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We propose statistical systems based on p-adic numbers. In the systems, the Hamiltonian is a 
standard real number which is given by a map from the p-adic numbers. Therefore we can introduce 
the temperature as a real number and calculate the thermodynamical quantities like free energy, 
thermodynamical energy, entropy, specific heat, etc. Although we consider a very simple system, which 
corresponds to a free particle moving in one dimensional space, we find that there appear the behaviors 
like phase transition in the system. Usually in order that a phase transition occurs, we need a system 
with an infinite number of degrees of freedom but in the system where the dynamical variable is given 
by p-adic number, even if degree of freedom is unity, there might occur the phase transition.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Real numbers are obtained from rational numbers by the procedure of completion. For the completion, we need to define a distance 
between two numbers, which is the absolute value of the difference between two numbers. It is possible to define “absolute value” in a 
way different from the definition of the absolute value which we use when we define the real number. The p-adic numbers are obtained 
by the completion using the p-adic absolute value [1], where p is a prime number. For a review, see [2] and for recent developments, [3].

Let Qp be set of all two-sided sequences, . . .a2a1a0.a−1a−2 . . . , where “.” is a radix point and ai ∈ Fp ≡ Z/pZ for each i, that is, 
ai ∈ {0,1,2, . . . , p − 1}. An element of Qp is

x = · · ·a2a1a0.a−1a−2 · · · = · · ·a2 p2 + a1 p + a0 + a−1 p−1 + a−2 p−2 · · · , (1)

where all but a finite set of digits with negative indices are zero. We define the order v p(x) of x and the absolute value (valuation) |x|p as 
follows,

v p(x) ≡
{

∞ ai = 0 for all i,

min{s : as �= 0} otherwise; , |x|p ≡ p−v p(x) . (2)

For example, we find . . . , 
∣∣∣∣1

9

∣∣∣∣
3

= 9, 
∣∣∣∣1

3

∣∣∣∣
3

= 3, |1|3 = 1, |3|3 = 1
3 , |9|3 = 1

9 , |27|3 = 1
27 , etc. For the sequence of numbers 

{
pn

}
, we obtain ∣∣pn

∣∣
p = p−n → 0 when n → +∞ and therefore the sequence converges to vanish. Then as an example, we find the following expansion 

by using |·|3,

−1

2
= · · · + 32 + 3 + 1 =

+∞∑
k=0

3k , (3)

which corresponds to the formal expansion − 1
2 = 1

1−3 = 1 + 3 + 32 + · · · .

* Corresponding author.
E-mail addresses: terasawa.mikoto@b.mbox.nagoya-u.ac.jp (M. Terasawa), nojiri@gravity.phys.nagoya-u.ac.jp (S. Nojiri).
https://doi.org/10.1016/j.physletb.2021.136410
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2021.136410
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2021.136410&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:terasawa.mikoto@b.mbox.nagoya-u.ac.jp
mailto:nojiri@gravity.phys.nagoya-u.ac.jp
https://doi.org/10.1016/j.physletb.2021.136410
http://creativecommons.org/licenses/by/4.0/


M. Terasawa and S. Nojiri Physics Letters B 819 (2021) 136410
The p-adic numbers attracted the attentions of the string physicist due to the p-adic like structure of the string amplitude [4–6]. After 
that, the quantum mechanics including the path integral formulation and statistical system have been studied [7–10]. In these formula-
tions, the path-integrand or the Hamiltonian is also a p-adic numbers. In the standard statistical physics, the classical Hamiltonian is a 
standard real number or c-number and even for the quantum Hamiltonian, we consider the sum over the eigenvalues of the Hamiltonian. 
In this sense, the value of the Hamiltonian is a real number. The Hamiltonian of the Ising model can be regarded as a map from Z2 to real 
numbers and the Hamiltonian for the fermionic fields can be a map from the anti-commuting Grassmann numbers to real numbers. This 
motivates us to consider the Hamiltonian which is given by a map from p-adic numbers to real numbers, that is, we consider a system 
where the dynamical variables are p-adic numbers but the Hamiltonian is given by real numbers. Then we can introduce the temperature 
T or several coupling constants as c-numbers and we can investigate the thermodynamical quantities like free energy, thermodynamical 
energy, entropy, specific heat, etc. A natural map from the p-adic numbers to real numbers is given by absolute value (valuation) in (2). 
Recently in [11], a model of the statistical system, where the Hamiltonian is given by the distance of two p-adic numbers, that is, the 
absolute value of the difference between the two p-adic numbers, has been proposed and well-studied. The model can be regarded as a 
p-adic analogue of the electrostatics. In this paper, we consider the simplest model corresponding to a single free particle moving in one 
dimensional space. Although the model is very simple but we show that the model shows rich thermodynamical structures and generates 
phenomena like phase transition in spite that we are considering only one degree of freedom.

In the next section, as a preparation to consider the model, we review on the measure of the p-adic number in order to define the 
integration which we use to calculate the partition function of the system. In Section 3, we propose the simplest model which corresponds 
to a free particle moving on one-dimensional space and calculate the thermodynamical quantities, whose structures are very rich and 
complicated. The calculations in Section 3 are mainly given numerically. In Section 4, we try to clarify the structure given in Section 3
analytically as possible as we can. The last section is devoted to the summary and discussion on the obtained results and we speculate 
some applications.

2. Invariant measure on the field Qp

In order to define the integration with respect to the p-adic numbers, we first consider the invariant measure on Qp . For details, see 
[2].

Let assume a, b ∈Qp . Then there exists the Haar measure, which is positive and satisfies the conditions,

d(x + a) = dx , d(xb) = |b|p dx . (4)

We normalize this measure so that∫
B0

dx = 1 . (5)

Here B0 = Bγ =0(a = 0) is a region inside a circle on the p-adic number, which is defined by, for general γ and a,

Bγ (a) = {x : |x − a|p ≤ pγ } , (6)

and we denote Bγ (a = 0) by simply Bγ . We also define the circumference of the circle by

Sγ (a) = {x : |x − a|p = pγ } . (7)

A function f ∈ L1
loc is called integrable if there exists

lim
N→∞

∫
B N

f (x)dx = lim
N→∞

∑
−∞<γ ≤N

∫
Sγ

f (x)dx . (8)

We also denote the integration by∫
Qp

f (x)dx =
∑

−∞<γ <∞

∫
Sγ

f (x)dx . (9)

Then we find the following formula,∫
Qp

f (|x|p)dx =
(

1 − 1

p

) ∑
−∞<γ <∞

f (pγ )pγ . (10)

We do not give any proof of the formula (10) but we use this formula to obtain the partition functions of the statistical system in the 
following section.

3. A model of a single particle in one dimensional space

We consider the system of a single p-adic particle, which corresponds to a single free particle in ideal gas in one dimension, and 
investigate the following partition function in the canonical ensemble,

Z =
∫

dqdx
e−βH , H = |q|2 , (11)
2π h̄
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Fig. 1. The figure expresses the behaviors of the Helmholz free energies F p(β) for p = 3 (F3), 11 (F11), 101 (F101), 997 (F997), and 10007 (F10007) and F∞ corresponds to 
F∞ = −β−1 ln Z∞ (β). The vertical axis corresponds to the values of the free energies and the horizontal axis to β .

where β is the inverse of the temperature T with the Boltzmann constant normalized to be unity and q can be identified with the 
momentum of the particle. Then by using the formula (10), we obtain

Z ∝ Z p (β) ≡
∫
Qp

dq e−β|q|2p =
(

1 − 1

p

) ∑
−∞<γ <∞

pγ e−βp2γ
. (12)

Just for the comparison, we may consider a function where the sum 
∑

−∞<γ <∞ · · · is replaced by the integration 
∫ ∞
−∞ dx · · · ,

Z c
p (β) ≡

(
1 − 1

p

) ∞∫
−∞

dxpxe−βp2x =
(

1 − 1

p

)
1

ln p2
Z∞ (β) , Z∞ (β) ≡

√
π

β
. (13)

Here Z∞ (β) is the partition function of the usual single free particle moving in one dimensional space. We should note that the factor (
1 − 1

p

)
1

ln p2 does not depend on β and therefore the thermodynamical energy and the specific heat etc. corresponding to Z c
p (β) do not 

depend on p. We should also note that the expression of Z p (β) has a quasi-periodicity as follows,

Z p

(
βp2

)
= p−1 Z p (β) . (14)

The Helmholz free energy is defined by F p(β) = −β−1 ln Z p (β). In Fig. 1, the free energies for p = 3, 11, 101, 997, and 10007 are 
depicted as a function of β . The line for F∞ corresponds to the free energy defined by F∞ = −β−1 ln Z∞ (β), which is nothing but the 
free energy of the standard (real number) free particle moving in one dimensional space. The free energies look smooth function of β and 
the difference from F∞ becomes larger if p becomes larger.

We may also investigate the thermodynamical energy E p(β) = − ∂ ln Z p(β)

∂β
, the entropy S p(β) = β

(
E p(β) − F p(β)

)
, and the specific heat 

C p(β) = −β2 ∂ E p(β)

∂β
and compare them with the quantities corresponding to the free particle moving in one dimensional space, that is, 

thermodynamical energy E∞(β) = − ∂ ln Z∞(β)
∂β

, the entropy S∞(β) = β (E∞(β) − F∞(β)), and the specific heat C∞(β) = −β2 ∂ E∞(β)
∂β

. In 
Fig. 2, Fig. 3, and Fig. 4, the behaviors of the thermodynamical energies, entropies, and specific heats are depicted, respectively, for p = 3, 
11, 101, 997, and 10007 as a function of β .

Although F p (β) looks a smooth function but the thermodynamical energy E p(β), the entropy S p(β), and the specific heat C p(β) look 
to show the oscillation. The oscillation could correspond to the quasi-periodicity in (14). An interesting point is that there seem to be 
jumps in the value of E p(β), S p(β), and C p(β). Because the thermodynamical energy E p(β) is the first derivative of the free energy F p (β), 
the jumps seem to correspond to the first order phase transition. Usually, in the system with a finite number of degrees of freedom, phase 
transitions cannot be generated.

4. Analytical properties of model

In the last section, we have found several specific structures for the thermodynamical quantities by the numerical calculations. In this 
section, we analyze the behaviors analytically as possible as we can.

Naively, the limit p → ∞ is expected to correspond to the standard real number but the results obtained in this paper seem to 
conflict with this naive speculation. In fact, in any thermodynamical quantity F p(β), E p(β), S p(β), or C p(β) which we have calculated, 
the difference of the quantity from that in the system of a real free particle, F∞(β), E∞(β), S∞(β), or C∞(β) becomes larger when p
becomes larger. The breakdown of this naive speculation could come from the definition of the absolute value (valuation) in (2), if we fix 
a value of q, the definition (2) tells |q|p → 1 if v p(q) > 0, which tells that the region of q which gives a non-trivial contribution to the 
partition function is rather restricted. In order to find what happens, we rewrite the r.h.s. in (12) as below,(

1 − 1

p

) ∑
−∞<γ <∞

pγ e−βp2γ =
(

1 − 1

p

) ∑
−∞<γ <∞

e−βe2s+s , s ≡ γ ln p . (15)
3
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Fig. 2. The behaviors of the thermodynamical energies E p(β) for p = 3 (E3), 11 (E11), 101 (E101), 997 (E997), and 10007 (E10007) and E∞ (E∞) are depicted. The vertical 
axis corresponds to the values of the thermodynamical energies and the horizontal axis to β .

Fig. 3. The behaviors of the entropies S p(β) for p = 3 (S3), 11 (S11), 101 (S101), 997 (S997), and 10007 (S10007) and S∞ (S∞) are depicted. The vertical axis corresponds 
to the values of the entropies and the horizontal axis to β .

Fig. 4. The behaviors of the specific heat C p(β) for p = 3 (C3), 11 (C11), 101 (C101), 997 (C997), and 10007 (C10007) and C∞ (C∞) are depicted. The vertical axis 
corresponds to the values of the specific heats and the horizontal axis to β .

If we like to consider the integration corresponding to the free particle in one dimensional space as in (13), we need to consider the limit 
where ds = dγ ln p vanishes for a finite dγ . The limit is not the limit of p → ∞ but ln p → 0, that is, the limit of p → 1. In the limit, we 
can replace 

∑
−∞<γ <∞ · · · by 1

ln p

∫ ∞
−∞ ds · · · and we obtain the result in (13).

Now we consider why the jumps observed in this paper could occur. First we estimate which γ contributes to the thermodynamical 
quantities by investigating the saddle point in the expression of (15). The saddle point s = s0 is given by

0 = d

ds

(
−βe2s + s

)∣∣∣∣ = −2βe2s0 + 1 , (16)

s=s0
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that is,

s0 = −1

2
ln (2β) . (17)

Then we find that s0 is monotonically decreasing function of β . We should note, however, that γ0 ≡ s0
ln p is not always an integer. Therefore 

especially for large p, only one of the integer value γ = γ0 which satisfies 
∣∣∣γ0 − s0

ln p

∣∣∣ < 1 dominates and we can use the following 
approximation,∑

−∞<γ <∞
e−βe2s+s ∼ e−βe2γ0 ln p+γ0 ln p . (18)

If the value of β increases, that is, the temperature decreases, and goes beyond a critical value, the contribution coming from γ = γ0 − 1
becomes larger than that coming from γ = γ0. Therefore there occurs a jump in the dominant contribution, which also generates the 
jumps in the thermodynamical quantities.

For example, when β = 1
2 , we find s0 = 0 and therefore γ = 0.

pγ e−βp2γ
∣∣∣
β= 1

2 ,γ =0
= 1 , pγ e−βp2γ

∣∣∣
β= 1

2 ,γ =−1
= e

− 1
2p2

p
, pγ e−βp2γ

∣∣∣
β= 1

2 ,γ =1
= pe− p2

2 . (19)

In the limit of p → ∞, we find pγ e−βp2γ
∣∣∣
β= 1

2 ,γ =−1
, pγ e−βp2γ

∣∣∣
β= 1

2 ,γ =1
→ 0 and therefore only pγ e−βp2γ

∣∣∣
β= 1

2 ,γ =0
contribute. This tells 

that when β ∼ 1
2 , only the term with γ = 0 dominates when p is large. On the other hand, when β = p2

2 > 1
2 , the term with γ = −1

dominates and we find

pγ e−βp2γ
∣∣∣
β= p2

2 ,γ =−1
= e− 1

2

p
, pγ e−βp2γ

∣∣∣
β= p2

2 ,γ =−2
= e

− 1
2p2

p2
, pγ e−βp2γ

∣∣∣
β= p2

2 ,γ =0
= e− p2

2 . (20)

Therefore in the limit of p → ∞, we find the term pγ e−βp2γ
∣∣∣
β= p2

2 ,γ =−1
dominates. If the value of β changes from β = 1

2 to β = p2

2 , there 

should occur a transition where the dominant contribution changes from the term with γ = 0 to that with γ = −1. The critical value βc , 
1
2 < βc <

p2

2 , is given by solving the equation

pγ e−βc p2γ
∣∣∣
γ =0

= pγ e−βc p2γ
∣∣∣
γ =−1

, (21)

that is,

e−βc = e
− βc

p2

p
, (22)

whose solution is given by

βc = ln p

1 − 1
p2

. (23)

Therefore we obtain βc ∼ 5 for p = 997 and βc ∼ 10 for p = 10007, which may correspond to the behaviors around β ∼ 10 in Figs. 2 and 
4. The generalization of the critical value βc corresponding to the transition between γ = γ0 and γ = γ0 − 1 can be obtained by solving 
the equation

pγ0 e−βc γ0 p2γ0 = pγ0−1e−βc γ0 p2
(
γ0−1

)
, (24)

as

βc γ0 = ln p

p2γ0

(
1 − 1

p2

) . (25)

The transition from γ = γ0 to γ = γ0 − 1 is very similar to the standard first order phase transition and therefore the expectation value 
of γ could be the order parameter specifying the phases.

5. Summary and discussions

In this paper, we have investigated the thermodynamics of the simplest model given in (11), where the dynamical variable q is a 
p-adic number but the Hamiltonian is given by a real number. Although the degree of freedom is unity, the system shows the behaviors 
like phase transition and we have found that the system has rich structures. Anyway at present, the physical meaning of the jump in the 
thermodynamical energy is still not clear although we have given some analytical arguments. Maybe we need to clarify it in future works 
for further understanding of the models.

Similar to the situation that the fermion fields are described by the Grassmann number, there could be a situation that some fields 
are described by the p-adic numbers. Such theories might be realized by considering a lattice instead of the continuous space-time as in 
5
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the lattice field theories, and putting the p-adic dynamical degrees of freedom on the sites of the lattice. If there exists a model which 
generates the second order phase transition corresponding to the continuum limit, we may obtain the p-adic field theory.

The behavior of the thermodynamical energy might be interesting if we consider the cosmology. For large p, the energy is almost 
constant in the large range of β and when β becomes large enough, that is, the temperature becomes low enough, there appears a jump 
in the value of the energy and the value becomes much smaller. The constant energy might play the role of the cosmological constant. 
Then the large constant value of the thermodynamical energy for high temperature (small β) might generate the inflation in the early 
universe and the small constant energy for the low temperature (large β) might correspond to the dark energy in the present universe.
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