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Abstract: In this paper, electrical discharge images are classified using AI with quantum

machine learning techniques. These discharges were originated in dielectric mineral oils

and were detected by a high-resolution optical sensor. The captured images were processed

in a Scikit-image environment to obtain a reduced number of features or qubits for later

training of quantum circuits. Two quantum binary classification models were developed

and compared in the Qiskit environment for four discharge binary combinations. The first

was a quantum variational model (QVM), and the second was a conventional support

vector machine (SVM) with a quantum kernel model (QKM). The execution of these

two models was realized on three fault-tolerant physical quantum IBM computers. The

novelty of this article lies in its application to a real problem, unlike other studies that focus

on simulated or theoretical data sets. In addition, a study is carried out on the impact

of the number of qubits in QKM, and it is shown that increasing the number of qubits

in this model significantly improves the accuracy in the classification of the four binary

combinations studied. In the QVM, with two qubits, an accuracy of 92% was observed in

the first discharge combination in the three quantum computers used, with a margin of

error of 1% compared to the simulation obtained on classical computers.

Keywords: partial discharges; mineral oils; quantum machine learning; quantum

variational model; quantum kernel model; image processing with AI

1. Introduction

Partial discharge (PD) detection in transformer dielectric oils is justified by the need to

reduce costly transformer breakdowns, extend their lifespan, optimize preventive mainte-

nance, and eliminate network failures, all of which can have significant economic impacts.

A steady and sustained rise in the number of publications on PD source classification using

machine learning algorithms can be seen in the period from 2010 to 2023 [1].

PD occurs when high voltage is applied to materials in any state, whether solid, liquid,

or gaseous. It is a complex physical process that exhibits randomly distributed properties

and produces phenomena such as light, sound, and high-frequency electromagnetic waves,

releasing electrical charges [2].

In situ experimental images of transformer oil spaces are extremely complex. In this

work, the tests have been performed in the laboratory with oil samples extracted from the

transformer. Consider that the main objective of this work is to explore the feasibility and

Sensors 2025, 25, 1277 https://doi.org/10.3390/s25041277

https://doi.org/10.3390/s25041277
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s25041277
https://www.mdpi.com/article/10.3390/s25041277?type=check_update&version=2


Sensors 2025, 25, 1277 2 of 26

potential of quantum machine learning models for the classification of electrical discharges

in dielectric oils, using a controlled laboratory environment.

Although our current work is not focused on in situ studies, it could lay the ground-

work for future research in that direction. This laboratory setup offers the advantage of

immunity to electromagnetic interference.

The most widely used AI-based machine learning algorithms currently used to identify

PDs in electrical transformers are derived using support vector machines (SVMs) [3],

followed by artificial neural networks (ANNs) [4] and convolutional neural networks

(CNNs) [5]. All these methods use classical computing. In ref. [6], it is indicated that

before machine learning algorithms are tested on specific problems, there are no inherent or

predefined differences that allow us to affirm that one machine learning algorithm is better

than another. Following the current trend in the use of SVM techniques for the analysis

and search for patterns in difficult-to-classify environments, the so-called kernel trick is

used; through it, an attempt is made to find a series of hyperplanes where it is easier to find

certain values. Once these SVM techniques are known, the aim is to transfer this knowledge

to quantum computing.

Below, we review the current state of quantum kernel models (QKMs), quantum vari-

ational models (QVMs), the use of currently employed fault-tolerant quantum computers,

and their potential theoretical and experimental advantages as well as their limitations.

The QKM is an area of AI in which the advantage of quantum computing has been

explored. According to ref. [7], quantum kernels can be used for supervised learning,

showing that a quantum computer can classify data in a high-dimensional feature space

more efficiently than classical methods.

In ref. [8], it is explained how QKMs can capture complex relationships and patterns

in data that classical kernels might not be able to identify. In this way, an SVM using a

quantum kernel can better classify new data and make more accurate predictions. This

enables hybrid computing, where a quantum computer implements a quantum kernel that

is then run on a classical computer.

In ref. [9], it is noted that as the problem size increases, the differences between kernel

values become smaller and smaller, and more measurements are required to distinguish

between the elements of the kernel matrix.

In ref. [10], the number of evaluations when solving the dual problem is quantified in

a number of quantum circuit evaluations with an order of magnitude given by Equation (1),

where M represents the size of the data set and ϵ is the accuracy of the solution compared

to the ideal result, which can only be obtained theoretically with exact values. That is, the

time required to solve the dual problem using quantum circuits increases polynomially

with the size of the data set M and is inversely proportional to the square of the accuracy ϵ.

The dependence on M poses a major challenge for problems with large data sets.

In ref. [10], an improvement with the primal problem with the kernel is shown using a

generalization of a classical algorithm known as Pegasos, resulting in a smaller number of

evaluations which, using Landau notation, is shown in Equations (1) and (2).

O
(

M4.67
/

∈2

)

(1)

O
(

min
{

M2
/

∈6, 1
/

∈10

})

(2)

In ref. [11], it is explained that the QKM approach is more natural and suitable for

quantum theory compared to the attempt to adapt quantum theory to fit the structure of

classical neural networks, which is a more popular but less natural approach.

Thus, instead of optimizing classical parameters with QVM, which presents certain

complex problems such as the choice of ansatz and the appearance and treatment of
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sterile plateaus, the QKM approach avoids these problems, although it requires calculating

pairwise distances between data points, which implies a high computational cost.

As shown by the results reported in ref. [12], quantum algorithms can outperform

classical algorithms in optimization problems, which are central to supervised learning.

A review of several quantum optimization algorithms is also conducted in ref. [12], and

their potential to outperform classical methods in machine learning tasks is pointed out,

highlighting certain practical applications and preliminary experiments.

In ref. [13], it is shown how a quantum perceptron can be simulated on a quantum

computer, suggesting that QVMs could be trained and run more efficiently than their

classical counterparts in certain cases. In ref. [14], it is suggested that a QVM with the

ability to process classical and quantum data, trainable through supervised learning, could

be run on an intermediate-scale quantum computer.

It is interesting to note that in ref. [15], it is demonstrated that quantum computers can

handle and process structured data more efficiently in some specific cases. The quantum

algorithm can, in theory, outperform classical methods in performing principal component

analysis (PCA) on large data sets.

Quantum computing is a technique based on random phenomena that occur at the

atomic scale. This computing uses the properties of quantum mechanics such as quantum

superposition and entanglement. Its basic unit of information is the qubit, similar to the bit

in classical computing.

It is important to highlight the greater computational power of quantum computing

because qubits can exist simultaneously in multiple states. In quantum computing, the

computational power increases exponentially as the number of qubits increases, which

can be compared to classical computing where this increase is linear as the number of

bits increases.

The execution speed in quantum computing is greater than in classical computing due

to the principles on which it is based, such as quantum superposition and entanglement,

which give rise to parallel computing.

Therefore, the execution of these algorithms can be repeatedly invoked many times,

obtaining an acceptable probabilistic response in certain practical problems.

Among these algorithms, the best known is Shor’s algorithm [16], which is a

reference used in the factorization of prime numbers with a polynomial complexity

O((logN)3) compared to the generalized prime number algorithm with a complexity

O
(

exp(logN)
1/3(loglogN)

1/3
)

[17].

Another algorithm of great interest in quantum computing is Grover’s algorithm [18],

which has been shown to be fundamentally useful in searching for a given element in an

unstructured database with a theoretical complexity of O
√

N, compared to O(N). The

Long–Grover algorithm [19] is a variant of Grover’s quantum search algorithm that is able

to handle situations where the exact number of solutions in the unstructured database

is not known. This new algorithm maintains the same theoretical efficiency O
√

N for

database dimension N as Grover’s algorithm, but with a better ability to tolerate uncertainty

in the proportion of solutions, making it more robust and practical for certain types of

search problems.

In the analysis undertaken in ref. [20], the question is raised as to whether and how

quantum computing can actually boost machine learning using real-world classical data

sets. The main technical limitations and challenges associated with noisy intermediate-scale

quantum (NISQ) computers are then addressed.

An analysis of the quantum computing landscape is discussed in ref. [21], where it is

stated that current quantum computers are not perfect due to decoherence in qubits caused

by environmental noise, but they can perform certain calculations or solve problems that
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are beyond the reach of the best classical computers available today. It is argued that the

main limitation will be the ability to maintain precision in quantum operations as circuits

become larger and more complex. In ref. [22], it is explained how to experimentally extend

the coherence time of logical qubits by almost an order of magnitude.

Another challenge that exists today is to maintain a large number of entangled qubits in

a stable manner. Quantum computers that address this challenge include the IBM Kyoto [23],

IBM Brisbane [24,25], and Google’s Sycamore quantum computer [26], among others.

To our knowledge, the use of QKM and QVM techniques has not been applied in the

analysis of real cases in PD image detection in transformer oils using optical sensors. In this

paper, a comprehensive study of PDs originating from bubbles present in dielectric mineral

oil is carried out. These discharges are precursors of the arc breakdown and therefore

represent a method for diagnosing the state of mineral oil before such a breakdown occurs.

In this paper, images captured in a high-voltage laboratory are processed by selecting

a number of significant features. For this purpose, the Scikit-image environment [27] is

used. Two quantum classifier models, QKM and QVM, are developed. These models are

implemented in the Qiskit development environment [28].

In this article, we focus on the use of quantum computing to address the problem of

image classification in transformer dielectric oils. The images used in this article are classi-

fied into four categories: images with partial discharges, images without partial discharges,

images with electric arc breaking, and images with gas bubbles after arc breaking.

The effectiveness of the trained QKM and QVM classifiers is evaluated with images

not used during the training process.

These models were run on three fault-tolerant physical quantum computers, each with

127-qubit superconducting processors: IBM Osaka, IBM Brisbane, and IBM Kyoto. The

measurements obtained using quantum computers were then compared with the results of

simulations obtained using classical computing.

The main contribution of this paper is that for the first time, two quantum machine

learning models, QVM and QKM, are applied and compared for the classification of

electrical discharge images in dielectric oils, using real data obtained with a high-resolution

optical sensor.

The novelty of this work can be summarized in the following points: The work

is applied to a real problem, unlike other previous studies that focus on simulated or

theoretical data sets. In addition, a study is carried out on the impact of the number

of qubits in QKM, and it is shown that increasing the number of qubits in this model

significantly improves the accuracy in the classification of the four binary combinations

of the classes. On the other hand, real quantum computers are used, and the models are

implemented and executed on three fault-tolerant IBM quantum computers, demonstrating

their operation on real quantum hardware and providing results comparable to classical

simulations. This work also provides transparency and reproducibility by creating a

repository on Zenodo [29], with a detailed README, where the images of the electrical

discharges used, the Jupyter Notebooks 7.0.8 for the extraction of the features, and the

Jupiter Notebooks with the Python 3.12.4 programming of QVM and QKM with the

respective figures have been published, so that the scientific community can access and

use them.

This article is divided into the following sections: Section 2, Image Processing and

Feature Extraction Method; Section 3, Quantum Machine Learning with Variational Circuits

(Quantum Variational Model, QVM); Section 4, Support Vector Machine, SVM; Section 5,

Quantum Kernel Model, QKM; Section 6, Overall Flowchart. Finally, in Section 7, Conclu-

sions, the main conclusions are presented.
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2. Image Processing and Feature Extraction Method

In this work, an analysis of the PDs originated from bubbles present in dielectric

mineral oils is performed. For this purpose, a high-resolution image sensor is used. The

PDs detected with this sensor were validated using a standard electrical detection system

using a discharge capacitor, according to the IEC60270 standard [30]. All images used

in this paper were previously obtained by the authors [31]. These images were used to

characterize and train the quantum circuits in Sections 3 and 5.

From the extraction of features in machine learning, relevant values are obtained from

the obtained experimental images, speeding up the computing process without losing

information. This reduces the required memory and computing time and improves the

accuracy of the model.

In ref. [1], the main techniques used to date are summarized. Those based on statistical

characteristics are highlighted, as well as the technique based on principal component

analysis (PCA) due to its capacity to reduce dimensionality and identify key variables,

among others. This is crucial when working with a limited number of qubits that corre-

spond to the current limitations of quantum technology. The method used in this article is

explained below.

Figure 1a presents four images, each corresponding to one of the four classes used:

class 0 for partial discharge (PD), class 1 for no discharge (NOPD), class 2 for electric arc

breaking (ARC), and class 3 for gas bubbles after arc breaking (BREAK). Figure 1b shows

the experimental image collection device. From these images, features are extracted that

reduce the number of qubits needed to perform quantum analyses.
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Figure 1. (a) Reference images at the electrodes with their four possible classes associated with

the discharges in mineral oil, class 0 (PD), class 1 (NOPD), class 2 (ARC) and class 3 (BREAK).

(b) Experimental device made for the collection of images [31].

Features are basic properties that characterize and simplify experimental images of

electrical discharges. The goal is to work with as few qubits as possible. For this reason, the

extraction of features from images has been reduced to a maximum of thirteen.

To process the images captured in the high-voltage laboratory and select their features,

the Scikit-image environment is used. An explanation of the entire Scikit-learn environ-

ment, which includes working with images in multiple formats and provides tools for

transforming, analyzing, and improving images, is provided in ref. [27]. This includes

filtering functions, geometric transformations, edge detection, segmentation, and color

manipulation, among others.
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To analyze the characteristic features of electrical discharges in images captured with

a high-quality camera, a region of interest (ROI) selection and analysis process was first

performed. Thus, the ROI was defined as a square centered on the image with a side of

100 pixels. To do this, the coordinates of the center of the image were calculated, and the

vertices of the square were located (Figure 2a). The ROI within this square was converted

to greyscale to facilitate the analysis. The ROI is shown in a red frame.
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Figure 2. PD and its processing at 93.33 s. PD are shown in red and green color. (a) Selection

and analysis of ROI, electrodes, and class 0 discharge. (b) Image obtained with the Scikit-image

environment [27].

Then, the mean and standard deviation of the pixel intensities within the ROI were

calculated. Using these values, a threshold was set as the mean plus two times the stan-

dard deviation. Pixels whose intensity exceeded this threshold were identified and their

coordinates determined. The mean of these coordinates was then calculated to obtain the

centroid of the high-intensity region.

To highlight pixels exceeding the threshold, the original image was modified by high-

lighting these pixels in red. In addition, the area of the highlighted region was calculated in

terms of the number of pixels, and the centroid of this region was determined. Finally, the

coordinates of the centroid were adjusted with respect to the originally selected ROI (see

Figure 2a).

Key features obtained in this image analysis include the area in pixels of the high-

lighted region, the centroid coordinates in both the ROI and the original image, and the

intensity statistics of the ROI. All these features are normalized to the interval [0, 2π].

The thirteen features of the images and the class to which they belong are as follows:

the area in pixels, the centroid coordinates (centroid_x, centroid_y), the adjusted cen-

troid coordinates in the ROI (centroid_x_roi, centroid_y_roi), the means of the coordinates

(mean_coords_x, mean_coords_y), the size of the side of the square (side_px), the dimen-

sions of the image (image_width, image_height), the mean intensity (mean_intensity), the

standard deviation of the intensity (std_intensity), the threshold (threshold), and finally the

class to which it belongs.

Figures 2b and 3b show the preprocessing results with the acquisition of the features

for the PD and BREAK classes, respectively.

From the images of each binary combination between classes, a graphic study of

the relationship between the possible pairs of features of the images, which turn out to

be 13 × 13 graphs, was performed. This allows a preliminary study of the relationship

between the different features of each class. This visualization allows for a first analysis,
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and to identify patterns and differences between the binary classes of images corresponding

to each combination of classes.
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Figure 3. Features obtained from the BREAK class are shown in red and green. (a) Image of the

electrodes and the red-colored area of the post-arc bubbles, obtained at time 29.52 s. (b) Image

resulting after the Scikit-image program was applied.

Figure 4 presents a pairwise plot illustrating the relationships between five of the

thirteen normalized image features, highlighting the two classes using colors for the

PD_BREAK combination shown in Figure 1a.
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Figure 4. Relationships between five of the thirteen normalized features in the interval [0, 2π]

corresponding to the PD-BREAK class combination.
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Likewise, three other binary combinations were analyzed, PD_NOPD, PD_ARC, and

BREAK_NOPD. Of all the possible binary combinations, these three are analyzed in this

article because they are the most significant in the study of partial discharges.

Two machine learning methods were used, QVM and QKM. The first is considered

in Section 3 and uses a trained variational quantum circuit to distinguish each class for

each of these binary combinations. The second is considered in Section 5 and uses SVM by

estimating the quantum kernel corresponding to each of these binary combinations.

3. Quantum Machine Learning with Variational Circuits (Quantum
Variational Model—QVM)

3.1. Introduction

The first model used to classify PDs is known as a variational quantum circuit (see the

red block in Figure 5). This red block has two clearly differentiated parts.

             
 

 

 

                            π  
           

               
   

   

                             
                        ff    

   

                                       
 

Figure 5. Main blocks of a QVM. The red block runs on the quantum computer, the blue one on

the classical.

The first part corresponds to the encoding of the chosen features of the images within

the quantum circuit. The features are represented by the variable x[i], where i is the number

of chosen features that are normalized real numbers in the interval [0, 2π]. They are

introduced into the circuit through the logic gate U that performs a rotation around the

z axis.

The second part within this red block is a series of quantum parameters theta[j] = θ[j],

where j depends on the complexity of the circuit, its number of qubits, and its depth.

In simulations and executions in real quantum circuits, we used circuits with 10 and

11 quantum parameters.

These parameters, just like in neural networks, are fitted in the training phase of the

network according to a cost function C(θ
p
i ) that is attempted to be minimized at each step p

by means of an optimization algorithm (see blue block in Figure 5). This algorithm updates

the parameters C(θ
p+1
i ) at the next step p + 1 in the quantum circuit. The cost function is

built by comparing the measurement phase in the quantum circuit inside the red block

with the expected value known in the supervised training.
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To solve the optimization problem, the SciPy package [32] was used, which is a library

of numerical routines for the Python programming language. Two optimization algorithms

were employed: the simultaneous perturbation stochastic approximation (SPSA) algorithm,

which uses a stochastic approximation to estimate the gradients through simultaneous

perturbations in all dimensions of the parameter space, which reduces the number of

necessary evaluations [33], and the constrained optimization by linear approximations

(COBYLA) algorithm [32,34], which does not require derivatives of the objective function

or the constraints.

The number of iterations in both methods is between 50 and 100. The main challenge

when using this method is to find the structure of the quantum circuit called ansatz. For

this task, we used the Qiskit library [35], an open-source Python library for developing

quantum computing programs that provides tools for building, simulating, and running

quantum circuits on IBM quantum computers. This library allows users to work with

quantum algorithms and optimize solutions for complex problems which greatly helps in

finding the optimal parameters.

Another important challenge encountered is sterile plateaus. These are regions of

the parameter space where the gradient is almost zero, making optimization very slow

and difficult.

3.2. Cost Function

To obtain the cost function represented in the blue block shown in Figure 5, the concept

of cross-entropy loss is followed [36]. In binary classification problems, where the output

can be 0 or 1, the cross-entropy loss function is used to measure the difference between the

true label and the probability predicted by the model. Its formulation is

L(y, ŷ) = −[ylog(ŷ) + (1 − y)log(1 − ŷ)] (3)

where y is the true label (0 or 1), and ŷ is the predicted probability for label 1.

This equation penalizes incorrect predictions for both label 0 and label 1. If the true

label is y = 1, the term ylog(ŷ) dominates and penalizes the model if it predicts a low

probability for label 1. On the other hand, if y = 0, the term (1 − y)log(ŷ) dominates and

penalizes the model if it predicts a high probability for label 1 when the true label is 0.

In this work, to simplify the implementation in programming, the cost function focuses

only on the probability assigned to the correct class. This can be represented as follows:

L(yi, ŷi) = −log(ŷi) = −log(P(yi|xi, θ)+ ∈) (4)

where yi is the correct label, ŷi is the probability predicted by the quantum circuit designed

for that label, and ϵ is a small nonzero value added to avoid logarithms of zero. P(yi|xi, θ)

represents the probability that the quantum circuit assigns a label yi, which can be 0 or 1, to

a data xi, where θ represents the variational parameters that control the quantum circuit.

P(yi|xi, θ) =
∑bitstring, parity(bitstring)=yi

counts(bitstring)

total shots
(5)

For example, for a two-qubit bitstring, a particular bitstring belongs to the set of

possible outcomes {00, 01, 10, 11}; the parity is given as parity(00) = 0, parity(01) = 1,

parity(10) = 1 and parity(11) = 0. If the particular measurement results of the quan-

tum computer were, for example, results = {‘00’ : 2000, ‘01’ : 250, ‘10’ : 250, ‘11’ : 1500},

then total shots = 2000 + 250 + 250 + 1500 = 4000, so the probability of obtaining par-

ity 0 is P(0) = (2000 + 1500)/4000 = 0.87, and the probability of obtaining parity 1 is

P(1) = (250 + 250)/400 = 0.13.
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Finally, the cost function C(θ), which averages the cross-entropy loss for all data

samples, xi, is expressed as

C(θ) =
1

N

N

∑
i=1

L(yi, ŷi) = − 1

N

N

∑
1=1

log(P(yi|xi, θ)+ ∈) (6)

where N is the number of data points in the training set.

3.3. Structures of the Circuits and Quantum Gates Used

The four stages of how the supervised machine learning problem was approached, its

adaptation, transformation, and resolution, using quantum computing, are summarized

below. The quantum gates used are also detailed, both in the simulations carried out on the

classical computer and on the quantum computer.

The first stage involves mapping the classical problem to its quantum computer

formulation. In this stage, the problem is translated into a format that can be processed by

a quantum computer. To do this, quantum circuits are created that represent the problem

to be solved. This process can be complex and often requires specialized tools. In this

work, Qiskit version 1.0 [37] was used, an IBM framework for quantum computing that

offers application programming interfaces (APIs) that facilitate the creation of these circuits

(Figures 6 and 7).
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Figure 6. H is the Hadamard gate presented in Equation (7); P is the phase gate that performs a

rotation around the z axis of the complex plane; Ry performs a rotation around the y axis. This circuit

contains 10 parameters. a, b and c show the logical connection of the two levels in the diagram.
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Figure 7. U2 = U2(ϕ,λ) = U2(0,π) = H, U(θ,ϕ,λ) = U(0,0,λ) = P(λ); R = Ry. This circuit contains

11 parameters. a, b and c show the logical connection of the two levels in the diagram.

The second stage is known as circuit transpilation. Once the quantum circuit has been

created, it needs to be adapted to be executable on specific quantum hardware. This stage
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involves rewriting or transforming the original circuit into a version that is compatible and

optimized for the available hardware, using gates specific to that hardware (see Figure 8,

which corresponds to the transpilation of the circuit in Figure 7). Transpilation transforms

it so that only the instructions are available on a chosen backend. They are used and

optimized to minimize the effects of noise [38].

             
 

 

 

        ϕ λ     π       θ ϕ λ     λ     λ                
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Figure 8. Transpilation of the 11 parameters of the circuit shown in Figure 7, where a1–a3, b1–b3,

c1–c3 show the logical connection of the four levels in the diagram.

The third stage concerns the execution and evaluation of the quantum circuits. In

this stage, the transpiled quantum circuit was executed in a quantum simulator, using the

Qiskit environment in Python, and additionally on three real physical quantum computers

(IBM Osaka, IBM Brisbane, and IBM Kyoto). During this phase, the final measurements

leading to the necessary quantum calculations were carried out.

The fourth and final stage involves the post-processing of results. The results obtained

from the execution of the quantum circuit are processed and analyzed to find a solution to

the original problem posed. This allows the interpretation of the quantum results and the

conversion to a format compatible with the classical problem.

The relationships between the quantum gates used in the circuits are shown in

Figures 6–8. Their matrix expressions are presented in Equations (7)–(10).

The Hadamard gate U2 and H gate are represented by Equation (7), the generic

rotation gate U is defined in Equation (8), and the z-axis rotation gate, P = RZ, is described

by Equation (9). The control gate CX between two qubits is specified in Equation (10).

U2(∅, λ) =
1√
2

(

1 −eiλ

eiϕ ei(ϕ+λ)

)

; U2(0, π) =
1√
2

(

1 1

1 −1

)

= H (7)

U(θ,∅, λ) =





cos
(

θ
2

)

−eiλsin
(

θ
2

)

eiϕsin
(

θ
2

)

ei(ϕ+λ)cos
(

θ
2

)



 (8)
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U(0, 0, λ) =

(

1 −eiλ·0
1·0 eiλ·1

)

=

(

1 0

0 eiλ

)

= P(λ) = RZ(λ) (9)

CX =











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











(10)

The ECR gate is a two-qubit gate that performs a controlled operation in the context

of cross-resonance. It is one of the native gates in IBM quantum computers and is usually

defined in terms of more basic operations, taking into account the interaction between

two qubits ([38,39]). Its matrix expression is given in Equation (11). Furthermore, the SX

(square root of X) gate, whose expression is given in Equation (12), when applied twice, is

equivalent to the Pauli X gate, as shown in Equation (13).

ECR =













1√
2

−1√
2

0 0

0 0 1√
2

−1√
2

1√
2

1√
2

0 0

0 0 1√
2

1√
2













(11)

SX =
1

2

(

1 + i 1 − i

1 − i 1 + i

)

(12)

X =

(

0 1

1 0

)

(13)

3.4. Quantum Variational Model (QVM) Optimization

This section details the training process of the two types of quantum circuits used. The

first type of circuit, which uses 10 parameters (see Figure 6), was used to perform the binary

classification between the combined classes (PD and NOPD). The second type of circuit,

with 11 parameters (see Figure 7), was used for the binary classification in the following

three combined classes (PD and BREAK), (PD and ARC), and (BREAK and NOPD).

The final optimal parameters for each of these binary combinations, after the opti-

mization process, are presented in Table 1, corresponding to the combinations PD_NOPD,

PD_BREAK, PD_ARC, and BREAK_NOPD, respectively.

Table 1. Optimal parameters for the QVM circuits of Figures 6 and 7, with 10 and 11 parameters,

respectively.

Optimal Parameters PD_NOPD PD_BREAK PD_ARC BREAK_NOPD

θ(0) −1.36 −0.46 −2.03 −0.11
θ(1) 0.73 3.01 2.49 5.64
θ(2) 0.46 0.35 −0.12 −2.54
θ(3) −0.23 −0.43 −0.75 −2.71
θ(4) 0.72 −3.04 −1.36 −6.40
θ(5) −5.04 −5.67 −5.43 −1.20
θ(6) 0.25 1.70 1.55 −0.99
θ(7) 3.20 6.01 5.31 8.97
θ(8) 2.22 5.84 5.63 4.15
θ(9) 2.8 2.26 3.50 8.22
θ(10) — 1.56 1.18 1.53

Accuracy 1 [0.90:0.93] [0.93:0.95] [0.82:0.83] [0.85:0.82]
1 [train:test].
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Since the execution time on the quantum computer is currently limited on the avail-

able IBM, it was decided to perform this optimization step to determine the parameters

in a simulation using a classical computer, solving the corresponding quantum circuits.

The optimal accuracy values for both the training and test sets are shown in the last

row of Table 1. The maximum accuracy values on the test set were 95% for PD_BREAK

combination, 93% for PD_NOPD combination, and higher than 82% for PD_ARC and

BREAK_NOPD combination.

As previously described, Figure 5 shows the blue block where the cost function is

calculated at each iteration. The evaluation of the cost function C(θ
p
i ) is performed by

passing all the images, together with their labels (+1, −1), through the variational quantum

circuit. The classification criterion is based on the parity of the qubits read after the

execution of the circuit. If most of the qubits read have an even value, the image is classified

as belonging to label 1. If the majority of the qubits have an odd value, the image is

classified as belonging to label −1.

The evolution of the cost function during the optimization process with the COBYLA

algorithm for 50 iterations in the PD_ARC combination is shown in Figure 9a. Similarly,

the evolution of the cost function for the PD_NOPD combination, for 100 iterations, is

presented in Figure 9b. It should be noted that, from iteration 50 onwards, no significant

improvement in the cost function is observed. In this last combination, an accuracy of 93%

can be considered acceptable.
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Figure 9. Evolution of the cost function in the optimization process for the COBYLA algorithm corre-

sponding to Table 1. (a) Evolution of the cost function for the PD_ARC combination. (b) Evolution of

the cost function for the PD_NOPD combination.

3.5. Verification of Results

All experiments performed with quantum computers were performed with the follow-

ing: IBM Brisbane equipped with the Eagle r3 processor (version 1.1.33), IBM Kyoto, based

on the Eagle r3 processor (version 1.2.38), and the IBM Osaka with the Eagle r3 processor

(version 1.1.8).

All these systems are based on 127 superconducting qubits [24,28] and use a set of

basic logic gates including ECR, ID, RZ, SX, and X (see Section 3.3), with a processing

capacity of 5000 CLOPS. The mean errors of the SX and ECR gates, the mean readout error,

the average error per logic gate (EPLG), and the system coherence times T1 and T2 for the

three computers used are summarized in Table 2.

The first checkpoint is related to the final measurement stage for the selection between

one class or another based on the measured parity. Figure 10a presents the measurements

obtained for two random images of the PD class, assigned to odd parity. Also shown are the

measured results for all combinations, both in the simulation on a classical computer and

the results obtained experimentally on the real IBM Osaka quantum computer. Similarly,
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the measurements obtained for two random images belonging to the NOPD class, with

even parity assignment, are presented in Figure 10b. The execution time of the job with

4000 shots on the IBM Osaka computer in both cases is approximately 4 s.

Table 2. Calibration data for computers used in the experiments from IBM.

Mean Property IBM Osaka IBM Kyoto IBM Brisbane

T1 (µs) 287.09 215.43 228.55
T2 (µs) 144.57 109.44 151.41

SX error % 3.053 × 10−2 3.073 × 10−2 2.409 × 10−2

ECR error % 8.032 × 10−1 9.345 × 10−1 7.820 × 10−1

EPLG error % 3.3 3.6 2.0
Readout error % 2.210 1.540 1.350
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Figure 10. Measurement results for the PD_NOPD model for two images with the IBM Osaka

quantum computer vs. simulation. (a) Measurements obtained for two values belonging to the PD

class, odd parity. (b) Measurements obtained for two values belonging to the NOPD class, even parity.

The second verification point consists in obtaining the average accuracy for 136 random

images from the test set. The tests are performed for the combinations PD_NOPD, PD_BREAK,

PD_ARC, and BREAK_NOPD with the quantum circuits optimized in Section 3.4 by running

these circuits on the IBM quantum computers, Kyoto, Brisbane, and Osaka.

The results of all runs are summarized in Table 3. The first four rows represent the

average accuracy for the training and test image sets for the simulation and the IBM Kyoto,

Brisbane, and Osaka computers. The number of shots is equal to 4096 for each of the

quantum circuits. The average execution time for these 136 quantum circuits is 150 s.

Table 3. Accuracy, time (s), and numbers of variational quantum circuits used in the IBM computers

in the experiments corresponding to Figures 6 and 7, with 10 and 11 parameters, respectively.

PD_NOPD PD_BREAK PD_ARC BREAK_NOPD

Accuracy 1 simulation [0.90:0.93] [0.93:0.95] [0.82:0.83] [0.85:0.82]

Accuracy 1 Kyoto [0.90:0.92] [0.95:0.91] [0.80:0.88] [0.85:0.87]

Accuracy 1 Brisbane [0.90:0.92] [0.93:0.91] [0.80:0.88] [0.84:0.85]

Accuracy 1 Osaka [0.92:0.92] [0.95:0.91] [0.80:0.80] [0.85:0.88]

Time (s) 1 Kyoto [150:150] [150:150] [150:150] [149:110]

Time (s) 1 Brisbane [151:150] [110:149] [149:150] [149:110]

Time (s) 1 Osaka [150:150] [149:149] [149:149] [149:110]

Circuits 1 Kyoto [136:136] [136:136] [136:136] [136:100]

Circuits 1 Brisbane [136:136] [100:136] [136:136] [136:100]

Circuits 1 Osaka [136:136] [136:136] [136:136] [136:100]
1 [train:test].
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In Table 3, it can be observed that the accuracy of the test set of 136 random images for

the combination PD_NOPD is 92% on the three quantum computers used, and the error

compared to the simulation is 1%. For the rest of the combinations, PD_BREAK, PD_ARC,

and BREAK_NOPD, the accuracy for the test set is around 88%.

4. Support Vector Machine, SVM

This section describes the basic principles of the second method developed to identify

discharges in mineral oils. This method is based on SVM, which has been classically applied

to numerous binary classification problems and is the basis of the QKM used in this paper.

Section 4.1 describes the SVM primal problem, Section 4.2 explains the advantages of

formulating the linear dual problem of SVM, and Section 4.3 generalizes it to a nonlinear

SVM problem.

4.1. SVM Primal Problem

The primal problem of the SVM is that its dimensionality depends on the number

of features n in the data. It can be stated as follows [10]: given a training data set {(xi,yi)}

with features xi ∈ Rn and labels of a binary classification yi ∈ {−1,1}, the objective is to find

a hyperplane that maximizes the margin between the two classes while allowing certain

classification errors.

The primal problem can be formulated as follows:

min
w,b,ξ

(

1

2
∥w∥2 + C1

m

∑
i=1

ξ
p
i

)

(14)

subjected to the following restrictions:

yi(w·xi + b) ≥ 1 − ξi, ξi ≥ 0 para i = 1, 2, · · · , m (15)

where m is the number of available samples. For any p > 0, it is a convex problem and

therefore has a unique solution [8].

In this work, we chose p = 2, called the L2 soft margin, which is a common practice,

w is the weight vector, b is the bias, ξi are the slack variables that allow misclassifications,

and C1 is a parameter that controls the trade-off between margin and classification error. A

large C1 results in a smaller margin but fewer misclassifications, while a small C1 results in

a larger margin but more allowed errors.

4.2. SVM Linear Dual Problem

The dual formulation is based on the inner products between pairs of data samples,

xT
i xj. These products define the linear kernel K(xj,xi). The kernel allows these inner

products to be computed in the upper feature space efficiently, even when this space is very

high-dimensional or infinite.

The dual formulation of the SVM problem [10] with a soft L2 margin is expressed in

the following equation:

max
α

m

∑
i=1

αi −
1

2

m

∑
i=1

m

∑
j=1

αiαjyiyjx
T
i xj −

1

4C1

m

∑
i=1

α2
i (16)

and is subject to the following restrictions:

m

∑
i=1

αiyi, 0 ≤ αi ≤ C1, i = 1, · · · , m (17)
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The solution to Equation (16) subjected to the constraints of the dual problem shown

in Equation (17) produces the optimal values of αi. Once we have solved the dual problem

and found the αi, the weight vector w can be calculated with the following equation:

w =
m

∑
i=1

αiyixi (18)

The bias b can be calculated using any of the support vectors xk which are the points

for which αi > 0, as expressed in the following equation:

b = yk − wTxk (19)

Working with the dual problem of an L2 soft margin SVM offers several key advantages.

In the dual problem, the optimization is performed based on the Lagrange multipliers

αi, which are associated with each data sample. This allows the optimization problem to

be changed from the feature space, which has a dimension n, to the sample space, with a

dimension m, facilitating data handling.

In the solution of the dual problem, many of the Lagrange multipliers αi are zero. Only

the samples located on the margin, known as support vectors, have αi > 0. This reduces

both the computational cost and the complexity of the model.

Quadratic optimization methods used to solve the dual problem are well developed

and especially efficient with high-dimensional problems in the sample space. Specific

algorithms, such as the sequential minimal optimization (SMO) method [40], are designed

to efficiently solve the SVM dual problem by taking advantage of the sparsity in the

Lagrange multipliers.

4.3. SVM Dual Nonlinear Problem

If the problem is nonlinear [8], the solution is stated as follows according to

Equation (20) subject to the restrictions of Equation (21):

max
α

m

∑
i=1

αi −
1

2

m

∑
i=1

m

∑
j=1

αiαjyiyjK
(

xi, xj

)

− 1

4C1

m

∑
i=1

α2
i (20)

0 ≤ αi ≤ C1,
m

∑
i=1

αiyi (21)

The bias value b is calculated using the support vectors xi, for which the decision

function is equal to the label yi of the following equation:

yi =
m

∑
j=1

αjyjK
(

xj, xi

)

+ b (22)

To calculate b, Equation (18) is rearranged, as indicated below:

b = yi −
m

∑
j=1

αjyjK
(

xj, xi

)

(23)

or an average is taken to obtain a more robust estimate of the bias b, which is calculated

using the following equation:

b =
1

|S|∑
iϵS

(

yi −
m

∑
j=1

αjyjK
(

xj, xi

)

)

(24)

where S is the set of support vectors.
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Once the value of b is determined, the prediction of a new element value x is made

according to Equation (25):

y = sign

(

m

∑
j=1

αjyjK
(

xj, x
)

+ b

)

(25)

That is, we identify the class yi ∈ {−1,1} to which a new element x belongs.

5. Quantum Kernel Estimate (Quantum Kernel Model, QKM)

In this section, a quantum kernel estimate is made for two, three, and eight features

using a quantum computer with two, three, and eight qubits, respectively. Once the kernel

has been estimated, Equations (20)–(25) are used on a classical computer to make the

corresponding membership estimate of a new element x.

The quantum kernel estimation algorithm consists of mapping classical data vectors

into quantum states [11]. This is achieved by a mapping that transforms a classical feature

vector x into a quantum state |ϕ(x)〉. This process is performed by parameterizing a

quantum circuit with the feature x, transforming a unitary matrix over n qubits into the

ground state |0n〉, i.e., U(x)|0n〉.

A quantum kernel is based on using quantum states to represent data and calculate the

similarity between them in a quantum feature space. This is done using quantum circuits

that encode the data into quantum states. The similarity between two feature vectors x and

y is calculated by the Hilbert–Schmidt inner product between density matrices [8]. The

similarity between two feature vectors x and y is calculated as the value of the quantum

kernel k(x,y) given in Equation (26):

k(x, y) = |⟨ϕ(x)|ϕ(y)⟩|2 =
∣

∣

∣

〈

0n
∣

∣

∣U†(x)U(y)
∣

∣

∣0n
〉∣

∣

∣

2
(26)

The way to evaluate each point in the matrix k(x,y) is to run a quantum circuit U†(x)U(y)

on the input |0n⟩ and find the probability of obtaining the state |0n⟩ . Figure 11 shows the

generic structure of the quantum circuit used to estimate the particularized kernel for three

features. For this purpose, the ZZFeatureMap function obtained from the Qiskit library [28]

was used. This is a parameterized quantum circuit used to map classical data to a quantum

feature space. This mapping is performed by applying quantum rotation gates on the

qubits, followed by CX-type interactions between pairs of qubits, which allows the capture

of nonlinear relationships in the data.
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Figure 11. Generic structure of the quantum circuit and measurement used to estimate the kernel

of Equation (26). It is particularized for three features. The number 3 represents the set of the three

measured features 0, 1 and 2. q0, q1 and q2 are the input qubits to the quantum circuit.

Next, in Section 5.1, the results obtained with the QKM method for the binary com-

binations PD_NODP, PD_BREAK, PD_ARC, and BREAK_NOPD, with two features, are

explained in order to make a comparison with the results obtained with the QVM method.
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Then, in Section 5.2, the results with the QKM method for three and eight features are

analyzed, and the improvement in accuracy is analyzed.

5.1. Two-Feature Kernel Estimation

All simulations performed on classical computers and experiments performed on

quantum computers were run following the basic ZZFeatureMap circuit structure, shown

in Figure 11 and defined in [35]. In this section, the kernel is estimated for two features,

[‘area-pixels’, ‘mean-coords-x’], described in Section 2 and for the four class combinations

PD_NODP, PD_BREAK, PD_ARC, and BREAK_NOPD.

The exact kernel results for the PD_BREAK class combination are depicted in

Figure 12a. Only the upper diagonal needs to be computed, since the matrix is sym-

metric. The element kernel matrix obtained is 580 × 580, as can be seen in the Data Index

(X1) and (X2). The number of computations, which corresponds to the quantum circuit in

Figure 11, is determined by Equation (26). This circuit was used to estimate the kernel on a

quantum computer, performing 168,200 evaluations. For each evaluation, the kernel matrix

value is normalized between 0 and 1.
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Figure 12. (a) Exactly computed two-feature kernel matrix for the PD_BREAK combination. Sim-

ulation result of the symmetric 580 × 580 element kernel matrix obtained with Equation (26), for

PD_BREAK. (b) Comparison of results for the IBM Kyoto computer. Verification of results for row 40

and columns 0 to 24 of the matrix shown in (a), simulation in blue. Where the orange and blue colors

overlap, a magenta color is displayed.

Figure 12b shows a comparative study between the exact kernel value and the value

obtained with the IBM Kyoto computer for row 40 and columns 0 to 24 (Pub 0 to Pub 24) of

the matrix shown in Figure 12a. The matrix was generated using the library Qiskit [28], with

the Jupyter Notebook QKM_verification_two_qubits.ipynb allocated in the repository [29].

Due to time constraints on available quantum computers, 140 values were randomly

selected from the top of the matrix to estimate the kernel and compared with those obtained

in simulations on a classical computer. These values are shown in Figure 13a, with the

execution time on the quantum computer being 2 m 34 s. The results of the simulation

and the execution on the IBM Kyoto computer are presented in Figure 13b, with a mean

absolute percentage error (MAPE) of 7.6% according to Equation (27). Figure 12b details

the comparison between the exact value and the results of 25 consecutive values from row

40 of the kernel matrix, obtained on the same quantum computer.
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MAPE =
100

k

k

∑
i=1

∣

∣

∣

∣

Ai − Fi

Ai

∣

∣

∣

∣

(27)

where k = 140 is the total number of elements, Ai is the actual observed value, and Fi is the

value predicted by the simulation.
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Figure 13. (a) One hundred forty values randomly chosen from the kernel matrix for PD_BREAK.

(b) Comparison of results for the real IBM Kyoto computer with the simulation and mean absolute

percentage error (MAPE) = 7.6%, on the real IBM Kyoto computer.

Figure 14a shows another 140 random evaluations, different from the previous ones,

see, performed on another quantum computer, IBM Osaka, for PD_BREAK class combina-

tion, in order to verify the results in another physical environment. Figure 14b shows the

comparison between the results obtained on the real IBM Osaka quantum computer and

the simulation, with a runtime of 2 m 34 s on the IBM computer.
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Figure 14. (a) One hundred forty randomly selected values from the kernel matrix for PD_BREAK,

obtained using the IBM Osaka computer. (b) Comparison of results for the real IBM Osaka computer

with the simulation, for the PD_BREAK combination. Execution time 2 m 34 s.

The results obtained in the three quantum computers were verified in the other three

class combinations PD_NOPD, BREAK_NOPD, and PD_ARC, and are represented in

Figures 15, 16, and 17, respectively, along with the simulations of the kernel obtained with

a classical computer.
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Figure 15. (a) Exactly computed two-feature kernel matrix for the PD_NOPD combination. The

kernel matrix is symmetrical with 693 × 693 elements. (b) Comparison of results for the real IBM

Osaka computer and verification of results for row 40 and columns 0 to 24 of the matrix shown in (a),

simulation in blue. Where the orange and blue colors overlap, a magenta color is displayed.
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Figure 16. (a) Exactly computed two-feature kernel matrix for the BREAK_NOPD combination. The

kernel matrix is symmetrical with 517 × 517 elements. (b) Comparison of results for the real IBM

Brisbane computer and verification of results for row 40 and columns 0 to 24 of the matrix shown in

(a), simulation in blue. Where the orange and blue colors overlap, a magenta color is displayed.
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Figure 17. (a) Exactly computed two-feature kernel matrix for the PD_ARC combination. The kernel

matrix is symmetrical with 694 × 694 elements. (b) Comparison of results for the real IBM Kyoto

computer and verification of results for row 40 and columns 0 to 24 of the matrix shown in (a),

simulation in blue. Where the orange and blue colors overlap, a magenta color is displayed.
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The exact kernel results for the PD_NOPD, BREAK_NOPD, and PD_ARC class combi-

nations are depicted in Figures 15a, 16a, and 17a, respectively. Only the upper diagonal

needs to be computed, since the matrix is symmetric. The element kernel matrix obtained

is 580 × 580, as can be seen in the Data Index (X1) and (X2). The number of computations,

which corresponds to the quantum circuit in Figure 11, is determined by Equation (26).

This circuit was used to estimate the kernel on a quantum computer, performing 168,200

evaluations. For each evaluation, the kernel matrix value is normalized between 0 and 1.

Figures 15b, 16b, and 17b show a comparative study between the exact kernel value

and the value obtained with IBM Osaka, Brisbane, and IBM Kyoto computers, respectively,

for row 40 and columns 0 to 24 (Pub 0 to Pub 24) of the matrix shown in Figures 15a, 16a,

and 17a, respectively. These matrices were generated using the library Qiskit [28], with the

Jupyter Notebook QKM_verification_two_qubits.ipynb allocated in the repository [29].

As a final summary of the results obtained for two features, Table 4 presents the

accuracy of all the binary combinations using quantum kernel estimation on the different

two-qubit features x = [‘area-pixels’, ‘mean-coords-x’], using a test image ratio of 20%.

The accuracy values are 83% and 97% for the PD_ARC and PD_NOPD combinations,

respectively. The execution times for the kernel calculation on the test items vary between

2587 s and 2639 s for these models.

Table 4. Accuracy and execution times for two qubits x = [‘area-pixels’, ‘mean-coords-x’] with

test_size = 20%.

PD_NOPD PD_BREAK PD_ARC BREAK_NOPD

Accuracy [train] 0.95 0.90 0.84 0.93
Accuracy [test] 0.97 0.94 0.83 0.92

Train execution time (s) 5040 3573 5357 2911
Test execution time (s) 2587 1768 2639 1476

SVM fit training time (s) 0.019 0.016 0.018 0.012
Matrix dimension 693 580 694 517

C1 1 1 1 1

Results for the QVM are presented in Table 3 (see Section 3). In the first QVM, an

accuracy of 92% was observed on the test set for 136 random images under the first

PD_NOPD binary combination, obtained consistently on the three types of quantum

computers used, with a 1% error margin compared to the simulation. For the other three

binary combinations, the test set accuracy was around 88%.

However, for QKM, using SVM, the test set accuracy for the PD_NOPD combination

reached 97%, while for the other combinations, the average accuracy was 89% (Table 4).

5.2. Kernel Estimation with Three and Eight Features

In this section, the improvement in accuracy when increasing the number of features

is analyzed.

The features used for three qubits are represented in Equation (28). The test or

validation set represents 80% of the data.

X =







area_pixels

mean_coords_x

mean_coords_y






(28)

Table 5 shows the results of four binary combinations, using an SVM with a kernel to

train and evaluate models with these three features, parameter C1 = 1 in Equation (20). The

results indicate that the accuracies on the test set for the binary combinations PD_NODP,

PD_BREAK, PD_ARC, and BREAK_NOPD are 99%, 85%, 84%, and 92%, respectively.
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The kernel matrix computation times for the training data vary between 157 s and 307 s,

corresponding to a range of 129 to 173 evaluations. For the validation set, the times range

between 1290 and 3509 s, due to a higher number of evaluations.

Table 5. Accuracy and execution times for three qubits Equation (28), with symmetric matrix,

test_size = 80%.

PD_NOPD PD_BREAK PD_ARC BREAK_NOPD

Accuracy [train] 0.99 0.95 0.92 0.95
Accuracy [test] 0.99 0.85 0.84 0.92

Train execution time (s) 307 177 307 157
Test execution time (s) 3509 1300 3509 1290

SVM fit training time (s) 0.004 0.001 0.004 0.001
Matrix dimension 173 135 173 129

C1 1 1 1 1

The features used for eight qubits are expressed in Equation (29). The test or validation

set represents 80% of the data.

X =





























area_pixels

mean_coords_x

mean_coords_y

centroid_x

centroid_y

meanintensity

stdintensity

threshold





























(29)

Table 6 shows the results of four binary combinations, using an SVM with a kernel to

train and evaluate models with these eight features. The results indicate that the accuracy on

the test set for all the binary classes PD_NODP, PD_BREAK, PD_ARC, and BREAK_NOPD

is 99%, 94%, 99%, and 98%, respectively. The kernel matrix computation times for the

training data vary between 294 and 531 s, corresponding to a range of 129 to 173 evaluations.

For the validation set, the times range between 2352 s and 4229 s, due to a higher number

of evaluations.

Table 6. Accuracy and execution times for eight qubits Equation (29) with symmetric matrix,

test_size = 80%.

PD_NOPD PD_BREAK PD_ARC BREAK_NOPD

Accuracy [train] 1 1 1 1
Accuracy [test] 0.99 0.94 0.99 0.98

Train execution time (s) 531 323 529 294
Test execution time (s) 4229 2567 4214 2352

SVM fit training time (s) 0.001 0.001 0.001 0.001
Matrix dimension 173 135 173 129

C1 1 1 1 1

A comparison of Tables 5 and 6 shows how increasing the number of features affects

both the accuracy and the execution time of the SVM models with the kernel. When using

more features (eight instead of three), an improvement in accuracy is observed, especially

on the test set, suggesting that the model generalizes better with new data. However, this

improvement leads to an increase in execution times as more features are added.
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6. Overall Flowchart

In this section, an overall flowchart, see Figure 18, that explains the main steps followed

in the article to obtain the different results shown in Sections 2–5 has been added. We

believe this will make the procedure easier to understand.
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Figure 18. Overall flowchart and Jupyter Notebooks.

A detailed description of each step of the process is included in the README of the

Zenodo repository [29], along with links to the corresponding Jupyter Notebooks. To make

it easier to understand the overall workflow, we have included a summary description of

the flowchart in four steps. This flowchart is described below.

Flowchart Description:

The flowchart is generated running the Binary_features_generation.ipynb file and can

be viewed directly in the repository. It graphically represents the four main steps of this

experimental process.

Step A: Feature Generation

The name of the Jupyter Notebook is Binary_features_generation.ipynb.

It presents the following subsections: image visualization, feature extraction, and

binary concatenation of files in csv format. Folders /IMAGES/ and /FEATURE_RESULTS/

are referenced, and the feature_*.csv files are introduced.

Step B: Optimization of QVM Parameters

The name of the Jupyter Notebook is FIT_DP_NODP_CIRCUIT.ipynb.

It presents the following subsections: library import, function definition, data loading,

normalization, quantum circuit definition, cost function, COBYLA optimization, and model

evaluation. Reference is made to Table 1 and to the optimal parameters stored in the

variable named opt_var.
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Step C: Verification on Quantum Hardware/Simulation

The name of the Jupyter Notebook is QVM_verification_two_qubits.ipynb.

It presents the following subsections: environment setup, backend selection, data and

parameter loading, circuit definition, transpilation, circuit execution, and results analysis.

Reference is made to Table 3 and the results comparison graphs.

Step D: Execution of QKM Model

The name of the Jupyter Notebook is QKM_verification_two_qubits.ipynb.

It presents the following subsections: execution of the QKM model on real quantum

computers, real quantum computer execution, quantum kernel estimation algorithm, and

SVM with QKM for two, three, and eight qubits.

7. Conclusions

In this paper, electrical discharge images are classified using AI with quantum machine

learning techniques. The results show that quantum machine learning is effective in

classifying electrical discharge images in dielectric mineral oils that were detected by a

high-resolution optical sensor. Both the variational quantum model QVM and the support

vector machine SVM with quantum kernel model estimation QKM achieved significant

accuracies of 92% and 97%, respectively, in the first discharge combination, PD_NOPD,

realized with two qubits. This demonstrates the potential of quantum algorithms in

classification applications in highly complex scenarios.

The two developed quantum models showed remarkable consistency when running

on three different physical quantum computers, IBM Osaka, IBM Brisbane, and IBM Kyoto.

The results obtained a 1% error margin compared to simulations performed on classical

computers, indicating the robustness of the models against variability in quantum hardware.

Increasing the number of qubits from two to eight in the QKM resulted in a significant

improvement in model accuracy, reaching an average of 97% in test set accuracy for the four

binary combinations PD_NOPD, PD_BREAK, PD_ARC, and BREAK_NOPD. This increase

shows that models with more qubits have a higher generalization capacity, improving the

classification of previously unseen data.

The comparison between the two models indicates that although both quantum

approaches proved to be effective, the SVM-QKM slightly outperformed the QVM in terms

of overall accuracy. This result suggests that, in this specific context, combining quantum

techniques with classical methods such as SVM can offer an advantage in classifying

complex patterns.

The findings show that implementing quantum machine learning techniques in de-

tection and diagnostic systems offers significant advantages in terms of accuracy and

generalization capacity, especially when more qubits are employed in the models. This

opens the door to future research and practical applications in the field of detection and

analysis of electrical discharges in dielectric systems.
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