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Abstract

Supergravity is one of the theories beyond the standard model of particle physics and
solves some theoretical and phenomenological problems in the standard model. It is also
regarded as an effective theory of superstring, which is a possible candidate for quantum
gravity. It is known that, in effective theories of superstring, higher order derivative
couplings generically appear. Such couplings may be important for physics at very high
energy scale, especially in the early universe. From such perspectives, it is important
to understand higher-derivative terms in supergravity. In this thesis, we construct the
supergravity action including such terms via the superconformal tensor calculus, which
reduces the complexity of calculations and unifies the three formulations of Poincaré
supergravity. In particular, we construct supersymmetric higher-derivative terms of chiral
and vector multiplets. We also discuss the effects of higher-derivative terms on inflation
models in supergravity. As we will find, the supersymmetric higher-derivative terms
are in general associated with nontrivial lower-(no-)derivative terms as a consequence of
supersymmetry. We show that such nontrivial terms can play important roles during
inflation.
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Chapter 1

Introduction

1.1 Introduction and outline

The standard model of particle physics (SM) has been a successful model consistent with
the collider experiments. In particular, in 2013, the last piece of SM, Higgs particle, was
discovered and it also strongly supports the validity of SM. However, once we take our
attention to cosmology, we notice that this is not the final theory explaining our universe
completely. In other words, it is inconsistent with the standard cosmological model called
the Λ-CDM model. The problems are obvious: in SM, both Λ and CDM are absent. Λ
is the so-called cosmological constant, which is the most consistent source of the present
accelerated expansion of the universe. In usual, although SM predicts the cosmological
constant due to quantum corrections, it can be removed in the calculations. Therefore, it
is essentially absent in SM. CDM means Cold Dark Matter, which is a neutral and non-
relativistic massive particle. Such a particle is absent in SM, and this fact suggests that
we need to extend SM for explaining them. An interesting model of CDM is the weakly
interacting massive particle (WIMP) scenario, where CDM has a very weak coupling with
particles in SM.

In the above argument, we have missed a more important point: before discussing
the Λ and CDM, in the first place, SM does not include gravity. That is due to the
non-renormalizable nature of quantum gravity. One of the promising candidates for the
solution is provided by the superstring theory, where the fundamental material is a string.
From the string theoretical viewpoint, the “particle” physics can be seen as the low energy
effective theory.

The effective particle theory of superstring has greatly interesting features. For the
consistency of the superstring theory, the number of the spacetime dimension is deter-
mined to be 10 (one for the time and the others for the space). Then, the effective particle
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CHAPTER 1. INTRODUCTION

theory should also be defined as 10 dimensional (10D) one. The other important feature
is supersymmetry (SUSY) in spacetime. SUSY is one of the solutions for the stability of
the electroweak scale. In superstring, SUSY is a local symmetry, and then, the effective
theory becomes supergravity (SUGRA).

These facts imply that it is important to construct phenomenological and cosmolog-
ical models within SUGRA. Such models of various kinds have been investigated in the
literature so far. One way is to construct the model directly from the string theoreti-
cal side, that is, the top-down approach. Such an approach is better to clarify how the
models can be realized in superstring. However, some assumptions are required and it is
sometimes difficult to discuss the phenomenological and the cosmological consequences.
In this thesis, we take the other approach, the bottom-up one, where we investigate the
phenomenological and the cosmological models in SUGRA particle theory. In particular,
we will construct and discuss the SUGRA models with some extensions motivated by the
superstring theory.

In this thesis, we especially focus on the higher-derivative terms in the action, which
contain spacetime derivatives more than two, in 4D SUGRA. It is known that such terms
appear e.g. in the effective action of D-branes in type II superstring theory. One of the
problems associated with higher-derivative terms is the so-called Ostrogradski instabil-
ity [1, 2], which is equivalent to the appearance of ghost modes. The simplest way to avoid
ghosts is to impose a requirement that the equation of motion (E.O.M) of a system should
be the second order differential equation with respect to time. In non-SUSY theories, the
most general scalar-tensor system satisfying the requirement is known as the Horndeski
action [3, 4]. On the other hand, in SUSY case, such a general system has never been
known so far, and furthermore, ghost-free higher-derivative terms of matter multiplets are
less known [5, 6]. For example, known ghost-free SUSY higher-derivative terms of chiral
multiplets are classified into two types. We will focus on one of them and also develop a
special class of higher-derivative terms of a gauge multiplet called the Dirac-Born-Infeld
(DBI) action [7, 8].

We will construct such models via the superconformal formulation [9, 10, 11, 12],
where we consider a theory with superconformal symmetry. The symmetry includes the
physical Poincaré SUSY as its subgroup, and this means that there are some unphysical
symmetries in the superconformal theory. As we will see in some parts of this thesis, such
unphysical gauge degrees of freedom can be used as a tool for reducing some complexi-
ties of calculations. The other utility of superconformal formulation is the unification of
the Poincaré SUGRA formulations. Three different off-shell formulations of the Poincaré
SUGRA have been known, in which the sets of auxiliary fields in the gravity multiplet
are different from each other. It is known that the relation between one and the other
formulations can be understood from the superconformal viewpoint [12]. Our construc-
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CHAPTER 1. INTRODUCTION

tion of models with SUSY higher-derivative terms will be done in the superconformal
formulation, and therefore, we can completely understand how such models are realized
in all the formulations. This is one of the achievements of this thesis.

We will also discuss the cosmological consequences of our SUGRA models. Since the
higher-derivative terms are expected to be suppressed by some scale much larger than one
seeable in the collider experiments so far and near future, the effects on the phenomenology
seem less important. However, in the early universe where the typical energy scale is much
larger than that of the experiments today, effects of such terms may affect the dynamics
of the universe. The main focus of our discussion is on cosmic inflation [13, 14, 15, 16, 17].

Inflation was first proposed as solutions for the horizon, the flatness, the monopole
problems and so on. It solves such problems simultaneously, and so, it became one of
a paradigm of the early universe. A class of inflation called the slow-roll inflation [18]
predicts the primordial fluctuation of gravity field, whose almost scale independent spectra
are consistent with the cosmic microwave background (CMB) observation so far. The
primordial curvature fluctuation is the origin of the large-scale structure of our universe,
and therefore, an inflationary era in the early universe seems necessary for explaining
the universe observed today. The best way to explain the latest CMB data is a slow-roll
inflation driven by a single scalar field called an inflaton.

Models of inflation in 4D SUGRA have been studied so far and numbers of models
have been proposed. The models we will discuss are based on three classes among them
called the F-term chaotic inflation [19, 20], the old and the new minimal Starobinsky
inflation [21, 22, 23], and the massive vector multiplet inflation [24, 25]. We study the
effects of the higher-derivative extension on those models.

The novel features of SUSY higher-derivative terms, which we will discuss, come from
the nature of SUSY. Even if we try to construct only a specific interaction term, it is, in
general, impossible in SUGRA because of the strong requirement of SUSY. The specific
interaction always brings another unexpected interaction to the system. Such things do
not occur in a non-SUSY system and the investigation of such a nontrivial interaction is
more important to understand the SUSY/SUGRA system. As we will see below, SUSY
higher-derivative terms lead to some nontrivial interactions other than higher-derivative
ones. Those nontrivial interactions show some interesting and cosmologically favored
features in each model.

This thesis consists of five chapters and appendices. In Chapter 2, we review the con-
struction of SUGRA action in the superconformal formulation, which makes the construc-
tion rather simple and universal than the formulations based on Poincaré SUSY. Certain
detailed advantages of the superconformal formulation are summarized in Sec. 2.1. Sec-
tions. 2.2, 2.3 and 2.4 are devoted to a review of some details about its structure and its
basic application.
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CHAPTER 1. INTRODUCTION

Models of inflation in SUGRA related to this thesis are summarized and reviewed in
Chapter 3. First, we overview structures of the scalar potential of chiral multiplets and
its consequences in inflation. After that, we review three models in SUGRA, the F-term
chaotic inflation, the Starobinsky inflation in the old and the new minimal SUGRA, and
the massive vector multiplet inflation.

In Chapter 4, we discuss one of the ghost-free higher-derivative terms of chiral multi-
plets. In Sec. 4.1, we introduce such a term in global SUSY. Then, we embed it into the
superconformal formulation and discuss some features in Sec. 4.2. Taking those features
into account, we construct an F-term chaotic inflation model with the higher-derivative
term in Sec. 4.3, and then, find that the model behaves in a drastically different way from
the original one. The reason for the behavior is clarified by a simplified model in Sec. 4.4.

We focus on the DBI action in SUGRA and its application to inflation in Chapter 5.
Our construction is based on Refs. [26, 27] in global SUSY, which is reviewed in Sec. 5.1.
Then, we promote the global SUSY expression to the superconformal one in Sec. 5.2, which
enables us to discuss e.g., the cosmological application. As an application to inflation, we
consider the DBI extension of the massive vector multiplet inflation model in Sec. 5.4. The
other application, the DBI-Starobinsky model in the new minimal SUGRA, is discussed
in Sec. 5.5.

Finally, we conclude in Chapter 6. The notation in this thesis is summarized in
Appendix A. We give transformation laws of a general superconformal multiplet in Ap-
pendix B, and a brief review of inflation is given in Appendix C. In Appendix D, we give
futher details of discussion in Sec. 4.3.
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Chapter 2

Review of conformal SUGRA

2.1 Why conformal SUGRA?

In this section, we briefly introduce conformal SUGRA and overview its advantages.
In this thesis, we consider 4D SUSY with four supercharges, which is called N = 1.
In Poincaré SUGRA, the action of supermultiplets is invariant under the set of local
symmetries: the general coordinate transformation, the local Lorentz symmetry, and local
SUSY, collectively called Poincaré SUSY. Conformal SUGRA has a much larger set of local
symmetries: in addition to the above symmetries, dilatation, chiral U(1) symmetry, special
SUSY, and special conformal symmetry, collectively called superconformal symmetry.
In such a theory, supermultiplets should also be the representations of such additional
symmetries. Those additional symmetries should be broken in the physical system. By
setting gauge fixing conditions on the additional symmetries, as we will review in Sec. 2.4,
we can obtain the physical Poincaré SUGRA theory as the broken superconformal one.

We employ conformal SUGRA mainly by the following two reasons. One of the reasons
is that the conformal SUGRA can produce the Poincaré SUGRA theory in various frames
in a systematic and simple way. In most formalisms of Poincaré SUGRA, scalars φi and
graviton gμν couple to each other through the non-minimal Ricci scalar term ∼ f(φi)R,
which represents the kinetic mixings between φi and gμν . To make graviton canonical, we
have to redefine the metric as gμν → g̃μν = e−2σ(x)gμν with an appropriate real function
σ(x). We now discuss the SUSY theory, and therefore, the non-minimal kinetic mixing be-
tween the fermions χi and gravitino ψμ also appears as

∑
j gj(φ

i)χjγμνDμψν where gj(φ
i)

is a function of scalars, and Dμ denotes the covariant derivative defined later. In contrast
to the case of the canonicalization of graviton, the procedure to make gravitino canonical
is much complicated in many cases.1 Such a complexity is relaxed in the superconformal

1For example, in Ref. [28], the redefinitions procedure for canonicalization of graviton and gravitino
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CHAPTER 2. REVIEW OF CONFORMAL SUGRA

formulation.
Here, we show how the procedure is simplified in conformal SUGRA. Although we will

show the procedure precisely in the following sections, it is meaningful to demonstrate
it in a simplified example for understanding. As we mentioned above, to produce the
Poincaré SUGRA from conformal one, we need to set gauge fixing conditions on the
symmetries other than Poincaré SUSY. We focus especially on the dilatation and the
special SUSY gauge fixings. Dilatation and the special SUSY have a real bosonic and a
fermionic generators respectively. Therefore, we can put conditions on a real bosonic and
a fermionic quantities. Let us recall the mixing terms given by

Lmix = f(φi)R + gj(φ
i)χjγμνDμψν . (2.1)

To make the non-minimal Ricci scalar term canonical ∼ fR → 1
2
R, we put the dilatation

gauge fixing condition f(φi) = 1
2
. This condition eliminates one of the scalar degrees of

freedom and we assume φ0 is removed. We can solve the condition and then φ0 becomes
a function of the other scalars as φ0 = Φ0(φi �=0). The effects of the dilatation fixing on
the other terms appear through φ0 substituted by Φ0 in the action. As in the same way,
the second term in Eq. (2.1) can be removed by using the special SUSY fixing condition∑

j gj(φ
i)χj = 0. The condition eliminates one of the fermionic degrees of freedom,

which we choose as χ0. Then, χ0 becomes a linear combination of the other fermions
like χ0 = −g−1

0

∑
j �=0 gjχ

j. Thus, we can obtain canonical kinetic terms of graviton and
gravitino. As we find from the above discussion, the superconformal action should have
some degrees of freedom other than ones remaining in the gauge-fixed system, that is, in
the physical Poincaé SUSY theory. The fields such as φ0 and χ0 are called compensator
fields and the simplest choice of them is so that they form a superconformal multiplet,
called a compensator multiplet.

The second advantage of conformal SUGRA is that it unifies Poincaré SUGRA with
different types of gravity multiplet. It has been known that there are some possible sets
of auxiliary fields of gravity multiplet in Poincaré SUGRA. From the viewpoint of the
Poincaré SUGRA, it is difficult to find the relation between theories with such different
sets of auxiliary fields. However, in Ref. [12], it was found that those theories can be
understood as conformal SUGRA models with different compensator multiplets. Three
classes of different Poincaré SUGRA, which can be realized with irreducible superconfor-
mal compensator multiplets; a chiral, a real linear, and a complex linear multiplets, are
known as the old minimal, the new minimal, and the non-minimal formulations, respec-
tively. The relation between them was studied in Ref [29], and it was found that the new
and the non-minimal formulations are equivalent to special classes of the old minimal
formulation. It is also known, however, that the equivalence holds only if there are no

coupled to chiral multiplets are shown.
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CHAPTER 2. REVIEW OF CONFORMAL SUGRA

SUSY higher-derivative terms of a compensator. In this sense, if higher-derivative terms
exist, the difference of formulations has physical meanings. Such examples include the
Starobinsky model in the old and the new minimal formulations, which will be discussed
in Sec. 3.3. In this thesis, we will discuss the action with higher-derivative terms in chap-
ters 4 and 5. To understand whether the behavior of such terms depends on the choice
of the formulations, the conformal SUGRA formalism is quite useful.

There are other utilities of conformal SUGRA for understanding phenomenological and
cosmological aspects of SUGRA systems although we just comment on them briefly. The
anomaly mediated SUSY breaking found in Refs. [30, 31] can be simply described in terms
of the compensator multiplet [32]. In Ref. [33], using gauge fixing conditions alternative to
the conventional one [34], the effective SUGRA action in a flat spacetime was simplified,
and expressed in terms of the flat superspace. The conformal SUGRA approach was
also applied to cosmology, especially for an understanding of inflation models [35]. In
Ref. [36], the general Jordan frame SUGRA has been constructed by using conformal
SUGRA, which is useful for constructing inflation models with non-minimal Ricci scalar
terms and for clarifying the underlying conformal symmetry. The author showed how
the SUSY breaking effects affects on SUGRA inflation models in view of the conformal
SUGRA structure [37].

2.2 Basics of conformal SUGRA

We review the construction of conformal SUGRA in this section on the basis of Refs. [12,
38]. For the construction, three formalisms are known. The first is the superconformal
tensor calculus which we will use below and is based on the gauge theory of superconformal
symmetry on the spacetime manifold. The second is conformal superspace approach [39],
which is very similar to the previous one, but the base space is superspace. The third
one is the group manifold approach [40]. For a practical application, the first method has
been used, and so we employ it.

In the superconformal tensor calculus, we consider the gauge theory of the supercon-
formal symmetry. The strategy is quite simple: From the superconformal algebra, we
can find representations of the algebra, which is a covariant quantity in the gauge the-
ory. Then, we can construct the action of representations, which is invariant under the
superconformal transformations.

First, we define the covariant quantities and the covariant derivative. Let us consider
a set of transformations

δ(ε) ≡ εATA, (2.2)
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CHAPTER 2. REVIEW OF CONFORMAL SUGRA

where A is a label of generators, εA is a transformation parameter, and TA is a generator.
We assume the algebra formed by TA as

[TA, TB] = fC
ABTC , (2.3)

where [ , ] denotes the commutator, and fC
AB is the structure constant of the algebra,

which is antisymmetric with respect to the exchange of A and B.2 The algebra can also
be expressed with transformation parameters εA1 and εB2 as

[δ(ε1), δ(ε2)] = (εB2 ε
A
1 f

C
AB)TC = δ(ε3), (2.4)

where εC3 ≡ εB2 ε
A
1 f

C
AB. Under the transformation, a covariant quantity Φ is defined so that

it transforms as

δ(ε)Φ = εAKA (2.5)

where KA ≡ TAΦ. The important point is that the transformation of the covariant
quantity does not have the differentiated εA-terms like ∂με

A.
In gauge theory, the transformation parameter depends on the spacetime; εA(x).

Therefore, the spacetime derivative of Φ does not become a covariant quantity, which
transform as

δ(ε)∂μΦ = ∂μ(ε
AKA) = εA∂μKA + ∂με

AKA. (2.6)

To construct the covariant derivative, gauge fields BA
μ are required, which transform under

the symmetry transformation as

δ(ε)Bμ = ∂με
A + εCBB

μ f
A
BC . (2.7)

Then we can define a covariant derivative Dμ on Φ by

DμΦ = (∂μ − BA
μ TA)Φ = (∂μ − δ(Bμ))Φ. (2.8)

Indeed, this is a covariant quantity, which transforms as

δ(ε)DμΦ =εA∂μKA + (∂με)KA − (δ(ε)BA
μ )KA − BA

μ δ(ε)KA

=εA∂μKA − εCBB
μ f

A
BCKA − BA

μ δ(ε)KA

=εA∂μKA − εABB
μ [TB, TA]Φ− BB

μ ε
ATATBΦ

=εA(∂μKA − BB
μ TBKA)

=εADμKA, (2.9)

2Here, we assume the generators TA are bosonic quantities. Even if the generators are fermionic, we
can use the final form of each expression given in the following discussion.
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CHAPTER 2. REVIEW OF CONFORMAL SUGRA

where we have used the algebra (2.3) in the third equality.
From the gauge fields, we can construct the other covariant quantity called curvature.

The curvature RA
μν is defined by

RA
μν = 2∂[μBA

ν] + BC
ν BB

μ f
A
BC , (2.10)

where [· · · ] is the antisymmetrization defined below Eq. (A.1). We can derive the trans-
formation rule of curvatures as

δ(ε)RA
μν =2∂[μ∂ν]ε

A + 2∂[μ(ε
CBB

ν])f
A
BC +

(
(∂νε

C + εDBE
ν f

C
ED)BB

μ f
A
BC − (μ↔ ν)

)
=εC(2∂[μBB

ν]f
A
BC) + εDBE

ν BB
μ f

C
EDf

A
BC + εDBC

ν BE
μ f

B
EDf

A
BC

=εC(2∂[μBB
ν]f

A
BC)− εCBE

ν BD
μ f

B
EDf

A
BC

=εCRB
μνf

A
BC , (2.11)

where we have used a Jacobi identity
∑

B f
B
CEf

A
BD + (cyclic with respect to C,D,E) = 0

in the third equality.
So far, we have discussed a general gauge theory. Next, let us focus on the supercon-

formal symmetry. We define the superconformal transformation δsc as

δsc = ξaPa + εQ+
1

2
λabMab + λDD + θA+ ηS + λaKKa, (2.12)

In Eq. (2.12), Pa, Q, Mab, D, A, S, and Ka denote the generators of translation, SUSY,
Lorentz transformation, dilatation, chiral U(1) symmertry, conformal SUSY (S-SUSY),
and special conformal transformation, respectively. The subscripts a, b denote the local
Lorentz indices. The coefficients ξa, ε, λab, λD, θ, η, and λ

a
K are corresponding transfor-

mation parameters, respectively. These generators form the superconformal algebra as
(other combinations are commutative)

[Pa,Mbc] =2ηa[bPc], [Pa, D] = −Pa, [Pa, Sα] = (γaQ)α,

{Qα, Q
β} =− 1

2
(γa)βαPa, [Qα,Mab] =

1

2
(γabQ)α, [Qα, D] = −1

2
Qα,

[Qα, A] =
3i

2
(γ∗Q)α, {Qα, Sβ} = −1

2
CαβD − 1

4
(γab)αβMab +

i

2
(γ∗)αβA,

[Qα, Ka] =− (γaS)α, [Mab,Mcd] = 4η[a[cMd]b], [Mab, Sα] = −1

2
(γabS)α,

[Ka,Mbc] =2ηa[bKc], [D,Sα] = −1

2
Sα, [D,Ka] = −Ka, [A, Sα] =

3i

2
(γ∗S)α

{Sα, S
β} =− 1

2
(γa)βαKa, [Pa, Kb] = 2(ηabD +Mab), (2.13)
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CHAPTER 2. REVIEW OF CONFORMAL SUGRA

where the subscripts α and β denote the spinor indices, and Cαβ is the charge conjugation
matrix defined below Eq. (A.4). {· · · } denotes the anti-commutator, and γa, γab, and γ∗
are defined in Appendix A. We also define the set of gauge fields as

BA
μ TA = eaμPa + ψ̄μQ+

1

2
ωab
μ Mab + bμD + AμA+ φ̄μS + fa

μKa. (2.14)

From the algebra, we can read off the structure constants, and obtain the following set of
curvatures (2.10) for each generator,

Ra
μν(P ) =2(∂[μ + b[μ)e

a
ν] + 2ωab

[μeν]b −
1

2
ψ̄μγ

aψν (2.15)

Rμν(Q) =2

(
∂[μ +

1

2
b[μ − 3i

2
A[μγ∗ +

1

4
ωab
[μγab)

)
ψν] − 2γ[μφν], (2.16)

Rab
μν(M) =2∂[μω

ab
ν] − 2ωa

[μcω
cb
ν] + 8f

[a
[μe

b]
ν] − ψ̄[μγ

abφν], (2.17)

Rμν(D) =2∂[μbν] − 4fa
[μeν]a − ψ̄[μφν], (2.18)

Rμν(A) =2∂[μAν] + iψ̄[μγ∗φν], (2.19)

Rμν(S) =2

(
∂[μ − 1

2
b[μ +

3i

2
A[μγ∗ +

1

4
ωab
[μγab

)
φν] − 2γaf

a
[μψν], (2.20)

Ra
μν(K) =2(∂[μ − b[μ)f

a
ν] + 2ωab

[μfν]b −
1

2
φ̄μγ

aφν . (2.21)

In the above construction, we have defined the symmetry algebra and corresponding
gauge fields, as in the case of the gauge theory of “internal” symmetries. However, the
superconformal symmetry would be a “spacetime” symmetry, and therefore, we have to
relate the symmetry to the general coordinate transformation (GCT) of spacetime. For
such a purpose, we need to change the meaning of “translation” as follows: We define
translation P̃a, whose transformation is defined as

ξaP̃a ≡δGC(ξ
μ)−

∑
A �=P

ξμBA
μ TA

=ξμ(∇μ −
∑
A �=P

BA
μ TA)

≡ξμDμ, (2.22)

where δGC(ξ
μ) denotes GCT with a parameter ξμ(x), ξa ≡ eaμξ

μ, and ∇μ is a covariant
derivative with respect to GCT. Now the translation becomes the covariantized GCT with
respect to all the symmetries. This modification requires the replacement of P a to P̃ a

in the algebra. Therefore, the covariant derivative Dμ in Eq. (2.8) does not appear in

10
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the following discussion but the deformed covariant derivative Dμ does. Then, we have
to know whether the deformed algebra requires some conditions or not for the closure of
the algebra. Indeed, it is known that three conditions on curvatures and the modification
of the transformation laws of three gauge fields are required. We do not discuss them in
detail, but show how those conditions and transformations are derived in the following.

In the algebra (2.13), we find that only the equation {Qα, Q
β} = 1

2
(γa)βαPa contains

Pa on the right-hand side without including it on the left-hand side. The modification
Pa → P̃a especially affects such a relation. Let us discuss the original anti-commutation
relation of Q on eaμ,

[ε̄1Q, ε̄2Q]e
a
μ = ξb(Pbe

a
μ), (2.23)

where ξb ≡ 1
2
ε̄2γ

bε1. Before starting deformation, we note the following relation,

ξaPaBA
μ = ξaP̃aBA

μ + ξνRA
νμ, (2.24)

which can be derived from the definition of P̃a (2.22) straightforwardly. With this identity,
we obtain

[ε̄1Q, ε̄2Q]e
a
μ = ξb(P̃be

a
μ) + ξνRa

νμ(P ). (2.25)

To deform the algebra so that Pa → P̃a,

Ra
νμ(P ) = 0 (2.26)

is required. This condition can be solved with respect to ωab
μ . Thus, ωab

μ becomes a
dependent field given as a function of eaμ, bμ, ψμ (see the definition ofRμν(P

a) in Eq. (2.15)).
We also notice that the condition Ra

μν(P ) = 0 is not SUSY invariant. Indeed,
ε̄Q(Ra

μν(P )) = 1
2
ε̄γaRμν(Q) �= 0 if we follow the original transformation rule. Such a

contradiction can be solved by taking into account the modification of the transformation
law of ωab

μ . Now, it is a dependent field determined by Eq. (2.26), and so the SUSY trans-
formation of ωab

μ should be consistent with the constraint. Therefore, the transformation
law of ωab

μ should be modified so that

ε̄Q(Ra
μν(P )) =

1

2
ε̄γaRμν(Q) + 2δ′Q(ε)ω

ab
[μeν]b = 0, (2.27)

where δ′Q is the additional SUSY transformation other the original one. Equation (2.27)
can be solved, and we obtain

δ′Q(ε)ω
ab
μ = −1

2
ε̄γ[aRb]

μ (Q)−
1

4
ε̄γμR

ab(Q). (2.28)

11
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We need to perform the same procedure for ψμ, bμ, and Aμ, and find that the modifi-
cation can be completed with the following conditions,

γμRμν(Q) = 0, (2.29)

Rcov
μν (M) + iR̃μν(A) = 0, (2.30)

where Rcov
μν (M) = Rcovab

μρ (M)eρaebν , and Rcovab
μρ (M) = Rab

μρ(M) − 1
2
ψ̄ργμR

ab(Q). These
conditions can be solved with respect to φμ and fa

μ , respectively. Then those fields become
dependent fields and their SUSY transformations have additional terms as ωab

μ :

δ′Q(ε)φμ =
i

2
γν(γ∗Rμν(A) + R̃μν(A))ε, (2.31)

δ′Q(ε)f
a
μ =

1

4
ε̄(γabRcov

bμ (S) + γ∗R̃cova
μ (S)), (2.32)

where Rcov
μν (S) = Rμν(S) +

i
2
γρ(γ∗Rμρ(A) + R̃μρ(A))ψν . Note that all the other transfor-

mations are the same with that determined by the original algebra.
Thus, the deformation of the algebra is completed, and the superconformal symmetry

becomes a “spacetime” symmetry.

2.3 Superconformal multiplet

2.3.1 General multiplet

In the previous section, we have discussed the basic structure of the superconformal
tensor calculus and seen the deformed superconformal algebra. Here, let us construct
the representations of the algebra. From a representation Φ, we can construct finite
numbers of its SUSY descendants ∼ QΦ, Q̄Φ,· · · , QQQ̄Q̄Φ. We call such a set of fields a
supermultiplet. However, a supermultiplet may not be a superconformal multiplet, which
is a set of fields transformed under the superconformal transformations. The reason can
be understood by the following example: Let us consider the S-transformation of QΦ.
From the algebra (2.13), S(QΦ) = {S,Q}Φ−Q(SΦ) ∼ (M +D+A)Φ−Q(SΦ). We find
that the transformation of QΦ depends on the Q-transformation of a new field SΦ. This
means that SΦ is also a “superpartner” of Φ. This implies that a supermultiplet itself
can not determine the transformation law under the superconformal symmetry.

From the above argument, we define a superconformal multiplet as a supermultiplet
which satisfies the following condition: SΦ = 0, KΦ = 0. Let us construct a superconfor-
mal multiplet, more concretely.

12
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Let us consider a superconformal multiplet C, which has the lowest component C and
transforms as

δQC =
i

2
ε̄γ∗ζ, δMC = 0, δDC = wλDC, δAC = inθC

δSC = 0, δKC = 0, (2.33)

where we have used the notation δI = εITI (without a summation with respect to I).
In the D- and A-transformations of C, we have introduced two real parameter w and n
called theWeyl and the chiral weights, respectively. These weights are the most important
quantities for characterizing the superconformal multiplet C. ζ is an arbitrary spinor
whose transformation law is uniquely determined by the algebra. Let us demonstrate
the procedure to determine the transformation law of ζ. As an example, we consider the
S-transformation of ζ. From the algebra (2.13), we find

[δS(η), δQ(ε)] = δD

(
1

2
η̄ε

)
+ δM

(
1

2
ε̄γη

)
+ δA

(
i

2
ε̄γ∗η

)
. (2.34)

We also know the transformation law of C, and then obtain

δS(η)δQ(ε)C =[δS(η), δQ(ε)]C + δQ(ε)δS(η)C

=

(
δD

(
1

2
η̄ε

)
+ δM

(
1

2
ε̄γη

)
+ δA

(
i

2
ε̄γ∗η

))
C + 0

=
1

2
η̄εwC + 0 + in

(
i

2
ε̄γ∗η

)
C

=
i

2
ε̄γ∗(iwγ∗ + in)ηC. (2.35)

The left-hand side can be rewritten as

δS(η)δQ(ε)C =
i

2
ε̄γ∗δS(η)ζ, (2.36)

and then, combining these equations, we obtain

δS(η)ζ = (iwγ∗ + in)ηC. (2.37)

From the above example, we can confirm that the transformation law of a descendant
field can be uniquely determined by that of the lower (ascendant) components.

Another important example is the Q-transformation of ζ. Following the (deformed)
algebra, we have

[δQ(ε1), δQ(ε2)]C = −1

2
(ε̄1γ

aε2)DaC. (2.38)

13
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To compute the left-hand side of this equation, we need to know the form of δQ(ε)ζ, the
general form of which is

δQ(ε)ζ = (Φ0 + Φ1
aγ

a + Φ2
abγ

ab + γaγ∗Φ3
a + γ∗Φ4)ε, (2.39)

where ΦI (I = 0, · · · , 4) are bosonic fields with (or without) Lorentz indices. This expres-
sion contains all possible fields as the SUSY descendants of ζ associated with the complete
set of γ-matrices in 4D. Then, we can compute the left-hand side of Eq. (2.38) as

[δQ(ε1), δQ(ε2)]C =
i

2
ε̄2γ∗δQ(ε1)ζ − (ε1 ↔ ε2)

=
i

2
(ε̄2γ∗ε1Φ0 + ε̄2γ∗γaε1Φ1

a + ε̄2γ∗γabε1Φ2
ab)

+
i

2
(ε̄2γ∗γaγ∗ε1Φ3

a + ε̄2ε1Φ
4)− (ε1 ↔ ε2)

=0 + 0 + iε̄2γ∗γabε1Φ2
ab + iε̄1γ

aε2Φ
3
a, (2.40)

where we have used the Majorana flip identities (A.6). Comparing this and the right-hand
side of Eq. (2.38), we find

Φ2
ab = 0, (2.41)

Φ3
a =

i

2
DaC. (2.42)

The undetermined components Φ0, Φ1
a and Φ4 should be understood as SUSY descendants

of ζ. We conventionally define the new fields H, K, and Ba as Φ0 = −1
2
K, Φ1

a = −1
2
Ba,

and Φ4 = i
2
H. Thus we have determined the Q-transformation as

δQ(ε)ζ =
1

2
(iHγ∗ −K − /B − iγ∗ /DC)ε. (2.43)

In this way, we can determine all the components of C and their transformation laws.
The components are summarized as

C = [C, ζ,H,K,Ba, λ,D], (2.44)

and we will use this notation to express superconformal multiplets. The transformation
law of each component is summarized in Appendix B. Note that the Weyl and chiral
weights of each component of C are uniquely determined by those of the lowest component
C. Therefore, we caracterize the Weyl and the chiral weights of a superconformal multiplet
by those of its lowest component.

In this subsection, we have discussed a general multiplet whose lowest component is a
scalar. However, we can further consider a general multiplet with external Lorentz indices
defined in Ref. [41]. We do not use it directly in this thesis, and therefore, we do not
discuss it here.

14
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2.3.2 Irreducible multiplets

We have constructed a general multiplet in the previous subsection. Here, we introduce
some special multiplets, which are constrained by specific conditions.

First, we define a chiral multiplet. A chiral multiplet Φ consists of three independent
fields:

Φ = [φ, PLχ, F ], (2.45)

where PL = 1+γ∗
2

is a left projection. Embedding a chiral multiplet into a general multi-
plet (2.44), we can express Φ as

C(Φ) = [φ,−
√
2iPLχ,−F, iF, iDaφ, 0, 0], (2.46)

where we have assumed that φ does not have any gauge charges of internal symmetries.
This multiplet cannot have arbitrary Weyl and chiral weights because of the following
consistency condition: We assume Φ has its Weyl and chiral weights (w, n). Then, the
S-SUSY transformation of PLχ gives

δS(η)PLχ =
1√
2
(wγ∗ + n)ηφ. (2.47)

The left-hand side of this equation has the definite chirality projected by PL = 1
2
(1 + γ∗).

However, the right-hand side can have a different one in general. Only the solution for
this contradiction is the choice w = n. Therefore, chiral multiplets should have the Weyl
and the chiral weights satisfying w = n .3 Chiral multiplets are important to describe
chiral fermions such as those in SM. Although a chiral multiplet here is a singlet for any
internal symmetries, gauged chiral multiplets, which are important for describing SUSY
SM, will be shown later.

From a specific multiplet which is not a chiral one, we can construct a chiral multiplet
by using the chiral projection. Let us consider a general multiplet (2.44) with its Weyl
and chiral weights (w, n) = (wC , nC), which satisfy wC − nC = 2. Then, the following
combination is S-inert:

φC =
1

2
(H − iK). (2.48)

Indeed,

δSφC =
i

4
η̄(wC − nC − 2)(γ∗ − 1)ζ

=0, (2.49)

3We will give another definition of a chiral multiplet in Sec. 4.2.
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where we have used the transformation laws of H and K in Eqs. (B.3) and (B.4). The
Q-transformation of φC is

δQφC =
i

2
ε̄PL(λ+ /Dζ), (2.50)

which is the same as that of a chiral multiplet (2.46) by the following identifications:
φ = φC and PLχ = i√

2
PL(λ+ /Dζ). The Weyl and the chiral weights of φC is determined

as (w, n) = (wC+1, wC+1) from Eqs. (B.3) and (B.4). Therefore, the multiplet ΦC, whose
lowest component is φC, is a chiral multiplet. Therefore, we can define the projection Σ
on a superconformal multiplet C with wC − nC = 2 as

Σ(C) = ΦC =

[
1

2
(H − iK),

i√
2
PL(λ+ /Dζ),−1

2
(D +�C + iDaBa)

]
. (2.51)

We call Σ the chiral projection.
We can define an irreducible superconformal multiplet L, whose Weyl and chiral

weights wL and nL satisfy wL − nL = 2, so that

Σ(L) = 0. (2.52)

Then, L is called a (complex) linear multiplet. In Sec. 3.3.2, we will focus on a real linear
multiplet L with (w, n) = (2, 0). The components of L are given by

C(L) = [CL, ζL, 0, 0, BL
a ,− /DζL,−�CL], (2.53)

where CL is a real scalar, ζL is a Majorana spinor, and BL
a is a real vector, which satisfies

DaBL
a = 0.

The other special multiplet is a gauge multiplet. For a real general multiplet (2.44)
with (w, n) = (0, 0), let us consider the following combination:

B̂μ ≡ eaμBa − 1

2
ψ̄μζ. (2.54)

Its Q-transformation is given by

δQB̂μ = −1

2
ε̄γμλ− 1

2
∂μ(ε̄ζ). (2.55)

The last term looks like a U(1) transformation of a gauge field B̂μ → B̂μ − ∂μσ where σ
is a real scalar field. If we regard the last term as a U(1) transformation, the appearance
of ζ is not physical. Then, we can construct the following superconformal multiplet:

VA ≡ [(B̂μ)
A, (λG)A, (DG)A], (2.56)
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where we have extended the U(1) gauge multiplet to that of general gauge symmetries, A
denotes the index of internal gauge symmetries, (λG)A is a Majorana spinor, and (DG)A

is a real scalar. The transformation laws of VA are as follows:

(B̂μ)
A : δQ(B̂μ)

A = −1

2
ε̄γμ(λ

G)A, δM(B̂μ)
A = 0,

δD(B̂μ)
A = 0, δA(B̂μ)

A = 0,

δS(Bμ)
A = 0, δK(B̂μ)

A = 0, (2.57)

(λG)A : δQ(λ
G)A =

(
i

2
γ∗(DG)A +

1

4
γab(F̂G

ab)
A

)
ε, δM(λG)A = −1

4
λabγab(λ

G)A,

δD(λ
G)A =

3

2
λD(λ

G)A, δA(λ
G)A =

3i

2
θγ∗(λG)A,

δS(λ
G)A = 0, δK(λ

G)A = 0, (2.58)

(DG)A : δQ(D
G)A =

i

2
ε̄γ∗( /Dλ)A, δM(DG)A = 0,

δD(D
G)A = 2λD(D

G)A, δA(D
G)A = 0,

δS(D
G)A = 0, δK(D

G)A = 0, (2.59)

up to the gauge transformation of (B̂μ)
A, where

(F̂G
ab)

A ≡ eμae
ν
b

(
2∂[μ(B̂ν])

A + fA
BC(B̂μ)

B(B̂ν)
C + ψ̄[μγν](λ

G)A
)
, (2.60)

and fA
BC is the structure constant of gauge symmetries.

Now we have a gauge multiplet, and therefore, we can discuss a general multiplet
which has a U(1) gauge charge. In such a case, the Q-transformation law of a general
multiplet (2.44) changes by the following reason: If the lowest component of a multiplet
transforms under internal gauge symmetries, its covariant derivative should include (B̂μ)

A.
Then, the Q-transformation of such a term has gaugino (λG)A terms. More concretely,
we assume that CI , where I is a label of general multiplets, transforms as CI → kIA(C)
under the internal gauge transformation, where kIA(C) is the Killing vector of CI . Then,
the covariant derivative of CI includes a term like −(B̂μ)

AkIA, which transforms under Q
as

δQ

(
(B̂μ)

AkIA

)
∼ (B̂μ)

A∂Jk
I
Aζ

J + γμ(λ
G)AkIA, (2.61)

where ∂J denotes the derivative with respect to CJ . The first term in the right-hand side
is a part of the covariant derivative of ζI but the second term is a new contribution due
to the internal gauge symmetry. Therefore, the transformation law of superconformal

17



CHAPTER 2. REVIEW OF CONFORMAL SUGRA

multiplets are different if they have charges under internal gauge symmetries. Note that
the transformation laws of symmetries other than Q are the same as the original ones
because B̂A

μ is inert under the other superconformal transformations. The extra terms in
Q-transformations of each component are summarized in Appendix B.

It is worth noting that the gauged chiral multiplet consists not only of the original
components but also of those of gauge multiplets. We show its components:

C(Φgauged) = [φ,−
√
2iPLχ,−F, iF, iDaφ,−2iPR(λ

G)AkA(φ),−ikA(DG)A], (2.62)

where kA(φ) is the Killing vector for gauge symmetries.

2.3.3 Multiplication law of supermultiplets

We have discussed irreducible superconformal multiplets, which satisfy some conditions.
Next, let us construct a multiplet from multiplications of superconformal multiplets. For
general multiplets C1 and C2 with (w1, n1) and (w2, n2), the multiplication of their lowest
components C1C2 is obviously S- and K-inert and has (w, n) = (w1 + w2, n1 + n2).
Therefore, that can be the lowest component of a superconformal multiplet denoted by
C1C2. From this observation, we find that the function of the lowest components forms
a superconformal multiplet, as long as all the terms in it have the same Weyl and chiral
weights.

It is important to stress that the Weyl and the chiral weights are additive with respect
to the multiplication of superconformal multiplet. This rule is important to construct the
invariant action of superconformal multiplets.

With general multiplets CI , the function of them f(CI) is given by

f(CI) =

[
f(CI), fIζ

I , fIH
I − 1

4
ζ̄IζJfIJ , fIK

I +
i

4
ζ̄Iγ∗ζJfIJ ,

fIB
I
a +

i

4
ζ̄Iγ∗γJζ fIJ , λ

′, D′
]
, (2.63)

where

λ′ =fIλI +
1

2
(HI − iγ∗KI + iγ∗ /B

I − /DCI)ζJfIJ − 1

4
(ζ̄IζJ)ζKfIJK , (2.64)

D′ =fIDI +
1

2
fIJ(H

IHJ +KIKJ −BI
aB

Ja −DaC
IDaCJ)− ζ̄IλJfIJ

− 1

4
ζ̄K(HI − iγ∗KI + iγ∗ /B

I
)ζJfIJK +

1

16
fIJKL(ζ̄

IζJ)(ζ̄KζL), (2.65)

and the subscripts on f = f(CI) denote the derivatives with respect to CIs (e.g., fIJ =
∂I∂Jf).
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2.4 Invariant action and superconformal gauge fixing

In this section, we show invariant action formulae in conformal SUGRA and discuss the
superconformal gauge fixing to derive a physical action.

2.4.1 F- and D-term density formulae

With a chiral multiplet (2.45) with (w, n) = (3, 3), which is a singlet of any internal gauge
symmetry, the following action is invariant under the superconformal transformation:

[φ]F ≡
∫
d4xe

[
F +

1√
2
ψ̄μγ

μPLχ+
1

2
φψ̄μγ

μνPRψν + h.c.

]
, (2.66)

where e ≡ det(eaμ). This is the so-called F-term density formula. Although we do not
show the invariance of this action explicitly, we note that the only nontrivial part of the
proof is the Q-invariance.

We can construct the other useful action formula called D-term density formula. From
a real general multiplet C (2.44) with (w, n) = (2, 0), we can construct a chiral multiplet
Σ(C) (2.51). As we mentioned, Σ(C) has (w, n) = (3, 3), which can be applied to the F-
term density formula. By substituting it into the formula (2.66), we obtain the following
action after some partial integrals,

[C]D ≡
∫
d4xe

[
D − 1

3
CR̂ +

1

6
(Cψ̄μγ

μρσ − iζ̄γρσγ∗)R′
ρσ(Q)−

i

2
ψ̄μγ

μγ∗λ

+
1

4
εabcdψ̄aγbψc(Bd − 1

2
ψ̄dζ)

]
, (2.67)

where R̂ ≡ Rcov
μν (M)gμν , and R′

μν(Q) ≡ 2(∂[μ +
1
4
ωab
[μγab +

1
2
b[μ − 3i

2
A[μγ∗)ψν]. This action

is also superconformal invariant because it is an alternative form of the F-term formula.

2.4.2 Superconformal gauge fixing and compensators

Now we can construct the superconformal action and make it the Poincaré one by the
superconformal gauge fixing. Before discussing the procedure in a concrete example, we
have to know the general feature of the superconformal gauge fixing.

To obtain the Poincaré SUGRA action from conformal one, we have to break the
full superconformal symmetry to the Poincaré SUSY. To do so, we fix gauge degrees of
freedom other than that of Poincaré SUSY. As an exception of this argument, A can
remain because P , Q, M and A can form a subalgebra. Then, the number of conditions
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we have to set equals to the number of generators corresponding to the “would-be” broken
symmetries, D, (A), S, and K. The total number of bosonic constraints is five (six) and
that of fermionic one is one. If we require that graviton and gravitino remain as the
physical degrees of freedom, we can not impose gauge conditions on them. The remaining
degrees of freedom are bμ and Aμ because other fields are dependent fields. Therefore, we
need, at least, one superconformal multiplet other than the superconformal gauge fields.
Such an additional multiplet is the compensator.

The minimal choice of a compensator is to choose one irreducible multiplet. Note
that it cannot be a real multiplet with (w, n) = (2, 0) as discussed in Ref. [42]. Therefore,
possible candidates are a chiral, a real linear, and a complex linear multiplets, and indeed,
they can be compensator multiplets. After superconformal gauge fixing, some of the
components in a compensator multiplet remain in the physical theory. With these three
types of compensators, we find that the remaining components of them do not have
kinetic terms, as long as we do not consider the higher-derivative couplings of compensator
multiplet, which are equivalent to the higher-derivative gravitational couplings. Therefore,
in the physical theory, the remaining compensator components behave as auxiliary fields.

As we discussed in the previous section, all the irreducible multiplets have different
components, which means that, with the different compensator, the auxiliary fields in
Poincaré SUGRA are different from each other. Historically, Poincaré SUGRA formula-
tions with different sets of auxiliary fields were known. The relation between them had
never been known before the appearance of Ref. [12], in which it was first clarified from the
conformal SUGRA viewpoint. As shown in Ref. [12], the old minimal formulation can be
realized with a chiral compensator, the new minimal one with a real linear compensator,
and the non-minimal one with a complex linear compensator.

In the most of remaining parts, we focus on the old minimal formulation, that is, the
superconformal action with a chiral compensator. That is because this formulation can
realize the broadest class of models as shown in Ref. [29]. However, as mentioned in the
above, the higher-derivative terms in conformal SUGRA may induce the kinetic terms of
compensator components. We will briefly discuss SUGRA with a real or a complex linear
compensator later.

2.4.3 Action of chiral multiplets

Here, we construct a simple action of a chiral multiplet to show the procedure of the
superconformal gauge fixing. We consider the following action,

S =

[
1

2
N
]
D

, (2.68)
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where

N ≡ −3S0S̄0e
− |φ|2

3 . (2.69)

S0, φ are a chiral compensator with (w, n) = (1, 1) and a matter chiral multiplet with
(w, n) = (0, 0), respectively.4 N is a real multiplet with (w, n) = (2, 0), and its compo-
nents are summarized as follows:

C(N ) = [N , (−
√
2iNIPLχ

I + h.c.), ..., ..., BN
a , λ

N , DN ], (2.70)

where

BN
a =(iNIDaφ

I + h.c.) + iχ̄IPLγ∗γaPRχ
J̄NIJ̄ , (2.71)

λN =

(√
2i(F̄ J̄ + /Dφ̄J̄)PLχ

INIJ̄ +
i√
2
NIJK̄(χ̄

IPLχ
J)PRχ

K̄ + h.c.

)
, (2.72)

DN =2(F IF̄ J̄ −DaX
IDaX̄ J̄ − χ̄IPL /Dχ

J̄)NIJ̄

+

(
−χ̄IPLχ

J F̄ K̄NIJK̄ − χ̄K̄ /DφIχJNIJK̄ + h.c.

)
, (2.73)

and I is the index of chiral multiplets. Substituting this into the D-term formula (2.67),
we obtain a corresponding action of chiral multiplets. After some simplification, the action
becomes

S =

∫
d4xe

[
1

6
N (−R(e, b) + ψ̄μRμ + e−1∂μ(eψ̄νγ

νψμ)− LSGT)

+NIJ̄

(
F IF̄ J̄ − D̂aφ

ID̂aφ̄J̄ − 1

2
χ̄IPL /̂Dχ

J̄ − 1

2
χ̄J̄PR /̂Dχ

I

)
1

2
(NIJK̄(−χ̄JPLχ

IF̄ K̄ + χ̄JPL /̂Dφ
IχK̄) + h.c.)

+
1

4
NIJK̄L̄χ̄

IPLχ
J χ̄K̄PRχ

L̄ + Lint
3/2

]
, (2.74)

4Hereafter, we refer to a superconformal multiplet by its lowest component.
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where

R(e, b) =R̂|ψμ=0, (2.75)

Rμ =γμνρ
(
∂ν − 3i

2
γ∗Aν +

1

4
ωab
ν γab

)
ψρ, (2.76)

LSGT =
1

16

[−(ψ̄μγνψρ)(ψ̄
μγνψρ)− 2(ψ̄μγνψρ)(ψ̄

μγρψν) + 4(ψ̄μγ
μψν)

2
]
, (2.77)

Lint
3/2 =

(
−
√
2

3
NI χ̄

IPLγ
abDaψb +

1√
2
NIJ̄ ψ̄a /̂Dφ̄

J̄γaPLχ
I

+
iεabcd

8
(ψ̄aγbψc)NID̂dφ

I + h.c.

)
− 1

2
NIJ̄(ψ̄aPLχ

I)(ψ̄aPRχ
J̄)

+
iεabcd

16
ψ̄aγbψcNIJ̄(χ̄

J̄PRγdχ
I). (2.78)

I is the index of the multiplets (S0, φ), subscripts of N denote the derivative with respect
to I, J̄ , and D̂μ = Dμ|ψμ=0.

On the first line of Eq. (2.74), we find a non-minimal coupling between the “Ricci
scalar” term and scalar fields,

−1

6
NR(e, b) =

1

2
S0S̄0e

− |φ|2
3 R(e, b). (2.79)

Let us construct SUGRA action in Einstein frame, where the coefficient of Ricci scalar is
1
2
.5 To obtain the action in that frame, we use the D-gauge fixing condition given by

S0S̄0e
− |φ|2

3 = 1. (2.80)

We also use the A-gauge fixing condition,

S0 = S̄0. (2.81)

Combining these conditions, we can solve them in terms of S0 and S̄0 as

S0 = S̄0 = e
|φ|2
6 . (2.82)

As the K-gauge fixing condition, we require

bμ = 0. (2.83)

5Throughout this thesis, we will use the Planck unit convention MPl = 1 where MPl is the Planck
mass (∼ 2.4× 1018 GeV).
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By the set of conditions, the “Ricci scalar” term takes the standard form 1
2
R. It is worth

noting that this procedure does not require any complicated Weyl rescaling processes
mentioned before. This is a benefit of the superconformal formulation.

We also have the S-gauge condition, which is useful to eliminate the following kinetic
mixing between matter and gravitino,

−
√
2

3
NI χ̄

IPLγ
abDaψb, (2.84)

the first term in Lint
3/2 (2.78). To eliminate this term, we set the following S-gauge condi-

tion,

NIPLχ
I = 0. (2.85)

This condition can be solved with respect to PLχ
S0 and we obtain

PLχ
S0 =

1

3
e

|φ|2
6 φ̄PLχ

φ. (2.86)

We note that all the gauge fixing conditions should invariant under the remaining symme-
tries, that is, Poincaré SUSY. Obviously, they are invariant under the GCT and the local
Lorentz transformation but not under the Q-transformation. This implies that SUSY
transformation in a gauge-fixed system should be deformed so that all the conditions
are invariant in the sense of the deformed SUSY. We do not discuss it since it is not so
important for our later discussion.6

The remaining procedure to complete the construction is quite simple: We just sub-
stitute the solutions (2.82), (2.83) and (2.86) into the action (2.74). Then we obtain

S =

∫
d4xe

[
1

2
(R− ψ̄μR̂μ + LSGT )− (1− 1

3
|φ|2)∂μφ∂μφ̄− 1

12
(φ̄∂μφ+ φ∂μφ)

2

− χ̄PL /D(P )χ+

(
−1

6
φ̄χ̄PL/∂φχ+ h.c.

)
− 1

6
(χ̄PLχ)(χ̄PRχ)

(
1 +

|φ|4
18

)

+
1√
2

(
ψ̄a/∂φ̄γ

aPLχ+ h.c.
)− 1

2
(ψ̄aPLχ)(ψ̄

aPRχ)

+
i

16
εabcd(ψ̄aγbψc)χ̄PRγ

χ
d +

i

8
εabcdψ̄aγbψc(φ̄∂dφ− φ∂dφ̄) + Laux

]
, (2.87)

6If one is interested in the deformation, see Ref. [12] for the review.
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where

R̂μ =Rμ|Aμ=0, (2.88)

Laux =− 3e−
|φ|2
3 |F S0 |2 + 3AμA

μ + e−
|φ|2
6 (φ̄F φF̄ S0 + h.c.)− iAμ(φ̄∂

μφ− φ∂μφ̄)

+

(
1− 1

3
|φ|2

)
|F φ|2 + i

2
(χ̄PLγ

aχ)Aa +
1

18
(φ̄|φ|2χ̄PLχF̄

φ̄ + h.c.). (2.89)

We find that Aa, F
φ, and F S0 do not have the kinetic terms, and therefore, these are the

auxiliary fields. The E.O.M of them are easily solved, and then, we finally obtain the
following on-shell action,

S =

∫
d4xe

[
1

2
(R− ψ̄μR̂μ + LSGT )− ∂μφ∂

μφ̄− χ̄PL /D(P )χ

+

(
−1

4
φ̄χ̄PL/∂φχ+ h.c.

)
− 1

8
(χ̄PLχ)(χ̄PRχ)

+
1√
2

(
ψ̄a/∂φ̄γ

aPLχ+ h.c.
)− 1

2
(ψ̄aPLχ)(ψ̄

aPRχ)

+
i

16
εabcd(ψ̄aγbψc)χ̄PRγdχ+

i

8
εabcdψ̄aγbψc(φ̄∂dφ− φ∂dφ̄)

]
. (2.90)

As we expected, in the final expression (2.90), the physical degrees of freedom are φ,
PLχ, their complex conjugates, graviton eaμ, and ψμ. The compensator components are
completely eliminated. In such a way, we can construct the Poincaré SUGRA action from
superconformal one even in a more general situation.
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Chapter 3

Review of SUGRA inflation models

3.1 General properties of SUGRA inflation models

In this chapter, we review some SUGRA inflation models related to the models in Chap-
ters 4 and 5. Before discussing concrete models, we first overview difficulties and features
of SUGRA inflation models in this section. The brief review of inflation is given in Ap-
pendix C.

We will focus on the inflation models in which inflation is driven by a single scalar
field. In particular, we discuss the case that the scalar potential dominates the energy of
the universe during inflation. In such a case, it is important to understand the structure
of the scalar potential in SUGRA.

The generic SUGRA action of chiral and gauge multiplets,φI and V A, is given by

S =
1

2
[S0S̄0Ω]D + [S3

0W ]F − 1

4
[fABWAαWB

α ]F , (3.1)

where Ω is a real arbitrary function of φI and φ̄J̄ , W and f are holomorphic functions
of φI , fABWAαWB

α is a chiral multiplet whose lowest component is fAB(φ
I)λ̄APLλ

B, and
λA is the fermionic component of a gauge multiplet (2.56). I(J̄) and A denote the (anti-
)chiral multiplets’ and gauge indices, respectively. Here we have chosen the weights of φI

as (w, n) = (0, 0) and assumed the absence of any higher-derivative terms. Note that the
action corresponds to the one in the old minimal SUGRA formulation, which is the most
general in all the SUGRA formulations as long as higher-derivative terms are absent.
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In the following, we focus on the bosonic part of the action, which is given by

SB =

∫
d4xe

[
− 1

6
|S0|2ΩR(e, b) + Ω|F S0 |2 + (S0ΩIF

IF̄ S0 + h.c.) + |S0|2ΩIJ̄F
IF̄ J̄

− Ω|DμS0|2 − (S0ΩIDμφ
IDμS̄0 + h.c.)− |S0|2ΩIJ̄Dμφ

IDμφ̄J̄

− i|S0|2ΩIk
I
AD

A +
(
3S2

0WF S0 + S3
0WIF

I + h.c.
)

− 1

4
(RefAB)(F

A
abF

Bab − 2DADB)− i

4
(ImfAB)F

A
abF̃

Bab

]
, (3.2)

where DμS0 = ∂μS0 − iAμS0, Dμφ
I = ∂μφ

I − kIAB̂
A
μ and F̃ ab

A ≡ − i
2
εabcdFAcd.

This superconformal action includes a compensator S0, which should be eliminated
by appropriate gauge fixing conditions. Even in the presence of S0, we can read off a
property of SUGRA inflation models from this expression. Let us focus on the coefficient
of the Ricci scalar R(e, b). Since it should be positive, the function Ω should be negative
definite. Then, the scalar potential contribution from F S0 is also negative definite. It is a
nontrivial task to realize the “positive” energy during inflation because the F-term of the
compensator produces an opposite contribution. Indeed, the terms including F S0 can be
rewritten as

LF0 =Ω|F S0 |2 + (S0ΩIF
IF̄ S0 + 3S2

0WF S0 + h.c.)

=Ω|F S0 + S0ΩIF
I + 3S̄2

0W̄ |2 − Ω|S0ΩIF
I + 3S̄2

0W̄ |2. (3.3)

The first term vanishes after solving the E.O.M of F S0 and the second term gives the
negative definite scalar potential term for the negative definite Ω. Thus, we find that, for
realizing inflation, it is important to pay attention to the contributions (3.3) from F S0 .

Next, we consider the action in the Einstein frame, which can be realized with the
following set of superconformal gauge conditions [34],

S0 = S̄0 =

√
− 3

Ω
, bμ = 0. (3.4)

In such a frame, it is useful to define the following quantity, which is the so-called Kähler
potential,

K ≡ −3 log

(
−Ω

3

)
. (3.5)
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With this quantity, the action can be rewritten as1

SB|E =

∫
d4xe

[
1

2
R−KIJ̄Dμφ

IDμφ̄J̄ − VF − VD

− 1

4
(RefAB)F

A
abF

Bab − i

4
(ImfAB)F

A
abF̃

Bab

]
, (3.6)

where we have integrated out auxiliary fields; F S0 , F I , their complex conjugates, Aμ, and
DA. The potential terms VF and VD, called F- and D-term potentials, respectively, are
given by

VF ≡eK(KIJ̄DIWDJ̄W̄ − 3|W |2), (3.7)

VD ≡− 1

2
(RefAB)

−1(kIAKI)(k
J
BKJ), (3.8)

where DIW ≡ WI + KIW . Note that kIAKI should be pure imaginary from the gauge
invariance and the vacuum expectation value (VEV) of the gauge kinetic function fAB

gives the inverse square of the gauge coupling constant. Therefore VD is positive definite
since RefAB should be positive definite.

For the F-term potential (3.7), we notice that it depends on the superpotential W ,
which can contain mass parameters smaller than the Planck scale. Inflation scale is
typically required to be smaller than the Planck scale, and therefore, such a structure of
F-term potential is important.

We also notice that there is an overall factor eK in VF . Naively, due to this factor,
all the scalar fields obtain their mass term because, for a scalar φ, the mass is given
by m2

φφ̄
∼ ∂φ∂φ̄VF ∼ Kφφ̄VF + · · · ∼ 3Kφφ̄H

2 + · · · . The ellipses denote mass terms
coming from the other parts and H is the Hubble parameter during inflation. This mass
contribution is the so-called Hubble induced mass. Although the total effective mass also
depends on the ellipses parts, without any assumption, such a mass contribution appears
in the universal way. This is on the one side a good feature to realize the effectively single
field inflation model, because the Hubble induced masses stabilize all the scalar fields
during inflation.

On the other hand, although the F-term potential seems to be appropriate to inflation
models from the above aspect, there is a serious problem called the η-problem, which is
caused by the Hubble induced mass itself. As we find, all the scalar fields, including the
inflaton field, obtain masses of the order of H2. However, to realize the slow-roll inflation,
the mass of the inflaton should be much smaller than H. Therefore, the inflaton mass

1Detailed derivation of the F-term potential can be found, e.g., in Ref. [37].
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should be protected from the Hubble induced mass by some mechanisms. Although such
a situation may happen accidentally,2 a reasonable mechanism is provided by a symmetry
for the inflaton multiplet. We will discuss it in the following sections.

Next, let us focus on the D-term potential (3.8). As mentioned above, VEV of gauge
kinetic function fAB gives the inverse square of the gauge coupling constant. Therefore,
we can effectively rewrite the D-term potential as

VD ∼ −(g2)AB

2
(kIAKI)(k

J
BKJ). (3.9)

As we see, this potential only depends on the Kähler potential, and therefore, the mass
scale of the potential typically becomes the Planck scale (∼ 1). More precisely, the
potential scale is given by g2(∼ g2M4

Pl), that is, we have to require a sufficiently small
gauge coupling to realize the inflation scale smaller than O(1).

The other feature of the D-term potential is the absence of the exponential factor
eK in contrast to the F-term one. This is a good feature to achieve successful inflation
because the potential can have a plateau efficient to continue the inflationary era. On
the other hand, it may imply the absence of the Hubble induced mass during inflation. If
the inflaton couples to the other multiplets in the Kähler potential, their mass terms can
appear as in the case of the F-term potential. However, if it is absent, some directions may
also be flat, and then, such directions also produce the quantum fluctuation, which can
lead to the scalar curvature perturbation with a non-Gaussian spectrum. The situation is
constrained by the result from CMB observations. However, it is a highly model dependent
argument, and we need to investigate the detailed thermal history of the universe in each
model.

As a concluding remark of this section, we briefly comment on the SUSY breaking and
the late time universe. In inflation models with both the F- and the D-term potentials,
it is important to note that the inflation can happen if the positive energy is realized,
that is, if SUSY is broken. In models we will discuss, the inflaton (or the other field)
breaks SUSY only during inflation, and SUSY is restored at the vacuum. However, in
realistic models of our universe, SUSY should be broken also at the vacuum to explain the
dark energy and unobserved SUSY partners of the standard model particles. We will not
discuss in detail about thermal histories after inflation in this thesis, but in general we
have to take into account the decay of the inflaton after inflation. Especially, in models
with broken SUSY, the gravitino production by the thermal [52, 53, 54] and non-thermal
processes [55, 56, 57] is important since the light gravitino may become a dark matter
candidate, or decay at the time of the nucleosynthesis, which prevents the successful BBN

2Such an accidental inflation[43, 44, 45, 46] may be important to realize the TeV scale SUSY compatible
with the moduli stabilization in superstring theory [47, 48, 49, 50, 51].
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scenario [58]. It has been known that even if the inflaton does not break SUSY at the
vacuum, it can decay into gravitino due to the kinetic or mass mixings between SUSY
breaking sector and the inflaton [59, 60]. Also, the oscillation of the SUSY breaking sector
occurs after inflation which decays into gravitino. Such a problem was raised earlier in
Refs. [61, 62, 63] and reinvestigated in Refs. [64, 65, 66]. The simplest way to avoid such
a problem is to introduce a non-minimal Kähler potential term [67, 68], and cosmological
constraints on such a model were discussed in Ref. [69].

3.2 Chaotic inflation with F-term potential

In this section, we review the chaotic inflation models with the F-term potential (3.7). The
chaotic inflation [18] is a class of inflation models which is free from the initial condition
problem that we will discuss below. The simplest version of it is realized in the following
system,

S =

∫
d4xe

[
1

2
R− 1

2
∂μφ∂

μφ− 1

2
m2φ2

]
, (3.10)

where φ is a real scalar field which is the inflaton and m is a real parameter corresponding
to the mass of φ. During inflation, the spacetime becomes sufficiently homogeneous, and
then, φ = φ(t). The slow-role parameters ε (C.7) and η (C.10) in this model are given by

ε = η =
2

φ2
. (3.11)

From this expression, we notice that φ should be much larger than 1(= MPl) to realize
the slow-roll, ε, η 	 1. In other words, inflation happens in a very wide range of the
field space because the required condition is only φ > 1. That is an important feature
of this model by the following reason: Although we do not know the details of the very
early universe before inflation, we can estimate that the universe was so small and the
size of the universe was of the order of the Planck length. In such a case, the typical
energy scale is expected to be very high, and then, the potential energy of the inflaton
is negligibly small as long as φ < m−1 in this case. Then, it is reasonable to assume
that there are in some particuler patches of the universe with different values of φ due
to the quantum fluctuation. If the inflaton potential is flat only around a specific value
φ0, inflation only happens some patches where φ ∼ φ0. This is the initial condition
problem in inflation models. For the sake of simplicity of the requirement φ 
 1, in the
chaotic inflation scenario, inflation can occur in many patches satisfying it. Therefore, the
initial condition problems are absent in chaotic inflation models. Here, we have shown the
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simplest version of the chaotic inflation, but we can also use other forms of the potential.
As long as inflation can occur with a chaotic initial condition, we call the model the
chaotic inflation as in Ref. [70].

Let us consider the chaotic inflation in SUGRA with the F-term potential. It is known
that, in general, SUGRA realization of chaotic inflation models are quite difficult because
of two problems which we will discuss later. The chaotic inflation model in SUGRA was
first proposed in Ref. [71] with specific choices of Kähler and super-potentials. However, a
simple way to avoid these two problems had not been known until Ref. [19] was proposed.

For the realization of the chaotic inflation, one of the requirement is the flatness of the
potential in the broad range of the field value of the inflaton. However, as we discussed in
the previous section, the η-problem in SUGRA exists. The solution proposed in Ref. [19] is
to impose a shift symmetry of the inflaton on the Kähler potential. The simplest example
is the following term,

K =
1

2
(Φ + Φ̄)2, (3.12)

where Φ is the inflaton chiral multiplet. This Kähler potential is invariant under the
transformation Φ → Φ + iC, where C is a real constant. Then, ImΦ direction is free
from the η-problem in SUGRA, because of the absence of the inflaton field in the Kähler
potential term. Therefore, ImΦ ≡ φ can be a candidate for the inflaton. Recently, the
other type of the Kähler potential was proposed, which realizes the so-called α-attractor
model [72]. The Kähler potential is given by

K = −3α

2
log

(
(Φ + Φ̄)2

4ΦΦ̄

)
, (3.13)

where α is a real constant. This is invariant under the following transformations, Φ → aΦ,
Φ → bΦ−1 where a and b are real constants [73]. The former corresponds to the shift

symmetry of the real scalar φ defined by Φ = exp
(√

2
3α
φ
)
+ iχ, where χ is a real scalar

field. Note that φ is a canonically normalized field. In Ref. [74], it was found that the
α-attractor type Kähler potential (3.13) becomes a simple shift symmetric one (3.12) in
the limit α → ∞.

In both cases, Kähler potential is flat with respect to the inflaton. However, super-
potential terms, in general, are not invariant under the shift of the inflaton, which is
necessary to produce the inflaton potential. As we mentioned in the previous section, the
superpotential term has parameters determining the scale of the inflaton potential, and
they should be smaller than 1 to realize the inflation scale consistent with the observa-
tion. In the ’t Hooft’s sense, the requirement of the small parameter is technically natural
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because the superpotential terms break the shift symmetry, which can be restored when
the parameters become zero.

The other problem is the difficulty of the positive energy. To realize the single field
inflation, ReΦ should be stabilized at a specific point, which we assume as its origin. With
a simple Kähler potential K = 1

2
(Φ + Φ̄)2 and a superpotential term W = W (Φ), the

scalar potential at Φ = 0 + iφ becomes

VF = |W ′(iφ)|2 − 3|W (iφ)|2, (3.14)

where prime denotes the derivative with respect to φ. As we find from this expression,
the scalar potential with a power type superpotential W =

∑
n anΦ

n becomes negative if
φ takes a sufficiently large value. For simplicity, we show the case where ReΦ is stabilized
at its origin but, even if we assume different VEVs of ReΦ, we also come across the
similar problem. Therefore, we can not realize the simple chaotic inflation with this kind
of simple setup.

Two solutions for these problems have been known. One of the solutions is introducing
an additional multiplet called the stabilizer, first proposed in Ref. [19]. Before discussing
models with the stabilizer, we briefly comment on the second solution: That solution
is provided by introducing the additional Kähler potential term, which stabilizes the
direction orthogonal to the inflaton, and also eliminates the negative contribution in the
F-term potential. Such an extension was pioneered in Refs [75, 76]. Recently, it was
found that such a situation can also be realized in the model with an α-attractor type
Kähler potential [74, 77]. In all the cases, the inflation can be realized with a single chiral
multiplet, which is good from the minimalistic viewpoint.3

Let us review the first solution, in which the additional multiplet called a stabilizer
couples to the inflaton multiplet. In Ref. [19], the following set of a Kähler and a super-
potential is assumed,

K =
1

2
(Φ + Φ̄)2 + |S|2, (3.15)

W =mΦS, (3.16)

where Φ = 1√
2
(ϕ + iφ), S is the stabilizer multiplet, m is a real parameter. With this

setup, S has a mass term ∼ m2|S|2, and 〈S〉 = 0 at the classical level. Then, the negative
contribution in the F-term potential −3|W |2 vanishes. We also find that the mass of ϕ
is of the order of H2 ∼ m2φ2, which stabilize ϕ at its origin during inflation. Then, the

3Recently, a new model with this kind of mechanisms was proposed in Ref. [78], where the inflaton is
the phase of a complex scalar field in the multiplet.
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inflaton potential becomes

VF =
1

2
m2φ2, (3.17)

which is the same as in Eq. (3.10). Thus, the simplest chaotic inflation is effectively
realized by introducing a shift symmetric Kähler potential and a stabilizer multiplet S.

It is worth noting that we can understand why the negative contribution vanishes
from the conformal SUGRA viewpoint as follows: We mentioned that the F-term of the
compensator produces a negative definite contribution to the F-term potential. This is
the origin of −3|W |2. In the above model, the F-term of the compensator is given by

F S0 =− (e−
K
6 KIF

I + 3e
K
3 W̄ )

=− (e−
K
6 ϕFΦ + e−

K
6 S̄F S + 3e

K
3 m̄Φ̄S̄), (3.18)

where we have solved the E.O.M of F S0 derived from Eq. (3.3). This vanishes on the
inflationary trajectory ϕ = S = 0. Therefore, the vanishing of F S0 is a solution to avoid
a negative potential. The vanishing of F S0 also occurs with different mechanisms. In
Refs. [76, 79], it occurs because of the so-called no-scale structure of the Kähler potential.

The stabilizer can solve the problem because it is stabilized around its origin. However,
does it generically occur? In the model discussed above, the mass of S is almost the same
with one of the inflaton. So, S is also light during inflation, and then, the quantum
fluctuation of it is produced during inflation. This becomes an isocurvature mode of the
scalar curvature perturbation, which becomes the adiabatic mode after S decays. If S
dominates the universe after inflation, the model may predict a large non-Gaussianity
of the scalar perturbation spectrum [80], which is constrained by the observation. More
dangerous case is that the stabilizer obtains a tachyonic mass during inflation. If it is the
case, the inflationary trajectory becomes unstable. Such situations can be circumvented if
the stabilizer S is strongly stabilized during inflation. It can be realized by introducing a
quartic Kähler potential term −ζ|S|4, where ζ is a sufficiently large positive constant [19,
20, 81, 82]. In Ref. [20], a SUGRA inflation model with an arbitrary scalar potential was
constructed, in which the problems discussed so far are absent.

More recently, the nilpotent chiral multiplet [83, 84, 85, 86, 87, 88], which we denote
as X̂, has received much interests. It satisfies a superconformal condition X̂2 = 0, which
is solved as

X =
ḠG

2FX
, (3.19)

where X, G, FX are the scalar, the fermion, and the auxiliary components of X̂, respec-
tively. Then, X̂ does not have a scalar degree of freedom, and then, it plays the role of the
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stabilizer without the above problem [89, 90, 91, 92, 93, 94]. Technically, to obtain the
bosonic action, we calculate the SUGRA action in the standard way, and just set X = 0
in the action.

Interestingly, it was found that, such a nilpotent multiplet appears as the effective
theory of a D-brane in superstring theory [95, 96, 97]. Under the constraint, SUSY
is non-linearly realized, which can be considered as a specific limit of linearly realized
SUSY [88, 98]. The full-component action of models with the nilpotent multiplet has
been investigated in Refs. [99, 100, 101, 102].

It is also important to note that, to describe the universe with the nilpotent multiplet,
〈FX〉 should take a non-zero value, during and after inflation. This means that the
nilpotent multiplet should break SUSY otherwise it is ill-defined as found from Eq. (3.19).
Then, the SUSY breaking in the present universe can also be described by X̂, which is
interesting from the minimalistic viewpoint. Such an aspect of the nilpotent multiplet is
discussed in Ref. [90, 91, 94]

3.3 Starobinsky inflation in old and new minimal SUGRA

In this section, we review the SUSY version of the Starobinsky model [14] in which the
higher-derivative term of the gravity ∼ R2 exists. As we mentioned in Sec. 2.1, the system
including higher-derivative terms typically depends on the formulation of SUGRA, that
is, the choice of the compensator multiplet. In the following subsections, we will review
the old and the new minimal Starobinsky models, where any ghost modes do not appear.
The Starobinsky model in non-minimal SUGRA has also been studied at the linearized
level in Ref. [103]. It was found that such an extension leads to the appearance of the
ghost modes.

3.3.1 Old minimal SUGRA

To construct a higher curvature action in SUGRA, we need a multiplet containing cur-
vature terms in its components. In particular, the multiplet including R is important to
realize the R2 term. Such a superconformal chiral multiplet denoted R is

R ≡ Σ(S̄0)

S0

(3.20)

where S0 is the chiral compensator with (w, n) = (1, 1) [41]. Note that R has weights
(w, n) = (1, 1). With this multiplet, the SUGRA Starobinsky model can be described by
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the following action,

S =

[
−3

2
S0S̄0 +

α

2
RR̄

]
D

, (3.21)

where α is a positive constant. The components of the chiral multipletR can be expressed
as

R =

[
− F̄

S0

S0

, · · · , 2|F
S0 |2
S2
0

− �S̄0

S0

+ · · ·
]
, (3.22)

where ellipses denote the fermionic parts. With this expression, the bosonic part of the
action (3.21) can be written as

S|B =

∫
d4xe

[
− 3|F S0|2 + 3DaS0D

aS̄0 + α|FR|2 −DaX
RDaX̄R

+
1

2

(
S0S̄0 − α

3
|XR|2

)
R(e, b)

]
, (3.23)

where

FR =
2|F S0|2
S2
0

− �S̄0

S0

, (3.24)

XR =− F̄ S0

S0

. (3.25)

We take simple gauge fixing conditions S0 = S̄0 = 1, and bμ = 0, and obtain the following
action,

S|g.fB =

∫
d4xe

[
− 3|XR|2 + 3AaA

a −DaX
RDaX̄R +

1

2

(
1− α

3
|XR|2

)
R

+ α

{(
2|XR|2 + 1

6
R− AaA

a

)2

+ (DaA
a)2

}]
. (3.26)

From the last term of the action, we find not only the higher curvature term R2 but
also some other couplings between XR, Aa and graviton. In contrast to the case without
higher curvature terms, the fields Aa and F S0 are no longer the auxiliary ones because
they have kinetic terms and (or) couplings to the Ricci scalar. Although there are some
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additional degrees of freedom, we can conclude that this is the SUGRA extension of the
Starobinsky model in the old minimal formulation.

It is known that the original (non-SUSY) Starobinsky model has a dual picture, where
the system consists of a scalar field coupled with Einstein gravity [104]. The scalar field
is sometimes referred to as a scalaron. Such a dual picture can be obtained via conformal
transformations, and the dual picture is useful to discuss e.g. the inflationary attractor in
the Starobinsky model [105]. More generally, the system including an arbitrary coupling
F (φ,R) can be rewritten as Einstein gravity with two scalar fields [106].

The superconformal version of such a transformation was shown by Ceccoti in Ref. [21].
It can be done as follows: First, with a Lagrange multiplier chiral multiplet T with
(w, n) = (0, 0), we rewrite the action (3.21) as

Sdual =

[
−3

2
S0S̄0

(
1− α

3
SS̄
)]

D

+

[
3

2
S3
0T

(
S − R

S0

)]
F

, (3.27)

where S is a chiral multiplet with (w, n) = (0, 0). The E.O.M of T gives a superconformal
constraint S = R

S0
which reproduces the original action (3.21). On the other hand, we can

perform the following transformation,[
−3

2
S3
0T

(R
S0

)]
F

=

[
−3

2
S0TΣ(S̄0)

]
F

=

[
3

2
S0S̄0(T + T̄ )

]
D

+ (tot.div), (3.28)

where in the last equality, we have used the following identity4

[ΛΦΣ(Φ̄)]F = [−(Λ + Λ̄)ΦΦ̄]D + (tot.div). (3.29)

Using this transformation, we obtain the dual action

Sdual =

[
−3

2
S0S̄0(1 + T + T̄ − 1

3
SS̄)

]
D

+
[
S3
0MTS

]
F
, (3.30)

where we redefine multiplets as S → − 1√
α
S and T → −T , and M ≡ 3

2
√
α
. This is the

standard SUGRA action (3.6) with

K =− 3 log

(
1 + T + T̄ − 1

3
SS̄

)
, (3.31)

W =MTS. (3.32)

4This identity is almost trivial if one recalls the construction of the D-term action from the F-term
one.
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From the above procedure, we can identify S as XR and T as the scalaron multiplet.
The scalaron plays the role of the inflaton in the non-SUSY case, and then, we

analogously expect that T plays the role of the inflaton multiplet in this case. In-
deed, the potential of ReT is the same as the one in non-SUSY Starobinsky model if
S = ImT = 0. However, once we calculate the scalar potential of this system, we notice
that, on the trajectory S = ImT = 0, the mass of S during inflation (ReT 
 1) becomes
mSS̄ ≡ KSS̄VSS̄ ∼ −2

3
M2. Therefore, such an inflationary trajectory is unstable. This

problematic situation can be circumvented if one notices that S can play a role of the
stabilizer. As we discussed in Sec. 3.2, the instability of the stabilizer can be relaxed by
adding a quartic term like ζ|S|4, and then, the mass of the stabilizer can be made positive
and heavier than the Hubble scale. Note that such a modification is possible if one adds a
term ζ̃(S0S̄0)

−3|R|4 to the original action (3.21). The term does not produce higher order
terms of the Ricci scalar like R4 but yields terms like ζ|XR|2R2, which is the addtional
term of S in the dual Kähler potential.

A simpler way to stabilize S is the nilpotency condition on R [89], which is equivalent
to a nilpotency of S, as in the case of X̂ discussed in Sec. 3.2. In Ref. [89], the following
action is discussed;

S =

[
−3

2
S0S̄0 +

α

2
RR̄

]
D

+ [S0ΛR2]F , (3.33)

where Λ is a chiral multiplet with (w, n) = (0, 0). The E.O.M of Λ gives a constraint
R2 = 0, which is the nilpotency condition. Through the similar procedure, we can obtain
the dual action of this one as,

Sdual =

[
−3

2
S0S̄0(1 + T + T̄ − 1

3
SS̄)

]
D

+
[
S3
0MTS

]
F
+ [S3

0ΛS
2]F . (3.34)

Thus the nilpotency condition on R becomes exactly that of S in the dual action, by
which the instability problem can be solved. However, in this case, the VEV of F S

vanishes, which is inconsistent with the nilpotency condition (see Eq. (3.19)) [93]. One
of the possibilities of changing the situation is to use a different type of constraint. In
Ref. [107], the Starobinsky model with the following condition is discussed,(R

S0

− μ

)2

= 0, (3.35)

where μ is a real constant. Under this condition, F S becomes non-zero at the vacuum,
which is consistent with the solution (3.19). One can find that in such a model, SUSY
breaking is dominantly caused by T , and |F T | 
 |F S| in the case with μ 	 1. Interest-
ingly, when matters are included, the SUSY breaking effect is only mediated by S to such
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as the MSSM sector, which leads to the hierarchical mass splitting between the gravitino
and the MSSM superparticles. It is worth noting that under the constraint (3.35), the
pure SUGRA action [−S0S̄0]D becomes equivalent to the SUGRA coupled to a nilpotent
multiplet X, as shown in Refs. [108, 109].

So far, we have discussed the SUSY Starobinsky model, which includes only R2 term
as a higher-derivative term. However, more generically, one can consider the system with
Rn terms. In Ref. [21], such a system is also considered. Following the work, we can
construct a multiplet like Σ(R̄) whose lowest component includes R. Then, with the
multiplet, we can construct models with Rn. However, it is also shown that such a model
generically has ghost modes whose kinetic coefficients are opposite to the ordinary matter
fields. Therefore, the system including Rn terms is generically unstable. Recently, in
Ref. [110], the authors discuss the situation where such ghost modes decouple.

A feature of the old minimal SUGRA Starobinsky model is the couplings of T , which
are completely determined by its origin. For example, the allowed superpotential term of
T is only W = MTS, because T is introduced as a Lagrange multiplier. Can we modify
the terms of T as a modification of SUGRA action (3.21)? The answer to such a question
has been given in Ref. [111]. It is shown that, if T has a superpotential W = f(T )S, the
model is not a dual of the pure SUGRA action (3.21) unless f(T ) is a linear function of
T . Such a model is dual to the higher curvature action with an additional chiral multiplet
T̃ other than the curvature multiplet.

3.3.2 New minimal SUGRA

Next, we discuss the Starobinsky model in the new minimal SUGRA. The structure of
the Starobinsky type action in new minimal SUGRA was studied in Ref. [112], and its
application to inflation was discussed in Ref. [23]. Let us review the model on the basis
of them.

As we mentioned, the new minimal SUGRA is the conformal SUGRA with a real
linear compensator L0. In this case, the pure SUGRA action is given by

Spure =

[
3

2
L0 ln

(
L0

SS̄
)]

D

, (3.36)

where S is a chiral mutiplet with (w, n) = (1, 1). Although one may think that there
is an extra degree of freedom S, it is not physical because of the following reason: The
action (3.36) is invariant under the transformation S → SeΛ where Λ is a chiral multiplet
with (w, n) = (0, 0). This is because [L0(Λ + Λ̄)]D = −[Σ(L0Λ)]F = −[ΛΣ(L0)]F = 0,
where we have used the identity (3.29), and the last equality is due to the definition of
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L0.
5 Thus, S can be fixed as an extra gauge degree of freedom. Then, by using the extra

gauge and superconformal gauge fixing conditions, we can eliminate L0 and S (other than
L0’s auxiliary field) from the physical theory.

For later discussions, it is useful to see that the pure SUGRA action (3.36) is equivalent
to the old minimal one unless higher curvature terms exist. Let us review it on the basis
of Ref. [29]. The action (3.36) can be rewritten as

S =

[
3

2
U ln

(
U

SS̄
)]

D

+

[
3

2
U(Φ + Φ̄)

]
D

, (3.37)

where U is a real general multiplet with (w, n) = (2, 0) and Φ is a chiral multiplet with
(w, n) = (0, 0). Note that U becomes a real linear multiplet by the E.O.M of Φ, because
[U(Φ+ Φ̄)]D = −[ΦΣ(U)]F and Φ’s E.O.M gives Σ(U) = 0. On the other hand, if we first
vary a general multiplet U , we obtain the following equation,

ln

(
U

SS̄
)
+ 1 + Φ + Φ̄ = 0. (3.38)

We can solve this equation as

U =|e− 1
2
−ΦS|2 = |S0|2, (3.39)

where we have defined S0 = e−
1
2
−ΦS. Then, the action can be rewritten as

S =

[
−3

2
S0S̄0

]
D

, (3.40)

which is the same as the pure SUGRA action in the old minimal formulation. This is the
essence to prove the equivalence between SUGRA actions with different compensators,
shown in Ref. [29]. Even if the matter and other gauge multiplets are contained, this
duality transformation can be applied. The important point of this duality transformation
is the absence of the derivative terms of compensators. In other words, SUGRA with
different compensators are, in general, not the same with each other in the presence of
derivative operators on compensators.

Next, let us consider the action including the R2 term in new minimal SUGRA. Before
that, we focus on an interesting feature of the combination VR ≡ log

(
L0

SS̄
)
. Under the

transformation S → SeΛ, VR transforms as VR → VR − Λ − Λ̄, which is the same with
the transformation of a gauge superfield in superspace. Indeed, VR behaves as if it is a

5We can understand why the factor ln
(
L0

SS̄
)
is required from this discussion. In the absence of it, the

action ∼ [L0]D vanishes.

38



CHAPTER 3. REVIEW OF SUGRA INFLATION MODELS

gauge multiplet because VR has (w, n) = (0, 0) and the gauge transformation under a
U(1) symmetry. It is also useful to consider the Ricci scalar term in the action (3.36) as
the Fayet-Iliopoulos (FI) term of a vector multiplet VR.

6 Then, one can find that the field
strength superfield of VR like [W2(VR)]F gives the square of the FI term, that is, the R2

term. Thus, the Starobinsky model in new minimal SUGRA is described by

S =

[
3

2
L0VR

]
D

+ [−hW2(VR)]F , (3.41)

where h is a real constant, W2(VR) is a chiral multiplet whose lowest component is
λ̄RPLλR, and λR is the λ-component of VR. After fixing D- and K-gauges by L0 = 1
and bμ = 0, respectively, the bosonic part of the action becomes

S|B =

∫
d4xe

[
1

2
R +

2h

9
R2 − hFR

μνF
Rμν − 3

2
AR

μB
μ

+

(
3

4
+

2h

3
R

)
BμB

μ + h(BμB
μ)2

]
, (3.42)

where AR
μ and Bμ are vector components of VR and L0, respectively, and F

R
μν = 2∂[μA

R
ν].

As we expected, the R2 term appears, and there is a non-minimal coupling between R
and BμB

μ as in the old minimal case, which implies the appearance of new degrees of
freedom other than the scalaron.

Let us discuss the dual action to (3.41) [23]. The procedure is a little bit different
from that for the old minimal one. By using a real linear multiplier L, we can rewrite the
action (3.41) as

S =

[
3

2
L0VR

]
D

+ [−hW2(V )]F + [L(V − VR)]D, (3.43)

where V is a real multiplet with (w, n) = (0, 0). The E.O.M of L gives VR = V +
Φ + Φ̄ where Φ is a chiral multiplet.7 Obviously, we can reproduce the action (3.41) by
substituting the solution V . Instead, we can solve the equation VR = V + Φ + Φ̄ with
respect to L0 as

L0 = SS̄eΦ+Φ̄+V , (3.44)

6This understanding is useful for the following discussion, but more correctly saying, the Ricci scalar
term also comes from the D-term of L0.

7The reason why Φ appears is that the combination [L(V −VR)]D is invariant under the shift V (VR) →
V (VR) + Φ + Φ̄ due to a nature of L discussed below Eq. (3.36).
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where we have used VR = log
(
L0

SS̄
)
. Then, by substituting it into Eq. (3.43), we obtain

the following dual action,

Sdual =

[
3

2
SS̄(Φ + Φ̄ + V )eΦ+Φ̄+V

]
D

+ [−hW2(V )]F

=

[
1

2
S0S̄0

(
1

2
(Φ + Φ̄ + gV )

)
e

1
2
(Φ+Φ̄+gV )

]
D

+

[
−g

2h

4
W2(V )

]
F

, (3.45)

where in the last equality we have redefined fields as Φ → 1
2
Φ, V → gV

2
, and S → S0√

3
. The

scalar field Φ should be understood as a nonlinear realization of the U(1) symmetry, which
transforms Φ → Φ + ig under the symmetry. In terms of superfields, the combination
Φ + Φ̄ + gV is invariant under a set of gauge transformations Φ → Φ + gΛ, and V →
V − Λ − Λ̄, where Λ is a chiral multiplet. From this viewpoint, one can regard the
action (3.45) as the one in Eq. (3.1) with

Ω =

(
1

2
(Φ + Φ̄ + gV )

)
e

1
2
(Φ+Φ̄+gV ), (3.46)

and W = 0. The bosonic action of this system is given by

S|B =

∫
d4xe

[
1

2
R− 3

4C2
∂μC∂

μC − 9g2

8

(
1 +

1

C2

)2

− 3g2

4C2

(
Aμ − 1

g
∂μθ

)2

− 1

4
FμνF

μν

]
, (3.47)

where we have taken h = g−2, C ≡ ReΦ, θ ≡ ImΦ, Aμ is the vector component of V ,
and Fμν = 2∂[μAν]. The first term on the second line of this equation is the kinetic term
of θ but also looks like a mass term of Aμ. Indeed, by the gauge condition on the U(1)
symmetry, we can set θ = 0, and then, the term becomes exactly the mass of Aμ. This
is because Φ is a nonlinear realization and θ corresponds to the so-called Stueckelberg

field. For θ = 0, the canonically normalized inflaton is φ =
√

3
2
log(−C) and the potential

becomes V = 9g2

8

(
1− e−

√
2
3
φ
)2

, which is the same as the one in the Starobinsky model.

We notice that, in contrast to the old minimal case, there is no stabilizer and massless
fields since a massless field θ can be removed by Aμ. Therefore, the inflation is exactly
driven by a single inflaton field in this model, and the instability problem is absent.8

8The energy of Aμ typically does not contribute to inflation.
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3.4 Massive vector multiplet inflation

As we discussed in the previous section, the Starobinsky model in new minimal SUGRA
is dual to the system with a chiral multiplet Φ coupled to a gauge multiplet V . Taking
into account the gauge transformation Φ → Φ + gΛ, we can rewrite the action (3.45), in
terms of a gauge invariant combination V̂ = V + 1

g
(Φ + Φ̄), as

S =

[
1

2
S0S̄0

(
1

2
(gV̂ )

)
e

1
2
(gV̂ )

]
D

+

[
−g

2f

4
W2(V̂ )

]
F

, (3.48)

where in the second term we formally change V → V̂ because W2 is a gauge invariant
quantity. We find that the action can be written in terms of V̂ . As we see in the
previous section, the vector field Aμ becomes massive. Therefore this combination is
called a massive vector multiplet [113, 114], which is equivalent to a real multiplet with
(w, n) = (0, 0) without the gauge degree of freedom.

What we found in the previous section is that the massive vector multiplet has only
a single scalar component and the stabilizer field is not required. That is because the
inflaton potential comes from the D-term potential (3.8), which is definitely positive
unlike the F-term potential. We note that the D-term potential is free also from the η
problem appearing in the F-term inflation models.

From these observations, one expects that the massive vector multiplet can be a
promising candidate for an inflaton multiplet. Such a model was considered in Refs. [24,
25, 115]. We review it on the basis of Ref. [25]. The master action of the massive vector
multiplet in old minimal SUGRA is

S =

[
−3

2
S0S̄0 exp

(
−2

3
J

)]
D

+

[
−1

4
W2(V )

]
F

, (3.49)

where J = J
(
1
2
(Φ + Φ̄ + gV )

)
= J(gV̂ ) is an arbitrary real function of the argument.

The corresponding bosonic action is given by

S|B =

∫
d4xe

[
1

2
R− 1

2
J ′′(C)∂μC∂μC − g2

2
(J ′(C))2

− 1

4
FμνF

μν − g2

2
J ′′(C)

(
Aμ − 1

g
∂μθ

)2
]
, (3.50)

where primes on J denote derivatives with respect to C. The scalar potential of the
inflaton C is given by

V =
g2

2
(J ′(C))2. (3.51)
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We can choose an arbitrary form of J , which means that the inflaton potential can take
almost arbitrary forms.

The minimum of the potential is given by the condition V ′(C) = 0, i.e., J ′(C) = 0
or J ′′(C) = 0, and the former leads to the vanishing cosmological constant. The latter is
singular because the kinetic coefficient of C vanishes, and therefore, we always obtain the
former solution, which means that SUSY at the vacuum is not broken by this model itself
unless the other terms of C come from the F-term potential. Indeed, because of SUSY at
the vacuum J ′ = 0, the mass of the inflaton becomes m2

C = V ′′ = g2(J ′′)2, which is the
same as that of the superpartner Aμ.

Interestingly, such a nonlinear realization may appear in an effective theory of super-
string. In many superstring models, it is known that some anomalous U(1) symmetries
appear in the effective theory. Such anomalies can be cancelled by the so-called Green-
Schwarz mechanism [116]. In that case, the Green-Schwarz fields, which are nonlinear
realization of each anomalous U(1) symmetry, appear. The inflaton multiplet Φ in the
massive vector multiplet inflation model may appear as a Green-Schwarz multiplet. We
note that, if it is the case, the Kähler potential term of Φ, that is, the function J is
not arbitrary and determined by the string theoretical setup. This is a possibility of UV
completion of the massive vector multiplet inflation. Although it may be an interesting
scenario, the smallness of the gauge coupling g should also be explained by some mecha-
nisms, in order the inflation scale characterized by g to be much smaller than 1(= Mpl)
in the typical situation.
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Chapter 4

Higher derivative terms of chiral
multiplets

This chapter is based on Ref. [117].

4.1 Ghost free higher-derivative term of chiral mul-

tiplets

In this section, we discuss the higher-derivative couplings of chiral multiplets, which con-
tain derivatives of more than second order. It is known that if the E.O.M of a bosonic
field is a differential equation of more than third order with respect to time, the so-called
Ostrogradski instability appears [1] in general.1 For example, the following types of the
higher-derivative terms of a scalar φ cause the instability,

LHD = (�φ)2 + ∂μ∂ν∂ρφ∂
μ∂ν∂ρφ. (4.1)

Each term gives a more than third-order time derivative term to the E.O.M of φ, and
therefore, these terms make the system unstable. On the other hand, the following higher-
derivative terms do not lead to the instability,

L = (∂μφ∂
μφ)n, (4.2)

where n is a positive integer. The most general scalar-tensor Lagrangian, which produce
only the second order differential equations as E.O.M of a scalar and a graviton, has
been investigated by Horndeski in Ref. [3]. Recently, the Lagrangian was reformulated in

1For a review, see, e.g., Ref. [2].
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Ref. [4]. Such an E.O.M has been extended to the bi-scalar case in Ref. [118], although the
corresponding action has not been known. Another recent development in this direction
is given in Ref. [119], where an extension of Horndeski action, which leads to the third
order equation but no ghost mode, is shown.

To construct the Horndeski action in SUGRA is interesting, but is difficult in the
manifestly SUSY construction, that is, superspace and superconformal tensor calculus by
the following reason: Horndeski constructed the most general ghost-free action in the way
that, from all possible terms, he reduced terms by requiring some condition for realizing
the second-order E.O.Ms of both graviton and a scalar [3]. Although, in principle, we can
take such a procedure also in SUGRA, the construction of all the possible SUSY terms
requires too many calculations. Even worse, a superfield contains at least 4 real scalar
fields.2 Also, as we will see, the form of higher derivative terms depend on formulations
of SUGRA, of which we have three types. Therefore, the generic action has never been
known, although some ghost-free higher-derivative terms of superfields have been studied
and constructed.

We consider a specific SUSY higher-derivative term discussed in Ref. [5]. Before
discussing it in SUGRA, let us consider it in global SUSY [120]. In the notation of
Ref. [121], the term is given by

L =

∫
d4θ

1

M4
DΦDΦD̄Φ̄D̄Φ̄, (4.3)

where M is a real mass parameter, Φ is a chiral multiplet, and Dα is the SUSY covariant
derivative. The bosonic components of this term are given by

L|B =
16

M4
(|∂μΦ∂μΦ|2 − 2|FΦ|2∂μΦ∂μΦ̄ + |FΦ|4), (4.4)

where FΦ is the auxiliary component of Φ. The higher-derivative term |∂μΦ∂μΦ|2 does not
give the ghost instability obviously. The important point for later discussions is that, due
to SUSY, some nontrivial terms |FΦ|2∂μΦ∂μΦ̄ and |FΦ|4 appear. Such terms contribute
to the kinetic and the scalar potential terms respectively. We expect that additional
contributions may affect the inflaton dynamics if M is smaller than the Planck scale.

This action can be generalized to the following form

L =

∫
d4θT (Φ, ∂μΦ, Φ̄, ∂μΦ̄)DΦDΦD̄Φ̄D̄Φ̄, (4.5)

2SUSY higher derivative terms often make “auxiliary fields” dynamical, and then, they are not “aux-
iliary” any more.
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where T is a real function of arguments. The bosonic components of this are given by

L|B = 16T (Φ, ∂μΦ, Φ̄, ∂μΦ̄)(|∂μΦ∂μΦ|2 − 2|FΦ|2∂μΦ∂μΦ̄ + |FΦ|4). (4.6)

Note that these terms do not lead to the ghost instability: All the terms consist of
quantities containing at most the first derivative. The variation of differentiated parts
give a derivative to other terms through integration by parts. However, a derived E.O.M
of Φ contains at most the second-order derivative terms, since L originally consists of at
most the first-order terms. In the next section, we consider an embedding of this class of
term in SUGRA.

Interestingly, this class of higher-derivative terms may be related to superstring theory.
In Refs. [27, 122, 123], it is pointed out that the effective action of the D3-brane in 6
dimensional spacetime is partly described by the following action,

LDBI =

∫
d4θ

(
ΦΦ̄ +

1

8
fDΦDΦD̄Φ̄D̄Φ̄

)
, (4.7)

where

f−1 =1 +
1

2
A+

√
1 + A+B, (4.8)

A =− 4∂μΦ∂
μΦ̄− 1

4
D2ΦD̄2Φ̄, (4.9)

B =4(∂μΦ∂
μΦ̄)− 4|(∂μΦ∂μΦ)|2. (4.10)

Such a nontrivial action is derived as a dual action of the N = 2 Goldstino linear mul-
tiplet [27, 122, 123]. If this describes an effective action of D-branes, also from the
string theoretical point of view, it may be important to understand the higher-derivative
term (4.5).

Before we close this section, we comment on another known higher-derivative term in
global SUSY. In Ref. [124], the following higher-derivative action was constructed,

L =

∫
d4θ

(
ΦΦ̄− 1

M6
Φ(D̄α̇∂μΦ̄σ̄

α̇α
ν Dα∂ρΦ)ε

μνρσ∂σΦ

)
, (4.11)

where M is a real mass parameter. This Lagrangian is invariant under the following
transformation of Φ,

Φ → Φ + c+ bμy
μ, (4.12)

where yμ = xμ+ iθσμθ̄. This is the Galilean symmetry [125] in superspace, which contains
the Galilean symmetry of the lowest component. The bosonic part of this Lagrangian is

L|B = −∂μΦ∂μΦ̄− 4

M6
Φ∂[μ∂

μΦ̄∂ν∂
νΦ∂ρ]∂

ρΦ̄. (4.13)
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In the second term, all the derivatives on each of Φ and Φ̄ are antisymmetrized, and
therefore, the third order derivative term can not appear in the E.O.M of Φ, which
ensures the absence of ghosts.

4.2 Superconformal realization of SUSY higher-derivative

terms

In this section, we discuss the superconformal extension of the higher-derivative term (4.3).
In the previous section, we have discussed the higher-derivative interactions in global
SUSY. To promote them to that in SUGRA, we need the corresponding derivative oper-
ators in conformal SUGRA. Therefore, we first review the derivative operators on super-
conformal multiplets, on the basis of Ref. [41]. The operators which we need are Dα and
∂μ on superconformal multiplets.

Let us recall the meaning of the operators. We consider a general superfield C =
C+ θζ+ · · · , where C and ζ are a complex scalar and a Weyl spinor respectively, and the
ellipses denote the other components. Then, the components of DαC are given by ζα+ · · ·
where the ellipses denote higher order terms of θ and θ̄. In this respect, the operator Dα

on C can be understood as an operation to construct a new superfield DαC whose lowest
component is the θ-component of C.

Taking these observations into account, let us consider the operator corresponding
to Dα in conformal SUGRA, which is denoted by D. In analogy with the global SUSY
case, we assume that a supermultiplet DC, where C is a general multiplet, has PLζ as
the lowest component. However, such a multiplet can not be a superconformal one, in
general, because the lowest component of a superconformal multiplet should be S- and
K-inert. Indeed, although δKPLζ = 0, the S-transformation of PLζ is

δSPLζ = −i(w + n)PLηC, (4.14)

which vanishes if and only if w + n = 0. Therefore, we can define the spinor derivative
operator in conformal SUGRA on the superconformal multiplet satisfying the constraint
w+n = 0.3 This is enough to construct the superconformal version of the term in Eq. (4.5)
because the matter chiral multiplets have (w, n) = (0, 0), which satisfies w+ n = 0. Note
that we can also define D on superconformal multiplet with Lorentz indices [41]. However,
such multiplets are not required to construct the terms we will discuss below. We note
that, although chiral multiplets ΦI are defined so that their ζ-component is a Weyl fermion
in Sec. 2.3.2, we can define it also in the algebraic way, by using D̄α̇, as D̄α̇Φ

I = 0.

3More detailed analyses are given in Ref. [41].
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Next, we consider the superconformal version of ∂μ on superconformal multiplets. As
in the case of D, we assume that the superconformal derivative Dμ is defined so that DμC
has its lowest component DμC. Then, we notice the same problem as the spinor derivative
case, that is, DμC is not S- and K-inert. The S- and K-transformation of DμC are given
by

δS,KDμC = −2wλKμC − i

2
η̄γμγ∗ζ. (4.15)

The first term can vanish if w = 0 but the second term can not in general. Therefore, it
seems that the superconformal operator corresponding to ∂μ in global SUSY can not be
defined.

This situation can be relaxed by introducing a superconformal multiplet with w, n �=
0 as follows: Instead of Dμ, we define the u-associated derivative D(u)

μ , where u is a
superconformal multiplet with (w, n) = (wu, nu). DμC can not be S- and K-inert by
itself, and that is the reason why the derivative operator can not be a superconformal
operator. Such a problem can be relaxed if the terms of S- and K-transformation (4.15)
is subtracted. By using u, we find that the following combination is S- and K-inert,

DμC − 2wV K
μ C +

i

2
χ̄Sγμγ∗ζ − n

4
χ̄Sγμγ∗χSC, (4.16)

where

V K
μ ≡ 1

4wu

(C−1
u DμCu + C∗−1

u DμC
∗−1
u ),

χS ≡ 1

2wu

iγ∗(C−1
u ζu + C∗−1

u ζCu ), (4.17)

Cu and ζu are C- and ζ-components of u respectively, and ζC is the charge conjugation
of ζ. We have added V K

μ and χS so that the terms in Eq. (4.15) are canceled. To confirm
that the combination (4.16) is S- and K-inert, we need the S- and the K-transformations
of Vμ, and χ

S given by

δS,KV
K
μ =− 1

4
η̄γχS − λKμ,

δS,Kχ
S =η. (4.18)

Then a supermultiplet Du
μC, whose lowest component is given by Eq. (4.16), is a super-

conformal multiplet.
Thus, we find that the superconformal version of ∂μ on superconformal multiplet can

be defined as the so-called u-associated operation. Note that, unless wu �= 0, u is an
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arbitrary superconformal multiplet, and in an ordinary case, a compensator multiplet
plays the role of u. It is important to notice that we do not require any constraints on C
in the above discussion, and therefore, the u-associated derivative operation can be defined
on any superconformal multiplets. We note that the superconformal derivative operators
Dα and Du

μ make the superconformal multiplets with (w, n) that with (w+ 1
2
, n− 3

2
) and

(w+1, n) respectively. In almost the same way, we can also define the u-associated spinor
derivative Du

α. However, it does not appear in the following discussion, and therefore, we
omit it here.4

With these superconformal derivative operators, we can construct the higher-derivative
term (4.5) in conformal SUGRA. In the old minimal SUGRA, that is, conformal SUGRA
with a chiral compensator, such a higher-derivative term of Φ with (w, n) = (0, 0) can be
written as

SHD = [T (Φ, Φ̄, |S0|−1DS0
μ Φ, |S0|−1DS̄0

μ Φ̄)|DΦDΦ|2]D, (4.19)

where we have used S0 as u and |S0| =
√
S0S̄0. T is a function of superconformal

multiplets with (w, n) = (0, 0), and DΦDΦ should be understood as a multiplet of which
the lowest component is −2χ̄PLχ.

Obviously, the term (4.19) depends on the choice of a compensator. Moreover, we
can construct a similar action with u �= S0.

5 Thus, we find that this kind of higher-
derivative terms in different SUGRA formalism behaves in different ways. However, if T
only depends on Φ and Φ̄, the term (4.19) becomes independent of the compensator. In
the following, we focus on such a compensator-independent term given by

SHD = [T (Φ, Φ̄)|DΦDΦ|2]D. (4.20)

As long as other higher-derivative terms including a compensator are absent, we can per-
form the duality transformation discussed in Sec. 3.3.2. For concreteness, let us consider
the following system in new minimal SUGRA,

S =

[
3

2
L0 ln

(
L0F(Φ, Φ̄)

SS̄
)]

D

+ [T (Φ, Φ̄)|DΦDΦ|2]D, (4.21)

where F is a real function. As in the same way with the case in Sec. 3.3.2, we can rewrite
the action to that in the old minimal SUGRA as,

Sdual =

[
−3

2
S0S̄0F−1

]
+ [T (Φ, Φ̄)|DΦDΦ|2]D. (4.22)

4For details of the u-associated operators, see Ref. [41].
5For instance, we can construct L associate derivatives in the old minimal SUGRA, where L is a real

linear multiplet. In this case, we regard L as not a compensator but a matter multiplet.
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As we expected, under the duality transformation between the old and the new minimal
SUGRA, the higher-derivative term is invariant.

It is also worth pointing out that the term (4.20) is manifestly invariant under the
redefinition of the compensator. In the old minimal SUGRA, the action (3.1) has an
ambiguity under the definition of the compensator. For example, under the change of
the compensator given by S0 → S0e

1
3
Λ(ΦI), where Λ is a holomorphic function of ΦI , Ω

and W are changed as Ω → Ωe
1
3
(Λ+Λ̄) and W → WeΛ. The change of Ω corresponds

to the one of Kähler potential (3.5) as K → K − Λ − Λ̄. This is called the Kähler
transformation. Because of the absence of S0 in the term (4.20), it is invariant under the
Kähler transformation.

The generalization of the term (4.20) to the multi-superfield case is straightforward.
It is given by

SHD = [TIJK̄L̄DΦIDΦJD̄Φ̄K̄D̄Φ̄L̄]D, (4.23)

where TIJK̄L̄ is a real function of ΦI and Φ̄J̄ , and its indices are symmetric under the
exchanges I ↔ J and K̄ ↔ L̄. The properties discussed above are still true even for this
case. The bosonic part of this action is given by

SHD|B =

∫
d4xe

[
32TIJK̄L̄(F

IF J F̄ K̄F̄ L̄ − 2F IF̄ K̄∂μΦ
J∂μΦ̄L̄

+ ∂μΦ
I∂μΦJ∂νΦ̄

K̄∂νΦ̄L̄)

]
. (4.24)

It is worth noting that the action does not have the Ricci scalar term. This is because we
only focus on the bosonic part, and actually, the higher-derivative term (4.23) includes
the Ricci scalar term like 4TIJK̄L̄χ̄

IPLχ
J χ̄K̄PRχ

L̄R. Although such a term is omitted in
the above, we have to take it into account if we construct the complete action including
fermionic parts. In such a case with the standard action (3.1), to construct the action in
the Einstein frame, we need to put the following D-gauge fixing condition

S0S̄0Ω− 4TIJK̄L̄χ̄
IPLχ

J χ̄K̄PRχ
L̄ = 1. (4.25)

Therefore, S0 after gauge fixings becomes the function of not only scalars but also fermions.
Such a structure may become important if the SUGRA corrections, that is, couplings
between S0 and matters are strong enough. In the low energy effective theory, such
couplings seem typically not so strong because they are suppressed by mass parameters
larger than the energy scale realized in collider experiments today.
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We also notice that there is the higher order terms of the auxiliary fields F I . In the
ordinary case, the interactions of F-terms are at most quadratic order, and their E.O.Ms
are linear equations which uniquely determine their solutions. However, in the presence
of the higher order terms of F I , the E.O.Ms of them become cubic equations, which are
difficult to solve analytically in general and have three branches as solutions. As discussed
in Refs. [5, 126, 127, 128], the solutions can be classified according to the dependence on
the coupling TIJK̄L̄. One solution is regular in the limit of TIJK̄L̄ → 0, and the others are
singular in the same limit. As shown in Ref. [127], the solutions singular at T → 0 make
the kinetic term of the scalar field non-canonical in the sense that the quadratic derivative
terms of scalar vanish but quartic terms remain. Although that is an interesting solution
of SUGRA, we focus on the regular solution in the following.

As a final remark of this section, we comment on the other ghost-free higher-derivative
coupling discussed in Ref. [6]. The higher-derivative coupling ∼ [M−2ΦEaDL0

a Φ̄]D
6 gives

a non-minimal coupling between Φ and gravity likeM−2Gμν∂μΦ∂νΦ̄ where Gμν is the Ein-
stein tensor. It is known that this interaction gives an interesting contribution to the in-
flaton dynamics owing to the gravitationally enhanced friction mechanism [130, 131, 132].
The essence of the mechanism is that such a coupling behaves as ∼ H2

M2∂μΦ∂
μΦ̄ during

inflation that makes slow the inflaton dynamics if M 	 1. Interestingly, such a higher-
derivative term is constructed only in the new minimal SUGRA. This term obviously
depends on the choice of the compensator. Therefore, the form of these couplings must
be varied under a duality transformation, even if it is possible. The construction of this
kind of couplings in the old minimal SUGRA is interesting, although it has never been
done so far.

4.3 Effects of SUSY higher-derivative terms on F-

term inflation models

In this section, we discuss the effect of higher-derivative term (4.20) on the F-term inflation
models based on Ref. [117]. The action we discuss here is

S =

[
−3

2
S0S̄0e

−K
3

]
D

+ [S3
0W ]F + [TIJK̄L̄DΦIDΦJD̄Φ̄K̄D̄Φ̄L̄]D, (4.26)

6Ea is a real multiplet whose lowest component is ∼ C−1Ba where C and Ba are components of a
real linear compensator, and we have omitted the fermionic part. The full definition of it is given, e.g.,
in Ref. [129].
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where

K =K̂(Φ, Φ̄) + |S|2 − ζ|S|4, (4.27)

W =f(Φ)S, (4.28)

(4.29)

Φ and S are the inflaton and the stabilizer multiplet respectively, ζ is a positive constant,
f(Φ) is a holomorphic function of Φ, and indices run over Φ and S. We have to note
that the action (4.26) is not invariant under the duality transformation, nevertheless the
higher-derivative term is so. The reason is as follows: In the presence of superpotential
terms, we can not assume that all the matter multiplets have (w, n) = (0, 0) in the new and
the non-minimal SUGRA. That is because, in those formalisms, compensators are a real
or a complex linear multiplets, which can not compensate weights in the F-term formula.
If one wants to maintain the duality invariance, some additional multiplet will be required,
which compensates the weights of terms in the superpotential part. By assuming that
such an additional multiplet is stabilized with its mass heavier than the inflation scale,
the following discussion and result hold. If we do not add such a compensator like field,
the following discussion is valid only in the old minimal SUGRA.

In the absence of the last term, the inflation is realized with the shift symmetric Kähler
potential K̂(Φ, Φ̄) = K̃(Φ + Φ̄), and the inflaton is ImΦ. The inflationary trajectory in
such a case is summarized as follows.

• f(Φ) becomes non-zero, and then the masses of S and ReΦ of the order of H2

appear. Then, they are stabilized at the origin.

• Along S = ReΦ = 0, FΦ = −KΦΦ̄DΦ̄W̄ vanishes and F S = −KSS̄W̄S̄ = −KSS̄ f̄(Φ̄) �=
0.

• The effective potential along the inflationary trajectory is given by V = KSS̄|f(iφ)|2
where φ = ImΦ.

• Inflation ends at f ′(iφ) = 0 or f(iφ) = 0, and the former solution can realize the
SUSY breaking by S at the vacuum.

In the presence of the higher-derivative term, the situation is quite different. With the
higher-derivative term, the off-shell bosonic action in Eq. (4.26) is given by

S|B =

∫
d4xe

[
1

2
R−KIJ̄∂μφ

I∂μφ̄J̄ +KIJ̄F
IF̄ J̄ + (e

K
2 DIWF I + h.c.) + 3eK |W |2

+ 32TIJK̄L̄(F
IF J F̄ K̄F̄ L̄ − 2F IF̄ K̄∂μφ

J∂μφ̄L̄ + ∂μφ
I∂μφJ∂νφ̄

K̄∂νφ̄L̄)

]
, (4.30)
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where we have used the D-, A- and K-gauge fixing conditions in Eq. (3.4).
As mentioned in the previous section, there are quartic couplings of F I , by which the

E.O.Ms of F-terms become cubic equations. Then, it is not easy to derive an on-shell
action, and therefore, we assume a particular inflationary trajectory with which we can
approximately solve the E.O.Ms of F-terms. What we assume is as follows:

• During inflation, as in the case of the ordinary chaotic inflation, S is stabilized at the
origin due to the mass term m2

SS̄
∼ ζH2. Then, DSW = f(Φ), W,DΦW ∝ S = 0

and ∂μS = 0.

• We do not assume the shift symmetry of Φ in the Kähler potential term, but assume
that the kinetic coefficient from Kähler potential is not so large KΦΦ̄ ∼ O(1) during
inflation.

• For simplicity, we require TΦSS̄S̄, TSΦΦ̄Φ̄, and their conjugates are zero.7

Note that though we require these assumptions to obtain an on-shell action, the following
discussion holds as long as |DSW | 
 |DΦW |. The assumption S ∼ 0 and ∂μS = 0 are
consistent with the inflationary trajectory described below, and are automatically satisfied
once inflation starts.

Here, we solve the E.O.M of F-terms in Eq. (4.30) under the assumptions. The E.O.M
of F S̄ is given by

64

(
1

64
KSS̄ + 2TΦSΦ̄S̄|FΦ|2 − TΦSΦ̄S̄|∂μΦ|2 + TSSS̄S̄|F S|2

)
F S + e

K
2 DS̄W̄ = 0. (4.31)

We can rewrite this equation as

64

(
1

64
KSS̄ + 2TΦSΦ̄S̄|FΦ|2 − TΦSΦ̄S̄|∂μΦ|2 + TSSS̄S̄|F S|2

)
A+ e

K
2 |DS̄W̄ |2 = 0, (4.32)

where A = F SDSW . We notice that all the quantities in Eq. (4.32) other than A are
real, and therefore, A should also be real. In the parentheses of the above equation, we
assume that the second term is much smaller than the forth one, and it will be confirmed
below. By neglecting the former, the equation becomes a closed form with respect to A,
which is given by

64

(
1

64
KSS̄ − TΦSΦ̄S̄|∂μΦ|2 +

TSSS̄S̄
|DSW |2A

2

)
A+ e

K
2 |DS̄W̄ |2 = 0. (4.33)

7More precisely speaking, even if TSΦΦ̄Φ̄ and its conjugate exist, they do not affect the inflationary
trajectory we will discuss. However, TSΦS̄S̄ and its conjugate do affect to the trajectory, and they may
cause the instability of the trajectory. Therefore, we require that TSΦS̄S̄ is sufficiently small as we will
require that on TSSS̄S̄ .
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This can be algebraically solved as

A =3

√
β

α

(√
1 +

αγ

4β3
− γ

2

√
α

β3

) 1
3

− 3

√
β

α

(√
1 +

αγ

4β3
− γ

2

√
α

β3

)− 1
3

, (4.34)

where

α =
1728TSSS̄S̄
|DSW |2 , (4.35)

β =KSS̄ − 64TΦSΦ̄S̄|∂μΦ|2, (4.36)

γ =e
K
2 |DSW |2. (4.37)

On the other hand, the E.O.M of F Φ̄ is given by

64

(
1

64
KΦΦ̄ − TΦΦΦ̄Φ̄|∂μΦ|2 + 2TΦSΦ̄S̄|F S|2 + TΦΦΦ̄Φ̄|FΦ|2

)
FΦ + e

K
2 DΦ̄W̄ = 0. (4.38)

As in the case of the above discussion, the last term in the parentheses of the above
equation is negligible. Then, this equation is approximated as a linear equation of FΦ.
Thus, we can conclude that FΦ ∝ |DΦW | ∼ 0, and this ensures the approximation
|F S| 
 |FΦ|. Since the solution (4.34) is quite complicated, we expand it with respect to
γ. Such an expansion is valid for γ 	 1, which is reasonable during inflation. Then, we
obtain

A ∼ −γ
β
= −e

K
2 |DSW |2

β
= −BSS̄e

K
2 |DSW |2, (4.39)

where BSS̄ = β−1. Thus, we find the final expression,

F S = −eK
2 BSS̄DS̄W̄ . (4.40)

Using these, we obtain the following on-shell expression of F-terms;

F S ∼− BSS̄e
K
2 DS̄W̄ , (4.41)

FΦ ∝DΦ̄W̄ = 0, (4.42)

where the expression of F S is given by the leading order of |DSW |, BSS̄ = B−1
SS̄
, and

BSS̄ = KSS̄ − 64TΦSΦ̄S̄∂μΦ∂
μΦ̄. These solutions are not singular in the limit of T → 0.
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By substituting them into the action (4.30), we obtain

S|on−shell
B =

∫
d4xe

[
−(KΦΦ̄ + 64TΦSΦ̄S̄(B

SS̄)2eK |f(Φ)|2)∂μΦ∂μΦ̄

+ 32TΦΦΦ̄Φ̄|∂μΦ∂μΦ|2 − (2BSS̄ −KSS̄(B
SS̄)2)eK |f(Φ)|2

+ 32TSSS̄S̄(B
SS̄)4e2K |f(Φ)|4

]
. (4.43)

In the following, we assume that TIJK̄L̄ is constant, and then, from the dimensional
analysis, we can write TIJK̄L̄ as M−4CIJK̄L̄ where M is a mass parameter and CIJK̄L̄ is a
dimensionless parameter.

Let us focus on the “kinetic term” of Φ given by

−
(
KΦΦ̄ + 64CΦSΦ̄S̄(B

SS̄)2
eK |f(Φ)|2

M4

)
∂μΦ∂

μΦ̄

=−
(
KΦΦ̄ + 64CΦSΦ̄S̄(B

SS̄)2
V

M4

)
∂μΦ∂

μΦ̄, (4.44)

where V ≡ eK |f(Φ)|2. In the case where V
M4 	 1 and CΦSΦ̄S̄ ∼ O(1), the kinetic

coefficient is dominated by the first term in the parentheses, which is the standard kinetic
term in SUGRA.

However, for V
M4 
 1, the situation becomes quite different. Before discussing it, we

briefly summarize the scenario that will be considered below:

• We discuss the slow-roll inflation driven by Φ, and the energy is dominated by the
“scalar potential” in the action (4.43) mixed with derivative terms through BSS̄.

• After the end of inflation, V → 0, and then, the higher-order terms due to the
SUSY higher-derivative terms decrease. Finally, the action effectively becomes the
standard SUGRA one.

When V
M4 
 1, the kinetic term is effectively given by

−64CΦSΦ̄S̄(B
SS̄)2

V

M4
∂μΦ∂

μΦ̄. (4.45)

In this case, the inflaton dynamics becomes far from the ordinary F-term inflation model
owing to the nontrivial kinetic coefficient. The “canonically” normalized inflaton Φ̃ is
related to Φ as

dΦ̃ = 8

√
CΦSΦ̄S̄(BSS̄)2V

M4
dΦ. (4.46)
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Therefore, we can rewrite BSS̄ as

BSS̄ =KSS̄ − 64CΦSΦ̄S̄

M4
∂μΦ∂

μΦ̄

=KSS̄ − ∂μΦ̃∂
μ ¯̃Φ

V (BSS̄)2
. (4.47)

On the other hand, the “scalar potential” in the action (4.43) is given by

Vinf = (2BSS̄ −KSS̄(B
SS̄)2)V − 32CSSS̄S̄(B

SS̄)4
(
V

M4

)
V. (4.48)

We notice that the second term becomes negative for CSSS̄S̄ > 0, and its absolute value
is larger than the first term for CSSS̄S̄ ∼ O(1). Therefore, the potential becomes negative
in such a case. One may think that this can be avoided for CSSS̄S̄ < 0, but that is
not correct. The kinetic term of S omitted in the above is given by L ∼ −(KSS̄ +
64CSSS̄S̄(B

SS̄)2 V
M4 )∂μS∂

μS̄. Therefore, for CSSS̄S̄ < 0, S obtains the ghost-like kinetic
term, which is also problematic. Therefore, in order to retain a possibility to realize the
scenario, we have to require

|CSSS̄S̄| 	
M4

V
, (4.49)

and then, the above problem can be avoided. We assume this condition in the following
discussion, and neglect terms including CSSS̄S̄. Under the assumption, the slow-role in-
flation is driven by Φ̃ with the potential ∼ V . In that case, the following relation holds;

∂μΦ̃∂
μ ¯̃Φ ∼ εH2 ∼ εV , where ε and H are the first slow-roll and the Hubble parameters

respectively. Then, ∂μΦ̃∂μ ¯̃Φ

V (BSS̄)2
∼ ε 	 1. We conclude that BSS̄ ∼ KSS̄ from Eq. (4.47), and

obtain

L ∼− ∂μΦ̃∂
μ ¯̃Φ + 32TΦΦΦ̄Φ̄|∂μΦ∂μΦ|2 − V

∼− ∂μΦ̃∂
μ ¯̃Φ− V, (4.50)

where we have neglected the second term on the first line because of the same consideration
as the above and assumed KSS̄ = 1 for simplicity.

It is important to notice that, the functional form of V (Φ) looks different in terms of the

canonically normalized inflaton Φ̃. Because of the factor
√
V

M2 
 1, a large field variation

of Φ̃ becomes a small variation of Φ, which means that factor effectively enlarges the field

space of Φ around the region
√
V

M2 
 1. Such an effect enables the large field inflation
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without a large field variation of Φ. From this observation, we find that it is useful to
expand the potential around the point at which inflation ends. We denote the value of Φ
at such a point as Φ0. Then, the scalar potential can be expanded around Φ0 as

V = V (Φ0) + (∂ΦV (Φ0)δΦ + h.c.) + · · · , (4.51)

where δΦ = Φ − Φ0 and ellipses denote the higher order terms. Due to the smallness
of the variation δΦ, we can discuss the inflaton dynamics with only the leading term of
this expansion. This is an interesting feature of this model. The η-problem in SUGRA is
avoided in this setup even if Φ̃ realizes the large field inflation effectively.

Let us consider the case where the inflation is driven by φ = ReδΦ, and the orthogonal
direction ImδΦ stays at its minimum.8 In such a case, the effective Lagrangian becomes

L ∼ −64CΦSΦ̄S̄

V (φ)

M4
∂μφ∂

μφ− V (φ), (4.52)

where

V (φ) =
∞∑
n=1

Vn(0)φ
n, (4.53)

Vn(0) = 1
n!
∂nφV (0), and we have assumed that V (0) ∼ 0. This condition is reasonble

because V (0) becomes the cosmological constant which should be negligibly smaller than
the potential energy during inflation.

For the case in which the leading term of the potential is given by Vmφ
m, the canoni-

cally normalized inflaton ϕ is related to φ as

ϕ =

∫
8
√
CΦSΦ̄S̄Vm(0)

M2
φ

m
2 dφ

=
16
√
CΦSΦ̄S̄Vm(0)

(m+ 2)M2
φ

m
2
+1. (4.54)

The potential V ∼ Vmφ
m is represented as

V = Ṽm(0)ϕ
2m
m+2 , (4.55)

where

Ṽm(0) = Vm(0)

(
(m+ 2)M2

16
√
CΦSΦ̄S̄Vm(0)

) 2m
m+2

. (4.56)

8This situation is not trivial, and therefore, we will discuss the related topic on this assumption at the
end of this section.
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Surprisingly, the effective potential in this model is always represented by a monomial
function with the fractional power 2m

m+2
.9 As a consequence, this model predicts the

cosmological parameters ns and r as

ns =1− 2(m+ 1)

(m+ 2)N∗
, (4.57)

r =
8m

(m+ 2)N∗
, (4.58)

where N∗ is the number of e-foldings at the horizon exit.
In the above discussion, we have set ImδΦ = 0. However, the mass of ImδΦ is almost

the same as that of the inflaton. Therefore, as in the case of Ref. [80], a light scalar field
may lead to the isocurvature perturbation which becomes an adiabatic mode after the field
decays. If the field dominates the universe and decays after the time when it dominates
the universe, the adiabatic mode leads to the non-Gaussianity of the scalar curvature
perturbation, which is constrained by the latest Planck data [133]. However, in many
cases, we can expect that such a situation does not occur due to the following reason:
The light mode has the same mass with the inflaton, and no symmetry is imposed on
the inflaton in our case. Then, we can naively expect that the inflaton and the light field
decay into the other particles simultaneously. Therefore, the light field can never dominate
the universe, and then, the non-Gaussianity predicted in this model may become small
consistent with the Planck data. Such a discussion highly depends on more concrete setup,
such as couplings between the inflaton and MSSM sector. And so, we do not continue to
discuss it and will address this issue elsewhere.

4.4 Simplified model: F-term inflation without Kähler

potential

We have discussed an F-term inflation model with SUSY higher-derivative terms (4.20)
in the previous section. To clarify the consequence of the model, let us consider a specific
limit of the model we have discussed, which corresponds to the one in Ref. [92].

As we discussed, the Kähler potential of the inflaton multiplet is not important for the
inflation. The important term is 1

M4 [CΦSΦ̄S̄|DΦDS|2]D, which gives a nontrivial kinetic
term of Φ. It is also important that S is strongly stabilized at the origin, which is achieved
by the quartic term in Kähler potential K ∼ −ζ|S|4. As we mentioned in Sec. 3.2, the
Goldstino multiplet can be described by the nilpotent multiplet in the decoupling limit

9This result is valid as long as |Vm| ∼ |Vn| for all n > m because |φ| < 1.
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of the sGoldstino. In our case, SUSY is broken by S during inflation, and the sGoldstino
S becomes sufficiently heavy. Then S can be well described as the nilpotent multiplet.
Taking these facts into account, we can simplify the action (4.26) as

S = −3

2
[S0S̄0e

− 1
3
|S|2 ]D + [S3

0f(Φ)S]F +
1

M4
[C|DΦDS|2]D, (4.59)

where C is a real constant, and we have assumed that S satisfies the nilpotent condition
S2 = 0. The first term corresponds to the Kähler potential K = |S|2, and there is no
Kähler potential term of Φ. After superconformal gauge fixings, the bosonic part of the
action (4.59) becomes

S|B =

∫
d4xe

[
1

2
R + |F S|2 − 3|F S0 |2 + (f(Φ)F S + h.c.)

+
32C

M4
|FΦ|2|F S|2 − 16C

M4
|F S|2∂μΦ∂μΦ

]
, (4.60)

where we have set S = 0 because it is a fermion bilinear due to the nilpotency condition.
We can easily solve the E.O.M of F-terms, and obtain

F S0 =FΦ = 0, (4.61)

F S =− f̄(Φ̄)

1− 16C
M4 ∂μΦ∂μΦ̄

. (4.62)

Substituting them into the action (4.60), we obtain

S|B =

∫
d4xe

[
1

2
R− 16B2CV

M4
∂μΦ∂

μΦ̄− (2B −B2)V

]
, (4.63)

where B ≡ (
1− 16C

M4 ∂μΦ∂
μΦ̄
)−1

, and V ≡ |f(Φ)|2. This action precisely corresponds to
the effective action discussed in the previous section.

From this discussion, we find some features of the model in Sec. 4.3. First, as we
found, the η-problem is absent in the model. We can understand the reason as follows:
In the limit V

M4 
 1, the Kähler potential can be effectively negligible with respect to the
kinetic term. It is also important that in such a limit, the dominant part of the inflaton
dynamics is the SUSY higher-derivative part |DΦDS|2. The term has shift symmetry of
Φ. That is the reason why the η-problem is absent even without the shift symmetry of Φ
in the Kähler potential.

Secondly, the shift symmetry which the SUSY higher-derivative term has is under
a complex shift Φ → Φ + Z where Z is a complex constant, because of the derivative
operator D. Such a symmetry makes both ReδΦ and ImδΦ light. That is the reason for
the light mass of ImδΦ discussed in the previous section.
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Chapter 5

Matter coupled DBI action in N = 1
4D conformal SUGRA

This chapter is based on Refs. [134, 135].

5.1 DBI action in N = 1 4D global SUSY

DBI action [7, 8] is a possible extension of the Maxwell action including higher order
terms of a U(1) gauge field, which is given by

SDBI =

∫
d4x

(
1−

√
−det

(
ηab +

1

M2
Fab

))
, (5.1)

where ηab is the Minkowski metric, Fab = 2∂[aAb], Aa is a gauge field under the U(1)
symmetry, and M is a real parameter of mass dimension 1. This action is manifestly
gauge invariant because it is given by the function of the invariant quantity Fab. It is also
important that the action does not produce the third order time derivative to the E.O.M
of Aa, which means the absence of ghosts in spite of the higher order derivative couplings.

A natural question is how the SUSY DBI action can be written. The answer was
first derived in Ref. [136], where the authors constructed a SUSY Lagrangian having the
term (5.1) in its bosonic part. The authors of Ref. [136] also showed the superconformal
realization of the DBI action, which we will derive in a different way. After that, it was
shown that the Lagrangian in Ref. [136] is related to the partial breaking of 4D N = 2
SUSY in Refs. [26, 27]. The partial breaking of N = 2 SUSY is done by requiring a
constraint on an N = 2 superfield. As shown in Ref. [27], the SUSY DBI action of
an N = 1 vector multiplet V can be obtained as follows: We impose a constraint on
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W, which is an N = 2 superfield, given by W2 = 0. W consists of two N = 1 chiral
superfields Wα = D̄2DαV and X, and in terms of these N = 1 superfields, the constraint
W2 = 0 can be rewritten as 1

X = XD̄2X̄ +
1

4
W αWα. (5.2)

Then the DBI Lagrangian is given by

L =

∫
d2θ

(
XD̄2X̄ +

1

4
WαWα

)
+

∫
d2θΛ

(
1

4
W αWα +XD̄2X̄ −X

)
, (5.3)

where Λ is a Lagrange multiplier chiral multiplet, whose equation of motion provides the
constraint (5.2) on X and WαWα. The first two terms correspond to the kinetic terms of
a vector and a chiral multiplet, V and X, of which an N = 2 vector multiplet consists.
By the field redefinition Λ → Λ− 1, the action can be rewritten as

L =

[∫
d2θX + Λ

(
1

4
W αWα +XD̄2X̄ −X

)
+ h.c.

]
. (5.4)

We can solve the constraint (5.2) with respect to X algebraically and obtain2

X = W 2

⎡
⎣1 + 1

2
D̄2

⎛
⎝ W̄ 2

1− 1
2
A+

√
1− A+ 1

4
B2

⎞
⎠
⎤
⎦ , (5.5)

where A ≡ 1
2
(D2W 2 + D̄2W̄ 2) and B = 1

2
(D2W 2 − D̄2W̄ 2). Then, one can compute the

Lagrangian and find its bosonic part

L|B = 1−
√

−det(ηab + Fab). (5.6)

This gives exactly the action in Eq. (5.1) and one confirms that the Lagrangian (5.4) is
the SUSY extension of the DBI action.

It is important to notice that there is an underlying condition on X given by X2 = 0
because of the Grassmann nature of W αWα. As we can find from the solution (5.5),
X ∝ W 2, and therefore X2 ∝ W 4 = 0. Therefore, we find that X is a nilpotent superfield
discussed in Sec. 3.2. This nilpotency is quite important by the following reason: The
Lagrangian (5.4) can be rewritten as

L =

∫
d2θX +

∫
d2θΛ

(
1

4
W αWα +XD̄2X̄ −X

)
+

∫
d2θΛ̃X2 + h.c., (5.7)

1We use the convention in Ref. [26].
2When we solve the constraint, we obtain two branches of solutions and the solution (5.5) corresponds

to one of them, with which the action (5.4) vanishes for Fμν → 0.
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where Λ̃ is the second Lagrange multiplier chiral multiplet, whose E.O.M is X2 = 0.
The equation X2 = 0 is automatically satisfied after solving the first constraint (5.2),
as discussed above. Therefore, the second term does not change the system, but it is
important to show the nilpotentcy of X manifestly. By using the superspace identity∫
d4θ(· · · ) = −1

4

∫
d2θD̄2(· · · ) + tot. div, we can rewrite the action (5.7) as

L = −1

4

∫
d4θ(Λ + Λ̄)|X|2 +

{∫
d2θ

(
X + Λ

(
1

4
W αWα −X

)
+ Λ̃X2

)
+ h.c.

}
. (5.8)

The first term can be regarded as the Kähler potential of Λ and X, and therefore, X and
Λ seem to obtain their kinetic term given by −KIJ̄∂μΦ

I∂μΦ̄J̄ . However, one notices that
the kinetic mixing matrix KIJ̄ has a negative eigenvalue because the determinant of it is
given by − 1

16
|X|2. Therefore, it seems that there is a ghost in the bosonic sector of the

system, but this is not the case because of the nilpotency of X. As discussed in Sec. 3.2,
X is described by a fermion bilinear, and then, detKIJ̄ |B = 0, which shows the absence
of bosonic ghosts. Indeed, one can confirm that the purely bosonic part of the kinetic
terms disappear by taking into account that X is a fermionic bilinear. Thus, one can show
the absence of ghosts in the bosonic sector, which we can also check from the resultant
Lagrangian (5.6). In this respect, the nilpotency condition on X is quite important, and
we will extend the SUSY DBI action in such a way that X satisfies the condition.

We will discuss the DBI action of a single U(1) vector multiplet in the following
although there are other types of DBI extensions in global SUSY. Let us briefly comment
on such extensions. In Refs. [27, 122, 123], the SUSY DBI action of a real linear (tensor)
multiplet is constructed. The strategy is almost the same as that discussed above, and the
authors pointed out that the action is dual to the DBI action of a chiral multiplet, which
would be the effective action of the position moduli of D3-brane in six dimension. In
Refs. [137, 138], the DBI type action with multiple U(1) gauge superfields are constructed
by extending the case with a single U(1) vector multiplet. The massive SUSY DBI action
of a gauge and a real linear multiplets is discussed in Ref. [139].

There are also the DBI actions in extended (N ≥ 2) global SUSY with the superspace
or the component formulations. In Refs. [140, 141, 142, 143, 144, 145], the DBI action in
N = 2 superspace is discussed although the complete form of it is unknown.

On the other hand, the SUSY Dp-brane action, which is a kind of the DBI type
actions, also has been constructed and developed within the component formalism in
Refs. [146, 147, 148, 149, 150, 151]. The relation between D-branes and the DBI action
is reviewed e.g. in Ref. [152].
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5.2 superconformal extension of DBI action

In this section, we discuss the superconformal realization of the DBI action as in the previ-
ous chapter. As we have found, the DBI action can be expressed in terms of a set of chiral
multiplets, which are related with each other by a nontrivial constraint. From this view-
point, to construct the DBI action in SUGRA, what we have to do is the superconformal
extension of the constraint (5.2). Then, we need to realize the superconformal version of
terms in Eq. (5.2). The second term on the right-hand side of Eq. (5.2) is trivial, and we
know the corresponding superconformal chiral multiplet W2 with (w, n) = (3, 3). In the
first term on the right-hand side of Eq. (5.2), we notice that D̄2 makes X̄ a chiral multi-
plet. We know such an operator, that is, the chiral projection Σ defined in Eq. (2.51). To
use the operator on a multiplet, it should satisfy the constraint w− n = 2, and therefore,
the Weyl and the chiral weights of an antichiral multiplet X̄ are uniquely determined as
(w, n) = (1,−1). The chiral multiplet Σ(X̄) has the weights (w, n) = (2, 2), and XΣ(X̄)
has the weights (w, n) = (3, 3). Thus, we find that the superconformal extension of the
right-hand side of Eq. (5.2) consists of W2 and XΣ(X̄) with the weights (w, n) = (3, 3).
However, the left-hand side of Eq. (5.2) is given by X, and a naive extension is not ap-
plicable because of the difference of the weights between both sides. This means that the
superconformal extension of the constraint (5.2) is impossible without introducing other
multiplets.

A possible candidate for the multiplet introduced in the constraint is a compensator
multiplet. Here, let us consider the old minimal formulation, that is, the case with a
chiral compensator S0 with (w, n) = (1, 1). Then, we find the following superconformal
constraint, which is expected to be an extension of Eq. (5.2),

S2
0X = W2 − aXΣ(X̄), (5.9)

where a is a real constant parameter. For simplicity of the later discussion, we redefine X
as S0X, and then X has the weights (w, n) = (0, 0) as the usual matter chiral multiplets,
and then the constraint becomes

S3
0X = W2 − aS0XΣ(S̄0X̄). (5.10)

It is important to note that the solution of this constraint is also a nilpotent multiplet,
since we can formally express the constraint as

X =
W2

S3
0 + aS0Σ(S̄0X̄)

, (5.11)

which is proportional to W2 as in the global SUSY case. Although we can solve this
equation in almost the same way as the global SUSY case, the calculation is rather
complicated.
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Instead, we use the superconformal version of the action (5.7). Such an action can be
written as

S = [bS3
0X]F + [Λ(W2 − aS0XΣ(S̄0X̄)− S3

0X)]F + [S3
0Λ̃X

2]F + [−cS0S̄0]D, (5.12)

where b and c are real parameters, and we have introduced Lagrange multiplier chiral
multiplets Λ and Λ̃ with (w, n) = (0, 0). The last term gives the kinetic term of the
gravity multiplet. In the following, we focus on the bosonic part of the action, and then,
we need to recall that the third term gives the nilpotency condition of X, which yields

X = ψ̄XPLψ
X

2FX . Taking it into account, the bosonic part of the action (5.12) is given by

S|B =

∫
d4xe

[
a|S0|2(Λ + Λ̄)|FX |2 + {S3

0(b− Λ)FX + h.c.}+ 1

2
(Λ + Λ̄)FμνF

μν

− 1

2
(Λ− Λ̄)FμνF̃

μν − (Λ + Λ̄)D2 +
c

3
|S0|2R(e, b)− c(|F S0 |2 −DμS0D

μS̄0)

]
,

(5.13)

where Fμν = 2∂[μBν], Bμ is a gauge field, F̃ μν = − i
2
εμνρσFρσ, and DμS0 = ∂μS0 − bμS0 −

iAμS0. We choose c = 3
2
, and then, we can obtain the Einstein frame action by choosing

the superconformal gauge fixing conditions as S0 = S̄0 = 1 and bμ = 0. Thus, the
action (5.13) becomes

S|EB =

∫
d4xe

[
2a(ReΛ)|FX |2 + {(b− Λ)FX + h.c.}+ (ReΛ)FμνF

μν

− i(ImΛ)FμνF̃
μν − 2(ReΛ)D2 +

1

2
R− 3

2
(|F S0 |2 − AμA

μ)

]
. (5.14)

The E.O.M of FX , F S0 , D and Aμ can be algebraically solved as

FX =− b− λ+ iφ

2aλ
, (5.15)

F S0 =D = 0, (5.16)

Aμ =0, (5.17)

where λ ≡ ReΛ and φ ≡ ImΛ. Then, we obtain the on-shell action

S|EB =

∫
d4xe

[
1

2
R + λFμνF

μν − iφFμνF̃
μν +

(b− λ)2 + φ2

2aλ

]
. (5.18)
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The E.O.M of the Lagrange multipliers are

φ

λ
=aiFμνF̃

μν , (5.19)

b2

λ2
=1 + 2aFμνF

μν + a2(FμνF̃
μν)2. (5.20)

We can solve these equations with respect to φ and λ, and then, by substituting the
solutions, we obtain

S|EB =

∫
d4xe

[
1

2
R− b

a
+
b

a

√
1 + aFμνF μν + a2(FμνF̃ μν)2

]

=

∫
d4x

[
1

2

√−gR +
b

a

√
−det(gμν + 2

√
aFμν)− b

a

√−g
]
, (5.21)

where we have substituted one of the solutions for Eq. (5.20) so that the second and the
third terms cancel with each other for Fμν = 0. This is the DBI action (5.6) coupled
to supergravity, for a = −b = 1

4
. Thus, we confirm that the following action is the

superconformal extension of the DBI action,

S =

[
−1

4
S3
0X

]
F

+

[
Λ

(
W2 − 1

4
S0XΣ(S̄0X̄)− S3

0X

)]
F

+ [S3
0Λ̃X

2]F −
[
3

2
S0S̄0

]
D

.

(5.22)

Before discussing the matter couplings, let us consider the DBI action in the new and
the non-minimal SUGRA. We know the old minimal version (5.22) and it can be rewritten
as

S =

[
−1

4
X̃

]
F

+

[
Λ

(
W2 − 1

4
Σ

(
X̃ ¯̃X

(S0S̄0)2

)
− X̃

)]
F

+ [Λ̂X̃2]F −
[
3

2
S0S̄0

]
D

, (5.23)

where X̃ = S3
0X, Λ̂ = S−3

0 Λ̃, and we have used the identity S0XΣ(S̄0X̄) = Σ(S0S̄0XX̄).
We notice that the action contains S0 and S̄0 in the form of a real combination S0S̄0.
Therefore, we can replace the combination with a real linear multiplet L0 or a combination
of complex linear compensators L0L̄0 with an appropriate power of them. More concretely,
the DBI action with a real linear multiplet and with a complex linear multiplet are given
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by

Snew =

[
−1

4
X̃

]
F

+

[
Λ

(
W2 − 1

4
Σ

(
X̃ ¯̃X

L2
0

)
− X̃

)]
F

+ [Λ̂X̃2]F −
[
3

2
L0 ln

(
L0

SS̄
)]

D

,

(5.24)

SNM =

[
−1

4
X̃

]
F

+

[
Λ

(
W2 − 1

4
Σ

(
X̃ ¯̃X

(L0L̄0)
2
w

)
− X̃

)]
F

+ [Λ̂X̃2]F −
[
3

2
(L0L̄0)

1
w

]
D

,

(5.25)

where S is a chiral multiplet with (w, n) = (1, 1), the last term in each action denotes the
pure SUGRA action, and we have assumed that the weights of L0 are (w, n) = (w,w−2).
In the above expressions, one should consider X̃ as a chiral multiplet with (w, n) = (3, 3).
Note that, the construction of the DBI action coupled to a chiral compensator or a real
linear compensator is discussed also in Refs. [153, 154].

5.3 DBI action coupled with chiral matter

We can also extend the DBI action (5.22) to that coupled with matter chiral multiplets.
Such a situation is more realistic than the pure DBI action discussed so far. As shown in
the previous section, the nilpotency condition on X is important for avoiding ghosts. A
possible generalization of the constraint (5.10) is

S3
0X = W2 − S0XΣ(ω(ΦI , Φ̄J̄)S̄0X̄) (5.26)

where ω(ΦI , Φ̄J̄) is a real function of matter chiral multiplets ΦI and its conjugates Φ̄J̄ ,
whose weights are (w, n) = (0, 0). The matter couplings can be added also in the action
and the general matter coupled extension is given by

S =− 1

4
[S3

0f(Φ
I)X]F + [Λ(W2 − S0XΣ(ω(ΦI , Φ̄J̄)S̄0X̄)− S3

0X)]F

+ [S3
0Λ̃X

2]− 3

2

[
S0S̄0 exp

(
−1

3
K(ΦI , Φ̄J̄)

)]
D

+ [S3
0W (ΦI)]F , (5.27)

where K(ΦI , Φ̄J̄) and W (ΦI) are Kähler and super-potentials of chiral multiplets respec-
tively, and f(ΦI) is a holomorphic function of chiral multiplets. The meaning of f(ΦI)
can be understood by considering the limit ω → 0. In the limit, the constraint (5.26)
becomes S3

0X = W2, and then, the first term in Eq. (5.27) is −1
4
[f(ΦI)W2]F , which is the
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standard kinetic term of a gauge multiplet. Therefore, we find that f(ΦI) corresponds to
the gauge kinetic function.

Let us consider the component expression of the bosonic part of this action. That is
given by

S|B =

∫
d4xe

[
1

2
|S0|2e−K

3 R(e, b) + ω|S0|2(Λ + Λ̄)|FX |2 −
{
S3
0

(
f

4
+ Λ

)
FX + h.c.

}

+ (ReΛ)FμνF
μν − i(ImΛ)FμνF̃

μν − 2(ReΛ)D2

+ ie−
K
3 |S0|2KIk

ID + Lordinary

]
, (5.28)

where kI is the Killing vector for U(1) isometry on the manifold spanned by ΦI . Lordinary

is given by

Lordinary = N
Î
¯̂
J
(F ÎF̄

¯̂
J −DaΦÎDaΦ̄

¯̂
J) + (F ÎŴÎ + h.c.), (5.29)

where the indices Î ,
¯̂
J run over ΦI and S0, I is an index of matter chiral multiplets ,

N = −3|S0|2e−K
3 , Ŵ = S3

0W , and Da denotes the covariant derivative. Here we take the
standard superconformal gauge fixing conditions to obtain the Einstein frame action,

S0 = S̄0 = e
K
6 , bμ = 0. (5.30)

Then, we obtain the following action,

S|EB =

∫
d4xe

[
1

2
R + 2ω(ReΛ)e

K
3 |FX |2 −

{
e

K
2

(
f

4
+ Λ

)
FX + h.c.

}
+ LE

ordinary

+ (ReΛ)FμνF
μν − i(ImΛ)FμνF̃

μν − 2(ReΛ)D2 + iKIk
ID

]
, (5.31)

where LE
ordinary is Lordinary under the superconformal gauge conditions (5.30). It is straight-

forward to solve the E.O.Ms of FX , F Î , D and Aμ. After solving them, the action becomes

S|on−shell
B =

∫
d4xe

[
1

2
R + λFμνF

μν − iφFμνF̃
μν − (KIk

I)2

2λ
+ Lon−shell

ordinary

− 1

2ωλ
e

2K
3

{(
1

4
p+ λ

)2

+

(
1

4
q + φ

)2
}]

, (5.32)
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where λ = ReΛ, φ = ImΛ, p = Ref(ΦI), q = Imf(ΦI), and

Lon−shell
ordinary = −KIJ̄DμΦ

IDμΦ̄J̄ − VF . (5.33)

In the above equation, DμΦ
I = ∂μΦ

I −Bμk
I is a covariant derivative with respect to the

internal U(1) symmetry.
In the same way as in the case without matters, we can integrate λ and φ out and

obtain the following solutions with respect to them,

λ =± pe
K
3

4
√
ω

(
1− 4ω(KIk

I)2

p2e
2K
3

) 1
2

(
e

2K
3

ω
+ 2FμνF

μν +
ω

e
2K
3

(FμνF̃
μν)2

)− 1
2

, (5.34)

χ =− q

8
+ i

λω

e
2K
3

FμνF̃
μν . (5.35)

We find that there are two branches in the solution of λ. We choose the one with negative
sign so that the DBI action should vanish when kI = Fμν = 0. Substituting the solutions
into Eq. (5.32), we obtain the final form of the action as

S|finalB =

∫
d4xe

[
1

2
R + Lon−shell

ordinary −
i

4
(Imf)FμνF̃

μν

]

+

∫
d4x

e
2K
3 (Ref)

4ω

{√−g −
√
P

√
−det(gμν + 2e−

K
3

√
ωFμν)

}
, (5.36)

where

P ≡ 1− 4ω(KIk
I)2

e
2K
3 (Ref)2

= 1 +
8ω

e
2K
3 (Ref)

VD. (5.37)

By expanding the second line of the action with respect to ω, we find∫
d4xe

[
−1

4
(Ref)FμνF

μν +
1

2Ref
(KIk

I)2 +O(ω2)

]
. (5.38)

The first and the second terms are the kinetic term of the gauge field and the D-term
potential in usual cases, respectively. This means that the couplings between the com-
pensator and the gauge multiplet only appear as the higher order terms, which can be
confirmed also by the discussion below Eq. (5.27). It is possible to remove the matter

coupling in the square root term by choosing ω = αe
2K
3 , where α is a real constant. This

choice is called Kähler covariant form [136] because in this case the DBI action is invariant
under the Kähler transformation.
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The DBI action in Eq. (5.36) has an interesting feature. The scalar potential in the
action is obtained, by setting Fμν = 0, as

V =
e

2K
3 (Ref)

4ω
(
√
P − 1)

=
e

2K
3 (Ref)

4ω

(√
1 +

8ω

e
2K
3 (Ref)

VD − 1

)
. (5.39)

This deformation of the scalar potential is due to the higher order corrections associated
with the DBI extension. We will discuss the effects of this deformation on an inflation
model in the next section.

Let us comment on the relation between our DBI type extension and superstring. In
the type II superstring theory, the D3-brane action is given by

S =

∫
d4σ

√
−det(ĝμν + Fμν +Bμν), (5.40)

σμ (μ = 0 · · · 3) is the world volume coordinate, ĝμν is the induced metric on the world
volume, Fμν and Bμν are the field strength of a U(1) gauge field and an antisymmetric
tensor field called B-field, respectively. The induced metric is related to the 10 dimensional
metric GMN as ĝμν = ∂μX

M(σ)GMN∂νX
N(σ), where XM(σ) is the world volume scalar

field describing the position of the D3-brane in 10 dimensional spacetime. Note that
this action has the general coordinate transformation invariance on the world volume.
Comparing this action and that in Eq. (5.21), we find that the latter corresponds to the
former under the condition: Xμ(σ) = σμ for μ = 0, · · · , 3, XM = 0 for M = 4, · · · , 9,
Gμν = gμν , and Bμν = 0.

From this correspondence, we can expect that the D3-brane action takes the form (5.36)
if matter multiplet exists. Although such an action has never been known in the super-
string theory, it is rather natural to consider the case with matter couplings. We need
to investigate more about the D-brane action in the presence of matter multiplets, from
string theoretical side.

Let us close this section with some additional comments on N = 2 SUSY break-
ing. As we reviewed at the first of this chapter, the SUSY DBI action is related to
the partial breaking of N = 2 SUSY, and then, the vector multiplet (or more precisely
Wα) corresponds to the Goldstino multiplet for broken N = 2 SUSY. Therefore, in the
SUGRA-extended case discussed above, W also seems to be a Goldstino multiplet, which
should be eaten by the super-Higgs mechanism. If it is the case, the action we have con-
structed should vanish in the unitary gauge of N = 2 SUSY. Although such a possibility
exists, there is also another possibility that the “Goldstino” multiplet becomes physical.
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Such a situation realizes if there are other breaking sectors of N = 2 SUSY. Since only
a linear combination of the N = 2 SUSY breaking multiplets can be eaten by the super-
Higgs mechanism, in the presence of multiple SUSY breaking N = 1 superfields, the other
modes become physical massless N = 1 superfields. To prove this statement, we have to
realize our models from N = 2 SUGRA. However, this issue is beyond the scope of this
thesis.

5.4 Massive vector multiplet inflation with DBI ex-

tension

In this section, we discuss the DBI extension of the inflation model with a massive vector
multiplet. As we reviewed in Sec. 3.4, the massive vector multiplet is a reducible multi-
plet, which can be decomposed into a chiral multiplet and a gauge multiplet. From this
perspective, the DBI extension of a massive vector multiplet action can be realized with
the matter coupled DBI action (5.27). Let us recall the massive vector multiplet action

S =

[
−3

2
S0S̄0 exp

(
−2

3
J

)]
D

+

[
−1

4
W2(V )

]
F

, (5.41)

where J = J(1
2
(Φ+Φ̄+ gV )). We find that 2J(1

2
(Φ+Φ̄+ gV )) corresponds to the Kähler

potential. Therefore, what we need for the extension is just extending the second term in
this action to the DBI type one. In the way shown in the previous section, we obtain the
DBI extension as

S =

[
−3

2
S0S̄0 exp

(
−2

3
J

)]
D

+

[
−1

4
S3
0X

]
F

+ [Λ(W2 − S0XΣ(ω(Φ + Φ̄)S̄0X̄)− S3
0X)]F , (5.42)

where we have chosen the function ω in a U(1) gauge invariant way. This is the DBI
action of the massive vector multiplet since it reproduces the action (5.41) in the limit
ω → 0.

This action corresponds to that in Eq. (5.27) with

f(ΦI) = 1, K = 2J

(
1

2
(Φ + Φ̄)

)
, W (ΦI) = 0,

and kΦ = ig, which is the Killing vector of Φ under the U(1) symmetry. Then, the bosonic
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part of the action (5.42) is easily derived as

S|B =

∫
d4xe

[
1

2
R− 1

2
J ′′(C)∂μC∂μC − 1

2
J ′′(C)(∂μθ − gAμ)

2

]

+

∫
d4x

e
4J
3

4ω

{√−g −
√
P

√
−det(gμν + 2e−

2J
3

√
ωFμν)

}
, (5.43)

where C = ReΦ, θ = ImΦ. The function P in this case is given by

P = 1 +
4ωg2(J ′(C))2

e
4J
3

. (5.44)

For simplicity, we choose

ω =
1

4M4
e

4J
3 , (5.45)

where M is a real parameter. Then, the action is simply given by

S|B =

∫
d4xe

[
1

2
R− 1

2
J ′′(C)∂μC∂μC − g2

2
J ′′(C)(Aμ − 1

g
∂μθ)

2

]

+

∫
d4xM4

{
√−g −

√
P

√
−det

(
gμν +

1

M2
Fμν

)}
, (5.46)

with P = 1 + g2(J ′(C))2

M4 . Note that the mass term of Aμ, which is the third term on the
first line of Eq. (5.46), is not affected by the DBI extension. This is consistent with the
global SUSY result in Ref. [139].

Let us discuss the inflationary trajectory of the inflaton C. The scalar potential is
given by

V =M4(
√
P − 1)

=M4

(√
1 +

g2(J ′(C))2

M4
− 1

)
. (5.47)

Of course, this potential reproduces the original potential V = g2

2
(J ′(C))2 in the limit

M → ∞. In the case with M ∼ 1, the higher order corrections propotional to g2n

(n ≥ 2) are negligible because g characterizes the scale of the inflation and should be
much smaller than 1 to explain the amplitude of the scalar curvature perturbation. In
such a case, the higher order corrections which originate from the DBI extension do not
change the prediction of the model with V = g2

2
(J ′(C))2, as discussed in Ref. [155].
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From the consideration above, the higher order correction seems negligible in general.
However, it is not the case if M 	 1. Let us consider such a case in the following.
The important quantity characterizing the deformation is β ≡ g2

M4 . For β 
 1, which
corresponds to the case with a sufficiently small M , the potential behaves as

Ṽ =
g2

β
(
√
1 + β(J ′(C))2 − 1) ∼ g2√

β
|J ′(C)|. (5.48)

This effect obviously makes the potential flatter than the original one. To show this
analytically, let us compare the slow-roll parameters in the original and this cases. In
the original case where the potential is V = g2

2
(J ′)2, the slow-roll parameters ε and η are

given by

ε =
1

2

(
V ′

V

)2

=
2(J ′′)2

(J ′)2
, (5.49)

η =
V ′′

V
=

2{(J ′′)2 + J ′J ′′′}
(J ′)2

. (5.50)

On the other hand, in the case with the potential (5.48), the slow-roll parameters, denoted
by ε̃ and η̃, are

ε̃ =
1

2

(
Ṽ ′′

Ṽ

)2

=
1

2

(J ′′)2

(J ′)2
=

1

4
ε, (5.51)

η̃ =
Ṽ ′′

Ṽ
=

{(J ′′)2 + J ′J ′′′}
(J ′)2

− (J ′′)2

2(J ′)2
=

1

2
η − 1

4
ε, (5.52)

where ε and η are the ones in the original case. Therefore, we find that the higher order
corrections in this specific case make potential flat rather than steep, whereas one naively
expects that they make it steeper. Note that it is not correct to think that the values
of cosmological parameters obey the above relation between those in the original and the
deformed cases. That is because the moment of which inflation ends is also affected by
the flatness of the potential.

The minimum of the potential is given by the point at J ′ = 0 as in the original case.
Therefore, even with the DBI extension, this model does not break SUSY at the minimum.

Here, let us discuss some concrete examples with specific choices of J(C). First, we
consider a model with J(C) = 1

2
C2, and then, the scalar potential becomes

V =
g2

β
(
√
1 + βC2 − 1). (5.53)
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The kinetic term of C is originally canonical in this case. The shapes of the potential with
different values of β are shown in Fig. 5.1. As expected, the original form V ∝ C2 becomes
like V ∼ |C| when β = 10 (see Fig. 5.1). Owing to the deformation, the cosmological
parameters ns and r predicted in this model are also changed, and for comparison, we
show those values in the cases with β = 10−5 and β = 10:

(ns, r) =

{
(0.967, 0.132) (β = 10−5),

(0.975, 0.0666) (β = 10),
(5.54)

where we have shown the values at N = 60, N being the number of e-foldings at the
horizon exit.

�4 �2 2 4 6 8 10
C

0.2

0.4

0.6

0.8

1.0

V �C�
V �10�

Β�10

Β�0.1

Β�10�2

Β�10�5

Figure 5.1: The forms of the scalar potential (5.53) with different values of β are shown.
The potential is normalized at C = 10.

The second example is the Starobinsky type model discussed in Sec. 3.3.2, where
J = −3

2
[ln(−1

3
CeC)]. In this case, the kinetic coefficient is J ′′ = − 3

2C2 , and the canonically

normalized inflaton is φ =
√

3
2
ln(−C). In terms of φ, the scalar potential can be written
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as

Ṽ =
g2

β

[√
1 +

9β

4
(1− e−

√
2
3
φ)2 − 1

]
. (5.55)

We have to be aware that this is not the DBI extension of the Starobinsky model in the new
minimal SUGRA. We will discuss it in the next section. As in the model with J = 1

2
C2,

we show the form of the potential (5.55) in Fig. 5.2. The cosmological parameters in this

1 2 3 4 5 6
Φ

0.2

0.4

0.6

0.8

1.0

V �Φ�

V �6�

Β�10

Β�0.1

Β�10�2
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Figure 5.2: The forms of the scalar potential (5.55) with different values of β are shown.
The potential is normalized at φ = 6.

model are also affected by the deformation. However, as read from the Fig. 5.2, the effect
is less significant than one in the previous case:

(ns, r) =

{
(0.968, 0.00296) (β = 10−5),

(0.968, 0.00280) (β = 10),
(5.56)

where these are the values at N = 60. This is because the leading terms of the potential

are almost the same in both cases, which take the form 1− αe−
√

2
3
φ with different values

of α.
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In this section, we have discussed the DBI extension of the massive vector super-
field inflation. With our specific choice of ω (5.45), the action takes a relatively simple
form (5.46). Interestingly, the resultant potential of the inflaton always becomes flatter
than the original one, and then, it makes the predicted tensor to scalar ratio smaller. This
effect seems to be favored by the recent results of the CMB observation, such as Planck
2015 [133], since the smaller value of the tensor to scalar ratio looks better to fit into the
data.

5.5 DBI-Starobinsky model in new minimal SUGRA

In this section, we consider another application of the DBI extension developed so far,
that is, the DBI extension of the Starobinsky model in the new minimal SUGRA. We call
it the DBI-Starobinsky model here. As we discussed in Sec. 3.3.2, the Starobinsky model
in the new minimal SUGRA has the same structure as the massive vector inflation model.
Then, it is natural to extend the model as a possible generalization of the higher order
gravity action. It is worth recalling that any higher curvature extension Rn (n ≥ 3) in
old minimal SUGRA always has at least one ghost mode. However, as we discussed and
will revalidate, the DBI type extension does not lead to such a ghost instability in spite
of the presence of higher curvature terms.

Let us recall the R2 action in the new minimal SUGRA

S =

[
3

2
L0VR

]
D

+ [−hW2(VR)]F , (5.57)

where h is a real constant. Since the second term looks like the field strength term of a
“gauge” multiplet VR, we can find the following extension,

S =

[
3

2
L0VR

]
D

+ [−hX]F +

[
W2(VR)− κΣ

(
XX̄

L2
0

)
−X

]
F

, (5.58)

where X is a chiral multiplet with (w, n) = (3, 3), and κ is a real constant. We need to
remember that, with a real linear compensator, it is impossible to compensate the weights
of chiral multiplets in the F-term formula. Therefore, the action above is the general form
of the DBI-Starobinsky model without matter multiplets.

Under the superconformal gauge fixing conditions L0 = 1, bμ = 0, the bosonic part of
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the action (5.58) becomes

S|B =

∫
d4xe

[
1

2
R +

3

4
BμB

μ − 3

2
A(R)

μ Bμ + 2κλ|FX |2 − 2λD2
(R)

+ λF (R)
μν F

(R)μν − iχF (R)
μν F̃

(R)μν − {(h+ Λ)FX + h.c.}
]
, (5.59)

where λ = ReΛ, χ = ImΛ, A
(R)
μ is a vector component of VR, D(R) =

1
3
(R + 3

2
BμB

μ) and

F
(R)
μν = 2∂[μA

(R)
ν] . We can eliminate auxiliary fields other than Bμ by solving their E.O.M

and obtain

S =

∫
d4xe

[
1

2
R +

3

4
BμB

μ − 3

2
A(R)

μ Bμ − h

κ
{1−

√
4κD2

(R) − det(ηab +
√
κF

(R)
ab )}

]
.

(5.60)

Since D(R) contains BμB
μ, it is difficult to solve the E.O.M of Bμ, which is a complicated

equation with respect to Bμ. However, on the hypersurface A
(R)
μ = 0,3 we can obtain

the simple solution Bμ = 0 for the E.O.M of Bμ, since all the terms of Bμ become the
function of BμB

μ and the E.O.M of Bμ proportional to Bμ. Then, the action becomes a
purely gravitational action given by

S =

∫
d4xe

[
1

2
R− h

κ

{
1−

√
1 +

4κ

9
R2

}]
. (5.61)

This is a higher curvature action and it is known that this kind of action does not produce
any ghost modes (see e.g. Ref. [106]).

To discuss the inflationary trajectory in this model, we consider the duality trans-
formation of the action (5.58). Using a real linear Lagrange multiplier multiplet U , we
rewrite the action (5.58) as

S =

[
3

2
L0VR

]
D

+ [−hX]F +

[
Λ

(
W2(V )− κΣ

(
XX̄

L2
0

)
−X

)]
F

+ [U(V − VR)]D, (5.62)

3We consider the hypersurface to integrate Bμ out otherwise it is difficult to do the integration. On
the other hand, in the dual Lagrangian discussed below, such a difficulty does not exist and it is possible
to integrate out all auxiliary fields in the dual one.
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where V is a gauge multiplet. The second and the third terms describe the DBI action of
V . The variation of U gives V = VR up to chiral multiplets, and it reproduces the original
action (5.58). Here, we follow the procedure performed from Eq. (3.43) to Eq. (3.45). We
can rewrite the action (5.62) as

S =

[
1

4
S0S̄0(Φ + Φ̄ + gV )e

1
2
(Φ+Φ̄+gV )

]
D

+

[
−g

2h

4
X

]
F

+

[
Λ

(
W2(V )− 9κg2

4
Σ

(
XX̄

(S0S̄0)2e(Φ+Φ̄+gV )

)
−X

)]
F

, (5.63)

where, in addition to the procedure, we have made the following redefinitions: Λ → 4
g2
Λ

and X → g2

4
X. More familiar expression is derived by a further redefinition X → S3

0X,
and then, the action becomes

S =

[
1

4
S0S̄0(Φ + Φ̄ + gV )e

1
2
(Φ+Φ̄+gV )

]
D

+

[
−g

2h

4
S3
0X

]
F

+

[
Λ

(
W2(V )− S0XΣ

(
9κg2

4e(Φ+Φ̄+gV )
S̄0X̄

)
− S3

0X

)]
F

. (5.64)

We can regard this action as a special case of that in Eq. (5.27) with the following choices
of functions,

K(ΦI , Φ̄J̄) = −3 ln

[
−1

6
(Φ + Φ̄ + gV )e

1
2
(Φ+Φ̄+gV )

]
, f(ΦI) = g2h,

ω(ΦI , Φ̄J̄) =
9κg2

4e(Φ+Φ̄+gV )
, W (ΦI) = 0. (5.65)

Taking them into account, we obtain the bosonic part of the action (5.64) in the unitary
gauge ImΛ = 0 as

S =

∫
d4xe

[
1

2
R− 3

4C2
∂μC∂

μC − 3g2

4C2
AμA

μ

]

+

∫
d4x

M4

C2

(
√−g −

√
P

√
−det

(
gμν − C

M2
Fμν

))
, (5.66)

where C = ReΦ, we have chosen parameters h and κ as h = 1
g2
, κ = 1

g2M4 , and

P = 1 +
9g2C2

M4

(
1 +

1

C

)2

. (5.67)
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The canonically normalized inflaton φ is related to C as C = −e
√

2
3
φ, and the potential

term is

V =M4e−2
√

2
3
φ

⎛
⎝
√

1 +
9g2e2

√
2
3
φ

M4
(1− e−

√
2
3
φ)2 − 1

⎞
⎠

=
g2

β
e−2

√
2
3
φ

(√
1 + 9βe2

√
2
3
φ(1− e−

√
2
3
φ)2 − 1

)
, (5.68)

where β = g2

M4 . The forms of the potential are shown in Fig. 5.3.
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Figure 5.3: The forms of the scalar potential (5.68) with different values of β are shown.
The potential is normalized at φ = 6. The red line shows the potential in the original
Starobinsky model.

From Fig. 5.3, we find that the potential is highly sensitive to the higher order cor-
rections. Although the DBI type correction makes the potential flatter in the previous
models, the flatness is spoiled by the corrections in this model. The reason can be un-
derstood as follows: The plateau potential in the Starobinsky model is understood as the
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consequence of the conformal symmetry of R2 term. However, when κR2 
 1, the second
term in Eq. (5.61), behaves as 2f

3
√
κ
R, which does not have conformal symmetry. Therefore,

when β becomes large, the potential with the DBI extension is not flat anymore.
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Chapter 6

Summary and conclusions

We have discussed two classes of SUGRA models with SUSY higher-derivative terms.
One is a model with chiral multiplets and the other with a massive vector multiplet. In
both cases, the higher-derivative interactions can be related to D-branes in superstring.

In Chapter 4, we have discussed the ghost-free higher-derivative action of chiral mul-
tiplets. As shown in Sec. 4.2, we have embedded the terms, which are known in global
SUSY and the old minimal SUGRA, into conformal SUGRA. We have found that if the
u-associated derivatives are absent, the ghost-free term takes a universal form given in
Eq. (4.20). In such a case, we can perform the duality transformation of compensators,
by which we can convert the action in one SUGRA formulation to another. The SUSY
higher-derivative term contains not only the higher-derivative interaction of the scalar but
also some other contributions, the quartic term of the F-term, and the F-term dependent
kinetic term of the scalar. In particular, we focus on the latter as a new contribution to
the inflaton dynamics.

In Sec. 4.3, we have proposed an inflation model with such SUSY higher-derivative
terms. The model is quite similar to the ordinary F-term chaotic inflation models. How-
ever, we have found that the shift symmetry of the inflaton superfield in Kähler potential
is not required to realize inflation. Usually, such a situation leads to the η-problem as dis-
cussed in Sec. 3.1. However, the large field inflation occurs in our model. That is because
the field variation of inflaton becomes small in view of the original field space, even if
the canonically normalized inflaton takes a large field variation. This difference between
the original and the normalized inflaton is caused by the F-term dependent kinetic term
from the SUSY higher-derivative term. Such a nontrivial kinetic term has an interesting
feature: The kinetic coefficient is proportional to the F-term potential and the effective

potential of the inflaton ϕ takes a form V ∝ ϕ
2n
n+2 where n is a positive integer. Therefore,

our model predicts a very narrow region in the ns-r plane read from CMB data, and it
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can be confirmed or excluded by the near future experiments.
We have also discussed the reason why the η-problem is absent by using the simplified

action in Sec. 4.4. We have found that the action has a complex shift symmetry with
respect to the inflaton superfield, in the case where the kinetic term is dominated by
the SUSY higher-derivative term. In such a case, not only the inflaton but also its
scalar superpartner become light during inflation, which may lead to the isocurvature
perturbation or the non-Gaussianity of the primordial curvature perturbation. This is
an interesting feature of our model, and we need to construct a more concrete model to
discuss the thermal history of the universe after inflation.

We have developed the DBI action of gauge multiplets in Chapter 5. As we have
reviewed in Sec. 5.1, the DBI action can be derived as a result of the partial breaking
of N = 2 SUSY. It can be done by imposing the nonlinear constraint on two N = 1
superfields, of which an N = 2 superfield consists. We have found that the underlying
nilpotency of a superfield plays an important role to eliminate ghost modes. Then, the
constraint in superspace seems to provide a good guiding principle for constructing the
higher-derivative action. In Sec. 5.2, we have promoted the superspace constraint to that
in conformal SUGRA and confirmed the correspondence between them. The superconfor-
mal version of the constraint should contain the compensator superfield, which implies the
presence of the gravitational coupling between a gauge multiplet and the other multiplet
in the Einstein-frame action. Such couplings prominently appear in the case with matter
chiral multiplets. We have also discussed the other possible matter couplings by adding
some functions to the DBI action, the gravity action, and the constraint. Our modifica-
tions preserve the underlying nilpotency, which ensures the absence of ghost modes. The
resultant action takes nontrivial form and we have found that the D-term potential is also
deformed by the DBI extension.

For an investigation of the effect of DBI extension, we have constructed the DBI
extended massive vector multiplet action in Sec. 5.4. What we have found is that the scalar
component of the multiplet is affected by the extension only in its scalar potential term.
For a concrete discussion, we have chosen the simplest case where the DBI correction can
be characterized by one parameter M . When the effect of corrections becomes relatively
larger, the deformed scalar potential becomes flatter than the original one in general. It
leads to the smaller tensor-to-scalar ratio r, which is favored by the latest CMB data since
the upper bound of r is strongly constrained.

We have also constructed the DBI-Starobinsky model in the new minimal SUGRA in
Sec. 5.5. That is a possible higher-curvature action in SUGRA without ghost modes. Such
an extension has been done in the framework of the DBI extension since the Starobinsky
model in the new minimal SUGRA is dual to a model with a massive vector multiplet. We
have seen that the DBI-Starobinsky model action is uniquely determined and it is dual to
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the DBI extended action of a massive vector multiplet with a special choice of functions
ω and K in Eq. (5.36). In the dual model, we have found that the inflaton potential
loses its plateau due to the DBI-corrections, and then, successful inflation in the original
case does not occur. The reason for it is related to the conformal symmetry of the term
R2. In the DBI-extended case, the higher curvature term appears in the form

√
1 + βR2,

which does not have the conformal symmetry. The symmetry can be effectively restored
if β 	 1 and such a limit corresponds to the original Strarobinsky model.

From the observations in this thesis, we have found that SUSY higher-derivative terms
can play important roles in the inflationary universe. Interestingly enough, the terms
discussed in this thesis have a possibility to appear in the low energy effective theory of
superstring. To make sure the possibility, we need to clarify the relation between our
models and their UV completion in superstring. In particular, the effective action of D-
branes seems to be the most important ingredient for it. Although a part of the action has
been understood, more realistic situation, where the system would be more complicated,
should be considered to construct models describing our universe. This requires further
investigations from both the SUGRA and the string theoretical sides.
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Appendix A

Notation and some formulae

We use the notation and the convention in Ref. [38], which are briefly summarized below.
We take the natural unit convention � = c = 1 where � is the Dirac constant and c is

the speed of light. The Minkowski metric is ηab = diag(−1, 1, 1, 1).
The γ-matrices satisfy the Clifford algebra {γa, γb} = 2ηab where {·, ·} denotes the

anti-commutator. We sometimes use the higher-rank γ-matrices defined by

γμ1···μr ≡ γ[μ1 · · · γμr] (A.1)

where [· · · ] denote the antisymmetrization of the indices with total weight 1. For example,
γμν = 1

2!
(γμγν − γνγμ). The highest γ-matrix in 4D is γμ1···μ4 , with which we can define

γ∗ as

γμ1···μ4 = −iεμ1···μ4γ∗, (A.2)

where εμ1···μ4 is the Levi-Civita antisymmetric tensor satisfying ε0123 = 1. Since γ∗ satisfies
γ2∗ = 1, we can define the chirality projection operator PL and PR as

PL =
1

2
(1 + γ∗), (A.3)

PR =
1

2
(1− γ∗). (A.4)

The charge conjugation matrix C is defined so that CT = −C, (γμ)T = −CγμC−1 and C
is a unitary matrix, where T denotes the transpose operation.

With C, we define the “Majorana” conjugation of a spinor ψ as

ψ̄ ≡ ψTC. (A.5)
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Then, one can find the following property called “Majorana flip” for any two spinors ψ1

and ψ2,

ψ̄1γμ1···μrψ2 = trψ̄2γμ1···μrψ1, (A.6)

where tr takes values ±1 depending on r, tr = 1 for r = 0, 3 (mod4) and tr = −1 for
r = 1, 2 (mod4).

By using the set of γ-matrices {ΓA} = {1, γμ, γμ1μ2 , γμ1μ2μ3 , γμ1μ2μ3μ4}, we can derive
the Fierz identity given by

(ψ̄1ψ2)(ψ̄3ψ4) = −1

4

∑
A

(ψ̄1Γ
Aψ4)(ψ̄3ΓAψ2), (A.7)

where the set ΓA should be understood as {ΓA = 1, γμ, γμ2μ1 , γμ3μ2μ1 , γμ4μ3μ2μ1} in which
each component has indices with the reverse ordered compared to that in {ΓA}.

Although we do not use the spinor index practically, we can formally introduce it as
follows. For an index of a spinor ψ, we use a subscript α and denote it as ψα. The
index can be raised by a charge conjugation (CT )αβ as ψα = (CT )αβψβ. Then the Lorentz
invariant combination ψ̄ψ can be expressed as ψ̄ψ = ψαψα. And also the γ-matrix γμ is
expressed as (γμ)

β
α. The index of γ-matrices can also be lowered as (γμ)αβ = (γμ)

γ
α(C

−1)γβ.
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Appendix B

Transformation law of a general
multiplet

In this appendix, we show the transformation law of a general multiplet C = [C, ζ,H,K,Ba, λ,D].

C : δQC =
i

2
ε̄γ∗ζ, δMC = 0, δDC = wλDC, δAC = inθC

δSC = 0, δKC = 0, (B.1)

ζ : δQζ =
1

2
(iHγ∗ −K − /B − iγ∗ /DC)ε, δMζ = −1

4
λabγabζ,

δDζ =

(
w +

1

2

)
λDζ, δAζ = i

(
n− 3

2
γ∗

)
θζ,

δSζ = −i(wγ∗ + n)ηC, δKζ = 0, (B.2)

H : δQH =
i

2
ε̄γ∗(λ+ /Dζ), δMH = 0,

δDH = (w + 1)λDH, δAH = iθ(nH − 3iK),

δSH =
i

2
η̄{(w − 2)γ∗ + n}ζ, δKH = 0, (B.3)

K : δQK = −1

2
ε̄(λ+ /Dζ), δMK = 0,

δDK = (w + 1)λDK, δAK = iθ(−nK + 3iH),

δSK =
1

2
η̄{(w − 2) + nγ∗}ζ, δKK = 0, (B.4)

Ba : δQBa = −1

2
ε̄(γaλ+Daζ), δMBa = −λbaBb,

δDBa = (w + 1)λDBa, δABa = inθBa,

δSBa =
1

2
η̄{(w + 1) + nγ∗}γaζ, δKBa = −2iλKanC, (B.5)
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λ : δQλ =

(
i

2
γ∗D +

1

4
γabF̂ab

)
ε, δMλ = −1

4
λabγabλ,

δDλ =

(
w +

3

2

)
λDλ, δAλ = iθ

(
n+

3

2
γ∗

)
λ,

δSλ =
1

2
γ∗(−iHγ∗ −K + /B + iγ∗ /DC)(wγ∗ + n)η,

δKλ = λaK(w + nγ∗)γaζ, (B.6)

D : δQD =
i

2
ε̄γ∗ /Dλ, δMD = 0,

δDD = (w + 2)λDD, δAD = inθD,

δSD = iη̄(wγ∗ + n)

(
λ+

1

2
/Dζ

)
, δKD = 2λaK(wDaC + inBa), (B.7)

where

F̂ab ≡ 2D[aBb] + εabcdD
cDdC. (B.8)

In a more general case, a lowest component CI transforms under an internal symmetry
as CI → θAkIA(C), where θ

A is a gauge transformation parameter. Then, we have to add
the following terms to the above expressions:

δQB
I
a =

i

2
ε̄γaγ∗(λG)AkIA(C), (B.9)

δQλ
I =

[
−1

2
DAkIA(C) +

1

4
((λ̄G)AγaζJ)∂Jk

I
Aγa +

1

4
((λ̄G)Aγ∗γaζJ)∂JkIAγ∗γa

]
ε, (B.10)

δQD
I =

1

2
ε̄ζJ∂Jk

I
AD

A +
i

2
ε̄γ∗ /B

I
λA∂Jk

I
A − 1

2
ε̄ /D(kIAλ

A). (B.11)
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Appendix C

Brief review of inflationary
cosmology

In this appendix, we briefly review inflation in the early universe. The inflationary uni-
verse was proposed as a possible solution to the horizon, the flatness, and the monopole
problems [13, 14, 15, 16, 17].1 Inflation is the accelerated expansion of the universe. In
particular, the slow-roll inflation models reviewed in the following predicts the scalar cur-
vature perturbation, whose spectrum is almost scale independent. Such a prediction is
nicely consistent with the CMB observation results today.

The slow-roll inflation models are realized with at least one bosonic field. In general,
multiple scalar and vector fields can contribute to the dynamics, however, we focus on
the model with a single scalar field. We consider the following system:

S =

∫
d4x

√−g
[
1

2
R− 1

2
gμν∂μφ∂ν − V (φ)

]
, (C.1)

where φ is a real scalar field, and V (φ) is a real function of φ. We assume that the back-
ground metric is the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric given
by

ds2 = −dt2 + a2(t)dx2, (C.2)

where a(t) is the so-called scale factor. At the leading order, we assume all the quantities
are homogeneous with respect to space, and then, φ = φ(t). The Einstein equation in

1We do not address how such problems can be solved in the inflationary models. For reviews, see
e.g. [156].
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this system can be rewritten as

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
, (C.3)

ä

a
=
1

3

(
V (φ)− φ̇2

)
, (C.4)

where H ≡ ȧ
a
and the dot denotes the time derivative. We notice that if φ̇2 is negligible

compared to V (φ), the acceleration rate of the scale factor ä
a
can be positive. Therefore,

with slowly varying φ, we can realize the accelerated expansion of the universe.
It is also known that, to solve the problems in the Big-Bang model, the inflationary

era should be sufficiently long. Let us discuss the condition to achieve such a requirement.
The E.O.M of the inflaton is given by

φ̈+ 3Hφ̇+ V ′(φ) = 0, (C.5)

where prime denotes the derivative with respect to φ. φ̇ should be small during the time
scale of the inflation, which is given by H−1. Equivalently, |φ̈ × H−1| 	 |φ̇|, and under
the condition, Eq. (C.5) is approximately rewritten as

φ̇ ∼ − V ′

3H
. (C.6)

Then, the assumption φ̇2 	 V is equivalent to

ε ≡ 1

2

(
V ′

V

)2

	 1, (C.7)

where ε is called the first slow-roll parameter. This is because φ̇2

V
∼ 2

3
ε where we have

used the reduced E.O.M (C.6). We also find the following relation,

φ̈ ∼ − V ′′

3H
φ̇+

V ′

3H2
Ḣ, (C.8)

where we have differentiated both sides of Eq. (C.6). Ḣ is approximately given by V ′φ̇
6H

from Eq. (C.3), and then, we find

φ̈

Hφ̇
∼ −V

′′

V
+ ε. (C.9)
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Therefore, the requirement |φ̈×H−1| 	 |φ̇| is equivalent to |η| 	 1, where

η ≡ V ′′

V
. (C.10)

η is called the second slow-roll parameter. We define the end of inflation by the conditions
ε ∼ 1 or η ∼ 1. If one of the conditions is satisfied, we can not use the approximated
dynamics, and the accelerated expansion ends soon after that.

The cosmological parameters, which we can observe by the cosmological observation
experiments, are expressed by the slow-roll parameters. We do not review the detailed
derivation of them, but the reason why the perturbation appears can be understood
intuitively as follows: The field value of the inflaton quantum-mechanically fluctuates
during inflation. Then, for each point in space, the value of the potential is also different
due to the fluctuation. Such a difference of the potential causes the perturbation of
spacetime metric. Detailed review of the cosmological perturbation can be found in
Ref. [157]. We just show the cosmological observables here. The power spectrum of the
scalar curvature perturbation Pζ(k) is given by

Pζ(k) =
1

24π2

V

ε

∣∣∣∣∣
k=aH

, (C.11)

where |k=aH means that the value is evaluated when the corresponding mode k exits the
horizon. The scale dependence of the power spectrum ns is also important, which is given
by

ns − 1 =
d lnPζ

d ln k

∣∣∣∣∣
k=aH

= (2η − 6ε)|k=aH . (C.12)

The other observable is the ratio between the power spectrum of the tensor and the scalar
modes, which is called the tensor-to-scalar ratio r given by

r ≡ PT

Pζ

= 16ε|k=aH , (C.13)

where PT is the power spectrum of the tensor perturbation. There are other cosmological
observables, such as the running spectral index α = dns

d ln k
, its running β = dα

d ln k
, and the

tensor spectral index nT = d lnPT

dln k
, etc. We can also calculate them with the information

of the scalar action at the horizon exit scale, but we do not consider them in this thesis.
Such observables are expected to be important in future observations.

From the observables given above, we can read off the information of inflation at a
specific “time” during inflation. The “time” depends on the detail of the cosmological
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history after the end of inflation. However, under reasonable assumptions, we can estimate
the “time” as N∗ = 40 to N∗ = 60, where N∗ is the so called e-folding number defined by
N =

∫ te
t∗ Hdt. te denotes the time when inflation ends and t∗ denotes the time when the

observed perturbation mode exited the horizon. It is practically useful to express N by
the field value of φ at each time. That can be done by the following transformation,

N =

∫ te

t∗
Hdt =

∫ φe

φ∗
dφ

dt

dφ
H =

∫ φ∗

φe

dφ
V

V ′ , (C.14)

where we have used Eq. (C.6) in the third equality.
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Components of DαΦI

D.1 Component expression of DαΦ

We give the components of a superconformal multiplet DαΦ. With a constant spinor
ξα, the multiplet ξαDαΦ

I can be treated as a Lorentz scalar. Although, in Chapter
3, we consider the case where a chiral multiplet ΦI is a singlet under all the internal
gauge symmetries, we give here an expression in the case where ΦI has gauge charges, for
generality. We assume ΦI transforms as ΦI → θAkIA under internal symmetries. Then,
the components of ξαDαΦ

I are summarized as follows:

ξαDαΦ
I |C =ξ̄PLχ

I , (D.1)

ξαDαΦ
I |ζ =−

√
2(F I + /DΦI)PLξ, (D.2)

ξαDαΦ
I |H =

√
2ξ̄PL(λ

G)AkIA, (D.3)

ξαDαΦ
I |K =−

√
2iξ̄PL(λ

G)AkIA, (D.4)

ξαDαΦ
I |Ba =iξ̄γabD

b(PLχ
I) +

√
2iξ̄γaPR(λ

G)AkIA, (D.5)

ξαDαΦ
I |λ =

√
2i( /DF I +�Φ + γabDaDbΦ

I)PLξ +
i√
2
PLγ

abξF̂A
abk

I
A,

+
√
2PLξD

AkIA − 2iPLχ
J(ξ̄PL(λ

G)A)∂Jk
I
A, (D.6)

ξαDαΦ
I |D =− ξ̄�PLχ

I − iξ̄γabPLχ
IR̃ab(A)−

√
2ξ̄PL /Dλ

AkIA,

+ iξ̄PLχ
JDA∂Jk

I
A −

√
2F J ξ̄PL(λ

G)A∂Jk
I
A, (D.7)

where |C stands for the C component in terms of a general multiplet (2.44) and so on.
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