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In this paper, an information theoretic approach to bounds in superconformal field
theories is proposed. It is proved that the supersymmetric Rényi entropy S is a mono-
tonically decreasing function of o and (@ — 1)S4 is a concave function of .. Under the
assumption that the thermal entropy associated with the “replica trick” time circle is
bounded from below by the charge at a — oo, it is further proved that both QTASQ and
(a—1)Sa monotonically increase as functions of . Because So enjoys universal relations
with the Weyl anomaly coefficients in even-dimensional superconformal field theories,
one therefore obtains a set of bounds on these coefficients by imposing the inequalities
of So. Some of the bounds coincide with Hofman—Maldacena bounds and the others are
new. We also check the inequalities for examples in odd-dimensions.

Keywords: Renyi divergence; superconformal bounds.

1. Introduction

Quantum information theoretic ideas, such as quantum entanglement, have re-
cently played significant roles in condensed matter physics, 3 particle physics*”
and string theory.® To characterize the entanglement in states of a quantum me-
chanical system, one often bipartitions the system and computes the entanglement
entropy, Sgg. Another interesting measure is the Rényi entropy, S,, which is a one-
parameter generalization of entanglement entropy and provides additional informa-
tion about the entanglement structure for the same bipartition and returns to Sgg
in the limit @ — 1. «v is called its order. In quantum field theory (QFT), one defines
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the entanglement entropy associated with a global state and a geometric region A
by tracing over the field variables outside A, creating a reduced density matrix pa
and then evaluating Sgg.? While Sgg (or S,) generally includes UV divergences
in QFT, its universal part contains important physical information, such as central
charges characterizing degrees of freedom.!? !4 In many aspects, these universal
terms are the counterparts of quantum-mechanical entropies, which satisfy a set of
inequalities inspired from information theory. One natural question is: What are
the QFT counterparts of these entropy inequalities and what are their roles? One
inequality of Sgg called strong sub-additivity plays significant roles in constructing
monotonically decreasing c-functions along RG flows, such as the two-dimensional
entropic c-function® and the three-dimensional F-function.%'4 Other applications
of information theoretic inequalities include refining Bekenstein bound,? deriving
the integrated null energy condition'® and deriving gravitational positive energy
conditions.6

In this paper, we concern the Rényi entropy inequalities related to its order «,
which were proven in information theory!'” and still hold in quantum mechanics.?
One therefore expects that these inequalities also play significant roles in QFT.18
However, the exact results of Rényi entropy are very rare in QFT (except for 2d
conformal field theories).!? 25 We therefore focus on a subset of field theories, super-
symmetric ones with a conserved R-symmetry. By twisting the ordinary Rényi
entropy to be supersymmetric,?® S, — S,, we are able to obtain exact results
at any coupling. For even-dimensional superconformal field theories (SCFTs), the
supersymmetric Rényi entropy S, enjoys universal relations with the Weyl anomaly
coeflicients. These relations are independent of the specific theory and therefore can
be used to bound the space of SCFTs. That is, imposing S,’s inequalities to these
relations gives a set of bounds on the Weyl anomaly coefficients. The key step in
this derivation is to find the inequalities satisfied by S,, which is the main topic of
this paper. The idea is that, S, can be expressed as the Rényi divergence of the
energy distribution from the R-charge distribution. By studying the a-dependence
of the Rényi divergence, one can get the inequalities satisfied by S,. It is proved
along this way that S, monotonically decreases as a function of a and (a —1)S,, is
a concave function of . On the other hand, S, of CFTs associated with a spherical
entangling surface is related to other physical quantities such as thermal entropy
S, energy E and charge @) defined on the hyperbolic space S, x H%~1.27 Under
the assumption that the thermal entropy is bounded from below by the charge at
a — 00, it is further proved that both O‘T_lga and (a—1)S, monotonically increase
as functions of a.

We will start by introducing Rényi divergence in information theory and study-
ing its behavior as a function of a, which will be used for the later proof of the

2To generalize the proof of classical information theoretic inequalities to quantum mechanical
ones, one simply diagonalizes density matrices p, o with unitary matrices, which does not change
the Rényi entropy (or Rényi divergence).
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supersymmetric Rényi entropy inequalities. Then the applications of these inequali-
ties in even dimensions will be discussed and the validity of them will be checked for
some odd-dimensional examples. A holographic derivation of the bound S > 27w Q
will be given in Appendix A.

2. Rényi Divergence

In information theory, Rényi divergence is related to Rényi entropy much like
Kullback—Leibler divergence (relative entropy) is related to Shannon entropy. For
a probability distribution P = (p1,...,pn), which satisfies p; > 0 and >, p; = 1,
the Shannon entropy is given by

- Zpi log pi, (1)
i=1

and the Rényi entropy is given by (o > 0)

1 n
1 o 2
1_a0g;pm (2)

which reduces to the Shannon entropy (1) in the limit & — 1 and can be con-

Hoz(P) =

sidered as the a-extension of the Shannon entropy. Let @) be another probability
distribution, @ = (q1,- . ., ¢n). The relative entropy between P and @ is given by

D(P||Q) = Zpl log (3)

which can be proven to be non-negative for two normalized distributions P and
@. Note that the relative entropy is regular only if ¢; = 0 implies p; = 0 for all
i, in another word P is absolutely continuous with respect to @, P < @. In our
later set up in QFT, P and @ will be identified as energy distribution (o< e=%) and
charge distribution (x e -« ), respectively. Therefore, P < @ is guaranteed by the
Bogomol'nyi-Prasad—Sommerfield bound. The a-extension of the relative entropy
(3) is the Rényi divergence

Do(P|Q) = IOgZp?qzl ° (4)
which was introduced by Rényi as a measure of information that satisfies almost the
same axioms as the relative entropy.2® In particular, the Rényi divergence reduces
to the relative entropy in the limit @ — 1. On the other hand, one may consider the
Rényi divergence (4) as a deformation of the Rényi entropy (2). Indeed, the Rényi

entropy can be expressed in terms of the Rényi divergence of P from the uniform
distribution U = (1/n,...,1/n):

Ha(P) = Ha(U) - Da(P”U) =logn — Da(P”U) (5)
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Let us study the a-dependence of the Rényi divergence. In order to understand
that, one may first look at the a-related Rényi entropy inequalities:

OaH, <0, (6)
6a<a;1Ha) >0, (7)
Oa((a—1)Hy) > 0, (8)
9a((a = 1)Ha) < 0. (9)

For the proof of these inequalities, see Ref. 17. One natural question is: Are there
similar inequalities like (6)—(9) for the Rényi divergence D,? We now prove the
following inequalities:

9aDa > 0, a >0, (10)
6a(a;1Da> >0, a>0, (11)
Ba((a—1)Dy) >0, a>1, (12)
02((a —1)Dy) >0, a > 0. (13)

Among these four inequalities, (10) and (13) have been proven by van Erven and
Harremoés in Ref. 29. We will prove the other two equations (11) and (12) and give
an alternative proof of (13). Below we also include the proof of (10) by van Erven
and Harremoés for completeness.

2.1. Monotonicity of D,

Now we prove 0, D, > 0. Let o < 8 be positive real numbers («, 8 # 1). Then for
x > 0, the function f(x) = 2P s strictly convex if v < 1 and strictly concave if
a > 1. Therefore by Jensen’s inequality

n B-15=
1 Pi p=t
Do =—— 10gz <—) Di (14)

1 e\
gﬁlog;<;) P (15)

= Dj. (16)

Note that the normalization condition ), ¢; = 1 is not necessary for the proof of
OaDq > 0. Jensen’s inequality states that, if f(x) is a convex function of z, then

E[f(z)] > f(E[2]), (17)
where E[X| means taking the average of variable X under a normalized probability
distribution. The inequality is reversed if f(z) is concave.
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2.2. Monotonicity of O‘T_lDa

Now we prove Ba(%Da) > 0. Let o < 8 be positive real numbers. Then for
2 > 0, the function f(z) = 2% is strictly concave. Therefore,

n B

a—1 1 pi\ ”?
D, = -1 — i 18
~ aogZ( ) g (18)

i=1 v

N
< %log; (%) ai (19)
g—1
-2"°p
5 Do (20)

where we have used Jensen’s inequality again in the second step. Note that the
normalization condition ), ¢; = 1 is now essential in this proof.

2.3. Monotonicity of (o« — 1) Dy

Now we prove dy((av — 1)D,) > 0 for a € [1,00). Given that 92((aw — 1)D,) > 0,
which will be proven in the following subsection, we only need to prove

9al(@ = 1)Dg)|a—1 = 0. (21)

This can be shown as follows:
9a((@—=1)Dq) = 0a <10gzp?Q3a> (22)
i=1

X (8) i log B (23)
Dict (%)a‘ﬁ

The o — 1 limit of the above formula can be evaluated as follows:

da((a = 1)Da)la—1 = D(P[|Q) = 0. (24)

In the last step we have used the non-negativity of the relative entropy, whose proof
requires the normalization conditions for both P and Q.

2.4. Convezxity of (a« — 1)D,

Now we prove 92 ((a—1)D,) > 0. We take one more derivative of (23) with respect
to

(- 1)D) — Sy %)aqi(iog %)2 i {Z?:l (%)aqi log g_}z .
S () o S ()
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Define a new distribution

. [e3
K
puim (26)
Dim1 (%) 2
which automatically satisfies the normalization ), p; = 1, one can rewrite (25) as
follows:

n 2 n 2
92((a = 1)Dy) = Zm(log%> - (Z pi log%> >0, (27)
i=1 v i=1 v

where the last step follows from the convexity of the function f(z) = 22 and Jensen’s
inequality.

3. Inequalities of Supersymmetric Rényi Entropy

In QFTs in flat space, the Rényi entropy can be used to measure the entanglement
spectrum between two regions A and A separated by the entangling surface X.
For a state characterized by a density matrix py on a spatial slice consisting of A
and A, one can define the Rényi entropy for A using the reduced density matrix

pa = Trz po,

1
So = log Trpj, (28)

1—«

where a > 0. S, in (28) is the field theory analogy of H,, in (2) in information theory.
Note that the previous definition now has been generalized to infinite-dimensional
spaces by replacing the probabilities by the reduced density matrix and the sum by
a trace. In Euclidean QFT, a state is characterized by a path integral with certain
boundary conditions. Therefore, (28) can be expressed in terms of path integrals
on a Euclidean spacetime with a conical singularity.

We focus on CFTs in RY4~1, the Rényi entropy (28) associated with a spher-
ical entangling surface (¥ = S%~2) can be computed by conformally mapping the
Euclidean conic space to a hyperbolic space S}, x H?~!, where the previous den-
sity matrix p4 now becomes p o< e"2™H by a unitary transformation and H is the
Hamiltonian quantized on H% .12 In this case, S, can be written as follows:

Tre—27rozH
Tr 67277H)0c ’

1
S = log Trp® =

l—«

1 (29)

1
— log (
where we have considered the normalization Trp = 1.

We are particularly interested in supersymmetric theories with a conserved U(1)
R-symmetry because the computation of S, is very challenging for interacting
theories. We also restrict ourselves to the spherical entangling surface without
considering the shape dependence. In the viewpoint of rigid supersymmetry, the
spacetime with a conical singularity breaks all the supersymmetries. Equivalently,
the space S}, x H?~! for a # 1 does not preserve any supersymmetry. To proceed
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further, we twist the Rényi entropy (29) into a supersymmetric one by turning
on a background R-symmetry gauge field along S.. This twisting has been first
studied in three dimensions?®:2” and then extended to other dimensions.? 3% The
supersymmetric twist can be written” as follows:

_ 1 Ty e—27a(H—pQ)
Sa =15 l08 (Tre—27H)a (30)
1 Tr e*Qﬂ'(O{H*Q(O{*l))
T 1-a log (Tre—2rH)e 7 (31)

where the chemical potential corresponding to the conserved U(1) R-symmetry
takes the value

a—1

p=— (32)

as required by the Killing spinor equations. Note that we choose the convention
such that the preserved Killing spinors’ R-charge » = 1/2 in general d-dimensions.
For details on how to determine p by solving Killing spinor equations on conic space
in various dimensions, d = 2, 3,4, 5,6, see Refs. 38, 27, 30, 34 and 36, respectively.
Obviously S, returns to Sgg at o — 1. By unitarily transforming the effective
density matrix in (31), one can rewrite S, in flat space by replacing H with the
modular Hamiltonian K and replacing Q with the conserved R-charge Q' defined
in the subregion A. Note that the trace now is taken over the Hilbert space of the
subregion A as (28). One can observe a connection between the supersymmetric
Rényi entropy and the Rényi divergence D, in (4). That is, by identifying

67271'1(

pA= Frommerr OA=e Y (33)

one can express S, in terms of the Rényi divergence® of p4 from o4

Sa

T log Tr pGoly @ (34)

—Da(palloa). (35)

bThis trace formula for supersymmetric Rényi entropy has passed nontrivial tests. For instance,
one can check a relation derived from it37

) v w2 HIr(d)(d - Vg 5 .
a=1 — d—1 (d-‘rl)' T 2d73(d—1)1—‘(%) J |

where Cr and Cj are defined from the stress tensor 2-point correlator and the R-current 2-point
correlator, respectively. Note that Q in this paper is equal to aQ in Ref. 37. The charged Rényi
entropy defined in Ref. 40 is not supersymmetric.

°Both K and Q’ are Hermitian in real-time quantization. The chemical potential is kept to be
real in our convention and it is unchanged under Weyl transformations. A path integral approach
to Rényi divergence of different distributions is given in Refs. 41 and 42.
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Note that to make the identification (35) we temporarily abandon the normalization
condition for o4. Also note that in our case [pa,04] = 0 because of [K,Q’] = 0,
therefore we do not distinguish Rényi divergence and quantum Rényi divergence.
As one can see from the previous section, the normalization condition for the second
distribution is not necessary for the proof of (10) and (13). Therefore, the following
two inequalities follow directly by replacing D, by —S, in (10) and (13),

9aSa <0, (36)
0a((a=1)Sa) < 0. (37)
This proves the monotonicity of S, and the concavity of (o — 1)S,,. One can think

that they are the analogies of the properties (6) and (9) of the Rényi entropy.
Now we study the other two analogies of (7) and (8) for S,:

aa(a = 1&) >0, (38)
«

da((a — 1)S,) > 0. (39)

As one can see, they cannot be deduced from (11) or (12), because the normalization
condition of o now is crucial.

We instead give a physical proof of (38) and (39) by following the way in Ref. 18.
We begin with the supersymmetric partition function Z on S}, x H¢ ™! with a U(1)
R-symmetry chemical potential. We work in grand canonical ensemble

Z[8, 4] = Ta[e 1], (40)
where the inverse temperature 8 and the chemical potential p are background
parameters, § = 27w, 4 = % Define I := —log Z, the state variables can be

worked out from (40) as follows:

_ (9L _n(of
E_<3ﬂ># ﬂ(ax)ﬁ

S_ﬂc;—é)u—l, (42)

(41)

- (),

Therefore, we obtained the energy expectation value F = Tr(e PH ﬂ‘Q:)H )/
Tr(efﬁ(H’“‘?)) by (41) and the charge expectation value Q = Tr(e AH-#RQ)Q)/
Tr(e A(H=1RQ)) by (43). The thermal entropy S is given by

S=BE-pQ)—1. (44)
In the presence of supersymmetry, both the inverse temperature 8 and the chemi-

cal potential p are functions of a single variable o and therefore I is considered
as follows:

I = I[B(c), p(@)]. (45)
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The supersymmetric Rényi entropy is defined as follows:

- a I, a ! I
Sa_l—a<h_g>_1—a/a8a/<o/)' (46)

From this expression, one can write

aa<a;15a) = B4 (%) (47)

:ﬁ(E_Q)_IOl. (48)

a2

When Q vanishes, the numerator is exactly the thermal entropy (44), which was
assumed to be positive in Ref. 18 to prove the inequality (7) of the Rényi entropy.
In the presence of supersymmetry, one may extend the positive thermal entropy
condition to be

S > 27Q. (49)

That is, the thermal entropy is bounded from below by the charge. While a general
field theory argument for this bound is still lacking, we give a holographic derivation
for CFTs having gravity duals in Appendix A. The holographic derivation shows
that this bound comes from the causality in gravitational physics. Then

BE-Q)—1I,=8—2rQ >0, (50)

which ensures that

aa<o‘ — 15a) > 0. (51)

«

In fact, one can rewrite the proved inequality (37) as 9, (F — Q) < 0. Note that the
first a-derivative of (50), 0, (B(F — Q) — I) = B0.(E — Q) < 0, one can prove (50)
and therefore (38) with the minimal assumption (S — 27Q)a—00 > 0.

We are left to prove (39). Given the non-positivity of the second derivative of

(. — 1)S,, (37), the only thing we have to show is that
dal(a—1)S4]|_ > 0. (52)

By using the last expression in (46), we have

Dal(0— 1)5,]|_ = Ula Do (%) +ada (%)L (53)
>0,

(54)

where the last step follows from the positivity of 0, (%) (47).
In summary, we have shown that the inequalities (36)—(39) hold for supersym-
metric Rényi entropy under the assumption that the thermal entropy is bounded

2250244-9
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from below by the charge at o — o0o. One can also express (36) in terms of the
thermal entropy and the energy:

S—Q?TE'i‘Il <0

-z = (58)

which is equivalent to (o # 1)
AS < 2rAE, (56)

where AS := 8 —S,-1 and AF := E — E,—1. (56) is the Bekenstein bound under
the deformation parametrized by § = a — 1 in the spirit of Ref. 7. This bound is
independent of the charge therefore it can also be derived from the ordinary Rényi
entropy property. One may also write (39) equivalently as 27(F — Q) — I; > 0.

4. Applications

Now we discuss the applications of the inequalities (36)—(39). Our main concern
is a spherical entangling surface in CFTs in flat space, the universal part of Rényi
entropy (or supersymmetric) is invariant on He—P x SP for different integer p, where
«a denotes a conical singularity and 1 < p < d, since these geometries are related
by Weyl transformations.!23” We mainly focus on S! x HY~! but it is equivalent
to working on other geometries such as conic sphere S?. In order to avoid a sign
ambiguity coming from the regularization of the volume V;_; of the hyperbolic
space HY™!, we instead consider s, := S,/Vy_1 as the true quantity in applying
the inequalities (36)—(39).

4.1. Even-dimensional SCFTs
e d=2, N =(2,2) SCFT

For these theories, S, has been computed from the partition function on branched
two sphere3® or the correlation function of twisted fields.?? S, is independent of
a and coincides with the entanglement entropy, whose log term is £ log % where
c is the 2d central charge and R is the length of a single interval. Therefore, the
inequalities (36)—(39) trivially hold

0=0, 0=0, >0, c¢>0. (57)
e d=4, N =1SCFT

For these theories, there is a conserved U(1) R-symmetry. We consider Lagrangian
theories in flat space with the entangling surface being a round 2-sphere with radius

R, S, enjoys a universal behavior at o < 13°
. 4 Vs R
w1l = —=(3c—2a)—, V3= —-2rmlog—, 58
<1 = 5o (3¢ —2a)5—, Vs mlog — (58)

2250244-10
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where V3 is the regularized volume of H? and a, ¢ are the Weyl anomaly coefficients
defined from the anomalous trace of the stress tensor in 4d curved background

(aE — cW?). (59)

w1
T = Ty

Equation (58) was derived from the free field computation with a nontrivial R-
symmetry background and shown3® to be universal for SCFTs by matching to the
4d supersymmetric Casimir energy*® on an extremely squashed sphere. Plugging
(58) into the four different inequalities (36)—(39), one obtains a single constraint
3¢ — 2a > 0, which is the Hofman-Maldacena upper bound for general N' = 1
SCFTs.** Together with the unitarity bound ¢ > 0 and the positivity of the uni-

12,d

versal spherical entanglement entropy Sgg « a, we have

>

N | o
ol

> 0. (60)

Note that this is not as tight as the A/ = 1 Hofman—Maldacena bounds, % <2<
%. For recent approaches to a proof of Hofman—Maldacena bounds, see Refs. 46
and 47.

e d=4, N =2SCFT

For these theories, the R-symmetry is SU(2)g x U(1)g. The U(1)r may be broken
for the purpose of defining sphere partition functions.*® We turn on the background
field corresponding to U(1); C SU(2)g to twist the Rényi entropy. Note that
we focus on the universal logarithmic term of the supersymmetric Rényi entropy.
For Lagrangian theories, S, has been determined completely in terms of 4d Weyl
anomaly coefficients a, ¢

_ c V3

So = <E+4a—c>%. (61)
This result was first derived from the free field computation and shown to be
universal®®> by matching to the localization results in Refs. 30 and 49. By plug-
ging (61) into the inequalities (36)—(39), one obtains

c>0, ¢>0, ¢+ (2a—c)a>0, 4a—c+%20. (62)
@

The large o limit of the third inequality gives 2a — ¢ > 0, which is the Hofman-
Maldacena lower bound for general N' = 2 SCFTs. Together with a/c < 3/2 one
obtains

<

ol

<

N W

. (63)

N =

The upper bound comes from describing A/ = 2 theories as A/ = 1 ones. Note
that (63) is not as tight as the A/ = 2 Hofman-Maldacena bounds, % <2< %.
Four-dimensional A = 4 Super-Yang Mills (SYM) always has positive a = ¢ and its

dFor the entangling surface with a nontrivial topology, this positivity is not guaranteed.45
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universal supersymmetric Rényi entropy can be derived either from the free field
computation or from the holographic computation on 5d BPS charged topological
AdS black holes.3°

e d=6, N =(2,0) SCFT

For these theories, the R-symmetry group is SO(5) and the two Cartans are on
the equal footing. S, has been determined completely®” in terms of the 6d Weyl
50,51 which are defined from the anomalous trace of the 6d
stress tensor in curved background (with the normalization such that a free tensor

anomaly coefficients a, ¢,

multiplet has units @ and ¢)

- m  rirdTa—3c

T s Mz e LA2mrme s
V=12 1 (y—1)"+ 3 =) ey 1)+12a7 (64)

where v := 1/ and r; 2 > 0 are the weights of the two chemical potentials with a
constraint 1 +79 = 1. This result was obtained by making use of S., of a free tensor
multiplet,3® the 2- and 3-point functions of the stress tensor multiplet®® and the 6d
supersymmetric Casimir energy®? on an extremely squashed sphere. The large N
limit of (64) agrees with the holographic result from 7d BPS charged topological
AdS black holes.?” Plugging (64) into (36)—(39) and demanding that the inequalities
hold for any positive «, one can get

% > %, c> 0. (65)
The lower bound of a/c together with the unitarity bound ¢ > 0 also proves the
positivity of a.

4.2. Other examples

In odd-dimensional CFTs, the finite parts of the entanglement entropy and the
Rényi entropy (or supersymmetric) associated with a spherical entangling sur-
face in flat space are considered to be universal and physical. One can com-
pute them by mapping to a branched sphere S? because there is no confor-
mal anomaly. For d = 3,N = 2 superconformal Chern—Simons gauge theo-
ries with M-theory duals, S, in the large N limit has the scaling S,/S; =
(3ar + 1)/4«, which satisfies all the four inequalities (36)—(39) as observed in
Ref. 26. For d = 5,N' = 1 superconformal theory with AdSg dual,®® S, in the
large N limit has the scaling®? 34 S,/S; = (1902 + 7a + 1)/27a2, which also
satisfies the four inequalities as observed in Ref. 34. One can also numerically check
the inequalities for other 5d or 3d superconformal examples including ABJM with
finite V.

Appendix A. A Holographic Derivation of S > 27wQ

We consider a (d + 1)-dimensional BPS charged topological AdS black hole, which
is the gravity dual of the ground state in SCFTy on supersymmetric S}, x HA4~?
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and used to compute the holographic supersymmetric Rényi entropy. Below we
will take 5d N' = 1 supersymmetric USp(2N) gauge theory with Ny fundamental
hypermultiplets and a single hypermultiplet in the antisymmetric representation
as an example, but the argument also goes well in other dimensions. The gravity
dual of the ground state of this 5d SCFT on S}, x H* is given by a 6d BPS charged
topological AdS black hole3234.54

ds2 = _H73/2f de? 4 Hl/Q(ffl dr? + r2 dQéZI,—l)’

) (A1)
L= q
f:—l—i-ﬁH , H:1+r_3’
together with the scalar and the gauge field
X=m" A= (VA(H 1)+ p) dr, (A.2)
where infl denotes the metric on H* and t = —iT. We define a rescaled charge

k = q/r3, where the event horizon ry, is the largest root of the equation f(ry) = 0.
The Hawking temperature, the Bekenstein-Hawking entropy, the total charge and
the chemical potential can be worked out as follows:

1 2—K

= SRALT (A.3)
S = ot (A4)
0=t/ (+
e V2 (A6)

k=141’
where Gg is the 6-dimensional Newton constant and Vj is the regularized volume

1
2mRa?
fi takes the value “=1 matching to that in (32). In this case, the normalized charge

of unit H*. We choose a new normalization for y and @ such that when T' =

is given by
~ V4 7‘}31
=— . A7
Q " 87TG6 ( )
The horizon radius r, should be positive, r, > 0. Then the positivity of
~  WiR
S —27RQ = ——r3 H(ry) (A.8)
4G

is guaranteed by the causality, since the sign flip of H(r) in the metric (A.1) is
forbidden before reaching to the horizon. H(rp) > 0 ensures S > 27TRQ. The same
argument goes well in other dimensions, d = 3,4, 6. Note that we restored the length
scale R, which has been omitted in the body part. The holographic supersymmetric
Rényi entropy can be computed straightforwardly by employing the formula derived
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in Ref. 27. Recently, there is a holographic study of the Rényi entropy inequalities®®
based on Ref. 55, it would be interesting to consider our bound S > 27 R(Q along
that way.
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