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Abstract We present a comprehensive analysis of weak
transition form factors, semileptonic decays, and nonleptonic
decays of Bc mesons involving pseudoscalar (P) and vec-
tor (V ) mesons for bottom-conserving and bottom-changing
decay modes. We employ the self-consistent covariant light-
front quark model (CLFQM), termed type-II correspon-
dence, to calculate the Bc to P(V ) transition form factors.
The type-II correspondence in the CLF approach gives self-
consistent results associated with the B(i)

j functions, which

vanish numerically after the replacement M ′(′′) → M ′(′′)
0 in

traditional type-I correspondence, and the covariance of the
matrix elements is also restored. We investigate these effects
on bottom-conserving Bc to P(V ) form factors that have not
yet been studied in CLFQM type-II correspondence. In addi-
tion, we quantify the implications of self-consistency prop-
agating to weak decays involving both bottom-conserving
and bottom-changing Bc transition form factors. We use
two different parameterizations, the usual three-parameter
function of q2 and the model-independent z-series expan-
sion, to establish a clear understanding of q2 dependence.
Using the numerical values of the form factors, we predict
the branching ratios other physical observables, including
forward-backward asymmetries, polarization fractions, etc.
of the semileptonic Bc decays. Subsequently, we predict the
branching ratios of two-body nonleptonic weak decays using
the factorization hypothesis in self-consistent CLFQM. We
also compare our results with those of other theoretical stud-
ies.
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1 Introduction

The Bc meson is a quark–antiquark bound state composed
of two heavy quarks (b and c) with distinct flavors that
decay solely via weak interactions [1]. The study of Bc

meson decays provides valuable insights into the fundamen-
tal aspects of the Standard Model (SM) and offers a unique
platform to explore the underlying heavy flavor dynamics,
which is of immense experimental and theoretical signifi-
cance. A peculiarity of Bc decays, compared to B and Bs

decays, is that both constituent quarks are involved in weak
decays, i.e., b quark decays with c quark as spectator, and c
quark transitions with spectator b quark, in addition to weak
annihilation of constituent quarks. The weak annihilation
processes decay to leptons or lighter mesons that are rela-
tively suppressed and are, therefore, ignored in the current
analysis. The phase space available for c quark decays is sig-
nificantly smaller than for b quark decays, but the Cabibbo–
Kobayashi–Maskawa (CKM) matrix elements strongly favor
c quark decays [1,2]. The study of heavy flavor weak decays
is a powerful tool for testing the SM and searching for new
physics (NP) beyond the SM. The semileptonic decays are
governed by tree-level processes in the SM, which provides a
relatively simple theoretical description to capture the effects
of the weak interaction in terms of Lorentz-invariant form
factors. In addition, these decays are of immense impor-
tance for extracting the CKM matrix elements (and their
phases) and for studying lepton flavor universality (LFU).
On the other hand, the study of two-body weak decays of Bc

mesons offers an excellent opportunity to explore quantum
chromodynamics (QCD) in both perturbative and nonpertur-
bative regimes to understand the interplay of strong and elec-
troweak interactions. Additionally, these decays allow for
testing QCD-motivated effective theories and models within
and beyond the SM.
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Modern experimental collaborations such as Large Hadron
Collider beauty (LHCb), Compact Muon Solenoid (CMS),
ATLAS, and Collider Detector at Fermilab (CDF) have
been exploring the Bc meson to provide valuable insights
into heavy flavor physics in the SM and NP. The Large
Hadron Collider (LHC) and Relativistic Heavy Ion Col-
lider (RHIC) are expected to produce a sizable number of
Bc meson events (about 106) via the proton-nucleus and
nucleus-nucleus collision modes [3]. Therefore, in the near
future, it will be possible to study the Bc meson properties
by using collision modes other than the typically consid-
ered proton-proton collision mode. In the recent past, the
LHCb has reported precise measurement of Bc meson mass
and lifetime as MBc = (6274.47 ± 0.27 ± 0.17) MeV and
τBc = (0.5134 ± 0.011 ± 0.0057) ps, respectively [4,5].
Although the spectroscopy and decays of Bc mesons are
being probed extensively, their experimental observations
and measurements are scarce [6–8]. So far, the LHCb has
reported the observation of two-body nonleptonic B+

c →
B0
s π

+ decay [9], and their experimental efforts have resulted
in the observation of Bc decays involving two-charm mesons

such as B+
c → D(∗)+

(s) D
(∗)0

and B+
c → D(∗)+

(s) D(∗)0 [10–12].
Recently, LHCb and ATLAS reported the ratios of branch-
ing fractions of two-body nonleptonic Bc decays involv-

ing a J/ψ meson in the final state, i.e., B(B+
c →J/ψD(∗)+

s )

B(B+
c →J/ψπ+)

,

B(B+
c →J/ψD∗+

s )

B(B+
c →J/ψD+

s )
, and B(B+

c →J/ψK+)

B(B+
c →J/ψπ+)

[13–16]. Even though

observations exist of a few semileptonic and nonleptonic
decays of the Bc meson, further efforts are required for pre-
cise experimental measurements. Interestingly, the LHCb
collaboration reported the LFU ratio for J/ψ in the final
state as RJ/ψ = 0.71 ± 0.18 ± 0.17 [17]. However, this
ratio significantly exceeds the theoretical estimates, includ-
ing the lattice QCD (LQCD) results [18]. Such discrepancies
between theory and experiment garner significant attention
for physics beyond the SM.

The aforementioned theoretical studies of the semilep-
tonic and nonleptonic decays of heavy flavor b-mesons pro-
vide valuable insights into the weak interaction and allow
us to measure fundamental parameters within the SM. Addi-
tionally, they offer information about quark mixing, CP vio-
lation, and heavy quark physics. Furthermore, investiga-
tions of semileptonic decays are essential for precise the-
oretical predictions and probing physics beyond the SM.
Therefore, considering the imminent advancements in pre-
cision measurements of the Bc meson at hadron colliders
and B-factories, several theoretical models have been used
to study the semileptonic and nonleptonic Bc meson decays
involving pseudoscalar (P) and vector (V ) mesons, includ-
ing the LQCD [19–21], QCD sum rules (QCDSR) [22–
24], Bethe–Salpeter (BS) model [25,26], covariant light-
front quark model (CLFQM) [27–31], relativistic quark

model (RQM) [32–34], relativistic constituent quark model
(RCQM) [35–37], relativistic independent quark model
(RIQM) [38,39], perturbative QCD (pQCD) approach [40,
41], and QCD factorization (QCDF) approach [42]. Cur-
rent theoretical research has predominantly concentrated on
the semileptonic weak decays of the Bc meson to ground
state and orbitally excited charmonium states. It is notewor-
thy that studies examining bottom-conserving and bottom-
changing semileptonic decays of Bc that result in B∗, B∗

s ,

D∗, or D∗
s mesons in the final state (excluding decays to

charmonia) remain relatively limited in the literature. More-
over, among these studies, analyses based on the CLFQM
are particularly scarce and require reinvestigation in light of
recent issues pertaining to self-consistency and covariance in
some of the involved form factors. Thus, in the present work,
we focus on comprehensive investigations into the effects
of self-consistency and covariance on bottom-conserving
and bottom-changing semileptonic and nonleptonic decays
within the CLFQM framework. Our main objectives are
twofold: first, to examine the impact of self-consistency
on weak semileptonic and nonleptonic decays using mod-
ified form factors within a CLFQM approach, and second,
to establish self-consistency in bottom-conserving transition
form factors, which have not yet been explored, and to quan-
tify these effects on bottom-conserving weak decays. Addi-
tionally, we address the ambiguities related to the q2 param-
eterization in our analysis to provide a more robust under-
standing of these decay processes.

The light-front quark model (LFQM) offers a comprehen-
sive relativistic treatment of quark spins and center-of-mass
motion. The Lorentz-invariant light-front wave function is
defined in terms of momentum fraction variables. The accu-
rate implementation of quark spins through the Melosh trans-
formation [43,44] makes it particularly suitable for studying
hadronic form factors. This is especially true at high recoil
momenta where relativistic effects are significant [45,46].
Traditional nonrelativistic quark models face challenges in
accurately representing these transitions. This is due to their
inherent limitations in accounting for relativistic effects [47–
51]. The CLFQM, in addition to providing a relativistic treat-
ment of physical quantities such as decay constants and form
factors, offers several advantages over the traditional LFQM.
In contrast to the traditional LFQM, the CLFQM consid-
ers quark and antiquark states as off-shell, which enables
more accurate calculations of matrix elements and form fac-
tors. This is important for more accurately capturing the
dynamics of the meson decays. In the traditional LFQM,
the Lorentz covariance of the matrix element is violated due
to the spurious contributions, and it does not provide any
systematic approach to determine the zero-mode contribu-
tions [47,51]. Jaus [52] proposed the CLFQM to provide res-
olution of these ambiguities by using the manifestly covariant
BS approach [53,54]. The CLFQM ensures covariance of the
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matrix elements by the inclusion of zero-mode contributions,
which make the spurious contributions proportional to the
light-like four-vector ωμ = (0, 2, 0⊥) irrelevant [47,52,55].
Following this, CLFQM has been extensively used to inves-
tigate the semileptonic and nonleptonic decays of bottom
mesons [28–30,44–46,56–65].

In this study, we employ the recent advancements in
CLFQM, referred to as self-consistent CLFQM, to calcu-
late the Bc to P and V meson transition form factors. The
Bc meson decays involve c quark transitions c → s(d) and
b quark transitions b → c(u). These quark-level transi-
tions are categorized as bottom-conserving (�b = 0) and
bottom-changing (�b = −1) CKM-favored and CKM-
suppressed modes (their selection rules are defined in Sects. 2
and 3), respectively. It should be noted that the self-consistent
CLFQM is referred to as type-II correspondence in CLFQM
because of the challenges associated with type-I correspon-
dence [44,45,52]. In the traditional type-I scheme, the CLF
predictions for the P to V transition form factors suffer
from the self-consistency problem; for example, the results
obtained via the longitudinal (λ = 0) and transverse (λ =
±) polarization states are different from each other due
to the additional contributions characterized by the coeffi-
cients B(2)

1 and B(3)
3 . These additional contributions affect

f (q2) and a−(q2) form factors only.1 Moreover, the man-
ifest covariance of the matrix element in CLFQM is also
violated within the type-I scheme due to the residual ω-
dependencies associated with B(i)

j functions that are inde-
pendent of zero-mode contributions. Therefore, both these
issues originate from the same source, which can be effec-
tively resolved by incorporating type-II correspondence [62].
The CLFQM with type-II correspondence can, however, give
self-consistent results, because integration over the terms
associated with the coefficient B(i)

j vanish numerically after

the replacement M ′(′′) → M ′(′′)
0 and the covariance of the

matrix elements is also restored. It should be noted that the
type-II correspondence scheme has been employed to calcu-
late the bottom-changing Bc → D∗

(s)(J/ψ) transition form
factors [62]; however, the bottom-conserving Bc → B∗

(s)
form factors have not yet been studied. Furthermore, the
implications of self-consistency have not been investigated
with respect to the decays involving both bottom-conserving
and bottom-changing Bc transition form factors. It should be
emphasized that the study of semileptonic and nonleptonic
weak decays is necessary to quantitatively assess the effect of
self-consistency on these decays. The self-consistency issues
originating from form factors A0(q2) and A1(q2) affect the
semileptonic decays of the Bc meson. On the other hand,
Bc → PV decays explicitly involve the A0(q2) (other

1 The form factors f (q2) and a−(q2) can be related to the Bauer–
Stech–Wirbel (BSW) form factors A1(q2) and A0(q2), and their trans-
formation relations are given in Eq. (17).

than F1(q2)) form factor and provide an excellent scenario
for quantitative analysis of self-consistency issues that are
expected to be more serious in these decays. We further
investigate the implication of q2 dependence on the Bc to
P(V ) transition form factors over the available momentum
range. In order to establish a clear understanding of q2 depen-
dence, we utilize two different parameterizations, i.e., the
usual three-parameter function of q2 influenced by vector
meson dominance (VMD), and model-independent z-series
expansion. Furthermore, we plot these Bc to P(V ) transi-
tion form factors to analyze their behavior with respect to
the available q2 range. Using the numerical values of the
form factors, we predict the physical observables, includ-
ing branching ratios, forward-backward (FB) asymmetries,
polarization fractions, etc., of the semileptonic Bc decays.
In addition, we analyze the q2 dependence of these physical
observables by plotting them. Later, we extend our analysis
to predict the branching ratios of two-body nonleptonic weak
decays using the factorization hypothesis in self-consistent
CLFQM. We also compare our results with existing results
from other models.

Our paper is organized as follows. In Sect. 2, we present
the methodology for the calculation of form factors and its
q2 dependence in self-consistent CLFQM. In addition, we
provide the decay rate expressions for semileptonic Bc to
P(V ) and nonleptonic Bc to PV decays. In Sect. 3, we give
the numerical results and detailed discussion of the form fac-
tors as well as decay rates of semileptonic and nonleptonic
Bc to PV decays. We summarize and conclude in Sect. 4.
Appendices A and B contain details regarding the resolution
of inconsistency in Bc → V transition form factors and the
branching ratios of semileptonic Bc → P decays, respec-
tively.

2 Methodology

2.1 Self-consistent covariant light-front approach

In this work, we focus on the self-consistent CLF approach
[44,45,52,61–63] and summarize the theoretical framework
for calculating the Bc to P(V ) form factors. In CLFQM, a
meson transition, as shown in Fig. 1, is represented in terms
of the four momenta of the parent and daughter mesons, i.e.,
p′ = k′

1 + k2 and p′′ = k′′
1 + k2, respectively. Here, k′(′′)

1 and
k2 represent the momenta of the quark and the antiquark of
the incoming (outgoing) meson with masses m′(′′)

1 and m2,

respectively. These momenta can further be expressed using
internal variables, namely, momentum fraction (x1(2)) and
transverse momentum (k′⊥) of the quark, as follows:

k′+
1(2) = x1(2) p

′+, k′
1(2)⊥ = x1(2) p′⊥ ± k′⊥, (1)
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Fig. 1 Feynman diagram for meson transition amplitudes, where ×
denotes the vector or axial vector current vertex

where they must satisfy the relation x1 + x2 = 1. The meson
momentum is defined as p′ = (p′−, p′+, p′⊥), with p′± =
p′0 ± p′3, such that (p′)2 = p′+ p′− − p′2⊥ = M ′2, where
M ′ is the mass of the parent meson. The transverse momenta
of the quark and meson are given by k′⊥ = (k′x , k′y) and
p′⊥ = (p′x , p′y), respectively. The definition of the internal
quantities for the outgoing meson can be obtained by replac-
ing the prime notation with a double-prime.

Conventionally, a meson bound state (q ′
1, q̄2) can be rep-

resented as

|M(p,2S+1 L J , Jz)〉
=

∫
{d3k̃1}{d3k̃2} 2(2π)3δ3( p̃ − k̃1 − k̃2)

×
∑
h1,h2

	
J Jz
LS (k̃1, k̃2, h1, h2)|q ′

1(k
′
1, h1)q̄2(k2, h2)〉,

(2)

where L and J are orbital angular and total spin quantum
numbers, respectively [44]. Further, p̃ = (p′+, p′⊥) and
k̃1,2 = (k′+

1,2, k
′
1,2⊥) represent the on-mass-shell light-front

momenta, and {d3k̃} ≡ 1
2(2π)3 dk′+d2k′⊥. The wave func-

tion 	
J Jz
LS (k̃1, k̃2, h1, h2), which describes the distribution

of momentum in space for the 2S+1L J meson, satisfies the
normalization condition

∑
h1,h2

∫
dx1d2k′⊥
2(2π)3 |	 J Jz

LS (x1, k′⊥, h1, h2)|2 = 1, (3)

and can be written as

	
J Jz
LS (x1, k′⊥, h1, h2) = RSSz

h1h2
(x1, k′⊥) ψLLz (x1, k′⊥). (4)

The radial wave function ψLLz (x1, k′⊥) characterizes how
the momenta of the constituent quarks are distributed in a
bound state that possesses orbital angular momentum L [44].
The spin-orbital light-front wave function (RSSZ

h1h2
) represents

the definite spin state (S, SZ ) corresponding to the light-
front helicity (h1, h2) eigenstates. Additional details for the
treatment of spin, polarization, and complete normalization
procedures are discussed in Refs. [44,48,51]. A suitable
choice for the radial wave function is the phenomenologi-

cal Gaussian-type wave function, i.e.,

ψ(x1, k′⊥) = 4
π

3
4

β
3
2

√
∂k′

z

∂x1
exp

[
− k′2

z + k′2⊥
2β2

]
, (5)

for s-wave mesons [48]. The shape parameter (also called
Gaussian parameter), β, in Eq. (5) describes the momentum
distribution and is expected to be of the order �QCD [46]. At
�QCD scale, nonperturbative phenomena govern the strong
interaction dynamics, rendering perturbative QCD methods
inadequate [66,67]. However, the hadronic wave function
serves as a fundamental link between the hadronic phenom-
ena at this scale. These wave functions are significant for
determining the hadronic matrix elements which fundamen-
tally capture the low-energy manifestations, i.e., nonpertur-
bative contributions [68–70]. Furthermore, the specific form
of the light-front wave function given by Eq. (5) ensures
compliance with the covariant requirement and is manifestly
Lorentz-invariant, as expressed in terms of the momentum
fraction variables with the plus component [47]. It is remark-
able to note that the phenomenological light-front wave func-
tions used to describe the hadronic structure incorporate well-
known properties of QCD, such as the expected decline at
high relative transverse momentum and endpoint behavior,
into a proper functional form [71]. The relative momentum
k′
z (in the z-direction) is given by

k′
z =

(
x1 − 1

2

)
M ′

0 + m2
2 − m′2

1

2M ′
0

, (6)

which yields [45]

∂k′
z

∂x1
= M ′

0

4x1(1 − x1)

{
1 −

[m′2
1 − m2

2

M ′2
0

]2}
, (7)

where

M ′
0 =

√
m′2

1 + k′2⊥
x1

+ m2
2 + k′2⊥
x2

(8)

is the kinetic invariant mass of the incoming meson. In addi-
tion, the kinetic invariant mass of the outgoing meson is
denoted as

M ′′
0 =

√
m′′2

1 + k′′2⊥
x1

+ m2
2 + k′′2⊥
x2

, (9)

with k′′⊥ = k′⊥ − x2q⊥. The detailed formalism for the
CLFQM is described in Refs. [44,45,52,56,61–63].

In general, the transition form factors Bc → M ′′ (where
M ′′ = P, V ) corresponding to the Feynman diagram of
Fig. 1 are obtained from explicit expressions for matrix ele-
ments of currents between meson states [48]

B ≡ 〈M ′′(p′′)|Vμ − Aμ|Bc(p
′)〉, (10)

123



Eur. Phys. J. C           (2025) 85:204 Page 5 of 48   204 

where Vμ and Aμ are the vector and axial vector (A) currents,
respectively. The form factors for Bc meson to P and V
transitions are defined by the following matrix elements [44]:

〈P(p′′)|Vμ|Bc(p
′)〉 = pμ f+(q2) + qμ f−(q2), (11)

〈V (p′′, ε′′)|Vμ|Bc(p
′)〉 = εμναβε′′∗ν pαqβg(q2) (12)

〈V (p′′, ε′′)|Aμ|Bc(p
′)〉 = −i{ε′′∗

μ f (q2) + ε′′∗

· p[pμa+(q2) + qμa−(q2)]}, (13)

where pμ = p′ + p′′ and qμ = p′ − p′′. The polarization of
the outgoing vector meson is denoted by εμ, and the conven-
tion ε0123 = 1 is adopted. The matrix element expressions
Eqs. (11)–(13) are conventionally represented in terms of the
BSW [72] form factors as

〈P(p′′)|Vμ|Bc(p′)〉 =
(
pμ −

M2
Bc

− M2
P

q2 qμ

)
FBc P

1 (q2)

+
M2

Bc
− M2

P

q2 qμFBc P
0 (q2), (14)

〈V (p′′, ε′′)|Vμ|Bc(p′)〉 = − 1

MBc + MV
εμναβε′′∗ν pαqβV BcV (q2),

(15)

〈V (p′′, ε′′)|Aμ|Bc(p′)〉 = i{(MBc + MV )ε′′∗
μ ABcV

1 (q2) − ε′′∗ · p
MBc + MV

pμABcV
2 (q2) − 2MV

ε′′∗ · p
q2 qμ[ABcV

3 (q2) − ABcV
0 (q2)]}, (16)

where the meson masses are denoted by MBc and MP(V ).

The BSW-type form factors can be related to the CLFQM
form factors as [44]

FBcP
1 (q2) = f+(q2), FBcP

0 (q2) = f+(q2) + q2

q · p f−(q2),

V BcV (q2) = −(MBc + MV )g(q2),

ABcV
1 (q2) = − f (q2)

MBc + MV
,

ABcV
2 (q2) = (MBc + MV )a+(q2),

ABcV
3 (q2) − ABcV

0 (q2) = q2

2MV
a−(q2), (17)

with

FBcP
1 (0) = FBcP

0 (0),

ABcV
3 (0) = ABcV

0 (0), and

ABcV
3 (q2) = MBc + MV

2MV
ABcV

1 (q2)− MBc −MV

2MV
ABcV

2 (q2).

(18)

In contrast to the LFQM, the quark and antiquark within a
meson system are off-shell in CLFQM. As mentioned before,
the CLFQM provides a systematic way to handle zero-mode

contributions. The light-front matrix element obtained in
CLFQM receives additional spurious contributions propor-
tional to the light-like vector ωμ = (0, 2, 0⊥) which vio-
late the covariance [52]. However, these spurious contribu-
tions are canceled out by the addition of zero-mode contri-
butions, restoring the covariance of current matrix elements
in CLFQM, thus allowing the calculation of physical quan-
tities in terms of manifestly covariant Feynman momentum
loop-integrals. Customarily, for the Bc(p′) → M ′′(p′′) tran-
sition, it is convenient to use the Drell–Yan–West frame,
q+ = 0, which implies that the form factors are known
only for space-like momentum transfer, q2 = −q2⊥ ≤ 0, and
for the time-like region (q2 = −q2⊥ ≥ 0), an additional q2

extrapolation is needed. Furthermore, we consider a Lorentz
frame in which p′⊥ = 0 and p′′⊥ = −q⊥ leads to k′′⊥ =
k′⊥−x2q⊥ [64]. Note thatq2 = q2

max = (MBc−MP(V ))
2 cor-

responds to zero-recoil of the final meson in the initial meson
rest frame, and q2 = 0 indicates the maximum recoil of the
final meson [65]. Following the CLF approach [52,61,62],
the form factors in Eqs. (11), (12), and (13) can be extracted
from one-loop approximation as a momentum integral given
by

B = Nc

∫
d4k′

1

(2π)4

HM ′ HM ′′

N ′
1 N

′′
1 N2

i SB, (19)

where Nc denotes the number of colors, d4k′
1 = 1

2 dk′−
1 dk′+

1
d2k′⊥, and HM ′(′′) is the bound-state vertex functions. The

terms N ′(′′)
1 = k′(′′)2

1 − m′(′′)2
1 + iε and N2 = k2

2 − m2
2 + iε

arise from the quark propagators, and the trace SB can be
directly obtained by using the Lorentz contraction

SB = Tr[�(/k′
1 + m′

1)(i�M ′)(−/k2 + m2)(iγ
0�

†
M ′′γ 0)

×(/k′′
1 + m′′

1)], (20)

where the vertex operator �M ′(′′) corresponds to the relevant
meson, and has the forms

i�P = −iγ5 and i�V = i
[
γ μ − (k1 − k2)

μ

DV,con

]
(21)

for P and V mesons, respectively [62].
The method proposed by Jaus [52] would be most effective

if vertex functions could be determined by solving the QCD
bound-state equation. However, in practice, phenomenologi-
cal vertex functions similar to those in the conventional light-
front model are often employed. The covariant approach rep-
resents hadronic matrix elements of one-body currents as
one-loop diagrams, evaluable using standard space-time for-
malism. This yields a covariant matrix element expressed
as a Feynman momentum loop integral. Alternatively, light-
front matrix elements can be obtained through light-front
decomposition of the loop momentum and integration over
the minus component (k′−

1 ) using contour methods [52]. This
integration technique requires vertex functions free of singu-
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larities, with only quark propagator singularities contributing
within the contour. A class of covariant meson vertex func-
tions exhibits this property, characterized by asymmetry in
the constituent quark–antiquark pair variables. The integra-
tion over the negative component of loop momentum defines
the corresponding light-front vertex functions. This approach
eliminates the spurious contributions that are proportional
to the vector ωμ = (0, 2, 0⊥). Consequently, transforming
the covariant BS approach to the standard LFQM necessi-
tates a light-front decomposition of the loop momentum and
integration over its minus component. This transformation
entails the following replacements:

N ′(′′)
1 → N̂ ′(′′)

1 = x1(M
′(′′)2 − M ′(′′)2

0 ), (22)

and

χM ′(′′) = H ′(′′)
M

N ′(′′)
1

→ h′(′′)
M

N̂ ′(′′)
1

, D′(′′)
V,con → D′(′′)

V,LF , (Type-I)

(23)

where the D factor D′(′′)
V,con = M ′(′′) + m′(′′)

1 + m2 present

in the vertex operator is substituted with D′(′′)
V,LF = M ′(′′)

0 +
m′(′′)

1 +m2 [45,63]. The light-front forms of vertex functions
hM ′ for P and V mesons are given by

hP

N̂ ′(′′)
1

= hV

N̂ ′(′′)
1

= 1√
2Nc

√
x2

x1

ψ(x1, k
′(′′)
⊥ )

M̂ ′(′′)
0

, (24)

where M̂ ′(′′)
0 ≡

√
M ′(′′)

0 − (m′(′′)
1 − m2)2. It should be noted

that there is some debate regarding the self-consistency of
the CLFQM [44,45,63]. The explicit validity of replacing
D′(′′)
V,con with D′(′′)

V,LF leads to inconsistency issues in type-
I correspondence. Chang et al. [62] found that the result-
ing P → V form factors extracted with the longitudinal
(λ = 0) and transverse (λ = ±) polarization states were
not consistent with each other. This is because the P → V
form factors obtained from the longitudinal polarization state
receive an additional contribution characterized by the coef-
ficients B(2)

1 and B(3)
3 , which is noticeable in the Bc to V

form factor expressions of f (q2) and a−(q2). Furthermore,
the manifest covariance of the matrix element in CLFQM is
also violated in the type-I correspondence scheme because of
the residual ω-dependencies associated with B(i)

j functions,
which are independent of zero-mode contributions. There-
fore, a proposed solution to address these inconsistencies
observed in the type-I CLF form factors is to modify the
relationship between the manifestly covariant BS approach
and the standard LFQM [44,45,52]. In regard to this, Choi
and Ji [45] suggested the replacement of M ′(′′) with kinetic
invariant mass M ′(′′)

0 in every term that contains M ′(′′) within
the integrand, in addition to the D factor. As a result, the

correspondence given by Eq. (23) can be generalized to

χM ′(′′) = H ′(′′)
M

N ′(′′)
1

→ h′(′′)
M

N̂ ′(′′)
1

, M ′(′′) → M ′(′′)
0 . (Type-II)(25)

Thus, by employing type-II correspondence from Eq. (25),
the matrix element B in Eq. (19) will reduce to the light-front
form,

B̂ = Nc

∫
dx1d2k′⊥
2(2π)3

hM ′hM ′′

x2 N̂ ′
1 N̂

′′
1

ŜB. (26)

Essentially, by embracing the type-II correspondence
described by Eq. (25), the manifest covariance of the CLFQM
can be restored, which in turn should yield numerically equal
form factors for λ = 0 and λ = ± polarization states. There-
fore, it can be inferred that type-II correspondence offers a
potentially self-consistent framework that resolves the issues
connected to the covariance of the matrix elements and the
inconsistencies.

The determination of transition form factors for the Bc to
ground-state s-wave meson for q2 = −q2⊥ ≤ 0 is a straight-
forward process, since the calculation of the zero-mode con-
tribution is obtained in a frame where the momentum trans-
fer q+ becomes zero. As a result, the form factors are only
known for space-like momentum transfer q2 = (p′− p′′)2 =
−q2⊥ ≤ 0 [52]. Nevertheless, the transition form factors in
the time-like region can be obtained through extrapolation,
which will be discussed in the following subsection.

Furthermore, the Bc to P(V ) transition form factors are
explicitly expressed as [62]

F(q2) = Nc

∫
dx1d2k′⊥
(2π)3

χ ′
Bc

χ ′′
P(V )

2x2
F̃(x1, k′⊥, q2), (27)

where

χ ′
Bc = 1√

2Nc

√
x2

x1

ψ(x1, k′⊥)

M̂ ′
0

,

and χ ′′
P(V ) = 1√

2Nc

√
x2

x1

ψ(x1, k′′⊥)

M̂ ′′
0

. (28)

It should be noted that the integration is carried out within
the limits of [0, 1] and [0,∞] for x1 and k′⊥, respectively,
in Eq. (27). The form factor functions F̃(x1, k′⊥, q2) ≡
{ f̃±(x1, k′⊥, q2), g̃(x1, k′⊥, q2), f̃ (x1, k′⊥, q2), ã±(x1,

k′⊥, q2)} corresponding to Bc to P(V ) transitions are defined
as follows:

(i) Bc to P form factors [44,63],

f̃+(x1, k′⊥, q2) = x1M
′2
0 + x1M

′′
0 + x2q

2 − x1(m′
1 − m2)2

− x1(m′′
1 − m2)2 − x2(m′

1 − m′′
1)2, (29)

f̃−(x1, k′⊥, q2) = −2x1x2M
′2 − 2k′2⊥ − 2m′

1m2
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+ 2(m′′
1 − m2)(x2m

′
1 + x1m2)

− 2
k′⊥ · q⊥

q2

[
(x1 − x2)M ′2 + M ′′2

+ x2(q2 + q · p) + 2x1M
′2
0

− 2(m′
1 + m′′

1)(m′
1 − m2)

]

+ 4
p · q
q2

[
k′2⊥ + 2(k′⊥ · q⊥)2

q2

]

+ 4
(k′⊥ · q⊥)2

q2 . (30)

(ii) Bc to V form factors [44,62],

g̃(x1, k′⊥, q2) = −2
{
x2m

′
1 + x1m2 + (m′

1 − m′′
1)

k′⊥ · q⊥
q2

+ 2

D′′
V,con

[
k′2⊥ + (k′⊥ · q⊥)2

q2

]}
, (31)

f̃ (x1, k′⊥, q2) = −2
{

− (m′
1 + m′′

1)2(m′
1 − m2) + (x1m2

− x2m
′
1)M ′2 + (x1m2 + x2m

′
1)M ′′2

− x1(m2 − m′
1)(M ′2

0 + M ′′2
0 ) + 2x1m

′′
1M

′2
0

− 4(m′
1 − m2)

(
k′2⊥ + (k′⊥ · q⊥)2

q2

)

− m2q
2 − (m′

1 + m′′
1)(q2 + q · p) k

′⊥ · q⊥
q2

+ 4(m′
1 − m2)B(2)

1 + 2

D′′
V,con

[(
k′2⊥

+ (k′⊥ · q⊥)2

q2

)(
(x1 − x2)M ′2 + M ′′2

− 2(m′
1 − m′′

1)(m′
1 − m2) + 2x1M

′2
0

− q2 − 2(q2 + q · p) k
′⊥ · q⊥
q2

)

−
(
M ′2 + M ′′2 − q2 + 2(m′

1 − m2)(m′′
1

+ m2)
)
B(2)

1 + 2B(3)
3

]}
, (32)

ã+(x1, k′⊥, q2) = 2
{
(m′′

1 − 2x1m
′
1 + m′

1 + 2x1m2)
k′⊥ · q⊥
q2⊥

+ (x1 − x2)(x2m
′
1 + x1m2) + 2

D′
V,con

× k′′⊥ · q⊥
x2q

2⊥

[
k′⊥ · k′′⊥ + (x1m2 − x2m

′′
1)

× (x1m2 + x2m
′
1)

]}
, (33)

ã−(x1, k′⊥, q2) = −2
{
(3 − 2x1)(x2m

′
1 + x1m2) −

[
(6x1

− 7)m′
1 + (4 − 6x1)m2 + m′′

1

] k′⊥ · q⊥
q2

+ 4(m′
1 − m2)

[
2
( k′⊥ · q⊥

q2

)2 + k′2⊥
q2

]

−4
(m′

1 − m2)

q2 B(2)
1 + 1

D′′
V,con

[
− 2

(
M ′2

+ M ′′2 − q2 + 2(m′
1 − m2)(m′′

1 + m2)
)

(
A(2)

3 + A(2)
4 − A(1)

2

) +
(

2M ′2 − q2

− x1(M ′2 − M ′2
0 ) + x1(M ′′2 − M ′′2

0 )

− 2(m′
1 − m2)2 + (m′

1 + m′′
1)2

)(
A(1)

1

+ A(1)
2 − 1

) + 2Z2
(
2A(2)

4 − 3A(1)
2 + 1

)

+ 2
q · p
q2

(
4A(1)

2 A(2)
1 − 3A(2)

1

)

+ 2

q2

((
M ′2 + M ′′2 − q2 + 2(m′′

1 − m2)

(m′
1 + m2)

)
B(2)

1 − 2B(3)
3

)]}
. (34)

The coefficients A(i)
j and B(i)

j are given as [44,62]

A(1)
1 = x1

2
, A(2)

1 = −k′2⊥ − (k′⊥ · q⊥)2

q2 ,

A(1)
2 = A(1)

1 − k′⊥ · q⊥
q2 ,

A(2)
3 = A(1)

1 A(1)
2 , A(2)

4 = (A(1)
2 )2 − 1

q2 A
(2)
1 ,

B(2)
1 = A(1)

1 Z2 − A(1)
2 ,

B(3)
3 = B(2)

1 Z2 +
(
p2 − (q · p)2

q2

)
A(1)

1 A(2)
1 , and (35)

Z2 = x1(M
′2 − M ′2

0 ) + m′2
1 − m2

2 + (1 − 2x1)M
′2

+ (q2 + q · p) k
′⊥ · q⊥
q2 . (36)

It should be noted that the above given expressions for the
form factors correspond to the traditional type-I scheme, for
which type-II correspondence can be obtained by an addi-
tional replacement of M ′(′′) to M ′(′′)

0 [62]. Moreover, the
above form factor expressions are for the case of λ = 0 (i.e.,
longitudinal polarization state), and the results for the case of
λ = ± (i.e., transverse polarization states) can be obtained
from these expressions by omitting the terms associated with
B(i)
j functions.
It is well established that the light-front formalism, cou-

pled with time-ordered perturbation theory, provides a sys-
tematic framework for calculating higher-order QCD cor-
rections [71,73]. Nonetheless, significant challenges per-
sist, including nonperturbative regimes, higher-order correc-
tions, higher Fock states, and infrared divergences. Improv-
ing the precision and applicability of the light-front approach
requires the incorporation of a more appropriate choice of
wave functions and vertex functions [52]. Despite the com-
putational challenges, however, incorporating higher-order
QCD corrections is essential for the precise determination of
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hadronic quantities such as form factors. Although scale-
breaking effects are generally small, higher-order contri-
butions through strong coupling constant and higher-twist
effects are expected to modify QCD predictions [74,75].
Moreover, while zero-mode contributions partially account
for higher Fock states, their direct inclusion presents substan-
tial computational challenges. Furthermore, comprehending
the nonperturbative aspects of QCD within the light-front
approach requires the extension of renormalization tech-
niques beyond perturbative methods [76,77].

2.2 q2q2q2 dependence of the form factors

The numerical evaluation of Bc to P(V ) transition form fac-
tors requires an understanding of the momentum dependence
of these form factors over the entire q2 region in the CLFQM.
Conventionally, the meson transition in the Drell–Yan–West
frame with q+ = 0 restricts the evaluation of the form fac-
tors for the momentum transfer q2 = −q2⊥ ≤ 0, i.e., space-
like region [48,52,56,78]. However, only the form factors
in the time-like region (q2 = −q2⊥ ≥ 0) are relevant for
physical decay processes [44,52]. Therefore, to evaluate the
total decay rate of Bc decays, the momentum dependence
of the form factors should be reproduced in the space-like
region and extrapolated to the time-like region using simpli-
fied parameterizations.

Jaus [48] proposed estimating the invariant form factors as
functions of q2, extending them analytically from space-like
(q2 ≤ 0) to time-like regions (q2 ≥ 0) [29,44,62,65,78].
This reformulation relies on the assumption that the form
factors are continuously differentiable with respect to q2,

emphasizing the importance of understanding their behav-
ior near q2 = 0 [48]. Therefore, understanding wave func-
tion overlaps between the initial- and final-state mesons near
q2 = 0 is significant. Furthermore, it has been argued that
the form factors obtained directly in the time-like region
(q+ > 0) are equivalent to those from analytic continuation
from the space-like region [59]. A more refined approach to
computing form factors at q2 > 0 involves calculations in a
frame where the momentum transfer is purely longitudinal
(q⊥ = 0), covering the entire range of momentum transfer,
as shown in Refs. [44,59], and more recently in Ref. [79].
However, it introduces additional complexity: beyond the
conventional valence-quark contribution, one must also con-
sider nonvalence configurations. These include phenomena
such as the Z-graph, which arises from quark-pair creation
from the vacuum. Consequently, uncertainties arise in tran-
sition form factors calculated for q2 ≥ 0 (with q⊥ = 0) due
to nonvalence configurations [79,80]. However, the estima-
tions of these Z-graph contributions are still lacking within
the CLFQM formalism. Recent efforts [81] show that the
Z-graph contributions to form factors become more signif-
icant in the time-like regime (q2 > 0). In the annihila-

tion process of the emitted quark–antiquark system into a
W -boson, intermediate vector-meson states dominate. This
allows for approximation of the Z-graph contributions using a
VMD-like decay mechanism [81]. Parameterizing form fac-
tors as meromorphic functions of q2, with analytic contin-
uation from q2 < 0 to q2 > 0 is proposed to reasonably
describe form factors at time-like momentum transfers. How-
ever, considering a frame with purely transverse momentum
transfer (q+ = 0) is suggested to reduce nonvalence contri-
butions [44]. In addition, zero-mode contributions affecting
these transition form factors are addressed by the type-II self-
consistent CLF approach.

In continuation of the previous section, it is well-
established that the theoretical expressions formulated within
the q+ = 0 frame are specifically applicable for calculat-
ing form factors exclusively in the space-like domain. How-
ever, to extend our understanding to the time-like region,
we require parameterization as explicit functions of q2 to
describe the form factors [78]. These descriptions of form
factors in both space-like and time-like regions complement
each other, providing valuable insights into the complete
decay dynamics across the entire q2 range. The literature
suggests numerous functions of q2 dependence influenced
by the VMD approach, which has been used to parameterize
and reproduce the transition form factors in space-like region
and then extrapolate to physical form factors for q2 ≥ 0 [82–
85]. The conventional form factor dependence on q2 is often
expressed as a BSW-type monopole approximation [72],

F(q2) = F(0)/(1 − q2

M2
pole

), based on VMD. However, this

approach is not sufficient to explain the experimental obser-
vations. Moreover, higher resonance contributions are likely
necessary beyond the monopole form. The nearest pole dom-
inance assumption may not always apply because multiple
resonances can be significant. Furthermore, given the com-
plexity of nonperturbative physics governing q2 dependence,
no single parameterization is universally accurate. A more
general approach involves using a simple pole and summing
effective poles, though this requires multiple parameters to
be determined experimentally [86,87].

In our analysis, the q2 dependence of form factors in the
space-like region can be effectively parameterized and repro-
duced using a three-parameter form [85] as follows:

F(q2) = F(0)(
1 − q2

M2
pole

)(
1 − a q2

M2
pole

+ b q4

M4
pole

) ,

(referred to as T2A) (37)

where Mpole is the transition pole mass. The parameters a, b,
and F(0) are determined by fitting Eq. (37) in the space-like
region and the extrapolation to the physical region q2 ≥ 0.

In the type-II correspondence scheme, the numerical results
obtained using the parameterization Eq. (37) are referred to
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Table 1 Transition pole masses
for Bc → P and V form factors
(in GeV)

Quark transition F1(q2), V (q2) F0(q2) A0(q2) A1(q2), A2(q2)

J P = 1− 0+ 0− 1+

Bottom-conserving transitions

c → d 2.010 2.308 1.870 2.422

c → s 2.112 2.318 1.968 2.460

Bottom-changing transitions

b → u 5.325 5.670 5.279 5.726

b → s 5.415 5.762 5.367 5.829

b → c 6.473 6.836 6.274 6.866

as “T2A” throughout the manuscript. Typically, the param-
eterization presented in Eq. (37) is characterized as a four-
parameter fit, wherein the parameters F(0), a, b, and Mpole

are ideally determined from the available experimental data.
In order to maintain the validity of our calculations and select
appropriate quark-model parameters due to the lack of exper-
imental data, we utilize the mass of the nearest pole (listed
in Table 1) as the pole mass (Mpole) to describe it as a three-
parameter fit [85,88]. The parameterization (Eq. (37)) incor-
porates slope parameters a and b to account for effective
poles. These poles deviate from the single resonance typi-
cally observed in the q ′

1 → q ′′
1 transition. In simpler terms,

slope parameters represent additional poles beyond the pole
mass (Mpole), reflecting the influence of higher-order reso-
nances [13]. The phenomenological accuracy and reliability
of q2 dependence, given in Eq. (37), have been extensively
discussed in Refs. [85–88].

It is worth mentioning that the available q2 range for the
bottom-conserving Bc → P(V ) transitions is 0 ≤ q2 �
1 GeV2. However, for bottom-changing transitions, the q2

range is considerably larger, i.e., 0 ≤ q2 � 20 GeV2.

Since the M2
pole is greater than the available q2 in heavy-

to-heavy meson transitions, the contributing poles lie far-
ther from the kinematic region. Therefore, it is important
to accurately determine the q2 dependence in decay ampli-
tudes across the entire kinematic range [88]. The imple-
mentation of the aforementioned parameterization is partic-
ularly relevant in bottom-changing decays due to the exten-
sive q2 range, wherein contributions from bottom, bottom-
strange, and bottom-charmed resonances may be substantial.
This can be explained through the confining interaction, for
example, between b and ū to produce B meson resonances
that fluctuate into W -boson. In transitions involving signif-
icant momentum transfer (q2

max 
 20 GeV2), the incorpo-
ration of higher-order contributions becomes imperative for
accurate modeling of physical decay processes. Form fac-
tors spanning such extensive q2 ranges cannot be adequately
described by considering only a limited number of initial
physical poles [89]. Consequently, the poles associated with
these form factors are situated at q2 = M2

pole (as detailed in

Table 1), typically at unphysical values of time-like momen-
tum transfer, distinct from q2

max. The parameterization out-
lined in Eq. (37) offers a viable solution for such scenar-
ios. This parameterization (Eq. (37)) is also applicable to
Bc → B(∗)

(s) transitions. Note that the production threshold
for mesons (e.g., D(s) resonances being lightest) from the
c → d(s) current occurs at q2 values where the poles are
significantly far from the physical region of q2

max 
 1 GeV2.

This integration enables a comprehensive exploration of the
entire physical momentum transfer range, potentially leading
to a significant enhancement in the accuracy of our predic-
tions.

Furthermore, the q2 dependence of the form factors
defined by Eq. (37) involves contributions from said reso-
nances of particular spin in the available q2 range; for exam-
ple, the form factors F1(q2) and V (q2) exhibit a pole at
q2 = M2

1− , while A0(q2) contains a pole at q2 = M2
0− . It

is important to note that the remaining form factors, namely,
F0(q2), A1(q2), and A2(q2), do not receive contributions
from the lowest-lying negative parity states [90]. The form
factor F0(q2) includes the pole mass corresponding to the 0+
state, whereas A1(q2) and A2(q2) incorporate the 1+ state;
interestingly, both have significantly higher masses [85–87],
as shown in Table 1. As a result, these form factors are
expected to show less variation in the decay region for the
available q2.

It should also be noted that for the calculation of transition
form factors, several other theoretical studies have employed
the following q2 dependence [44,62]:

F(q2) = F(0)

1 − a q2

M2
Bc

+ b q4

M4
Bc

, (referred to as T1) (38)

where the mass of the parent meson MBc = 6274.47 MeV [12]
is taken as the pole mass. We use this parameterization in
the type-I correspondence, denoted as “T1” in the numerical
results, for the sake of comparison. It is expected that the
parameterization presented in Eq. (38) is also valid for the
physical decay region [88].

Alternatively, many experimental and lattice observations
are made using a model-independent parameterization fol-
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lowing the general QCD constraints, which is known as z-
series (expansion) parameterization. The utilization of forms
such as Eqs. (37) and (38) for data fitting, while mathe-
matically feasible, presents interpretative challenges due to
the absence of clear physical significance for the resulting
fit parameters. This ambiguity raises concerns that different
experimental (small q2) or lattice (large q2) determinations
may not converge to a single value. Therefore, discrepancies
arising from fitting different datasets to models like single-
pole or modified pole models become ambiguous [91,92].
This issue becomes especially challenging when compar-
ing lattice and experimental data due to differing empha-
sized ranges of the parameter q2 (usually represented as t).
To navigate these challenges, it is advisable to use a gen-
eral parameterization like z-series parameterization, which
ensures the inclusion of the true form factor. This approach
facilitates more robust comparisons of physical quantities,
ensuring that the analysis remains grounded in observable
phenomena rather than potentially arbitrary fitting parame-
ters [87].

In order to establish a clear understanding of q2 depen-
dence and comparison among different q2 formulations, we
also incorporate z-series expansion form. Furthermore, the
z-series parameterization is given in terms of a complex
parameter z, which is the analytic continuation of q2 into
the complex plane [13]. This parameterization of the form
factor is based on the power series expansion around the
value q2 = t0. Thus, the form factor is expressed as [93],

F(q2) = 1

1 − q2

M2
pole

K∑
k=0

a′
k

[
z(q2) − z(0)

]k
,

(referred to as T2B) (39)

where ak are real coefficients and z(q2) ≡ z(q2, t0) is the
function

z(q2) =
√
t+ − q2 − √

t+ − t0√
t+ − q2 + √

t+ − t0
, (40)

which maps the q2-plane cut for q2 ≥ t+ onto the disk
|z(q2, t0)| < 1 in the z-complex plane, such that |z(t+, t0)| =
−1 and |z(∞, t0)| = 1. The arbitrary parameter t0 < t+
determines the point q2 mapped onto the origin in the z-
plane, i.e., |z(t0, t0)| = 0 corresponding to q2 = t0, and the
physical region extends in either direction up to ±|z|max [94].
The parameters t+ and t0 are (MBc + MP(V ))

2 and (MBc +
MP(V ))(

√
MBc − √

MP(V ))
2, respectively [93,94]. In com-

parison to other phenomenological approaches, the fitted
coefficients a′

k have no physical interpretation [13]. Since
the higher-order terms in the z-series parameterization given
in Eq. (39) have trivial contributions, we restrict ourselves
to the power K = 2, which contains the free parameters
a′

0 (≈ F(0)), a′
1, and a′

2. Unlike Eq. (37), the numerical

results corresponding to parameterization by Eq. (39) in the
type-II correspondence are designated as “T2B”.

2.3 Semileptonic decay widths and other physical
observables

The differential decay width of Bc to P(V ) semileptonic
decays is expressed in terms of the helicity components
as [32,95]

d�(B+
c → P(V )l+νl)

dq2

= G2
F

(2π)3 |Vq1q2 |2
q2

√
λ

24M3
Bc

(
1 − m2

l

q2

)2

Htotal, (41)

where GF is the Fermi constant and Vq1q2 is the relevant
CKM matrix element for q1 → q2 transition. The term λ ≡
λ(M2

Bc
, M2

P(V ), q
2) = (M2

Bc
+M2

P(V ) +q2)2 −4M2
Bc
M2

P(V )

is the Källén function, and ml is the lepton mass (l =
e, μ, τ). The total helicity structure, Htotal, is given by

Htotal = (HU + HL)

(
1 + m2

l

2q2

)
+ 3m2

l

2q2 HS, (42)

where
m2
l

2q2 is referred to as the helicity flip factor, and the
helicity components HU , HL , and HS can be defined as

HU = |H+|2 + |H−|2, HL = |H0|2, and HS = |Ht |2,
(43)

where H±, H0, and Ht are the helicity amplitudes. These
helicity amplitudes are related to the corresponding invariant
form factors by the following relations:

(i) For Bc to P meson transitions,

H±(q2) = 0, H0(q
2) =

√
λ√
q2

F1(q
2),

and Ht (q
2) = 1√

q2
(M2

Bc − M2
P )F0(q

2). (44)

(ii) For Bc to V meson transitions,

H±(q2) = (MBc + MV )A1(q
2) ∓

√
λ

MBc + MV
V (q2),

(45)

H0(q
2) = 1

2MV

√
q2

(MBc + MV )(M2
Bc − M2

V − q2)

× A1(q
2) − λ

MBc + MV
A2(q

2), (46)

Ht (q
2) =

√
λ√
q2

A0(q
2). (47)
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Following Eq. (41), the longitudinal and transverse differ-
ential decay widths are given by

d�L(B+
c → Vl+νl)

dq2

= G2
F

(2π)3 |Vq1q2 |2
q2

√
λ

24M3
Bc

(
1 − m2

l

q2

)2

×
[
HL

(
1 + m2

l

2q2

)
+ 3m2

l

2q2 HS

]
, and (48)

d�T (B+
c → Vl+νl)

dq2

= G2
F

(2π)3 |Vq1q2 |2
q2

√
λ

24M3
Bc

(
1−m2

l

q2

)2 [
HU

(
1+ m2

l

2q2

)]
,

(49)

respectively.
In order to gain a deeper understanding of semileptonic

decays beyond just the branching ratios, it is helpful to inves-
tigate the influence of the lepton mass. Moreover, by defining
additional physical observables that are experimentally mea-
surable, we can obtain a more comprehensive and intricate
depiction of the underlying physics in these decays. Some
of these physical observables are FB asymmetry (AFB(q2)),

leptonic convexity parameter (Cl
F (q2)), longitudinal (trans-

verse) (Pl
L(T )(q

2)) polarization of the charged lepton, and

asymmetry parameter (α∗(q2)). These observables can be
expressed by the above helicity structure functions as [32,96]

AFB(q2) = 3

4

HP − 2
m2
l

q2 HSL

Htotal
, (50)

Cl
F (q2) = 3

4

(
1 − m2

l

q2

)
HU − 2HL

Htotal
, (51)

Pl
L(q2) =

(HU + HL)

(
1 − m2

l
2q2

)
− 3m2

l
2q2 HS

Htotal
, (52)

Pl
T (q2) = − 3πml

8
√
q2

HP + 2HSL

Htotal
, and (53)

α∗(q2) = HU + H̃U − 2(HL + H̃L + 3H̃S)

HU + H̃U + 2(HL + H̃L + 3H̃S)
, (54)

where H̃i = m2
l

2q2 Hi for (i = U, L , S). The AFB quan-

tifies the difference between the number of leptons (l+/ l−)

emitted in the (forward) direction of Bc momentum and those
emitted in the opposite (backward) direction in the rest frame
of the lepton pair (lνl) [97,98]. The helicity components
HP and HSL are defined by HP = |H+|2 − |H−|2 and
HSL = R(H0H

†
t ). Similarly, the remaining observables

defined in terms of helicity amplitudes are expected to be

crucial for probing potential NP beyond the SM. Modern
experimental facilities are expected to provide precise mea-
surements of the angular distributions of semileptonic decay.
These observables can serve as powerful probes for detect-
ing NP in low-energy semileptonic decay processes, with
the advantage of minimal sensitivity to hadronic uncertain-
ties [99]. For B−

c → Vl−νl decays, the physical observables
like FB asymmetry, longitudinal polarization and transverse
polarization of the charged lepton are altered due to the oppo-
site sign in the leptonic tensor [32]. However, there is no
change in the expression for other observables. In this study,
we calculate the mean values of all the abovementioned phys-
ical observables by separately integrating the numerator and
denominator over q2, with the inclusion of a kinematic factor

q2
√

λ(1− m2
l

q2 )2, where (1− m2
l

q2 ) represents the velocity-type
parameter.

2.4 Nonleptonic decay widths

The QCD-modified weak Hamiltonian generating the B+
c

decay involving b → c(u) transitions is expressed as fol-
lows [100]:

H (�b=−1)
w = GF√

2

∑
Q(q)=u,c

∑
q ′=d,s

V ∗
QbVqq ′

×
(
a1(μ)Oqq

′
1 (μ) + a2(μ)Oqq

′
2 (μ)

)
+ h.c.,

(55)

where a1 and a2 are the standard perturbative QCD coef-
ficients, evaluated at renormalization scale μ ≈ m2

b. Local
tree-level operators O1,2 involving b → q transition can
be expressed as products of color-singlet currents, as given
below:

Oqd
1 = (b̄αqα)V−A · (q̄βdβ)V−A,

Oqd
2 = (b̄αqβ)V−A · (q̄βdα)V−A,

Oqs
1 = (b̄αqα)V−A · (q̄βsβ)V−A,

Oqs
2 = (b̄αqβ)V−A · (q̄βsα)V−A, (56)

where (q̄q ′)V−A ≡ q̄γμ(1 −γ5)q ′, α and β are SU (3) color
indices. Selection rules for various decay modes correspond-
ing to the Hamiltonian, Eq. (55), are as follows:

(i) CKM-enhanced modes �b = −1,�C = −1,�S =
0; �b = −1,�C = 0,�S = 1;

(ii) CKM-suppressed modes �b = −1,�C = −1,�S =
1; �b = −1,�C = 0,�S = 0;

(ii) CKM-doubly-suppressed modes �b = −1,�C =
1,�S = 1; �b = −1,�C = 1,�S = 0.

In addition to the bottom-changing decays, the B+
c meson

can exhibit bottom-conserving decay modes for the c quark
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Table 2 Decay constants for P and V mesons (in MeV)

Decay constants

fπ 130.56 [12] fρ 210 [111]

fK 155.7 [12] fK ∗ 204 [111]

fη (181.14) [113] fφ (228.5) [114]

fD 203.8 [12] fD∗ (223.5) [115]

fDs 250.1 [12] fDs
∗ 213 [112]

fηc 335 [12] f J/ψ 416 [12]

Available experimental values are listed. The numerical values in the
parentheses are from LQCD. Note that we only listed the central values
(uncertainties are ignored)

decaying to an s or d quark. The weak Hamiltonian generat-
ing the c quark decays, H (�C=−1)

w , is expressed by replacing
b with c, Q(q) = d, s, and q ′ = u in Eq. (55). The selec-
tion rules for various bottom-conserving decay channels are
given as

(i) CKM-enhanced mode �b = 0,�C = −1,�S = −1;
(ii) CKM-suppressed mode �b = 0,�C = −1,�S = 0;
(ii) CKM-doubly-suppressed mode �b = 0,�C = −1,

�S = 1.

The factorization scheme expresses the decay amplitudes
as a product of the matrix elements of weak currents, i.e.,

A(Bc → PV ) 
 〈P|Jμ|0〉〈V |Jμ|Bc〉
+ 〈V |Jμ|0〉〈P|Jμ|Bc〉, (57)

where Jμ stands for V − A current. The matrix element
of the Jμ between vacuum and final meson (P or V ) is
parameterized by the decay constants fP(V ) as

〈0|Jμ|P(p′)〉 = 〈0|Aμ|P(p′)〉 = i fP p
′
μ,

〈0|Jμ|V (p′, ε′)〉 = 〈0|Vμ|V (p′, ε′)〉 = M ′
V fV ε′

μ. (58)

The values of the decay constants used in our calculations
are given in Table 2.

The nonleptonic Bc decays can be categorized based
on the color-favored and color-suppressed contribution into
three classes, as follows [101–103]:

(i) Class I: Decays primarily governed by color-favored dia-
grams, which can be generated from the color singlet
current, and their decay amplitudes are proportional to
a1, given by a1(μ) = c1(μ) + 1

Nc
c2(μ), where Nc rep-

resents the number of colors, and c1(μ) and c2(μ) are
the QCD coefficients.

(ii) Class II: Decays primarily influenced by color-suppressed
diagrams, which can be generated from the neutral cur-

rent, and their decay amplitudes are proportional to a2,

defined as a2(μ) = c2(μ) + 1
Nc
c1(μ).

(iii) Class III: Decays resulting from a combination of both
color-favored and color-suppressed diagrams, which can
be generated from the interference of color singlet and
color neutral currents, i.e., thea1 anda2 amplitudes inter-
fere.

In general, the color-favored decay amplitude can be
expressed as [104]

A(Bc → PV ) = GF√
2

× CKM factors × 2MVa1

× (CG Coeff. fV F
Bc P

1 (M2
V )

+ CG Coeff. fP A
BcV
0 (M2

P )). (59)

For the color-suppressed modes, the QCD factor a1 is
replaced by a2. It is important to note that a1 and a2 are unde-
termined coefficients assigned to the effective charged cur-
rent and effective neutral current, respectively [105]. For the
sake of consistency with the large Nc limit (i.e., Nc = ∞),we
adopt the convention of setting the QCD coefficients a1 ≈ c1

and a2 ≈ c2, as suggested in Refs. [101,102]. The numerical
values we employ are as follows:

For c decays (i.e., μ ≈ m2
c) :

c1(μ) = 1.26; c2(μ) = −0.51,

For b decays (i.e., μ ≈ m2
b) :

c1(μ) = 1.12; c2(μ) = −0.26. (60)

The relatively small magnitudes of a2 imply that, unlike in
the charm sector, one anticipates a more pronounced pat-
tern of color suppression in Bc meson decays [101]. Since
Bc decays primarily occur through tree diagrams or are tree-
dominated, we neglect the anticipated small nonfactorizable
and penguin contributions within our formalism. It may be
noted that Nc may be treated as a phenomenological parame-
ter in weak meson decays, which account for nonfactorizable
contributions [106,107]. Therefore, we also use Nc = 3 to
obtain the effective coefficients a1(μ) = c1(μ)+ 1

3c2(μ) and
a2(μ) = c2(μ) + 1

3c1(μ),

for c decays (at Nc = 3) : a1(μ) = 1.09; a2(μ) = −0.09,

for b decays (at Nc = 3) : a1(μ) = 1.03; a2(μ) = 0.11.

(61)

We have calculated nonleptonic branching ratios of Bc →
PV decays at both Nc = ∞ and Nc = 3. It is worth not-
ing that for bottom-conserving decays, experimental charm
decay studies have provided a parameterization for a1 and a2.

These results suggest that considering the large Nc limit is
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Table 3 Constituent quark masses and the Gaussian parameters β for P and V mesons

Constituent quark masses (in GeV)

mu = md = 0.26 ± 0.04; ms = 0.45 ± 0.05; mc = 1.45 ± 0.20; mb = 4.64 ± 0.20

Gaussian parameters β (in GeV)
2S+1L J

1S0
3S1

2S+1L J
1S0

3S1

βcq̄ 0.4656+0.0217
−0.0212 0.4255 ± 0.0426 βbq̄ 0.5547+0.0260

−0.0261 0.5183 ± 0.0518

βcs̄ 0.5358+0.0137
−0.0135 0.4484 ± 0.0448 βbs̄ 0.6103+0.0330

−0.0331 0.5589 ± 0.0559

βcc̄ 0.7690 ± 0.0049 0.6492 ± 0.0069 βbc̄ 0.9207 ± 0.0921 −
Note that here, q denotes either u or d quark

appropriate for c quark decays [108]. On the other hand, for
bottom-changing decays, phenomenological analyses [109]
indicate variations in the magnitudes of the Wilson coeffi-
cientsa1 anda2, as well as sub-leading contributions from the
1/Nc term. This can be accounted for by allowing a certain
range of values for these coefficients, as shown in Eq. (61).
We would like to emphasize that the decay amplitudes can
be expressed as factorizable contributions multiplied by their
respective ai values, which are independent of the (renormal-
ization) scale and process.

Using the decay amplitude defined in Eq. (59), the decay
rate for the Bc to PV decay is given by

�(Bc → PV ) = k3

8πM2
V

|A(Bc → PV )|2, (62)

where k is the three-momentum of the final-state particle in
the rest frame of the Bc meson and is expressed as

k = 1

2MBc

√
[M2

Bc
− (MP + MV )2][M2

Bc
− (MP − MV )2].

(63)

The numerical results for semileptonic and nonleptonic weak
decays of the Bc meson are discussed in the following section.

3 Numerical results and discussion

In the present work, we calculate the transition form factors
for Bc to P and V using the type-II self-consistent CLFQM
across the available range of momentum transfer. Further-
more, we provide a comprehensive investigation into their
dependence on q2 and compare our results with other for-
malisms. We compute the transition form factors for Bc to
P and V mesons using the constituent quark masses and β

values provided in Table 3. The variation in quark masses
introduces uncertainties in form factor calculations. There-
fore, we incorporate a range of values based on established
literature as the default input [27–29,31,46,62,63]. It may be
noted that the Gaussian parameter β, which characterizes the

momentum distribution, is commonly determined by fitting
the meson decay constant. In our work, we use the β values
from Ref. [46] for the majority of s-wave mesons (corre-
sponding to the input quark masses), which typically match
with the latest decay constants provided in the Particle Data
Group (PDG) [12], and other analysis based on experimen-
tal results2 [111–115], as shown in Table 2. Furthermore, the
values used for β parameters are reasonably close to the latest
results obtained in the self-consistent CLFQM approach [61–
63], although the theoretical uncertainties used in our work
correspond to a wider range. On the other hand, for the Bc

meson, the scenario is different due to the lack of experi-
mental data and a wide range of decay constant estimates
available in the literature [28,63,116–119]. Thus, we have
used βbc̄ = (0.9207±0.0921) GeV, where the central value
(as obtained in Ref. [62]) reproduces the LQCD estimates for
decay constants.3 In addition, we have allowed larger uncer-
tainties typically to address the wide domain of decay con-
stant predictions that range from fBc = (371−489) MeV,

for various theoretical models [28,63,116–119]. In this work,
we have investigated the variation in the form factors and
their slope parameters forq2 dependence concerning changes
in constituent quark masses and β values. We contrast our
results in type-I and type-II correspondence schemes for form
factors as well as branching ratios for semileptonic and non-
leptonic decays. As mentioned earlier, we use three differ-
ent q2 formulations, namely, T2A, T2B, and T1, following
Eqs. (37), (39), and (38), respectively. The transition pole
masses given in Table 1 are used to calculate the form fac-
tors for both T2A and T2B, while we fix the mass of the
parent meson as the pole for T1. The form factors obtained
for bottom-conserving and bottom-changing transitions are
tabulated in Tables 4 and 5, respectively. We plot their q2

dependence for the available range 0 ≤ q2 ≤ q2
max =

2 The experimental averages for b-meson decay constants are not
available in PDG; however, recent LQCD predictions yield fB =
(190.0 ± 1.3) MeV [110], fBs = (230.3 ± 1.3) MeV [110].
3 The LQCD predicts the decay constant for Bc as fBc = (434 ±
15) MeV [119], for which the values of βbc̄ can be obtained.
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(MBc−MP(V ))
2, as shown in Figs. 2, 3, 4, and 5. We also plot

corresponding wave function overlap (Eq. (5)) and overlap
integrand (Eq. (27)) atq2 = 0, as shown in Figs. 6, 7, 8, and 9.
Using the numerical values of the form factors, we predict the
branching ratios for semileptonic decays of the Bc meson,4

as shown in Tables 6 and 7. In our calculations, we use the fol-
lowing values for the lepton mass: me = 0.511 MeV, mμ =
105.66 MeV, and mτ = 1776.86 MeV; CKM matrix ele-
ments: |Vub| = (3.82±0.20)×10−3, |Vcd | = 0.221±0.004,

|Vcs | = 0.975±0.006, and |Vcb| = (40.8±1.4)×10−3, and
lifetime of Bc meson: τBc = 0.51 ps [12]. It should be noted
that the uncertainties in the masses of mesons (leptons) and
other parameters have been neglected due to their consider-
ably smaller magnitude in comparison to the uncertainties in
both quark masses and β parameters. Also, we compare our
results of semileptonic branching ratios with the existing lit-
erature, as shown in Table 7. Besides determining the branch-
ing ratios, we also calculate the numerical values of various
physical observables, such as AFB(q2), Cl

F (q2), Pl
L(T )(q

2),

and α∗(q2), as listed in Table 6. Additionally, we plot the dif-
ferential decay rates and FB asymmetries for B+

c → Vl+νl
decays in Figs. 10 and 11, respectively. Finally, we utilize
the obtained form factors and the decay constants listed in
Table 2 to predict the branching ratios of nonleptonic Bc to
PV decays5. The obtained results are presented in Tables 8,
9, 10, and 11. We also compare our predictions for nonlep-
tonic branching ratios with other theoretical works, as shown
in Tables 12, 13, and 14. We discuss our numerical results as
follows.

3.1 Form factors

In this subsection, we discuss the results for the self-
consistent Bc to V transition form factors along with Bc to
P for bottom-conserving CKM-enhanced (�b = 0,�C =
−1,�S = −1) and suppressed (�b = 0,�C = −1,�S =
0) modes, as well as bottom-changing CKM-enhanced
(�b = −1,�C = −1,�S = 0; �b = −1,�C =
0,�S = 1) and suppressed (�b = −1,�C = 0,�S = 0)

modes. We also contrast the form factors in type-I and type-II
schemes corresponding to different q2 dependence formula-
tions, as presented in Tables 4 and 5. The form factors are
presented at q2 = 0 and at the maximum q2. The first and
second uncertainties on the form factors and slope parame-

4 The branching ratio is calculated from the decay rate expression given
in Eq. (41) by multiplying by τBc

h̄ .

5 Note that for η and η′ pseudoscalar states, we use η = 1√
2
(uū +

dd̄)sinφP − (ss̄)cosφP , η′ = 1√
2
(uū + dd̄)cosφP + (ss̄)sinφP , with

φP = θideal − θphysical , where θphysical = −15.4◦; for ω and φ vector
states, we consider ideal mixing, i.e., ω = 1√

2
(uū + dd̄) and φ =

1√
2
(ss̄) [12].

ters (a, b, a′
1, and a′

2) are from the constituent quark masses
and the β values, respectively. As noted earlier, to observe
the variation in both T2A and T2B form factors with respect
to q2, we plot these transition form factors, as shown in
Figs. 2, 3, 4, and 5. In order to numerically show the res-
olution of self-consistency, we analyzed the affected f (q2)

and a−(q2) form factors for λ = 0 and λ = ± polarization
states. As was mentioned, these form factors are affected by
inconsistency issues arising from the additional contributions
characterized by the coefficients B(2)

1 and B(3)
3 . We present

the numerical results for these form factors for respective
λ = 0 and λ = ± polarization states in both type-I and
type-II correspondence schemes. These results are shown in
Tables 15 and 16 of Appendix A. We list our observations as
follows.

3.1.1 Bottom-conserving transition form factors

(i) The bottom-conserving Bc → B(s) transitions are gov-
erned by c quark decays, for which the observed q2

range is limited to a narrow interval of 0 ≤ q2 ≤
(MBc −MB(s) )

2 
 1 GeV2. As a result, we expect these
form factors to show minimal variations corresponding
to the available q2 range, as shown in Fig. 2. The T2B
form factors, corresponding to z-series parameteriza-
tion, show more deviation than T2A form factors. This
is because different q2 formulations (Eqs. (37) and (39))
are used in the analyses. It must be noted that Bc → P
form factors are free from self-consistency issues, by
replacement of M ′(′′) → M ′(′′)

0 in type-II correspon-
dence, which results in modified numerical values. In
addition, the choice of q2 dependence between the two
schemes, i.e., Eqs. (37) and (39) in type-II and Eq. (38)
in type-I correspondence, will also lead to changes in
the numerical values of form factors and parameters
(a, b, a′

1, and a′
2). It is important to note that for the

type-I correspondence scheme, the numerical values are
computed using the parent pole mass in Eq. (38), as rec-
ommended in previous studies [44,63]. This approach
contrasts with the type-II correspondence, where we
employ transition pole masses in Eqs. (37) and (39).
We observe that Bc → B(s) form factors in the type-I
scheme show marginal change in F(0) values as com-
pared to the type-II scheme. However, the slope parame-
ters differ significantly between the two.6 In type-II cor-
respondence, the slope parameters a and b in T2A are
characterized by values less than unity. Conversely, for
the z-series parameterization (T2B), the coefficients a′

1
and a′

2 exhibit substantially larger magnitudes; unfortu-
nately, there cannot be any physical interpretation asso-

6 Note that the sign and magnitude of the slope parameters signify how
sharply the form factor varies with respect to allowed q2.
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Fig. 2 q2 dependence of bottom-conserving Bc → P form factors in T2A (T2B) CLFQM using Eq. (37) (Eq. (39))

Fig. 3 q2 dependence of bottom-conserving Bc → V form factors in T2A (T2B) CLFQM using Eq. (37) (Eq. (39))

ciated with these coefficients [13]. It is important to note
that the numerical values of the form factors in type-I
correspondence show a decreasing trend with respect
to q2 variation, in contrast to type-II correspondence.
This observed trend is the opposite of what has been
expected based on LQCD predictions [20]. As discussed
in Sect. 2.2, the parameters a, b, and F(0) are deter-
mined by fitting Eq. (38) in the space-like region and
then extrapolation to the physical region. The form fac-
tors within the type-I scheme take negative values for the
slope parameter a and substantially larger positive val-
ues for slope parameter b, which decreases on account
of transition pole masses, as reported in our previous

work [64]. This discrepancy is primarily attributed to
the specific q2 dependence formulation employed.7

(ii) As stated earlier, we analyze the effect of the varia-
tion in quark masses and β parameters on these form
factors, and we observe that the form factors are less
sensitive to the variation in constituent quark masses
and β values, which produce a collective uncertainty
up to ∼ 10% (for both T2A and T2B). In contrast, the
corresponding slope parameters a and b demonstrate
substantially higher uncertainties. Notably, the uncer-
tainties for T2A and T2B show broadly similar patterns
in response to quark mass and β parameter variations,
with a few exceptions. For the sake of comparison, we

7 It is worth mentioning that the q2 dependence given by Eq. (38)
exhibits a decreasing trend even for type-II correspondence. Similar
trends can be observed in the numerical values of the form factors
reported in other analyses within the type-I scheme [27,118]
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Fig. 4 q2 dependence of bottom-changing Bc → P form factors in T2A (T2B) CLFQM using Eq. (37) (Eq. (39))

list numerical results for P → P form factors in Table 4.
We observe that the numerical values of the form fac-
tors in type-II correspondence are larger than those of
the type-I scheme. Among the T2A and T2B results,
we observe that form factors are marginally different,
but uniformly larger numerical values are found for
T2B form factors, as shown in Table 4. Furthermore,
we wish to emphasize that the T2A (T2B) numerical

results for the form factors F
BcB(s)

0 (q2) and F
BcB(s)

1 (q2)

are in very good agreement with the LQCD observa-
tions [20], both at q2 = 0 and at q2

max. The LQCD
form factor results at both q2 = 0 and q2

max are as
follows [20]: FBcB

0[1] (0) = 0.555 ± 0.016 [0.555 ±
0.016], FBcB

0[1] (q2
max) = 0.756 ± 0.016 [0.910 ±

0.028]; FBcBs
0[1] (0) = 0.621 ± 0.010 [0.621 ± 0.010],

FBcBs
0[1] (q2

max)

= 0.817 ± 0.011 [0.911 ± 0.018]. For T2A and T2B,

the numerical values of Bc → B(s) form factors differ
by ∼ 8%(14%) and ∼ 12%(16%) at q2 = 0, respec-
tively, when compared to the LQCD results. How-
ever, the consistency improves at q2

max, particularly for
FBcB

0 (q2
max) in the T2A formulation, where the differ-

ence with LQCD results reduces to ∼ 3%. Further-
more, the LQCD results also show an increasing trend
with respect to the q2 variation as observed in the T2A
and T2B results. The characteristic feature of bottom-
conserving transitions, which was reported in our pre-
vious work [64], is that these form factors in the small
available q2 range show nearly flat behavior.

(iii) Similar to Bc → P transitions, we calculate the form
factors for bottom-conserving Bc → V transitions for
both type-I and type-II correspondences, as shown in
Table 4. It should be noted that in Bc → V tran-
sitions, V (q2) and A2(q2) form factors remain unaf-
fected by the spurious contributions associated with
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Fig. 5 q2 dependence of bottom-changing Bc → V form factors in T2A (T2B) CLFQM using Eq. (37) (Eq. (39))

Fig. 6 Overlap plots of Bc and B∗, B∗
s light-front wave function using Eq. (5), in T2A CLFQM. Note that overlap plots of Bc and B, Bs wave

function are similar to B∗, B∗
s , with roughly 10% increase in overlap area
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Fig. 7 Overlap plots of Bc and D∗, D∗
s , J/ψ light-front wave function using Eq. (5), in T2A CLFQM. Note that overlap plots of Bc and

D, Ds , ηc wave function will be similar; however, we observe approximately 15% and 26% change between Bc and D, ηc, and between Bc and
Ds , respectively

Fig. 8 Dependence of form factor F(x1) on x1 for Bc → P transition at q2 ≈ 0 GeV2, in T2A CLFQM using Eq. (27)
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Fig. 9 Dependence of form factor F(x1) on x1 for Bc → V transition at q2 ≈ 0 GeV2, in T2A CLFQM using Eq. (27)

the B(i)
j functions. Consequently, the results obtained

with the CLF approach for λ = 0 and λ = ± polar-
ization states of vector mesons are in agreement with
each other, regardless of whether type-I or type-II cor-
respondence schemes are employed. However, in the
type-I scheme, these zero-mode contributions lead to
inconsistency in A0(q2) and A1(q2) form factors for
Bc → V transitions. As described in the methodology
in Sect. 2, the type-II scheme effectively resolves the
issues corresponding to self-consistency and covariance
of the matrix elements [62]. We observe that in the type-
II scheme, zero-mode contributions associated with the
B(2)

1 and B(3)
3 functions vanish numerically in the form

factors f (q2) and a−(q2), as shown in Tables 15 and
16, in Appendix A. The obtained numerical results for
λ = 0 and λ = ± polarization states of f (q2) and
a−(q2) form factors show substantial disagreement in
the type-I scheme, whereas they are numerically equal
in the type-II correspondence. In addition, A0(q2) and
A1(q2) are related to the form factors f (q2) and a−(q2)

by the transformation relations given in Eq. (17). Thus,
the form factors A0(q2) and A1(q2) corresponding to
the longitudinal (λ = 0) and transverse (λ = ±) polar-
ization states are numerically equal. Hence, the numer-
ical results demonstrate that the type-II correspondence
effectively addresses these inconsistencies by substi-
tuting M ′(′′) → M ′(′′)

0 . Furthermore, we plot all the
bottom-conserving Bc → B∗

(s) transition form factors

to observe their variation with respect to q2, as shown in
Fig. 3. The form factors A0(q2), A1(q2), and A2(q2)

display a nearly flat behavior with respect to q2 like
the Bc → P form factors. In addition, the form fac-
tor V (q2) shows a reasonable variation in magnitude
corresponding to the available q2. However, while the
variations in V (q2) form factors seem to be significant
in Fig. 3 (due to their higher numerical values), they are
only roughly 20% larger than q2 = 0 for the T2A form
factors. In contrast, V (q2

max) is ∼ 30% larger than V (0)

for T2B. It should be noted that Bc → B∗
(s) form fac-

tors are more sensitive to the uncertainties in constituent
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00 quark masses and β values, leading to larger collective
uncertainties on the order of ∼ 30% and ∼ 40% for
V (0) and A2(0) form factors, respectively, in T2A pre-
dictions. For T2B, the maximum uncertainties are about
23% and 40% for V (0) and A2(0) form factors, respec-
tively. Such significant uncertainties were anticipated,
given the incorporation of a broad range of β param-
eter values alongside variations in quark masses. Fur-
thermore, the degree of sensitivity to quark mass and
β uncertainties varies among different form factors. On
the other hand, the uncertainties are substantially large
specifically for A0(0), i.e., up to ∼ 60%, in the type-
I scheme. At the same time, the slope parameters also
show larger uncertainties.

(iv) In general, the transition form factors essentially involve
the overlap integral of the initial- and final-state meson
wave functions, which depend upon the internal degrees
of freedom, mainly transverse momentum distributions
and constituent quark masses. Furthermore, in CLFQM,
the actual magnitude of these transitions has contri-
butions originating from vertex functions and current
operators. Therefore, we first plot the overlap8 of the
initial and final wave functions at q2 ≈ 0, where
we have integrated out k2⊥ using Eq. (5), as shown in
Fig. 6 with the corresponding overlap factor. The larger
wave function overlap can be explained by the internal
momentum distribution peaks at x1 ∼ 0 for ψ

B(∗)
(s)

(x1)

and x1 ∼ 0.25 for ψBc (x1), as per Eq. (5). The loca-
tion and width of the peak are governed by constituent
quark masses, where heavier quarks take a larger frac-
tion of momentum [120–122]. This results in a large
overlap between the initial and final states. The over-
lap factor inside the total integrand, therefore, leads to
a decisive change in the magnitude of the total form
factor. For further analysis, we also plot the total inte-
grand defined by Eq. (27) with respect to the momen-
tum fraction x1 for the Bc meson to P(V ) transition
form factors at q2 ≈ 0, as shown in Figs. 8 and 9. To
obtain these plots, we included the mass factors (given
by Eq. (17)) in Eq. (27) and integrated out k⊥. It should
be noted that the total integrand of transition form fac-
tors, e.g., Bc → B(∗)

(s) , follows exactly the same overlap
region which is governed by the initial and final wave
functions. The bottom-conserving transition form fac-
tors have larger amplitudes than the bottom-changing
form factors (as seen in Figs. 8 and 9). The area under
the curves gives the magnitude of the form factor for
the respective transitions, and we observe constructive
interference for the transition form factors except for

8 The normalization of Gaussian-type radial wave function of a meson

is described as
∫ 1

0 dx
∫ d2k′⊥

2(2π)3 |ψ(x1, k′⊥)|2 = 1 [65,120].
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Table 7 Branching ratios of B+
c → Vl+νl decays. For the definitions of T2A, T2B, and T1, refer to the caption of Table 4

Decay Ours [27] [32] [29] [35]

T2A (T2B) T1

B+
c → B∗0e+νe (2.09+0.20+0.38

−0.25−0.69) × 10−3 (9.42+0.63+3.28
−0.95−4.57) × 10−4 7.77 × 10−4 1.79 × 10−3 1.41 × 10−3 6.30 × 10−3

((2.32+0.19+0.31
−0.26−0.37) × 10−3)

B+
c → B∗0μ+νμ (1.98+0.19+0.37

−0.23−0.66) × 10−3 (8.57+0.59+9.89
−0.87−4.25) × 10−4 7.36 × 10−4 1.72 × 10−3 1.34 × 10−3 -

((2.20+0.18+0.29
−0.24−0.35) × 10−3)

B+
c → B∗0

s e+νe (3.53+0.15+0.49
−0.24−0.81) × 10−2 (1.80+0.02+0.35

−0.08−0.65) × 10−2 1.42 × 10−2 2.30 × 10−2 1.96 × 10−2 2.37 × 10−2

((3.76+0.13+0.32
−0.23−0.41) × 10−2)

B+
c → B∗0

s μ+νμ (3.30+0.14+0.46
−0.22−0.77) × 10−2 (1.62+0.02+0.33

−0.07−0.61) × 10−2 1.32 × 10−2 2.20 × 10−2 1.83 × 10−2 -

((3.52+0.12+0.29
−0.22−0.38) × 10−2)

B+
c → D∗0e+νe (1.04+0.38+0.00

−0.39−0.81) × 10−4 (4.44+2.82+5.08
−2.05−2.85) × 10−5 1.26 × 10−4 8.40 × 10−5 4.50 × 10−5 3.80 × 10−5

((1.37+0.28+0.00
−0.33−0.84) × 10−4)

B+
c → D∗0μ+νμ (1.04+0.38+0.00

−0.39−0.80) × 10−4 (4.42+2.81+5.06
−2.05−2.84) × 10−5 1.25 × 10−4 8.40 × 10−5 4.50 × 10−5 -

((1.37+0.28+0.00
−0.33−0.84) × 10−4)

B+
c → D∗0τ+ντ (5.82+2.28+0.00

−2.23−3.94) × 10−5 (1.79+1.43+2.39
−0.92−1.28) × 10−5 6.01 × 10−5 5.50 × 10−5 2.70 × 10−5 2.20 × 10−5

((8.18+1.52+0.00
−1.82−5.33) × 10−5)

B+
c → J/ψe+νe (2.35+0.36+0.04

−0.33−0.12) × 10−2 (1.88+0.11+0.06
−0.18−0.08) × 10−2 2.13 × 10−2 1.31 × 10−2 1.49 × 10−2 2.07 × 10−2

((2.36+0.38+0.04
−0.34−0.12) × 10−2)

B+
c → J/ψμ+νμ (2.34+0.36+0.04

−0.33−0.12) × 10−2 (1.87+0.11+0.06
−0.18−0.08) × 10−2 2.12 × 10−2 1.30 × 10−2 1.49 × 10−2 -

((2.35+0.37+0.04
−0.34−0.12) × 10−2)

B+
c → J/ψτ+ντ (5.77+0.88+0.03

−0.82−0.23) × 10−3 (4.46+0.22+0.14
−0.41−0.21) × 10−3 4.89 × 10−3 3.70 × 10−3 3.70 × 10−3 4.90 × 10−3

((5.82+0.96+0.03
−0.86−0.21) × 10−3)

ABcB∗
2 . We observe that the overlap integrand of ABcB∗

2
traverses both positive and negative regions with respect
to changes in x1. The positive and negative peaks are due
to the constructive and destructive interference of their
corresponding wave functions, and therefore should be
added with their respective signs to give the total mag-
nitude of the overlap integrand. It is worth noting that
among the Bc → B∗ transition form factors, the area
under the peak corresponding to the V (x1) integrand
is larger, which leads to the larger magnitude of the
form factor V BcB∗

(0), as listed in Table 4. Similar con-
clusions can be drawn for other transition form fac-
tors. Thus, the overlap integrand plots represent the
true behavior of form factors at q2 = 0. Furthermore,
the magnitude of the overlap is expected to increase
with respect to q2 to reach a maximum at q2

max. Since
the available q2 range is small, the overlap at q2

max is
expected to be roughly the same as that at q2 = 0.

Therefore, a flat behavior of the form factor is expected,
as seen in Figs. 2 and 3.

(v) As noted previously, the choice of the q+ = 0 frame
of reference restricts the calculation of the form factors
only in the space-like region for momentum transfer
q2 ≤ 0. To understand the physical decay process, we

need to know the form factors in the time-like region,
i.e., q2 > 0. This can be achieved by extrapolating the
form factors as appropriate functions of q2 (given by
Eqs. (37) and (39)), for which the knowledge of form
factors at q2 = 0 (see Figs. 8 and 9) is crucial. While
the two methods provide independent descriptions of
the form factors in space-like and time-like regions,
they are nonetheless complementary in nature [78] and
therefore provide a complete description of the decay
dynamics of the transition process for the full q2 range.
In our work, to determine the form factors over the
entire range, we utilize parameterization in Eq. (37)
that accommodates the contributions of meson reso-
nances of relevant spin and parity for the entire q2-
channel. Similarly, the parameterization in Eq. (39) iso-
lates meson resonances below the transition threshold
for the corresponding meson poles given in Table 1.
In the case of Bc to B(∗)

(s) , we use resonances D∗∗
(s) as

pole masses to analyzeq2 behavior throughout the avail-
able range. This can be explained through the confining
interaction between c and d̄(s̄) to produce D(s) meson
resonances that fluctuate into W -boson. In the physi-
cal region, the form factors at q2 = 0 are larger than
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Fig. 10 q2 variation in differential decay rates of B+
c → Vl+νl decays in T2A CLFQM using Eq. (41)

the values for bottom-changing transitions. This can be
understood as follows: For Bc → B(∗)

(s) transition, the
energy released to the final state is much smaller than
mb (because mc � mb, and M ′

0 ∼ mb); therefore, the
b quark remains almost unaffected. This is reflected in
the larger amplitude of the overlap integrand between
the initial and final states. The pole at M2

D∗∗
(s)

lies far

from the q2
max (� 1 GeV2), which is less than ∼ 25%

as compared to M2
D∗∗

(s)
(square of the pole mass). There-

fore, the effect of the pole contribution to the q2 vari-
ation in bottom-conserving Bc → B(∗)

(s) form factors is

smaller. Furthermore, the form factors F1(q2), V (q2),

and A0(q2) involving M1− and M0− poles are affected
by roughly (22 − 25)% for Bc → B(∗) transitions,
while Bc → B(∗)

s transitions are less affected, i.e., by
(5 − 7)%. Thus, these form factors show very small
variations in the 0 ≤ q2 ≤ q2

max. Similarly, F0(q2),

A1(q2), and A2(q2) are affected by M0+ and M1+ poles,
which lie farther away from q2

max, show the least vari-
ation with q2, and therefore show near flat behavior.

Additionally, the numerical values of the form factors
for Bc → B(∗)

(s) transitions at both q2 = 0 and q2
max

vary less than 5% between the T2A and T2B. There-
fore, we expect that the variation in the form factors
over a small q2 range in bottom-conserving transitions
can be reliably estimated by a simple VMD-type pole
behavior. However, the parameterizations described by
Eqs. (37) and (39) are necessary for the accuracy of
the numerical evaluation of the form factors. Moreover,
such extension beyond the available q2 range is impor-
tant for the understanding of semileptonic decays. This
is due to the distinct feature of the semileptonic decays
in which resonances are not only observed within the
kinematic range of meson decay, but also extend beyond
the available q2 region [85,86].

(vi) For Bc → B∗
(s) transitions, the slope parameters a and b

are numerically closer to unity in magnitude and are pos-
itive, except for the form factors ABcB∗

2 in type-II corre-
spondence for Eq. (37). Interestingly, the magnitude of

the parameter a is very small for A
BcB∗

s
2 and is negative
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Fig. 11 q2 variation in forward-backward asymmetries of B+
c → Vl+νl decays in T2A CLFQM using Eq. (50)

for ABcB∗
2 , which explains the flat behavior, as shown in

Fig. 3. We found that the numerical values of all the form
factors for the type-I scheme (using Eq. (38) and parent
pole mass) are less than 1, except for V (0), and the same
can be observed for T2A and T2B. Although the numer-
ical values of V (0) between T1 and T2A (T2B) differ
by an average of roughly 15%, the slope parameters are
substantially different. Interestingly, the slope param-
eter a is negative and greater than 1 for all the form

factors except A
BcB∗

(s)
1 . The parameter b has very large

values in the range of roughly 130 − 1150 (largest for
A0(q2) in type-I) with a positive sign. It may be noted
that both slope parameters (a and b) are exceptionally

large for the form factor A
BcB∗

(s)
0 . Similar observations

can be made for the remaining form factors, where the
slope parameters a and b are typically large for the
type-I scheme. Like the Bc → P bottom-conserving
transitions, we observe smaller numerical values for the
Bc → B∗

(s) form factors along with a decreasing trend
in the type-I scheme compared to type-II correspon-

dence (inclusive of both T2A and T2B predictions). In
addition, we observe that the form factors A0(q2) and
A1(q2) affected by the zero-mode contributions show a
substantial decrease in the numerical values with respect
to the type-I scheme. Furthermore, the A1(0) form fac-
tors change by ∼ 23% for both T2A and T2B in addition
to the a and b parameters. We want to emphasize that the
numerical values of the T2A and T2B Bc → B∗

(s) form
factors exhibit a significant variation in the magnitude
of A0(0) form factors, i.e., ∼ 90%(70%), compared to
type-I scheme. The impact of the spectator quark mass
on the numerical values of Bc → B∗

(s) transition form

factors over the available q2 is negligible, which was
also recently observed by LQCD calculations [20].

(vii) Furthermore, we analyze the z-series parameterization
of the form factors at maximum recoil point (a′

0), as
given in Eq. (39). The numerical results obtained from z-
series parameterization are surprisingly consistent with
those obtained from the q2 dependence used in Eq. (37).
In addition, the free parameters a′

1 and a′
2 take very large

values, as shown in Table 4. However, the sign for the
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1 parameter is consistently negative, and the a′
2 param-

eter is positive, except for ABcB∗
2 (q2). Further, the mag-

nitude of the a′
2 parameter is much larger than the a′

1
parameter because the coefficients take large values for
smaller ±|z|max (i.e., ≈ ±0.0008 for Bc to B(∗)

(s) transi-
tion). In addition, the uncertainties corresponding to the
quark masses and β values in a′

2 are larger than those of
thea′

1 parameter. As already pointed out, theq2 behavior
of power series expansion, as shown by T2B in Figs. 2
and 3, is consistent with the q2 behavior corresponding
to Eq. (37). However, it shows a relatively large variation
toward the maximum q2, particularly for V (q2) form
factors. Therefore, we reemphasize that both q2 formu-
lations for T2A (T2B) appear to be consistent with each
other within very small numerical variations.

3.1.2 Bottom-changing transition form factors

(i) The bottom-changing transitions typically exhibit a
wider range of q2 than bottom-conserving transitions.
In the case of Bc → D(∗) transition form factors, it is
expected that the q2 range will be considerably broader
with respect to Bc → ηc(J/ψ) form factors, spanning
from 0 ≤ q2 � 20 GeV2. This extended range offers an
opportunity to examine how the form factors are influ-
enced by the dependence on q2 and to highlight the
importance of the resonance pole contribution below the
threshold. We plot the bottom-changing Bc to P and V
transition form factors to observe their variation with
respect to q2, as shown in Figs. 4 and 5, respectively.
The form factors remain the same at q2 = 0 for all the
bottom-changing transitions in both T2A and T2B for-
mulations. For bottom-changing transitions, the slope
parameters of both Bc → P and Bc → V form fac-
tors are positive and in the range of a, b ⊂ (0, 2) and
a, b ⊂ (0, 3), respectively, as given in Table 5.

(ii) Similar to the bottom-conserving case, to understand
the dynamics of the Bc → D(∗) transitions, we plot
the wave function overlap between the initial ψBc (x1)

and final ψD(∗) (x1) wave functions at q2 = 0 using
Eq. (5), as shown in Fig. 7a. Due to the limited overlap
near q2 = 0, the numerical values of the form factors
are expected to be smaller than those for Bc → B(∗)

(s)
and Bc → ηc(J/ψ) transitions. Since the fraction of
momentum carried by the spectator c quark is of the
order of the decaying b quark, u quark takes minimal
momentum. Consequently, ψD(∗) (x1) exhibits its maxi-
mum near x1 ∼ 1/4 with a larger width, while the peak
for ψBc (x1) lies at x1 ∼ 3/4. The available q2 for Bc

to D(∗) transitions is significantly large (0 ≤ q2 � 20
GeV2); hence, these b → u transitions involve B∗∗
poles fluctuating in the weak current bu. Moreover, the

123



Eur. Phys. J. C           (2025) 85:204 Page 31 of 48   204 

Table 12 Branching ratios of bottom-conserving Bc → PV decays as predicted in other models

Decay RIQM [38] RCQM [35] RQM [33] QCDF [42]

B+
c → π+B∗0

s 8.61 × 10−2 2.1 × 10−2 1.6 × 10−2 –

B+
c → K

0
B∗+ 2.26 × 10−2 8.8 × 10−4 1.1 × 10−3 –

B+
c → B+K

∗0
1.83 × 10−2 1.1 × 10−3 9.0 × 10−4 3.72 × 10−3

B+
c → B0

s ρ+ 9.97 × 10−2 2.3 × 10−2 1.4 × 10−2 4.44 × 10−2

B+
c → K+B∗0

s 4.99 × 10−3 1.3 × 10−3 1.1 × 10−3 –

B+
c → π+B∗0 5.55 × 10−3 5.7 × 10−4 2.6 × 10−4 –

B+
c → π0B∗+ 4.70 × 10−4 2.0 × 10−5 1.0 × 10−5 –

B+
c → B+ρ0 1.06 × 10−3 7.1 × 10−5 5.0 × 10−5 2.86 × 10−4

B+
c → B+ω – – – 2.05 × 10−4

B+
c → B0ρ+ 1.30 × 10−2 2.0 × 10−3 1.3 × 10−3 5.32 × 10−3

B+
c → B0

s K
∗+ 4.00 × 10−4 1.1 × 10−4 3.0 × 10−5 1.25 × 10−4

B+
c → K+B∗0 3.90 × 10−4 3.6 × 10−5 4.0 × 10−5 –

B+
c → B+K ∗0 – – – 1.07 × 10−5

B+
c → B0K ∗+ 3.20 × 10−5 4.8 × 10−5 4.0 × 10−5 1.06 × 10−4

Table 13 Branching ratios of bottom-changing B+
c → D(∗)+

(s) D
(∗)0

and D(∗)+
(s) D(∗)0 decays as predicted in other models

Decay RIQM [38] pQCD [40] RCQM [35] PDG [12]

B+
c → D0D∗+

s 4.18 × 10−7 2.5 × 10−6 9.3 × 10−6 < 9.0 × 10−4

B+
c → D+

s D∗0 2.25 × 10−7 1.9 × 10−6 1.3 × 10−6 < 6.6 × 10−4

B+
c → D+D∗0 8.00 × 10−9 7.0 × 10−8 5.2 × 10−8 < 3.7 × 10−4

B+
c → D0D∗+ 1.80 × 10−8 9.0 × 10−8 4.4 × 10−7 < 2.0 × 10−4

B+
c → D

0
D∗+
s 3.15 × 10−7 7.0 × 10−8 6.5 × 10−7 < 5.3 × 10−4

B+
c → D+

s D
∗0

4.91 × 10−7 2.6 × 10−7 2.4 × 10−6 < 4.6 × 10−4

B+
c → D

0
D∗+ 1.60 × 10−6 1.2 × 10−6 8.8 × 10−6 < 3.8 × 10−4

B+
c → D+D

∗0
2.61 × 10−5 3.4 × 10−6 3.8 × 10−5 < 6.5 × 10−4

Table 14 Branching ratios of bottom-changing Bc → PV decays involving one charmonium (ηc(J/ψ)) state as predicted in other models

Decay CLFQM (Type-I) [28] RIQM [39] pQCD [41] RCQM [35]

B+
c → D+

s J/ψ 6.09 × 10−3 1.15 × 10−3 8.05 × 10−3 3.4 × 10−3

B+
c → D+ J/ψ 2.00 × 10−4 3.69 × 10−5 2.80 × 10−4 1.5 × 10−4

B+
c → K+ J/ψ 1.60 × 10−4 3.00 × 10−5 1.90 × 10−4 1.3 × 10−4

B+
c → π+ J/ψ 1.97 × 10−3 3.80 × 10−4 2.33 × 10−3 1.7 × 10−3

B+
c → ηcD∗+

s 6.97 × 10−3 2.16 × 10−3 1.65 × 10−2 3.7 × 10−3

B+
c → ηcD∗+ 3.10 × 10−4 7.60 × 10−5 5.80 × 10−4 1.9 × 10−4

B+
c → ηcK ∗+ 3.40 × 10−4 6.30 × 10−5 5.70 × 10−4 2.5 × 10−4

B+
c → ηcρ

+ 6.01 × 10−3 1.20 × 10−3 9.83 × 10−3 4.5 × 10−3
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Table 15 f (q2) and a−(q2) form factors of bottom-conserving Bc → V transitions for λ = 0 and λ = ± polarization states in type-II and type-I
schemes at different q2 in the space-like region

Form factor Type-II scheme Type-I scheme

q2⊥ = 0.01 q2⊥ = 0.1 q2⊥ = 1.0 q2⊥ = 5.0 q2⊥ = 10.0 q2⊥ = 0.01 q2⊥ = 0.1 q2⊥ = 1.0 q2⊥ = 5.0 q2⊥ = 10.0

Bc → B∗

[ f (q2)]λ=0 −6.54 −6.36 −4.84 −1.62 −0.50 −5.23 −5.11 −3.99 −1.41 −0.44

[ f (q2)]λ=± −6.54 −6.36 −4.84 −1.62 −0.50 −5.32 −5.16 −3.86 −1.21 −0.35

[a−(q2)]λ=0 −0.85 −0.81 −0.52 −0.10 −0.02 7.51 −0.58 −0.87 −0.19 −0.04

[a−(q2)]λ=± −0.85 −0.81 −0.52 −0.10 −0.02 −1.21 −1.16 −0.73 −0.15 −0.03

Bc → B∗
s

[ f (q2)]λ=0 −8.07 −7.84 −6.00 −2.12 −0.70 −6.50 −6.34 −4.96 −1.83 −0.62

[ f (q2)]λ=± −8.07 −7.84 −6.00 −2.12 −0.70 −6.59 −6.40 −4.83 −1.61 −0.51

[a−(q2)]λ=0 −0.86 −0.82 −0.55 −0.12 −0.03 8.32 −0.49 −0.89 −0.22 −0.05

[a−(q2)]λ=± −0.86 −0.82 −0.55 −0.12 −0.03 −1.21 −1.16 −0.76 −0.17 −0.04

Table 16 f (q2) and a−(q2) form factors of bottom-changing Bc → V transitions for λ = 0 and λ = ± polarization states in type-II and type-I
schemes at different q2 in the space-like region

Form factor Type-II scheme Type-I scheme

q2⊥ = 0.01 q2⊥ = 0.1 q2⊥ = 5.0 q2⊥ = 10.0 q2⊥ = 20.0 q2⊥ = 0.01 q2⊥ = 0.1 q2⊥ = 5.0 q2⊥ = 10.0 q2⊥ = 20.0

Bc → D∗

[ f (q2)]λ=0 −1.26 −1.26 −0.90 −0.65 −0.36 −1.16 −1.15 −0.83 −0.61 −0.34

[ f (q2)]λ=± −1.26 −1.26 −0.90 −0.65 −0.36 −1.09 −1.08 −0.77 −0.56 −0.31

[a−(q2)]λ=0 −0.02 −0.02 −0.01 −0.01 −0.004 −6.89 −0.73 −0.04 −0.02 −0.01

[a−(q2)]λ=± −0.02 −0.02 −0.01 −0.01 −0.004 −0.05 −0.05 −0.03 −0.02 −0.01

Bc → D∗
s

[ f (q2)]λ=0 −1.65 −1.64 −1.19 −0.87 −0.49 −1.51 −1.50 −1.10 −0.81 −0.47

[ f (q2)]λ=± −1.65 −1.64 −1.19 −0.87 −0.49 −1.44 −1.43 −1.03 −0.76 −0.43

[a−(q2)]λ=0 −0.03 −0.03 −0.02 −0.01 −0.01 −7.06 −0.76 −0.05 −0.03 −0.01

[a−(q2)]λ=± −0.03 −0.03 −0.02 −0.01 −0.01 −0.06 −0.06 −0.04 −0.02 −0.01

Bc → J/ψ

[ f (q2)]λ=0 −5.61 −5.59 −4.53 −3.69 −2.53 −5.14 −5.12 −4.16 −3.41 −2.36

[ f (q2)]λ=± −5.61 −5.59 −4.53 −3.69 −2.53 −5.09 −5.07 −4.11 −3.35 −2.29

[a−(q2)]λ=0 −0.08 −0.08 −0.06 −0.05 −0.03 −4.49 −0.58 −0.11 −0.08 −0.05

[a−(q2)]λ=± −0.08 −0.08 −0.06 −0.05 −0.03 −0.14 −0.14 −0.10 −0.08 −0.04

q2
max is around 65% of the M2

B∗∗ � 34 GeV2, which

is not far from the q2
max, in contrast to Bc → B(∗)

(s)
transitions. Thus, we expect reasonable contributions
from the resonance poles in the available q2 range,
as shown in Figs. 4 and 5. As a result, the form fac-
tors will have larger numerical values at q2

max, as can
be seen from Table 5. As previously noted, in addi-
tion to the wave function overlap factor (described in
Sect. 3.1.1(iv)), the magnitude of the form factors is fur-
ther influenced by contributions from vertex functions
and current operators as depicted in Eq. (27). Thus, simi-
lar to the Bc → B(∗)

(s) form factors, we also plot the total
integrand for bottom-changing transition form factors

with respect to the momentum fraction x1, as shown in
Figs. 8 and 9. Note that the total integrand of bottom-
changing transition form factors shows a substantial
decrease in magnitude compared to bottom-conserving
transition form factors. Additionally, we observe con-
structive interference for all the bottom-changing tran-
sition form factors.

(iii) As stated previously, we wish to emphasize that our

numerical values of form factors F
BcD(s)

0 (q2) and

F
BcD(s)

1 (q2) are in excellent agreement with the LQCD
predictions [21]. The form factor results from LQCD
both at q2 = 0 and q2

max are as follows [21]: FBcD
0[1] (0) =
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Table 17 Branching ratios of B+
c → Pl+νl decays. For the definitions of T2A, T2B, and T1, refer to the caption of Table 4

Decay Type-II scheme Type-I scheme

T2A T2B T1

B+
c → B0e+νe (9.12+1.76+0.82

−1.55−1.72) × 10−4 (1.27+0.25+0.00
−0.23−0.02) × 10−3 (5.00+0.74+1.84

−0.68−2.04) × 10−4

B+
c → B0μ+νμ (8.79+1.71+0.76

−1.50−1.63) × 10−4 (1.21+0.24+0.00
−0.21−0.02) × 10−3 (4.79+0.69+1.73

−0.64−1.91) × 10−4

B+
c → B0

s e
+νe (1.56+0.20+0.10

−0.23−0.22) × 10−2 (2.03+0.29+0.00
−0.31−0.04) × 10−2 (1.06+0.10+0.24

−0.12−0.33) × 10−3

B+
c → B0

s μ+νμ (1.48+0.20+0.09
−0.22−0.20) × 10−2 (1.90+0.28+0.00

−0.30−0.04) × 10−2 (1.01+0.10+0.22
−0.12−0.30) × 10−3

B+
c → D0e+νe (2.89+1.95+1.17

−1.12−1.15) × 10−5 (1.77+0.91+0.64
−0.57−0.55) × 10−5 (1.36+1.02+0.80

−0.55−0.60) × 10−5

B+
c → D0μ+νμ (2.89+1.94+1.17

−1.12−1.15) × 10−5 (1.77+0.91+0.64
−0.56−0.55) × 10−5 (1.36+1.01+0.80

−0.54−0.60) × 10−5

B+
c → D0τ+ντ (2.18+1.47+0.77

−0.86−0.83) × 10−5 (1.13+0.58+0.41
−0.36−0.35) × 10−5 (7.83+6.93+5.36

−3.52−3.93) × 10−6

B+
c → ηce+νe (7.76+0.26+0.09

−0.24−0.35) × 10−3 (6.60+0.20+0.18
−0.20−0.39) × 10−3 (7.48+0.32+0.17

−0.29−0.43) × 10−3

B+
c → ηcμ

+νμ (7.73+0.26+0.09
−0.24−0.35) × 10−3 (6.57+0.20+0.18

−0.20−0.38) × 10−3 (7.46+0.32+0.17
−0.29−0.43) × 10−3

B+
c → ηcτ

+ντ (2.29+0.05+0.02
−0.05−0.10) × 10−3 (1.78+0.05+0.05

−0.05−0.11) × 10−3 (2.18+0.07+0.05
−0.06−0.13) × 10−3

0.186±0.023 [0.186±0.023], FBcD
0[1] (q2

max) = 0.668±
0.020 [1.50±0.18]; FBcDs

0[1] (0) = 0.217±0.018 [0.217±
0.018], FBcDs

0[1] (q2
max) = 0.736 ± 0.011 [1.45 ± 0.12].

The numerical values of Bc → D form factors differ by
∼ 9% at q2 = 0 compared to the LQCD results. How-
ever, the agreement substantially improves at q2

max for
FBcD

0 (q2
max) and FBcD

1 (q2
max) for T2A and T2B, respec-

tively. Furthermore, for the Bc → Ds form factors, our
results are in good agreement with the LQCD results,
where the results match within ∼ 15%. It is interest-
ing to note that the q2 variation in T2B form factors
in Fig. 4 shows behavior similar to that observed in
LQCD [21]. The numerical values of the form factors in
T2B vary more sharply near the maximum q2 than those
in T2A. It is significant that the pole at M2

B∗∗
(s)

lies away

from q2
max, i.e., ∼ (50−70)% of M2

B∗∗
(s)

for Bc → D(∗)
(s)

transitions. Furthermore, the form factors F0(q2) and
F1(q2) receive pole contributions from M0+ and M1− ,

respectively, which result in visibly different behavior
corresponding to the squared mass of resonances. We
observe similar q2 behavior for the Bc → D∗

(s) form

factors. In addition, the form factors V (q2) and A0(q2)

which receive pole contributions from the M1− and M0−
poles show expected behavior. In addition, the form fac-
tors A1(q2) and A2(q2) that receive contributions from
M1+ poles vary less sharply, as expected. Furthermore,
we notice that the effect of the variation in the quark
masses and β parameters leads to larger uncertainties
in the Bc → D(s) form factors, as much as ∼ 40%,

which has not been previously analyzed and reported in
the literature. In contrast, the uncertainties in Bc → ηc
form factors are as small as ∼ 3%. These observations

highlight the importance of the quantitative perspective
of this analysis.

(iv) One of the most peculiar aspects of bottom-changing
transition form factors, especially for Bc → V, is that
they have larger values of a and b parameters due to
the smaller magnitude of form factors as compared to
bottom-conserving ones. It is worth mentioning that
even though the values of all the bottom-changing tran-
sition form factors at q2 = 0 are numerically simi-
lar between type-I and type-II schemes (except A0(q2)

and A1(q2)), their respective slope parameters as well
as values at q2

max differ significantly with larger magni-
tudes, observed exclusively for parameter b. This shows
that the form factors with q2 dependence given by
Eq. (38) vary more sharply. It should be emphasized that
similar to the bottom-conserving transition form factors
in the type-I scheme, we observe significant numerical
variation in the magnitudes of the form factors A0(0)

and A1(0), i.e., ∼ 30% and ∼ 10%, respectively, com-
pared to both T2A and T2B for Bc → D∗

(s) transitions.
Therefore, the effect of self-consistency cannot be deter-
mined simply from the numerical values of the affected
form factors at q2 = 0. In particular, in the z-series
parameterization (T2B), the values of the form factors
at the maximum recoil point (a′

0) are comparable to
those of the T2A form factors at q2 = 0; however, they
differ significantly at q2

max. For the Bc → D∗ transition,
the numerical values of A0(0) differ by ∼ 30% between
T1 and T2B. On the other hand, the free parameters a′

1
and a′

2 have large values and follow a consistent pattern
across all the Bc → V bottom-changing transitions.
Among these, Bc to D(∗)

(s) transitions have smaller val-
ues of a′

1 and a′
2 as compared to transitions involving

charmonia, due to the larger value of ±|z|max = ±0.039
for D(∗)

(s) mesons.
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(v) In the case of Bc → D∗
(s) bottom-changing transitions,

the form factors show increased sensitivity to uncertain-
ties in constituent quark masses and β values, result-
ing in more substantial collective uncertainties. For
instance, we observe a maximum uncertainty of approx-
imately 86% for the ABcD∗

2 (0) form factor. As stated ear-
lier, the quantitative analysis of Bc → D∗

(s) transition
form factors highlights the critical role of uncertain-
ties propagating through the form factors via the input
parameters. We believe that these uncertainties are cru-
cial for the accurate assessment of both semileptonic
and nonleptonic decay processes. In addition, the slope
parameters associated with these transitions demon-
strate increased uncertainties. It should be noted that
the uncertainties corresponding to the quark mass are
smaller than those of β values for the form factors A0(0)

and A1(0), while the remaining form factors show com-
parable variations. As previously noted, we observe
the maximum collective uncertainties of approximately
60% in the case of V (0) and A2(0) for both T2A and
T2B scenarios, exhibiting similar behavior, i.e., demon-
strating roughly comparable sensitivity to β parame-
ters and quark masses. In general, a comparison of the
numerical values of the form factors between type-I and
type-II correspondence schemes reveals that the effect
of self-consistency and covariance leads to significant
changes in the numerical values of A0(q2) and A1(q2).

The type-I scheme exhibits similar sensitivity to quark
masses and β values in the Bc → D∗

(s) transition form
factors. In addition, as observed in bottom-conserving
transitions, the A0(q2) form factor shows a decreasing
trend, contrasting with the behavior of the A1(q2) form
factor as q2 is varied within the type-I scheme. Such
deviations between the two schemes are expected to be
decisive for the study of weak semileptonic and nonlep-
tonic decays. We also observe that the effects of self-
consistency on bottom-changing transition form factors
are smaller than those of bottom-conserving transition
form factors.

(vi) Among the bottom-changing transitions, we observe
that Bc decaying to charmonium states have larger
numerical values of the form factors. This is because,
in Bc → cc meson transitions, the fractional momen-
tum of the charm quark in the final state is of the order
of the spectator c quark. Therefore, ψηc(J/ψ)(x1) have
a peak near x ∼ 1/2 which shows a larger overlap
with ψBc (x1) at x ∼ 3/4 as compared to the overlap
between ψBc (x1) and ψ

D(∗)
(s)

(x1) (see Fig. 7c); in fact,

the overlap is even larger than for the bottom-conserving
transitions. As explained earlier, the form factor is not
determined solely by the wave function overlap area.
It is influenced by the vertex functions and mass fac-

tors (given by Eq. (17)) introduced in the integrand
given by Eq. (27). This yields an intermediate integrand
amplitude for the Bc → ηc(J/ψ) form factors that lie
between those of the Bc → B(∗)

(s) and Bc → D(∗)
(s) form

factors, even though the former possess a larger overlap
factor. Thus, the overlap plots for the total integrand are
shown in Figs. 8 and 9. A similar trend can be observed
for T2B and T1 results using the q2 dependence given
by Eqs. (39) and (38), respectively. It may be noted that
for Bc → ηc(J/ψ), the resonance pole M2

B∗∗
c

lies much
farther as compared to the Bc → D∗

(s) transitions, which

is ∼ (21−26)% of M2
B∗∗
c

. Furthermore, we observed
that, similar to other bottom-changing transition form
factors, Bc → ηc(J/ψ) form factors show increasing
behavior toward the maximum q2, though less sharply,
as shown in Figs. 4 and 5. The T2A and T2B q2 for-
mulations show roughly similar behavior. In addition, it
is interesting to note that the effects of self-consistency
on bottom-changing Bc → J/ψ transition form factors
are minimal as compared to both bottom-conserving and
other bottom-changing transition form factors. Interest-
ingly, we note that Bc → J/ψ form factors are least
affected by the quark mass and β uncertainties (for both
type-I and type-II schemes), i.e., the maximum uncer-
tainty of ∼ 14% for the A0(0) form factor, while the
rest of the form factors have even smaller uncertainties.

We have employed type-I and type-II correspondence
schemes for Bc → P and Bc → V transition form factors
for both bottom-conserving and bottom-changing transitions.
Moreover, we confirm that on the application of type-II cor-
respondence (T2A and T2B), the Bc to V transition form
factors are self-consistent, i.e., zero-mode contributions van-
ish numerically. We now proceed to calculate the branching
ratios of semileptonic Bc → Plνl and Bc → Vlνl decays
involving Bc → P and V transition form factors, respec-
tively.

3.2 Semileptonic decays

In this subsection, we study the branching ratios of the
semileptonic Bc meson decays obtained by using the tran-
sition form factors given in Tables 4 and 5. We list our pre-
dictions of the branching ratios of B+

c → Vl+νl in type-II
correspondence (T2A) as shown in Table 6. In addition, we
list the relative decay widths and the average values of other
observables for the Bc transitions including the FB asym-
metry (〈AFB〉), convexity parameter (〈Cl

F 〉), longitudinal
(transverse) (〈Pl

L(T )〉) polarization of the charged lepton, and
asymmetry parameter (α∗) for T2A in Table 6. Furthermore,
we contrast the semileptonic branching ratios using T2B and
T1 (type-I scheme) form factors, as tabulated in columns
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2 and 3 of Table 7, respectively. In addition, we compute
the uncertainties in the branching ratios propagating through
form factor uncertainties. The uncertainties corresponding
to the quark masses and β values are treated independently.
Moreover, we compare these results with other theoretical
predictions from Refs. [27,29,32,35], as given in Table 7.
Additionally, we plot theq2 variation of the differential decay

rates and AFB(q2) of B+
c → Vl+νl decays in Figs. 10 and 11,

respectively.

3.2.1 Bottom-conserving decays

The bottom-conserving CKM-enhanced (�b = 0,�C =
−1,�S = −1) and CKM-suppressed (�b = 0,�C =
−1,�S = 0) semileptonic decay modes of Bc mesons
undergo kinematic suppression due to the large mass of the
B∗

(s) meson in the final states. These semileptonic decay pro-
cesses provide an excellent opportunity to observe the effects
of form factors on the branching ratios and, therefore, to test
the theoretical models. In addition to form factors, kinematic
and CKM factors play an important role in determining their
magnitude. We analyzed B+

c → B∗0
(s)l

+νl decays using the
self-consistent CLFQM. We observed the following.

(i) We observe that the branching ratios of bottom-
conserving decays are of O(10−2) to O(10−3) despite
the kinematic suppression. Among these decays, the
CKM-enhanced modes have dominant branching ratios,
i.e.,B(B+

c → B∗0
s e+νe) = (3.53+0.15+0.49

−0.24−0.81)×10−2 and

B(B+
c → B∗0

s μ+νμ) = (3.30+0.14+0.46
−0.22−0.77) × 10−2, as

listed in Table 6 for T2A. This is because the kinematic
suppression is dominated by the CKM factor (Vcs). On
the other hand, the branching ratios of Bc → B∗lνl
decays involving c → d transition (governed by Vcd)
are smaller by an order of magnitude. In general, the
branching ratios of P → V semileptonic decays are
expected to be larger than P → P decays, which can
also be observed from our results. We found that our
results are in good agreement with recent LQCD predic-
tions within the uncertainties [20]. Although we focused
on P → V semileptonic decays of the Bc meson, we
also list B+

c → Pl+νl decays in CLFQM for T2A, T2B,

and T1, as shown in columns 2, 3, and 4 of Table 17,
respectively, in Appendix B. The LQCD results of
bottom-conserving branching ratios are as follows [20]:
B(B+

c → B0l+νl) = (8.47±0.31±0.43±0.24)×10−4

and B(B+
c → B0

s l
+νl) = (1.348 ± 0.046 ± 0.033 ±

0.043) × 10−2. In an effort to ensure the reliability of
the CLF approach, we compare the decay width ratios
of our results with LQCD expectations:

T2A T2B LQCD [20]

�(B+
c → B0

s e
+νe)|Vcd |2

�(B+
c → B0e+νe)|Vcs |2

= 0.88+0.20+0.21
−0.20−0.10 0.82+0.19+0.02

−0.20−0.00 0.759 ± 0.044;
�(B+

c → B0
s μ

+νμ)|Vcd |2
�(B+

c → B0μ+νμ)|Vcs |2
= 0.87+0.20+0.20

−0.20−0.09 0.81+0.19+0.02
−0.20−0.00 0.759 ± 0.044.

Our results are in good agreement with LQCD ratios
for T2B (q2 formulation); however, they are marginally
larger for T2A (q2 formulation).9 Moreover, the semilep-
tonic branching ratios of bottom-conserving modes for
T2A are smaller by ∼ (22−28)% as compared to T2B
results. It may be noted that the uncertainties in our
branching ratios for T2A (T2B), stemming individually
from both quark masses and β parameters, are generally
modest, with maximum deviations of the O(20%), as
shown in Table 17. Furthermore, the T1 predictions for
semileptonic branching ratios of B+

c → B0
(s) l

+νl are
∼ 45%(93%) smaller than those of T2A and roughly
∼ 60%(95%) smaller than those of T2B. The form
factors, F0(q2) and F1(q2), are not subject to self-
consistency issues within CLFQM. Consequently, the
numerical discrepancies observed in the type-II cor-
respondence scheme for decays involving F0(q2) and
F1(q2) form factors can be attributed to variations aris-
ing from different q2 formulations. Similarly, for Bc →
B∗

(s)lνl decays, we predict the following:

T2A T2B

�(B+
c → B∗0

s e+νe)|Vcd |2
�(B+

c → B∗0e+νe)|Vcs |2
= 0.87+0.12+0.35

−0.09−0.20 0.83+0.09+0.19
−0.06−0.17;

�(B+
c → B∗0

s μ+νμ)|Vcd |2
�(B+

c → B∗0μ+νμ)|Vcs |2
= 0.86+0.11+0.35

−0.09−0.20 0.82+0.09+0.18
−0.06−0.16.

(ii) Due to larger uncertainties in the form factors corre-
sponding to β parameters than constituent quark masses,
the semileptonic branching ratios show greater sensitiv-
ity to variation in β parameters, leading to enhanced
uncertainties. The uncertainties in β (quark mass) result

9 Note that the uncertainties in the ratios of the branching fractions are
bound to increase because of their additive nature. As mentioned before,
we have ignored the uncertainties of the CKM factors in our analysis.
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in a maximum change in branching ratios on the order
of ∼ 33% (∼ 12%) for B+

c → B∗0l+νl decays. On
the other hand, the uncertainties for B+

c → B∗0
s l+νl

are smaller, with a maximum deviation of approxi-
mately 18% inclusive of the uncertainties from both
quark mass and β values. Notably, for B+

c → B∗0
(s)l

+νl
decays, uncertainties range from approximately 18% to
45% collectively. Such an expanded range of uncertain-
ties would provide a reasonable scope for experimental
investigations.

(iii) The Bc → Vlνl branching ratios are mainly influenced
by the form factors V (q2), A1(q2), and A2(q2). How-
ever, it is worth mentioning that the contribution of
the form factor A0(q2) to these branching ratios can
be considered insignificant (see Eq. (41)). It is well
known that in the semileptonic P → V weak decays,
the contribution from the form factor A2(q2) can be
ignored due to the negligible coefficient in the decay
rates [29,123]. Furthermore, the branching ratios of the
semileptonic decays depend upon the magnitude and
signs of the form factors. We want to emphasize that the
numerical values of the form factors, especially A0(q2)

and A1(q2), have changed significantly in type-II cor-
respondence (T2A and T2B formulations). Therefore,
to quantify the effect of self-consistency on the branch-
ing ratios of the semileptonic decay modes, we com-
pared our results with those of type-I correspondence
(T1). We found that the numerical results for T2A are
enhanced by ∼ (50−60)% as compared to the branch-
ing ratios in T1. Similar observations can be made for
the comparison between T2B and T1 results, because the
results between T2B and T2A differ by less than ∼ 10%
for bottom-conserving modes. As expected, the differ-
ences between the results for type-I and type-II corre-
spondences (inclusive of T2B) are sufficiently large and
hence cannot be ignored. It may be emphasized that the
uncertainties in the type-I scheme results, arising from
variations in form factors, are considerably larger than
those in the type-II scheme results, in some cases dif-
fering by an order of magnitude. In addition, we also
compared our results with other works [27,29,32,35],
as listed in columns 4–7 of Table 7. We found that our
results for bottom-conserving semileptonic decays are
of the same order as compared to predictions from other
theoretical models, except for B+

c → B∗0l+νl by Li et
al. [27], which employs the CLFQM framework within
the type-I scheme.

(iv) The mass difference between the electrons and muons
has minimal impact (∼ 6%) on the branching ratios
and other physical observables of bottom-conserving
semileptonic Bc → B∗

(s) decays. Additionally, the com-
parative variation in bottom-conserving semileptonic
differential decay rates for e and μ lepton modes with

respect to q2 is plotted in Figs. 10a, b. It should be
noted that in semileptonic decay processes, the phys-
ical observables depend on the mass of the final lep-
ton, with q2

min = m2
l (assuming the mass of a neu-

trino is negligible). The differential decay rate plots
show distinct peaks corresponding to the lepton mass
for the available q2 range, with the same endpoints at
q2

max as expected. We also have calculated relative lon-
gitudinal and transverse decay widths, and their ratios
for bottom-conserving B+

c → Vl+νl decays, as shown
in columns 4, 5, and 6 of Table 6, respectively. It is
noteworthy to mention that the longitudinal compo-
nent of the decay widths dominates the transverse com-
ponent. The magnitude of this difference is relatively
modest, with the longitudinal component exceeding the
transverse by approximately (4−6)%. The longitudi-
nal decay widths of Bc → B∗

(s)lνl decays decrease
marginally with increasing lepton mass.

(v) As noted, we also calculated the longitudinal and trans-
verse decay widths for Bc → B∗

(s)lνl decays. We
observe that longitudinal decay widths marginally dom-
inate over the transverse. We also calculated the expecta-
tion values of FB asymmetry, 〈AFB〉, using Eq. (50), as
shown in column 7 of Table 6. As discussed previously,
the AFB is considered as a more discriminating probe
for uncovering physics beyond the SM as compared to
branching ratios [124]. The FB asymmetry, being sen-
sitive to the difference in helicity amplitudes, is suscep-
tible to sign changes induced by helicity flip factors,
particularly for the heavier lepton.10 In addition to the
sensitivity to NP contributions, AFB provides the test
SM predictions of lepton universality, and constraints
on possible nonstandard interactions. It is noteworthy
that all of the AFB(B+

c → Vl+νl) values are nega-
tive. The negative values of AFB in bottom-conserving
semileptonic decays reflect the dominance of the parity-
violating helicity structure-function, HP , particularly
with a larger contribution from H− amplitude. The
HSL contributions (associated with helicity flip factor)
are negligible for electron decay modes, and their val-
ues increase with increasing lepton mass. We observe
that the magnitude of HSL in AFB(B+

c → B∗0
(s)μ

+νμ)

increases by (16−19)%, leading to a more negative
value. In addition to the minimal discrepancy between
T2A and T2B in form factors and semileptonic branch-
ing ratios, a similar trend can be observed for AFB and
other observables. Note that the calculations for observ-
ables beyond branching ratios have not been reported in
the existing literature in the CLFQM approach. Conse-
quently, we exclusively present the physical observables

10 In Eq. (50), the helicity flip factor is generally associated with HSL ,

which can change significantly with lepton mass.
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obtained from the T2A formulation. Furthermore, we
plot the q2 variation in the FB asymmetry of B+

c →
B∗0

(s)l
+νl decays in Fig. 11a, b. Notably, AFB shows

a distinct rise near q2
min, particularly in the electron

decay mode. The high-precision calculation shows that
AFB → 0 as q2 → 0. Such behavior can also be
observed in other works [31,125,126].

(vi) Furthermore, we calculated the mean values of 〈Cl
F 〉,

〈Pl
L〉, and 〈Pl

T 〉, as shown in columns 8, 9, and 10 of
Table 6, respectively. It is noteworthy that the bottom-
conserving semileptonic decay modes have a negative
lepton-side convexity parameter,Cl

F , which is due to the
predominance of the longitudinal helicity component,
HL . Additionally, the transverse polarization parame-
ter, Pl

T , is very small for e decay modes, i.e., O(10−3).

Furthermore, we also computed the asymmetry param-
eter, α∗, by using Eq. (54), as illustrated in column 11
of Table 6. The asymmetry parameter α∗ is consistently
negative for all Bc to V semileptonic decays, indicating
the dominance of the longitudinal helicity components,
HL and HS . Notably, parameters such as Cl

F , Pl
L , and

α∗ show a decrease in magnitude with increases in lep-
ton mass.

3.2.2 Bottom-changing decays

In this subsection, we focus on the bottom-changing CKM-
enhanced (�b = −1,�C = −1,�S = 0) and CKM-
suppressed (�b = −1,�C = 0,�S = 0) semileptonic
decay modes of Bc mesons, which involve the charm mesons
in the final states. One notable aspect of bottom-changing
semileptonic decays is that they include τ+ντ alongside e+νe
and μ+νμ lepton pairs in the final state. We have analyzed
and listed our major findings on Bc → D∗(J/ψ)lνl decays
as follows:

(i) The branching ratios of bottom-changing B+
c → Vl+νl

decays range from O(10−2) to O(10−5), as given
in Table 6 for T2A. Among these decays, B+

c →
J/ψe+νe and B+

c → J/ψμ+νμ are most domi-
nant with branching ratios (2.35+0.36+0.04

−0.33−0.12) × 10−2 and

(2.34+0.36+0.04
−0.33−0.12) × 10−2, respectively, since B+

c →
J/ψl+νl decays are both CKM- and kinematically
enhanced. On the other hand, the CKM-suppressed
B+
c → D∗0l+νl decays, involving b → u transition,

have smaller branching ratios, i.e., O(10−5). Similar to
bottom-conserving decays, the semileptonic Bc → V
branching ratios of bottom-changing decays generally
show greater sensitivity to variations in the β parameter
than to uncertainties in the constituent quark masses,
with the exception of B+

c → J/ψl+νl . The branch-
ing ratios of B+

c → D∗0l+νl demonstrate a maximum

variation of approximately 78%(39%), while B+
c →

J/ψl+νl shows variations on the order of 5%(15%)

corresponding to uncertainties in β (quark masses). As
previously noted, the Bc → Vlνl branching ratios are
predominantly determined by V (q2) and A1(q2), while
A2(q2) and A0(q2) have minimal impact. Therefore,
the larger uncertainties in these branching ratios can be
attributed primarily to the collective influence of form
factors V (q2) and A1(q2). Furthermore, the uncertain-
ties in B+

c → D∗0l+νl decays resulting from quark
mass variations exhibit a more symmetric distribution
than those observed in bottom-conserving decays.

(ii) Similar to bottom-conserving Bc → P semileptonic
decays, the branching ratios of bottom-changing B+

c →
D0 l+νl decays (Table 3) are consistent with the recent
LQCD results [21]. The LQCD results of bottom-
changing branching ratios are as follows [21]:B(B+

c →
D0e+νe) = (3.37 ± 0.48 ± 0.08 ± 0.42) × 10−5

and B(B+
c → D0τ+ντ ) = (2.29 ± 0.23 ± 0.06 ±

0.29) × 10−5. Interestingly, unlike bottom-conserving
B+
c → Pl+νl decays, the semileptonic branching ratios

of bottom-changing B+
c → D0l+νl decays for the T2B

formulation are smaller by ∼ (39−48)% when com-
pared to T2A predictions. It should be noted that the
Bc → D branching ratios exhibit maximum uncertainty
of ∼ 67% (50%) in T2A (T2B) results due to variations
in quark masses affecting the form factors. Additionally,
uncertainties arising from variations in the β parameter
contribute to a maximum deviation of ∼ 40% (36%).

These variations in the branching ratio arise from dif-
ferences in F0(q2) and F1(q2) corresponding to the q2

formulation, despite being self-consistent. Furthermore,
T1 predictions for the semileptonic branching ratios of
B+
c → D0 l+νl are significantly smaller than those of

T2A and T2B, exhibiting a decrease of approximately
(52−64)% and (23−31)%, respectively.

(iii) In bottom-changing semileptonic Bc transitions, the
phase space is usually larger than in bottom-conserving
transitions. Specifically, the semileptonic branching
ratios for T2A (listed in Table 6) involving Bc →
D∗ and Bc → J/ψ have ∼ 44% and 75% differ-
ence between the e (or μ) and τ semileptonic decays,
respectively. It is worth noting that the mass differ-
ence between the electron and muon does not sig-
nificantly affect b → u(c) semileptonic decays. As
observed before, the branching ratios decrease with
increasing lepton mass, i.e., the branching ratios of
Bc → J/ψe(μ)νe(μ) are larger by roughly a factor
of 4 than those of B(Bc → J/ψτντ ). Similarly, for
Bc → D∗e(μ)νe(μ) decays, the branching ratios of
corresponding decay modes are approximately twice
as large as those for B(Bc → D∗τντ ). In the case
of Bc → D∗e(μ)νe(μ) decays, the relative longitudi-
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nal and transverse decay widths are equal. Conversely,
for Bc → J/ψe(μ)νe(μ) decays, the relative longi-
tudinal decay widths exhibit a larger magnitude than
the transverse decay widths. Notably, in all bottom-
changing semileptonic decays involving a τ lepton in
the final state, the relative transverse decay widths
exceed the longitudinal decay widths. The LQCD pre-
diction for the branching ratio B+

c → J/ψμ+νμ is
(1.50 ± 0.11 ± 0.10 ± 0.03)% [19]. It is interesting to
note that their result exhibits significant deviation from
the branching ratio predictions of a majority of theoreti-
cal models [35,103,127–130], including our T2A (T2B)
predictions, which span a range of (2.07−6.70)%. The
exceptions to this trend are the results reported in
Refs. [29,32], as listed in Table 7. The discrepancies
observed among these results can be attributed to vari-
ations in input parameters—primarily quark and pole
masses—as well as the diverse q2 parameterizations
employed in form factor calculations. In addition, we
calculate the LFU ratios between τ and e(μ) leptons
for both T2A and T2B results as follows:

T2A T2B LQCD [18]

RD∗ = B(B+
c → D∗0τ+ντ )

B(B+
c → D∗0e(μ)+νe(μ))

= 0.56+0.30+0.60
−0.30−0.00 0.60+0.20+0.50

−0.16−0.00 − ;

RJ/ψ = B(B+
c → J/ψτ+ντ )

B(B+
c → J/ψe(μ)+νe(μ))

= 0.25+0.05+0.02
−0.05−0.00 0.25+0.05+0.02

−0.06−0.00 0.2582 ± 0.0038.

Note that the experimental measurement for the LFU
ratios involving b → cτντ for J/ψ in the final
state is RJ/ψ = 0.71 ± 0.18 ± 0.17 [17], which is
much larger than the theoretical estimates. We want to
emphasize that the current SM predictions for these
ratios, including ours, fall within a range of 0.25–
0.28 [24,31,32,131,132]. It is worth mentioning that the
difference between multiple approaches is very small,
which also agrees with the LQCD observation [18]. Fur-
thermore, the experimental observation is substantially
larger than the theoretical expectations, even though the
cumulative uncertainties in the experimental value are
on the order of 50%. Thus, further experimental obser-
vations would result in a clear picture to establish the
scope of NP beyond the SM in these decays. Similarly,
for bottom-conserving Bc → B∗

(s) semileptonic decays,
we found the following:

T2A T2B

RB∗ = B(B+
c → B∗0μ+νμ)

B(B+
c → B∗0e+νe)

= 0.95+0.16+0.40
−0.13−0.25 0.95+0.13+0.24

−0.10−0.22;

RB∗
s

= B(B+
c → B∗0

s μ+νμ)

B(B+
c → B∗0

s e+νe)
= 0.93+0.09+0.31

−0.06−0.18 0.94+0.07+0.17
−0.04−0.15,

which is in good agreement with Ref. [32].
(iv) As previously noted, the self-consistency effects are

expected to be significant in semileptonic Bc → D∗
decays. The branching ratios of B+

c → D∗0l+νl decays
in the T2A and T2B schemes deviate from the T1
scheme by approximately (57−69)% and (67−78)%,

respectively. However, self-consistency has a minimal
effect on the branching ratios of semileptonic decays of
the Bc to J/ψ states, with variation of ∼ 20% across
T1 results when compared to T2A (T2B) results. The
uncertainty in the branching fractions for the semilep-
tonic Bc → D∗ decays is substantial in the type-I
scheme, reaching ∼ 200% for the Bc → D∗τντ decay
mode. In contrast, the uncertainties associated with the
Bc → J/ψlνl decays are significantly smaller. It may
be noted that for B+

c → D∗0l+νl decays for T2B,
the branching ratios are larger than those of T2A by
∼ (24−29)%, and this behavior is opposite to the obser-
vation made for B+

c → Pl+νl decays. However, the
B+
c → J/ψl+νl decays differ by less than ∼ 1% on

comparison between T2A and T2B. Additionally, to

compare our results with other works, we have included
the branching ratios from the literature [27,29,32,35],
as presented in Table 7. Interestingly, a similar order of
discrepancy can be observed in type-I correspondence
scheme results from other works [27,29] as compared
to that of type-II correspondence predictions from our
work. For B+

c → J/ψl+νl , numerical results for the
branching ratios are consistent with other literature; in
fact, all the models yield branching ratios of the same
order, as mentioned earlier. In general, we observed sub-
stantial differences in the numerical values of branching
ratios for bottom-changing semileptonic decays from
different models, ranging up to ∼ 60%. In particular,
the discrepancy between B(B+

c → D∗0e(μ)+νe(μ))

results in the type-I scheme from other works [27,29]
and the type-II scheme (T2A) in our work also range
from approximately 20% to 57%. We have also plot-
ted the q2 variation in the differential decay rates of
B+
c → D∗0l+νl and B+

c → J/ψl+νl in Figs. 10c
and 10d, respectively.

(v) In contrast to bottom-conserving decays, we observe
larger transverse decay widths for the τ lepton in the
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final state (see Table 6) for bottom-changing semilep-
tonic decays. Furthermore, we calculated the AFB for
these decays, as listed in column 7 of Table 6. The AFB

values for bottom-changing decays are consistently neg-
ative due to the dominant contributions from HSL , with
a larger magnitude for the H0 helicity amplitude. The
exception is evident in the decays involving an elec-
tron in the final state, where HP is predominantly large
because of the larger magnitude of H− helicity ampli-
tude. However, the contributions fromHP decrease with
increasing lepton mass. Further, as the mass of the lepton
increases, the AFB(Bc → D∗τντ ) increases by approx-
imately 20% as compared to AFB(Bc → D∗eνe); how-
ever, AFB(Bc → J/ψτντ ) increase up to 30% from
AFB(Bc → J/ψeνe). This indicates the dominantHSL

contributions for the τ lepton in the final state.
(vi) We observed behavior similar to that of AFB for observ-

ables such asCl
F and Pl

L with respect to the lepton mass.
In this case, the numerical values of channels involving
e and μ are almost identical, while the decays involv-
ing τ show some significant change. Furthermore, the
α∗ value leads to an observable difference in the case of
Bc → J/ψτντ decay, which varies by 34% with respect
to Bc → J/ψe(μ)νe(μ) decays. This distinction arises
from the influence of the lepton’s mass on the decay
process. It should be noted that for Bc → J/ψlνl , the
uncertainty corresponding to the β values is negligi-
ble for physical observables like AFB, Cl

F , and α∗, as
shown in Table 6.

3.3 Nonleptonic decays

In this subsection, we discuss our predictions for the branch-
ing ratios of nonleptonic Bc → PV decays. As noted ear-
lier, the nonleptonic decays of the Bc meson consist of
CKM-enhanced (�b = 0,�C = −1,�S = −1; �b =
−1,�C = −1,�S = 0; and �b = −1,�C = 0,�S =
1), CKM-suppressed (�b = 0,�C = −1,�S = 0;
�b = −1,�C = −1,�S = 1; and �b = −1,�C =
0,�S = 0), and CKM-doubly-suppressed (�b = 0,�C =
−1,�S = 1; �b = −1,�C = 1,�S = 1; and �b =
−1,�C = 1,�S = 0) bottom-conserving and bottom-
changing decay modes. We calculated the decay amplitude
using the decay constants listed in Table 2. Among the form
factors listed in Tables 4 and 5 for Bc → P and Bc → V
transitions, only the form factors F1(q2) and A0(q2) are rel-
evant for the numerical evaluation of the branching ratios of
Bc → PV decays. Since the A0(q2) form factor is affected
by self-consistency issues related to the B(i)

j functions, the
study of nonleptonic Bc → PV decays provides an excel-
lent opportunity to investigate such effects between type-I
and type-II correspondences. We determine the branching
ratios for nonleptonic Bc decays involving a color-favored

diagram (class I), color-suppressed diagram (class II), and
their interference (class III) for both large Nc limit and
Nc = 3, as given by Eqs. (60) and (61) in Sect. 2.3. We
list all the possible bottom-conserving Bc → PV decays
in Table 8. Tables 9, 10, and 11 show our predictions for
bottom-changing decays. As was done with semileptonic
decays, we also calculate the uncertainties in branching ratios
originating from the uncertainties in the form factors. Fur-
thermore, we compare our results with other theoretical
models, namely RIQM [38,39], RCQM [35], RQM [33],
QCDF [42], pQCD [40,41], and CLFQM (type-I) [28], as
given in Tables 12, 13, and 14. We list our key findings as
follows.

(i) For bottom-conserving decay modes, the branching
ratios of the Bc meson decays into B(∗), and B(∗)

s

mesons in the final state range fromO(10−2) to O(10−6)

for the T2A formulation and up to O(10−5) for T2B,
as shown in Table 8. It is well known for the case of
CKM-favored decays that the CKM enhancement dom-
inates the kinematic suppression, resulting in branching
ratios of O(10−2) ∼ O(10−3) for Nc = ∞. Due to the
significant dominance of color-favored decays in both
T2A and T2B, with a difference in branching ratios of
less than 18%, our numerical discussions will primarily
center on T2A. Among them, the most dominant CKM
and color-favored (class I) decays are B+

c → π+B∗0
s

and B+
c → B0

s ρ
+, which have branching ratios of

(4.86+0.01+0.73
−0.14−1.08) × 10−2 and (3.46+0.53+0.25

−0.54−0.63) × 10−2,

respectively. It is worth noting that for the Bc → B(∗)
(s)

transition, the mass of the spectator b quark is signif-
icantly larger than that of the decaying c quark, and
the whole momentum is carried by the b quark. There-
fore, the transition form factors at q2 = 0 in such case
differ up to ∼ 28% from those at maximum momen-
tum transfer between the initial and final states. This
increase in the form factor at q2

max leads to an enhance-
ment of up to ∼ 40% in the branching ratio of B+

c →
π+B∗0

s /K
0
B∗+ decays (involving A0(q2) form fac-

tors) for both T2A and T2B formulations. However, the
decays involving the form factor F1(q2) are affected by
less than 14% at q2

max. Furthermore, we observe that the
CKM-favored nonleptonic bottom-conserving decays
for T2A exhibit uncertainties typically ranging from
approximately 15% to 50%, correlating with the uncer-
tainties in their respective form factors. These uncer-
tainties are notably enhanced in color-suppressed chan-
nels characterized by lower branching ratios. Moreover,
the branching ratios of these decays generally demon-
strate increased sensitivity to variations in the β values,
with a few exceptions to this trend.
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(ii) It is important to note that the A0(q2) transition form
factors are affected by the self-consistency problems,
and their contribution to semileptonic decays involving
vector mesons in the final state is generally suppressed.
However, nonleptonic Bc → PV decays that explicitly
involve A0(q2) form factors would give a quantitative
measure of self-consistency effects between type-II and
type-I correspondence schemes. Therefore, we com-
pare our predictions in T2A and T2B with the results in
T1, as listed in columns 2, 4, and 6 of Table 8. It may
be noted that the results in the tables follow the order in
which decays involving A0(q2) are listed first, decays
involving F1(q2) are listed next, and class III decays
involving both (if allowed) are given last for each CKM
mode. We found that the results of the type-I scheme
for CKM-favored bottom-conserving modes are signif-

icantly smaller for B+
c → π+B∗0

s /K
0
B∗+ decays. The

branching ratio of color-favored B+
c → π+B∗0

s decay
in the type-I scheme is ∼ 90% smaller than that of
the type-II scheme (for both T2A and T2B). However,

the branching ratio of color-suppressed B+
c → K

0
B∗+

decay changes by O(10−2) in the type-II scheme as
compared to T1 predictions. This is due to the more

pronounced self-consistency effects in A
BcB∗

(s)
0 transi-

tion form factors. In addition, as previously noted, the
uncertainties in the branching ratios arising from varia-
tions in the form factors are substantially larger (ranging
from 70% to 180%) for the type-I scheme compared to
the type-II scheme involving A0(q2) form factors, as
evident from Table 8. Moreover, to accurately assess
the magnitude of self-consistency effects, we compare
the numerical results of type-I and type-II schemes
utilizing an identical q2 formulation for both,11 i.e.,
for Eq. (38), we found that B(B+

c → π+B∗0
s ) decay

decreases by ∼ 88%, while B(B+
c → K

0
B∗+) decay

decreases by O(10−2). Consequently, these substantial
discrepancies between the type-I and type-II scheme
predictions indicate that the effects of self-consistency
on such decays are significant and cannot be ignored.
In addition, we observe that the difference between the
T2A and T2B formulations yields larger variations in
the branching ratios for decays involving the F1(q2)

form factor than those involving the A0(q2) form factor.
However, the maximum differences between T2A and
T2B is 19% and 27% for decays involving A0(q2) and
F1(q2) form factors, respectively, where the T2B for-
mulation predicts larger branching ratios. We reiterate

11 Note that the numerical results of the type-II correspondence scheme
for Eq. (38) (with parent pole mass), i.e., ABcB∗

0 (0) = 0.50, a =
−9.92, b = 356.83 and A

BcB∗
s

0 (0) = 0.62, a = −4.25, b = 285.25,
are used.

that the form factor F1(q2) does not exhibit any self-
consistency issues. Therefore, the observed changes
in the numerical results of the type-II correspondence
scheme for the decays involving only the F1(q2) form
factor can be attributed to variations arising from the q2

formulations.
(iii) In the bottom-conserving CKM-suppressed (�b =

0,�C = −1,�S = 0) modes, the branching ratios
for the dominant decays are B(B+

c → B0ρ+) =
(2.77+0.58+0.32

−0.49−0.68) × 10−3, B(B+
c → K+B∗0

s ) =
(2.45+0.04+0.37

−0.10−0.64) × 10−3, and B(B+
c → π+B∗0) =

(2.27+0.08+0.50
−0.16−0.67)×10−3. All these decays involve color-

favored (class I) processes. The next order branch-
ing ratios are of O(10−4), which correspond to the
color-suppressed process, as shown in Table 8. It
is interesting to note that the branching ratios of
CKM-doubly-suppressed decays are of O(10−4) ∼
O(10−6) with dominant branching ratio, B(B+

c →
K+B∗0) = (1.29+0.07+0.30

−0.11−0.45) × 10−4, for color-favored
decay. As observed in CKM-enhanced decays, apart
from the variation due to different q2 formulations,
the branching ratios of the decays (in the type-II
scheme) involving A0(q2) form factors change sub-
stantially as compared to those of the type-I scheme.
We wish to emphasize that the branching ratios of
the decays involving A0(q2) form factors and color-
favored processes in CKM-suppressed and CKM-
doubly-suppressed modes are more seriously affected
by self-consistency. The branching ratios of these
decays change by roughly O(10−2) ∼ O(10−3) for
the type-I scheme as compared to the type-II scheme
(for both T2A and T2B formulations). Likewise, for
CKM-enhanced decays within the type-II correspon-
dence, the T2B branching ratios are larger (∼ 10−26%)
than the T2A predictions for both CKM-suppressed
and CKM-doubly-suppressed modes. In addition, the
T1 predictions involving A0(q2) form factors are sub-
ject to substantial uncertainties, reaching a maximum
of ∼ 180% (for both CKM-suppressed and CKM-
doubly-suppressed modes). It is intriguing to note that
despite the nearly symmetric uncertainties in the form
factors, the uncertainties in the nonleptonic branching
ratios are more asymmetric. The substantial discrep-
ancies between type-I and type-II scheme predictions
within the CLFQM framework for nonleptonic bottom-
conserving weak decays highlight the inherent incon-
sistencies in the type-I scheme. These deviations cast
doubt on the reliability of results obtained through the
type-I scheme. Furthermore, the uncertainties in the
T2B formulation are generally smaller than those of
the T2A formulation, with a few exceptions.
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(iv) In addition to the large Nc limit, we also predict branch-
ing ratios at Nc = 3, as shown in columns 3, 5, and
7 of Table 8 for T2A, T2B, and T1, respectively. As
mentioned earlier, we have considered tree-dominated
Bc decays and have neglected the small nonfactoriz-
able and penguin contributions within our formalism.
As previously noted, the number of color degrees of
freedom (Nc) is usually treated as a phenomenological
parameter in weak meson decays to account for non-
factorizable contributions. In the present case, we have
used the Nc = 3 based on the model-independent anal-
ysis of B decays, which suggests that a2 has a smaller
magnitude [101]. We obtain a1 = 1.09 and a2 = −0.09
(from Eq. (61)) at Nc = 3 for bottom-conserving Bc

decays. Since the bottom-conserving weak decays do
not involve any class III decays, we expect an overall
decrease in the branching ratios of these decays corre-
sponding to smaller values of a1 and a2 at Nc = 3. We
observe that the numerical values of color-suppressed
decays at Nc = 3 are more seriously affected owing to
the substantial reduction in the magnitude of the coeffi-
cient a2. Given that we performed calculations for both
Nc = 3 and at the large Nc limit, we disregarded the
uncertainties in the parametersa1 anda2. Consequently,
these predictions can be interpreted as representing a
reasonable range of numerical results within the cur-
rent formalism.

(v) In the case of bottom-changing Bc decays to D(∗), D(∗)
s ,

and ηc(J/ψ) mesons in the final state, we enlist the
branching ratio predictions for T2A, T2B, and T1 in
Tables 9, 10, and 11. Analogous to bottom-conserving
decays, the branching ratios of T2A and T2B exhibit
differences of less than 5% in most cases, with a few
exceptions in CKM-suppressed decay modes. Thus,
for numerical discussions, we will primarily consider
T2A predictions. The most dominant CKM-enhanced
decay modes, B+

c → ηcρ
+, B+

c → D+
s J/ψ,

B+
c → ηcD∗+

s , and B+
c → π+ J/ψ , have branching

ratios (3.91+0.13+0.11
−0.12−0.24)×10−3, (2.44+0.99+0.00

−0.81−0.07)×10−3,

(1.69+0.05+0.29
−0.00−0.26) × 10−3, and (1.65+0.31+0.10

−0.29−0.15) × 10−3,

respectively, at the large Nc limit for the T2A for-
mulation. Among these, B+

c → ηcρ
+ and B+

c →
π+ J/ψ decays are color-favored (class I) decays, while
B+
c → D+

s J/ψ and B+
c → ηcD∗+

s are class III decays.
We wish to emphasize that the B+

c → D+
s J/ψ and

B+
c → ηcD∗+

s decays receive contributions from both
color-favored and color-suppressed diagrams and inter-
fere destructively at the large Nc limit. However, for
Nc = 3, color-favored and color-suppressed contribu-
tions for both of these decays interfere constructively,
yielding larger branching ratios due to the positive val-
ues of a1 and a2 (as shown in Eq. (61)). In the CKM-

enhanced (�C = −1,�S = 0) mode, the branch-
ing ratios of B+

c → D
0
D∗+ and B+

c → D+D
∗0

decays for both T2A and T2B are of O(10−5), which
falls within the experimental upper limits [12]. In con-
trast, for (�C = 0,�S = 1) mode, the next order
branching ratios for the CKM-favored decays, e.g.,
B+
c → π0D∗+

s , B+
c → K+D∗0, B+

c → D0K ∗+,

B+
c → D+

s ρ0, etc., remain highly suppressed. The
branching ratios of these decays range from O(10−7)

to O(10−10) as they occur through suppressed b →
u weak transitions. We observe that the uncertain-
ties in the branching ratios for T2A of CKM-favored
(�C = −1,�S = 0) and color-suppressed decays are
larger (up to ∼ 90%). Conversely, the uncertainties for
color-favored decays involving Bc → ηc(J/ψ) tran-
sitions are below roughly 25%. Interestingly, the class
III decays in (�C = 0,�S = 1) mode have inter-
mediate uncertainties of approximately 40% or less.
Furthermore, the dominant branching ratios of bottom-
changing decays are smaller than those of bottom-
conserving decays. As expected, due to the smaller val-
ues of a1 and a2 at Nc = 3, the branching ratios of all
the decays show a decreasing trend, except for class III
decays.12

(vi) In the CKM-suppressed (�C = −1,�S = 1) decay
mode, the dominant B+

c → ηcK ∗+ and B+
c →

K+ J/ψ decays have branching ratios of O(10−4),

and the branching ratios for the rest of the decays
are of O(10−6). For (�C = 0,�S = 0) mode,
the branching ratios are of O(10−4) ∼ O(10−9),

where the dominant modes B+
c → ηcD∗+ and B+

c →
D+ J/ψ belong to class III decays. These decays arise
from destructive interference between color-favored
and color-suppressed processes, and have branching
ratios of O(10−4) and O(10−5), respectively. At Nc =
3, coefficients a1 and a2 become positive, enhanc-
ing their branching ratios compared to the values at
Nc = ∞. Furthermore, Bc meson decaying to D0ρ+
and π+D∗0 in the final states are the only decays that
involve the color-favored diagram and have branching

ratios of O(10−6). In addition, B(B+
c → D+

s D
∗0

) =
(4.08+1.36+0.51

−1.19−0.51) × 10−6 and B(B+
c → D

0
D∗+
s ) =

(2.92+0.21+1.97
−0.46−1.57) × 10−6 at the large Nc limit, which

are within the experimental upper limit [12] (see
Table 13). As previously observed, decays involving
Bc → ηc(J/ψ) transition form factors show vary-
ing degrees of uncertainty. For the CKM-favored and

12 Note that the reduction in the values of a1 and a2 at Nc = 3 leads to
a proportional decrease in uncertainties across all decay modes, includ-
ing class III decays. This comprehensive uncertainty reduction occurs
despite the additive nature of uncertainties, as both color-favored and
color-suppressed contributions experience a decrease in magnitude.
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CKM-suppressed class III modes, these uncertainties
range from approximately 15% to 45%, whereas class
I decays demonstrate a more moderate variation of
∼ (5−25)%, as given in Tables 9 and 10.

(vii) Since we have focused on the discrepancies arising
because of the self-consistency problem in form factors
and consequently on the decays of the Bc meson, we
compared our results for the type-II scheme with those
for the type-I bottom-changing decays. We observed
significant variations in branching ratios for CKM
and color-favored bottom-changing decays involving
A0(q2) form factors between T1 and T2A(T2B), rang-
ing from 25% to 58%. However, dominant class
III decays, involving F1(q2) and A0(q2) form fac-
tors, exhibited branching ratio changes of approx-
imately (20−56)% between T1 and T2A. In the
type-I scheme, we observe that the branching ratios
for bottom-changing CKM-suppressed class I decays,
influenced by the A0(q2) form factor (subject to
self-consistency issues), decrease by approximately
an order of magnitude, with associated uncertain-
ties exceeding 150%. Moreover, as previously noted
for bottom-conserving decays, the uncertainties in
bottom-changing CKM-favored decays affected by
self-consistency issues are markedly more pronounced
in the type-I scheme, reaching over 200%. It may be
noted that in the abovementioned changes correspond-
ing to self-consistency, we have only considered the
branching ratios up toO(10−6). We infer that, similarly
to bottom-conserving decays, bottom-changing decays
are significantly impacted by self-consistency issues,
particularly for color-favored decays. The substantial
discrepancies between type-I and type-II scheme pre-
dictions underscore that the effects of self-consistency
on such decays are significant and warrant careful con-
sideration.

(viii) It is worth noting that all of the bottom-changing CKM-
doubly-suppressed Bc decays belong to the class III cat-
egory. The color-favored and color-suppressed ampli-
tudes interfere destructively to give the branching ratios
O(10−6) ∼ O(10−7) for these decays. As intended,
the branching ratios of these modes are enhanced at
Nc = 3. However, the effects of self-consistency
on the branching ratios of these decays are roughly
(20−90)%. In particular, for B+

c → D+
s D∗0 and

B+
c → D+D∗0 decays, the effect of self-consistency

on branching ratios is roughly 90%. For example, in
B+
c → D+

s D∗0 decay, this stems from the color-

favored B+
c → D∗0 transition, characterized by the

affected ABcD∗
0 (q2) form factor, which contributes pre-

dominantly to the branching ratio. Conversely, the
color-suppressed B+

c → D+
s transition, involving

the FBcDs
1 (q2) form factor, contributes marginally13.

Therefore, the ABcD∗
0 (q2) form factor exhibits a signif-

icant impact of self-consistency on the branching ratios
of these decay processes. In addition, the uncertainties
in the T2A branching ratios, corresponding to variations
in quark mass and β values, range from approximately
10% to 70% and 20% to 90%, respectively. On the other
hand, in the type-I scheme, the uncertainties become
exceptionally large, making the results questionable.
Furthermore, all the bottom-changing CKM-doubly-
suppressed Bc → PV decays such as B+

c → D0D∗+
(s)

and B+
c → D+

(s)D
∗0 are within the observed experi-

mental upper limit [12]. In the case of bottom-changing
decays, both CKM-favored and CKM-suppressed, the
difference in branching ratios between T2A and T2B
predictions typically remains below ∼ 10%. Notable

exceptions include B(B+
c → D

0
D∗+), B(B+

c →
D+D

∗0
), and B(B+

c → D+
s D

0
), where differences

of up to ∼ 20% are observed. For CKM-doubly-
suppressed decays, the differences are more substan-
tial, ranging from approximately 14% to 32%. Consis-
tent with previous observations, T2B branching ratios
are in general larger than those of T2A. However, for
all the Bc decays to two charmed mesons in the final
state (including class III decays), the branching ratios
are lower than those predicted by T2A.

(ix) It should be noted that the recent experimental observa-
tions provide the ratios of branching fractions of nonlep-
tonic Bc decays involving a J/ψ meson in the final state.
Therefore, we compared our results with the experimen-
tal values reported by LHCb and ATLAS [13–16]. The
ratios of the branching fractions determined theoreti-
cally are expressed as follows:

13 In the branching ratio of B+
c → D+

s D∗0 decay, the dominant con-

tribution of 81% arises from the term involving the ABcD∗
0 form factor.

The term involving the FBcDs
1 form factor contributes 12%, while their

interference term destructively contributes 7% to the branching ratio.
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T2A T2B Experimental values

B(B+
c → J/ψD+

s )

B(B+
c → J/ψπ+)

= 3.35+0.71+0.37
−0.78−0.25 2.82+0.63+0.33

−0.68−0.23
(1.48+0.56+0.14

−0.66−0.09) (1.45+0.49+0.16
−0.57−0.09)

2.76 ± 0.33 ± 0.33 [14];

B(B+
c → J/ψK+)

B(B+
c → J/ψπ+)

= 0.08+0.02+0.01
−0.02−0.01 0.08+0.02+0.01

−0.02−0.01
(0.07+0.02+0.01

−0.02−0.01) (0.08+0.02+0.01
−0.02−0.01)

0.079 ± 0.007 ± 0.003 [15],

where the values in the parentheses are obtained for the
large Nc limit. We wish to point out that our results for
Nc = 3 match well with the experimental values within
the uncertainties. Similarly, we compare the ratio of the
branching fractions for the nonleptonic B+

c → J/ψπ+
decay to the semileptonic B+

c → J/ψμ+νμ decay with
the experiment, as given below.

T2A T2B Experimental value

B(B+
c → J/ψπ+)

B(B+
c → J/ψμ+νμ)

= 0.06+0.01+0.01
−0.02−0.00 0.06+0.01+0.01

−0.01−0.00
(0.07+0.02+0.01

−0.02−0.00) (0.07+0.02+0.01
−0.02−0.00)

0.0469 ± 0.0028 ± 0.0046 [133].

We note that our results, though larger in magnitude, are
very close to the experimental observation, including
the errors.

Finally, we compare our numerical results for the branch-
ing ratios with those of other theoretical models, includ-
ing RIQM [38,39], RCQM [35], RQM [33], QCDF [42],
pQCD [40,41], and CLFQM (type-I) [28], as shown in
Tables 12, 13, and 14. All branching ratio predictions from
different models are of the same order, with a few excep-
tions. Among them, our numerical results for the bottom-
conserving branching ratios of Bc decays involving a B
meson in the final state match well with the QCDF [42]
results. We observe that our T2A predictions for the most
dominant bottom-changing CKM-favored Bc decays, i.e.,
involving ηcρ

+, D+
s J/ψ, ηcD∗+

s , and π+ J/ψ in the final
state, match very well with the predictions of RCQM [35],
except the B+

c → ηcD∗+
s decay. Notably, for these decays,

the predictions from other theoretical models are larger than
our results. We also compared our T1 results with CLFQM
(type-I) [28] and observed that their values are of the same
order but larger than ours by roughly (30−70)%, due to the
different input parameters and the exponential q2 formula-
tion used in their work.

4 Summary and conclusions

In this work, we provide a comprehensive analysis of weak
transition form factors, semileptonic decays, and nonlep-

tonic decays of the Bc meson involving P and V mesons
in CLFQM. We employed type-II correspondence in the
CLF approach to resolve the self-consistency issues due to
the presence of residual ω-dependencies associated with the
B(i)
j functions, which remain independent of zero-mode con-

tributions. It may be noted that the issues of inconsistency

and violation of covariance in type-I correspondence, which
affect the A0(q2) and A1(q2) form factors, can be simulta-
neously resolved by M ′(′′) → M ′(′′)

0 considered in type-II
correspondence [63]. However, the quantitative measure of
these effects in type-II correspondence has never been studied
in semileptonic and nonleptonic decays of the Bc meson. In
this analysis, the effects of self-consistency originating from
transition form factors on weak decays are quantitatively
established. Furthermore, the impacts of self-consistency
and covariance on bottom-conserving and bottom-changing
semileptonic and nonleptonic decays within the CLFQM
framework are comprehensively investigated. Two primary
objectives are pursued: (i) the impact of self-consistency on
weak semileptonic and nonleptonic decays is examined using
modified form factors within a CLFQM approach, and (ii)
self-consistency in bottom-conserving transition form fac-
tors, previously unexplored, is established and its effects on
bottom-conserving weak decays are quantified. Furthermore,
ambiguities related to the q2 parameterization are addressed
in the analysis to provide a more robust understanding
of these decay processes. The self-consistency affects the
numerical results of the form factors A0(q2) and A1(q2),

which in turn appear in the semileptonic and nonleptonic
decays of the Bc meson. It is well known that the coeffi-
cient of the A0(q2) form factor is suppressed in the semilep-
tonic decay rates; therefore, semileptonic decays only pro-
vide a comprehensive picture that corresponds to the effects
originating from the A1(q2) form factor. Thus, to observe
the effect of the A0(q2) form factor, we calculated the
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Bc → PV decays which involve F1(q2) and A0(q2) form
factors. Therefore, we calculated the transition form fac-
tors in CLFQM formalism in Tables 4 and 5. In the current
work, we thoroughly examined the appropriate q2 formula-
tions, in particular for bottom-conserving transitions involv-
ing Bc → V (P) form factors. Therefore, we analyzed two
different q2 formulations in type-II correspondence referred
to as T2A and T2B, using Eqs. (37) and (39), respectively. We
also compared our results with type-I correspondence for the
q2 formulation in Eq. (38) to quantitatively assess the effects
of self-consistency. In addition, we incorporated the uncer-
tainties in form factors originating from quark masses and β

parameters in our analysis. Consequently, we observed their
implications for semileptonic and nonleptonic weak decays
of the Bc meson. In addition, we calculated the experimen-
tally significant physical observables, namely, the FB asym-
metry, lepton-side convexity parameter, longitudinal (trans-
verse) polarization of the charged lepton, and asymmetry
parameter. We list our major conclusions as follows.

• We reconfirmed that the form factors A0(q2) and A1(q2)

in the CLFQM type-I correspondence scheme acquire
zero-mode contributions through B(i)

j functions, which
results in different numerical values for the longitudi-
nal and transverse polarization states. These issues are
resolved within type-II correspondence, which ensures
self-consistency and covariance of matrix elements. It
may be emphasized that the zero-mode contributions in
type-II correspondence vanish numerically, though exist-
ing formally in the analytical relations of the form factors.
For bottom-conserving transitions, the numerical results
of the T2A (T2B) form factors, A0(0) and A1(0), show
a significant change of (70−90)% and ∼ 23%, respec-
tively, as compared to those of the type-I scheme. Simi-
larly, for bottom-changing transitions, we observed that
the numerical values of the form factor A0(0)(A1(0))

in type-II correspondence, for both Eqs. (37) and (39),
vary by roughly ∼ 30% (10%) as compared to type-I
for Bc → D∗

(s) transitions. We also observed that these

form factors are sensitive to q2 formulations, resulting
in significantly different slope parameters (coefficients).
Therefore, we conclude that the improvement in the
numerical results of type-II correspondence cannot be
determined simply from the variation in form factors at
q2 = 0; the modification in the numerical values of slope
parameters also plays a significant role in the quantitative
evaluation of these effects. Furthermore, the influence of
type-II correspondence on Bc → J/ψ transition form
factors is minimal compared to both bottom-conserving
and other bottom-changing transition form factors.

• We also found that the M ′(′′) → M ′(′′)
0 transformation,

in general, affects the numerical values of all the tran-

sition form factors irrespective of the spin-parity of the
final-state meson. Therefore, the numerical values of the
form factors which do not suffer from self-consistency
issues were also modified. We found that the numerical
results for the T2A (T2B) form factors FBcB(s) (q2) are
in very good agreement with the LQCD observations at
both q2 = 0 and q2

max. On the other hand, the numeri-
cal values of the form factors FBcDs (q2) (FBcD(q2)) are
in good agreement with the LQCD predictions within
∼ 15%(∼ 9%).

• We found thatB(Bc → B(∗)
s lνl) andB(Bc → J/ψ(ηc)lνl)

are the most dominant among the Bc → V (P)lνl
semileptonic decays. Our results for B(B+

c → B0
(s)l

+νl)

are in good agreement with the recent LQCD predictions.
In addition, the decay width ratios of bottom-conserving
semileptonic decays involving the pseudoscalar meson
(B0

s and B0) in the final state for T2B match well with
LQCD expectations. Furthermore, the decays involving
the τ lepton have the lowest branching ratios among all
the decays because of the significantly larger mass of the
τ lepton. We quantified the effect of self-consistency on
the branching ratios of the semileptonic decay modes
by comparing our results with those of type-I corre-
spondence. We found that the numerical results for the
type-II scheme are larger by (50−60)%, (57−78)%, and
around 20% as compared to the branching ratios in the
type-I scheme involving Bc → B∗

(s), Bc → D∗, and
Bc → J/ψ semileptonic decays, respectively. Further-
more, we found that our LFU ratio involving b → cτντ

for J/ψ in the final state matches well with LQCD and
other theoretical models; however, it is smaller than the
experimental measurement.

• For the nonleptonic Bc decays, branching ratios are
affected by the self-consistency issues for decays involv-
ing A0(q2) transition form factors. These decays pre-
sented an excellent opportunity to observe these effects
in a quantitative manner. Interestingly, we found that
the branching ratios of CKM- and color-favored bottom-
conserving Bc → PV decays are affected by approxi-
mately ∼ 90%, while those of bottom-changing decays
are impacted by ∼ (25−57)%. However, the color-
favored CKM-suppressed and CKM-doubly-suppressed
modes are more seriously affected, where some of the
branching ratios are changed by ∼ 100%. Therefore, we
conclude that the self-consistency effects are predomi-
nant in Bc → PV decays. Furthermore, we observed
that the impact of uncertainties associated with quark
mass and β parameters is more pronounced in bottom-
changing transitions (except for Bc → J/ψ) and decays.
Notably, the substantial uncertainties in the slope param-
eters of q2 formulations do not significantly affect the
branching ratio values in semileptonic and nonleptonic
decays.
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• Finally, we conclude that both bottom-conserving and
bottom-changing decays are significantly affected by
self-consistency issues arising through the form factors.
These impacts can influence the branching ratios by up
to two orders of magnitude, with certain decay channels
exhibiting particularly large uncertainties in the type-I
scheme. Consequently, the substantial variation in pre-
dictions, coupled with uncertainties of greater magnitude,
casts doubt on the validity of the results obtained through
the type-I scheme. Furthermore, the observed discrepan-
cies between type-I and type-II scheme predictions high-
light the crucial role of self-consistency considerations.
These findings emphasize the critical importance of thor-
oughly evaluating self-consistency effects in future stud-
ies on such decays.

Thus, the agreement between our predictions in the type-II
correspondence scheme and the LQCD results confirms the
reliability of our numerical results for Bc meson decays. We
wish to note that we have ignored nonfactorizable processes,
for example, W-exchange, W-annihilation, and penguin pro-
cesses, in our analysis of nonleptonic Bc weak decays. How-
ever, the study of nonfactorizable contributions and CP-
asymmetries can be conducted more reliably in a model-
independent manner that requires a huge amount of exper-
imental data. We hope that the experimental observation of
these Bc weak decays can help to shed some light on the
underlying physics of the Bc meson.
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Appendix A: Resolution of inconsistency

Using Eq. (27), the expressions for f (q2) and a−(q2) form
factors of Bc → V transitions are given as follows:

f (q2) = Nc

∫
dx1d2k′⊥
(2π)3

χ ′
Bc

χ ′′
V

2x2
f̃ (x1, k′⊥, q2), (A1)

a−(q2) = Nc

∫
dx1d2k′⊥
(2π)3

χ ′
Bc

χ ′′
V

2x2
ã−(x1, k′⊥, q2), (A2)

where f̃ (x1, k′⊥, q2) and ã−(x1, k′⊥, q2) are defined in
Eqs. (32) and (34), respectively. As discussed in Sect. 2.1, the
expressions in Eqs. (32) and (34) correspond to λ = 0 for the
type-I correspondence scheme. The corresponding expres-
sions for the type-II scheme can be obtained by replacing
M ′(′′) with M ′(′′)

0 [62]. For the cases of λ = ±, the terms

associated with B(i)
j functions should be excluded.

We calculated the space-like f (q2) and a−(q2) bottom-
conserving and bottom-changing transition form factors at
various q2⊥ values14 for λ = 0 and λ = ±, as listed in
Tables 15 and 16, for both the type-I and type-II correspon-
dence schemes.

Appendix B: Branching ratios of B+
c → Pl+νl decays

We list the numerical values of B+
c → Pl+νl semileptonic

decays using the form factors given in Tables 4 and 5, and
the numerical inputs are discussed in Sect. 3.
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