
March 6, 2023 11:56 MPLA: OPEN ACCESS S0217732322502443 page 1

OPEN ACCESS

Modern Physics Letters A
Vol. 37, Nos. 35 & 36 (2022) 2250244 (15 pages)
© The Author(s)
DOI: 10.1142/S0217732322502443

Information theoretic inequalities as bounds in

superconformal field theory

Yang Zhou

Department of Physics and Center for Field Theory and Particle Physics,

Fudan University, Shanghai 200433, China

State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China

School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv 69978, Israel

yang zhou@fudan.edu.cn

Received 21 November 2022
Accepted 20 February 2023
Published 3 March 2023

In this paper, an information theoretic approach to bounds in superconformal field
theories is proposed. It is proved that the supersymmetric Rényi entropy S̄α is a mono-
tonically decreasing function of α and (α − 1)S̄α is a concave function of α. Under the
assumption that the thermal entropy associated with the “replica trick” time circle is
bounded from below by the charge at α → ∞, it is further proved that both α−1

α
S̄α and

(α−1)S̄α monotonically increase as functions of α. Because S̄α enjoys universal relations
with the Weyl anomaly coefficients in even-dimensional superconformal field theories,
one therefore obtains a set of bounds on these coefficients by imposing the inequalities
of S̄α. Some of the bounds coincide with Hofman–Maldacena bounds and the others are
new. We also check the inequalities for examples in odd-dimensions.

Keywords: Renyi divergence; superconformal bounds.

1. Introduction

Quantum information theoretic ideas, such as quantum entanglement, have re-

cently played significant roles in condensed matter physics,1–3 particle physics4–7

and string theory.8 To characterize the entanglement in states of a quantum me-

chanical system, one often bipartitions the system and computes the entanglement

entropy, SEE. Another interesting measure is the Rényi entropy, Sα, which is a one-

parameter generalization of entanglement entropy and provides additional informa-

tion about the entanglement structure for the same bipartition and returns to SEE

in the limit α → 1. α is called its order. In quantum field theory (QFT), one defines

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.
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the entanglement entropy associated with a global state and a geometric region A

by tracing over the field variables outside A, creating a reduced density matrix ρA
and then evaluating SEE.

9 While SEE (or Sα) generally includes UV divergences

in QFT, its universal part contains important physical information, such as central

charges characterizing degrees of freedom.10–14 In many aspects, these universal

terms are the counterparts of quantum-mechanical entropies, which satisfy a set of

inequalities inspired from information theory. One natural question is: What are

the QFT counterparts of these entropy inequalities and what are their roles? One

inequality of SEE called strong sub-additivity plays significant roles in constructing

monotonically decreasing c-functions along RG flows, such as the two-dimensional

entropic c-function4,5 and the three-dimensional F -function.6,14 Other applications

of information theoretic inequalities include refining Bekenstein bound,4 deriving

the integrated null energy condition15 and deriving gravitational positive energy

conditions.16

In this paper, we concern the Rényi entropy inequalities related to its order α,

which were proven in information theory17 and still hold in quantum mechanics.a

One therefore expects that these inequalities also play significant roles in QFT.18

However, the exact results of Rényi entropy are very rare in QFT (except for 2d

conformal field theories).19–25 We therefore focus on a subset of field theories, super-

symmetric ones with a conserved R-symmetry. By twisting the ordinary Rényi

entropy to be supersymmetric,26 Sα → S̄α, we are able to obtain exact results

at any coupling. For even-dimensional superconformal field theories (SCFTs), the

supersymmetric Rényi entropy S̄α enjoys universal relations with the Weyl anomaly

coefficients. These relations are independent of the specific theory and therefore can

be used to bound the space of SCFTs. That is, imposing S̄α’s inequalities to these

relations gives a set of bounds on the Weyl anomaly coefficients. The key step in

this derivation is to find the inequalities satisfied by S̄α, which is the main topic of

this paper. The idea is that, S̄α can be expressed as the Rényi divergence of the

energy distribution from the R-charge distribution. By studying the α-dependence

of the Rényi divergence, one can get the inequalities satisfied by S̄α. It is proved

along this way that S̄α monotonically decreases as a function of α and (α− 1)S̄α is

a concave function of α. On the other hand, S̄α of CFTs associated with a spherical

entangling surface is related to other physical quantities such as thermal entropy

S, energy E and charge Q defined on the hyperbolic space S
1
α × H

d−1.27 Under

the assumption that the thermal entropy is bounded from below by the charge at

α → ∞, it is further proved that both α−1
α S̄α and (α−1)S̄α monotonically increase

as functions of α.

We will start by introducing Rényi divergence in information theory and study-

ing its behavior as a function of α, which will be used for the later proof of the

aTo generalize the proof of classical information theoretic inequalities to quantum mechanical
ones, one simply diagonalizes density matrices ρ, σ with unitary matrices, which does not change
the Rényi entropy (or Rényi divergence).
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supersymmetric Rényi entropy inequalities. Then the applications of these inequali-

ties in even dimensions will be discussed and the validity of them will be checked for

some odd-dimensional examples. A holographic derivation of the bound S ≥ 2πQ

will be given in Appendix A.

2. Rényi Divergence

In information theory, Rényi divergence is related to Rényi entropy much like

Kullback–Leibler divergence (relative entropy) is related to Shannon entropy. For

a probability distribution P = (p1, . . . , pn), which satisfies pi ≥ 0 and
∑n

i=1 pi = 1,

the Shannon entropy is given by

H(P ) = −
n
∑

i=1

pi log pi, (1)

and the Rényi entropy is given by (α > 0)

Hα(P ) =
1

1− α
log

n
∑

i=1

pαi , (2)

which reduces to the Shannon entropy (1) in the limit α → 1 and can be con-

sidered as the α-extension of the Shannon entropy. Let Q be another probability

distribution, Q = (q1, . . . , qn). The relative entropy between P and Q is given by

D(P‖Q) =

n
∑

i=1

pi log
pi
qi
, (3)

which can be proven to be non-negative for two normalized distributions P and

Q. Note that the relative entropy is regular only if qi = 0 implies pi = 0 for all

i, in another word P is absolutely continuous with respect to Q, P ≪ Q. In our

later set up in QFT, P and Q will be identified as energy distribution (∝ e−K) and

charge distribution (∝ e−Q̂′

), respectively. Therefore, P ≪ Q is guaranteed by the

Bogomol’nyi–Prasad–Sommerfield bound. The α-extension of the relative entropy

(3) is the Rényi divergence

Dα(P‖Q) =
1

α− 1
log

n
∑

i=1

pαi q
1−α
i , (4)

which was introduced by Rényi as a measure of information that satisfies almost the

same axioms as the relative entropy.28 In particular, the Rényi divergence reduces

to the relative entropy in the limit α → 1. On the other hand, one may consider the

Rényi divergence (4) as a deformation of the Rényi entropy (2). Indeed, the Rényi

entropy can be expressed in terms of the Rényi divergence of P from the uniform

distribution U = (1/n, . . . , 1/n):

Hα(P ) = Hα(U)−Dα(P‖U) = logn−Dα(P‖U). (5)
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Let us study the α-dependence of the Rényi divergence. In order to understand

that, one may first look at the α-related Rényi entropy inequalities:

∂αHα ≤ 0, (6)

∂α

(

α− 1

α
Hα

)

≥ 0, (7)

∂α((α− 1)Hα) ≥ 0, (8)

∂2
α((α− 1)Hα) ≤ 0. (9)

For the proof of these inequalities, see Ref. 17. One natural question is: Are there

similar inequalities like (6)–(9) for the Rényi divergence Dα? We now prove the

following inequalities:

∂αDα ≥ 0, α > 0, (10)

∂α

(

α− 1

α
Dα

)

≥ 0, α > 0, (11)

∂α((α− 1)Dα) ≥ 0, α ≥ 1, (12)

∂2
α((α− 1)Dα) ≥ 0, α > 0. (13)

Among these four inequalities, (10) and (13) have been proven by van Erven and

Harremoës in Ref. 29. We will prove the other two equations (11) and (12) and give

an alternative proof of (13). Below we also include the proof of (10) by van Erven

and Harremoës for completeness.

2.1. Monotonicity of Dα

Now we prove ∂αDα ≥ 0. Let α < β be positive real numbers (α, β 6= 1). Then for

x ≥ 0, the function f(x) = x
α−1

β−1 is strictly convex if α < 1 and strictly concave if

α > 1. Therefore by Jensen’s inequality

Dα =
1

α− 1
log

n
∑

i=1

(

pi
qi

)(β−1)α−1

β−1

pi (14)

≤ 1

β − 1
log

n
∑

i=1

(

pi
qi

)β−1

pi (15)

= Dβ. (16)

Note that the normalization condition
∑

i qi = 1 is not necessary for the proof of

∂αDα ≥ 0. Jensen’s inequality states that, if f(x) is a convex function of x, then

E[f(x)] ≥ f(E[x]), (17)

where E[X ] means taking the average of variable X under a normalized probability

distribution. The inequality is reversed if f(x) is concave.

2250244-4
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2.2. Monotonicity of α−1

α
Dα

Now we prove ∂α
(

α−1
α Dα

)

≥ 0. Let α < β be positive real numbers. Then for

x ≥ 0, the function f(x) = x
α
β is strictly concave. Therefore,

α− 1

α
Dα =

1

α
log

n
∑

i=1

(

pi
qi

)β α
β

qi (18)

≤ 1

β
log

n
∑

i=1

(

pi
qi

)β

qi (19)

=
β − 1

β
Dβ, (20)

where we have used Jensen’s inequality again in the second step. Note that the

normalization condition
∑

i qi = 1 is now essential in this proof.

2.3. Monotonicity of (α − 1)Dα

Now we prove ∂α((α − 1)Dα) ≥ 0 for α ∈ [1,∞). Given that ∂2
α((α − 1)Dα) ≥ 0,

which will be proven in the following subsection, we only need to prove

∂α((α − 1)Dα)|α→1 ≥ 0. (21)

This can be shown as follows:

∂α((α− 1)Dα) = ∂α

(

log

n
∑

i=1

pαi q
1−α
i

)

(22)

=

∑n
i=1

(

pi

qi

)α
qi log

pi

qi
∑n

i=1

(

pi

qi

)α
qi

. (23)

The α → 1 limit of the above formula can be evaluated as follows:

∂α((α− 1)Dα)|α→1 = D(P‖Q) ≥ 0. (24)

In the last step we have used the non-negativity of the relative entropy, whose proof

requires the normalization conditions for both P and Q.

2.4. Convexity of (α − 1)Dα

Now we prove ∂2
α((α−1)Dα) ≥ 0. We take one more derivative of (23) with respect

to α

∂2
α((α− 1)Dα) =

∑n
i=1

(

pi

qi

)α

qi

(

log pi

qi

)2

∑n
i=1

(

pi

qi

)α

qi
−

[

∑n
i=1

(

pi

qi

)α

qi log
pi

qi

]2

[

∑n
i=1

(

pi

qi

)α

qi

]2 . (25)
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Define a new distribution

ρ̄i :=

(

pi

qi

)α

qi
∑n

i=1

(

pi

qi

)α

qi
, (26)

which automatically satisfies the normalization
∑

i ρ̄i = 1, one can rewrite (25) as

follows:

∂2
α((α − 1)Dα) =

n
∑

i=1

ρ̄i

(

log
pi
qi

)2

−
(

n
∑

i=1

ρ̄i log
pi
qi

)2

≥ 0, (27)

where the last step follows from the convexity of the function f(x) = x2 and Jensen’s

inequality.

3. Inequalities of Supersymmetric Rényi Entropy

In QFTs in flat space, the Rényi entropy can be used to measure the entanglement

spectrum between two regions A and Ā separated by the entangling surface Σ.

For a state characterized by a density matrix ρ0 on a spatial slice consisting of A

and Ā, one can define the Rényi entropy for A using the reduced density matrix

ρA = TrĀ ρ0,

Sα =
1

1− α
log Tr ρα

A , (28)

where α > 0. Sα in (28) is the field theory analogy ofHα in (2) in information theory.

Note that the previous definition now has been generalized to infinite-dimensional

spaces by replacing the probabilities by the reduced density matrix and the sum by

a trace. In Euclidean QFT, a state is characterized by a path integral with certain

boundary conditions. Therefore, (28) can be expressed in terms of path integrals

on a Euclidean spacetime with a conical singularity.

We focus on CFTs in R
1,d−1, the Rényi entropy (28) associated with a spher-

ical entangling surface (Σ = S
d−2) can be computed by conformally mapping the

Euclidean conic space to a hyperbolic space S
1
α × H

d−1, where the previous den-

sity matrix ρA now becomes ρ ∝ e−2πH by a unitary transformation and H is the

Hamiltonian quantized on H
d−1.12 In this case, Sα can be written as follows:

Sα =
1

1− α
log Tr ρα =

1

1− α
log

Tr e−2παH

(Tr e−2πH)α
, (29)

where we have considered the normalization Tr ρ = 1.

We are particularly interested in supersymmetric theories with a conserved U(1)

R-symmetry because the computation of Sα is very challenging for interacting

theories. We also restrict ourselves to the spherical entangling surface without

considering the shape dependence. In the viewpoint of rigid supersymmetry, the

spacetime with a conical singularity breaks all the supersymmetries. Equivalently,

the space S
1
α × H

d−1 for α 6= 1 does not preserve any supersymmetry. To proceed

2250244-6
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further, we twist the Rényi entropy (29) into a supersymmetric one by turning

on a background R-symmetry gauge field along S
1
α. This twisting has been first

studied in three dimensions26,27 and then extended to other dimensions.30–39 The

supersymmetric twist can be writtenb as follows:

S̄α =
1

1− α
log

Tr e−2πα(H−µQ̂)

(Tr e−2πH)α
(30)

=
1

1− α
log

Tr e−2π(αH−Q̂(α−1))

(Tr e−2πH)α
, (31)

where the chemical potential corresponding to the conserved U(1) R-symmetry

takes the value

µ =
α− 1

α
(32)

as required by the Killing spinor equations. Note that we choose the convention

such that the preserved Killing spinors’ R-charge r = 1/2 in general d-dimensions.

For details on how to determine µ by solving Killing spinor equations on conic space

in various dimensions, d = 2, 3, 4, 5, 6, see Refs. 38, 27, 30, 34 and 36, respectively.

Obviously S̄α returns to SEE at α → 1. By unitarily transforming the effective

density matrix in (31), one can rewrite S̄α in flat space by replacing H with the

modular Hamiltonian K and replacing Q̂ with the conserved R-charge Q̂′ defined

in the subregion A. Note that the trace now is taken over the Hilbert space of the

subregion A as (28). One can observe a connection between the supersymmetric

Rényi entropy and the Rényi divergence Dα in (4). That is, by identifying

ρA =
e−2πK

Tr e−2πK
, σA = e−2πQ̂′

, (33)

one can express S̄α in terms of the Rényi divergencec of ρA from σA

S̄α =
1

1− α
log Tr ραAσ

1−α
A (34)

= −Dα(ρA‖σA). (35)

bThis trace formula for supersymmetric Rényi entropy has passed nontrivial tests. For instance,
one can check a relation derived from it37

S′

α=1 = −Vd−1





π
d
2
+1Γ(d

2
)(d− 1)

(d + 1)!
CT −

π
d+3

2

2d−3(d− 1)Γ(d−1

2
)
CJ



 ,

where CT and CJ are defined from the stress tensor 2-point correlator and the R-current 2-point
correlator, respectively. Note that Q̂ in this paper is equal to αQ̂ in Ref. 37. The charged Rényi
entropy defined in Ref. 40 is not supersymmetric.
cBoth K and Q̂′ are Hermitian in real-time quantization. The chemical potential is kept to be
real in our convention and it is unchanged under Weyl transformations. A path integral approach
to Rényi divergence of different distributions is given in Refs. 41 and 42.

2250244-7

M
od

. P
hy

s.
 L

et
t. 

A
 2

02
2.

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/0

9/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 6, 2023 11:56 MPLA: OPEN ACCESS S0217732322502443 page 8

Y. Zhou

Note that to make the identification (35) we temporarily abandon the normalization

condition for σA. Also note that in our case [ρA, σA] = 0 because of [K, Q̂′] = 0,

therefore we do not distinguish Rényi divergence and quantum Rényi divergence.

As one can see from the previous section, the normalization condition for the second

distribution is not necessary for the proof of (10) and (13). Therefore, the following

two inequalities follow directly by replacing Dα by −S̄α in (10) and (13),

∂αS̄α ≤ 0, (36)

∂2
α((α − 1)S̄α) ≤ 0. (37)

This proves the monotonicity of S̄α and the concavity of (α− 1)S̄α. One can think

that they are the analogies of the properties (6) and (9) of the Rényi entropy.

Now we study the other two analogies of (7) and (8) for S̄α:

∂α

(

α− 1

α
S̄α

)

≥ 0, (38)

∂α((α− 1)S̄α) ≥ 0. (39)

As one can see, they cannot be deduced from (11) or (12), because the normalization

condition of σ now is crucial.

We instead give a physical proof of (38) and (39) by following the way in Ref. 18.

We begin with the supersymmetric partition function Z on S
1
α ×H

d−1 with a U(1)

R-symmetry chemical potential. We work in grand canonical ensemble

Z[β, µ] = Tr
[

e−β(H−µQ̂)
]

, (40)

where the inverse temperature β and the chemical potential µ are background

parameters, β = 2πα, µ = α−1
α . Define I := − logZ, the state variables can be

worked out from (40) as follows:

E =

(

∂I

∂β

)

µ

− µ

β

(

∂I

∂µ

)

β

, (41)

S = β

(

∂I

∂β

)

µ

− I, (42)

Q = − 1

β

(

∂I

∂µ

)

β

. (43)

Therefore, we obtained the energy expectation value E = Tr(e−β(H−µQ̂)H)/

Tr(e−β(H−µQ̂)) by (41) and the charge expectation value Q = Tr(e−β(H−µQ̂)Q̂)/

Tr(e−β(H−µQ̂)) by (43). The thermal entropy S is given by

S = β(E − µQ)− I. (44)

In the presence of supersymmetry, both the inverse temperature β and the chemi-

cal potential µ are functions of a single variable α and therefore I is considered

as follows:

Iα := I[β(α), µ(α)]. (45)
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The supersymmetric Rényi entropy is defined as follows:

S̄α =
α

1− α

(

I1 −
Iα
α

)

=
α

1− α

∫ 1

α

∂α′

(

Iα′

α′

)

. (46)

From this expression, one can write

∂α

(

α− 1

α
S̄α

)

= ∂α

(

Iα
α

)

(47)

=
β(E −Q)− Iα

α2
. (48)

When Q̂ vanishes, the numerator is exactly the thermal entropy (44), which was

assumed to be positive in Ref. 18 to prove the inequality (7) of the Rényi entropy.

In the presence of supersymmetry, one may extend the positive thermal entropy

condition to be

S ≥ 2πQ. (49)

That is, the thermal entropy is bounded from below by the charge. While a general

field theory argument for this bound is still lacking, we give a holographic derivation

for CFTs having gravity duals in Appendix A. The holographic derivation shows

that this bound comes from the causality in gravitational physics. Then

β(E −Q)− Iα = S − 2πQ ≥ 0, (50)

which ensures that

∂α

(

α− 1

α
S̄α

)

≥ 0. (51)

In fact, one can rewrite the proved inequality (37) as ∂α(E−Q) ≤ 0. Note that the

first α-derivative of (50), ∂α(β(E−Q)− Iα) = β∂α(E−Q) ≤ 0, one can prove (50)

and therefore (38) with the minimal assumption (S − 2πQ)α→∞ ≥ 0.

We are left to prove (39). Given the non-positivity of the second derivative of

(α− 1)S̄α, (37), the only thing we have to show is that

∂α[(α− 1)S̄α]
∣

∣

∞
≥ 0. (52)

By using the last expression in (46), we have

∂α[(α− 1)S̄α]
∣

∣

∞
=

[
∫ α

1

∂α′

(

Iα′
α′

)

+ α∂α

(

Iα
α

)]

∞

(53)

≥ 0, (54)

where the last step follows from the positivity of ∂α
(

Iα
α

)

(47).

In summary, we have shown that the inequalities (36)–(39) hold for supersym-

metric Rényi entropy under the assumption that the thermal entropy is bounded
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from below by the charge at α → ∞. One can also express (36) in terms of the

thermal entropy and the energy:

S − 2πE + I1
(α− 1)2

≤ 0, (55)

which is equivalent to (α 6= 1)

∆S ≤ 2π∆E, (56)

where ∆S := S − Sα=1 and ∆E := E −Eα=1. (56) is the Bekenstein bound under

the deformation parametrized by δ = α − 1 in the spirit of Ref. 7. This bound is

independent of the charge therefore it can also be derived from the ordinary Rényi

entropy property. One may also write (39) equivalently as 2π(E −Q)− I1 ≥ 0.

4. Applications

Now we discuss the applications of the inequalities (36)–(39). Our main concern

is a spherical entangling surface in CFTs in flat space, the universal part of Rényi

entropy (or supersymmetric) is invariant on H
d−p×S

p
α for different integer p, where

α denotes a conical singularity and 1 ≤ p ≤ d, since these geometries are related

by Weyl transformations.12,37 We mainly focus on S
1
α × H

d−1 but it is equivalent

to working on other geometries such as conic sphere S
d
α. In order to avoid a sign

ambiguity coming from the regularization of the volume Vd−1 of the hyperbolic

space H
d−1, we instead consider sα := S̄α/Vd−1 as the true quantity in applying

the inequalities (36)–(39).

4.1. Even-dimensional SCFTs

• d = 2, N = (2, 2) SCFT

For these theories, S̄α has been computed from the partition function on branched

two sphere38 or the correlation function of twisted fields.39 S̄α is independent of

α and coincides with the entanglement entropy, whose log term is c
3 log

R
ǫ where

c is the 2d central charge and R is the length of a single interval. Therefore, the

inequalities (36)–(39) trivially hold

0 = 0, 0 = 0,
c

α2
≥ 0, c ≥ 0. (57)

• d = 4, N = 1 SCFT

For these theories, there is a conserved U(1) R-symmetry. We consider Lagrangian

theories in flat space with the entangling surface being a round 2-sphere with radius

R, S̄α enjoys a universal behavior at α ≪ 135

S̄α≪1 =
4

27α2
(3c− 2a)

V3

2π
, V3 = −2π log

R

ǫ
, (58)
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where V3 is the regularized volume of H3 and a, c are the Weyl anomaly coefficients

defined from the anomalous trace of the stress tensor in 4d curved background

〈T µ
µ 〉 = 1

(4π)2
(aE − cW 2). (59)

Equation (58) was derived from the free field computation with a nontrivial R-

symmetry background and shown35 to be universal for SCFTs by matching to the

4d supersymmetric Casimir energy43 on an extremely squashed sphere. Plugging

(58) into the four different inequalities (36)–(39), one obtains a single constraint

3c− 2a ≥ 0, which is the Hofman–Maldacena upper bound for general N = 1

SCFTs.44 Together with the unitarity bound c > 0 and the positivity of the uni-

versal spherical entanglement entropy SEE ∝ a,12,d we have

3

2
≥ a

c
≥ 0. (60)

Note that this is not as tight as the N = 1 Hofman–Maldacena bounds, 1
2 ≤ a

c ≤
3
2 . For recent approaches to a proof of Hofman–Maldacena bounds, see Refs. 46

and 47.

• d = 4, N = 2 SCFT

For these theories, the R-symmetry is SU(2)R ×U(1)R. The U(1)R may be broken

for the purpose of defining sphere partition functions.48 We turn on the background

field corresponding to U(1)J ⊂ SU(2)R to twist the Rényi entropy. Note that

we focus on the universal logarithmic term of the supersymmetric Rényi entropy.

For Lagrangian theories, S̄α has been determined completely in terms of 4d Weyl

anomaly coefficients a, c35

S̄α =

(

c

α
+ 4a− c

)

V3

2π
. (61)

This result was first derived from the free field computation and shown to be

universal35 by matching to the localization results in Refs. 30 and 49. By plug-

ging (61) into the inequalities (36)–(39), one obtains

c ≥ 0, c ≥ 0, c+ (2a− c)α ≥ 0, 4a− c+
c

α2
≥ 0. (62)

The large α limit of the third inequality gives 2a − c ≥ 0, which is the Hofman–

Maldacena lower bound for general N = 2 SCFTs. Together with a/c ≤ 3/2 one

obtains

1

2
≤ a

c
≤ 3

2
. (63)

The upper bound comes from describing N = 2 theories as N = 1 ones. Note

that (63) is not as tight as the N = 2 Hofman–Maldacena bounds, 1
2 ≤ a

c ≤ 5
4 .

Four-dimensional N = 4 Super-Yang Mills (SYM) always has positive a = c and its

dFor the entangling surface with a nontrivial topology, this positivity is not guaranteed.45

2250244-11

M
od

. P
hy

s.
 L

et
t. 

A
 2

02
2.

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/0

9/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 6, 2023 11:56 MPLA: OPEN ACCESS S0217732322502443 page 12

Y. Zhou

universal supersymmetric Rényi entropy can be derived either from the free field

computation or from the holographic computation on 5d BPS charged topological

AdS black holes.30

• d = 6, N = (2, 0) SCFT

For these theories, the R-symmetry group is SO(5) and the two Cartans are on

the equal footing. S̄α has been determined completely37 in terms of the 6d Weyl

anomaly coefficients a, c,50,51 which are defined from the anomalous trace of the 6d

stress tensor in curved background (with the normalization such that a free tensor

multiplet has units a and c)

S̄α
π2

V5
=

r21r
2
2

12

7a− 3c

4
(γ − 1)3 +

r1r2
12

c(γ − 1)2 +
1 + 2r1r2

12
c(γ − 1) +

7

12
a, (64)

where γ := 1/α and r1,2 ≥ 0 are the weights of the two chemical potentials with a

constraint r1+r2 = 1. This result was obtained by making use of S̄α of a free tensor

multiplet,36 the 2- and 3-point functions of the stress tensor multiplet50 and the 6d

supersymmetric Casimir energy52 on an extremely squashed sphere. The large N

limit of (64) agrees with the holographic result from 7d BPS charged topological

AdS black holes.37 Plugging (64) into (36)–(39) and demanding that the inequalities

hold for any positive α, one can get

a

c
≥ 3

7
, c ≥ 0. (65)

The lower bound of a/c together with the unitarity bound c > 0 also proves the

positivity of a.

4.2. Other examples

In odd-dimensional CFTs, the finite parts of the entanglement entropy and the

Rényi entropy (or supersymmetric) associated with a spherical entangling sur-

face in flat space are considered to be universal and physical. One can com-

pute them by mapping to a branched sphere S
d
α because there is no confor-

mal anomaly. For d = 3,N = 2 superconformal Chern–Simons gauge theo-

ries with M-theory duals, S̄α in the large N limit has the scaling S̄α/S̄1 =

(3α + 1)/4α, which satisfies all the four inequalities (36)–(39) as observed in

Ref. 26. For d = 5,N = 1 superconformal theory with AdS6 dual,53 S̄α in the

large N limit has the scaling32–34 S̄α/S̄1 = (19α2 + 7α + 1)/27α2, which also

satisfies the four inequalities as observed in Ref. 34. One can also numerically check

the inequalities for other 5d or 3d superconformal examples including ABJM with

finite N .

Appendix A. A Holographic Derivation of S ≥ 2πQ

We consider a (d+ 1)-dimensional BPS charged topological AdS black hole, which

is the gravity dual of the ground state in SCFTd on supersymmetric S
1
α × H

d−1
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and used to compute the holographic supersymmetric Rényi entropy. Below we

will take 5d N = 1 supersymmetric USp(2N) gauge theory with Nf fundamental

hypermultiplets and a single hypermultiplet in the antisymmetric representation

as an example, but the argument also goes well in other dimensions. The gravity

dual of the ground state of this 5d SCFT on S
1
α ×H

4 is given by a 6d BPS charged

topological AdS black hole32–34,54

ds2 = −H−3/2f dt2 +H1/2(f−1 dr2 + r2 dΩ2
4,−1),

f = −1 +
r2

R2
H2, H = 1 +

q

r3
,

(A.1)

together with the scalar and the gauge field

X = H−1/4, A =
(√

2(H−1 − 1) + µ
)

dτ, (A.2)

where dΩ2
4,−1 denotes the metric on H

4 and t = −iτ . We define a rescaled charge

κ = q/r3h, where the event horizon rh is the largest root of the equation f(rh) = 0.

The Hawking temperature, the Bekenstein–Hawking entropy, the total charge and

the chemical potential can be worked out as follows:

T =
1

2πR

2− κ

2(1 + κ)2
, (A.3)

S =
V4R

4G6
r3h, (A.4)

Q = −3
√
2κ

V4 r
3
h

16πG6
, (A.5)

µ =

√
2

κ−1 + 1
, (A.6)

where G6 is the 6-dimensional Newton constant and V4 is the regularized volume

of unit H4. We choose a new normalization for µ and Q such that when T = 1
2πRα ,

µ̃ takes the value α−1
α matching to that in (32). In this case, the normalized charge

is given by

Q̃ = −κ
V4 r

3
h

8πG6
. (A.7)

The horizon radius rh should be positive, rh > 0. Then the positivity of

S − 2πRQ̃ =
V4R

4G6
r3hH(rh) (A.8)

is guaranteed by the causality, since the sign flip of H(r) in the metric (A.1) is

forbidden before reaching to the horizon. H(rh) ≥ 0 ensures S ≥ 2πRQ̃. The same

argument goes well in other dimensions, d = 3, 4, 6. Note that we restored the length

scale R, which has been omitted in the body part. The holographic supersymmetric

Rényi entropy can be computed straightforwardly by employing the formula derived
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in Ref. 27. Recently, there is a holographic study of the Rényi entropy inequalities56

based on Ref. 55, it would be interesting to consider our bound S ≥ 2πRQ along

that way.
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42. G. Sárosi and T. Ugajin, arXiv:1603.03057 [hep-th].
43. B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli,

JHEP 1507, 043 (2015).
44. D. M. Hofman and J. Maldacena, JHEP 0805, 012 (2008).
45. E. Perlmutter, M. Rangamani and M. Rota, Phys. Rev. Lett. 115, 171601 (2015).
46. D. M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, JHEP 1606, 111

(2016).
47. Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, arXiv:1601.05453

[hep-th].
48. E. Gerchkovitz, J. Gomis and Z. Komargodski, JHEP 1411, 001 (2014).
49. N. Hama and K. Hosomichi, JHEP 1209, 033 (2012) [Addendum-ibid. 1210, 051

(2012)].
50. C. Beem, L. Rastelli and B. C. van Rees, JHEP 1505, 017 (2015).
51. C. Cordova, T. T. Dumitrescu and X. Yin, arXiv:1505.03850 [hep-th].
52. N. Bobev, M. Bullimore and H. C. Kim, JHEP 1509, 142 (2015).
53. A. Brandhuber and Y. Oz, Phys. Lett. B 460, 307 (1999).
54. M. Cvetic, H. Lu and C. N. Pope, Phys. Rev. Lett. 83, 5226 (1999).
55. X. Dong, arXiv:1601.06788 [hep-th].
56. Y. Nakaguchi and T. Nishioka, arXiv:1606.08443 [hep-th].

2250244-15

M
od

. P
hy

s.
 L

et
t. 

A
 2

02
2.

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/0

9/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://arxiv.org/abs/1603.03057
https://arxiv.org/abs/1601.05453
https://arxiv.org/abs/1505.03850
https://arxiv.org/abs/1601.06788
https://arxiv.org/abs/1606.08443

	Introduction
	Rényi Divergence
	Monotonicity of D
	Monotonicity of -1 D
	Monotonicity of (-1) D
	Convexity of (-1) D

	Inequalities of Supersymmetric Rényi Entropy
	Applications
	Even-dimensional SCFTs
	Other examples

	Appendix A.  A Holographic Derivation of S2Q

