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thermodynamical energy, entropy, specific heat, etc. Although we consider a very simple system, which
corresponds to a free particle moving in one dimensional space, we find that there appear the behaviors
like phase transition in the system. Usually in order that a phase transition occurs, we need a system
with an infinite number of degrees of freedom but in the system where the dynamical variable is given
by p-adic number, even if degree of freedom is unity, there might occur the phase transition.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Real numbers are obtained from rational numbers by the procedure of completion. For the completion, we need to define a distance
between two numbers, which is the absolute value of the difference between two numbers. It is possible to define “absolute value” in a
way different from the definition of the absolute value which we use when we define the real number. The p-adic numbers are obtained
by the completion using the p-adic absolute value [1], where p is a prime number. For a review, see [2] and for recent developments, [3].

Let Qp be set of all two-sided sequences, ...aa109.a—1a—> ..., where “.” is a radix point and a; € F, = Z/pZ for each i, that is,
a;€{0,1,2,...,p—1}. An element of Q, is

X=-02a100.0_10_3 -+ =---G2p* +a;p + Ao +a_1p ' +a_ap *---, (1)

where all but a finite set of digits with negative indices are zero. We define the order v (x) of x and the absolute value (valuation) |x|, as
follows,

a;i =0foralli,

s x|, = V&) 2
min{s: a; #0} otherwise; Ixlp =P @)

Vp(x) =

1

al, =% |3,
|p”}p =p~" — 0 when n — 400 and therefore the sequence converges to vanish. Then as an example, we find the following expansion
by using |3,

1

For example, we find ..., =9, =3, [13=1, |3]3= % 93 = %, [27]3 = 21—7 etc. For the sequence of numbers {p”}, we obtain

1 +00
— 2 _ k
—y =143 +3+1_k§_03, 3)

which corresponds to the formal expansion —3 = ;55 =1+3+32+....
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The p-adic numbers attracted the attentions of the string physicist due to the p-adic like structure of the string amplitude [4-6]. After
that, the quantum mechanics including the path integral formulation and statistical system have been studied [7-10]. In these formula-
tions, the path-integrand or the Hamiltonian is also a p-adic numbers. In the standard statistical physics, the classical Hamiltonian is a
standard real number or c-number and even for the quantum Hamiltonian, we consider the sum over the eigenvalues of the Hamiltonian.
In this sense, the value of the Hamiltonian is a real number. The Hamiltonian of the Ising model can be regarded as a map from Z to real
numbers and the Hamiltonian for the fermionic fields can be a map from the anti-commuting Grassmann numbers to real numbers. This
motivates us to consider the Hamiltonian which is given by a map from p-adic numbers to real numbers, that is, we consider a system
where the dynamical variables are p-adic numbers but the Hamiltonian is given by real numbers. Then we can introduce the temperature
T or several coupling constants as c-numbers and we can investigate the thermodynamical quantities like free energy, thermodynamical
energy, entropy, specific heat, etc. A natural map from the p-adic numbers to real numbers is given by absolute value (valuation) in (2).
Recently in [11], a model of the statistical system, where the Hamiltonian is given by the distance of two p-adic numbers, that is, the
absolute value of the difference between the two p-adic numbers, has been proposed and well-studied. The model can be regarded as a
p-adic analogue of the electrostatics. In this paper, we consider the simplest model corresponding to a single free particle moving in one
dimensional space. Although the model is very simple but we show that the model shows rich thermodynamical structures and generates
phenomena like phase transition in spite that we are considering only one degree of freedom.

In the next section, as a preparation to consider the model, we review on the measure of the p-adic number in order to define the
integration which we use to calculate the partition function of the system. In Section 3, we propose the simplest model which corresponds
to a free particle moving on one-dimensional space and calculate the thermodynamical quantities, whose structures are very rich and
complicated. The calculations in Section 3 are mainly given numerically. In Section 4, we try to clarify the structure given in Section 3
analytically as possible as we can. The last section is devoted to the summary and discussion on the obtained results and we speculate
some applications.

2. Invariant measure on the field Q p

In order to define the integration with respect to the p-adic numbers, we first consider the invariant measure on Q. For details, see
[2].
Let assume a, b € Q. Then there exists the Haar measure, which is positive and satisfies the conditions,

d(x+a)=dx, d(xb)=1|b|,dx. (4)
We normalize this measure so that

/dx:l. (5)

Bo
Here Bg = By —o(a =0) is a region inside a circle on the p-adic number, which is defined by, for general y and a,
By(a)={x:lx—al, < p”}, (6)

and we denote By, (a =0) by simply B,,. We also define the circumference of the circle by

Sy@={x:|x—al, =p’}. (7)
A function f € LllOc is called integrable if there exists
li =1li .
Jim / feodx= lim > / f(x)dx (8)
By foo<y§N5y

We also denote the integration by

[rwa= > [ rwax. (©)
Qp SV

—00<y <00

Then we find the following formula,

/f<|x|p>dx=(1 —%) S fehp . (10)
Qp

—00<y <00

We do not give any proof of the formula (10) but we use this formula to obtain the partition functions of the statistical system in the
following section.

3. A model of a single particle in one dimensional space

We consider the system of a single p-adic particle, which corresponds to a single free particle in ideal gas in one dimension, and
investigate the following partition function in the canonical ensemble,

dqdx _
zzfﬁe BH. H=|qP . (11)
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Fig. 1. The figure expresses the behaviors of the Helmholz free energies F,(8) for p =3 (F3), 11 (F11), 101 (F101), 997 (F997), and 10007 (F10007) and Foo corresponds to
Foo = —B~1InZy (B). The vertical axis corresponds to the values of the free energies and the horizontal axis to j.

where B is the inverse of the temperature T with the Boltzmann constant normalized to be unity and q can be identified with the
momentum of the particle. Then by using the formula (10), we obtain

1
ZxZp (ﬂ)zfaqe—ﬁ'qli=(1 ——> > pYeBrY (12)
p —00<y <00
p
Just for the comparison, we may consider a function where the sum Zfoo<y<oo --- is replaced by the integration jfooo dx---,
N 1\ 1
X g
2@ =(1-=) [ depe P =(1--)—2z L Zee(B)= > 13
p B ( p)/ p o) inp? o (B) o (B) 8 (13)
—0o0

Here Z. (B) is the partition function of the usual single free particle moving in one dimensional space. We should note that the factor

(1 - %) ﬁ does not depend on B and therefore the thermodynamical energy and the specific heat etc. corresponding to Z; (B) do not

depend on p. We should also note that the expression of Z, (8) has a quasi-periodicity as follows,

2y (Bp?) =072, (B) . (14)

The Helmholz free energy is defined by F,(B8) = —B'In Zp (B). In Fig. 1, the free energies for p =3, 11, 101, 997, and 10007 are
depicted as a function of 8. The line for Foo corresponds to the free energy defined by Foo = —B~1In Zs (8), which is nothing but the
free energy of the standard (real number) free particle moving in one dimensional space. The free energies look smooth function of 8 and
the difference from F.,, becomes larger if p becomes larger.

We may also investigate the thermodynamical energy E,(8) = — alnaz; (ﬁ), the entropy S,(8) =8 (Ep B)—Fp (,B)), and the specific heat

Cp(B) = —ﬁz%ﬂ(ﬁ) and compare them with the quantities corresponding to the free particle moving in one dimensional space, that is,

thermodynamical energy E.(8) = —%}g‘m the entropy S (8) = B (Ex(B) — Foo(B)), and the specific heat Co(8) = —,323’55#};’3). In
Fig. 2, Fig. 3, and Fig. 4, the behaviors of the thermodynamical energies, entropies, and specific heats are depicted, respectively, for p =3,
11, 101, 997, and 10007 as a function of 8.

Although Fp (B) looks a smooth function but the thermodynamical energy E,(B), the entropy S,(8), and the specific heat C,(8) look
to show the oscillation. The oscillation could correspond to the quasi-periodicity in (14). An interesting point is that there seem to be
jumps in the value of Ep(8), Sp(B), and C,(B). Because the thermodynamical energy E,(8) is the first derivative of the free energy Fj, (8),
the jumps seem to correspond to the first order phase transition. Usually, in the system with a finite number of degrees of freedom, phase
transitions cannot be generated.

4. Analytical properties of model

In the last section, we have found several specific structures for the thermodynamical quantities by the numerical calculations. In this
section, we analyze the behaviors analytically as possible as we can.

Naively, the limit p — oo is expected to correspond to the standard real number but the results obtained in this paper seem to
conflict with this naive speculation. In fact, in any thermodynamical quantity F,(8), Ep(B), Sp(B), or C,(B) which we have calculated,
the difference of the quantity from that in the system of a real free particle, Foo(8), Eco(B), Soo(B), or Coo(B8) becomes larger when p
becomes larger. The breakdown of this naive speculation could come from the definition of the absolute value (valuation) in (2), if we fix
a value of g, the definition (2) tells |q], — 1 if vp(q) > 0, which tells that the region of q which gives a non-trivial contribution to the
partition function is rather restricted. In order to find what happens, we rewrite the r.h.s. in (12) as below,

1 1 s
(1 _ E) Z pYe PP — (1 _ E) Z e P TS s=ynp. (15)

—00<y <00 —00<y <00
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Fig. 2. The behaviors of the thermodynamical energies E,(B) for p =3 (E3), 11 (E11), 101 (E101), 997 (E997), and 10007 (E10007) and E, (Eco) are depicted. The vertical
axis corresponds to the values of the thermodynamical energies and the horizontal axis to S.
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Fig. 3. The behaviors of the entropies S,(8) for p =3 (S3), 11 (S11), 101 (5101), 997 (S997), and 10007 (S10007) and S, (Soc) are depicted. The vertical axis corresponds
to the values of the entropies and the horizontal axis to 8.
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Fig. 4. The behaviors of the specific heat Cp(8) for p =3 (C3), 11 (C11), 101 (C101), 997 (C997), and 10007 (C10007) and Co (Coc) are depicted. The vertical axis
corresponds to the values of the specific heats and the horizontal axis to 8.

If we like to consider the integration corresponding to the free particle in one dimensional space as in (13), we need to consider the limit
where ds =dy In p vanishes for a finite dy. The limit is not the limit of p — oo but Inp — 0, that is, the limit of p — 1. In the limit, we
can replace Z_Oo<y<oo - by ﬁ f_oooo ds--- and we obtain the result in (13).

Now we consider why the jumps observed in this paper could occur. First we estimate which y contributes to the thermodynamical
quantities by investigating the saddle point in the expression of (15). The saddle point s = sg is given by

=—2Be¥0 41,

S=S0

0= % (—ﬂezs —|—s>

(16)
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that is,
soz—%ln(Zﬂ) . 17)

Then we find that s¢ is monotonically decreasing function of 8. We should note, however, that yp = fl—"p is not always an integer. Therefore
especially for large p, only one of the integer value y =y, which satisfies ‘y — lfl—op < 1 dominates and we can use the following

approximation,

Z e—ﬂezs+s -~ e—fieZVOl“"-b-yo Inp (18)

—00<y <00

If the value of § increases, that is, the temperature decreases, and goes beyond a critical value, the contribution coming from y =5 — 1
becomes larger than that coming from y = yp. Therefore there occurs a jump in the dominant contribution, which also generates the
jumps in the thermodynamical quantities.

For example, when 8 = % we find sp =0 and therefore y =0.

2
pYe PP =1, prefr” _er pYehP —pe T (19)
p=3.y=0 p=3.y=-1 p p=3.r=1
In the limit of p — oo, we find p?e#P*” : , pye‘ﬁpzy) : — 0 and therefore only p?e#P*” ) contribute. This tells
p=}.y=-1 p=}.y=1 p=2r=0
2
that when g ~ 1, only the term with y =0 dominates when p is large. On the other hand, when g = % > % the term with y = —1
dominates and we find
1 -4
-5 2
pYe 7| _c pyefﬂpzl” , _E T et e b (20)
p=ly=-1p p=lry=-2  p? p=tr.y=0

2

Therefore in the limit of p — oo, we find the term pY¥ e=BPY P . dominates. If the value of 8 changes from =1 to g = %, there
=5, y=—
should occur a transition where the dominant contribution changes from the term with y =0 to that with y = —1. The critical value S,
2
% <Bc < %, is given by solving the equation
pyefﬂcpzy — pyefﬁcpzy , (2‘1)
y=0 y=-1
that is,
e p
e fe= , (22)
p
whose solution is given by
Inp
IBC = 1 - (23)
1=3

Therefore we obtain 8. ~ 5 for p =997 and B, ~ 10 for p = 10007, which may correspond to the behaviors around g ~ 10 in Figs. 2 and
4. The generalization of the critical value . corresponding to the transition between y =)y and y = yp — 1 can be obtained by solving
the equation

proeFenP™ — pVO*le*ﬁCVOPZ(Voq) , (24)
as

= M. (25)

The transition from y = yg to ¥ = yp — 1 is very similar to the standard first order phase transition and therefore the expectation value
of y could be the order parameter specifying the phases.

5. Summary and discussions

In this paper, we have investigated the thermodynamics of the simplest model given in (11), where the dynamical variable q is a
p-adic number but the Hamiltonian is given by a real number. Although the degree of freedom is unity, the system shows the behaviors
like phase transition and we have found that the system has rich structures. Anyway at present, the physical meaning of the jump in the
thermodynamical energy is still not clear although we have given some analytical arguments. Maybe we need to clarify it in future works
for further understanding of the models.

Similar to the situation that the fermion fields are described by the Grassmann number, there could be a situation that some fields
are described by the p-adic numbers. Such theories might be realized by considering a lattice instead of the continuous space-time as in

5
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the lattice field theories, and putting the p-adic dynamical degrees of freedom on the sites of the lattice. If there exists a model which
generates the second order phase transition corresponding to the continuum limit, we may obtain the p-adic field theory.

The behavior of the thermodynamical energy might be interesting if we consider the cosmology. For large p, the energy is almost
constant in the large range of 8 and when 8 becomes large enough, that is, the temperature becomes low enough, there appears a jump
in the value of the energy and the value becomes much smaller. The constant energy might play the role of the cosmological constant.
Then the large constant value of the thermodynamical energy for high temperature (small 8) might generate the inflation in the early
universe and the small constant energy for the low temperature (large 8) might correspond to the dark energy in the present universe.
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