider Type II seesaw model with double charged scalar k++. First, we consider

the scalar potential 10 11:

V [φ,∆, k++] =µ2
φ(φ†φ) +M2

∆Tr(∆†∆) +M2
k++|k++|2

+ [µ1φ
T(iσ2)∆†φ+ H.c.] + [µ2k

++Tr(∆†∆†) + H.c.]

+ λ(φ†φ)2 + λ1(φ†φ)Tr(∆†∆) + λ2[Tr(∆†∆)]2 + λ3Tr[(∆†∆)2]

+ λ4φ
†∆∆†φ+ λ5φ

†φ|k++|2 + λ6Tr(∆†∆)|k++|2

+ [λ7φ̃
†∆φk−− + H.c.] + λ8|k++|4. (2.13)

We assume that the couplings of φ are chosen so that φ gets nonzero VEV. After electro-

weak symmetry breaking, φ gets VEV as 〈φ〉 = 1√
2

(
0

vφ

)
. Then, ∆ also get VEV as

∆ =

(
δ+/
√

2 δ++

(v∆ + δ0 + iδ1)/
√

2 −δ+/
√

2

)
. v∆ is given by the stationary condition:

0 =
∂V

∂δ0

∣∣∣∣
vac

= −
µ1v

2
φ√

2
+

1

2

[
2M2

∆ + (λ1 + λ4)v2
φ

]
v∆ +O(v2

∆), (2.14)

i.e,

v∆ →
µ1v

2
φ√

2
[
M2

∆ + (λ1 + λ4)v2
φ/2
] +O(v2

∆). (2.15)

When µ1 is much smaller than weak scale, the mixing between δ0 and Higgs becomes

tiny. We ignore this mixing effect.

10 Tr∆∆∆†∆† = 1
2Tr∆∆Tr∆†∆†, Tr[∆∆†∆∆†] = (Tr∆∆†)2 − 1

2Tr∆∆Tr∆†∆†, φ†∆∆†φ + φ†∆†∆φ =
φ†φTr∆†∆, Tr∆∆†∆† = 0

11µ1 and λ7 can be real value by redefinition of k++ and ∆.

16



Mass terms of scalar particles are given as follows:

V ⊃1

2

[
M2

∆ + (λ1 + λ4)v2
φ/2
]
(δ2

0 + δ2
1) +

[
M2

∆ + (λ1 + λ4/2)v2
φ/2
]
|δ+|2

+
(
δ−− k−−

)(M2
∆ +

λ1v
2
φ

2

λ7v
2
φ

2
λ7v

2
φ

2 M2
k +

λ5v
2
φ

2

)(
δ++

k++

)
(2.16)

⊃+
(
H−−1 H−−2

)(cθ −sθ
sθ cθ

)(
M2

∆ +
λ1v

2
φ

2

λ7v
2
φ

2
λ7v

2
φ

2 M2
k +

λ5v
2
φ

2

)(
cθ sθ
−sθ cθ

)(
H++

1

H++
2

)
(2.17)

=M2
H++

1
|H++

1 |2 +M2
H++

2
|H++

2 |2, (2.18)

M2
H++

1
= c2

θA− 2sθcθC + s2
θB, M

2
H++

2
= s2

θA+ 2sθcθC + c2
θB, (2.19)

A = M2
∆ +

λ1v
2
φ

2
, B = M2

k +
λ5v

2
φ

2
, C = λ7v

2
φ/2, (2.20)

tan(2θ) = − 2C

A−B, −π/4 ≤ θ ≤ π/4. (2.21)

Here, θ is mixing angle between δ++ and k++. θ depends on the scalar coupling

λ7φ̃
†∆φk−−. The BSM contribution of the muon g-2 has a strong dependence on θ

(i.e. λ7). H++
1, 2 are defined as the mass eigenstates.

Next, we consider the Yukawa couplings of the model. These are shown as follows:

LY =− yab∆L
c
a(iσ2)∆Lb − yabS `cRa`Rbk++ + H.c. (2.22)

=− 1

2
(2yab∆ )

v∆ + δ0 + iδ1√
2

νcaνb +
√

2yab∆ (UPMNS)biδ
+`cLaνi

+
1

2
(2yab∆ )(cθH

++
1 + sθH

++
2 )`cLa`Lb −

1

2
(2yabS )(−sθH++

1 + cθH
++
2 )`cRa`Rb, (2.23)

δ++ = cθH
++
1 + sθH

++
2 , k++ = −sθH++

1 + cθH
++
2 , νa = (UPMNS)aiνi. (2.24)

Here, double charged scalars couple to both left-handed leptons (by y∆) and right-handed

ones (by yS). Then, ∆a can have positive sign.

Next we evaluate the lepton g-2 and the lepton flavor violating (LFV) decay widths

in type II seesaw model with k++. When comparing the Yukawa couplings in this model

with one in §A.1.2:

L ⊃H++
i `Ca (fabiLPL + fabiRPR)`b + haji H

+
i `

C
a νLj + H.c., (2.25)

H++
i , H+

i , f
ab
iL , f

ab
iR, h

aj
i are given as

H++
i =

(
H++

1

H++
2

)
i

, H+
i = δ+, (2.26)

haji =
√

2yab∆ (UPMNS)bj, f
ab
iL = yab∆

(
cθ sθ

)
i
, fabiR = yabS

(
sθ −cθ

)
i
. (2.27)
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Then, the muon g-2 and the decay widths of LFV processes in type II seesaw with k++

are evaluated as follows:

∆a`a =− 2m`a

e
(AL + AR)aa, (2.28)

Γ(`a → `bγ) =
(m2

`a
−m2

`b
)3

4πm3
`a

(
|AbaL |2 + |AbaR |2

)
, (2.29)

AH
+ba

L ' e

24(4π)2

∑
i

[hih
†
i ]
abm`b

M2
H+
i

=
e

12(4π)2

[y∆y
†
∆]abm`b

M2
δ+

, (2.30)

AH
+ba

R ' e

24(4π)2

∑
i

[hih
†
i ]
abm`a

M2
H+
i

=
e

12(4π)2

[y∆y
†
∆]abm`a

M2
δ+

, (2.31)

AH
++ba

L ' e

3(4π)2

∑
i

1

M++2
i

[
2m`bf

†bc
iL f

ca
iL + 2m`af

†bc
iR f

ca
iR

+
{
− 3 + 6 ln(M++2

i /m2
`c)
}
m`cf

†bc
iR f

ca
iL

]
(2.32)

AH
++ba

R ' e

3(4π)2

∑
i

1

M++2
i

[
2m`bf

†bc
iR f

ca
iR + 2m`af

†bc
iL f

ca
iL

+
{
− 3 + 6 ln(M++2

i /m2
`c)
}
m`cf

†bc
iL f

ca
iR

]
, (2.33)

AH
++aa =AH

++aa
L + AH

++aa
R (2.34)

' e

3(4π)2

∑
i

1

M++2
i

[
4m`af

†ac
iL f

ca
iL + 4m`af

†ac
iR f

ca
iR

+
{
− 3 + 6 ln(M++2

i /m2
`c)
}
m`c(f

†ac
iR f

ca
iL + f †aciL f

ca
iR)
]

(2.35)

' e

3(4π)2

{
1

M++2
1

[
4m`ac

2
θy
†ac
∆ yca∆ + 4m`as

2
θy
†ac
S ycaS

+
{
− 3 + 6 ln(M++2

1 /m2
`c)
}
m`csθcθ(y

†ac
S yca∆ + y†ac∆ ycaS )

]
(2.36)

+
1

M++2
2

[
4m`as

2
θy
†ac
∆ yca∆ + 4m`ac

2
θy
†ac
S ycaS

−
{
− 3 + 6 ln(M++2

2 /m2
`c)
}
m`csθcθ(y

†ac
S yca∆ + y†ac∆ ycaS )

]}
. (2.37)

The terms in (2.36) and (2.37) are important for muon g-2 anomaly. These term can

have negative value, it is because these contain both yS and y∆. Furthermore, they

contain the chirality flip m`c in internal Fermion line. When `c = τ , they have large

value. Therefore, ∆aµ can be large positive value in this model.

However, dangerous LFV processes occur in this model. We show the plot of Γ(µ→
eγ)/Γ(µ→ eνµν

c
e) vs MH++

2
in Figure 1. The parameter settings in Figure 1 are shown
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Figure 1: The plane of Γ(µ→ eγ)/Γ(µ→ eνµν
c
e) vs MH++

2
. Both the muon g-2 anomaly

and the neutrino mass matrix are explained at the blue points. The horizontal line is
the experimental limit of Γ(µ → eγ)/Γ(µ → eνµν

c
e), and the vertical line is the CMS

limit of MH++
2

(See §A.4).
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as follows:

v∆ =10−10GeV, M∆ = 900GeV, λ1 = 0, λ4 = 0.1, λ5 = 0. (2.38)

Furthermore, we vary the parameter Mk, and choose λ7 such that we can explain muon

g-2 anomaly. Γ(µ− → e−γ)/Γ(µ− → e−νµν
c
e) is much larger than the experimental limit.

Furthermore, other LFV processes (µ− → e−e−e+, τ− → µ−γ and etc.) can also occur.

Therefore, we must reduce the LFV process.

In next subsection, we introduce the lepton flavor symmetry to the model.

2.3 The discrete flavor symmetry

LFV processes are shown as follows:

µ− → e−γ, µ− → e−e−e+, τ− → e−γ, τ− → µ−γ, (2.39)

τ− → e−e−e+, τ− → e−µ−e+, τ− → e−e−µ+, (2.40)

τ− → µ−µ−e+, τ− → e−µ−µ+, τ− → µ−µ−µ+. (2.41)

When assigning Z3 charges on SM leptons:

Z3Le = +Le, Z3Lµ = +ωLµ, Z3Lτ = +ωLτ , (2.42)

Z3eR = +eR, Z3µR = +ωµR, Z3τR = +ωτR, (2.43)

only τ− → e−e−µ+ and τ− → µ−µ−e+ are allowed under this symmetry. We impose

this symmetry on Type II seesaw model with k++.

We can not explain the neutrino oscillation under the exact Z3. Therefore, we allow

the soft breaking terms of Z3 which cause the neutrino mass matrices.

In §3 and §4, we concretely construct two models: the model with k+
a , (a = e, µ, τ)

(Model I) and the model with ∆a, (a = e, µ, τ) (Model II). Model I has the soft breaking

term µabk
+
a k

+
b k
−−, and it causes Zee-Babu type neutrino mass matrix [47,48]. Model II

has the soft breaking term µaφ
T(iσ2)∆†aφ, and it causes neutrino mass matrix as Type

II seesaw.

3 Model I

In this section, we explain Model I. The fields contents of Model I are shown in Table 1.

k++ and ∆ gives the positive contribution to muon g-2. Only with k++ and ∆, neutrino

oscillation can not be explained due to Z3 symmetry. We introduce k+
a (a = e, µ, τ),

then, neutrino can gain Zee-Babu type neutrino mass.
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SU(3)C SU(2)L U(1)Y Z3

k++ 1 1 2 1
∆ 1 3 1 1
k+
e 1 1 1 1
k+
µ 1 1 1 ω
k+
τ 1 1 1 ω

Table 1: Field contents in Model I

Yukawa couplings in Model I are shown as follows:

LY =− yab∆L
c
a(iσ2)∆Lb − yabS `cRa`Rbk++ − yaAεabck+

a L
c
b(iσ2)Lc + H.c.

=− 1

2
(2yab∆ )

v∆ + δ0 + iδ1√
2

νcaνb (3.1)

+
√

2yab∆ (UPMNS)biδ
+`cLaνi + 2ycAε

cab(UPMNS)bi`cLaνik
+
c

+
1

2
(2yab∆ )(cθH

++
1 + sθH

++
2 )`cLa`Lb −

1

2
(2yabS )(−sθH++

1 + cθH
++
2 )`cRa`Rb,

yab∆ =

yee∆ 0 0

0 0 yµτ∆

0 yµτ∆ 0

 , yabS =

yeeS 0 0

0 0 yµτS
0 yµτS 0

 ,

δ++ =cθH
++
1 + sθH

++
2 , k++ = −sθH++

1 + cθH
++
2 , νa = (UPMNS)aiνi. (3.2)

The term in (3.1) contributes neutrino mass as Type II seesaw, however, it can not

explain neutrino oscillation data, because y∆ is restricted by Z3 symmetry. y∆, yA and

yS cause the neutrino mass as Zee-Babu models.

Scalar potential of φ (SM Higgs), ∆, k++ is shown as follows: 12

V [φ,∆, k++] =µ2
φ(φ†φ) +M2

∆Tr(∆†∆) +M2
k++|k++|2 + (M2

k+)abk
+
a k
−
b

+ [µ1φ
T(iσ2)∆†φ+ H.c.] + [µ2k

++Tr(∆†∆†) + H.c.]

+ [µabk
+
a k

+
b k
−− + H.c.]

+ λ(φ†φ)2 + λ1(φ†φ)Tr(∆†∆) + λ2[Tr(∆†∆)]2 + λ3Tr[(∆†∆)2]

+ λ4φ
†∆∆†φ+ λ5φ

†φ|k++|2 + λ6Tr(∆†∆)|k++|2

+ [λ7φ̃
†∆φk−− + H.c.] + λ8|k++|4

+ λ9ak
+
a k
−
a φ
†φ+ λ10ak

+
a k
−
a Tr∆†∆

+ λ11ak
+
a k
−
a k

++k−− + [λ12ek
+
e φ
†∆†φ+ H.c.]

+ [λ13abcdk
+
a k

+
b k
−
c k
−
d + H.c.] (3.3)

12µ1 and λ7 can be real value by redefinition of k++ and ∆.
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We assume the couplings of scalar potential so that φ gets nonzero electro-weak VEV.

When µ1φ
T(iσ2)∆†φ is nonzero, ∆ obtains nonzero VEV. µabk

+
a k

+
b k
−− is Z3 soft breaking

term, and it causes neutrino oscillation by Zee-Babu mass matrix. λ7φ̃
†∆φk−− causes

k++-δ++ mixing, and it explains muon g-2 anomaly.

For simplicity, we assume the following condition:

M2
k+ab =M2

k+
a
δab, µ1 = µ2 = 0, (3.4)

λ1 =λ5 = λ9a = λ10a = λ11a = λ12e = λ13abcd = 0. (3.5)

We set µ1 = 0, therefore, the VEV of ∆ becomes zero. Then, the scalar masses are given

as follows

M2
δ+ =M2

∆ +
λ4v

2
φ

4
, M2

k+
a

= M2
k+
a
, (3.6)

M2
H++

1
=c2

θA− 2sθcθC + s2
θB (3.7)

M2
H++

2
=s2

θA+ 2sθcθC + c2
θB, (3.8)

A =M2
∆, B = M2

k++, C = λ7v
2
φ/2, (3.9)

tan(2θ) =− 2C

A−B, −π/4 ≤ θ ≤ π/4. (3.10)

Here, H++
1, 2 are defined as the mass eigenstates. θ is the mixing angle between δ++ and

k++. θ depends on the scalar coupling λ7φ̃
†∆φk−−. The BSM contribution of the muon

g-2 has a strong dependence on θ (i.e. λ7).

Next we evaluate the lepton g-2 and the lepton flavor violating (LFV) decay widths

in type II seesaw model with k++. When comparing the Yukawa couplings in Model I

with one in §A.1.2:

L ⊃H++
i `Ca (fabiLPL + fabiRPR)`b + haji H

+
i `

C
a νLj + H.c., (3.11)

H++
i , H+

i , f
ab
iL , f

ab
iR, h

aj
i are given as follows:

H++
i =

(
H++

1

H++
2

)
i

, H+
i =


H+

1

H+
2

H+
3

H+
4


i

=


δ+

k+
e

k+
µ

k+
τ


i

(3.12)

haji =
(√

2yab∆ 2yeAε
eab 2yµAε

µab 2yτAε
τab
)
i
(UPMNS)bj (3.13)

fabiL =yab∆

(
cθ sθ

)
i
, fabiR = yabS

(
sθ −cθ

)
i
. (3.14)

In §A.1.2, we calculate muon g-2 and LFV processes, by using the Yukawa couplings in
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(3.11). When using them, muon g-2 are shown as follows:

∆aH
+

µ '− m2
µ

3(4π)2

(
2|yAτ |2
M2

k+
τ

+
2|yAe|2
M2

k+
e

+
|y∆µτ |2
M2

δ+

)
(m` �MH+),

∆aH
++

µ '− 2mµ

3(4π)2

{4mµ

(
|yµτ∆ |2c2

θ + |yµτS |2s2
θ

)
+mτ (y

µτ
∆ yµτ∗S + yµτS y

µτ∗
∆ )sθcθ

{
6 ln(M2

H++
1

/m2
τ )− 3

}
M2

H++
1

+
4mµ

(
|yµτS |2c2

θ + |yµτ∆ |2s2
θ

)
−mτ (y

µτ
∆ yµτ∗S + yµτS y

µτ∗
∆ )sθcθ

{
6 ln(M2

H++
2

/m2
τ )− 3

}
M2

H++
2

}
(3.15)

∼y
µτ
∆ yµτS sθcθmµmτ∆M

M3
H++

1

π2
ln

m2
τ

M2
H++

1

,
(
MH++

2
−MH++

1
= ∆M, when yµτ∆ , yµτS ∈ R

)
(3.16)

Here, ∆aH
+

µ (∆aH
++

µ ) are the contribution from singly (doubly) charged scalar, respec-

tively. ∆aH
++

µ contains the large contribution with mτ chirality flip. It depends on

Yukawa couplings yµτ∆ and yµτS , mass difference of doubly charged scalars ∆M , and the

mixing angle θ. In order to explain muon g-2 anomaly, these Yukawa couplings, mixing

angle (i.e. λ7) and mass difference must be large. We will discuss these later.

The branching ratios of LFV process conserving Z3 symmetry (τ → eeµ, τ → µµe)

are given as follows:

Br(τ → eeµ)/Br(τ → µντνµ) (3.17)

=
1

4G2
F

{
|yeeS |2|yµτS |2

(
s2
θ

M2
H++

1

+
c2
θ

M2
H++

2

)2

+ |yee∆ |2|yµτ∆ |2
(

c2
θ

M2
H++

1

+
s2
θ

M2
H++

2

)2

+
(
|yee∆ |2|yµτS |2 + |yeeS |2|yµτ∆ |2

)
s2
θc

2
θ

(
1

M2
H++

1

− 1

M2
H++

2

)2
}
, (3.18)

Br(τ → µµe)/Br(τ → µντνµ) = 0. (3.19)

In order to reduce Br(τ → eeµ)/Br(τ → µντνµ), we choose yeeS and yee∆ as small (we

choose these as yeeS = 0, yee∆ = 0.001 later).

Neutrino mass matrices are given as

(MII,ν)ab =
√

2yabS v∆ (3.20)

(Mk, ν)ab =− 16(ymA ε
mca)m`c(y

†
S)cdm`d(y

n
Aε

ndb)µ∗mn

×
{
s2
θI5(m+

m,m`c,m
+
n ,m`d,m

++
1 ) + c2

θI5(m+
m,m`c,m

+
n ,m`d,m

++
2 )
}

(3.21)

(M∆, ν)ab =16sθcθ(y
m
A ε

mca)(y†∆)cd(y
n
Aε

ndb)µ∗mn

×
{
J5(m+

m,m`c,m
+
n ,m`d,m

++
1 )− J5(m+

m,m`c,m
+
n ,m`d,m

++
2 )
}

(3.22)
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Here, I5 and J5 are defined as follows 13

I5(ma,mb,mc,md,me) (3.23)

≡(m̃)−2ε

∫
dDp

(2π)D
dDq

(2π)D
1

(p2 −m2
a)(p

2 −m2
b)(q

2 −m2
c)(q

2 −m2
d)
{

(p+ q)2 −m2
e

} ,
(3.24)

J5(ma,mb,mc,md,me) (3.25)

≡(m̃)−2ε

∫
dDp

(2π)D
dDq

(2π)D
p · q

(p2 −m2
a)(p

2 −m2
b)(q

2 −m2
c)(q

2 −m2
d)
{

(p+ q)2 −m2
e

} .
(3.26)

The diagrams of (Mk, ν)ab and (M∆, ν)ab are given in Figure 2 and Figure 3, respectively.

k++

k+α k+β

νL νCL

ℓC ℓ
× ×

Figure 2: The diagram of neutrino mass (Mk, ν)ab

×
k++

δ++

k+α k+β

ℓCL ℓL

νL νCL

Figure 3: The diagram of neutrino mass (M∆, ν)ab

13 Here, m̃ is ’t Hooft cale. Please see §A.3 for a detail. The physical values do not depend on this.
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We show the plots of Γ(τ → eeµc)/Γ(τ → eνceντ ) vs MH++
2

in Figure 4 14, λ7 vs MH++
1

in Figure 5, and λ7 vs MH++
2

in Figure 6. Here, we set parameters as:

��� ��� ��� ���� ����
��-��

��-��

��-�

��-�

��-�

Figure 4: The plane of Γ(τ → eeµc)/Γ(τ → eνceντ) vs MH++
2

. Both the muon g-2

anomaly and the neutrino mass matrix are explained at the blue points. The horizontal
line is the experimental limit of Γ(τ → eeµc)/Γ(τ → eνceντ), and the vertical line is the
CMS limit of MH++

2
(See §A.4).

yeeS =0, yµτS = 1, yee∆ = 0.001, yµτ∆ = 0.2, (3.27)

yAe =yAµ = yAτ = 0.1, λ4 = 0.1, M∆ = 900GeV, (3.28)

Mk+
e

=2000GeV, Mk+
µ

= 2200GeV, Mk+
τ

= 2400GeV, Mk++ = M∆ + δM. (3.29)

We vary δM from −299 to 281 GeV, and choose λ7 and µab such that we can explain

muon g-2 and neutrino mass matrix. Then LFV decay rate, muon g-2, MH++
1

and MH++
2

vary with δM .

In Figure 4, we can see that LFV constraint of Γ(τ → eeµc) can be avoided. The

reason why we can avoid is we choose yee∆ and yeeS as small.

In Figure 5 and 6, we can see that there is a parameter region where λ7 ∼ O(1) and

the CMS constraint on MH1, 2: MH++
1, 2

& 537GeV (Please see §A.4). The constraints on

doubly charged scalars is very crucial. In our models, doubly charged scalars mainly

decay to µ+τ+ channel. Our model will be tested by this channel in future experiments.

14 τ → µµec does not occur in Model I.
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Figure 5: The plane of λ7 vs MH++
1

. Both the muon g-2 anomaly and the neutrino mass

matrix are explained at the blue points. The horizontal line is |λ7| <
√

4π (perturbativity
constraint), and the vertical line is the CMS limit of MH++

2
(See §A.4).
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Figure 6: The plane of λ7 vs MH++
2

. Both the muon g-2 anomaly and the neutrino mass

matrix are explained at the blue points. The horizontal line is |λ7| <
√

4π (perturbativity
constraint), and the vertical line is the CMS limit of MH++

2
(See §A.4).
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4 Model II

In this section, we explain Model II. Model II contains the particles listed in Table 2.

k++ and ∆e give the positive contribution to muon g-2. Only with k++ and ∆e, neutrino

SU(3)C SU(2)L U(1)Y Z3

k++ 1 1 2 1
∆e 1 3 1 1
∆µ 1 3 1 ω
∆τ 1 3 1 ω

Table 2: Field contents in Model II

oscillation can not be explained due to Z3 symmetry. We introduce ∆a (a = µ, τ), then,

neutrino oscillation can be done.

The scalar potential of φ, ∆a and k++ is given as follows:

V [φ,∆a, k
++] =µ2

φ(φ†φ) + (M2
∆a

)Tr(∆†a∆a) +M2
k |k++|2

+ [µaφ
T(iσ2)∆†aφ+ H.c.] + [µ2ak

−−Tr(∆a∆a) + H.c.]

+ λ(φ†φ)2 + λ1a(φ
†φ)Tr(∆†a∆a)

+ [λ2abcdTr(∆†a∆b)Tr(∆†c∆d) + H.c.]

+ [λ3abcdTr(∆†a∆b∆
†
c∆d) + H.c.]

+ λ4aφ
†∆a∆

†
aφ+ λ5φ

†φ|k++|2 + λ6aTr(∆†a∆a)|k++|2

+ λ7[φ̃†∆eφk
−− + H.c.] + λ8|k++|4. (4.1)

We assume the couplings of scalar potential so that φ gets nonzero electro-weak VEV.

Furthermore, M2
∆a

and µ2a are assumed to be diagonal. Z3 is softly broken by µa. When

µaφ
T(iσ2)∆†aφ is nonzero, ∆a obtains nonzero VEV. Then, neutrino gains Majorana mass

terms as type II seesaw model. By redefinition of k++, λ7 can be real. λ7φ̃
†∆eφk

−− causes

k++-δ++ mixing, and it explains muon g-2 anomaly.

After EWSB, ∆a gain nonzero VEV: 15

δ0
a =

1√
2

(va∆ + h2a + iη2a), va∆ =
µav

2
φ√

2M2
∆a

(4.2)

We assume v∆ � vφ, then, the mixing angle between φ and ∆ becomes tiny. We ignore

this effect.

15 ∆a =

(
δ+
a /
√

2 δ++
a

(va∆ + δa0 + iδa1)/
√

2 −δ+
a /
√

2

)
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Masses of scalar fields are

M2
H+

1
=
(
M2

∆e
+ λ1ev

2/2 + λ4ev
2/4
)
, (4.3)

M2
H+

2
=
(
M2

∆µ
+ λ1µv

2/2 + λ4µv
2/4
)
, (4.4)

M2
H+

3
=
(
M2

∆τ
+ λ1τv

2/2 + λ4τv
2/4
)
, (4.5)

M2
H++

11
=c2

θA− 2sθcθC + s2
θB, M

2
H++

12
= M2

∆µ
+ λ1µv

2/2, (4.6)

M2
H++

13
=M2

∆τ
+ λ1τv

2/2, M2
H++

2
= s2

θA+ 2sθcθC + c2
θB, (4.7)

A =M2
∆e

+ λ1ev
2/2, B = M2

k + λ5v
2/2, C = λ7v

2/2, (4.8)

δ++
e =cθH

++
11 + sθH

++
2 , δ++

µ = H++
12 , δ++

τ = H++
13 , (4.9)

k++ =− sθH++
11 + cθH

++
2 , H+

a = δ+
a , (4.10)

tan(2θ) =− 2C

A−B, (−π/4 ≤ θ ≤ π/4). (4.11)

Here, H+
1, 2, 3 are the mass eigenstates of singly charged scalar fields. When v∆a � vφ,

these are same as singly charged scalars in ∆a: H+
1 ' δ+

e , H+
2 ' δ+

µ and H+
3 ' δ+

τ .

H11, 12, 13, 2 are the mass eigenstates of doubly charged scalar fields. When v∆a � vφ,

H++
12 ' δ++

µ and H++
13 ' δ++

τ . δ++
e and k++ mix with the mixing angle θ. θ depends on

the coupling λ7φ̃
†∆eφk

−−.

The Yukawa couplings in Model II are given as follows:

LYuk =− Y ab
c Lca(iσ2)∆cLb −

1

2
(2yabS )`cRa`Rbk

++ + H.c. (4.12)

=− 1

2
(2Y ab

c )

(
vc∆ + δc0 + iδc1√

2
νcaνb −

√
2δ+
c `

c
Laνb − δ++

c `cLa`Lb

)
(4.13)

− yabS `cRa`Rbk++ + H.c. (4.14)

=− 1

2
(2Y ab

c )
vc∆ + δc0 + iδc1√

2
νcLaνLb +

√
2Y ab

c δicH
+
i (UPMNS)bj`cLaνLj

+ Y ab
c

cθ 0 0 sθ
0 1 0 0

0 0 1 0


ci


H++

11

H++
12

H++
13

H++
2


i

`caPL`b − yabS (−sθH++
11 + cθH

++
2 )`caPR`b.

(4.15)
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Here, Yukawa couplings are restricted by the discrete lepton flavor symmetry Z3:

yabS =

yeeS 0 0

0 0 yµτS
0 yµτS 0


ab

, Y ab
e =

yee∆ 0 0

0 0 yµτ∆

0 yµτ∆ 0


ab

, (4.16)

Y ab
µ =

 0 0 yeτ∆

0 yµµ∆ 0

yeτ∆ 0 0


ab

, Y ab
τ =

 0 yeµ∆ 0

yeµ∆ 0 0

0 0 yττ∆


ab

. (4.17)

The first term in (4.15) gives the neutrino Majorana mass. The other terms in (4.15)

give the contributions to muon g-2. H++
11 and H++

2 couple both the left-handed leptons

and the right-handed ones. Therefore, the contributions from H++
11, 2 to the muon g-2 can

be positive.

When comparing the Yukawa couplings in Model II with the ones in §A.1.2:

L ⊃H++
i `Ca (fabiLPL + fabiRPR)`b + haji H

+
i `

C
a νLj + H.c., (4.18)

H++
i , H+

i , f
ab
iL , f

ab
iR, h

aj
i are given as follows:

H++
i =


H++

11

H++
12

H++
13

H++
2


i

, H+
i =

H+
1

H+
2

H+
3


i

, fabiL = Y ab
c

cθ 0 0 sθ
0 1 0 0

0 0 1 0


ci

, (4.19)

fabiR =− yabS
(
−sθ 0 0 cθ

)
i
, haji =

√
2Y ab

i δic(UPMNS)bj. (4.20)

In §A.1.2, we calculate muon g-2 and LFV processes. When using them, ∆aµ, Γ(τ →
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eeµc)/Γ(τ → eνceντ ) and Γ(τ → µµec)/Γ(τ → eνceντ ) are shown as follows:

∆aµ =∆aH
+

µ + ∆aH
++

µ , (4.21)

∆aH
+

µ =− m2
µ

3(4π)2

( |yeµ∆ |2
M2

H+
3

+
|yµµ∆ |2
M2

H+
2

+
|yµτ∆ |2
M2

H+
1

)
, (4.22)

∆aH
++

µ =− m2
µ

24π2

{
1

M2
11

[
4|yµτ∆ |2c2

θ − 3(yµτ∆ y∗µτS + yµτS y
∗µτ
∆ )sθcθ

× (mτ/mµ)
[
1− 2 ln(M2

H++
11
/m2

τ )
]

+ 4|yµνS |2s2
θ

]
+

4|yeµ∆ |2
M2

13

+
4|yµµ∆ |2
M2

12

+
1

M2
H++

2

[
4|yµτ∆ |2s2

θ + 3(yµτ∆ y∗µτS + yµτS y
∗µτ
∆ )sθcθ

× (mτ/mµ)
[
1− 2 ln(M2

H++
2
/m2

τ )
]

+ 4|yµνS |2c2
θ

]}
, (4.23)

Γ(τ → eeµc)

Γ(τ → eνceντ )
=

1

4G2
F (MH++

11
)4(MH++

2
)4

{
|yee∆ |2

[
|yµτ∆ |2(s2

θM
2
H++

11
+ c2

θM
2
H++

2
)2

+ |yµτS |2c2
θs

2
θ(M

2
H++

11
−M2

H++
2

)2
]

+ |yeeS |2
[
|yµτS |2(c2

θM
2
H++

11
+ s2

θM
2
H++

2
)2

+ |yµτ∆ |2c2
θs

2
θ(M

2
H++

11
−M2

H++
2

)2
]}
, (4.24)

Γ(τ → µµec)

Γ(τ → eνceντ )
=
|yeτ∆ |2|yµµ∆ |2
4G2

FM
4
H++

12

. (4.25)

We can see that ∆aH
+

µ has negative values. On the other hands, ∆aH
++

µ contains the

terms proportional to (mτ/mµ)(yµτ∆ y∗µτS + yµτS y
∗µτ
∆ ). They can be large positive value,

therefore, the muon g-2 anomaly can be explained.

The decay width of Γ(τ → µµec) can be much smaller than LFV experimental limit,

by choosing yµµ∆ and yeτ∆ as small. We will do this later by choosing vµ∆ as O(10−6) GeV.

Γ(τ → eeµc) depends on yee∆, S and yµτ∆, S. They can not be chosen as tiny, when explaining

both muon g-2 anomaly and neutrino oscillation. Therefore, the constraint on Γ(τ →
eeµc) is important.

We show the planes of Γ(τ → eeµc)/Γ(τ → eνceντ ) vs MH++
2

in Figure 7, Γ(τ →
µµec)/Γ(τ → eνceντ ) vs MH++

2
in Figure 8, λ7 vs MH++

11
in Figure 9, and λ7 vs MH++

2
in

Figure 10.
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Figure 7: The plane of Γ(τ → eeµc)/Γ(τ → eνceντ) vs MH++
2

. Both the muon g-2

anomaly and the neutrino mass matrix are explained at the blue points. The horizontal
line is the experimental limit of Γ(τ → eeµc)/Γ(τ → eνceντ), and the vertical line is the
CMS limit of MH++

2
(See §A.4).

32



� ��� ��� ��� ��� ����

��-��

��-��

��-��

��-��

��-�

Figure 8: The plane of Γ(τ → µµec)/Γ(τ → eνceντ) vs MH++
2

. Both the muon g-2

anomaly and the neutrino mass matrix are explained at the blue points. The horizontal
line is the experimental limit of Γ(τ → µµec)/Γ(τ → eνceντ), and the vertical line is the
CMS limit of MH++

2
(See §A.4).
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Figure 9: The plane of λ7 vs MH++
11

. Both the muon g-2 anomaly and the neutrino mass

matrix are explained at the blue points. The horizontal line is |λ7| <
√

4π (perturbativity
constraint), and the vertical line is the CMS limit of MH++

2
(See §A.4).
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Figure 10: The plane of λ7 vs MH++
2

. Both the muon g-2 anomaly and the neutrino mass

matrix are explained at the blue points. The horizontal line is |λ7| <
√

4π (perturbativity
constraint), and the vertical line is the CMS limit of MH++

2
(See §A.4).
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Here, we set parameters as:

yeeS =0, yµτS = 1,

ve∆ =1.3× 10−10GeV, vµ∆ = 1.0× 10−6GeV, vτ∆ = 1.0× 10−6GeV,

λ1e =0, λ1µ = 0.2, λ1τ = 0.4, λ4e = 0.1, λ4µ = 0.3, λ4τ = 0.5, λ5 = 0,

M∆e =900GeV, M∆µ = 2000GeV, M∆τ = 2500GeV, Mk++ = M∆e + δM. (4.26)

We vary δM from −799 to 46 GeV, and choose λ7 and yab∆ such that we can explain

muon g-2 and neutrino mass matrix. Then LFV decay rate, muon g-2, MH++
1

and MH++
2

vary with δM .

In Figure 7 and 8, we can see that LFV constraint can be avoided. The constraint on

τ → eeµc is crucial as Figure 7. It is because yee∆, S and yµτ∆, S can not be chosen as tiny.

The constraint on τ → µµec is not crucial as Figure 8, because we can choose yeτ∆ and

yµµ∆ as small.

In Figure 9 and 10, we can see that there is a parameter region where λ7 ∼ O(1) and

MH++
11, 2

& 537GeV. The constraints on doubly charged scalars are very crucial. In our

models, doubly charged scalars mainly decay to µ+τ+ channel. Our model will be tested

by this channel in future experiments.

5 Summary of Part II

We can construct the models which can explain both the neutrino oscillation and the

muon g-2 anomaly. In these models, we introduce double charged scalar k++ into Type

II seesaw model, to explain the muon g-2 anomaly. Furthermore, we must impose the

discrete lepton flavor symmetry Z3 to avoid LFV constraints. Then, there are parametric

regions, in which the LFV constraints and the CMS constraints on double charged scalars

can be avoided and λ7 ∼ O(1). Our model will be tested by muon g-2 experiments, LFV

constraints and the decays from doubly charged scalars to µ+ + τ+.
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Part III

The TeV scale Majoron dark matter

6 The relationship between the neutrino oscillation and

the dark matter

In this part, we consider the relationship between neutrino oscillation and the dark

matter. There are radiative seesaw models with dark matters; KNT model [49], the

scotogenic model [50] and etc. In these models, dark matter is stabilized by extra Z2

symmetry. Majoron models can also explain both neutrino oscillation and the observed

dark matter relic density. We focus on the Majoron dark matter in this Part.

We review the previous works about Majoron dark matter lighter than TeV scale in

§6.1. In §6.2, we show that TeV scale Majoron dark matter is interesting, because it can

be detected by the cosmic ray experiments.

6.1 The Majoron dark matter lighter than TeV scale

Neutrino oscillations are detected by experiments using solar [7–17], atmospheric [19–21],

reactor [23–29] and accelerator [30–35] neutrinos. There are two methods to explain

them. One is Dirac mass method, and the other is Majorana mass method. In the

Majorana mass method, the following dimension-5 operator is generated by integrating

out heavy particles

Leff ⊃−
1

Λ
LcHH̃†L+ H.c. (6.1)

This term breaks the lepton number symmetry. Majoron models [51, 52] is well known

models which explain the origin of lepton number symmetry breaking. In Majoron

models, this breaking is identified as the VEV of complex scalar. Majoron is the pseudo

NG boson of the lepton symmetry breaking.

Particle contents of the Majoron model are shown in Table 3. Yukawa couplings of

field SU(2)L U(1)Y U(1)B−L
Lα (SM doublet lepton) 2 −1

2
−1

ecRα (SM singlet lepton) 1 +1 +1
H (SM Higgs) 2 1

2
0

νcRi 1 0 −1
Φ 1 0 +2

Table 3: field contents
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the Majoron models are given as:

L ⊃− fij
2

ΦνcRiνRj − yναiLαH̃νRi + H.c. (6.2)

Here, fij can be real diagonal by redefinition of νiR. After 〈Φ〉 =
vφ√

2
, the Lagrangian

becomes as: 16

L =− MNi

2
NiNi −

fi

2
√

2

(
φNiNi + iχNiγ5Ni

)
(6.3)

−
(
yναiLαH̃PRNi + H.c.

)
(6.4)

Ni =νRi + νcRi, Φ =
1√
2

(vφ + φ+ iχ), MNi =
fijvφ√

2
. (6.5)

Then, N gets Majorana masses, therefore, after integrating out N , we can explain neu-

trino oscillation. χ is a pseudo NG boson of the lepton number symmetry breaking, and

it is called as Majoron.

There are a lot of papers which identify ”GeV scale or lighter” Majoron as dark

matter. When Majoron is dark matter, Majoron must have non-zero mass. We can

give the explicit Majoron mass [121, 122] or the one from quantum gravity [123–125].

In [121, 122, 126–131], the phenomenology of Majoron DM is discussed. The recent

constraints on Majoron DM are given in [132,133]. The constraints by indirect detections

are given in [132] (see Figure 11 and 12), and the ones by Majoron emission processes

in [133] (see Figure 13). The production of Majoron dark matter is discussed in [122].

In [122], Freeze-in mechanism [134] is used for the production.

As above, a lot of papers of ”GeV scale or lighter” Majoron dark matter exist. On

the other hand, there are anomalous results in the positron fraction (flux of e+/flux of

e+ + e−) detected by the cosmic ray experiments. This can be explained by ”TeV” scale

Majoron dark matter. We explain them in next section.

16 Φ’s VEV can be real by redefinition of Φ. Then, fijvφ becomes real diagonal matrix.
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Figure 11: The experimental bounds from the J → νν processes [132]. Here, J is
Majoron, and f is lepton number breaking scale (it is the same as vφ).

39



Figure 12: The experimental bounds from DM indirect detections [132]. Here, K is
defined as Kab = yaiy∗bivh/(2vφ), 〈H〉 = (0, vh/

√
2)T.
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Figure 13: The experimental limit on Kab (by Majoron emission processes and etc.)
[133]. Here, K is defined as Kab = yaiy∗bivh/(2vφ), 〈H〉 = (0, vh/

√
2)T.
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6.2 The cosmic ray observation and the TeV scale Majoron dark
matter

Recent days, there are anomalous results in positron fraction (flux of e+/flux of e+ + e−)

detected by the cosmic ray experiments. In Figure 14, [135] shows the observed positron

fraction by AMS02 [136–138], HEAT [139], PAMELA [140, 141]. The black line is pure

secondary production [142].

Figure 14: The plot of the energy of cosmic ray vs positron fraction [135]. The black
line is pure secondary production [142]. The excess of the positron fraction can be
explained by dark matter decay [143] (green line), propagation physics [144] (blue line)
and production in pulsers [145] (red line).

We can see the tension between the observed results and the one predicted by pure

secondary production. There are some solutions to explain this tension; dark matter

decay [143], propagation physics [144] and production in pulsers [145]. We explain this

tension by TeV scale Majoron dark matter decay, as [143].

When Majoron is GeV scale or lighter, the main process which contributes to DM

indirect detections is χ→ bb (χ: Majoron) as Figure 12. However, when Majoron is TeV

scale, other processes of Majoron decay are opened, such as χ→ W+W−, ZZ, h0h0, Zh0, tt.

The decay widthes of χ→ W+W−, ZZ, h0h0, Zh0 are f2

16π2 ×O(m2
νm

3
χ/m

4
NR

), and much
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smaller than χ→ bb. The decay width of χ→ tt is shown as follows (please see §B.2):

Γχ→tt =
3Mχ

4096π3

α2
W (v/

√
2)4M2

t

M4
W

[∑
i, α

|yναi|2fiM−1
Ni

]2

. (6.6)

Γχ→bb is suppressed by factor M2
b /M

2
t . Therefore, when the TeV scale Majoron is DM,

the main process which contributes to DM indirect detections is χ→ tt.

Furthermore, χ → νν processes are also important. The decay width of χ → νν is

given by:

Γχ→νν =
mχ

8π

m2
νi

v2
φ

(1− 4m2
νi/m

2
χ)3/2. (6.7)

This decay rate is constraited by IceCube experiment Γχ→νν . 1/(O(1025−26)sec) [146,

147]. When mν ∼ 0.1eV, this constraint can be rewrite as:

vφ & O(1015−16)GeV. (6.8)

In Figure 15 and 17, we show the plot of positron fraction vs positron energy and

antiproton E2
k flux. 17 Here, we use the PPPC4DMID package [148,149] and the formulae

for the primary and secondary flux of e− and the secondary one of e+ [150]. Furthermore,

we show the antiproton E2
k flux detected by AMS-02 [151] in Figure 16.

Comparing Figure 15 with Figure 14 (positron fraction), we can explain the excess

of positron fraction by the TeV scale Majoron dark matter with vφ = O(1015) GeV,

mχ = O(1) TeV and mN = 3mχ. In the Majoron model, the mass of N is given as

MNi =
fivφ√

2
. Therefore, f ∼ O(10−(11−12)) when the excess is explained. Comparing

Figure 17 with Figure 16 (antiproton E2
k flux), we can obtain the upper limit of fi:

|fi| . O(1011 − 1012). Please see [152,153] for details of the constraints of fi and vφ.

Combining the above results, the TeV scale Majoron dark matter with f ∼ O(10−(11−12))

and vφ ∼ O(1015−16) GeV may be observed in future cosmic-ray experiments. In this

thesis, we consider the production mechanism of TeV scale Majoron dark matter in the

early universe.

17Ek: antiproton kinetic energy.
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Figure 15: The plot of the energy of cosmic ray vs positron fraction. Here we assumed
that DM is the TeV scale Majoron.

Figure 16: the observed E2
k flux of anti-proton [154]
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Figure 17: The prot of the antiproton kinetic energy vs E2
k flux from TeV Majoron DM

decay
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7 An introduction to the production of the TeV scale

Majoron dark matter

In §6.2, we show that TeV scale Majoron dark matter is interesting, because it can be

detected by the cosmic ray experiments. However, it is not obvious that the TeV scale

Majoron can be produced as much as the DM relic density. In this section, we illustrate

the difficulty and our solutions of it.

First, we show the Lagrangian of Majorana models. The Yukawa couplings of Ma-

joron models are

L ⊃− fij
2

ΦνcRiνRj − yναiLαH̃νRi + H.c. (7.1)

=− MNi

2
NiNi −

fi

2
√

2

(
φNiNi + iχNiγ5Ni

)
−
(
yναiLαH̃PRNi + H.c.

)
(7.2)

Ni =νRi + νcRi, Φ =
1√
2

(vφ + φ+ iχ), Mi =
fijvφ√

2
. (7.3)

The lepton number symmetry is broken by the VEV of Φ. This breaking gives the

Majorana masses of Ni. Then, SM neutrino gains the Majorana mass as type I seesaw

model. The generation of Ni cannot be changed by the couplings φNiNi and χN iγ5Ni.

The VEV of Φ is given by the following scalar potential:

V =− µ2
H

2

∣∣H∣∣2 − µ2
Φ

2

∣∣Φ∣∣2 +
λH
2

∣∣H∣∣4 + λHΦ|H|2|Φ|2 +
λΦ

2

∣∣Φ∣∣4 − m2

4

[
Φ2 + (Φ∗)2

]
.

(7.4)

The stationary conditions (before EWSB) of φ is

∂V

∂φ

∣∣∣∣
vac

= 0 → µ2
Φ = λΦv

2
φ −m2. (7.5)

Using this condition, we replace µΦ by other parameter. After Φ gets nonzero VEV,

potential becomes as follows:

V =m2
H |H|2 +

m2
χ

2
χ2 +

m2
φ

2
φ2 +

m2
φ

2vφ
χ2φ+

m2
φ

2vφ
φ3 + λHΦvφφ|H|2 (7.6)

+
m2
φ

8v2
φ

χ4 +
m2
φ

4v2
φ

χ2φ2 +
m2
φ

8v2
φ

φ4 +
λHΦ

2
(χ2 + φ2)|H|2 +

λH
2
|H|4, (7.7)

m2
χ = m2, λΦ =

m2
φ

v2
φ

, µ2
H = −2m2

H + λHΦv
2
φ. (7.8)
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We assume fi ∼ O(10−11) and vΦ ∼ O(1015−16) GeV, mχ ∼ O(103) GeV. These con-

ditions are imposed by DM indirect detection, shown as §6.2. Furthermore, we must

impose mχ < 2mN , in order to avoid χ→ NN channel.

Next, we show the difficulty of Majoron dark matter production.

When λHΦ = 0, Majoron is produced from N or φ. The interaction χNiγ5Ni cannot

cause N2 → N1χ process. χ can be produced by NN → φ → χχ (s-channnel) process.

This process has a resonance at s ∼ mφ, therefore, YN must be somehow large at T ∼ mφ.

When λHΦ 6= 0, χ can be created by HH → χχ. This process is suppressed because

χ is (pseudo) NG boson. Therefore, we cannot produce χ by freeze-”out” mechanism.

Last, we show three scenarios in which TeV scale Majoron can be produced as much

as the observed DM relic density:

• Scenario A: We introduce Lepton number soft breaking term −1
2mijνcRiνRj, then

N2 → N1χ occurs. We can produce χ via this process by freeze-in mechanism [134].

• Scenario B: χ can be produced via HH → χχ process, by UV freeze-in mechanism

[134,155].

• Scenario C: χ is produced from N at T ∼ mφ, by freeze-in mechanism [134]. YN
must be somehow large at T ∼ mφ.

8 Scenario A

8.1 The Lagrangian

In Scenario A, we introduce lepton number soft breaking term −1
2mijνcRiνRj. Then,

N2 → N1χ is happen, therefore, χ can be generated by this process. We assume MN2 >

(Mχ +MN1) > MN1 > Mχ/2. 18 The Lagrangian in Scenario A is shown as follows:

L =− 1

2

(
fijΦ +mij

)
νcRiνRj − yναiLαH̃νRi + H.c. (8.1)

18 If 2MN1 < Mχ, χ→ 2N1 can occur. Then, we cannot avoid cosmic-ray constraints.
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Here, fij can be real and diagonal (fij = fiδij) by redefining νRi. When denoting ν ′Ri as

mass eigenstate (νRi = Uijν
′
Rj), the Lagrangian becomes as follows:

L =− 1

2
Uik
(
fijΦ +mij

)
Ujlν ′Rk

cν ′Rl − yναiUikLαH̃ν ′Rk + H.c. (8.2)

=− 1

2
MNiNiPRNi −

1

2

Fkl√
2

(φ+ iχ)NkPRNl − Y ν
αiLαH̃PRNk + H.c. (8.3)(

Nk =ν ′Rk + ν ′
c
Rk, Fkl = UikfijUjl, MNkδkl = Uik

(
fijvφ√

2
+mij

)
Ujl

)
(8.4)

=− 1

2
MNiNiNi −

1

2
√

2
φNk

(
FklPR + F ∗klPL

)
Nl (8.5)

− i

2
√

2
χNk

(
FklPR − F ∗klPL

)
Nl −

(
Y ν
αiLαH̃PRNk + H.c.

)
, (8.6)

Y ν
αi =

√
2i

vEW

[
UPMNS

√
mdiag
ν O

√
Mdiag

N

]
αi
, (OOT = I). (8.7)

Here, Nk is Majorana particle with Majorana mass MNk . χNk(FklPR − F ∗klPL)Nl can

have off-diagonal part. It is due to lepton number soft breaking term −1
2mijνcRiνRj. This

off-diagonal part causes N2 → N1χ. In Scenario A, Majoron is produced via this process.

In (8.7), we write Y ν
αi by other parameters (the Casas-Ibarra parametrization [156]). It

is useful for numerical estimation.

8.2 The Boltzmann equation

The evolution of the number density of particles is described by Boltzmann equations.

The Boltzmann equations in Scenario A are shown as follows:

H(mχ)s(mχ)

x4

dYN2

dx
=−

[
N2 ↔ N1χ

]
−
∑
a

[
N2 ↔ LaH, LaH

]
, (8.8)

H(mχ)s(mχ)

x4

dYN1

dx
=
[
N2 ↔ N1χ

]
−
∑
a

[
N1 ↔ LaH, LaH

]
, (8.9)

H(mχ)s(mχ)

x4

dYχ
dx

=
[
N2 ↔ N1χ

]
. (8.10)
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Here, we define the following quantities:

x =
mχ

T
, rX =

mX

mχ
, Ya =

na
s
, ya =

Ya

Y
(eq)
a

, (8.11)

[a · · · ↔ b · · · ] =ya · · · γa···b··· − ybγb···a···, (8.12)

γa···b··· =

∫
dΠa · · · dΠb · · · × (2π)4δ4(pa + · · · − pb − · · · )

×
∣∣iM(a+ · · · → b+ · · · )

∣∣2f eq
a · · · , (8.13)

(degree of freedom are summed in |M|2.)

dΠa =
d3pa

(2π)32E
, (degree of freedom ga is contained in |M|2). (8.14)

s is entropy density, na is number density of a, fa is the distribution function of a, (eq)

means equilibrium, and H(mχ) and s(mχ) are Hubble parameter and entropy density at

T = mχ, respectively. Ya is called as the ”yield” of a.

In Scenario A, N1, 2 are produced from thermal bath (SM lepton and Higgs) by the

term [N1, 2 ↔ LaH, LaH]. χ is produced via the decay process N2 → N1χ. In next

section, we evaluate [a · · · ↔ b · · · ].

8.3 The evaluation of [a · · · ↔ b · · · ]
In this subsection, we evaluate [a · · · ↔ b · · · ]. First,

[
N2 ↔ N1χ

]
is written by the

decay width ΓN2→N1χ:

[
N2 ↔ N1χ

]
'YN2

Y eq
N2

γN2
N1χ (yχ � 1) (8.15)

=
2π2s(mN2)

gN2m
3
N2

(rN2x)2K2(rN2x)

gN2m
3
N2

ΓN2→N1χ

2π2
(rN2x)−1K1(rN2x)YN2 (8.16)

=
s(mχ)ΓN2→N1χ

x3

K1(rN2x)

K2(rN2x)
YN2. (8.17)

Here, we assume yχ � 1. It is natural assumption in freeze-in mechanism. χ is produced

by this process.

Next we evaluate
[
Ni ↔ LaH

]
+
[
Ni ↔ LaH

]
. It is written by the decay width
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ΓNi→LaH,LaH :[
Ni ↔ LaH

]
+
[
Ni ↔ LaH

]
(8.18)

=yNiγ
Ni
LaH − yLayHγLaHNi + yNiγ

Ni
LaH
− yLayHγLaHNi (8.19)

=(yNi − yLayH)γNiLaH + (yNi − yLayH)γNiLaH (CPT ) (8.20)

'(yNi − 1)γNiLaH,LaH , (yLa ∼ yH ∼ 1) (8.21)

=
s(mχ)ΓNi→LaH,LaH

x3

K1(rNix)

K2(rNix)
(YNi − Y eq

Ni
). (8.22)

Ni is produced from SM thermal bath via this process.

Next, we evaluate the decay widths ΓN2→N1χ and ΓNi→LaH,LaH as follows:

|iMN2→N1χ|2 =
∑
spin

∣∣∣u(pN1)

[
1√
2

(F12PR − F ∗12PL)

]
u(pN2)

∣∣∣2 (8.23)

=2mN2EN1|F12|2 −mN2mN1

[
F 2

12 + (F ∗12)2
]
, (8.24)

ΓN2→N1χ =
1

2gN2mN2

1

8π

√
λ(1, m2

N1
/m2

N2
, m2

χ/m
2
N2

) (8.25)

×
{

(m2
N2

+m2
N1
−m2

χ)|F12|2 −mN2mN1

[
F 2

12 + (F ∗12)2
]}
, (8.26)(

λ(a, b, c) = (a− b− c)2 − 4bc
)
, (8.27)

ΓNi→LaH =
1

gNi

1

2mNi

∫
dp3

`

2E`(2π)3

∫
dp3

Φ

2EΦ(2π)3
(2π)4δ(MNi − E` − Eφ) (8.28)

× δ3(p` + pφ)× 2|Y ν
αi|2

∑
spin

∣∣u(p`)PRu(pN )
∣∣2 (8.29)

=
|Y ν
αi|2mNi

16π
, (8.30)

ΓNi→LaH,LaH =
|Y ν
αi|2mNi

8π
. (8.31)

F12 in ΓN2→N1χ are chosen as O(10−11) so that freeze-in mechanism occurs. YN1, 2 reach

thermal equilibrium at T ∼ mN1, 2 via Ni ↔ LaH, LaH.
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8.4 The approximation formula of dark matter relic

It is useful to derive an approximation formula of the dark matter relic density. First,

we integral the Boltzmann equations of Yχ:

Yχ(∞) =

∫ ∞
xR

dx
x4

H(mχ)s(mχ)

s(mχ)ΓN2→N1χ

x3

K1(rN2x)

K2(rN2x)
YN2 (8.32)

=
ΓN2→N1χ

H(mχ)

∫ ∞
xR

dx
xK1(rN2x)

K2(rN2x)
YN2. (8.33)

In order to evaluate this integral, we must rewrite YN2 by the equilibrium yield (Y eq).

The term K1(rN2x)YN2/K2(rN2x) also appears in the Boltzmann equation of YN2. When

it is integrated with the boundary condition YN2(∞) = YN2(xR) = 0, we can get the

following formula:

0 =−
∫ ∞
xR

x4

H(mχ)s(mχ)

s(mχ)K1(rN2x)

K2(rN2x)x3
(8.34)

×
[
(ΓN2→N1χ + ΓN2→LaH,LaH)YN2 − ΓN2→LaH,LaHY

eq
N2

]
, (8.35)

i.e, ∫ ∞
xR

dx
xK1(rN2x)

K2(rN2x)
YN2 =

ΓN2→LaH,LaH

ΓN2→N1χ + ΓN2→LaH,LaH

∫ ∞
xR

dx
xK1(rN2x)

K2(rN2x)
Y eq
N2
. (8.36)

Therefore, the approximation of Yχ(∞) can be evaluated as follows:

Yχ(∞) =
ΓN2→N1χΓN2→LaH,LaH

ΓN2→N1χ + ΓN2→LaH,LaH

1

H(mχ)

∫ ∞
xR

dx
xK1(rN2x)

K2(rN2x)
Y eq
N2

(8.37)

=
ΓN2→N1χΓN2→LaH,LaH

ΓN2→N1χ + ΓN2→LaH,LaH

1

H(mχ)

∫ ∞
xR

dx
xK1(rN2x)

K2(rN2x)

gN2m
3
χ(rN2x)2K2(rN2x)

2π2s(mχ)

(8.38)

=
ΓN2→N1χΓN2→LaH,LaH

ΓN2→N1χ + ΓN2→LaH,LaH

r−2
N2
gN2m

3
χ

2π2s(mχ)H(mχ)

∫ ∞
rN2

xR

d(rN2x)K1(rN2x)(rN2x)3

(8.39)

∼
ΓN2→N1χΓN2→LaH,LaH

ΓN2→N1χ + ΓN2→LaH,LaH

3r−2
N2
gN2m

3
χ

4πs(mχ)H(mχ)
(xR → 0) (8.40)

∼ 405
√

5gN2ΓN2→N1χ

16π9/2g∗Sg
1/2
∗ G1/2m2

N2

, (ΓN2→LaH,LaH � ΓN2→N1χ). (8.41)

Using this formula, we show the parametric region where the χ density is equal to the

dark matter relic density, in Figure 18 and 19.
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Figure 18: The plot of F12 vs mχ when mN1 = 5TeV and the present density of χ is equal
to DM relic density
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Figure 19: The region of mN1 vs mN2 when the present density of χ is equal to DM relic
density.
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In Figure 18, we set mN1 = 5TeV and vary mN2. We can see that F12 has lower limit

as F12 & O(10−11).

In Figure 19, we show the region where Majoron DM is sufficiently produced and

F12 < 10−11, 10−10.7, 10−10.4. We can see mN1 and mN2 have upper limit.

8.5 The numerical simulation of the production of χ

We show the numerical results for the Boltzmann equation in Figure 20. In this Figure,

��-� ����� ����� ����� � �� ���

��-��
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��-�

�����

������

Figure 20: The solution for the Boltzmann equations. Dashed line is the observed DM
relic density.

we set parameters as follows:

O =

0 0

1 0

0 1

 (Cassas− Ibarra), (8.42)

U =

(
cos 0.3 − sin 0.3

sin 0.3 cos 0.3

)
(diagonization matrix for mass of N), (8.43)

mχ =3TeV, f1 = 10−11, f2 = 4× 10−11, vφ = 1015GeV, (8.44)

mij =U∗ikM
diag
Nk

U∗jk −
fijvφ√

2
, mν1 = 0, neutrino parameter is normal hierarchy. (8.45)

We choose fi and vφ in order to avoid the constraints from cosmic ray experiments. U is

chosen as rotating matrix, then the lepton number soft-breaking term mijνcRiνRj becomes

non-diagonal. Then, N2 → N1χ can occur.
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In Figure 20, we can see that χ is produced at T ∼ mN2. At this temperature, YN2

is sufficiently large. Therefore, χ can be produced as much as the observed DM relic

density. Combining above results, Scenario A is possible.

9 ScenarioB

9.1 The Lagrangian

In Scenario B, χ is produced from Higgs: HH† → χχ. This process occurs due to

λHΦ|H|2|Φ|2 coupling. However, this process is highly suppressed by vφ, because χ is

pseudo NG boson. Therefore, we use the UV freeze-in mechanism for the dark matter

production. In Scenario B, we assume that the reheating temperature TR is smaller than

mφ.

In Scenaro B, the Yukawa couplings are shown as follows:

L ⊃− fij
2

ΦνcRiνRj − yναiLαH̃νRi + H.c. (9.1)

Here, fij can be real diagonal by redefinition of νiR (fij = fiδij). After 〈Φ〉 =
vφ√

2
, the

Lagrangian becomes as: 19

L =− MNi

2
NiNi −

fi

2
√

2

(
φNiNi + iχNiγ5Ni

)
(9.2)

−
(
Y ν
αiLαH̃PRNi + H.c.

)
(9.3)

Ni =νRi + νcRi, Φ =
1√
2

(vφ + φ+ iχ), Mi =
fijvφ√

2
. (9.4)

N gets Majorana masses by the VEV of Φ. Then, we can explain the neutrino oscillation

as type I seesaw model.

Scalar potential is given as follows:

V =− µ2
H

2

∣∣H∣∣2 − µ2
Φ

2

∣∣Φ∣∣2 +
λH
2

∣∣H∣∣4 + λHΦ|H|2|Φ|2 +
λΦ

2

∣∣Φ∣∣4 − m2

4

[
Φ2 + (Φ∗)2

]
.

(9.5)

The couplings in the potential is chosen so that Φ gains nonzero VEV. The stationary

condition of φ (before EWSB) is

∂V

∂φ

∣∣∣∣
vac

= 0 → µ2
Φ = λΦv

2
φ −m2. (9.6)

19 Φ’s VEV can be real by redefinition of Φ. Then, fijvφ becomes real diagonal matrix.
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Using them, we replace µΦ by other parameter. After Φ gets nonzero VEV, potential

becomes as follows:

V =m2
H |H|2 +

m2
χ

2
χ2 +

m2
φ

2
φ2 +

m2
φ

2vφ
χ2φ+

m2
φ

2vφ
φ3 + λHΦvφφ|H|2 (9.7)

+
m2
φ

8v2
φ

χ4 +
m2
φ

4v2
φ

χ2φ2 +
m2
φ

8v2
φ

φ4 +
λHΦ

2
(χ2 + φ2)|H|2 +

λH
2
|H|4, (9.8)

m2
χ = m2, λΦ =

m2
φ

v2
φ

, µ2
H = −2m2

H + λHΦv
2
φ. (9.9)

The couplings λHΦχ
2|H|2/2!, λHΦvφφ|H|2 and (m2

φ/vφ)χ2φ/2! occur the production pro-

cess of χ (HH† → χχ).

9.2 The Boltzmann equation

The Boltzmann equation of χ is given as follows:

H(mχ)s(mχ)

x4

dYχ
dx

=− 2

[
2χ↔ HH†

]
(9.10)

=− 2

(
Y 2
χ

(Y eq
χ )2

− 1

)
γ2χ

HH†, (9.11)

γ2χ
HH† =

1

2!

g2
χT

32π4

∫
4m2

χ

dsσ2χ→HH†(s)s
3
2K1(s1/2/T )λ(1, m2

χ/s, m
2
χ/s), (9.12)(

λ(a, b, c) = (a− b− c)2 − 4bc
)
. (9.13)

At the temperature T , the main contribution comes from s . T . It is because the

integral contains the modified Bessel function K1(s1/2/T ).

χ is produced via HH† → 2χ. The cross-section of χχ→ HH† is given as follows:

iMχχ→H†H =
−im2

φ

vφ
× i

s−m2
φ

× (−iλHΦvφ)δ
SU(2)
ab − iλHΦδ

SU(2)
ab (9.14)

=iλHΦδ
SU(2)
ab

s

m2
φ − s

, (9.15)

σ2χ→HH†(s) =
1

g2
χ

1

25πs

1√
λ(1, m2

χ/s, m
2
χ/s)

∫
d(cos θ)|M(s, cos θ)|2 (9.16)

' 1

8πs1/2

1√
s− 4m2

χ

|λHΦ|2
s2

m4
φ

, (s . T < TR < mφ). (9.17)
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We assume that mφ is larger than reheating temperature TR. Therefore, s in propagator

of φ is negligible.

On the other hands, the cross section increases with s. It is because χ is (pseudo)

NG boson. Therefore, this process is the most dominant at T ∼ TR. It is the feature of

UV freeze-in. Using the above results, we can get the formula of γ2χ
HH†

:

γ2χ
HH† '

m8
χ|λHΦ|2

16π9/2m4
φ

x−1MeigerG
[
{{}, {−2}}, {{−7/2, −1/2, 1/2}, {}}, x2

]
(9.18)

=
3m8

χ|λHΦ|2
2π5m4

φx
8

+O(x−6). (9.19)

The production of χ occurs at T ∼ TR. At this temperature, γ2χ
HH†

' 3m8
χ|λHΦ|2

2π5m4
φx

8 . We

can get the approximation formula for the dark matter relic density by integrating the

Boltzmann equation:

Yχ(x) '2

∫ x

xR

x4

H(mχ)s(mχ)

3m8
χ|λHΦ|2

2π5m4
φx

8
(9.20)

=
m8
χ|λHΦ|2

π5H(mχ)s(mχ)m4
φ

(x−3
R − x−3), (xR = mχ/TR). (9.21)

Using this formula, we show the parametric region where the present χ density is

equal to the DM relic density (Figure 21).
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Figure 21: The parametric region where the density of χ is equal to DM relic density
and mχ = 103GeV. Here, we vary TR from 104GeV to 1015GeV. Dashed line is mφ = TR.
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For example, when mχ = 103 GeV, mφ = 109 GeV, λHΦ = 10−4 and TR = 106

GeV, χ will be sufficiently produced. Using these parameters, we estimate the numerical

solution for Boltzmann equation in Figure 22.

χ is mainly produced at T ∼ TR. It is the feature of UV freeze-in mechanism. We

can see that the present density of χ is equal to the observed DM relic density, therefore,

Scenario B is possible.
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Figure 22: The solution for the Boltzmann equations. Dashed line is the observed DM
relic density.

10 Scenario C

In Scenario C, we produce χ by the processes NN(→ φ)→ χχ (s-channel) and NN → φ

(real particle)→ 2χ. BothNN → χχ (s-channel) andNN → φmainly occur at T ∼ mφ.

We choose TR as TR � mφ in order to use this processes. Furthermore, YNi must be large

at T ∼ mφ. In order to realize it, we assume that Ni is non-thermally produced from

inflaton or mφ is light (O(105) GeV). We denote the former as ”Scenario C-nt” (non-

thermal) and the latter as ”Scenario C-t” (thermal). We assume the mass hierarchy as

mφ > mNi > mχ.

In Scenario C, we assume the following Yukawa couplings:

LN =− fij
2

ΦνcRiνRj − yναiLαH̃νRi + H.c. (10.1)
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fij can be real diagonal by redefinition of νiR (fij = fiδij). After 〈Φ〉 =
vφ√

2
, the Yukawa

couplings become as follows: 20

L =− MNi

2
NiNi −

fi

2
√

2

(
φNiNi + iχNiγ5Ni

)
(10.2)

−
(
yναiLαH̃PRNi + H.c.

)
(10.3)

Ni =νRi + νcRi, Φ =
1√
2

(vφ + φ+ iχ), Mi =
fijvφ√

2
. (10.4)

The couplings of χNiγ5Ni and φNiNi are diagonal. Therefore, N2 → N1χ process cannot

occur. These couplings occur the processes 2Ni → 2χ and 2Ni → φ. The left-handed

neutrino gains Majorana mass as type I seesaw model.

Scalar potential (before electro-weak symmetry breaking) is given as follows

V =− µ2
H

2

∣∣H∣∣2 − µ2
Φ

2

∣∣Φ∣∣2 +
λH
2

∣∣H∣∣4 +
λΦ

2

∣∣Φ∣∣4 − m2

4

[
Φ2 + (Φ∗)2

]
(10.5)

=m2
H |H|2 +

m2
χ

2
χ2 +

m2
φ

2
φ2 +

m2
φ

2vφ
χ2φ+

m2
φ

2vφ
φ3 (10.6)

+
m2
φ

8v2
φ

χ4 +
m2
φ

4v2
φ

χ2φ2 +
m2
φ

8v2
φ

φ4 +
λH
2
|H|4, (10.7)

m2
χ = m2, λΦ =

m2
φ

v2
φ

, µ2
H = −2m2

H . (10.8)

Here, the couplings of Φ are chosen so that Φ gains nonzero VEV. The processes of

φ→ 2χ and 2Ni ↔ 2χ are occurred by the coupling (m2
φ/vφ)χ2φ/2!.

10.1 The Boltzmann equation

In Scenario C, Boltzmann equation becomes as follows:

H(mχ)s(mχ)

x4

dYφ
dx

=−
[
φ↔ 2χ

]
−
∑
i

[
φ↔ 2Ni

]
(10.9)

H(mχ)s(mχ)

x4

dYNi
dx

=2
[
φ↔ 2Ni

]
− 2
[
2Ni ↔ 2χ

]
(10.10)

−
[
Ni ↔ LH

]
−
[
Ni ↔ LH

]
(10.11)

H(mχ)s(mχ)

x4

dYχ
dx

=2
[
φ↔ 2χ

]
+ 2

∑
i

[
2Ni ↔ 2χ

]
. (10.12)

20 Φ’s VEV can be real by redefinition of Φ. Then, fijvφ becomes real diagonal matrix.
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Ni is produced from doublet lepton and Higgs in thermal bath. It is also done from

inflaton in Scenario C-nt. φ and χ are produced from Ni by freeze-in mechanism (2Ni →
φ and 2Ni → 2χ, respectively) at T ∼ mφ. χ is also produced by the decay of φ produced

by freeze-in mechanism (φ→ 2χ).

Next we consider the right-hand side of Boltzmann equations. First, γNiLH,LH is

given as follows:

γNiLH,LH =
gNi
2π2

m3
NiΓNi→LH,LH(rNix)−1K1(rNix), (10.13)

ΓNi→LH,LH =
∑
a

|yνai|2mNi

8π
. (10.14)

Ni is produced from SM thermal bath via this process.

Second, γφ2Ni is given as follows:

γφ2Ni =
gφ
2π2

m3
φΓφ→2Ni(rφx)−1K1(rφx), (10.15)

|iMφ→2Ni|2 =
∑
spin

∣∣u(p1)
fi√

2
v(p2)

∣∣2 = f2
i (m2

φ − 4m2
Ni) (10.16)

Γφ→2Ni =
1

32πgφmφ

√
1− 4m2

Ni

m2
φ

× f2
i (m2

φ − 4m2
Ni) (10.17)

=
f2
i mφ

32πgφ

(
1− 4m2

Ni

m2
φ

) 3
2

(similar as φ→ 2χ). (10.18)

φ is produced from Ni via this process at T ∼ mφ, and it decays as φ → 2χ. In order

to produce φ (i.e. χ) as much as the observed DM relic density, YNi must be somewhat

large at T ∼ mφ. It is realized when mφ is light (∼ O(105) GeV) or Ni is non-thermally

produced from inflaton.

Third, γφ2χ is given as follows:

γφ2χ =
gφ
2π2

m3
φΓφ→2χ(rφx)−1K1(rφx), (10.19)

Γφ→2χ =
1

gφ

1

2mφ

1

2!

∫
d3p1

2E1(2π)3

∫
d3p2

2E2(2π)3
(10.20)

× (2π)4δ(mφ − E1 − E2)δ3(p1 + p2)× |m2
φ/vφ|2 (10.21)

=
m3
φ

32πgφv2
φ

√
1− 4m2

χ

m2
φ

. (10.22)

χ is produced from φ via this process (or directly done from Ni via 2Ni → 2χ).
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Last, γ2Ni
2χ can be evaluated by narrow width approximation (See §B.9):

γ2Ni
2χ ' γ2Ni

φB
φ

2χ = γφ2NiB
φ

2χ ∼ γφ2Ni. (10.23)

Here, the branching ratio of φ→ 2χ is

Bφ
2χ =

Γφ→2χ

Γφ→2χ +
∑

i Γφ→2Ni

=
m2
φ

m2
φ + 2

∑
im

2
Ni

∼ 1. (10.24)

χ is directly produced from Ni via this process (or indirectly done from 2Ni → φ→ 2χ).

This process occurs at T ∼ mφ. Therefore, in order to produce χ as much as the observed

DM relic density, YNi must be somewhat large at T ∼ mφ. It is realized when mφ is light

(∼ O(105) GeV) or Ni is non-thermally produced from inflaton. It is same as indirectly

production of χ.

10.2 The approximation formula

Next, we derive the approximation formulae of the present density of χ. We consider

two scenarios: Ni is produced by inflaton (non-thermally produced/Scenario C-nt) or

Standard Model particles (thermally produced/Scenario C-t).

First, we define YD := Yχ + 2Yφ +
∑

i YNi. The Boltzmann equation of YD is given as

follows:

H(mχ)s(mχ)

x4

dYD
dx

=−
∑
i

[Ni ↔ LH, LH]. (10.25)

Next, we integrate it with the boundary conditions Yφ(∞) = YNi(∞) = Yχ(xR) =

Yφ(xR) = 0 shown as follows:

Yχ(∞) =YD(∞) (10.26)

=
∑
i

YNi(xR)−
∑
i

1

H(mχ)s(mχ)

∫ ∞
xR

x4[Ni ↔ LaH, LaH] (10.27)

=
∑
i

{
YNi(xR) +

[
YNi(∞)− YNi(xR)

]
(10.28)

− 2
1

H(mχ)s(mχ)

∫ ∞
xR

x4
(
[φ↔ 2Ni]− [2Ni ↔ 2χ]

)}
(10.29)

(Here, we use the Boltzmann equasion of Ni, ) (10.30)

'− 2

H(mχ)s(mχ)

∑
i

∫ ∞
xR

x4 YNi(x)
2

Y eq
Ni

(x)
2

(
− γφ2Ni − γφ2NiBrφ2χ

)
(10.31)

=
4

H(mχ)s(mχ)

∑
i

gφm
3
φΓφ→2Ni

2π2

∫ ∞
xR

x4 YNi(x)
2

Y eq
Ni

(x)
2 (rφx)−1K1(rφx). (10.32)
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In order to evaluate the present DM yield Yχ(∞), we must estimate YNi(x).

In Scenario C-nt, YNi(x) can be approximated as the initial condition YNi(xR). By

using (10.32), the approximation formula for the present yield of χ is given as follows:

Y nontherm
χ (∞) =

4

H(mχ)s(mχ)

∑
i

gφm
3
φΓφ→2Ni

2π2

∫ ∞
0

x4 YNi(xR)
2(

π−2gNim
3
χs(mχ)−1

)2 (rφx)−1K1(rφx)

(10.33)

=
∑
i

3π3gφs(mχ)Γφ→2NiYNi(xR)
2

g2
Ni
H(mχ)m2

φmχ
(10.34)

=
π5/2

32
√

5

∑
i

|fi|2g∗S
(
1− 4m2

Ni
/m2

φ

)2

G1/2g
1/2
∗ g2

Ni
mφ

YNi(xR)
2
. (10.35)

Using this formula, we show the parametric region where the present χ density is equal

to the DM relic density (Figure 23). For example, when mχ = 6TeV, mφ = 108GeV and

fYN (xR) = 10−12, the present density of χ is equal to the observed DM relic density.

We show the numerical solution for the Boltzmann equations with these parameter, in

next subsection.
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Figure 23: The parametric region where the density of χ is equal to DM relic density.
Here, we vary fYN(xR) from 10−11 to 10−13.

Next we estimate the present yield of χ in Scenario C-t. We can estimate YNi(x) by
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integrating the Boltzmann equation for Ni as follows:

Y b, therm
Ni

(x) '− 1

H(mχ)s(mχ)

∫ x

xR

x4[Ni ↔ LH, LH] (10.36)

'+
1

H(mχ)s(mχ)

gNim
3
Ni

ΓNi→LH,LH
2π2

∫ x

xR

x4(rNix)−1K1(rNix) (10.37)

'+
1

H(mχ)s(mχ)

gNim
3
Ni

ΓNi→LH,LH
2π2

(10.38)

× (4r−5
Ni

)Meijer
[
{{1}, {}}, {{3/2, 5/2}, {0}}, (r2

Nix
2
i )/4

]
(10.39)

= +
1

H(mχ)s(mχ)

gNim
3
Ni

ΓNi→LH,LH
2π2

x3

3r2
Ni

+O(x5). (10.40)

Using this formula and (10.32), we can get the approximation formula for Yχ(∞) in

Scenario C-t:

Y therm
χ (∞) ' 4

H(mχ)s(mχ)

∑
i

gφm
3
φΓφ→2Ni

2π2

∫ ∞
0

x4
Y b, therm
Ni

(x)
2(

π−2gNim
3
χs
−1
mχ

)2 (rφx)−1K1(rφx)

(10.41)

=
37 · 59/2 · 72

217π21/2

∑
i

|fi|2m4
Ni

(
1− 4m2

Ni

m2
φ

)3/2∣∣∑
a |yνai|2

∣∣2
G3/2g

3/2
∗ g∗Sm7

φ

. (10.42)

Using this formula, we show the plot of mφ vs Ωχ/ΩCDM (Figure 24). Here, we set the

parameters as follows:

f1 =2× 10−11, f2 = 7× 10−11, f3 = 9× 10−11, vφ = 1015GeV, mχ = 6TeV,

O =

 cos(π/3) sin(π/3)

− sin(π/3) cos(π/3)

1

1

cos(π/4) sin(π/4)

− sin(π/4) cos(π/4)


×

 cos(π/5) sin(π/5)

1

− sin(π/5) cos(π/5)

 , (Casas− Ibarra parametrization.),

mν1 =0, neutrino parameter is normal hierarchy. (10.43)

These parameters are set so that the constraints from cosmic ray experiments can be

avoided. In Figure 24, We can see that the present yield of χ is the same as the observed

DM relic density when mφ = 105GeV. We show the numerical solution for the Boltzmann

equations with these parameters, in next subsection.
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Figure 24: plot ofmφ vs Ωχ/ΩCDM. Here, we set the parameters as (10.43). For simplicity,
we set i as i = 1.

10.3 The numerical solutions for the Boltzmann equations

Using the parameters in (10.43), mφ = 108GeV and the initial condition YN (xR) =

10−12/f1, we estimate the numerical solutions for Boltzmann equation of Scenario C-nt

in Figure 25. χ is produced at T ∼ mφ by the resonant NN → χχ process. The decay

of φ also occurs the production of χ.

Using the parameters in (10.43), mφ = 105GeV and the initial condition YN (xR) = 0

(thermal NR production), we estimate the numerical solutions for Boltzmann equation

of Scenario C-t in Figure 26. χ is produced by NN → χχ and φ → χχ, the same as

Figure 25. Both the production of φ by NN → φ and the one χ by NN → χχ occur

at T ∼ mφ. Therefore, YN must be large at T ∼ mφ. This is the reason why φ must be

light (105 GeV) 21.

Combining the above results, both Scenario C-nt and C-t are possible.

11 Summary of Part III

In the above sections, we show that TeV scale Majoron can be produced as much as the

observed dark matter relic density. We consider three scenarios.

In Scenario A, we introduce the coupling mijνcRiνRj which softly breaks the Lepton

number symmetry. These couplings occur the N2 → N1χ process, then, the Majoron

21 When N is non-thermally produced, φ can have heavy mass, shown as Figure 23
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Figure 25: The solution for the Boltzmann equations in Scenario C-nt. Dashed line is
the observed DM relic density.
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Figure 26: The solution for the Boltzmann equations of Scenario C-t. Dashed line is the
observed DM relic density.
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can be produced via this process.

In Scenario B, the Majoron can be produced via HH† → χχ. These couplings are

weak because χ is pseudo Nambu Goldstone boson, therefore, we use the UV freeze-in

mechanism.

In Scenario C, the Majoron can be produced via NN → φ → χχ processes. In this

scenario, χ and φ are produced at T ∼ mφ. YN must be large at this temperature so

that Majoron is produced as much as the observed DM relic density. When N is non-

thermally produced (Scenario C-nt) or mχ ∼ O(105) GeV (Scenario C-t), YN can be

large at T ∼ mχ.

In all of these scenarios, we can see that Majoron is produced as much as the observed

DM relic density.
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Part IV

The QCD axion and the lepton
number symmetry

12 The strong CP problem and the QCD axion models

In this section, we briefly explain the strong CP problem and the QCD axion models.

See [157,158] for a detailed review of these themes.

12.1 The strong CP problem

The standard model has the following theta terms: 22

LSM ⊃
θ2g

2

16π2
TrWW̃ +

θ3g
2
s

16π2
TrGG̃. (12.1)

We can set θ2 = 0 by Baryon number transformation, however cannot set θ3 = 0. We

would naively expect that θ3 has O(1) value.

On the other hand, the neutron electric dipole moment depends on θ3:

dn =2.4(1.0)× 10−16θ3 e · cm. (12.2)

Here we use the results from QCD sum-rules [159]. There are different methods to

estimate the neutron EDM: chiral perturbation theory: [160–162], holography [163] and

lattice QCD [164,165]. The latest constraint for dn is given by [166]:

|dn| < 1.8× 10−26e · cm. (12.3)

Therefore, θ3 is unnaturally small: |θ3| < 10−10. This smallness is called as ”strong CP

problem”.

QCD axion model is the well-known solution for the strong CP model. We explain

this model in next subsection.

12.2 The QCD axion models

12.2.1 Peccei-Quinn-Weinberg-Wilczek (PQWW) axion model

In this section, we explain the QCD axion models.

22 X̃µν = 1
2εµνρσX

ρσ
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PQWW axion model [167–170] is the original model of axion. The Yukawa couplings

of PQWW axion are given as follows:

L ⊃− yuQLuRH̃1 − ydQLdRH2 − yeLeRH2 + H.c. (12.4)

Here, H1 and H2 are different Higgs particles. When these get nonzero electro-weak

VEVs, H1, 2 are written as follows:

H1 =

(
v1G

+−v2A
+

v
v1+h1√

2
exp i(v1g

0−v2a)
v1v

)
, H2 =

(
v2G

++v1A
+

v
v2+h2√

2
exp i(v2g

0+v1a)
v2v

)
, v =

√
v2

1 + v2
2. (12.5)

This Model has the following symmetry:

QL →eiαQLQL, uR → eiαuRuR, dR → eiαdRdR, L→ eiαLL, (12.6)

eR →eiαeReR, H1 → eiα1H1, H2 → eiα2H2, (12.7)

0 =− αQL + αuR − α1, 0 = −αQL + αdR + α2, (12.8)

0 =− αL + αeR + α2, α1 = −αv2/v1, α2 = +αv1/v2. (12.9)

This symmetry is called as ”Peccei-Quinn (PQ) symmetry”. This is broken by electro-

weak VEVs, and its (pseudo) NG boson is called as ”axion”.

By the redefinition: u → e−iv2aγ
5/(2v1v)u, d → e−iv1aγ

5/(2v2v)d, e → e−iv1aγ
5/(2v2v)e, we

can derive the effective couplings of aTrGG̃ (Ng(= 3): the number of generation):

L ⊃ g2
s

16π2

[
θ − (v1/v2 + v2/v1)Ng

a

v

]
TrGG̃. (12.10)

Then, the energy density of axion potential is written as follows:

V (a) =Λ4
{

1− cos
[
θ − (v1/v2 + v2/v1)Ng

a

v

]}
. (12.11)

Therefore, the VEV of axion is 〈a〉 = θ(v1/v2+v2/v1)/v. Then, QCD theta term becomes

zero:

L ⊃ g2
s

16π2

[
θ −Ng(v1/v2 + v2/v1)

a

v

]
TrGG̃→ 0. (12.12)

Therefore, the strong CP problem can be solved.

Next, we consider the coupling between axion and SM particles. By redefinition:

u→ e−iv2aγ
5/(2v1v)u, d→ e−iv1aγ

5/(2v2v)d, e→ e−iv1aγ
5/(2v2v)e, we can derive the couplings
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between axion and SM particles: 23

L ⊃Lau + Lad + Lae, (12.13)

Lau =
v2

2v1v
∂µauγ

µγ5u− e2

8π2

(
+

2

3

)2

· 3 ·Ng
v2

2v1v
aF F̃ , (12.14)

Lad =
v1

2v2v
∂µadγ

µγ5d− e2

8π2

(
− 1

3

)2

· 3 ·Ng
v1

2v2v
aF F̃ , (12.15)

Lae =
v1

2v2v
∂µaeγ

µγ5e− e2

8π2
(−1)2 ·Ng

v1

2v2v
aF F̃ . (12.16)

These couplings correspond to c0
q and g0

aγ in §C.2. fa in §C.2 is given as f−1
a = (v1/v2 +

v2/v1)Ng/v in this model.

The couplings cq and gaγ
24 in PQWW model are given as cq = c0

q − Qa, gaγ =

g0
aγ + e2

4π2fa
NcTrQ2Qa. These couplings are O(v−1), because PQ symmetry is broken by

electro-weak VEV. Therefore, PQWW axion model is ruled out by the axion experiments

(please see §12.3 for a detail).

12.2.2 Kim-Shifman-Vainshtein-Zakharov (KSVZ) model

Next, we explain the invisible axion models. In these models, PQ symmetry is broken

by the large VEV, and the axion-SM-SM couplings are suppressed by it. We can avoid

the constraint by the axion experiments.

Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [171,172] and Dine-Fischler-Srednicki-

Zhitnitsky (DFSZ) models [173,174] are well-known invisible axion models.

First, we explain KSVZ model. KSVZ model contains colored Fermions: ΨL, ΨR ∈
(3, 1, +y), and complex scalar S. These particles have PQ charges: PQΨL = −xΨL, PQΨR =

−(x+1)ΨR, PQS = +S. PQ symmetry is broken by the VEV of S
(

= 1√
2
(fa+ρ)eia/fa

)
.

The Yukawa coupling of KSVZ axion models is given as follows:

L ⊃− ySΨLΨR + H.c. (12.17)

By the redefinition ΨR → e−ia/faΨR = e−iaγ
5/faΨR, the effective coupling of aTrGG̃ is

given as follows:

L ⊃ g2
s

16π2

[
θ − a

fa

]
TrGG̃. (12.18)

Then, the strong CP problem is solved as PQWW axion model.

The axion-gluon-gluon coupling is suppressed by fa(∼ O(108−12)GeV). It occurs

axion-nucleon-nucleon coupling gaNN as §C.2, and it is also suppressed by fa.

In §12.3, we explain the experimental constraint on them.

23 Here, we omit aTrGG̃ term.
24They are defined in §C.2.
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12.2.3 Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model

Next, we explain DFSZ model [173,174]. DFSZ model is similar as PQWW axion model.

The Yukawa couplings of DFSZ axion are given as follows:

L ⊃− yuQLuRH̃1 − ydQLdRH2 − yeLeRH2 − κ(S†)2H†1H2 + H.c. (12.19)

H1, H2, S are written as follows:

H1 =

(
v1G

+−v2A
+

v
v1+ρ1√

2
e
i
v1

(v1G0−v2A0)/v

)
, H2 =

(
v2G

++v1A
+

v
v2+ρ2√

2
e
i
v2

(v2G0+v1A0)/v

)
, (12.20)

S =
fa + s√

2
eiχ0/fa, v =

√
v2

1 + v2
2. (12.21)

This Model has the following symmetry:

QL →eiαQLQL, uR → eiαuRuR, dR → eiαdRdR, L→ eiαLL, (12.22)

eR →eiαeReR, H1 → eiα1H1, H2 → eiα2H2, S → eiαS (12.23)

0 =− αQL + αuR − α1, 0 = −αQL + αdR + α2, (12.24)

0 =− αL + αeR + α2, α1/α2 = −v2
2/v

2
1, 0 = −2α− α1 + α2. (12.25)

Therefore, α1 = − 2v2
2

v2
1+v2

2
α, α2 = 2v2

1

v2
1+v2

2
α. PQ transformation shift χ0 and A0 as follows:

χ0 →χ0 + αfa, (12.26)

A0 →A0 −
v1v

v2
α1 = A0 +

2v1v2

v
α, (12.27)(

A0 →A0 +
v2v

v1
α2 = A0 +

2v1v2

v
α.

)
(12.28)

Therefore, axion a and other CP odd scalar A′ are defined as follows:

χ0 =
fav√

(fav)2 + (2v1v2)2
a+

2v1v2√
(fav)2 + (2v1v2)2

A′0 (12.29)

A0 =
2v1v2√

(fav)2 + (2v1v2)2
a− fav√

(fav)2 + (2v1v2)2
A′0. (12.30)

By the redefinition (after the electro-weak symmetry breaking):

u→e−iαuγ5

u, d→ e−iαdγ
5

d, e→ e−iα`γ
5

e, νL → e−iα`γ
5

νL (12.31)

αu = +
v2

2

v2

a

fa
, αd = α` = +

v2
1

v2

a

fa
, (12.32)
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we can derive axion-SM-SM coupling: 25

L ⊃Lau + Lad + Lae, (12.33)

Lau =
v2

2

v2

∂µa

fa
uγµγ5u− e2

8π2

(
+

2

3

)2

· 3 ·Ng
v2

2

v2

a

fa
FF̃ , (12.34)

Lad =
v2

1

v2

∂µa

fa
dγµγ5d− e2

8π2

(
− 1

3

)2

· 3 ·Ng
v2

1

v2

a

fa
FF̃ , (12.35)

Lae =
v2

1

v2

∂µa

fa
eγµγ5e− e2

8π2
(−1)2 ·Ng

v2
1

v2

a

fa
FF̃ . (12.36)

These couplings correspond to c0
q and g0

aγ in §C.2. fa in §C.2 is given as f−1
a → Ngf

−1
a

in this model. The couplings cq and gaγ
26 in PQWW model are given as cq = c0

q −Qa,

gaγ = g0
aγ+ e2

4π2(fa/Ng)NcTrQ2Qa. Furthermore, there are axion-nucleon-nucleon couplings

gaNN as §C.2, and they are suppressed by fa. In §12.3, we explain the experimental

constraint on them.

12.3 The experimental constraints on the couplings between the
QCD axion and the SM particles

In this section, we explain the experimental constraints on the couplings between axion

and standard model particles.

We define these couplings as follows:

Laff =
gaff
2mf

(∂µa)fγµγ5f, Laγγ = −gaγγ
4
aF F̃ . (12.37)

gaγγ is constrained by the axion helioscope (CAST [175]): gaγγ < 6.6× 10−11GeV−1 for

ma < 0.02 eV, the haloscopes (ADMX [176–178]): ma < 1.9µeV or 3.53µeV < ma, and

the horizontal branch (HB) [179, 180]: gaγγ < 6.6 × 10−11. We show the constraints on

gaγγ in Figure 27 and 28. gann is constrained by neutron star [182]: g2
ann < 7.7× 10−20.

We show the constraints on gann in Figure 29. gapp is constrained by neutron star

[183]: g2
app + 1.6g2

ann < 1 × 10−18. We show the constraints on gapp in Figure 30. gaee
is constrained by the red giants [184]: |gaee| < 4.3 × 10−13, the white dwarf [185]:

|gaee| < 2.8 × 10−13. We show the constraints on gaee in Figure 31. PQ scale fa is

restricted by these constraints: fa > O(109) GeV.

Axion behaves as dark matter. The relic density is given as follows [181,186]:

Ωh2 '

0.12
(

fa
1.92×1011GeV

)1.165

, (PQ is broken after reheating)

0.12 · θ2
(

fa
9×1011GeV

)1.165

, (PQ is broken before reheating)
. (12.38)

25 Here, we omit aTrGG̃ term.
26They are defined in §C.2.
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Figure 27: The experimental constraints on gaγγ [181].

Figure 28: The experimental constraints on gaγγ by the haloscopes [181].
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Figure 29: The experimental constraints on gann [181].

72



Figure 30: The experimental constraints on gapp [181].
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Figure 31: The experimental constraints on gaee [181].
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Therefore, fa must be fa < O(1012)GeV when θ ∼ O(1).

Please see [157,181] for a detailed review of axion experiments.
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field SU(3)C SU(2)L U(1)Y U(1)L spin
L 1 2 −1/2 +1 1/2
eR 1 1 −1 +1 1/2
H 1 2 +1/2 +0 0
NR 1 1 +0 +1 1/2
ΨL 3 1 +x +x 1/2
ΨR 3 1 +x +(x− 2) 1/2
σ 1 1 +0 +2 0

Table 4: The particle contents in [187]

13 The relationship between the neutrino oscillation

and the strong CP problem

Axion is NG boson of PQ symmetry. In this section, we show the relationship between

neutrino oscillation and the strong CP problem.

Neutrino oscillations are detected by experiments using solar [7–17], atmospheric

[19–21], reactor [23–29] and accelerator [30–35] neutrinos. There are two well-known

methods which explain neutrino oscillation: ”Dirac mass method” and ”Majorana mass

method”. In Majorana mass method, neutrino masses are explained by the following

dimension-5 effective operator:

L ⊂− 1

Λ
LcHH̃†L+ H.c. (13.1)

This operator breaks lepton number symmetry. In Majoron model [51,52], this symmetry

breaking is explained by VEV of a complex scalar field. This model contains the NG

boson of the lepton number symmetry breaking, called as ”Majoron”.

We can identify the lepton number symmetry and Majoron with the PQ symmetry

and axion.

In [187], the axion in KSVZ model is identified as Majoron. The particle contents

in [187] are shown in Table 4. In this model, both the masses of right-handed neutrino

NR and vector-like heavy quark Ψ are generated by the VEV of σ(= (vσ+ρσ)eia/vσ/
√

2).

The field a works as axion, as KSVZ axion model. Furthermore, left-handed neutrino

gains Majorana mass, as Type I seesaw model.

There are other models in which lepton number symmetry is identified as PQ sym-

metry (early researches [188–191] motivated by GUT, ones [186,187,191–200] by Type I

seesaw, ones [201,202] by Zee Model, ones [203–207] by Type II (III) and other radiative

seesaw models and ones by Dirac masses [208–211]). They are summarized in [157].

Next section, we construct the minimal model with L = PQ.
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14 The minimal L = PQ model

14.1 The identification of the colored fermion in the radiative see-
saw model with the heavy quark in KSVZ axion model

KSVZ axion model contains heavy quark. Seesaw model also contains BSM heavy

fermion (for example, NR in type I seesaw). In order to construct minimal model with

L = PQ, we identify heavy quark in KSVZ axion model with heavy fermion in seesaw

model.

There are some radiative seesaw model with colored fermion [212–217]. 27 In this

section, we identify the octet colored fermion in [212] as the colored heavy fermion in

axion model. The particle contents of [212] are color-octet fermion ΨR ∈ (8, 1, +0)

and complex doublet scalar η ∈ (8, 2, +1/2). In this model, neutrinos gain one-loop

Majorana mass, as the scotogenic model [50]. In order to reconstruct this model as axion

model, we introduce new complex scalar S, and give the Majorana mass of ΨR by the

VEV of S. The axion model with color-octet Majorana Fermion is considered in [219].

We call the model constructed here as ”Ma-xion model”.

14.2 The field contents and the interactions in Ma-xion model

The field contents of Ma-xion model is shown in Table 5. The Yukawa couplings in

field SU(3)C SU(2)L U(1)Y U(1)L = U(1)PQ spin
ΨR 8 1 +0 +1 1/2
Φ 8 2 +1/2 +0 0
S 1 1 +0 −2 0

Table 5: The particle contents in Ma-xion model.

Ma-xion model are shown as follows:

LQΦqR
=giju Qi Φ̃A TA ujR + gijd Qi Φ

A TA djR + H.c. (14.1)

LLΦΨR =hijΨΦ̃A†ΨA
jRLi + H.c. (14.2)

LSΨRΨR =− 1

2
yiΨ S (ΨA

iR)cΨA
iR + H.c. (14.3)

The coupling giju and gijd may occur FCNC processes. Here, we set these couplings as

zero, for simplicity.

27 For detail of them, please see §5.4 in [218].

77



Scalar potential in Ma-xion model is given as follows:

V =− µ2H†H − µ2
SS

?S +M2
ΦΦA†ΦA + λ(H†H)2

+ λS(S?S)2 + λSH(S?S)(H†H) + λSΦ(S?S)ΦA†ΦA

+ λ3(H†H)ΦA†ΦA + λ4|H†Φ|2 +
1

2

{
λ5(H†ΦA)2 + H.c.

}
+ · · · (14.4)

We set the parameters of scalar potential so that S gains nonzero VEV: S = 1√
2
(fa +

ρ)eia/fa. It breaks lepton number symmetry (=PQ symmetry). After that, ΨR gains

Majorana mass: MΨi = yiΨ〈S〉 = yiΨfa/
√

2 and the angular part of S works as axion.

ΦA =

(
H+A

(HA + i AA)/
√

2

)
gains the following masses after electro-weak symmetry break-

ing:

M2
H,A =M2

Φ +
1

2
λSΦf

2
a +

1

2
(λ3 + λ4 ± λ5)v2 (14.5)

M2
H± =M2

Φ +
1

2
λSΦf

2
a +

1

2
λ3v

2 (14.6)

14.3 The interactions between the QCD axion and the SM parti-
cles, and the constraints on them

By the redefinition ΨA
R → e−i

a(x)
2fa

γ5

ΨA
R, L → e+ia(x)

2fa
γ5

L, eR → e−i
a(x)
2fa

γ5

eR, we can derive

the axion-gluon-gluon coupling: 28

L ⊃ g2
s

16π2

(
θTrT a3T

b
3 −

nΨa(x)

2fa
TrT a8T

b
8

)
G̃aGb (14.7)

=
g2
s

16π2

(
θ − 3nΨa(x)

fa

)
TrG̃G, (14.8)

and the axion-lepton coupling:

L ⊃− ∂µa

2fa

(
Lγµγ5L− eRγµγ5eR

)
(14.9)

=
∂µa

2fa

(
eγµe+ νLγ

µνL

)
. (14.10)

Then axion potential is written as follows:

Va = Λ4
{

1− cos
(
θ − 3nΨ a(x)

fa

)}
. (14.11)

28 nΨ is defined as the number of ΨjR (j = 1, · · · , nΨ).
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Then, QCD θ term becomes zero, therefore, the strong CP problem is solved:

L =
g2

16π2

(
θ − 3nΨa(x)

va

)
TrG̃G→ 0. (14.12)

Next, we consider the experimental constraint from the axion-electron coupling. First, we

define the axion emission diagram from electron line as ikµMµ. When replacing the axion

emission with the photon one, the replaced amplitude is given as iε
(∗)
µ M. Therefore, the

axion emission amplitude becomes zero: ikµMµ → 0, by using Ward-Takahashi identity.

Therefore, there are no experimental constraints from the axion-electron coupling.

Therefore, fa is constrained by only the axion-nucleon-nucleon coupling. The con-

straint on this coupling from supernova is given as follows [183]:

fa
3nΨ

& 4.4× 108GeV. (14.13)

14.4 The explanation of the neutrino oscillation and the dark mat-
ter relic density

The invisible axion can explain the dark matter relic density. It is given as follows (θi is

the misalignment angle of the axion): [181]

Ωah
2 ≈ 0.12 · θ2

( fa/(3nΨ)

9× 1011GeV

)1.165

. (14.14)

Here, we assume that the PQ symmetry is broken during inflation, so that the axion

domain wall problem does not happen. 29

Furthermore, the Ma-xion model can explain the neutrino oscillation. The neutrino

mass matrix is generated by the 1-loop diagram in Figure 32. It is evaluated as follows:
30

(Mν)ij = − 1

4π2

∑
k

hikΨh
jk
Ψ MΨk

( M2
H

M2
Ψk −M2

H

ln
M2

H

M2
Ψk

− M2
A

M2
Ψk −M2

A

ln
M2

A

M2
Ψk

)
. (14.15)

In the limit of 2λ5v
2 � m2

0 = (M2
H +M2

A)/2, this becomes as follows:

(Mν)ij '
1

4π2
λ5v

2
∑
k

hikΨh
jk
Ψ MΨk

M2
Ψk ln M2

Ψk

m2
0
−M2

Ψk +m2
0

(M2
Ψk −m2

0)2
. (14.16)

29 If the PQ symmetry is broken after inflation, the axion domain wall problem happens. It is because the
domain wall number 3nΨ is larger than 1.

30 Here, we define m0 as M2
H +M2

A = 2m2
0, and use M2

H −M2
A = λ5v

2.
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〈H〉 〈H〉

νc ν
Ψc

Φ Φ

Ψ

〈S〉

Figure 32: Neutrino mass

Furthermore, using the another limit: MH,A �MΨk , this becomes similar to the neutrino

mass in Type I seesaw:

(Mν)ij '
λ5v

2

4π2

∑
k

hikΨh
jk
Ψ

MΨk
. (14.17)

15 Summary of Part IV

We can construct the minimal model, in which we identify the Peccei Quinn symmetry

in the KSVZ axion model with the lepton number symmetry in Majoron model. We

use the radiative seesaw model with the color octet fermion, and we identify this as the

heavy quark in the KSVZ axion model. Then, the neutrino oscillation can be explained

by the 1-loop diagram of neutrino mass. Both the strong CP problem and the existence

of dark matter are explained by the QCD axion. In order to avoid the domain wall

problem, the PQ symmetry must be broken before reheating temperature. The scale of

PQ scale is mainly constrained by the supernova.
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Part V

Conclusion

Neutrino oscillation is the strong hint which indicates the BSM physics coupling to SM

lepton sector. Furthermore, the other problems of SM are also serious (for example,

muon g-2 anomaly, dark matter, strong CP problem, and etc). Therefore, we focus on

the relationships between neutrino Majorana mass and other physics.

In Part II, we focus on the muon g-2 anomaly. It indicates the BSM physics which

couple to SM lepton sector. Therefore, they may be identified as the BSM in seesaw

models. We use the type II seesaw model to explain the muon g-2 anomaly. It is because

it can explain neutrino mass with O(1) Yukawa couplings and TeV scale BSM particles.

In order to make the ∆a positive definite, a double charged scalar k++ is introduced.

Then, LFV constraints indicates the existence of the discrete lepton flavor symmetry Z3.

Furthermore, double charged scalars mainly decay to µ− + τ− in our model. Therefore,

the muon g-2 anomaly and the neutrino oscillation indicate the importance of the Z3

conserving LFV processes and the decay processes from double charged scalar to µ−+τ−

final states.

In Part III, we focus on the dark matter. Among the models explaining neutrino

oscillation and dark matter, we consider the TeV scale Majoron dark matter. TeV scale

Majoron dark matter can solve the anomalous results in positron fraction detected by

the cosmic ray experiments. Furthermore, the Majoron dark matter can be tested by the

neutrino telescopes (χ→ νν). However, it is not obvious that the TeV scale Majoron can

be produced as much as the observed dark matter relic density. We can see that three

production mechanisms for the TeV scale Majoron dark matter are possible. Therefore,

the observed dark matter may be TeV scale Majoron. The neutrino oscillation and the

dark matter relic density indicate the importance for the indirect detections of dark

matter by the cosmic ray experiments.

In Part IV, we focus on the strong CP problem. Lepton number symmetry is broken in

seesaw models, and PQ symmetry is done in axion models. Therefore, it is important to

identify them. Some seesaw models contain heavy fermions, therefore, we identify them

as the heavy ”colored” fermion in KSVZ axion models. In this model, axion can explain

the observed dark matter relic density. In order to avoid the domain wall problem in this

model, the PQ symmetry breaking must occur before reheating temperature. Combining

the above results, the neutrino oscillation and the strong CP problem indicate that the

observed dark matter is axion (= Majoron) coupling to SM lepton and nucleons, SM

lepton couples to heavy colored particles, and the PQ (=L) scale of this model constrains

the reheating temperature.

Throughout this thesis, we consider what is indicated by neutrino oscillation and
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other BSM physics. They can be tested by future experiments; colliders, cosmic ray

experiments, axion detectors, neutrino telescopes, and so on. We want to discover these

new physics in future.
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A Appendix for Part II

A.1 The calculation of the lepton g-2 and the LFV processes

We want to lepton g-2 and LFV process in this part.

In §A.1.1, we derive the contribution to lepton g-2 and `a → `bγ from the effective

dipole operator

L =`bσ
µν(AbaL PL + AbaRPR)`aFµν ,

(
σµν =

i

2
[γµ, γν ], AbaL = A†baR

)
. (A.1)

In §A.1.2, we calculate the coefficient of effective dipole operator AbaL,R, from somewhat

general Yukawa couplings:

L =H++
i `Ca (fabiLPL + fabiRPR)`b + haji H

+
i `

C
a νLj + H.c. (A.2)

In §A.1.3, we calculate Br(`a → `bγ)/Br(`a → νa`eνe) and Br(`a → `b`c`d)/Br(`a →
νa`eνe) (b 6= c, a 6= e), under the above general Yukawa couplings. In §A.1.4, we evaluate

the loop integral used in §A.1.2. In §A.1.5, we evaluate the integral over n-body phase

space used in §A.1.3.

A.1.1 The calculation from the effective dipole operator

In this section, we consider the dipole effective action

L =`bσ
µν(AbaL PL + AbaRPR)`aFµν ,

(
σµν =

i

2
[γµ, γν ], AbaL = A†baR

)
. (A.3)
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It is useful to rewrite this Lagrangian in momentum space 31

i

∫
dDxL =i

∫
dDx

∫
dDk1

(2π)D

∫
dDk2

(2π)D

∫
dDk3

(2π)D
`b(k2)σµν(AbaL PL + AbaRPR)`a(k1)

× {−ik3µAν(k3) + ik3νAµ(k3)}e−i(k1+k2+k3)x

=2

∫
dDk1

(2π)D

∫
dDk2

(2π)D
`b(−k2)σµν(AbaL PL + AbaRPR)`a(k1)

× (−k1 + k2)µAν(−k1 + k2). (A.4)

Then, we can calculate the amplitude of `a(ka) → `b(kb)γ(ka − kb) from the dipole

Lagrangian

iM =2ε∗µ(ka − kb)u(kb)σ
νµ(AbaL PL + AbaRPR)u(ka)(kb − ka)ν (A.5)

=2iε∗µ(ka − kb)u(kb)(m`b −��ka)γ
µ(AbaL PL + AbaRPR)u(ka). (A.6)

Then, squared amplitude are∑
d.o.f

|M|2 =− 4Tr(��kb +m`b)(��ka −m`b)γ
µ(AbaL PL + AbaRPR)

× (��ka +m`a)(A
ba∗
L PR + Aba∗R PL)γµ(��ka −m`b) (A.7)

=8(m2
`a −m2

`b
)2(|AabL |2 + |AabR |2). (A.8)

Therefore, Decay width of `a → `bγ is

Γ(`a → `bγ) =
1

2m`a

1

2!

∫
d3kb

(2π)32Ekb

∫
d3kγ

(2π)32Ekγ
(2π)4δ4(ka − kb − kγ)

× 8(m2
`a −m2

`b
)2
(
|AabL |2 + |AabR |2

)
(A.9)

=
1

2m`a

1

2!
8(m2

`a −m2
`b

)2
(
|AabL |2 + |AabR |2

) 2

2π

(m2
`a
−m2

`b
)

8m2
`a

(A.10)

=
(m2

`a
−m2

`b
)3

4πm3
a

(
|AbaL |2 + |AbaR |2

)
. (A.11)

The contribution to lepton anomalous dipole moment from effective action is written as

follows (see §1.2)

∆a`a =− 2m`a

e
(AL + AR)aa. (A.12)

31 A(x) =
∫

dDp
(2π)D

A(p)e−ipx, Fµν(x) = ∂µAν − ∂νAµ =
∫

dDp
(2π)D

(−ipµAν + ipνAµ)e−ipx =∫
dDp

(2π)D
Fµν(p)e−ipx
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A.1.2 The calculation of the lepton g-2 and the LFV processes from Yukawa
coupling

In this section, we calculate the coefficient of the effective action in §A.1.1 (AbaL,R), from

the following general Yukawa coupling 32

L =H++
i `Ca (fabiLPL + fabiRPR)`b + haji H

+
i `

C
a νLj + H.c. (A.13)

First, we rewrite the amplitude of `a(p3)→ `b(−p2)γ(−p1) written by the effective action

iM =2ε∗µ(−p1)u(−p2)σνµ(AbaL PL + AbaRPR)u(p3)(−p2 − p3)ν (A.14)

=2iu(−p2)��ε
∗(−p1)

×
{

(m`bA
ba
L +m`aA

ba
R )PL + (m`bA

ba
R +m`aA

ba
L )PR

}
u(p3)

+ 4i
{
p2ε
∗(−p1)

}
u(−p2)(AbaL PL + AbaRPR)u(p3). (A.15)

Please pay attention that this amplitude contain the term with ��ε∗(−p1) and the one with

p2ε
∗(−p1).

We will calculate the amplitude from the general Yukawa interaction. Then, we can

write AabL,R as a function of Yukawa coupling, even if we keep only p2ε
∗(−p1) terms.

Therefore, we will ignore ��ε∗(−p1) terms in this subsubsection.

First we calculate the H+’s contribution to the LFV amplitude

iMH+
i

=(ih∗bji )(ihTja
i )

∫
dD`

(2π)D
u(−p2)PR

i��̀

`2
PLu(p3)ε∗µ(−p1)

× i

(`+ p2)2 −M2
H+
i

{
− ie(−2`− p2 + p3)µ

} i

(`− p3)2 −M2
H+
i

(A.16)

→2e[hih
†
i ]
ab(C22 − C23 + C2)(0,MH+

i
)
{
p2ε
∗(−p1)

}
u(−p2)(m`bPL +m`aPR)u(p3)

(A.17)

Here,→means that we ignore the��ε∗(−p1) terms. C00, C22 and etc. are defined in §A.1.4.

When we compare iMH+
i

with the amplitude written by the effective action (A.15), we

32H++
i and H+

i are written in mass basis.
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can write the contribution from H+
i to AL,R as

AH
+ba

L =
1

4i
× 2e

∑
i

[hih
†
i ]
ab(C22 − C23 + C2)(0,MH+

i
)m`b (A.18)

' e

24(4π)2

∑
i

[hih
†
i ]
abm`b

M2
H+
i

, (A.19)

AH
+ba

R =
1

4i
× 2e

∑
i

[hih
†
i ]
ab(C22 − C23 + C2)(0,MH+

i
)m`a (A.20)

' e

24(4π)2

∑
i

[hih
†
i ]
abm`a

M2
H+
i

. (A.21)

Next, we calculate the contributions to dipole effective coupling from H++
i Yukawa cou-

pling. Two contributions from H++
i exist. We define iMH++

i 1 in which a photon emits

from the internal scalar line, iMH++
i 2 in which a photon emits from the internal Fermion

line. First, we calculate iMH++
i 1 shown as follows

iMH++
i 1 =

∫
dD`

(2π)D
u(−p2)

{
i(2f †bciL PR + 2f †bciR PL)

}i(��̀ +m`c)

`2 −m2
`c

{
i(2f caiLPL + 2f caiRPR)

}
u(p3)

× ε∗µ(−p1)
i

(`+ p2)2 −M2
H++
i

{
− 2ie(−2`− p2 + p3)µ

} i

(`− p3)2 −M2
H++
i

(A.22)

→16e
{
p2ε
∗(−p1)

}
(C22 − C23 + C2)(`c,MH++

i
)

× u(−p2)
{

(m`bf
†bc
iL f

ca
iL +m`af

†bc
iR f

ca
iR)PL + (m`bf

†bc
iR f

ca
iR +m`af

†bc
iL f

ca
iL)PR

}
u(p3)

− 16e
{
p2ε
∗(−p1)

}
(2C2 + C0)(`c,MH++

i
)m`cu(−p2)(f †bciR f

ca
iLPL + f †bciL f

ca
iRPR)u(p3).

(A.23)

We compare this with (A.15), then, we can know the effective coupling which correspond
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to MH++
i 1:

AH
++1ba

L =
1

4i
× 16e

∑
i

(C22 − C23 + C2)(`c,MH++
i

)(m`bf
†bc
iL f

ca
iL +m`af

†bc
iR f

ca
iR)

− 1

4i
× 16e

∑
i

(2C2 + C0)(`c,MH++
i

)m`cf
†bc
iR f

ca
iL (A.24)

' e

3(4π)2

∑
i

m`bf
†bc
iL f

ca
iL +m`af

†bc
iR f

ca
iR + 6m`cf

†bc
iR f

ca
iL

M2
H++
i

, (A.25)

AH
++1ba

R =
1

4i
× 16e

∑
i

(C22 − C23 + C2)(`c,MH++
i

)(m`bf
†bc
iR f

ca
iR +m`af

†bc
iL f

ca
iL)

− 1

4i
× 16e

∑
i

(2C2 + C0)(`c,MH++
i

)m`cf
†bc
iL f

ca
iR (A.26)

' e

3(4π)2

∑
i

m`bf
†bc
iR f

ca
iR +m`af

†bc
iL f

ca
iL + 6m`cf

†bc
iL f

ca
iR

M2
H++
i

. (A.27)

Next, we calculate iMH++
i 2 shown as follows:

iMH++
i 2 =ε∗µ(−p1)

∫
dD`

(2π)D
u(−p2)

×
{

2i(f †bciL PR + f †bciR PL)
}i(�����−`− p2 +m`c)

(`+ p2)2 −m2
`c

ieγµ
i(�����−`+ p3 +m`c)

(`− p3)2 −m2
`c

×
{

2i(f caiLPL + f caiRPR)
}
u(p3)

i

`2 −M2
H++
i

(A.28)

→8e
{
p2ε
∗(−p1)

}
(C22 − C23 + C2)(MH++

i
,m`c)

× u(−p2)
{

(m`bf
†bc
iL f

ca
iL +m`af

†bc
iR f

ca
iR)PL + (m`bf

†bc
iR f

ca
iR +m`af

†bc
iL f

ca
iL)PR

}
u(p3)

+ 16em`c

{
p2ε
∗(−p1)

}
C2(MH++

i
,m`c)u(−p2)(f †bciR f

ca
iLPL + f †bciL f

ca
iRPR)u(p3)

(A.29)
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After comparing this with (A.15), we can get the effective couplings as follows:

AH
++2ba

L =
1

4i
× 8e

∑
i

(C22 − C23 + C2)(MH++
i
,m`c)(m`bf

†bc
iL f

ca
iL +m`af

†bc
iR f

ca
iR)

+
1

4i
× 16e

∑
i

m`cC2(MH++
i
,m`c)f

†bc
iR f

ca
iL (A.30)

' e

3(4π)2

∑
i

m`bf
†bc
iL f

ca
iL +m`af

†bc
iR f

ca
iR

M++2
i

− e

(4π)2

∑
i

{
3− 2 ln(M++2

i /m2
`c

)
}
m`cf

†bc
iR f

ca
iL

M++2
i

, (A.31)

AH
++2ba

R =
1

4i
× 8e

∑
i

(C22 − C23 + C2)(MH++
i
,m`c)(m`bf

†bc
iR f

ca
iR +m`af

†bc
iL f

ca
iL)

+
1

4i
× 16e

∑
i

m`cC2(MH++
i
,m`c)f

†bc
iL f

ca
iR (A.32)

' e

3(4π)2

∑
i

m`bf
†bc
iR f

ca
iR +m`af

†bc
iL f

ca
iL

M++2
i

− e

(4π)2

∑
i

{
3− 2 ln(M++2

i /m2
`c

)
}
m`cf

†bc
iL f

ca
iR

M++2
i

. (A.33)

Using the above results, total contribution from H++ (AH
++ba

L,R := AH
++1ba

L,R + AH
++2ba

L,R )

can be written as follows:

AH
++ba

L =AH
++1ba

L + AH
++2ba

L (A.34)

=
e

3(4π)2

∑
i

1

M2
H++
i

[
2m`bf

†bc
iL f

ca
iL + 2m`af

†bc
iR f

ca
iR

+
{
− 3 + 6 ln(M++2

i /m2
`c)
}
m`cf

†bc
iR f

ca
iL

]
, (A.35)

AH
++ba

R =
e

3(4π)2

∑
i

1

M2
H++
i

[
2m`bf

†bc
iR f

ca
iR + 2m`af

†bc
iL f

ca
iL

+
{
− 3 + 6 ln(M++2

i /m2
`c)
}
m`cf

†bc
iL f

ca
iR

]
. (A.36)

A.1.3 The branching ratio of the LFV processes

In this subsubsection, we calculate Br(`a → `bγ)/Br(`a → νa`eνe) and Br(`a → `b`c`d)/Br(`a →
νa`eνe) (b 6= c, a 6= e).
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First, we calculate the amplitude of `a(pa)→ `b(pb)`c(pc)`d(pd):

iM(`a → `b`c`d) (A.37)

=
∑
i

u(pd)(2f
da
iLPL + 2fdaiRPR)u(pa)

i

(pb + pc)2 −M2
H++
i

u(pb)(2f
†bc
iL PR + 2f †bciR PL)v(pc)

(A.38)

Then, the decay width of `a(pa)→ `b(pb)`c(pc)`d(pd) is given as follows 33:

Γ(`a → `b`c`d) (A.39)

=
1

2

1

2m`a

∫
d3pb

(2π)32Eb

d3pc
(2π)32Ec

d3pd
(2π)32Ed

(2π)4δ4(pa − pb − pc − pd)

× 1

{(pb + pc)2 −M2
H++
i

}
1

{(pb + pc)2 −M2
H++
j

}

× 16Tr(fdaiLPL + fdaiRPR)(��pa +m`a)(f
†ad
jL PR + f †adjR PL)(��pd +m`d)

× Tr(f †bciL PR + f †bciR PL)(��pc −m`c)(f
cb
jLPL + f cbjRPR)(��pb +m`b) (A.40)

' 1

6(4π)3
m5
`a

∑
ij

1

M2
H++
i

M2
H++
j

(fdaiL f
†ad
jL + fdaiRf

†ad
jR )(f †bciL f

cb
jL + f †bciR f

cb
jR) (A.41)

Next, we calculate the decay width of `a(p1) → νa(p2)`b(p3)νb(p4), (a 6= b). The ampli-

tude is given as follows:

iM =
ig√

2
u(p2)γµPLu(p1)× ig√

2
u(p3)γνPLv(p4)

× −i
(p3 + p4)2 −m2

W

×
{
ηµν − (p3 + p4)µ(p3 + p4)ν/m

2
W

}
. (A.42)

Then, we can calculate the decay width:

Γ(`a → νa`bνb)

=
1

2

1

2m`a

1

2π

∫ m2
`a

m2
`b

dm2
34dΦ2(p1, p34, p2)dΦ2(p34, p3, p4)

× g4

4
Tr��p2γ

µPL(��p1 −m`a)PRγ
ρTr(��p3 −m`b)γ

νPL��p4PRγ
σ

× 1

(m2
34 −m2

W )2

{
ηµν − (p3 + p4)µ(p3 + p4)ν/m

2
W

}{
ηρσ − (p3 + p4)ρ(p3 + p4)σ/m

2
W

}
'G

2
Fm

5
`a

3(4π)3
(A.43)

33 Here, we used the formulae for the integral over n-body phase space in §A.1.5.
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Using the above results, Br(`a → `bγ)/Br(`a → νa`eνe) is given as follows:

Br(`a → `bγ)/Br(`a → νa`eνe) (A.44)

=
(m2

`a
−m2

`b
)3

4πm3
`a

Λ2

(
|AbaL |2 + |AbaR |2

)
× 3(4π)3

G2
Fm

5
`a

, (A.45)

and Br(`a → `b`c`d)/Br(`a → νa`eνe) (b 6= c, a 6= e) is given as follows:

Br(`a → `b`c`d)/Br(`a → νa`eνe) (A.46)

=
1

6(4π)3
m5
`a

∑
ij

1

M2
H++
i

M2
H++
j

(fdaiL f
†ad
jL + fdaiRf

†ad
jR )(f †bciL f

cb
jL + f †bciR f

cb
jR)× 3(4π)3

G2
Fm

5
`a

(A.47)

=
1

2G2
F

∑
ij

1

M2
H++
i

M2
H++
j

(fdaiL f
†ad
jL + fdaiRf

†ad
jR )(f †bciL f

cb
jL + f †bciR f

cb
jR). (A.48)

A.1.4 The calculation of the loop integral

In this section, we evaluate the loop integral in the LFV process `a(p3)→ `b(−p2)γ(−p1).

First, we define loop integral C2(M1, M2) and C3(M1, M2) as folows:

C2(M1,M2)p2µ + C3(M1,M2)p3µ (A.49)

=:

∫
dD`

(2π)D
`µ

(`2 −M2
1 ){(`+ p2)2 −M2

2}{(p3 − `)2 −M2
2}

(A.50)

'2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq

(2π)D
−(xp2 − yp3)µ{

q2 −M2
1 (1− x− y)− (x+ y)M2

2

}3 (m` �M1 or m` �M2)

(A.51)

Therefore, C2 and C3 are written as follows:

C2(M1,M2)

' −C3(M1,M2)

= −2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq

(2π)D
x{

q2 −M2
1 (1− x− y)− (x+ y)M2

2

}3

=
i

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy
x

M2
1 (1− x− y) + (x+ y)M2

2

=
i

(4π)2

−3M4
1 + 4M2

1M
2
2 −M4

2 − 2M4
1 ln(M2

2/M
2
1 )

4(M2
1 −M2

2 )3
. (A.52)
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Next, we define C00, C22, C23, C33 as follows:

C00(M1,M2)ηµν + C22(M1,M2)p2µp2ν

+ C23(M1,M2)(p2µp3ν + p3µp2ν) + C33(M1,M2)p3µp3ν (A.53)

=

∫
dD`

(2π)D
`µ`ν

(`2 −M2
1 ){(`+ p2)2 −M2

2}{(p3 − `)2 −M2
2}

(A.54)

=2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq

(2π)D

× {q − (xp2 − yp3)}µ{q − (xp2 − yp3)}ν{
q2 − x2m2

`b
− xy(m2

`a
+m2

`b
)− y2m2

`a
−M2

1 (1− x− y) + x(m2
`b
−M2

2 ) + y(m2
`a
−M2

2 )
}3

(A.55)

=2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq

(2π)D

× q2gµν/D + (xp2 − yp3)µ(xp2 − yp3)ν{
q2 − x2m2

`b
− xy(m2

`a
+m2

`b
)− y2m2

`a
−M2

1 (1− x− y) + x(m2
`b
−M2

2 ) + y(m2
`a
−M2

2 )
}3

(A.56)

'2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq

(2π)D
q2gµν/D + x2p2µp2ν − xy(p2µp3ν + p3µp2ν) + y2p3µp3ν{

q2 −M2
1 (1− x− y)− (x+ y)M2

2

}3

(A.57)

Therefore, C22, C23 and C33 are written as follows:

C22(M1,M2)

' C33(M1,M2)

= 2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq

(2π)D
x2{

q2 −M2
1 (1− x− y)− (x+ y)M2

2

}3

=
i

(4π)2

11M6
1 − 18M4

1M
2
2 + 9M2

1M
4
2 − 2M6

2 + 6M6
1 ln(M2

2/M
2
1 )

18(M2
1 −M2

2 )4

C23(M1,M2)

' 2

∫ 1

0

dx

∫ 1−x

0

dy

∫
dDq

(2π)D
−xy{

q2 −M2
1 (1− x− y)− (x+ y)M2

2

}3

= − i

(4π)2

11M6
1 − 18M4

1M
2
2 + 9M2

1M
4
2 − 2M6

2 + 6M6
1 ln(M2

2/M
2
1 )

36(M2
1 −M2

2 )4
(A.58)
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At last, we define C0 as follows:

C0(M1,M2) (A.59)

=

∫
dD`

(2π)D
1

(`2 −M2
1 ){(`+ p2)2 −M2

2}{(p3 − `)2 −M2
2}

(A.60)

=
i

(4π)2

M2
1 −M2

2 −M2
1 ln(M2

1/M
2
2 )

(M2
1 −M2

2 )2
. (A.61)

A.1.5 The integral of the n-body phase space

In this section, we evaluate the integral over n-body phase space. The integral over

3-body phase space is written by 2-body phase space as follows:

dΦ3(P, p1, p2, p3) (A.62)

=

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3
(2π)4δ4(P − p1 − p2 − p3) (A.63)

=

∫
d3p3

(2π)32E3
d4p12δ

4(p12 − p1 − p2)(2π)4δ4(P − p12 − p3)
d3p1

(2π)32E1

d3p2

(2π)32E2
(A.64)

=
1

2π

∫ (
√
P 2−m3)2

(m1+m2)2

dm2
12dΦ2(P, p12, p3)dΦ2(p12, p1, p2), (A.65)

Here, 2-body phase space is written as follows:∫
dΦ2(p1, p2, p3) (A.66)

=

∫
(2π)4δ4(p1 − p2 − p3)

d3p2

(2π)32E2

d3p3

(2π)32E3
(A.67)

=
1

(2π)2

∫
d3p2

4E2E3
δ
(
ma −

√
p2

2 +m2
2 −

√
p2

2 +m2
3

)
(A.68)

=
1

2π

∫
d|p2|d cos θ

√
m4
a − 2m2

a(m
2
b +m2

c) + (m2
b −m2

c)
2

8m2
a

× δ
(
|p2| − |p2zero|

)
. (A.69)

A.2 The two loop integral

In this section, we calculate 2-loop integral for Zee-Babu type diagrams. Our calculation

refers to [220] and [221].
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First, we define I5 and rewrite it by other integrals: 34

I5(ma,mb,mc,md,me) (A.70)

≡(m̃)−2ε

∫
dDp

(2π)D
dDq

(2π)D
1

(p2 −m2
a)(p

2 −m2
b)(q

2 −m2
c)(q

2 −m2
d)
{

(p+ q)2 −m2
e

}
(A.71)

=
1

(m2
a −m2

b)(m
2
c −m2

d)
(A.72)

× (m̃)−2ε

∫
dDp

(2π)D
dDq

(2π)D

(
1

p2 −m2
a

− 1

p2 −m2
b

)(
1

q2 −m2
c

− 1

q2 −m2
d

)
1

(p+ q)2 −m2
e

(A.73)

=
1

(m2
a −m2

b)(m
2
c −m2

d)

{
I3(ma,mc,me)− I3(ma,md,me)− I3(mb,mc,me) + I3(mb,md,me)

}
.

(A.74)

Here, I3 is defined as follows:

I3(Ma,Mb,Mc) (A.75)

≡(m̃)−2ε

∫
dDp

(2π)D

∫
dDq

(2π)D
1

(p2 −M2
a )(q2 −M2

b )
{

(p+ q)2 −M2
c

} . (A.76)

Next we define J5 as follows:

J5(ma,mb,mc,md,me) (A.77)

≡(m̃)−2ε

∫
dDp

(2π)D
dDq

(2π)D
p · q

(p2 −m2
a)(p

2 −m2
b)(q

2 −m2
c)(q

2 −m2
d)
{

(p+ q)2 −m2
e

}
(A.78)

=
1

2
I2(ma,mb)I2(mc,md) +

m2
e

2
I5(ma,mb,mc,md,me) (A.79)

− 1

2

1

m2
a −m2

b

1

m2
c −m2

d

(A.80)

×
{

(m2
a +m2

c)I3(ma,mc,me)− (m2
a +m2

d)I3(ma,md,me) (A.81)

− (m2
b +m2

c)I3(mb,mc,me) + (m2
b +m2

d)I3(mb,md,me)
}
. (A.82)

Here, I2 is defined as follows:

I2(Ma,Mb) ≡ (m̃)−ε
∫

dDp

(2π)D
1

(p2 −M2
a )(p2 −M2

b )
. (A.83)

34 Here, m̃ is ’t Hooft cale. Please see §A.3 for a detail. The physical values does not depend on this.
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I2 is divergent. Zee-Babu masses (i.e. I5(Ma,Mb,Mc,Md,Me) and J5(Ma,Mb,Mc,Md,Me)−
J5(Ma,Mb,Mc,Md,Mf )) will not depend on I2.

Next we evaluate I3:

I3(Ma,Mb,Mc) (A.84)

=(m̃)−2ε

∫
dDp

(2π)D

∫
dDq

(2π)D
1

(p2 −M2
a )(q2 −M2

b )
{

(p+ q)2 −M2
c

} (A.85)

=(m̃)−2ε

∫
dDp

(2π)D

∫
dDq

(2π)D

1
2D

∑D−1
µ=0

(
∂pµ
∂pµ

+ ∂qµ
∂qµ

)
(p2 −M2

a )(q2 −M2
b )
{

(p+ q)2 −M2
c

} (A.86)

=
1

D
(m̃)−2ε

∫
dDp

(2π)D

∫
dDq

(2π)D
1

(p2 −M2
a )(q2 −M2

b )
{

(p+ q)2 −M2
c

} (A.87)

×
{

p2

p2 −M2
a

+
q2

q2 −M2
b

+
(p+ q)2

(p+ q)2 −M2
c

}
(A.88)

=
3

D
I3(Ma,Mb,Mc) +

1

D

{
M2

aI4(Ma,Mb,Mc) +M2
b I4(Mb,Mc,Ma) +M2

c I4(Mc,Ma,Mb)
}
,

(A.89)

i.e.

I3(Ma,Mb,Mc) (A.90)

=
1

D − 3

{
M2

aI4(Ma,Mb,Mc) +M2
b I4(Mb,Mc,Ma) +M2

c I4(Mc,Ma,Mb)
}
. (A.91)

Here, I4 is defined as follows:

I4(Ma,Mb,Mc) ≡ (m̃)−2ε

∫
dDp

(2π)D

∫
dDq

(2π)D
1

(p2 −M2
a )2(q2 −M2

b )
{

(p+ q)2 −M2
c

} .
(A.92)

Using the above results, I5(Ma,Mb,Mc,Md,Me) and

J5(Ma,Mb,Mc,Md,Me)− J5(Ma,Mb,Mc,Md,Mf ) are written by I4 (and I2). I4 is eval-

uated as follows:

I4(Ma,Mb,Mc)

=(m̃)−2ε

∫
dDp

(2π)D

∫
dDq

(2π)D
1

(p2 −M2
a )2(q2 −M2

b )
{

(p+ q)2 −M2
c

}
=
−Γ(4−D)(m̃)−2ε

(4π)DM
2(4−D)
a

∫ 1

0

dx

∫ 1

0

dy

{
x(1− x)

}2−D/2
y1−D/2(1− y){

x(1− x)
}4−D{

(1− y) + yµ2(x)
}4−D , (A.93)(

µ2(x) =
xM2

b + (1− x)M2
c

x(1− x)M2
a

)
.
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Here, integral over y are given as follows (D = 4 + ε (ε < 0)):∫ 1

0

dy
y1−D/2(1− y){

(1− y) + yµ2(x)
}4−D (A.94)

=− 2

ε
− 1 +

{
1

2
− Li2(1− µ2) +

µ2 ln(µ2)

1− µ2

}
ε+O(ε2). (A.95)

Therefore, I4 is written by the divergent part I41 and the finite part I42, shown as follows:

I4(Ma,Mb,Mc) (A.96)

=
−Γ(4−D)(m̃)−2ε

(4π)DM
2(4−D)
a

∫ 1

0

dx

∫ 1

0

dy

{
x(1− x)

}D/2−2
y1−D/2(1− y){

(1− y) + yµ2(x)
}4−D (A.97)

=
1

(4π)4

[
− 2

ε2
+

1− 2 ln(M2
a/m

2)

ε
− 1

2
− π2

12
+ ln(M2

a/m
2)− ln2(M2

a/m
2)

]
(A.98)

+
1

(4π)4

∫ 1

0

dx

{
− Li2(1− µ2) +

µ2 ln(µ2)

1− µ2

}
+O(ε) (A.99)

=I41(Ma) + I42(Ma,Mb,Mc). (A.100)

Here, m = (4π)1/2e−γE/2m̃, and the I41 and I42 are defined by (A.98) and (A.99), respec-

tively. Using the above results, I5(Ma,Mb,Mc,Md,Me) and J5(Ma,Mb,Mc,Md,Me) −
J5(Ma,Mb,Mc,Md,Mf ) are written by finite parts I42, and infinite parts I41 and I2 are

canceled:

I5(Ma,Mb,Mc,Md,Me) (A.101)

=
1

(M2
a −M2

b )(M2
c −M2

d )
(A.102)

×
[
M2

a

{
I42(Ma,Mc,Me)− I42(Ma,Md,Me)

}
−M2

b

{
I42(Mb,Mc,Me)− I42(Mb,Md,Me)

}
+M2

c

{
I42(Mc,Me,Ma)− I42(Mc,Me,Mb)

}
−M2

d

{
I42(Md,Me,Ma)− I42(Md,Me,Mb)

}
+M2

e

{
I42(Me,Ma,Mc)− I42(Me,Ma,Md)− I42(Me,Mb,Mc) + I42(Me,Mb,Md)

}
,

]
(A.103)
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J5(Ma,Mb,Mc,Md,Me)− J5(Ma,Mb,Mc,Md,Mf ) (A.104)

=− 1

2(M2
a −M2

b )(M2
c −M2

d )
(A.105){

M2
a (M2

a +M2
c −M2

e )I42(Ma,Mc,Me)−M2
a (M2

a +M2
c −M2

f )I42(Ma,Mc,Mf )

−M2
a (M2

a +M2
d −M2

e )I42(Ma,Md,Me) +M2
a (M2

a +M2
d −M2

f )I42(Ma,Md,Mf )

−M2
b (M2

b +M2
c −M2

e )I42(Mb,Mc,Me) +M2
b (M2

b +M2
c −M2

f )I42(Mb,Mc,Mf )

+M2
b (M2

b +M2
d −M2

e )I42(Mb,Md,Me)−M2
b (M2

b +M2
d −M2

f )I42(Mb,Md,Mf )

+M2
c (M2

a +M2
c −M2

e )I42(Mc,Me,Ma)−M2
c (M2

b +M2
c −M2

e )I42(Mc,Me,Mb)

−M2
c (M2

a +M2
c −M2

f )I42(Mc,Mf ,Ma) +M2
c (M2

b +M2
c −M2

f )I42(Mc,Mf ,Mb)

−M2
d (M2

a +M2
d −M2

e )I42(Md,Me,Ma) +M2
d (M2

b +M2
d −M2

e )I42(Md,Me,Mb)

+M2
d (M2

a +M2
d −M2

f )I42(Md,Mf ,Ma)−M2
d (M2

b +M2
d −M2

f )I42(Md,Mf ,Mb)

+M2
e (M2

a +M2
c −M2

e )I42(Me,Ma,Mc)−M2
e (M2

a +M2
d −M2

e )I42(Me,Ma,Md)

−M2
e (M2

b +M2
c −M2

e )I42(Me,Mb,Mc) +M2
e (M2

b +M2
d −M2

e )I42(Me,Mb,Md)

−M2
f (M2

a +M2
c −M2

f )I42(Mf ,Ma,Mc) +M2
f (M2

a +M2
d −M2

f )I42(Mf ,Ma,Md)

+M2
f (M2

b +M2
c −M2

f )I42(Mf ,Mb,Mc)−M2
f (M2

b +M2
d −M2

f )I42(Mf ,Mb,Md)

}
.

(A.106)

A.3 ’t Hooft scale

Under the dimensional regularization D = 4 + ε, the mass dimensions of parameters are
35

[mass] =1 (A.107)

[boson fieldφ] =
D − 2

2
(A.108)

[fermion field Ψ] =
D − 1

2
(A.109)[

φ4′s coefficient
]

=−D + 4 = −ε (A.110)[
φΨΨ′s coefficient

]
=− D

2
+ 2 = − ε

2
(A.111)[

φ3′s coefficient
]

=− D

2
+ 3 = 1− ε

2
. (A.112)

35We denote the mass dimension of A as [A]
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After redefinition:

Yukawa coupling y → ym̃−ε/2 (A.113)

(scalar)3′s coupling µ→ µm̃−ε/2 (A.114)

(scalar)4′s coupling λ→ λm̃−ε (A.115)

gauge coupling g → gm̃−ε/2, (A.116)

the mass dimensions of couplings become as

[y] = 0, [µ] = 1, [λ] = 0, [g] = 0. (A.117)

It is convenient to define m as

m =(4π)1/2e−γE/2m̃. (A.118)

m is known as ’t Hooft scale.

A.4 The mass bound on H++

In this subsection, we assume this Lagrangian:

L =
1

2
H++(2hLeecLeL + 2hReecReR) +H++(2hLµτµcLτL + 2hRµτµcRτR) + H.c. (A.119)

H++’s decay widths are

Γ(H++ → eL eL) =
1

2MH++

1

2

∑
spin

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(A.120)

× (2π)4δ4(P − p1 − p2)|2hLe|2
∣∣u(p1)PLv(p2)

∣∣2 (A.121)

=
|hLe|2MH++

8π
(A.122)

Γ(H++ → eR eR) =
|hRe|2MH++

8π
(A.123)

Γ(H++ → µL τL) =
|hLµτ |2MH++

4π
(A.124)

Γ(H++ → µR τR) =
|hRµτ |2MH++

4π
(A.125)

In the parameter setting in this thesis, |hL,Re|2 � |hL,Rµτ |2. 36 Therefore, H++
11,2’s

main decay mode is H++
11,2 → µRτR. ATLAS and CMS search doubly-charged Higgs

36 |hL,Rµτ |2 is large (O(0.1 − 1)), because ∆a contains hL,Rµτ . Furthermore, hL,Re is small (O(10−2 −
10−3)), because we assume normal hierarchy and mν1 = 0. Using this smallness, we can avoid the experi-
mental limit of τ → eeµc.

96



boson in three or four lepton final states. The lepton final states in ATLAS’s search are

` = e, µ [222]. The ones in CMS consider final states are ` = e, µ, τ [223]. We use limit

for pair production (H++H−−) in [223], because the main decay modes of H++
11, 2 contain

τ .

The limit for double charged scalar mass is given as follows 37 38

MH++ & 537 GeV. (A.126)

B Appendix for Part III

B.1 χ→ νν

We assume the following Lagrangian:

L =− MNi

2
NiNi −

fi

2
√

2

(
φNiNi + iχNiγ5Ni

)
(B.1)

−
(
Y ν
αiLαH̃PRNi + H.c.

)
(B.2)

Ni =νRi + νcRi, Φ =
1√
2

(vφ + φ+ iχ), Mi =
fijvφ√

2
. (B.3)

Then, N gets Majorana masses, therefore, after integrating out N , we can explain neu-

trino oscillation. This χ is called as Majoron. Here, EOM of Ni are given as follows:

MNiNi =− fi√
2

(φ+ iχγ5)Ni − (Y ν
aiL

c
aH̃ + Y ν∗

ai H̃
†La). (B.4)

Using these equation,

Leff =
MNi

2
NiNi +

fi

2
√

2

(
φNiNi + iχNiγ5Ni

)
(B.5)

−Ni

[
MNiNi +

fi√
2

(φ+ iχγ5)Ni + Y ν
aiL

c
aH̃ + YaiH̃

†La

]
(B.6)

→1

2

Y ν
aiY

ν
biv

2

2MNi

[
1 +

1

vφ
(φ+ iχ)

]
νLaν

c
Lb + H.c. (B.7)

+ dim 7 or higher, (H → 〈H〉) (B.8)

⊃1

2

imνi

vφ
χνi(PR − PL)νi =

1

2

imνi

vφ
χνiγ5νi, (B.9)

νi =νiL + νciL. (B.10)

37Please see Table 6 in [223].
38This is not exact limit, because H++

11 and H++
2 are couple to SU(2) gauge bosons in different ways.
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Therefore, The amplitude of χ→ νiνi is:

iMχ(p1)→νi(p2)νi(p3) =u(p2)
−mνi

vφ
γ5u(p3), (B.11)

∑
d.o.f.

|M|2 =
m2
νi

v2
φ

Tr(��p2 +mνi)γ5(��p3 +mνi)(−γ5) (B.12)

=
2m2

νi

v2
φ

(m2
χ − 4m2

νi). (B.13)

Therefore, the decay rate of χ→ νiνi is given as follows:

Γχ→νiνi =
1

2mχ

∫
dΠ2dΠ3(2π)4δ4(p1 − p2 − p3)|Mχ→νiνi|2 (B.14)

=
mχ

8π

m2
νi

v2
φ

(1− 4m2
νi/m

2
χ)3/2. (B.15)

B.2 χ→ tt

In this section, we estimate the decay width of χ→ tt. First, the decay width is written

by the amplitude:

Γχ→tt =
1

2mχ

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3
(2π)4δ(mχ − E2 − E3) (B.16)

× δ3(p2 + p3)×
∑
fin

∣∣iMχ→tt
∣∣2. (B.17)
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Here, the amplitude is evaluated as follows

iMχ→tt =δab3 ×
ie

cW sW
u(p2)γµ

[
1

2
PL −

2

3
s2
W

]
v(p3)×

i
(
− ηµν + p1µp1ν

M2
Z

)
p1

2 −M2
Z

× (−1)×
∫

dD`

(2π)D
Tr
i��̀

`2

−iY ν
αiv√
2

PR
i(��̀ +MNi)

`2 −M2
Ni

fi√
2
γ5

× i
{
�����(`− p1) +MNi

}
(`2 − p1)2 −M2

Ni

−iY ν∗
αi v√
2

PL
i(����`− p1)

(`− p1)2

i

2

e

cW sW
γνPL (B.18)

=− i

4
√

2
δab3

e2

c2
W s

2
W

|Y ν
αi|2v2fiu(p2)γµ

[
1

2
PL −

2

3
s2
W

]
v(p3) (B.19)

×

(
− ηµν + p1µp1ν

M2
Z

)
M2

χ −M2
Z

(B.20)

×
∫

dD`

(2π)D
1

`2(`2 −M2
Ni

)
{

(`− p1)2 −M2
Ni

}
(`− p1)2

(B.21)

× Tr��̀PR(��̀ +MNi)γ5

{
�����(`− p1) +MNi

}
PL�����(`− p1)γνPL. (B.22)

Here, the loop integral can be evaluated as follows∫
dD`

(2π)D
f(`)

`2(`2 −M2
Ni

)
{

(`− p1)2 −M2
Ni

}
(`− p1)2

(B.23)

=3!

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

∫
dD`

(2π)D
f(`)[∑
i xi∆i

]4 (B.24)∑
i

xi∆i =(1− x− y − z)`2 + x(`2 −M2
Ni) + y(`− p1)2 + z

{
(`− p1)2 −M2

Ni

}
(B.25)

=q2 + (y + z)(1− y − z)M2
χ − (x+ z)M2

Ni, (B.26)(
q = `− (y + z)p1

)
. (B.27)

Furthemore, the trace of gamma matrices is

Tr��̀PR(��̀ +MNi)γ5

{
�����(`− p1) +MNi

}
PL�����(`− p1)γνPL (B.28)

'MNiq
2pν1. (B.29)
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Finally, the loop integral can be evaluated as∫
dD`

(2π)D
1

`2(`2 −M2
Ni

)
{

(`− p1)2 −M2
Ni

}
(`− p1)2

(B.30)

× Tr��̀PR(��̀−MNi)γ5

{
�����(`− p1)−MNi

}
PL�����(`− p1)γνPL (B.31)

'3!

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

∫
dDq

(2π)D
−MNiq

2pν1
(q2 −∆)4

(B.32)

'iMNip
ν
1

8π2
× 1

2M2
Ni

(Mχ �MNi). (B.33)

Combining the above results, the amplitude is given as follows:

iMχ→tt =− i

4
√

2
δab3

e2

c2
W s

2
W

|Y ν
αi|2v2fiu(p2)γµ

[
1

2
PL −

2

3
s2
W

]
v(p3) (B.34)

×

(
− ηµν + p1µp1ν

M2
Z

)
M2

χ −M2
Z

× iMNip
ν
1

8π2

1

2M2
Ni

(B.35)

=
1

4
√

2
δab3

e2

c2
W s

2
W

|Y ν
αi|2v2fi

1

2M2
Ni

× MNi

8π2

1

M2
Z

(B.36)

× −Mt

2
u(p2)γ5v(p3). (B.37)

The squared amplitude is∑
fin

|iMχ→tt|2 (B.38)

' 3

32

1

(8π2)2

e4v4

c4
W s

4
WM

4
Z

[∑
i, α

|Y ν
αi|2fi

1

2M2
Ni

MNi

]2

(B.39)

× M2
t

4
Tr(��p2 +Mt)γ5(��p3 +Mt)(−γ5) (B.40)

' 3

32

1

4

1

(8π2)2

e4v4

c4
W s

4
WM

4
Z

[∑
i, α

|Y ν
αi|2fiM−1

Ni

]2

· M
2
tM

2
χ

2
(Mt �Mχ). (B.41)

Finally, the decay width can be evaluated as follows

Γχ→tt =
1

2mχ

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3
(2π)4δ(mχ − E2 − E3) (B.42)

× δ3(p2 + p3)×
∑
fin

∣∣iMχ→tt
∣∣2 (B.43)

' 3Mχ

4096π3

α2
W (v/

√
2)4M2

t

M4
W

[∑
i, α

|Y ν
αi|2fiM−1

Ni

]2

. (B.44)
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B.3 The Casas Ibarra Parametrization

First, neutrino Majorana mass and PMNS matrix are 39

L ⊃− 1

2
(Mν)abνLaν

c
Lb + H.c., (B.45)

νLa =(UPMNS)aiνLi (νLi : mass engenstate), (B.46)

UPMNS =

1

c23 s23

−s23 c23

 c13 s13e
−iδCP

1

−s13e
+iδCP c13

 (B.47)

×

 c12 s12

−s12 c12

1

e+iη1

e+iη2

1

 , (B.48)

mdiag
ν =U †PMNSMνU

∗
PMNS (B.49)

In our model, neutrino Yukawa and NR’s mass are shown as follows:

L ⊃− yai`LaNRi(iσ2)H∗ − 1

2
NNiN

c
Ri
NRi + H.c. (B.50)

→− yai`LaNRi

(
1

−1

)(
0

vEW/
√

2

)
− 1

2
NNiN

c
Ri
NRi + H.c. (B.51)

=− yaivEW√
2

νLaNRi −
1

2
MNiN

c
Ri
NRi + H.c.. (B.52)

the equation of motion (EOM) for NRi (without kinetic term) is

NRi =− 1

MNi

yaivEW√
2

νcLa. (B.53)

Therefore,

L ⊃+
yaiybiv

2
EW

2MNi

νLaν
c
Lb −

yaiybiv
2
EW

4MNi

νLaν
c
Lb + H.c. (B.54)

= +
yaiybiv

2
EW

4MNi

νLaν
c
Lb + H.c. (B.55)

=− 1

2
(Mν)abνLaν

c
Lb + H.c., (B.56)

(Mν)ab =− yaiybiv
2
EW

2MNi

= (UPMNS)aimνi(UPMNS)bi. (B.57)

Therefore, yai can be written as follows (Casas Ibarra parametrization):

y =

√
2i

vEW
UPMNS

√
mdiag
ν O

√
MN , (OOT = I). (B.58)

39 〈H〉 = (0, vEW/
√

2)T.
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B.4 Energy density, number density, entropy density

Energy density, numeber density, pressure are given as follows:

n =
g

(2π)3

∫
f(p)d3p, ρ =

g

(2π)3

∫
E(p)f(p)d3p, (B.59)

p =
g

(2π)3

∫ |p|2
3E(p)

f(p)d3p, f(p) =
1

exp
[
β(E − µ)

]
± 1

, (+ : Fermi,− : Bose).

(B.60)

When µ� T , entropy density is given as:

s =
ρ− nµ+ p

T
' ρ+ p

T
. (B.61)

In relativistic limit T � m and µ� T ,

ρ =

{
π2

30gT
4, (Bose)

7
8
π2

30gT
4, (Fermi)

, n =

{
ζ(3)
π2 gT

3, (Bose)
3
4
ζ(3)
π2 gT

3, (Fermi)
, p =

ρ

3
. (B.62)

Then total energy density and total entropy density is given as follows:

ρtot =
π2

30
g∗T

4, g∗ =
∑
boson

gi

(Ti
T

)4

+
∑

fermion

7

8
gi

(Ti
T

)4

, (B.63)

s =
2π2

45
g∗ST

3, g∗S =
∑
boson

gi

(Ti
T

)3

+
∑

fermion

7

8
gi

(Ti
T

)3

. (B.64)

When using Maxwell-Boltzmann distribution with µ � T , number density is given as

below (this is useful for solving Boltzmann equation):

neq =
4πg

(2π)3

∫ ∞
m

dE · E2
√
E2 −m2e−E/T =

gm2TK2(m/T )

2π2
, (B.65)

Y eq =
n

s
=

nm3

s(m)T 3
=
gm5T−2K2(m/T )

2π2s(m)
=
gm3x2K2(x)

2π2s(m)
, (x = m/T ). (B.66)

B.5 The Boltzmann equation

Boltzmann equation is (x = mψ/T ):

dY

dx
=− x4

H(mψ)s(mψ)

∫
dΠψdΠa · · · dΠbdΠc · · · (B.67)

× (2π)4δ4(pψ + pa + · · · − pb − pc − · · · ) (B.68)

×
[
|Mψ+a+···→ b+c+···|2fψfa · · · (1± fb)(1± fc) · · · (B.69)

− |Mb+c+···→ψ+a···|2fbfc · · · (1± fψ)(1± fa) · · ·
]
. (B.70)
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Here, |M| is ”summed” over freedom of the initial and final states 40, Y is defined as

Y = n/s.

We define an interaction density γ as below:

γψa···bc··· ≡γ(ψ + a+ · · · → b+ c+ · · · ) (B.71)

=

∫
dΠψdΠa · · · dΠbdΠc

∣∣M(X + a+ · · · → b+ c+ · · · )
∣∣2 (B.72)

× (2π)4δ4(pψ + pa + · · · − pb − pc − · · · )fEQ
ψ fEQ

a · · · . (B.73)

When 1± f ' f and fx ' fEQ
x

Yx
Y eq
x

,

H(mψ)s(mψ)

x4

dY

dx
=−

(
yψya · · · γψa···bc··· − ybyc · · · γbc···ψa···

)
(B.74)

=−
[
ψa · · · ↔ b+ c · · ·

]
, (B.75)[

ψa · · · ↔ b+ c · · ·
]
≡yψya · · · γψa···bc··· − ybyc · · · γbc···ψa···, yx =

Yx

Y EQ
x

. (B.76)

B.6 The integrals of (thermal-averaged) phase spaces

In this section, we evaluate the integrals of (thermal-averaged) phase spaces. These are

used in Boltzmann equations. First, we evaluate the integral of 2-body phase space,

which used in the integral over phase space of final states. The evaluation is shown as

follows:∫
dΠ1dΠ2(2π)4δ4(k − p1 − p2) (B.77)

=θ
[
s− (m1 +m2)2

] 1

24π

√
λ(1,m2

1/s,m
2
2/s)

∫
d(cos θ), (λ(a, b, c) = (a− b− c)2 − 4bc).

(B.78)

Next, we evaluate the integral of thermal averaged (2-body) phase space, which used in

the integral over phase space of initial states. The evaluation is shown as follows:∫
dΠ1dΠ2e

−β(E1+E2)f(s) (B.79)

=
1

26π4

∫
s′>(m1+m2)2

ds′
s1/2K1(β

√
s′)f(s′)

β

√
λ(1,m2

1/s,m
2
2/s). (B.80)

40 It depends on the definition of dΠi. In my notation, dΠi = 1
(2π)3

dp3i
2E .
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B.7 σabcd(s)

In this subsections, we evaluate the cross section of ab → cd (σabcd(s)). It is written as

follows: 41

σabcd(s) =
1

gagbSf !

1

4
√

(papb)2 −m2
am

2
b

∫
dΠadΠb(2π)4δ4(pa + pb − pc − pd)|M(s, cos θ)|2

(B.81)

=
1

gagbSf !

1

25πs

√
λ(1,m2

c/s,m
2
d/s)

λ(1, m2
a/s, m

2
b/s)

θ
[
s− (mc +md)

2
]

(B.82)

×
∫
d(cos θ)|M(s, cos θ)|2. (B.83)

B.8 The evaluation of γabc and γabcd

In this section, we evaluate γabc and γabcd. These are used in Boltzmann equations.

First, γabc is evaluated as follows: 42

γabc =

∫
dΠadΠbdΠc(2π)4δ4(pa − pb − pc)|Ma→bc|2e−βEa (B.84)

=
gam

3
aΓa→bc
2π2

x−1
a K1(xa), (xa = ma/T ). (B.85)

Next, we evaluate γabcd as follows 43:

γabcd =
1

Si!Sf !

∫
dΠpadΠpbdΠpcdΠpd(2π)4δ(pa + pb − pc − pd)e−β(Ea+Eb)

∣∣Mab
cd

∣∣2 (B.86)

=
gagb

25π4Si!

∫
s>max

[
(ma+mb)2, (mc+md)2

] dss3/2K1(βs1/2)

β
λ(1, m2

a/s, m
2
b/s)σab→cd(s),

(B.87)(
λ(a, b, c) = (a− b− c)− 4bc

)
.

B.9 The narrow width approximation

In this section, we approximate γab···cd··· by narrow width approximation. We assume that

the process ab · · · → cd · · · contains the intermediate state B as ab · · · → B → cd · · · .
41Sf is the symmetric factor of final state phase space. ga, gb are the degrees of freedom of a and b,

respectively.
42Here, we use the formulas in §inttheravephasespsec.
43 Si, Sf is the number of identical particles.

104



Through out this section, |M|2 is ”summed” over d.o.f of the initial and final states.

First, we evaluate the following integral by narrow width approximation: 44 45∫
dΠcdΠd · · · (2π)4δ4(pB − pc − pd − · · · )

∣∣Mab···→cd···
∣∣2 (B.90)

=g−1
B

∫
dΠcdΠd · · ·

∣∣Mab···→B
∣∣2(2π)4δ4(pB − pc − pd − · · · ) (B.91)

×
∣∣∣∣ i

s−M2 + iMΓtot

∣∣∣∣2∣∣MB→cd···
∣∣2 (B.92)

'
∣∣Mab···→B

∣∣2 2MΓB→cd···
(s−M2)2 + (MΓtot)2

(
When p2

B = s ∼M2 (on-shell)
)

(B.93)

=
∣∣Mab···→B

∣∣22πδ(s−M2)× ΓB→cd···
Γtot

(
|s−M2| �MΓ

)
. (B.94)

Here, Γtot is the total decay width of the intermediate state B. Then, γab···cd··· is approx-

imated as follows:

γab···cd··· =

∫
dΠadΠb · · · dΠcdΠd · · · (2π)4δ4(pa + pb + · · · − pc − pd) (B.95)

×
∣∣Mab···→cd···

∣∣2e−β(Ea+Eb+··· ) (B.96)

'
∫
dΠadΠb · · ·

∣∣Mab···→B
∣∣2 (B.97)

× (2π)δ(s−M2)e−β(Ea+Eb+··· ) × BrB→cd··· (B.98)

=γab···BBrB→cd···. (B.99)

Here, BrB→cd··· is the branching ratio of the process B → cd · · · .
44 δ(x) = 1

2πi

(
1

x−iε − 1
x+iε

)
= 1

π
ε

x2+ε2 .

45 When B have nonzero spins or inertial degree of freedom, we need sum over B’s degree of freedom. (cf.∑
s usus = �p−m,

∑
λ ε
∗
µλενλ = −(ηµν − kµkν/m2).) Therefore,

∣∣∣Mab···→cd···

∣∣∣2 =

∣∣∣∣ ∑
B′s degree of freedom

Mab···→B
i

s−M2 + iMΓtot
MB→cd···

∣∣∣∣2 (B.88)

' 1

gB

( ∑
B′s d.o.f

∣∣Mab···→B
∣∣2)∣∣∣∣ i

s−M2 + iMΓtot

∣∣∣∣2( ∑
B′s d.o.f

∣∣MB→cd···
∣∣2). (B.89)

Here, we ignore the coherences of B’s different state in (B.89). Overline means average over spin.
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C Appendix for Part IV

C.1 Fujikawa Method

First, we assume the following Lagrangian:

L =ΨL(i��D)ΨL −
1

4

(
F a
µν

)2
. (C.1)

Here, we assume that the gauge anomaly of Ψ is cancelled with other contributions of

the gauge anomaly.

Under the local transformation: ΨL → Ψ′L = e+iα(x)ΨL = e−iα(x)γ5

ΨL, the La-

grangian is transformed as follows:

δLcl =∂µα(x)ΨLγ
µγ5ΨL. (C.2)

Next, we evaluate the measure of path integral: 46

DΨLDΨL →D
(
ΨLe

−iα(x)γ5)D(e−iα(x)γ5

ΨL

)
(C.3)

=(detLJ)−1(detRJ)−1DΨLDΨL. (C.4)

Here, Jacobian J is given as follows:

J(x, y) =δ(x− y)e−iα(x)γ5

=
∑
n

1

n!

(
− iα(x)1xyγ

5
)n

= exp
(
− iα(x)1xyγ

5
)

(C.5)

Using this definition, we can evaluate (detLJ)(detRJ):

(detLJ)(detRJ) = exp

[ ∫
dxTr

{
− iα(x)δ(x− x)γ5PL

}]
(C.6)

× exp

[ ∫
dxTr

{
− iα(x)δ(x− x)γ5PR

}]
(C.7)

= exp

[ ∫
dxTr

{
− iα(x)δ(x− x)γ5

}]
. (C.8)

Though Trγ5 = 0 and δ(x − x) = ∞, we can evaluate by Fujikawa method. First, we

replace delta function as follows: 47

δ(x− y)→e(i��Dx)2/M2

δ(x− y) =

∫
d4k

(2π)4
e(i��Dx)2/M2

eik(x−y) (C.9)

=

∫
d4k

(2π)4
eik(x−y)e−(��Dx+i�k)2/M2

. (C.10)

46 Naively, ln
[∏

x e
−iα(x)e+iα(x)

]
= −i

∫
x

Trγ5 = 0. However,
∫
x

1 = ∞, therefore,
∫
x

Trγ5 can have
non-zero values.

47 ∂eikx = eikx(∂ + ik), ∂neikx = ∂n−1eikx(∂ + ik) = eikx(∂ + ik)n, therefore, f(∂)eikx = eikxf(∂ + ik).
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Here,

(��D + i��k)2 =��D
2 − k2 + i{��D, ��k} (C.11)

=D2 − gFµνσµν/2− k2 + 2ik ·D. (C.12)

Therefore, the trace of δ(x− x)γ5 is evaluated as follows:

Tr
[
δ(x− x)γ5

]
=

∫
d4k

(2π)4
Tre−

[
D2−gFµνσµν/2−k2+2ik·D

]
/M2

γ5 (C.13)

=M4

∫
d4κ

(2π)4
Tre−

[
M−2D2−gM−2Fµνσ

µν/2−κ2+2iM−1κ·D
]
γ5, (k = Mκ)

(C.14)

=M4

∫
d4κ

(2π)4
eκ

2

[
g2

2 · 22M4
TrFµνFρσTrσµνσρσγ5 +O(M−5)

]
(C.15)

=− g2

16π2
TrFµνF̃

µν . (C.16)

Then, the determinant of Jacobian is written by field strength, as follows:

(detLJ)−1(detRJ)−1 = exp

[
−
∫
dxTr

{
− iα(x)δ(x− x)γ5

}]
(C.17)

= exp

[
− i g2

16π2

∫
dxα(x)TrFF̃

]
. (C.18)

Therefore, path integral is written as follows:

Z =

∫
DΨLDΨLe

iS(Ψ) =

∫
DΨ′LDΨ′Le

iS(Ψ′) (C.19)

=

∫
DΨLDΨL exp

{
i
[
S + δS

]}
(C.20)

δL =(∂µα)ΨLγ
µγ5ΨL −

g2α

16π2
TrFF̃ . (C.21)

When assuming the following right-handed Lagrangian:

L =ΨR(i��D)ΨR −
1

4

(
F a
µν

)2
, (C.22)

and the local transformation: ΨR → e−iα(x)ΨR = e−iα(x)γ5

ΨR, the path integral is written
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as follows

Z =

∫
DΨRDΨRe

iS(Ψ) =

∫
DΨ′RDΨ′Re

iS(Ψ′) (C.23)

=

∫
DΨRDΨR exp

{
i
[
S + δS

]}
(C.24)

δL =(∂µα)ΨRγ
µγ5ΨR −

g2α

16π2
TrFF̃ . (C.25)

C.2 The couplings in the QCD axion models and the chiral La-
grangian

This subsection is based on [157,158].

C.2.1 PQWW axon model or DFSZ axion model

In this section, we assume the following axion effective Lagrangian
(
q = (u, d)T, c0

q =

diag(c0
u, c

0
d), Mq = diag(mu, md)

)
:

L ⊃1

2
(∂a)2 − a

fa

g2
s

16π2
TrGG̃+

1

4
g0
aγaF F̃ +

∂µa

2fa
qc0
qγ

µγ5q − qMqq. (C.26)

When q is transformed as q → eiγ5
a

2fa
Qaq (Qa: Hermite, q is the first generation), L is

transformed as L → L+ δL:

δL =− ∂a

2fa
qγµγ5Qaq +

g2
s

8π2

a

2fa
TrQaTrGG̃ (C.27)

+
e2

8π2
·Nc

a

2fa
TrQaQ

2FF̃ − qeiγ5
a

2fa
QaMqe

iγ5
a

2fa
Qaq. (C.28)

When choosing TrQa = 1, aTrGG̃ is canceled:

L ⊃1

2
(∂a)2 +

1

4
gaγaF F̃ +

∂µa

2fa
qcqγ

µγ5q − qMaq, (C.29)

gaγ =g0
aγ +

e2

4π2fa
NcTrQ2Qa, cq = c0

q −Qa, (C.30)

Ma =eiγ5
a

2fa
QaMqe

iγ5
a

2fa
Qa. (C.31)

In order to choose Qa, we consider the following effective Lagrangian:

L =Lkin + Lmass (C.32)

=
f2
π

4

[
Tr(DU)†(DU) + 2B0Tr(UM †a +MaU

†)
]
, (C.33)

U = exp
[
i(πaσa + η)/fπ

]
, Ma = eiaQa/(2fa)Mqe

iaQa/(2fa), Mq = diag(mu, md). (C.34)

108



Here, Lmass is expanded as follows:

Lmass ⊃
f2
π

4
(2B0)Tr(UM †a +MaU

†) (C.35)

=
f2
π

4
(2B0)

{
(mu +md)

[
2− f−2

π (πa2 + η2)
]
− 2(mu −md)f

−2
π π3η

]
(C.36)

− ia

2fa
Tr
[
U{Qa, Mq} − H.c.

]
− a2

f2
a

Tr[MqQ
2
a]
}

+ higher order (C.37)

=− m2
π

2
(πa2 + η2)−m2

π

mu −md

mu +md
π3η − m2

a

2
a2 + higher order. (C.38)

Here, we choose Qa as Qa = M−1
q /Tr(M−1

q ) so that the term aTr
[
U{Qa, Mq} −H.c.

]
is

canceled. cq, gaγ are written by this Qa.

Next, we consider the mass term of η and a from anomaly. Lkin has the symme-

try: SU(2)L ⊗ SU(2)R U → RUL† (qL → LqL, qR → RqR). When L = e+iη/(2fπ)

and R = e−iη/(2fπ) (i.e q → e−iηγ
512×2/(2fπ)q), L is transformed as L → L + δL, δL ⊃

g2
s

8π2
η

2fπ
Tr12×2TrGG̃ = g2

s

16π2
2η
fπ

TrGG̃. Therefore, η and a get the following mass terms from

anomaly:

Lanomaly =− m2
η0

2

[
η + afπ/(2fa)

]2
. (C.39)

On the other hands, axion-neucleon coupling L ⊃ Caf
2fa
∂µafγ

µγ5f is given as follows: [224]

Cap =− 0.47(3) + 0.88(3)c0
u − 0.39(2)c0

d − Ca, sea, (C.40)

Can =− 0.02(3) + 0.88(3)c0
d − 0.39(2)c0

u − Ca, sea, (C.41)

Ca, sea =0.038(5)c0
s + 0.012(5)c0

c + 0.009(2)c0
b + 0.0035(4)c0

t . (C.42)

C.2.2 KSVZ axion model

In this section, we assume the following axion effective Lagrangian
(
q = (u, d)T, c0

q =

diag(c0
u, c

0
d), Mq = diag(mu, md)

)
:

L ⊃1

2
(∂a)2 − a

fa

g2
s

16π2
TrGG̃+

1

4
g0
aγaF F̃ − qMqq. (C.43)

η and a get the following mass terms from anomaly:

Lanomaly =− m2
η0

2

[
η + afπ/(2fa)

]2
. (C.44)

Axion-neucleon coupling L ⊃ Caf
2fa
∂µafγ

µγ5f is given as follows: [224]

Cap =− 0.47(3), Can = −0.02(3). (C.45)
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