
University at Albany, State University of New York University at Albany, State University of New York 

Scholars Archive Scholars Archive 

Electronic Theses & Dissertations (2024 - 
present) The Graduate School 

Fall 2024 

Informational Principles and Structures in Quantum Theory Informational Principles and Structures in Quantum Theory 

Yang Yu 
University at Albany, State University of New York, yyu9@albany.edu 

The University at Albany community has made this article openly available. 

Please sharePlease share how this access benefits you. 

Follow this and additional works at: https://scholarsarchive.library.albany.edu/etd 

 Part of the Quantum Physics Commons 

Recommended Citation Recommended Citation 
Yu, Yang, "Informational Principles and Structures in Quantum Theory" (2024). Electronic Theses & 
Dissertations (2024 - present). 64. 
https://scholarsarchive.library.albany.edu/etd/64 

This work is licensed under a Creative Commons Attribution 4.0 International License. 
This Dissertation is brought to you for free and open access by the The Graduate School at Scholars Archive. It has 
been accepted for inclusion in Electronic Theses & Dissertations (2024 - present) by an authorized administrator of 
Scholars Archive. 
Please see Terms of Use. For more information, please contact scholarsarchive@albany.edu. 

https://scholarsarchive.library.albany.edu/
https://scholarsarchive.library.albany.edu/etd
https://scholarsarchive.library.albany.edu/etd
https://scholarsarchive.library.albany.edu/grad-school
https://albany.libwizard.com/f/open-access-feedback
https://scholarsarchive.library.albany.edu/etd?utm_source=scholarsarchive.library.albany.edu%2Fetd%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=scholarsarchive.library.albany.edu%2Fetd%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.library.albany.edu/etd/64?utm_source=scholarsarchive.library.albany.edu%2Fetd%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://scholarsarchive.library.albany.edu/terms_of_use.html
mailto:scholarsarchive@albany.edu


INFORMATIONAL PRINCIPLES AND STRUCTURES IN
QUANTUM THEORY

by

Yang Yu

A Dissertation

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

College of Arts & Sciences

Physics

Fall 2024



ABSTRACT

This thesis examines the concept of information within the realm of quantum physics, in-
vestigating the nuanced relationship between information and physical laws as applied to
quantum systems. With no consensus on a single definition of information in the physical
sciences, our exploration is partitioned into two significant studies, each addressing distinct
aspects of information in quantum contexts.

In the first study, we concentrate on the information that can be obtained from mea-
surement results on identical quantum systems. The traditional approach of using Shannon
entropy is limited due to its applicability primarily to discrete probability distributions. By
incorporating a Bayesian update framework, we redefine the process of information gain,
which allows for a more nuanced understanding of information dynamics within quantum
measurements. Key findings from this approach include a novel expression for quantifying
information gain and a principle for the selection of appropriate priors, specifically employ-
ing Jeffreys’ prior for binomial distributions. The study also highlights the effectiveness of
Jeffreys’ binomial prior in optimizing quantum communication scenarios, such as maximiz-
ing the information deciphered by a receiver (Bob) from a sender’s (Alice) message-encoded
qubits.

The second study shifts focus to the foundational aspects of quantum theory itself, em-
ploying an informational approach to reconstruct the theory’s underlying structure. Here,
quantum measurements are conceptualized as finite outcome questions linked through clas-
sical logical operations within systems extending beyond binary dimensions. By introducing
intuitive informational postulates, we achieve a partial reconstruction of quantum theory,
particularly within systems characterized by prime number dimensions. This reconstruc-
tion yields rich connections between classical logical gates, generalized Pauli matrices, and
mutually unbiased bases, enhancing our comprehension of how information flows during
measurements on maximally entangled systems.
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CHAPTER 1

Introduction

1.1 Background and Significance

Applying information theory to quantum mechanics has opened new avenues for under-
standing the foundations of quantum theory. Understanding how information is quantified
and processed in quantum systems has profound implications for both theoretical research
and practical applications, such as quantum computing and quantum cryptography. This
thesis presents two contributions to this evolving field, each addressing fundamental aspects
of information in quantum systems.

1.2 Research Problem and Questions

The first piece of work, published in Information1, delves into the operational per-
spective of information gained from quantum measurements. It scrutinizes the appropriate
measures for quantifying information, especially when dealing with continuous probability
distributions, and proposes new informational postulates to guide the selection of these
measures. The second piece of work, available on arXiv2, and presented3 at “Quantum Re-
construction and Beyond” in August 2023, Graz, Austria, extends the discussion to higher-
dimensional quantum systems. It explores the structure of quantum measurements through
the lens of information theory, proposing a new construct termed ”quantum question struc-
ture” to understand the complex relationships between measurements and the states they
reveal.

1https://doi.org/10.3390/info15050287
2https://arxiv.org/abs/2402.19448
3An online recording of the presentation is also available: https://youtu.be/pBgIEX1j9vg?si=

UsqLJa8kbgBLDrsg

1

https://doi.org/10.3390/info15050287
https://arxiv.org/abs/2402.19448
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https://youtu.be/pBgIEX1j9vg?si=UsqLJa8kbgBLDrsg


1.3 Objectives and Scope

The objective of this thesis is to deepen our understanding of how information is
quantified and utilized in quantum systems. Specifically, it aims to:

1. Propose and validate a physically intuitive postulate for determining the information
gained from quantum measurements.

2. Investigate the applicability of two different measures of information gain, differen-
tial and relative information gain, in quantum tomography and in the foundations of
quantum theory.

3. Apply the formalism of information theory to higher-dimensional quantum systems,
introducing and exploring the concept of quantum question structures.

4. Establish connections between quantum question structures and conventional quan-
tum mechanics, particularly in the context of mutually unbiased bases (MUBs) and
generalized Pauli matrices.

1.4 Structure of the Thesis

This thesis is structured to guide the reader from the fundamental principles of infor-
mation theory to advanced applications in quantum mechanics, organized as follows:

• Chapter 2: Brief Introduction of Information Theory
This chapter provides an overview of information theory, covering essential concepts
such as probability, Shannon entropy, mutual information, and Kullback-Leibler di-
vergence. It also introduces the mathematical foundations and key theorems that
underpin the subsequent discussions and analyses in the thesis.

• Chapter 3: Importance of Information Theory in Physics
This chapter explores the historical development and interplay between information
theory and physics, with a particular focus on the impact of quantum theory. It
examines how information-theoretic concepts have been integrated into the study of
physical systems and highlights key milestones and contributions in the field. The

2



chapter also addresses the role of information in foundational questions of quantum
mechanics and the evolution of these ideas over time.

• Chapter 4: Operational Perspective on Quantum Information Gain
Here, we present the first piece of work, focusing on the quantification of informa-
tion gained from quantum measurements. The chapter discusses potential informa-
tion measures based on Kullback-Leibler divergence and introduces new informational
postulates to resolve ambiguities in different choices of information measure. It also
examines the differential and relative information gain measures, analyzing their ap-
plicability and limitations in both tomographic applications and the reconstruction of
quantum theory. Numerical and asymptotic analyses are provided to illustrate the
behavior of these measures under different conditions, and the chapter concludes with
a comparison of the two measures and the proposal of the Principle of Information
Increase.

• Chapter 5: Quantum Question Structures
This chapter presents the second piece of work, applying information theory to higher-
dimensional quantum systems. It introduces the concept of quantum question struc-
tures and explores their implications for understanding the relationship between mea-
surements and the states they reveal. The chapter begins with a discussion of spin-1

2

particles and the formalism of quantum tomography, then generalizes these ideas to
higher-dimensional systems. A novel informational approach to the reconstruction of
quantum theory is discussed without using traditional linear space language. The
chapter also provides a connection between the new theoretical constructs and tra-
ditional quantum mechanics, using mutually unbiased bases (MUBs) and generalized
Pauli matrices to translate abstract results into more familiar terms.

In Chapter 6, we provide a concise summary and suggest potential paths for future
research. This conclusion chapter encapsulates the thesis’s main contributions, detailing
key findings and their significance in the integration of information theory with quantum
mechanics.

3



PART I

Background
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CHAPTER 2

A Brief Introduction to Information Theory

2.1 The Concept of Probability

The main focus of this thesis is the relation between information theory and physics.
The key connection between information theory and physics is probability which plays an
important role in both fields. In this introduction, we introduce the basis of probability as
well as the conventions we are using.

2.1.1 Bayesian Probability

In the following context, when we refer to probability, we are specifically addressing the
degree of belief in the truth of a proposition under certain conditions. To illustrate, consider
the proposition ‘It will rain tomorrow.’ Initially, one might assign a 50% probability based
on typical weather patterns. However, upon receiving a weather forecast predicting rain, one
might update this probability to 80%, utilizing Bayes’ theorem to adjust one’s belief in light
of new evidence. When receiving new related knowledge to the target proposition, we may
update the degree of belief via Bayes’ theorem:

Pr (A|B) =
Pr (B|A) Pr (A)

Pr (B)
(2.1)

Pr (A) is the degree of belief about the truth of proposition A before knowing the
condition B, which is also called the prior probability of A. Once we are given the condition
B then the updated degree of belief on A, Pr (A|B), is the the posterior probability of A.
Pr (B|A) is the likelihood, describing the degree of belief of B assuming A is true, and Pr (B)

is the marginal likelihood or ‘evidence’. Proposition B is a related proposition to A which
usually plays the role as “data”. For example proposition A could be “The value of a physical
constant χ is equal to r” and B may be the observation results related to the constant χ.

This type of probability is Bayesian probability. It describes a dynamic process and
enjoys a great benefit of generality. In comparison to the ensemble-based probability which is

5



defined over the frequencies over large number of identical trials, we can describe propositions
that cannot be associated with a proper ensemble. Some examples are: “Tomorrow will be
raining.”, “The physics laws will be valid in the next 10 minutes.” or “The nearby donut shop
will be closed early in the rest of the week.” We may gradually update our degree of belief on
different propositions once receiving new evidence. The evidence could be the detailed data
from measurements, or just another strong belief about a certain theory. In the situation
that there is no confusion about the underlying conditions or assumptions, we may just use
the usual phrase “probability of a proposition”.

2.1.2 Cox’s Axioms

Cox’s axioms [15] lay the foundation for a mathematical framework of probability that
aligns with the principles of Bayes’ theorem, ensuring logical consistency and coherence in
probabilistic reasoning. These axioms state that probabilities must satisfy certain logical
properties. More specifically, Cox’s axioms assert that probabilities are represented by real
numbers, and that these numbers obey laws of combination that mirror the Boolean laws
that apply to propositions.

Non-negativity and normalization The probability should be a non-negative real num-
ber. Moreover, the range of probability is between 0 and 1: 0 ≤ Pr (A|I) ≤ 1. By con-
vention we use I to represent all our background knowledge about the proposition A. The
two extreme cases, probability with values 0 and 1, are only happens when we have full
certainty that the proposition is false or true. For example, if we include the Peano axioms
as part of the background knowledge I, then we may have the following two probabilities:
Pr (“1 + 1 = 2”|I) = 1, Pr (“1 + 1! = 2”|I) = 0

Product rule Consider two propositions a and b and their logical combination a AND b

or a · b. Cox proposes an axiom that there exists a function F such that

Pr (a · b|I) = F ( Pr (a|b · I), Pr (b|I))

This function F is assumed to be consistent under boolean algebra of the propositions.

Sum rule Cox also proposes another function S such that a proposition A and its

6



negation ¬A have the following relation

Pr (A|I) = S( Pr (¬A|I))

This function S shall also be consistent under boolean algebra of the propositions.

These axioms are pivotal because they guarantee that probabilities derived from them
are logically sound and applicable across various fields. For instance, violating the non-
negativity axiom (assigning a probability less than 0) would lead to absurd outcomes, such
as predicting events with negative chances of occurring, undermining the framework’s logical
structure. Followed by Cox’s axioms, the Cox’s theorems provide the basic mathematical
justifications for Bayesian probability on reasoning the probability of propositions. Any
probability measure that satisfies the above axioms will have the following results:

1. 0 ≤ Pr (A|I) ≤ 1, Pr (”True”|I) = 1

2. Pr (A,B|I) = Pr (A|B, I)× Pr (B|I)

3. Pr (A|I) + Pr (¬A|I) = 1

2.1.3 Subjective Bayesianism vs Objective Bayesianism

Both Cox’s theorems and Bayes’ theorem do not specify how to assign the value for
different probabilities, particularly how to choose prior probabilities.

Subjective Bayesian. For the same proposition, different agents might assign varying
prior probabilities based on their unique perspectives and information. We must admit that
there are many propositions that we cannot have common choice of prior, due to the various
background knowledge of different agents. Even worse, sometimes we even cannot express
and quantify the hidden assumptions or background knowledge. For example, we may choose
an arbitrary coffee shop in the map and determine the probability that “this shop will be
open tomorrow”. The prior probability of this proposition reflects personal belief and prior
experience. This situation is the subjective Bayesian approach, where the probability of a
proposition is agent-dependent rather than objective fact.

7



Objective Bayesian. As long as we are dealing with physics which strives to minimize
subjective variations, we tend to use objective Bayesian probability. That is, we consider
agents and propositions which are such that, given the same background knowledge different
agents will have the same degree of belief about a proposition. To achieve objectivity, we
restrict the range of propositions, so that the propositions are only physics related and can
be clearly interpreted. We also stipulate that, all the external knowledge we use for Bayesian
updating consists of either the physical theory or measurement results. For example, we may
set the non-relativistic quantum theory as background knowledge and give the knowledge
that a qubit is prepared in the computational basis {|0〉 , |1〉}, under this condition, different
agents may determine the probability of the proposition “A Stern-Gerlach apparatus aligned
at the same direction of computational basis and this qubit will be projected at up direction”
with exactly the same result, which is 1.

Another key point is the choice of prior probabilities. In the situation that we cannot
use physical laws to derive the probability of a proposition, we may need to use Bayes’
theorem to update the probability from evidence, but the prior probabilities are needed to
start this updating process. The prior probabilities can be determined via certain principles,
depending upon the situation. Unfortunately there is no broadly accepted procedure for
choosing priors. As long as we are mainly dealing with physical propositions, our least hope
is to find some procedure that is physically meaningful. With a clear proposition, quantifiable
external knowledge, and principle-based prior probabilities, we may expect different agents
will arrive at the same result if given the same conditions, and the consequences of the
derived posteriors will also be consistent with subsequent physical observations.

2.1.4 Probability in Classical Mechanics

The classical mechanics is essentially deterministic. When evolution of the parameters
that characterize a system is not difficult to calculate, there is no room for probability.

When dealing with a system where the phase space dimensionality is vast, on the scale
of Avogadro’s number, tracking its evolution using Newtonian mechanics becomes impracti-
cable. Instead, we have to use statistical mechanics to study the collective behavior of the
system. Probability plays a fundamental role in statistical mechanics, The use of probability
theory in statistical mechanics allows us to make predictions about the macroscopic behavior
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of a system based on the behavior of its constituent particles. For example, the probability of
a particle having a particular velocity distribution can be used to calculate the temperature
of a gas, or the probability of a particular arrangement of particles can be used to calculate
the entropy of a system.

One of the key concepts in statistical mechanics is the Boltzmann distribution, which
gives the probability of finding a particle in a particular energy state. Using the Boltzmann
distribution, we can calculate many important thermodynamic properties of a system, such as
its temperature, pressure, and entropy. For example, the temperature of a gas can be related
to the average kinetic energy of its particles, which can be calculated from the Boltzmann
distribution. Similarly, the pressure of a gas can be related to the probability of particles
colliding with the walls of a container, which can also be calculated from the distribution.

Another important application of probability in classical mechanics is the analysis of
measurement uncertainty. Though ideally the value of every quantity in classical mechanics
can be precisely measured, in practice there is always some uncertainty associated with the
measurement. This uncertainty can arise from a variety of sources, including the limitations
of the measurement instrument and environment fluctuations. Probability distributions
are used to model these measurement uncertainties. In general the Gaussian distribution
is widely chosen for modeling. For example, if we try to measure a certain quantity in
many trials, the standard deviation of the results will be represented as the measurement
uncertainty.

2.1.5 Probability in Quantum Mechanics

The Born Rule. In quantum mechanics, the state of a system is described by a wave
function. The wave function itself is not directly observable, but encodes the information
of the outcome probabilities of all observables. This connection is formalized by one of the
fundamental postulates of quantum mechanics, the Born rule. Consider an observable Â =∑

i λip̂i where λi is the eigenvalue of Â and p̂i is the corresponding projection operator for
each λi. If we know the wave function |ψ〉 of a system very well, then we could calculate the
outcome probability of Â as:

Pr (“Â, λi”| |ψ〉 , I) = 〈ψ| p̂i |ψ〉 (2.2)
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The proposition “Â, λi” means “perform an measurement of Â, yielding outcome λi” and I

denotes our background knowledge which include the postulates of quantum mechanics.

In the more general case, the system may not be in pure state. This happens when we
consider a subsystem from an ensemble which contains different pure states of subsystems
or the system is a subsystem of an entangled system. A density matrix ρ̂ is then needed to
describe the state of the system. In this case the Born rule becomes:

Pr (“Â, λi”|ρ̂, I) = tr ρ̂p̂i (2.3)

We note that that the Bayesian probability is still important in quantum mechanics,
especially when applying Born rule to calculate outcome probabilities of observables. If
different agents were given the same condition, say the wave function or density matrix of a
system, they will arrive at the same results of outcome probabilities.

A key assumption that links quantum theorem to experiment is that the probability
from Born rule is related to long-run frequencies, provided 1) we can prepare an ensemble
of identical quantum systems; 2) each measurement is a projection and isolated from the
environment; 3) the numbers of both prepared systems and performed measurements are
sufficiently large. Indeed, if we really treating these conditions seriously, we might say that
this assumption can be never valid. Of course we can always make reasonable approximations
of these conditions, and the probabilities can then be checked via frequencies.

One common example would be single-photon double slit experiment. In this experi-
ment, photons are sent one by one toward a barrier with two slits, and the locations where
they strike a screen behind the slits are recorded. An interference pattern will be gradually
formed on the screen over time due to the interference of photons, and this pattern can be
predicted using the Born rule, which tells us that the probability of a photon arriving at a
particular point on the screen is proportional to the square of the sum of the amplitudes of
the two paths (through each of the slits). Another example will be the measurement of cross
sections in particle collisions. If we collide particles many times, the relative frequency of a
particular process happening should converge to the value given by the cross section.

However, preparing identical systems and isolating the effect from environment are
very challenging for most quantum systems. Most of the direct verification of Born rule are
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conducted over low-dimensional systems like qubits. Despite these difficulties, the Born rule
has been indirectly confirmed in numerous experiments over the course of many decades.
The success of quantum mechanics in predicting experimental results in a wide range of
systems and scales, from microscopic particles to macroscopic superconductors, is seen as a
strong confirmation of the Born rule.

Quantum Tomography. Quantum tomography, including state tomography and process
tomography, are techniques for reconstructing the state or unitary process in a quantum
system respectively. They can each be regarded as an inversion of the Born rule.

Quantum state tomography involves making many measurements on a quantum system
that is prepared in the same state repeatedly [33, 23, 32, 58]. Each type of measurement gives
some information about the state, and by making enough different types of measurements,
one can reconstruct the full state. In other words, we use the Born rule in reverse: instead
of using a known state to predict the probabilities of different measurement outcomes, we
use known measurement outcomes to infer the state.

Similarly, quantum process tomography involves performing many different sequences
of operations on a quantum system and making measurements to determine how the system
evolves under these operations [44]. Again, this is effectively using the Born rule in reverse
to infer the process from the measurement outcomes.

2.1.6 Relation to Kolmogorov Probability Theory

Besides Bayesian probability theory founded upon Cox’s axioms, Kolmogorov probabil-
ity theory is also widely used in many situations. Here we briefly summarize Kolmogorov’s
approach, and indicate that we do not adopt this approach to probability theory. Kol-
mogorov’s framework is built on three axioms that define the probability space (Ω,F , P ),
where Ω is the sample space, F is a σ-algebra of events, and P is a probability measure.

One defect of Kolmogorov’s probability theory is the limitation of conditional proba-
bility. The probability of event A under the condition B is defined as:

P (A|B) ≡ P (A ∩B)

P (B)
(2.4)
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Noticing that both A and B are in the same sample space, which limits its applicability. In
quantum mechanics, the probability of an event is always related to the context, and the
context may not be encoded as an event in sample space. A typical example is that the given
condition is “the state of a qubit is |+〉” and the event is “performing measurement of σ̂z
and obtaining outcome −1”. This probability is calculated via Born’s rule which is | 〈1|+〉 |2

and cannot be expressed in terms of Kolmogorov’s conditional probability.

Even if we assume A and B are two events of observable measurements, say A =“per-
forming a measurement of Â and obtaining outcome λA” B =“performing a measurement
of B̂ and obtaining outcome λB”, we cannot use this conditional probability either, since
Â and B̂ may not commute and the order of the measurements will yield different prob-
abilities. This suggests that the sample space language may not be suitable for quantum
measurements, and the flexibility of Bayesian probability is important.

2.1.7 Probability-Based Ideal Measurement

In practice there are no ideal measurements, the precision of measuring tools is bounded.
Nevertheless it is still interesting to consider abstract models of such ideal devices.

Classical Viewpoint. Every measurement of a physical quantity can be abstracted into a
process of comparison. A common example would be the measurement of length of a table,
in which we compare the target with a standard meter ruler to obtain the length. This is
one of the few examples in which we can take direct measurement of a quantity.

Most physical quantities cannot be measured directly, in which case we may use the
relations between different quantities and measure the value of a quantity which can be
directly measured to infer the value of the target quantity. A typical example would be the
measurement of the table’s mass. There are various tools to measure the table’s mass, yet
none of them can directly measure the mass. The gravitational mass is usually measured
via the weight of the object (Fg = mg), and the inertial mass can be measured by angular
frequency of simple harmonic motion (ω =

√
k
m

) by attaching the object on an ideal spring.
In some sense, we can even convert the measurement of an object’s mass into a measurement
of length: the weight can be reflected by the change of an ideal spring’s length, or the angular
frequency of harmonic motion can be obtained via the change of length of a spring over a
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fixed time period.

Noticing that the measurement of length is just a process of comparison, or even a
process of counting how many integer multiple of the smallest scale of the measuring tool.
This suggests that all measured values are in fact integers. More general, according to the
latest definition of SI units, all units of physical quantities can be “derived” from time and
some necessary constants. The unit of time is defined as an integer multiple of a constant
value. This suggests that other quantities are also expressible in terms of an integer multiple
of some constant value.

Yet usually we use real numbers to represent the value of a physical quantity. In an
extreme case, if the value is equal to an irrational number, how could the ideal device obtain
that number? One could imagine that such an ideal device could divide the smallest scale
of a “length” indefinitely. However, such a number cannot be displayed since it has infinite
many digits.

Quantum Viewpoint. From a quantum physical viewpoint, we could convert the measur-
ing of length into a process of measuring probability. Consider a Stern-Gerlach measurement
of a spin-1

2
particle. Assume we prepare a beam of particles in the state |ψ〉 = |0〉 and the

projection apparatus is configurated at an angle of θ relative to the z-axis of the particle.
For each of the prepared particles, there is a probability p = cos2 θ

2
for this particle to be de-

flected “up”. This probability can be measured via counting and the value of this probability
is related with the angle θ of the apparatus set up. This angle can be related to a length.
Since every dimensional physical quantity can be indirectly measured via a measurement of
some length, and this length is now corresponding to a probability.

This probability p is a real number between 0 and 1, and it is also “measurable”. Now
assume the ideal device could take infinite many trials of the projection, thus yielding an
infinite sequence of frequencies. (This time we obtain a collection of rational numbers.)
Since Q is dense in R, there exists a sequence of rational numbers {fn} such that

lim
n→∞

fn = p. (2.5)

Each fn will be one of the frequencies in these infinite many trials. This process is another
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Figure 2.1: The Relation between an Angle and a Length The measurement of
a length is equivalent to the measurement of an angle. In a circle, the distance between
two points on the circle has a one-to-one relationship with the central angle, given that the
radius is fixed. If the radius of this circle is R, the length lAB = 2R sin θ

2
.

way of measuring length. Instead of counting the multiples of the smallest scale, this method
counts the frequencies of identical measurement results. This approach avoids the difficulty
of infinite subdivision of a finite length.

2.2 Shannon Entropy

Shannon entropy [52] is a measure of uncertainty or information content in a proba-
bilistic system. It has the same name with the concept in thermodynamics and statistical
mechanics, and there is indeed a deep relation between the entropy in information theory
and entropy in statistical thermodynamics. Here we want to focus on the information the-
ory, which is defined on discrete random variables. Let X be a discrete random variable
with possible outcomes {x1, x2, . . . , xn} and associated probabilities {p1, p2, . . . , pn}, where
pi = Pr (“X = xi”|B) represents the probability of the ith outcome of X under background
knowledge B. The Shannon entropy of X is defined as:

H(X) = −
n∑
i=1

pi log pi. (2.6)

The Shannon entropy of X quantifies our degree of uncertainty about its possible
outcomes. Noticing that Shannon entropy only concerns the probability distribution of
a random variable, not the values themselves, it can also be defined in terms of discrete
probability distribution H(X) = H({pi}). In classical information theory, Shannon entropy
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has important applications in communication and data compression. We are more interested
in the application of Shannon entropy in physics, especially for the usage as a measure of
uncertainty.

When deriving the expression of the entropy function, Shannon introduced several con-
ditions that any reasonable measure of uncertainty (information content) H should satisfy:

1. Continuity. H is a continuous function of the probabilities {pi}.

2. Monotonicity. If all the probabilities are equal, say pi =
1
n

for some integer n, then
H( 1

n
, · · · , 1

n
) is a monotonic function of n.

3. Additivity. The entropy of a choice broken down into two successive choices should
be the weighted sum of the individual entropies. Specifically, for choices with proba-
bilities p1, p2, . . . , pn, if these are further broken down into sub-choices, the total en-
tropy H(p1, p2, . . . , pn) should equal the sum of the entropy of the initial choice and the
weighted entropies of the subsequent choices, following the probability of each branch.

Shannon proved that, given these three conditions, the entropy of a discrete random
variable X must take the form:

H(X) = −K
n∑
i=1

pi log pi, (2.7)

where K is a positive constant, and the logarithm can be taken in any base. In information
theory, this constant K is taking to be 1 for the sake of convenience and the base of the
logarithm is 2.

The significance of Shannon entropy extends beyond theoretical constructs into practi-
cal applications in coding theory, cryptography, and data compression algorithms. It serves
as a fundamental limit on the best possible lossless compression of any communication, in-
dicating the minimum number of bits required to encode a series of messages without loss of
information. Furthermore, in cryptography, Shannon entropy measures the unpredictability
of cryptographic keys, directly impacting their security against brute-force attacks.
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2.3 Generalization of Shannon Entropy for Continuous Distribu-

tions

Shannon entropy has a wide importance. Yet it has a limitation, since Shannon en-
tropy is defined on discrete probability distributions. It is natural to ask whether we apply
such a measure of uncertainty to continuous probability distributions. In this section we
want to discuss different ways of generalizing Shannon entropy to continuous probability
distributions.

2.3.1 Differential Entropy

Differential entropy seems to be an intuitive approach to generalize Shannon entropy,
by replacing the sum with integral:

H(X) = −
∫
S

p(x) log p(x)dx (2.8)

where p(x) is the probability density of random variable X, and S is the support of p(x).

Unlike the Shannon entropy, the differential entropy cannot be derived from axioms.
In his 1948 founding paper [52], Shannon wrote it down without further derivation. There
are several problems with differential entropy, it can be negative and it is not invariant under
a change of variables.

Negativity. Consider the case where p(x) is a uniform distribution over [a, b]. Then

H(X) = −
∫ b

a

p(x) log p(x)dx = log(b− a) (2.9)

If b− a < 1, the differential entropy is negative. As long as we interpret or use entropy as a
measure of uncertainty, it is not meaningful to have a negative degree of uncertainty about
a variable.

Invariant under change of variables. If we change the variable x of the func-
tion p(x) to some other variable, y, the differential entropy of p(y) is:

−
∫
Sy

p(y) log(p(y))dy = −
∫
S

p(x)log(p(x))
dx

dy
dx (2.10)
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If dx
dy

is not equal to 1, then the differential entropy of p(y) will be unequal to the differential
entropy of p(x). This coordinate-dependence suggests that the value of differential entropy
is tied to the choice of coordinate.

2.3.2 Limiting Density of Discrete Points

Jaynes [36] has suggested an explicit procedure—the approach of limiting density of
discrete points (LDDP)—to systematically generalize Shannon entropy to continuous distri-
butions.

Assume the probability density p(x) of random variable X is initially defined on a set
of discrete points x ∈ {x1, x2, · · · , xn}. Jaynes proposes an invariant measure m(x) such that
when the collection of points {xi} becoming more and more numerous, in the limit n→ ∞,

lim
n→∞

1

n
(number of points in a < x < b) =

∫ b

a

m(x)dx (2.11)

With the help of m(x), the entropy of X can then be represented as

H(X) = lim
n→∞

log n−
∫
p(x) log

p(x)

m(x)
dx (2.12)

In this way, the weaknesses of differential entropy seems to be solved—LDDP is in-
variant under the change of variables and it is non-negative. However, we meet two new
problems: (1) the entropy of continuous distributions is infinity due to the term log n; (2)
the measure function m(x) is unknown.

For the infinity problem, there may be two solutions. (1) Assert that the entropy of
continuous distribution is only meaningful when we consider the difference of two entropy;
(2) Omit this infinite term.

1. Entropy of continuous distribution as a difference

When variable X is updated to X ′ due to some actions, the change of entropy will be
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equal to

X → X ′, ∆H(X → X ′) = H(X)−H(X ′) =

∫
p′(x) log

p′(x)

m(x)
dx−

∫
p(x) log

p(x)

m(x)
dx

(2.13)
where p′(x) is the probability distribution of X ′. The quantity ∆H quantifies the
change of uncertainty about variable X in this action.

2. Straightforward

Omitting the infinite term in equation (2.12), (this is Jaynes’ approach), the entropy
of continuous distribution is

HJaynes(X) =

∫
p(x) log

p(x)

m(x)
dx (2.14)

To ensure the entropy is non-negative, the minus sign is also dropped. HJaynes is equal
to the negative of the relative entropy of p(x) to m(x).

Both solutions are meaningful, and we currently have no preference to choose a unique
generalization of Shannon entropy. There is a relation between the two approaches. In the
special case that p(x) = m(x),

∆H(X → X ′) = HJaynes(X
′) (2.15)

This leads to the second problem of limiting density of discrete points. What is the
choice of measure m(x)? Intuitively one may think of using uniform measure function,
i.e. m(x) is constant function. In this way, the LDDP reduces to the differential entropy.
However, we lack a criterion to ensure the form of this measure function. One way of
resolving this issue is to apply Bayesian inference, interpreting m(x) as the prior probability
distribution of variable X and p(x) as the posterior probability distribution of X. In this way
we convert the problem of finding the measure function into a problem of finding a proper
prior, a problem that can be investigated through fruitful information-theoretic approaches.
We take up this problem below.
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2.3.3 Relative Entropy

In the discussion of entropy of continuous distributions, we find one of that the solutions
has the same form as the relative entropy up to sign or the Kullback-Leibler divergence, the
latter of which is defined over two probability distributions p and q as:

DKL(p(x)||q(x)) =
∑
x

p(x) log
p(x)

q(x)
(2.16)

for discrete probability distributions, and as

DKL(p(x)||q(x)) =
∫
p(x) log

p(x)

q(x)
dx (2.17)

for continuous probability distributions.

Noticing that in both cases of discrete and continuous distributions, the relative entropy
is always non-negative, due to Jensen’s inequality:

DKL(p(x)||q(x)) ≥ 0 (2.18)

with equality if and only if p = q.

However, relative entropy is a function of two distributions and it may not be able to
represent the degree of uncertainty for a single variable.

2.3.4 Information Gain from Measurement

In the discussion of entropy of continuous distribution above, it seems that we have to
introduce an extra measure function m(x) to ensure the invariance of entropy under change
of variables. In Bayesian statistics, we can interpret m(x) as the prior of the target variable,
so that the necessity of m(x) is very natural.

For a random variable X and we mainly consider one of its outcomes x, we may
use Pr (p|D, I) to represent the posterior of X with outcome X = x updated from the ob-
served data D; and Pr (p|I) is the prior of Pr (X = x). The relative entropy of Pr (p|D, I)
to Pr (p|I) can be used to represent the information gain from prior posterior, or the infor-
mation gain of X from the data D. Both solutions of LDDP, yield the same information
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gain.

From the viewpoint of the change entropy in terms of difference: initially we have
no observed data about X, so the probability distribution of Pr (X = x) is just the
prior Pr (p|I). Once we obtain the some data about the outcomes of X, the probability
distribution of Pr (X = x) is changed to posterior Pr (p|D, I). The difference of entropy
(2.13) is equal to

∆H =

∫
Pr (p|D, I) log Pr (p|D, I)

Pr (p|I)
dx−

∫
Pr (p|I) log Pr (p|I)

Pr (p|I)
dp

=

∫
Pr (p|D, I) log Pr (p|D, I)

Pr (p|I)
dp

(2.19)

This is the same with the Jaynes’ entropy (2.14)

HJaynes( Pr (X = x)) =

∫
Pr (p|D, I) log Pr (p|D, I)

Pr (p|I)
dp (2.20)

This suggests in Bayesian statistics, the relative entropy is the proper generalization
of Shannon entropy. However, one issue remains: if we collect more data D′ after the
observation D, how can we represent the information gain from this extra observation D′?

Similar to the analysis of LDDP, we have two ways to quantify this information gain
from data D′. The first is to take the idea of difference, that is, taking the difference of
information gain from both D and D′ and information gain from D; the second is more
straightforward, via taking the relative entropy of posterior obtained from D,D′ to the
posterior obtained from D.

1. Difference of information gain

The above discussion shows that we can just use the Jaynes’ entropy to quantify the
information gain from beginning to data D,D′.

HJaynes( Pr (X = x), {D,D′}) =
∫

Pr (p|{D,D′}, I) log Pr (p|{D,D′}, I)
Pr (p|I)

dp

Hence we take the difference of HJaynes( Pr (X = x), {D,D′}) and HJaynes( Pr (X =
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x), D)

∆I(D′) = HJaynes( Pr (X = x), {D,D′})−HJaynes( Pr (X = x), D)

=

∫
Pr (p|{D,D′}, I) log Pr (p|{D,D′}, I)

Pr (p|I)
dp−

∫
Pr (p|D, I) log Pr (p|D, I)

Pr (p|I)
dp

(2.21)
Noticing that this quantity could be negative.

2. Straightforward

The data D′ is assumed to be collected after D, we can set a new beginning point to
quantify the information gain from D′.

I(D′|D) =

∫
Pr (p|{D,D′}, I) log Pr (p|{D,D′}, I)

Pr (p|D, I)
dp (2.22)

We have two ways to represent the information gain in this extra observation. In general
these two quantities are not the same: I(D′|D) is always non-negative due to the property
of relative entropy, but ∆I(D′) could be negative. As each expression is well-motivated, it
is worthwhile to systematically investigate the behavior and relations of these two different
measures of information gain. We carry out this investigation in Chapter 4.

2.3.5 Rényi Entropy

Rényi entropy is a generalization of Shannon entropy, introduced by Alfréd Rényi [50]
in 1961. It is a measure of the uncertainty or diversity of a probability distribution and is
defined for a non-negative parameter α (α ≥ 0 and α 6= 1) as follows:

Hα(p1, p2, ..., pn) =
1

1− α
log

(
n∑
i=1

pαi

)
, (2.23)

where {p1, p2, ..., pn} is a discrete probability distribution, and the logarithm base that de-
termines the unit of entropy (commonly 2 for bits or e for natural units). Rényi entropy
represents a family of different entropies, parameterized by α. The Shannon entropy is
included in this family in the limit α → 1:

lim
α→1

Hα(p1, p2, ..., pn) = H(p1, p2, ..., pn). (2.24)
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Another special case is the situation that α approaches to ∞. In the limit as α → ∞,
Hα converges to min-entropy:

lim
α→∞

Hα(p1, p2, ..., pn) = Hmin(p1, p2, ..., pn) = log
1

pmax
, (2.25)

where pmax = maxi pi.

In the case that α = 0, Rényi entropy reduces to the Hartley entropy or max-entropy:

H0(p1, p2, ..., pn) = log n, (2.26)

where every pi is non-zero.

As a generalization of Shannon entropy, Rényi entropy allows for the quantification of
uncertainty in different ways dpending on values of α. Higher values of α (α > 1) give more
weight to higher values probabilities, the min-entropy being an extreme case where only the
maximum value of the probabilities matters. Lower values of α tend to place equal weighting
on every non-zero probability, the max-entropy being the extreme case that every non-zero
probability contributes the same.

2.3.6 Logical Entropy

Ellerman’s [22] conceptual foundation for logical entropy begins with the notion of a
partition on a finite set. A partition divides a set into mutually exclusive subsets, and these
subsets represent the classification of the set’s elements based on a specific characteristic.

In this framework, the partitions represent how we distinguish elements in a set, and
information is about distinctions between things. When we partition a set, we are essentially
identifying and categorizing the differences among its elements.

Logical probability is the probability of making a distinction between elements of differ-
ent blocks of the partition. If an element is chosen randomly from U , the logical probability
Pr (S) is the probability that two randomly chosen elements belong to same block S, it is
defined as a ratio of cardinalities:

Pr (S) =
|S|
|U |

(2.27)
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Logical entropy is then defined in terms of these partitions. Let (Pi)i∈I be a partition
of a finite set U . Then the logical entropy for this partition is:

HL({Pi}) = 1−
∑
i∈I

( Pr (Pi))
2 (2.28)

The definition and the idea behind logical entropy is very different with Shannon en-
tropy. However, logical entropy has the same upper and lower bound as Shannon entropy,
lower bound achieved by uniform distribution and the upper bound achieved by a peak dis-
tribution such as (P1, P2, · · · , Pn) = (1, 0, · · · , 0). As mentioned by Brukner and Zeilinger
[7], Shannon entropy may not be adequate to express the information content of a quan-
tum system, while logical entropy seems to be a potential candidate for this measure of
information especially for finite dimensional quantum systems 3.2.2.2.
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CHAPTER 3

Importance of Information Theory in Physics

Before the foundation of modern information theory, the word “information” was rarely used
in natural science. Nowadays the concept of information is widely used in many subjects. Yet
there is a special relation between physics and information theory. This relation may date
back to the origin of the foundations of both information theory and statistical mechanics,
statistical entropy and Shannon entropy have very similar mathematical expressions.

In section 3.1 we discuss the special relation between the concept of entropy in infor-
mation theory and physics. In section 3.2 we discuss several different information-theoretical
approaches towards the foundation of quantum theory.

3.1 Classical Information and Physics

3.1.1 Information Entropy and Statistical Mechanics

The modern information theory introduces the concept of entropy from a mathematical
rather than a physical perspective. That is, entropy defined not as pertaining to physical
quantity, but as a general measure—a degree of uncertainty—that can be applied to any
probabilistic source. Such a source may be physically instantiated. Take the example of
a physical system in the canonical ensemble: we may be not sure about the energy of
this system and all we know is that this system’s energy is in one of the discrete energy
spectrum {εi} and the average energy is ε̄. In the scheme of classical physics, in principle we
may be able to know the exact state of this system, but in practical that is impossible. The
entropy measures how much information we lack about the precise state of the system.

The pioneering work of Jaynes [34, 35] show that the Shannon entropy and Gibbs
entropy are equivalent. Moreover, the problem of finding Boltzmann distribution can be
regarded as an application of information theory, the principle of maximal entropy.

According to Jaynes, the probability distribution that best describe the existing knowl-
edge is the one which maximize the Shannon entropy. This principle is particularly simple to
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apply when the given conditions are expressed in terms of expected values. As an example,
the Boltzmann distribution for a system in the canonical ensemble can be derived as follows.
Assume we are given the conditions that the energy level of the system is discrete and the
expected energy of the system is ε̄,

ε ∈ {εi},
∑
i

piεi = ε̄ (3.1)

The best probability distribution {pi} where pi is the probability that the system in
the energy level εi that is consistent with the given conditions should maximize the Gibbs-
Shannon entropy:

SG−S = −k
∑
i

pi ln pi (3.2)

As we may know or anticipate, this k will be equal to the Boltzmann constant. However, at
this stage, it is an undetermined quantity. To find the extreme value of SG−S, we use the
Lagrangian multiplier:

δ[−k
∑
i

pi ln pi + α(
∑
i

pi − 1) + β(
∑
i

piεi − ε̄)] = 0 (3.3)

Finally we arrive at the solution pi = e−βεi∑
i e

−βεi
, where β is to be determined when connecting

to thermodynamic equations and α is related to the normalization condition e−α = 1∑
i e

−βεi
.

The great advantage of the maximal entropy principle approach is that this principle is
the only assumption we need. In contrast, in traditional treatment of statistical mechanics,
the derivation of Boltzmann distribution relies upon several assumptions, such as coarse
graining of phase space, the ergodic hypothesis, equally likely states assumption etc [38].
The most important insgight here is that this physical problem can be regarded as a problem
of pure statistical inference.
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3.1.2 Classical Information and Thermodynamics

Classical information theory originated, and is heavily used in the field of communi-
cation and computing where the basic unit of information is a bit. A bit is an abstrac-
tion of a classical two-state system, and it can be physically instantiated in many different
forms. However, the relation between classical information and physics is not only about the
implementation—the operations on a bit directly relate to foundational problems in physics.

In 1961 [39], Landauer first proposed the principle that any logically irreversible oper-
ation is associated with a physical irreversible process. A famous example is his hypothesis
that the deletion of one bit in a classical computer will lead to an unavoidable energy dissi-
pation of the order of kBT ln 2, where T is the temperature. The Boltzmann constant is in
the order of 10−23 J ·K, so that at room temperature, the energy dissipation is around the
order of 10−21 J . Although this seems like a very small number, modern digital computers
will run in excess of billions of bits per second, so this energy dissipation cannot be ignored.
On the other hand, Landauer’s principle indicates that a logically reversible operation may
consume little or even no energy. Hence, this principle may on the one hand, impose a
limit on current digital computers performance, but, on the other hand lead to the study
of reversible computing design. In physics, this principle can be used to make sense of the
Maxwell’s demon paradox in statistical mechanics and thermodynamics.

Maxwell’s Demon Paradox. The Maxwell’s demon is an imaginary experiment that
leads to a violation of the second law of thermodynamics. Assume there is an isolated
container which is filled with gas molecules. There is a partition in the middle of the container
such that the container is divided into two parts with same volume. On the partition there
is a small door, and its opening and closing is controlled by an imaginary demon. When
the door is closed the molecule on both sides cannot pass through the partition. The demon
is able to measure the velocity of nearby molecules on both sides and calculate the average
velocity of the whole collection of molecules. When a molecule approaches from the demon
from the right with a velocity faster than the average, the demon can try to prevent this
molecule from passing and keep it on the right part; while for nearby molecules have velocities
slower than the average, the demon may keep them ending in the left part. Such a demon
will eventually succeed in arranging the molecules such that the right side is hotter than the
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left side. Hence, the entropy of the whole system has decreased with no external work input,
which violates the Second Law of Thermodynamics.

Figure 3.1: Maxwell’s Demon Two chambers filled with gases are connected by a small
door. An imaginary demon can measure the speed of molecules approaching the door. The
demon allows only molecules with speeds exceeding a certain threshold to pass through
the door into the right chamber, while slower molecules remain in the left chamber. After
some time, this process results in the left chamber becoming cooler and the right chamber
becoming warmer due to the difference in average molecular speed. Image source:https:

//en.wikipedia.org/wiki/File:Maxwell%27s_demon.svg Licensed under CC BY-SA 3.0.

Landauer’s principle provides a solution to paradox. If we treat the gas molecules as
classical particles, the demon can measure the exact state of particles as an ideal observer.
Moreover, the demon may record each particle’s velocity and calculate the average of them.
This calculation will be a reversible operation and consumes no energy. Bennett [4] shows
that the memory space that the demon uses to store the state of each molecule will be
eventually run out, and the demon has to erase some recorded data. This erasure process
is an irreversible operation which is associated with energy dissipation and an increase of
entropy.

There are different ways defending the validity of the Second Law. Another famous
argument is provided by Szilar, which we describe below.

Szilard Engine. In this scenario, the container is still divided into two parts, but the
middle partition is very light and movable without any friction. Here we take the simplest
example, the one-particle Szilard engine. (A) Initially, an imaginary demon can determine
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whether a particle is in the left part or the right part of the container. (B) If the particle
is in the left part, the demon can insert a light, frictionless partition in the middle of the
container. (C) Since the partition is very light, the particle may push the partition into the
right part when it collides with it. This moving partition can be used to do work, for example
by connecting it to a small mass via a frictionless pulley. The particle will eventually push
the partition to the rightmost part of the container. (D) The loss of energy of the particle
is used to do work on the attached small mass, and the container can absorb a certain
amount of energy from a heat bath to restore the particle to its initial state. In this whole
process, the absorbed energy is equal to the net work, thereby violating the Second Law of
Thermodynamics.

A B

CD

Figure 3.2: Four Phases of a Szilard Engine Assume there is only one particle in the
container, and this particle can move freely inside. (A) An imaginary demon can determine
the position of the particle inside the container, say, in the left part or the right part. (B)
If the particle is in the left part, we can insert a light, frictionless partition in the middle of
the container. (C) The particle may push the partition into the right part when it collides
with it. This moving partition can be used to do work. (D) The energy lost by the particle
is used to work on the moving partition, and the container can absorb a certain amount of
energy from a heat bath to restore the particle to its initial state.

In the Szilard engine, the key step is the initial determination of the particle’s position.
The energetic and entropic cost of this position measurement cannot be ignored. Brillouin
[6] shows that if using photon scattering to detect the particle, there is a minimum entropy
increase due to this measurement, of the order of kB ln 2. In other words, if the demon’s
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behavior is restricted by quantum theory, obtaining 1 bit information will lead to an increase
of entropy.

3.1.3 Information Theory and Quantum Theory

There is an intimate relation between information theory and quantum theory. First,
the basis of information theory, the Shannon entropy is a function of probability. The
intrinsic probabilistic nature of quantum systems suggests that the uncertainties associated
with quantum systems could be described in terms of information theory. Second, another
basic element of modern information theory, the bit, has a perfect analogy in quantum
theory: a qubit. The uniqueness of quantum information theory is directly revealed in the
difference between a qubit and a bit.

Intrinsic Probabilistic Nature. In some sense, a bit and a qubit are both two-outcome
models. However, the superposition principle makes a qubit more complex than a bit.
Typically we may choose two orthonormal basis {|0〉 , |1〉} as computational basis. For the
sake of convenience we only consider the pure states of qubit, which can be represented via
Bloch sphere,

|ψ〉 = eiδ cos
θ

2
|0〉+ ei(φ+δ) sin

θ

2
|1〉 (3.4)
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Figure 3.3: Bloch Sphere The north pole corresponds to the |0〉 state, while the south
pole represents the |1〉 state. A point labeled as the state |ψ〉 is depicted, characterized
by the polar angle θ and azimuthal angle φ, illustrating the geometric representation of a
qubit’s state. Image source: https://en.wikipedia.org/wiki/File:Bloch_sphere.svg

Licensed under CC BY-SA 3.0.

Every point on the surface of the Bloch sphere represents a unique pure state, and
we parameters θ, φ have straightforward geometrical meanings. The parameter δ denotes a
global phase, which cannot be observed. In general, the state of qubit is represented via a
density matrix. For a pure state qubit, the form of density matrix is simple, ρ = |ψ〉 〈ψ|.
The density matrix representation is more convenient for qubits in a statistical ensemble.
The distance between a non-pure state to a pure state can be measured by the von Neumann
entropy:

S(ρ) = −Tr(ρ ln ρ) (3.5)

A pure state qubit has zero Von Neumann entropy and the maximal mixed state will have
Von Neumann entropy ln 2, for example ρ = 1

2
|0〉 〈0|+ 1

2
|1〉 〈1| is a maximal mixed state.

As the state of a qubit is determined via three real parameters (or two parameters if
we ignore the global phase), the state of a qubit cannot be represented by classical bits. The
converse, however, is possible: a bit can be represented by the two poles on the sphere. In
this sense we may see that a qubit can carry more information than a bit. The price is that
retrieving the information from a qubit is much more difficult.
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The physical meaning of the parameters is directly related to the probabilistic results of
the projection measurement on the qubit. For example if we just take the projection measure-
ment within the computational basis {|0〉 , |1〉}, the associated probabilities are cos2 θ

2
, sin2 θ

2
.

Moreover, after the projection, the post-measurement state of the qubit is one of the two
eigenstates of the projection. Therefore, it is impossible to obtain all of these parameters in
single measurement. We have to perform many projection measurement on identical copies
to retrieve these parameters.

Due to the superposition principle, it is impossible to clone an unknown qubit [56, 20].
In order to retrieve information from a qubit, we need to create a collection of qubits prepared
in identical states. If we find a qubit in the wild, and do not know its source, we can never
determine its state.

Entanglement. Another important property of qubits that cannot be simulated by bits
is entanglement. Take the example of a pair of maximal entangled qubits. The state of two
qubits a, b are prepared to be maximally entangled and the state of this two-body system is:

|ψ〉ab =
1√
2
(|0〉a |0〉b + |1〉a |1〉b) (3.6)

This state is one of the famous Bell states. Outcomes of measurements performed on the
two qubits now are strongly dependent upon each other. Assume Alice takes qubit a and
Bob takes qubit b, and they carefully maintain the entanglement between the qubits. If
Alice performs a projection measurement on qubit a in the computational basis, the post-
measurement state of qubit a is either |0〉a or |1〉a. Even though Alice did not operate on
qubit b, the state of qubit b will also be affected by the projection on qubit a:

|ψ〉ab → |0〉a |0〉b or |1〉a |1〉b (3.7)

It seems that there is a “spooky action” on qubit b when Alice performs the projection
on qubit a, and the speed of this interaction is theoretically infinite. Experiments in recent
decades demonstrate that this interaction will be faster than speed of light [59]. However,
this interaction cannot be used to transmit effective information, and cannot be regarded as
superluminal motion. In this example, when Alice performs the projection on a, and Alice
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immediately knows that the state of qubit b is changed, yet Bob does not know about this
and Alice has to transfer a message to Bob about this change whose speed is constrained by
the speed of light. This situation is generalized as the no-signaling theorem, which states that
measurement on a subsystem of an entangled system (which may or may not be maximal
entangled) cannot be used to communicate information to other observer.

The degree of entanglement of a two-body system can be quantified via the von Neu-
mann entropy of the system:

S(ρa) = −Trρa ln ρa (3.8)

where ρa = Trbρab is the reduced density matrix of subsystem a. When the system is
maximally entangled, the von Neumann entropy will achieve its maximal value 1. The
minimum value of 0 occurs when the system is non-entangled, i.e. the state can be written
in terms of tensor product, |ψ〉ab = |ψ〉a ⊗ |ψ〉b , ρab = |ψ〉ab 〈ψ|ab.

Classical information via Qubits. Consider a probabilistic source that generates mes-
sages drawn from a collection of letters X = {x}, with each letter x emitted from the
source with a probability px. Shannon entropy H(X) describes the minimum number of
bits required to losslessly compress the message per letter. The quantum version of this
information source is to replace each letter x with a quantum state ρx. For the sake of con-
venience, assume each state is a pure state, ρx = |ψx〉 〈ψx|. Alice will be using this quantum
information source to generate a qubit to be sent to Bob, and Bob will represent the state
of every qubit as ρ =

∑
x pxρx. The Von Neumann entropy S(ρ) quantifies the minimum

compressed information content of this source [47]. In the special case that states sent by
Alice are all mutually orthogonal, 〈ψ′

x|ψx〉 = δx,x′ , the Von Neumann entropy is equal to the
Shannon entropy H(X).

As classical messages are all expressed in terms of distinguishable units (alphabet let-
ters, numbers, etc.), these units can be regarded as the mutually orthogonal quantum states.
The special feature of quantum information emerges in this communication process. Assume
Alice is preparing a collection of non-mutually orthogonal states {ρx}, each state generated
with probability px. When Bob receives the state and tries to recover the information encoded
about X, Bob can only perform measurements on the received state and obtain information
about X via the measurement result Y . The mutual information H(X : Y ) describes the
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information obtained by Bob over all possible measurement results. The maximal possi-
ble H(X : Y ) is the accessible information, which can also be regarded as the amount of
classical information that can be obtained from quantum systems via optimal measurements.
It was proved by Holevo that this accessible information has an upper bound,

H(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx) (3.9)

where ρ =
∑

x pxρx. In the special case that the collection of quantum states ρx are mutually
orthogonal, the right side of 3.9 reduces to H(X), which is the classical bound.

3.2 Information in the Foundations of Physics

Landauer’s principle treats information processing as a physical process. The special
features of quantum theory show how one can extend classical information theory. In this
section we wish to discuss whether it is possible to go in the reverse direction, viz. can we
derive quantum theory itself from an information-theoretical viewpoint?

3.2.1 It From Bit

The success of Jaynes maximal entropy approach to recovering statistical mechanics
suggests that physical theory can sometimes be derived from informational postulates. The
idea of treating physics as informational is strongly inspired by John Wheeler’s famous quote
[55], “It from Bit”:

Every it—every particle, every field of force, even the spacetime continuum
itself—derives its function, its meaning, its very existence entirely—even if in
some contexts indirectly—from the apparatus-elicited answers to yes or no ques-
tions, binary choices, bits.

This suggests that a physical quantity is meaningful if and only we can use a device
to measure it. Moreover, this device yields binary outcomes. It may not be intuitive that
arbitrary physical quantities can be measured through a two-outcome device. Although there
are observables in quantum mechanics that have a discrete spectrum, most physical quantities
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are continuous. However, from an operational viewpoint, we may find these quantities are
not as continuous as we expect.

We could consider a world without quantum theory, in which a physical quantity could
be measured with arbitrarily high precision. In this scenario, a physical quantity is measured
in finite digits would seem to be only a practical one. Yet if we accept the assumption that the
universe is finite, and we do not have enough space to store as many digits as possible, then
we have to erase some digits that we have already memorized. Yet according to Landauer’s
principle, erasing the digits consumes a certain amount of energy, and we do not possess
an infinite source of energy. We may have to admit that there exist a lower bound to the
precision, in which case we could use finite many yes-no device to measure any physical
quantity.

In this sense, we could accept the postulate that all physical quantities are essentially
discrete—physical quantities expressed as a sequence of binary outcomes would be one ex-
pression of “it as bit”. Yet if information constitutes the foundation of physics, it should be
possible to derive physical theory from an informational perspective.

Mixed Information. Clifton, Bub and Halvorson [14] proposed to reconstruct quantum
theory from three informational constraints:

1. The impossibility of superluminal information transfer between two physical systems
by performing measurements on one of them.

2. The impossibility of perfectly broadcasting the information contained in an unknown
physical state.

3. The impossibility of unconditionally secure bit commitment.

These three no-go theorems are consequences of standard non-relativistic quantum theory,
but here they are elevated to the level of foundational postulates. The concept of information
differs amongst these three constraints.

The information in first constraint refers to classical information. This constraints
suggests that if Alice and Bob are both performing local measurements, then Alice’s mea-
surements have no influence on the statistics of the outcomes of Bob’s measurements and vice
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versa. Indeed, Alice and Bob may be performing quantum measurements, yet the possible
information transferred is via the statistics of measurement. In some sense this information
may be just a real number which can be encoded in bits. The information in the third con-
straint also refers to classical information. As the name suggests, bit commitment describes
a scheme of securely transmitting a classical bit that cannot be changed or viewed without
permission.

The second constraint describes quantum information only. The information may refer
to the parameters that uniquely characterize the state of a physical system, especially a
quantum state. In some sense, we can also regard quantum information as a collection of
numbers since the parameters that determine the quantum state must have a value. To
differentiate it from classical information, quantum information is the collection of these
parameters and also includes the postulates of quantum theory which provide the relationship
between these parameters.

It from Qubit. Deutsch [18, 19] argued that classical information, often represented by
bits in binary form, proves inadequate even within classical physics. This limitation arises
from the continuous nature of most quantities in classical physics, allowing a physical process
to be infinitely subdivided. The absence of Planck units during this era implies the potential
need for an infinite amount of information in describing any physical process, posing a
significant challenge.

In the realm of quantum physics, most systems can be represented using a finite number
of qubits. Even some quantum field theories, such as lattice quantum field theory, are ideally
conceptualized with finite degrees of freedom. Considering the qubit as the smallest unit
of quantum information provides a natural starting point for information processing within
this framework.

Furthermore, the inherent differences between classical and quantum physics imply
that classical information can be encoded in terms of quantum information, but not the
other way around. The proposition of a universal quantum gate suggests that if any physical
process can be viewed as a computational process, a universal quantum computing device
could theoretically represent any physical process. However, the practical realization of such
a quantum computing device remains exceedingly challenging with current technology.
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Quantum Probabilities as Bayesian Probabilities. In the approach of Quantum
Bayesianism (QBism) [11, 24, 25], the state of a quantum system is treated as a collec-
tion of probabilities that are essentially subjective and updated via Bayesian rule. These
probabilities correspond to different projective measurements and reflect an agent’s degrees
of belief about the possible outcomes of these projective measurements.

Information in QBism is mainly used to describe an agent’s degree of belief, and it is
applied in two different senses:

• Degree of Belief about Measurement Outcomes refers to an agent’s subjective belief
about the possible outcomes of a measurement. For instance, before performing a
measurement, the agent holds a degree of belief about the probabilities associated
with each possible outcome;

• Degree of Belief regarding a Quantum State signifies an agent’s subjective belief regard-
ing the essential properties of a quantum system. The quantum state is interpreted as
a representation of an agent’s degrees of beliefs about the system’s possible states or
outcomes.

However, these degrees of belief are not quantified by an information measure like
Shannon entropy. The probability of a certain outcome of measurement already represents
an agent’s degree of belief. The quantum state itself is understood as an expression of an
agent’s belief about the system’s state, without a formal quantification via a measure like
Shannon entropy.

3.2.2 Different Informational-Theoretic Approaches towards Quantum Recon-
struction

The concept of information may denote different meanings even in the same literature,
depending on the context, especially on the usage of it. One motivation for introducing in-
formation is to apply informational principles to physics to interpret or derive current theory,
especially quantum theory. The candidate we choose is from the variant of information in
classical information theory. On one hand, those information-related quantities in classical
information theory have a clear mathematical form and it is easier for us to propose quan-
tifiable postulates on that; on the other hand, the success of Jaynes’ approach show that
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measures like Shannon entropy may play a big role in physics. In the following content, we
want to discuss information from two different perspectives, and the context will be clearly
specified. Both types can be regarded as variants of Shannon entropy, but with different
interpretations and expressions.

3.2.2.1 Information associated with the Value of Physical Quantity

The first situation will focus on the value of a physical quantity, including measuring
the value of a quantity (typically indirectly) from a collection of identical measurements
or transmitting a real number which is encoded as a physical quantity through a quantum
channel and then decoding it from measurement results on identical copies.

To make the understanding clearer, we do not use the word information alone but
use suitable modifiers. In the first scenario, the measured value of a quantity may change
depending on the results of measurements, especially on the number of repetitive measure-
ments performed. We may hope that the results from more measurements lead to a more
accurate value of the quantity, hence more ‘information’ obtained. We may describe this
kind of information as information gained from data about the value of a quantity, where
the data denotes the result of measurements on a collection of identical copies.

The following are two examples of applying this type of information in the foundations
of quantum theory.

Information as Range of Measurement Uncertainty. We may start from an intuitive
idea about physics and information from Summhanmmer[53, 54]: “more data from measure-
ments lead to more knowledge about the system”. The term “knowledge” can be defined via
information theory, yet Summhammer adopts a primitive and straightforward approach. If
we consider a system that has a single physical quantity, our knowledge of this quantity can
be represented as an uncertainty range around the true value.

Summhammer proposes a similar scenario as Wheeler’s: the physical quantity can be
measured through a two-outcome device if we can associate this quantity with a probability.
A partial reconstruction of quantum theory is derived from this idea.

Consider a two-outcome system which yields either event 1 or event 2. In total N
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measurements, suppose event 1 occurs n1 times, and event 2 n2 times. Now the probability
p1 of event 1 can be estimated as:

p1 =
n1

N
(3.10)

with the uncertainty

∆p1 =

√
p1(1− p1)

N
(3.11)

Let event 1 correspond to a physical quantity χ1 which is determined by the probability
p1. The uncertainty of χ1 is:

∆χ1 =

∣∣∣∣∂χ1

∂p1

∣∣∣∣∆p1 = ∣∣∣∣∂χ1

∂p1

∣∣∣∣
√
p1(1− p1)

N
(3.12)

According to the Summhammer’s assumption, more data will lead to more knowledge
about χ1. Since the accuracy is inversely proportional to ∆χ1, we expect the uncertainty
interval will be a decreasing function depending on the total number of measurements N ,
that is:

∆χ1(N + 1) < ∆χ1(N) (3.13)

But χ1 is determined by p1, and not all functions χ1(p1) satisfy this inequality. Under
the above assumption, a physical quantity must satisfy this inequality. So it is natural to ask
what kind of function is allowed. Summhammer now introduces the concept of “maximum
predictive power”. Although χ1 is determined by p1, ∆χ1 depends on both N and p1 (the
latter is estimated by n1). N is determined by the experimenter while p1 is determined by
nature. Summhammer asscerts that a quantity has the “maximum predictive power” if the
uncertainty is maximally dominated by nature. According to (3.12),

√
N∆χ1 =

∣∣∣∣∂χ1

∂p1

∣∣∣∣√p1(1− p1) = constant (3.14)

which yields Malus’ law p1 = cos2(mχ1/2).

If the prior distribution of the quantity χ1 is uniform, (3.14) implies that the prior
distribution of p1 is the Jeffreys prior.
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Information as Classical Information in Communication. Wootters [57] investi-
gated the possibility of a real-vector-space variant of quantum theory from a communication
problem in which information is only communicated via probabilities and the receiver is only
allowed to conduct a finite number of probabilistic measurements. This work does not deal
with the informational origin of a physical quantity, but reveals the essential relation between
quantum theory and information theory from a practical communication standpoint. The
information to be communicated is just the classical information.

Suppose Alice wants to send a number to Bob indirectly, say θ, where 0 ≤ θ ≤ π/2.
Alice encodes this number into a probability p(θ) and constructs a special coin with the
probability of heads being p(θ). Now Alice sends the coin to Bob directly and Bob gains
information about the coin by performing measurements on the coin. Assume Bob is only
allowed to perform N tosses and gets n heads. We want to know what kind of function
p(θ) would maximize the mutual information, I(θ : n), which is the average information Bob
gains in many trials. Due to the symmetric property of mutual information, we can calculate
the mutual information from another direction:

I(θ : n) = I(n : θ) = H(n)−H(n|θ) (3.15)

where H(n) is the entropy of the number of heads and H(n|θ) is the entropy of the number
of heads conditioned on θ. The full expression is given by:

I(θ : n) = −
N∑
n=0

p(n) lnP (n)−

〈
−

N∑
n=0

p(n|p(θ)) ln p(n|p(θ))

〉
(3.16)

To perform more detailed calculation, we may need to ensure the form of p(θ). For
finite N , Wootters approximates p(θ) as a decreasing step function with N + 1 intervals.
Since there would be N + 1 probabilities of the value of n, each interval corresponds to a
different n. The length of each interval may vary, and a weighted function w is introduced
to denote the length of each interval. In this way the mutual information becomes:

I(θ : n) = −
N∑
n=0

p(n) lnP (n) +
L∑
k=1

wk

N∑
n=0

p(n|pk) ln p(n|pk) (3.17)
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In finite cases, p(θ) and the weighted function change with different n. In the limit as
N goes infinity, the weighted function has the form:

w(p) =
1

π
√
p(1− p)

(3.18)

Here we find that the weighted function actually plays the role of the “prior of p”. This
result is then generalized into the N -dimensional case, and one arrives at a similar result to
Summhammer’s approach—the weighted function has the form of Jeffreys prior. This prior
also acts like the distribution of pure states in a real-vector-space quantum theory.

We note that Summhammer and Wootters both arrive at Jeffreys prior from different
motivations and different notions of information. In Chapter 4, we discuss how Jeffreys prior
arises from a different intuitive idea.

3.2.2.2 Information of Observables and Systems

The second situation is that we want to focus on the relations between different quan-
tities in the same system, especially the observables in a quantum system. The relation
between observables will be reflected by the information of observables. The information of
a system may be determined by the information of observables. We may put informational
intuitive restrictions on the information of quantities and the information of the system to
recover the relations between quantities and system. In this way, one hopes to reconstruct
quantum theory from informational postulates.

Rovelli. Rovelli [51] suggested that there is no absolute independent observer so that all
quantities observed in a quantum system are related to a specific observer. The connection
between different observers is information.

The basic unit of information is the outcome of a “yes/no question”. In a finite dimen-
sion quantum system, those “yes/no questions” can be regarded as projective measurements
which have only two eigenvalues. If we ask a system some binary outcome question Q

and obtain an outcome “yes”, then we obtain one unit of information about this ques-
tion Q, otherwise zero information is obtained. A system could be decomposed into a
set of those binary outcomes questions, say system S can be described as a set of ques-
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tions (Q1, Q2, Q3, · · · ) and a full description of S will be the collection of outcomes of those
questions, (e1, e2, e3, · · · ), ei = 0, 1.

Rovelli made two postulates about this information:

1. There is a maximum amount of relevant information that can be extracted from a
system.

2. It is always possible to acquire new information about a system.

The first postulate restricts the degree of freedom of a system to be finite. Though
a full description of system S may contain infinitely many terms, finite outcomes of those
questions could determine all the others. For example, the first n terms, (e1, e2, · · · , en) may
determine the full infinitely long sequence (e1, e2, e3, · · · ).

It seems that the second postulate may violate the first, yet it does not since newly
acquired information is not accumulated, some existing information can be erased. Consider
a spin-1

2
system: if we first perform a Stern-Gerlach projection in the x-direction and then

perform another projection in the y-direction, we will obtain new information according to
the second projection and the information of projection in the x-direction will be lost.

Together with the relational hypothesis and other postulates, Rovelli tried to derive
quantum mechanics in terms of information.

Brukner and Zeilinger. When characterizing information of a quantum system, Brukner
and Zeilinger [8] imposed an assumption of finiteness of information:

The information content of a quantum system is finite.

The carrier of the basic unit of information can be defined as an elementary system,
where each elementary system is simply a “yes or no” question. If we obtain an outcome “yes”
then we obtain 1 bit information about this elementary system otherwise 0 bits information.

In real quantum systems, the outcome of such an elementary system is probabilistic,
which means we may obtain information between 0 bits and 1 bit. For binary outcome
measurement, if p1, p2 are the probabilities of the two possible outcomes, the information of
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this measurement is:
I(p1, p2) = (p1 − p2)

2 (3.19)

A real quantum system may also contain infinitely many such elementary systems.
For a spin-1

2
system, every Stern-Gerlach projection is an elementary system. This means

the information of a system may not be simply taking the sum of all information of its
elementary systems. The mutually complementary measurements are proposed to quantify
the information of the whole system. For a qubit, at most three projections of them could
be mutually complementary, e.g. {Ŝx, Ŝy, Ŝz}. The information of a single qubit is then
represented as the sum of the information of these three projections:

Itotal = Ix + Iy + Iz (3.20)

Information of a composite system, especially an entangled system, may not be the
same form as the information of a single system. The correlation between the individual
systems may also contribute to the information of the whole system. In the case of two
spin-1

2
systems, one of the correlation terms could be represented as a joint of two elemen-

tary systems, and the joint term is still an elementary system. For example, the question
“Will the spin of particle 1 along x and the spin of particle 2 along y the same?” has two out-
comes, and we can apply the above information measure of binary outcome measurement to
quantify the information of this correlation term, labeled as Ixy. If one restricts the observa-
tion to the x−y plane on both individual systems, the information contained in correlations
is defined as:

Icorr = Ixx + Ixy + Iyx + Iyy (3.21)

Consider a maximally entangled Bell state,

∣∣ψ−〉 = 1√
2
(|+x〉1 |−x〉2 − |−x〉1 |+x〉2) (3.22)

=
1√
2
(|+y〉1 |−y〉2 − |−y〉1 |+y〉2) (3.23)

According to the state |ψ−〉, the information of each correlation term are Ixx = Iyy =

1, Ixy = Iyx = 0. This means the information contained in correlations is Icorr = 2. For
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such a maximally entangled state, projections on each individual system alone would not
contribute any information to the whole system, hence the information of this two-body
system is just equal to Icorr which is 2 bits. This result is anticipated and it does not violate
the finiteness condition.
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PART II

Information from Measurement
Results
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CHAPTER 4

Operational Perspective on Quantum Information Gain

4.1 Introduction

A measurement performed on a quantum system is an act of acquiring information
about its state. This informational perspective on quantum measurement is widely embraced
in practical applications such as quantum tomography [45, 41, 48, 29], Bayesian experimental
design [43], and informational analysis of experimental data [46, 40]. It is also embraced in
foundational research.

In particular, information assumes a central role in the quantum reconstruction pro-
gram [28], which seeks to elucidate the fundamental physical origins of quantum theory by
deriving its formalism from information-inspired postulates [9, 27, 10, 42, 17, 30, 1, 16, 13].
Nonetheless, in the foundational exploration of quantum theory, the concept of information
is articulated and formalized in many different ways, which raises the question of whether
there exists a more systematic basis for choosing how to formalize the concept of information
within this domain.

In this chapter, we scrutinize the notion of information from an operational standpoint
and propose a physically intuitive postulate to determine the appropriate information gained
from measurements.

In both tomographic applications and reconstruction of quantum theory, the focus often
lies on probability distributions of physical parameters or quantities, which are updated based
on the measurement results. In these contexts, the outcomes of a measurement performed
on a quantum system are modelled as the interrogation of an n-outcome probabilistic source
characterised by a set of parameters. For example, a given measurement on a given system
can be described by a probability distribution Pr (x|D) of a quantity x, which is updated from
a prior probability distribution given the results D obtained from a series of measurements
performed on identical copies of a system. It is natural to consider using Shannon entropy to
quantify the information gained from this updated distribution. However, Shannon entropy is
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limited to discrete distributions, whereas physical quantities and their associated probability
distributions can be continuous.

The question thus arises: What is a suitable measure for quantifying the information
obtained from real data, especially for quantities associated with continuous probability
distributions?

One potential solution is to employ Kullback–Leibler (KL) divergence, also known as
the relative entropy, H(x|D) =

∫
Pr (x|D) ln Pr (x|D)

Pr (x|I) dx, where Pr (x|I) represents the prior
distribution of x, and Pr (x|D) represents the posterior distribution of x updated with the
data D. This quantity is commonly referred to as the information gain from the prior
distribution to the posterior distribution, and is widely used.

Since the KL divergence is non-negative and invariant under changes of coordinates, it
appears to be a reasonable generalization of the Shannon entropy for continuous probability
distributions. However, there are situations where information gain defined in terms of the
KL divergence does not have a unique representation. Consider a scenario where one has
acquired a series of data D, and one proceeds to take additional measurements, obtaining
additional data D′. What is the additional information gain pertaining to D′? Using the KL
divergence, there are two distinct ways to express the information related to this additional
data. The first, to which we refer henceforth as the differential information gain, is simply
the difference between the information gain from the combined dataset {D,D′} and the
information gain from D alone (see Figure 4.1). The second, which we refer to as the relative
information gain, is given by the KL divergence of the posterior distribution after obtaining
the complete dataset {D,D′} compared to the posterior distribution after receiving data D
alone (see Figure 4.2). These two measures of information gain exhibit notably different
characteristics. For instance, whether the differential information gain increases or decreases
when data D′ is acquired depends on the choice of the prior distribution over the parameter,
while the relative information gain consistently increases regardless of the choice of prior.

As we shall discuss in Section 4.2, both of these measures can be viewed as arising
as a consequence of seeking to generalize the Shannon entropy to continuous probability
distributions. In order to determine which of these options is most appropriate for our
purposes, we seek a physically intuitive informational postulate to guide our selection. The
first criterion comes from the intuitive notion proposed by Summhammer [53, 54] that more
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data from measurements leads to more knowledge about the system. This idea has its origin
in the observation that, as we conduct more measurements to determine the value of a
physical quantity, the measurement uncertainty tends to decrease. In the following, we
employ information theory to formalize and explore the plausibility of this idea. We find that
relative information gain is consistently non-negative, whereas the positivity of differential
information gain hinges on the choice of the prior distribution.

Contrary to Summhammer’s criterion, we argue that under certain circumstances,
negative information gain due to acquisition of additional data D′ is also meaningful. Take,
for instance, the occurrence of a black swan event: an event so rare and unexpected that it
significantly increases one’s uncertainty about the colour of swans. If the gain of information
is considered to result from a reduction in the degree of uncertainty, the information gain
associated with the observation of a black swan should indeed be negative. By combining
this observation with Summhammer’s criterion, we are led to the Principle of Information
Increase: the information gain from additional data should be positive asymptotically and
negative in extreme cases. On the basis of the Principle of Information Increase, in the case
of a two-outcome probabilistic source, we show that differential information gain is the more
appropriate measure.

In addition, we formulate a new criterion, the robustness of information gain, for se-
lecting priors to use with the differential information gain. The essential idea behind this
criterion is as follows. If the result of the additional data D′ is fixed, then the information
gain due to D′ will vary for different D. Robustness quantifies this difference in informa-
tion gain across all possible data D. We show that for a two-outcome probabilistic source
amongst the symmetric beta distributions, the Jeffreys binomial prior exhibits the highest
level of robustness.

The quantification of knowledge gained from additional data is a topic that has received
limited attention in the literature. In the realm of foundational research on quantum the-
ory, this issue has been acknowledged but not extensively explored. Summhammer initially
proposed the notion that “more data from measurements lead to more knowledge about
the system” but did not employ information theory to address this problem, instead using
changes in measurement uncertainty to quantify knowledge obtained in the asymptotic limit.
This approach limits the applicability of the idea, as it excludes considerations pertaining to
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prior probability distributions and does not readily apply to finite data.

Wootters demonstrated the significance of the Jeffreys prior in the context of quan-
tum systems from a different information-theoretical perspective [57]. In the domain of
communication through quantum systems, the Jeffreys prior can maximize the information
gained from measurements. Wootters approaches the issue from a more systematic perspec-
tive, utilizing mutual information to measure the information obtained from measurements.
However, mutual information quantifies the average information gain over all possible data
sequences, which is not suitable for addressing the specific scenario we discussed earlier, for
which the focus is on the information gain from a fixed data sequence.

More broadly, the question of how much information is gained with the acquisition
of additional data has been a relatively under-explored topic in both practical applications
and foundational research on quantum theory. Commonly, mutual information is employed
as a utility function. However, as noted above, mutual information essentially represents
the expected information gain averaged over all possible data sequences. Consequently, it
does not address the specific question of how much information is gained when a particular
additional data point is obtained. From our perspective, this averaging process obscures
essential edge effects, including black swan events, which, as we will discuss, serve as valuable
guides for selecting appropriate information measures.

While our investigation primarily focuses on information gain in quantum systems, we
conjecture that the principles and conclusions we draw can be extended to general prob-
abilistic systems. Based on our analysis, we recommend quantification using differential
information gain and the utilization of the Jeffreys multinomial prior. If one seeks to calcu-
late the expected information gain in the next step, both the expected differential information
gain and the expected relative information gain can be employed since, as we demonstrate
for the two-outcome probabilistic case, they yield the same result.

The chapter is organized as follows. In Section 4.2, we detail the two information
gain measures, both of which have their origins in the generalization of Shannon entropy
to continuous probability distributions. Sections 4.3 and 4.4 focus on the numerical and
asymptotic analysis of differential information gain and relative information gain for two-
outcome probabilistic sources. Our primary emphasis is on how these measures behave
under different prior distributions. We will explore black swan events, where the additional
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data D′ are highly improbable given D. In this unique context, we will assess the physical
meaningfulness of the two information gain measures. In Section 4.5, we will discuss expected
information gain under the assumption that data D′ from additional measurements have not
yet been received. Despite the general differences between the two measures, it is intriguing
to note that the two expected information gain measures are equal. Section 4.6 presents a
comparison of the two information gain measures and the expected information gain. It is
within this section that we propose the Principle of Information Increase, which crystallises
the results of our analysis of the two measures of information gain. Finally, Section 4.7
explores the relationships between our work and other research in the field.

4.2 Continuous Entropy and Bayesian Information Gain

In a coin-tossing model, let p denote the probability of getting a head in a single toss,
and let N be the total number of tosses. After N tosses, the outcomes of these N tosses can
be represented by an N -tuple, denoted as TN = (t1, t2, · · · , tN), where each ti represents the
result of the ith toss, with ti taking values in the set {Head,Tail}. Applying the Bayes rule,
the posterior probability for the probability of getting a head is given by:

Pr (p|N, TN , I) =
Pr (TN |N, p, I) Pr (p|I)∫
Pr (TN |N, p, I) Pr (p|I)dp

(4.1)

where Pr (p|I) represents the prior. The information gain after N tosses would be the KL
divergence from the prior distribution to the posterior distribution:

I(N) = DKL( Pr (p|N, TN , I)|| Pr (p|I)) =
∫ 1

0

Pr (p|N, TN , I) ln
Pr (p|N, TN , I)

Pr (p|I)
dp (4.2)

Based on the earlier discussion on continuous entropy, this quantity can be interpreted
in two ways, either as the difference between the information gain after N tosses and the
information gain without any tosses or as the KL divergence from the posterior distribution
to the prior distribution.

When considering the information gain of additional tosses based on the results of the
previous N tosses, we may observe two different approaches to represent this quantity.

Let tN+1 represent the outcome of the (N+1)th toss, and let TN+1 = (t1, t2, . . . , tN , tN+1)
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denote the combined outcomes of the first N tosses and the (N + 1)th toss. The posterior
distribution after these N + 1 tosses is given by:

Pr (p|N + 1, TN+1, I) =
Pr (TN+1|N + 1, p, I) Pr (p|I)∫
Pr (TN+1|N + 1, p, I) Pr (p|I)dp

(4.3)

When considering information gain as a difference between two quantities, the first
form of information gain for this single toss tN+1 can be expressed as:

Idiff = DKL( Pr (p|N + 1, TN+1, I)|| Pr (p|I))−DKL( Pr (p|N, TN , I)|| Pr (p|I)) (4.4)

In this expression, the first term H( Pr (p|N+1, tN+1, I)|| Pr (p|I)) represents the infor-
mation gain from 0 tosses to N+1 tosses, while the second term H( Pr (p|N, TN , I)|| Pr (p|I))
represents the information gain from 0 tosses to N tosses. The difference between these terms
quantifies the information gain in the single (N +1)th toss (see Figure 4.1). In this context,
we can refer to Idiff as the differential information gain in a single toss.
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prior posterior post-posterior

I(N) =

H(posterior||prior)

I(N + 1) =

H(post-posterior||prior)

Idiff = I(N + 1) − I(N)

TN tN+1

Figure 4.1: Differential Information Gain in a Single Toss Assuming we have
data from the first N tosses, denoted as TN . Using a specific prior distribution, we can
calculate the information gain for these first N tosses, denoted as I(N). If we now consider
the (N +1)th toss and obtain the result tN+1, we can repeat the same procedure to calculate
the information gain for a total of N + 1 tosses, denoted as I(N + 1). The information gain
specific to the (N +1)th toss can be obtained as the difference between I(N +1) and I(N).

Alternatively, we directly calculate the information gain from the Nth toss to the
(N + 1)th toss. Hence, the second form of information gain is defined as follows:

Irel = DKL( Pr (p|N + 1, TN+1, I)|| Pr (p|N, TN , I)), (4.5)

which is simply the KL divergence from the posterior distribution after N tosses to the
posterior distribution after N + 1 tosses (see Figure 4.2). We refer to Irel as the relative
information gain in a single toss.
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prior posterior post-posterior

Irel = H(post-posterior||posterior)

tN+1TN

Figure 4.2: Relative Information Gain in a Single Toss The posterior distribution
calculated from the results of the first N tosses serves as the prior for the (N+1)th toss. The
KL divergence between this posterior and the subsequent posterior represents the information
gain in the (N + 1)th toss.

In general, these two quantities, Idiff and Irel, are not the same unless N = 0, which
implies that no measurements have been performed. Idiff could take on negative values, while
Irel is always non-negative due to the properties of the KL divergence. (This non-negativity
is a consequence of Jensen’s inequality applied to the convex logarithmic function, ensuring
that the expected logarithmic difference between two probability distributions, which con-
stitutes the KL divergence, cannot be negative.) Although KL divergence is not a proper
distance metric between probability distributions (as it does not satisfy the triangle inequal-
ity), it is a valuable tool for illustrating the analogy of displacement and distance in a random
walk model. (In a random walk, the change in total distance after N + 1 steps compared to
after N steps could be either positive or negative, analogous to how Idiff can have positive or
negative values. On the other hand, the net displacement between the positions at step N

and step N + 1 represents the absolute change in position, which is analogous to Irel always
having a non-negative value.) This analogy helps elucidate the subtle difference between the
two types of information gain.

Our goal is to determine which information gain measure is a more suitable choice.
To do so, we use Summhammer’s aforementioned postulate—“more measurements lead to
more knowledge about the physical system” [53, 54]—as our point of departure. If we
quantify “knowledge” in terms of information gain from data, this notion suggests that
the information gain from additional data should be positive if it indeed contributes to our
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understanding. This consideration makes relative information gain seem an appealing choice,
as it is always non-negative. However, the derivation of differential information gain also
carries significance. This leads to the question of whether Summhammer’s intuitive idea is
sufficient, and if not, what can replace it. In the following sections, we first will investigate
differential information gain in both the finite N and asymptotic cases. We will explore
the implications of negative values of differential information gain, particularly in extreme
situations. We will then conduct numerical and asymptotic analyses of relative information
gain. After analysing both measures of information gain, we will be better equipped to
compare and establish connections between them and to assess the physical meaningfulness
of Summhammer’s proposal.

4.3 Differential Information Gain

4.3.1 Finite Number of Tosses

For the prior distribution, we employ the symmetric beta distribution, which serves as
the conjugate prior for the binomial distribution:

Pr (p|I) = pα(1− p)α

B(α + 1, α + 1)
(4.6)

where α > −1, and B(·, ·) is the beta function.

In general, the beta distribution is characterized by two parameters. However, as
the prior over p is invariably taken to be symmetric about p = 1/2 (which follows from
the desideratum that the prior be invariant under outcome relabelling), we use a symmetric,
single-parameter beta distribution. This distribution encompasses a wide spectrum of priors,
including the uniform distribution (when α = 0) and the Jeffreys binomial prior (when
α = −0.5).

The differential information gain of the (N + 1)th toss is (see Appendix A.1)

Idiff = ψ(hN + α + 2)− ψ(N + 2α + 3)

+
hN

hN + α + 1
− N

N + 2α + 2
+ ln

N + 2α + 2

hN + α + 1

(4.7)

where ψ is the digamma function (the digamma function can be defined in terms of the
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gamma function: ψ(x) = Γ′(x)
Γ(x)

), and hN is the number of heads in the first N tosses.

In this context, we assume that tN+1 = ‘Head’. There is also a corresponding Idiff(tN+1 =

‘Tail’), but there is no loss of generality since we consider all possible values of TN and since
the expressions for both cases (Head and Tail) are symmetric.

Idiff is a function of hN and α, and hN ranges from 0 to N . In the following, we select
a specific value for α and calculate all the N + 1 values of Idiff for each N (see Figure 4.3).

4.3.1.1 Positivity of Idiff

Returning to our initial question—“Will more data lead to more knowledge?”—if we use
the term “knowledge” to represent the differential information gain and use Idiff to quantify
the information gained in each measurement, the question becomes rather straightforward:
“Is Idiff always positive?”

In Figure 4.3, we present the results of numerical calculations for various values of N .
Upon close examination of the graph, it becomes evident that Idiff is not always positive,
except under specific conditions. In the following sections, we will investigate the conditions
that lead to exceptions.
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Figure 4.3: Differential Information Gain (Idiff) vs. N for Different Priors
Here, the y-axis represents the value of Idiff, and the x-axis corresponds to the value of N .
In each graph, we fix the value of α to allow for a comparison of the behaviour of Idiff under
different priors. Given N , there are N +1 points in the vertical direction as hN ranges from
0 to N . Notably, for α = −0.7, all points lie above the x-axis, while for other priors, negative
points are present, and the fraction of negative points becomes constant as N increases. The
asymptotic behaviour of this fraction is shown in Figure 4.4. Moreover, it appears that the
graph is most concentrated when α = −0.5, whereas for α < −0.5 and α > −0.5, the graph
becomes more dispersed.

For certain priors, the differential information gain is consistently positive (Figure 4.3a),
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while for other priors, both positive and negative regions exist (Figure 4.3b–d). We note that
for priors leading to negative regions, the lowest line exhibits greater dispersion compared
to the other data lines. This lower line represents the scenario where the first N tosses all
result in tails, but the (N + 1)th toss yields a head. This situation is akin to a black swan
event, and negative information gain in this extreme case holds significant meaning—if we
have tossed a coin N times and obtaining all tails, we anticipate another tail in the next toss;
hence, receipt of heads on the next toss raises the degree of uncertainty about the outcome
of the next toss, leading to a reduction in information about the coin’s bias.

4.3.1.2 Fraction of Negatives

In order to illustrate the variations in the positivity of information gain under different
priors, we introduce a new quantity that we refer as to as the Fraction of Negatives (FoN),
which represents the ratio of the number of hN values that lead to negative Idiff and N + 1.
For instance, if, for a given α, N = 10 and Idiff < 0 when hN = 0, 1, 2, 3, the FoN under
this α and N is 4

11
.

From Figure 4.4, we identify a critical point, denoted as αp, which is approximately
−0.7. For any α ≤ αp, Idiff is guaranteed to be positive for all N and hN values.
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Figure 4.4: Fraction of Negatives (FoN) vs. N under Different Values of
α In Figure 4.3, we can observe that larger α values lead to more dispersed lines and an
increased number of negative values for each N . We use FoN to quantify this fraction of
negative points. It appears that for α ≤ −0.7, FoN is consistently zero, indicating that Idiff

is always positive. For α ≤ −0.5 FoN decreases and tends to be zero as N becomes large,
while for α > −0.5, FoN tends to a constant as N increases, and this constant grows with
increasing values of α.

If α > αp, negative terms exist for some hN ; however, the patterns of these negative
terms differ across various α values.

Additionally, we notice the presence of a turning point, α0 = −0.5. For α ≤ α0, FoN
tends to zero as N increases, whereas for α > α0, FoN approaches a constant as N grows.
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A clearer representation of the critical point αp and the turning point α0 can be found
in Figure 4.5, where the critical point αp is approximately −0.68.

Figure 4.5: Fraction of Negatives (FoN) vs. α for Different Values of N We
identify a critical point, denoted as αp, where the FoN equals zero when α ≤ αp. The critical
point exhibits a gradual variation with respect to N following these patterns: (i) for small
N , αp is in close proximity to −0.68; (ii) for large N , αp tends to −0.5.

4.3.1.3 Robustness of Idiff

In Figure 4.3, different priors not only exhibit varying degrees of positivity but also
display varying degrees of variation in Idiff for different values of hN ; we refer to this as
divergence. The divergence depends upon the choice of prior. To better understand this
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dependence, we quantify the dependence of Idiff on hN by the standard deviation of Idiff

across different values of hN . Figure 4.6 illustrates how the standard deviation changes with
respect to α while keeping N constant.

Figure 4.6: Robustness of Differential Information Gain (Idiff) The y-axis
represents the logarithm of the standard deviation of Idiff over all possible hN values, while the
x-axis depicts various selections of α. A smaller standard deviation indicates that different
hN values lead to the same result, implying greater independence of Idiff from hN . This
independence signifies the robustness of Idiff with respect to the natural variability in hN ,
as we consider hN to be solely determined by nature. The standard deviation, given a fixed
N , is notably influenced by α, and there exists an α value at which the dependence on hN

is minimized. This particular α value approaches −0.5 as N increases.

It is evident that when α is close to −0.5, the standard deviation is at its minimum.
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Reduced dependence of Idiff on hN enhances its robustness against the effects of nature, as
we attribute hN to natural factors, while N is determined by human measurement choices.
As N increases, the minimum point approaches −0.5. In the limit of large N , this minimum
point will eventually converge to α = −1

2
, which means that under this specific choice of

prior, Idiff depends minimally on hN and primarily on N .

4.3.2 Large N Approximation

Utilizing a recurrence relation and a large x approximation, the digamma function can
be approximated as:

ψ(x) =
1

x− 1
+ ψ(x− 1) ≈ 1

x− 1
+ ln(x− 1)− 1

2(x− 1)
=

1

2(x− 1)
+ ln(x− 1) (4.8)

As a result, the largeN approximation for the differential information gain in Equation (4.7)
becomes:

Idiff =
2hN + 1

2(hN + α + 1)
− 2N + 1

2(N + 2α + 2)
(4.9)

Using this approximation, when α = −1
2
, Idiff = 1

2(N+1)
, which shows that Idiff solely

depends on N . This finding aligns with Figure 4.3, which demonstrates that Idiff is most
concentrated when α = −0.5 and is also consistent with the results of [26].

In Figure 4.4, we observe that the FoN tends to become constant for very large val-
ues of N . These constants can be estimated using the large N approximation of Idiff in
Equation (4.9) (see Table 4.1). If Idiff ≤ 0, then

hN ≤ 2Nα +N + α + 1

4α + 3
, (4.10)

and we obtain:
FoN =

1

N + 1

2Nα +N + α + 1

4α + 3
≈ 2α + 1

4α + 3
(4.11)

This equation aligns with the asymptotic lines in Figure 4.4, providing support for the
observation mentioned in Figure 4.3: namely, that for α = −0.7, all points lie above the
x-axis, while for other priors, negative points are present, and the fraction of negative points
becomes constant.
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α FoN (Numerical
Result, N = 1000)

FoN (Asymptotic
Result)

Discrepancy between
the Two Results

-0.7 0 0 0
-0.6 0.001 0 0.1%

-0.5 0.013 0 1.3%

-0.4 0.144 0.143 0.1%

0 0.334 0.333 0.1%

1 0.429 0.429 0
3 0.467 0.467 0

Table 4.1: Fraction of Negatives (FoN) under Selected Priors Comparison
between numerical results and asymptotic results show that they agree with each other.

4.4 Relative Information Gain

The second form of information gain in a single toss is relative information gain, which
represents the KL divergence from the posterior after N tosses to the posterior after N + 1

tosses. We continue to use the one-parameter beta distribution prior in the form of Equa-
tion (4.6). The relative information gain is (see Appendix A.2):

Irel(tN+1 = ‘Head’) = ψ(hN + α + 2)− ψ(N + 2α + 3) + ln
N + 2α + 2

hN + α + 1
(4.12)

Relative information gain exhibits entirely different behaviour compared to differential
information gain. Due to the properties of KL divergence, relative information gain is always
non-negative, eliminating the need to consider negative values. We explore the dependence
of relative information gain on priors and the interpretation of information gain in extreme
cases.

In Figure 4.7, it becomes evident that, under different priors, the data lines exhibit
similar shapes. This suggests that relative information gain is relatively insensitive to the
choice of priors. On each graph, the top line represents the extreme case where the first N
tosses result in tails and the (N + 1)th toss results in a head. This line is notably separated
from the other data lines, indicating that relative information gain behaves more like a
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measure of the degree of surprise associated with this additional data. In this black swan
event, the posterior after N + 1 tosses differs significantly from the posterior after N tosses.

Figure 4.7: Relative Information Gain (Irel) over Different Priors The y-axis
represents the value of Irel, while the x-axis represents N . For each N , there are N + 1

different values of Irel. It is important to note that Irel is consistently positive across these
selected priors. Similar to the differential information gain, each graph displays numerous
divergent lines. However, the shape of these divergent lines remains remarkably consistent
across varying values of α. The majority of these lines fall within the range of Irel between
0 and 0.2.

For small values of N , both the average value and the standard deviation of Irel exhibit
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a clear monotonic relationship with α, meaning that larger values of α result in smaller
average values and standard deviations. However, as N becomes large, all priors converge
and become indistinguishable. Nonetheless, it is important to note that relative information
gain remains heavily independent on the specific data sequences (hN). Figure 4.8 illustrates
how the standard deviation of Irel under different priors converges to the same value as N
increases.

Figure 4.8: Robustness of Relative Information Gain (Irel) The y-axis represents
the standard deviation of Irel across all possible values of hN . This demonstrates the sub-
stantial independence of Irel from hN . Additionally, as N increases, the standard deviations
tend to approach zero for all priors.
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By utilizing the aforementioned approximation of the digamma function, we obtain:

Irel(tN+1 = ‘Head’) ≈ 1

2(hN + α + 1)
− 1

2(N + 2α + 2)

=
N − hN + α + 1

2(hN + α + 1)(N + 2α + 2)

(4.13)

In the large N limit, Irel becomes:

Irel(tN+1 = ‘Head’) ≈ 1

2N

[(
hN
N

)−1

− 1

]
, (4.14)

which is independent of α. Thus, it appears that the properties of relative information gain
and differential information gain are complementary to each other. The differences between
them are summarized in Table 4.2.

Information Gain
Measure

Asymptotic forms
(tN+1 = ‘Head’)

Asymptotic sensitivity to
prior

Differential Information
Gain

Idiff ≈ 2hN+1
2(hN+α+1)

− 2N+1
2(N+2α+2)

Heavily dependent upon prior.
Independent of hN for certain

priors (α = −1/2).
Relative Information

Gain
Irel ≈ 1

2(hN+α+1)
− 1

2(N+2α+2)
Insensitive to prior. For large
N , only affected by hN .

Table 4.2: Comparison of Characteristics of Two Measures of Information
Gain

4.5 Expected Information Gain

In this section, we discuss a new scenario: after N tosses but before the (N +1)th toss
has been taken, can we predict how much information gain will occur in the next toss? The
answer is affirmative, as discussed earlier.

After N tosses, we obtain a data sequence TN with hN heads. However, we can only
estimate the probability p based on the posterior Pr (p|N, TN , I). The expected value of p
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can be expressed as:

〈p〉 =
∫ 1

0

p Pr (p|N, TN , I) dp =
hN + α + 1

N + 2α + 2
(4.15)

Based on this expected value of p, we can calculate the average of the information gain
in the (N + 1)th toss. We define the expected differential information gain in the (N + 1)th
toss as:

Idiff = 〈p〉 × Idiff(tN+1 = ‘Head’) + 〈1− p〉 × Idiff(tN+1 = ‘Tail’)

=
hN + α+ 1

N + 2α+ 2
ψ(hN + α+ 2) +

N − hN + α+ 1

N + 2α+ 2
ψ(N − hN + α+ 2)− ψ(N + 2α+ 3)

+
hN + α+ 1

N + 2α+ 2
ln
N + 2α+ 2

hN + α+ 1
+
N − hN + α+ 1

N + 2α+ 2
ln

N + 2α+ 2

N − hN + α+ 1

(4.16)

Idiff represents the expected value of differential information gain in the (N +1)th toss.
Similarly, we can define the expected relative information gain as:

Irel = 〈p〉 × Irel(tN+1 = ‘Head’) + 〈1− p〉 × Irel(tN+1 = ‘Tail’)

=
hN + α+ 1

N + 2α+ 2
ψ(hN + α+ 2) +

N − hN + α+ 1

N + 2α+ 2
ψ(N − hN + α+ 2)− ψ(N + 2α+ 3)

+
hN + α+ 1

N + 2α+ 2
ln
N + 2α+ 2

hN + α+ 1
+
N − hN + α+ 1

N + 2α+ 2
ln

N + 2α+ 2

N − hN + α+ 1

(4.17)

Surprisingly, Idiff = Irel. This relationship holds true for any prior, not being limited
to the beta distribution type prior, and furthermore holds for an arbitrary n-outcome prob-
abilistic source. Please refer to Appendix A.3 for a detailed proof. This suggests that there
is only one choice for the expected information gain.

We first show the numerical results of expected information gain under different priors.
It is evident that all data points are above the x-axis, indicating that the expected informa-
tion gain is positive-definite, as anticipated. Since both Irel and 〈p〉 are positive, it follows
that Irel must also be positive.

As with the discussions of differential information gain and relative information gain,
we are also interested in examining the dependence of expected information gain on α or hN .
However, such dependence appears to be weak, as illustrated in Figures 4.9 and 4.10. Ex-
pected information gain demonstrates strong robustness concerning variations in α and hN .
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The asymptotic expression of expected information gain is

Idiff = Irel =
1

2N
(4.18)

Figure 4.9: Expected Information Gain vs. N for Fixed α The y-axis represents
the value of expected information, while the x-axis represents the value of N . Notably, all
expected information gain values are positive. The shapes of each graph exhibit remarkable
similarity, with a limited number of divergent lines. As α increases, the number of divergent
lines decreases.
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Figure 4.10: Robustness of Expected Information Gain The y-axis represents the
standard deviation of the expected information gain over all possible values of hN , while the
x-axis represents the value of N . As N increases, and even for relatively small values of N ,
the standard deviation tends toward zero for all priors.

4.6 Comparison of Three Measures, and the Information Increase Principle

From an operational perspective, the information measures we have considered can be
categorized into two types: differential information gain and relative information gain pertain
to a measurement that has already been made, while expected information gain pertains to
a measurement that has yet to be conducted.

Regarding positivity, which is tied to the fundamental question of “Will acquiring
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more data from measurements lead to a deeper understanding of the system?”: for relative
information gain and expected information gain, the answer is affirmative, but differential
information gain is positive only under certain specific prior conditions.

All three measures are functions of variables denoted as N , α, and hN , which charac-
terize the size of the data sequences, the prior information, and the existing data sequence,
respectively. How sensitive are these measures to these parameters, particularly for large
values of N? As we have shown, differential information gain is heavily influenced by all
three parameters. It becomes nearly independent of hN only when α = −0.5. Relative
information gain is not highly sensitive to the choice of priors. In the case of large values
of N , relative information gain is affected by both hN and N , whereas expected information
gain depends solely on N . The comparison between them is summarized in Table 4.3.

Information
Gain

Positivity Robustness about TN

Differential Strictly positive when α < αp

where αp ≈ −0.68. Asymptotically
positive when α ≤ −0.5.

Robustness exists only when α = −0.5

of beta distribution prior.

Relative Strictly positive for all priors. No significant differences of robustness
among beta distribution priors.

Expected Strictly positive for all priors. No significant differences of robustness
among beta distribution priors.

Table 4.3: Comparison of Three Information Gain Measures

At first, one might have expected that the idea that more data from measurements
lead to more knowledge about the system would hold strictly: namely, that the information
gain from additional data would always be strictly positive. However, our perspective has
been challenged by the observation of black swan events. In the extreme scenario where the
first N tosses all result in tails and the (N + 1)th toss yields a head, a negative information
gain in this (N + 1)th toss may be a more reasonable interpretation. To address this, we
propose the
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Principle of Information Increase: In a series of interrogations of an n-
outcome probabilistic source, the information gain from additional data should
tend towards positivity in the asymptotic limit. However, in the extreme case
where the first N data points are identical and the data of the (N + 1)th trial
is contrary to the previous data, the information gain in this exceptional case
should be negative.

Applying this criterion, the choice of using the differential information gain becomes
more appropriate for measuring the extent of knowledge contributed by additional data.
For the beta distribution prior, it should be constrained within the range of approximately
−0.68 . α ≤ −0.5. If we also consider the robustness of information gain under various given
data scenarios, then the Jeffreys binomial prior (α = −0.5) emerges as the most favourable
choice.

All three measures are based on KL divergence, however, strictly speaking none of
them can be a “measure” since the triangle inequality cannot be satisfied. We can still use
measure to denote their role when quantifying the information gain in measurements.

From the view of operational perspective, they can be divided into two types: differ-
ential information gain and relative information gain are evaluations of a measurement that
has already been taken; expected information gain is a prediction of a measurement that
hasn’t been taken.

From the view of positivity, that is, will this quantity always be positive? This connects
with our beginning question, “will more data from measurements lead to more knowledge of
a system?” For relative information gain and expected information gain the answer is yes,
while differential information gain is positive only under some certain priors.

All three measures are functions of N , α, hN which characterize size of the data se-
quences, prior and existing data sequence respectively. How are they sensitive to the three
parameters, especially for large N? As we know, differential information gain is heavily
influenced by all three parameters, only when α = −0.5 differential information gain will
be nearly independent of hN . Relative information gain is not sensitive to priors, in large
N , relative information gain is affected by hN and N , while expected information gain only
depends on N .
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Initially we may hope that the idea ”more data from measurements lead to more knowl-
edge about the system” is strictly hold, that is, the information gain of the additional data
should be strictly positive under all cases. However, based on the observation of the “Black
Swan Event”, we find a strictly positive information gain may not be meaningful. In the
extreme case that first N tosses are all tails and the N+1th toss is head, a negative informa-
tion gain in this N + 1th toss may be more physically reasonable. We propose the Principle
of Information Gain as follows:

In a series of binomial distribution data, the information gain of the additional data
should be positive asymptotically; in the extreme case that first N trials of data are all the
same and the data of N + 1th trial is opposite to previous data, then the information gain
in this extreme case should be negative.

Under this criterion, the differential information gain should be a better choice to
measure the degree of knowledge of the additional data. The beta distribution prior may be
ranged between −0.68 / α ≤ −0.5. If we also consider about the robustness of information
gain over different given data, then the Jeffreys’ binomial prior (α = −0.5) would be the
best choice.

4.7 Related Work

4.7.1 Information Increase Principle and the Jeffreys Binomial Prior

In [53, 54], Summhammer introduces the idea that more measurements lead to more
knowledge about a physical quantity and quantifies the level of knowledge regarding a quantity
by assessing its uncertainty range after a series of repeated measurements. Quantified in this
manner, the notion can be summarized as: “The uncertainty range of a physical quantity
should decrease as the number of measurements increases.” For a quantity θ, the uncertainty
range ∆θ is a function of the number of measurements:

∆θ(N + 1) < ∆θ(N) (4.19)

If this quantity is determined by the probability of a two-outcome measurement, such
as the probability of obtaining heads (p) in a coin toss, then there exists a relationship
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between the uncertainty range of θ and that of p,

∆θ =

∣∣∣∣∂θ∂p
∣∣∣∣∆p (4.20)

In large N approximation, ∆p =
√
p(1− p)/N , so that

∆θ =

∣∣∣∣∂θ∂p
∣∣∣∣√p(1− p)/N. (4.21)

One intuitive way to ensure Equation (4.19) holds is by forcing ∆θ to be purely a
function of N . Observing the relationship between ∆θ and ∆p, the simplest solution would
be to set ∆θ = const.√

N
. Under this solution, the relationship between p and θ takes the

following form: ∣∣∣∣∂θ∂p
∣∣∣∣√p(1− p) = const., (4.22)

which yields Malus’ law p(θ) = cos2(m(θ − θ0)/2), with m ∈ Z.

Summhammer does not employ information theory to quantify “knowledge about a
physical quantity” but instead utilizes the statistical uncertainty associated with the quan-
tity. However, viewed from the Bayesian perspective, if we assume that the prior distribution
of the physical quantity, θ, is uniform, the difference between θ and p in Equation (4.21)
implies that the prior distribution of the probability follows the Jeffreys binomial prior:

Pr (p|I) =
∣∣∣∣∂θ∂p

∣∣∣∣ Pr (θ|I) = 1

π

1√
p(1− p)

(4.23)

Thus, in the large N approximation, Summhammer’s result can be interpreted to mean that
the prior associated with the probability of a uniformly distributed physical quantity must
adhere to the Jeffreys binomial prior.

Goyal [26] introduces an asymptotic Principle of Information Gain, which states that
“In n interrogations of a N -outcome probabilistic source with an unknown probabilistic
vector ~P , the amount of Shannon–Jaynes information provided by the data about ~P remains
independent of ~P for all ~P in the limit as n → ∞.” Goyal establishes the equivalence
between this principle and the Jeffreys rule. Under his Principle of Information Gain, the
Jeffreys multinomial prior is then derived. In the case of a two-outcome probabilistic model,
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the Jeffreys multinomial prior reduces to the Jeffreys binomial prior. Asymptotic analysis
reveals that Shannon–Jaynes information is not only independent of the probability vector ~P
but also monotonically increases with the number of interrogations. It is worth noting that
Shannon–Jaynes information can be viewed as the accumulation of differential information
gain. This asymptotic result aligns with our findings: under the Jeffreys binomial prior, the
differential information gain is solely dependent on the number of measurements.

4.7.2 Other Information-Theoretical Motivations of the Jeffreys Binomial Prior

Wootters [57] introduces a novel perspective on the Jeffreys binomial prior, where
quantum measurement is employed as a communication channel. In this framework, Alice
aims to transmit a continuous variable, denoted as θ, to Bob. Instead of directly sending
θ to Bob, Alice transmits a set of identical coins to Bob, where the probability of getting
heads, p(θ), in each toss is a function of θ. Bob’s objective is to maximize the information
about θ that he can extract from a finite number of tosses. The measure of information used
in this context is the mutual information between θ and the total number of heads, n, in N
tosses.

I(n : θ) = H(n)−H(n|θ) = −
N∑
n=0

p(n) lnP (n)−

〈
−

N∑
n=0

p(n|p(θ)) ln p(n|p(θ))

〉
(4.24)

However, the function p(θ) is unknown, and the optimization process begins with a
set of discrete values, p1, p2, . . . , pL rather than utilizing the continuous function p(θ). For
each discrete value, pk, there is an associated weight, wk. The mutual information can be
expressed as follows:

I(n : θ) = −
N∑
n=0

p(n) lnP (n) +
L∑
k=1

wk

N∑
n=0

p(n|pk) ln p(n|pk) (4.25)

In the large N approximation, it is found that the weight w takes on a specific form:

w(p) =
1

π
√
p(1− p)

(4.26)

which serves a role akin to the prior probability of p. Remarkably, this prior probability
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aligns with the Jeffreys binomial prior. A similar procedure can be extended to the Jeffreys
multinomial prior distribution. Wootters’ approach shares similarities with the concept of a
reference prior, where the selected prior aims to maximize mutual information, which can be
viewed as the expected information gain across all data. The outcome is consistent with the
reference prior for multinomial data [5], thus revealing another informational interpretation
of the Jeffreys prior.

4.8 Conclusion

Motivated by recent work in quantum reconstruction and quantum state tomography,
we have investigated the concept of information gain for a two-outcome probabilistic source
from an operational perspective. We have introduced an informational postulate, the Princi-
ple of Information Increase, which serves as a criterion for selecting the appropriate measure
to quantify the extent of information gained from measurements and to guide the choice of
prior. We have shown that differential information gain is the most physically meaningful
measure when compared to the other contender: the relative information gain. We have also
uncovered the unanticipated and rather remarkable result that the expected value of these
two measures of information gain are equal for any prior and for any n-outcome probabilistic
source.

Within the set of symmetric beta distributions, we have shown that the Jeffreys bino-
mial prior exhibits notable characteristics. Both Summhammer’s work and ours demonstrate
that, under this prior, the intuitive notion that more data from measurements leads to more
knowledge about the system holds true, as confirmed by two distinct methods of quantify-
ing knowledge. Additionally, Wootters shows that this prior enables the communication of
maximal information, further highlighting its significance. Here, we have formulated the
novel notion of robustness and have shown that the Jeffreys binomial prior displays maximal
robustness within the set of symmetric beta distributions. Our work raises the intriguing
question of whether this feature could be extended to the multinomial Jeffreys prior and
whether it would be possible to lift the initial restriction to the set of beta distributions. We
also speculate that a deeper understanding of the robustness of the Jeffreys prior remains to
be uncovered.
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PART III

Information about Observables

74



CHAPTER 5

Quantum Question Structures

5.1 Introduction

A fundamental difference between classical and quantum systems is the following: whereas
a single measurement can be performed on a classical system which reveals the state of the
system, many different and inequivalent measurements can be performed on a single qubit,
each of which generally provides limited information about the state of the system. The set
of possible measurements that can be performed on a quantum system has a rich internal
structure.

The motivation for the present work comes from some facts observed on spin-1
2

particles.
In quantum tomography, the state of a single spin-1

2
particle can be determined by probability

of the Stern-Gerlach measurements. The density matrix of a single spin-1
2

particle can then
be represented as:

ρ̂ =
1

2
(Î + ~r · ~̂σ) (5.1)

Moreover, consider a two-body system composed of spin-1
2

system A and B, the state of this
composite system can be determined by a set of local measurements and global measurements
[12]:

ρ̂AB =
1

4
(Î ⊗ Î + ~rA · ~̂σA ⊗ Î + Î ⊗ ~rB · ~̂σB +

∑
i,j

βijσ̂
A
i ⊗ σ̂Bj ), (5.2)

where ~̂σA, ~̂σB are Bloch vectors on the single spin-1
2

system A and B respectively, and βij are
real numbers. Two interesting properties are observed in qubits systems: 1. The outcome
probability of a joint measurement of σ̂Ai ⊗σ̂Bj can be obtained by the combination of statistics
of local measurement outcomes of ~̂σA ⊗ Î and Î ⊗ ~̂σB, yet the single time measurement
behavior of the joint measurement and local measurement are totally different. 2. For a
single qubit, we could use a set of mutually complementary measurements, {σ̂x, σ̂y, σ̂z}, to
do the state tomography. For two qubits, we could also do the state tomography via those
locally mutually complementary measurements and the joint measurements. However, those
joint measurements may not be mutually complementary; some joint measurements are even
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mutually commuting to each other. The coincidence of commutativity and complementarity
suggests there may be a deeper reason. We tend to use information theory to explore an
explanation by introducing a new structure, quantum question structure. In one hand it is
possible to provide a new viewpoint of understanding quantum mechanics, on the other hand
we also find some new results of quantum mechanics.

Employing information theory into quantum mechanics is not a new thing. Rovelli[51]
first proposed this idea within a new interpretation of finite dimensional quantum mechanics.
Since every quantum measurement can be decomposed into many projections, the whole
physical system can be regarded as a collection of binary outcome measurements. Each
projection is a binary question. The state of the system is the collection of all the results
of these binary questions. It is assumed that we may obtain 1 unit of information when
obtaining the result of one question. The total information we can obtain about the system
is assumed to be finite. Yet the detailed structure of questions is not mentioned.

Brukner and Zellinger [8, 9] proposed very similar assumptions of information as Rov-
elli’s, and information is used to build the structure of measurements of quantum mechanics.
They suggested that the information of a system is the sum of information of all comple-
mentary questions. In the case of a spin-1

2
particle, this assumption is very plausible. Since

all complementary questions for a spin-1
2

particle are just the spin operators. Yet in the case
of a two-body spin-1

2
particle, the definition of complementary questions is not clear. The

complementary questions for single body system seems to be related to mutually unbiased
operators while using mutually unbiased operators only may not be complete to describe a
composite system.

Höhn[30, 31] proposed a new reconstruction of quantum mechanics. Rovelli’s assump-
tions are included in this reconstruction. The relation between the joint measurements and
local measurements is described by a logical gate. The information of the system is defined
in a new way, it is the sum of a collection of finite questions. Together with some other fun-
damental assumptions, it is derived that the single system’s information is determined by all
complementary questions. This reconstruction claimed to recover qubit quantum mechanics
and some important results are derived. However, generalizing to higher dimensions is not
straightforward. It appears that the allowed logical gate, derived from specific rules, has only
one form and is associative in a two-dimensional case. While in higher dimensions, there
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exist multiple possible formations of the logical gate, among which only a few are associative.

The above discussions are all based on qubit quantum mechanics. Some results are
really impressive, yet there is a small concern: qubit quantum mechanics may not be easily
extended to higher-order dimensional cases. We may say that an arbitrary even number
dimensional quantum system can be decomposed as a many-qubit system, but how about
odd number dimensional cases, say three dimensions? Indeed, one may still possibly use
qubits to represent odd number dimensional systems, yet this will definitely lead to some
redundancies. Moreover, some results may be just a coincidence of the two dimensions. For
example, one core task of the reconstruction of qubit quantum mechanics is to recover/derive
the structure of Pauli matrices, since the Pauli matrices are good enough to describe a qubit.
However, Pauli matrices themselves are really unique; they are pairwise complementary
and anti-commuting4. It is natural to ask what’s the analogy for generalization of Pauli
matrices in higher dimension. Moreover, we want to deal with the odd number dimensional
system without any redundancy. We are curious about what happens if applying the similar
formalism of information theory to higher-dimensional cases.

Here are the main features of this chapter:

1. We generalize Höhn’s formalism into higher dimensional cases and find several non-
trivial results. The main difficulty of generalization emerges when dealing with com-
posite systems. In quantum mechanics, we can use tensor product to compose mea-
surement on more than one single system. By abstracting the act of performing a
measurement on a physical system as asking a question to the system, we inherit
Höhn’s notion of a logical gate to connect questions about a single system, analogous
to tensor products. In two dimensional case, there is only one choice of logical gate,
the exclusive or gate. In higher dimensional case, the choice of logical gate may not
be limited. We find a mathematical structure, orthogonal array, to describe the clas-
sification of different logical gates. The well discussed results on orthogonal array in
prime number dimensional case lead us to focus on prime number dimensional quantum
mechanics only.

4Anti-commutativity is not widely used. For example, σ̂x and σ̂z are mutually complementary, but σ̂x×σ̂x
and σ̂z× σ̂z commute with each other. This local complementarity and global commutativity of Pauli matrix
is directly due to anti-commutativity.
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2. We clarify the notion and definition of information, especially information of measure-
ment and information of system. The definition discussed by Rovelli and Brukner and
Zeilinger is not very clear. We restrict the information of measurement to be a function
of the probability distributions of the outcomes. In some sense this is a measure of
uncertainty of the outcomes. Moreover, all the probabilities we deal with are written
in the Bayesian style. In this way, we may show that there are two different under-
standing of information of measurement and in this paper we only use one of them.
The information of system is proposed from the viewpoint of tomography, where a
finite set of selected measurements can be used to determine the state of system. By
holding a similar assumption, the combination of the information from those selected
measurements characterizes all our knowledge about the system, and we name it as
information of system.

3. We provide a connection between the quantum question structure we begin with and
the ordinary quantum mechanics. In two dimensional case, all questions have binary
outcomes and the system is corresponding to a qubit. Every question resembles a Pauli
matrix, i.e. a Stern-Gerlach measurement on the qubit. For composite systems, every
composite question resembles a joint measurement on the multi-qubit system where
each joint measurement can be represented as a tensor product of Pauli matrices.

For higher dimensional cases, this analogy is not clear. Indeed we may want to find
an analogy of Pauli matrix in higher dimensional space such that every question is
corresponding to a specific measurement on a qudit. We choose the generalized Pauli
matrix that is build based on mutually unbiased bases (MUBs). The reason of this
choice is that we think the complementarity is the most important property of Pauli
matrix, which is perfectly revealed in MUBs from qubits to higher dimensional spaces.
In this way, we could translate our main results and their derivations in terms of linear
space language, making the abstract formalism not so abstract.

The goal of the current project is to elucidate the structure of these questions. This
chapter is organized as follows. Section 5.2 introduces the new question set structure. We
begin with several interesting properties among qubits and the abstract structure of quantum
questions, then we show the whole construction of quantum questions. Section 5.3 introduces
MUBs in ordinary quantum mechanics. It is the similarity between the properties in MUBs
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and the consequences in quantum question structure lead to a possible connection. Such
connection is discussed in Section 5.4, where examples are provided to illustrate the basic
idea of quantum questions in terms of ordinary quantum mechanics language. The degree
of freedom of the system agrees with the result in ordinary quantum mechanics. The proof
of two new results are stated in Appendix B.

5.2 A physical system as set of questions

5.2.1 Motivation of the question structure

We begin our discussion by considering a qubit. There are an infinite number of
projective measurements on the qubit, each of them can be represented as a unitary operator:

σ̂θ,φ = |+θ,φ〉 〈+θ,φ| − |−θ,φ〉 〈−θ,φ| θ ∈ [0, π], φ ∈ [0, 2π), (5.3)

where

|+θ,φ〉 =
1√
2

 cos
(
θ
2

)
eiφ sin

(
θ
2

)
 |−θ,φ〉 =

1√
2

 cos
(
θ
2

)
−e−iφ sin

(
θ
2

)
 . (5.4)

Once a projective measurement has been performed, the post-measurement state of
the system will be the eigenstate of this operator, and we can infer the outcome probabilities
of any other projective measurements performed on the system immediately afterwards. All
these projections have the same eigenvalues, ±1. Moreover, the state of the qubit can be
reconstructed via these projections.

Property 1. The state of a single qubit can be reconstructed by state tomography over
any three different projective measurements.

This property can be viewed as a natural consequence of the density matrix of qubit
(5.1). Though theoretically we could choose any three different axes for the projections, three
perpendicular axis are commonly chosen for the sake of calculational convenience. Moreover,
the projections with perpendicular axes has another property.

Property 2. Two projective measurements, σ̂θ,φ and σ̂θ′,φ′ , with perpendicular axes will
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be mutually unbiased5 to each other.

We can choose any two direction {θ, φ}, {θ′, φ′} which are mutually perpendicular and
the corresponding measurements are mutually unbiased. A typical example is {θ = π

2
, φ =

0}, {θ′ = 0, φ′ ∈ [0, 2π)}, which denotes to the mutually unbiased measurements of σ̂x, σ̂z,

|〈+|0〉|2 = |〈−|0〉|2 = |〈+|1〉|2 = |〈−|1〉|2 = 1

2
. (5.5)

Property 1&2 are two common facts of single qubit. Noticing that those two properties
are describing measurements on an individual system, and we may call them local measure-
ments. The mutually unbiasedness between local measurements are very obvious and widely
used. What attracts us more is the mutually unbiasedness between global measurements on
a composite system. Here, composite system denotes a collection of identical systems, and
global measurements are the tensor products of local measurements. For a composite system
containing several qubits, the global measurement may be of the form of σ̂i1 ⊗ σ̂i2 ⊗· · ·⊗ σ̂in

where each σ̂ir is a local measurement on a subsystem. These global measurements have
the same number of outcomes as the local measurements, but the relations between global
measurements will be more different, they could commute or be mutually unbiased to each
other. We want to show two interesting properties about these global measurements by
taking examples on a two-body qubit system.

Property 3. In a two-body qubit system, two global measurements σ̂i1⊗σ̂j1 and σ̂i2⊗σ̂j2
either commute or be mutually unbiased, and then they are non-informative 6 to each
other , where σ̂i1 , σ̂i2 , σ̂j1 , σ̂j2 ∈ {σ̂x, σ̂y, σ̂z}.

Two measurements are non-informative, which means the result of one measurement
alone cannot determine the result of another measurement if performed subsequently. We
will show this in detail for global measurements that commute or mutually unbiased.

5Two operators are mutually unbiased if their eigenstates or eigensubspaces are mutually unbiased, we
will talk more about that in Section 5.3.

6Addressing the unclear definition of complementary questions in Brukner and Zellinger’s work, we pro-
pose using the set of non-informative questions as a complete description of a composite system. This set
contains both mutually unbiased operators as well as commuting operators, akin to the joint terms in the
density matrix of two-body spin- 12 system.
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• σ̂i1 ⊗ σ̂j1 and σ̂i2 ⊗ σ̂j2 commute

We first take the example on σ̂i1 = σ̂j1 = σ̂x and σ̂i2 = σ̂j2 = σ̂z. Noticing that σ̂x⊗ σ̂x

and σ̂z ⊗ σ̂z commute, their common eigenstates are just the famous Bell states:

∣∣Ψ+
〉
=

1√
2
(|0〉 |0〉+ |1〉 |1〉)∣∣Ψ−〉 = 1√

2
(|0〉 |0〉 − |1〉 |1〉)∣∣Φ+

〉
=

1√
2
(|0〉 |1〉+ |1〉 |0〉)∣∣Φ−〉 = 1√

2
(|0〉 |1〉 − |1〉 |0〉).

(5.6)

For an unknown system, if we first take measurement of σ̂x ⊗ σ̂x at time t1 and get
some eigenvalue ±1, after this measurement the state of the system would be projected
into one of the two eigensubspaces of σ̂x ⊗ σ̂x:

|ψ〉t>t1 ∈

Span({|Ψ
+〉 , |Φ+〉}) if outcome is 1

Span({|Ψ−〉 , |Φ−〉}) if outcome is -1.
(5.7)

If we immediately then take a measurement of σ̂z ⊗ σ̂z at time t2 > t1
7, what can we

say about the outcome probabilities before t2? The answer is that it depends on the
initial state before t1. The unknown initial state cannot infer anything about these
outcome probabilities, nor can the measurement result of σ̂x ⊗ σ̂x. The best we can
say is that8,

Pr (“σ̂z ⊗ σ̂z, λ, t2”|“σ̂x ⊗ σ̂x, λ
′, t1”, I) = unknown, (5.8)

where I denotes the fundamental postulates of quantum mechanics.

For the sake of convenience, we could take a special choice of the initial state ρ̂t=t0
7In the following discussions, the lower index moment always denotes earlier moments, i.e. t0 < t1 < t2 <

t3 < · · ·
8Assume the operator Â has distinct eigenvalues {a1, a2, · · · , aN} then the action “take measurement Â

at time t and obtain an outcome of ai” is abbreviated as “Â, ai, t”
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such that the “unknown” is replaced with an intuitive choice,

Pr (“σ̂z ⊗ σ̂z, λ, t2”|“σ̂x ⊗ σ̂x, λ
′, t1”, ρ̂t=t0 , I) =

1

2
,

Pr (“σ̂z ⊗ σ̂z, λ, t2”|ρ̂t=t0 , I) =
1

2
.

(5.9)

This suggests that the measurement result of σ̂x⊗ σ̂x does nothing about the outcome
probabilities of σ̂z ⊗ σ̂z, and if we choose an uninformative initial state, the outcome
probabilities of σ̂z ⊗ σ̂z before and after the measurement of σ̂x ⊗ σ̂x are the same. In
this situation, we may say the two measurements are independent. This state ρ̂t=t0
turns out to be a maximally entangled state for a two-body qubits system, where
ρ̂t=t0 = 1

4
Î ⊗ Î. Moreover, this choice is also uninformative. Under this initial state,

all these global measurements will have the same outcome probabilities:

Pr (“σ̂θ,φ ⊗ σ̂θ′,φ′ , λ, t1”|ρ̂t=t0 , I) =
1

2
. (5.10)

We can generalize this idea to any two pairs of commuting global measurements σ̂i1⊗σ̂j1
and σ̂i2⊗σ̂j2 . If we know nothing about the initial state, we could choose ρ̂t=t0 = 1

4
Î⊗ Î

to act as the prior of the initial state. This choice leads to the following relation:

Pr (“σ̂i1 ⊗ σ̂j1 , λ, t2”|“σ̂i2 ⊗ σ̂j2 , λ
′, t1”, ρ̂t=t0 , I) =

1

2
. (5.11)

• σ̂i1 ⊗ σ̂j1 and σ̂i2 ⊗ σ̂j2 are mutually unbiased

Now, let’s consider the example of σ̂x ⊗ σ̂x and σ̂x ⊗ σ̂z, which do not commute, to
illustrate this property. If we first take a measurement of σ̂x ⊗ σ̂x at time t1 and
obtain an outcome of +1, the state |ψ〉t>t1 of the system will be projected into the
eigensubspace of σ̂x ⊗ σ̂x, denoted as E(+1, σ̂x ⊗ σ̂x). This eigensubspace can be
expressed as a combination of Bell states:

|ψ〉t>t1 = α
∣∣Ψ+

〉
+ β

∣∣Φ+
〉

α, β ∈ C, |α|2 + |β|2 = 1. (5.12)
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We may also decompose |ψ〉t>t1 as a combination of eigenstates of σ̂x ⊗ σ̂z:

|ψ〉t>t1 = α
∣∣Ψ+

〉
+ β

∣∣Φ+
〉

=
α√
2
(|0〉 |0〉+ |1〉 |1〉) + β√

2
(|0〉 |1〉+ |1〉 |0〉)

=
α

2
(|+〉 |0〉 − |−〉 |1〉) + β

2
(|−〉 |1〉 − |+〉 |0〉) + α

2
(|−〉 |0〉+ |+〉 |1〉) + β

2
(|+〉 |1〉 − |−〉 |0〉).

(5.13)

This suggests after the measurement of σ̂x⊗ σ̂x with outcome +1, if we take measure-
ment σ̂x ⊗ σ̂z at time t2 then the probabilities of the two outcomes of σ̂x ⊗ σ̂z will be
the same,

Pr (“σ̂x ⊗ σ̂z,+1, t2”| |ψ〉t>t1 , I) = Pr (“σ̂x ⊗ σ̂z,−1, t2”| |ψ〉t>t1 , I) =
|α|2 + |β|2

2
=

1

2
.

(5.14)

The same situation happens if we obtain outcome −1 by measuring σ̂x⊗ σ̂x first. More
generally, if σ̂i1 ⊗ σ̂j1 and σ̂i2 ⊗ σ̂j2 do not commute, we will have the following relation:

Pr (“σ̂i1 ⊗ σ̂j1 , λ, t2”|“σ̂i2 ⊗ σ̂j2 , λ
′, t1”, h<t1 , I) =

1

2
∀λ, λ′ ∈ {−1,+1}, (5.15)

where h<t1 denotes all the historical measurements performed before time t1.

Both commuting and mutually unbiased global measurements yield very similar results,
as revealed in the equiprobable relations of equations (5.11) and (5.15). The difference is
that for mutually unbiased global measurements, the equiprobable relation (5.15) is valid
for any prior measurement knowledge, while the two commuting operators may require a
specific choice of an initial state and assume that no other measurements were performed
before. In the following discussions, when the state of the system is not given, we tend to
use the maximally mixed state as the initial state of the system. Under this initial state,
both commuting and mutually unbiased measurements are non-informative; the result of one
measurement cannot provide any information about the possible outcome of any subsequent
measurement.

Property 4. In state tomography of a two-body qubit system, the outcome probability
of a global measurement σ̂i ⊗ σ̂j can be determined by local statistics.
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We can always decompose the local measurements as summations of projection oper-
ators:

σ̂i = P̂i,1 − P̂i,−1, σ̂j = P̂j,1 − P̂j,−1. (5.16)

The global measurement σ̂i⊗ σ̂j can also be decomposed into summation of projectors:

σ̂i ⊗ σ̂j = (P̂i,1 ⊗ P̂j,1 + P̂i,−1 ⊗ P̂j,−1)− (P̂i,1 ⊗ P̂j,−1 + P̂i,−1 ⊗ P̂j,1). (5.17)

According to Lüders’ rule we may have the following relation:

Pr (“σ̂i ⊗ σ̂j,+1, t”|ρ̂, I) = Pr (“Î ⊗ σ̂j,+1, t2”|“σ̂i ⊗ Î ,+1, t1”, ρ̂, I) Pr (“σ̂i ⊗ Î ,+1, t1”|ρ̂, I)+

Pr (“Î ⊗ σ̂j,−1, t2”|“σ̂i ⊗ Î ,−1, t1”, ρ̂, I) Pr (“σ̂i ⊗ Î ,−1, t1”|ρ̂, I).
(5.18)

For any state ρ̂ of a two-body qubit system, the probability of obtaining +1 for σ̂i ⊗ σ̂j is
equal to the probability of obtaining the same outcome when two local measurements are
performed separately on the same system. The time order of the two local measurements is
not relevant. Similarly, the probability of obtaining −1 for σ̂i⊗ σ̂j is equal to the probability
that the two local measurements yield different outcomes.

5.2.2 Basic concepts and assumptions of question set structure

5.2.2.1 Single system

We will now abstract away from this quantum description and instead regard the
physical system as a black box to which we can pose one of an infinite number of different
binary questions. This black box can be represented as a set Q of questions. Each binary
outcome question Qθ,φ ∈ Q takes the form:

Qθ,φ : What’s the result of projective measurement σ̂θ,φ? (5.19)

where
Qθ,φ = 0(1) if result is up (down). (5.20)
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The interrogations of these questions are formalized as propositions. We use the following
convention to express an interrogation.

“Qθ,φ, q, t” : Conduct an interrogation of Qθ,φ to the system at time t and obtain an outcome of q

The state of the system at some time t can then be regarded as the set of the outcome
probabilities of all possible propositions in Q at time t.

In the case of binary outcomes, the two propositions, Qθ,φ, q, t” and σ̂θ,φ, λ, t”, are equiv-
alent. We may generalize the notion of a question to correspond not just to a binary qubit
but to an n-ary qunit. The qunit system may also be abstracted as a black box that con-
tains many questions, and each question Q has an outcome q in the range of 0, 1, 2, . . . , n− 1,
which means the outcomes belong to the finite field Fn.

Moreover, we may assume that after the interrogation of a question Q, and if we keep
conducting the same interrogations, the results will be the same:

Pr (“Q, q′, t2”|“Q, q, t1”, h<t1 , I) = δq,q′ , (5.21)

where h<t1 denotes all the historical interrogations we conducted before time t1 and I rep-
resents the basic structure of this quantum question system.

We abstract the system as a set Q, which usually contains an infinite number of ques-
tions. On one hand, we don’t want to deal with an infinite degree of freedom; on the other
hand, our system is taking analogies from qunits where the state has a finite number of
parameters. Similarly, we may assume the question structure also has a finite number of
parameters.

Assumption 1. For a system represented as a question set Q, there exists a maximal subset
QM containing pairwise non-informative questions, such that the outcome probability distri-
butions of all questions in Q \QM are determined by the outcome probability distributions
of questions in QM .
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Figure 5.1: Question Set Representation of Quantum System A quantum system
is abstracted as a set of questions, Q, and it may contain an infinite number of questions. We
assume that there is a finite collection of questions, QM , such that the outcome probability
distributions of the questions in QM determine all other outcome probabilities.

Two questions, Qa andQb, are non-informative. This means that from the interrogation
result of one question, we cannot obtain any information about the other question. Later,
we will introduce a formal definition of information. In brief, non-informative means that if
we know the interrogation result of one question and this is the only thing we know, then
we cannot predict the possible result of the interrogation of the other question.

In the qubit case, the subset QM is analogous to Pauli matrices. For example, σ̂x and σ̂z
are pairwise non-informative. Once we take a measurement of σ̂x, we cannot predict the exact
outcome of σ̂z. The state of the qubit could be determined via the outcome probabilities of
all three operators. Although, in principle, the state of a qubit could be determined via the
outcome probabilities of Stern-Gerlach projective measurements along three different axes,
the three mutually perpendicular axes are more special. The Pauli matrices are mutually
unbiased, making certain calculations easier. We mimic this feature in the question structure
as complementary questions.
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Definition 5.2.1. Two n-outcome questions Qa, Qb ∈ Q are said to be complementary if

Pr (“Qa, qa, t2”|“Qb, qb, t1”, h<t1 , I) =
1

n
∀qa, qb ∈ Fn,

Pr (“Qb, qb, t2”|“Qa, qa, t1”, h<t1 , I) =
1

n
∀qa, qb ∈ Fn.

(5.22)

In other words, no matter what interrogations have been conducted before t1, the interro-
gation of one question will yield a uniform outcome probability distribution for the other
question.

Another important relation between two projective measurements is commutativity.
We can think of this feature as compatible questions expressed in terms of outcome proba-
bilities.

Definition 5.2.2. Two questions Qa, Qb ∈ Q are said to be compatible if

Pr (“Qa, q
′
a, t3”|“Qb, qb, t2”, “Qa, qa, t1”, h<t1 , I) = δq′a,qa ,

Pr (“Qb, q
′
b, t3”|“Qa, qa, t2”, “Qb, qb, t1”, h<t1 , I) = δq′b,qb .

(5.23)

In other words, they don’t affect each other’s outcomes. For any system, we first ask question
Qa and obtain some outcome qa. Subsequently, when we ask question Qb and obtain some
outcome qb, if we continue to ask question Qa, we will still get outcome qa, and vice versa.

Compatibility is defined from an operational perspective, and while it’s not exactly
the same as the commutativity of operators in linear space, it is very similar. We will use
compatibility as the analogy of commutativity in the following discussion.

5.2.2.2 Composite system

For composite systems, we can always regard them as a combination of individual
subsystems. Moreover, we still treat the whole system as a set of questions, where each of
them is a d-outcome question. It is natural to assume that the questions for a composite
system contain questions from subsystems, as well as correlations between subsystems, which
have a special form.

Assumption 2. Let QA and QB are the question sets of system A,B respectively. They
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form a composite system with question set QAB such that

QAB = QA ∪QB ∪ Q̃AB (5.24)

Q̃AB contains composite questions in the form {Qa∗1Qb, Qa∗2Qb, . . . , Qa′∗1Qb′ , Qa′∗2Qb′ , . . .},
whereQa, Qa′ , . . . ∈ QA, Qb, Qb′ , . . . ∈ QB, and ∗1, ∗2, . . . are classical logical gates. Moreover,
composite questions in the set Q̃AB also have the same number of outcomes as questions in
QA and QB.

a α

a α

a β
b γ

c β

c α
b β

Q̃AB

a
b

c

QA

α

β

γ

QB

QAB

Figure 5.2: Question Set Structure in Composite System In a composite system
composed of individual systems A and B, the question set QAB contains both individual
questions from QA and QB, as well as the composite questions between these two individual
systems. Each composite question is in the form of Qa ∗i Qb where ∗i is a logical gate, and
there could be different forms of logical gates. In the figure, the different thickness of lines
that connect questions represent various logical gates.

The correlations are also questions with outcomes in the range of Fn. A composite
question Qa ∗i Qb represents a correlation between the questions Qa and Qb in subsystems.
In the case where we know the exact outcomes of Qa and Qb at the same time, denoted as
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qa and qb respectively, the outcome of Qa ∗i Qb is then uniquely determined by qa and qb.

In the qubit case, a composite question is analogous to the tensor product between two
local measurements. For example, the global measurement σ̂x ⊗ σ̂z represents a correlation
question between two local measurements σ̂x⊗Î and Î⊗σ̂z. Once we know the exact outcomes
of each local measurement at the same time, it means the system is in one of the eigenstates
of those two local measurements. Notably, the eigenstate of the two local measurements
is also the eigenstate of σ̂x ⊗ σ̂z, making the outcome of this global measurement uniquely
determined.

In the qubit case, the correspondence between composite questions and global mea-
surements may seem trivial. The non-trivial aspect lies in the existence of different forms of
logical gates, meaning there could be various binary functions in the form f : Fn×Fn → Fn.
The connection between composite questions with different logical gates and operators in
quantum mechanics is not obvious. We will first discuss the possible formation of these
logical gates and then explore their relationship with quantum mechanics.

Indeed, the degree of freedom of this composite system should be finite. The subset
QMAB that determines the composite system may have a structure similar to QAB; it
contains questions from subsystems as well as correlations.

Assumption 3. For a two-body composite system QAB, the maximal subset QMAB
deter-

mines (the probability distribution of) outcomes of all questions in QAB \ QMAB
. QMAB

has
the structure:

QMAB
= QMA

∪QMB
∪ Q̃MAB

, (5.25)

where
Q̃MAB

= {Qa ∗1 Qb, Qa ∗2 Qb, · · · , Qa′ ∗1 Qb′ , Qa′ ∗2 Qb′ , · · · }, (5.26)

with Qa, Qa′ , · · · ∈ QMA
, Qb, Qb′ , · · · ∈ QMB

. The questions in Q̃MAB
are pairwise non-

informative.
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b γ
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b β
a α

b β

QMA
QMB

Q̃MAB

QMAB

Figure 5.3: QM of Composite System We assume that the subset QM of a composite
system, which is formed by combining individual systems A and B, exhibits a structure akin
to the question set QAB. QM includes questions from both QMA and QMB

, along with
composite questions formed using various types of logical gates.

So far, we know little about the properties of these correlation questions and logical
gates. We will first investigate the construction of these logical gates using the restriction that
questions in QMAB

are pairwise non-informative. After that, we may propose information
about questions and use assumptions on information to derive the detailed structure of the
subset QM for both single systems and composite systems.

5.2.3 Restrictions of logical gates and generalizations in higher dimension

The key aspect to investigate in the structure of logical gates is the assumption that the
questions in QMAB

are pairwise non-informative. Now, consider four questions in a composite
system: Qa, Qb, Qa ∗ iQb, Qa ∗ jQb ∈ QMAB

. They are pairwise non-informative. This implies
there are two restrictions on the choices of logic gates:

Restriction 1. Qa ∗i Qb is non-informative to both Qa, Qb respectively;

Restriction 2. Qa ∗i Qb is non-informative to Qa ∗j Qb if ∗i and ∗j are different logical
gates.

In the case of binary outcome systems, the choice of ∗i is unique (see Table 5.1). There
are a total of 16 binary logical gates, while only XNOR or XOR satisfy the first restriction.
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Although XNOR and XOR are different, they don’t satisfy the second restriction. Notice
that if we know the value of Qa XNOR Qb, we can immediately infer the value of Qa XOR
Qb, and vice versa. Therefore, they are equivalent up to a negation operation.

Qa Qb Qa AND Qb

0 0 0

0 1 0

1 0 0

1 1 1

Qa Qb Qa OR Qb

0 0 0

0 1 1

1 0 1

1 1 1

Qa Qb Qa XOR Qb

0 0 0

0 1 1

1 0 1

1 1 0

Qa Qb Qa XNOR Qb

0 0 1

0 1 0

1 0 0

1 1 1

Table 5.1: Binary Logical Gates Exmaples The AND gate does not satisfy the first
restriction, since if we know the result of Qa AND Qb is 1, then we immediately know
both Qa and Qb must have outcome 1 which is not non-informative. The OR gate meets
from a similar problem. Of the 16 possible two-input one-output logic gates, only XOR and
XNOR satisfy the first restriction.

The logical gates in the n-ary case are more complex than binary logic gates. In binary
case there is only one allowable logical gate which is XOR (or XNOR up to a negation).
But, in the n-ary case, there could be more than one allowable logical gate. Table 5.2 shows
an example of logical gates in the ternary case.
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Qa Qb Qa×Qb

0 0 0
2 1 2
1 2 2

2 0 0
1 1 1
0 2 0

1 0 0
0 1 0
2 2 1

Qa Qb Qa +Qb

0 0 0
2 1 0
1 2 0

1 0 1
0 1 1
2 2 1

2 0 2
1 1 2
0 2 2

Qa Qb Qa −Qb

0 0 0
1 1 0
2 2 0

1 0 1
2 1 1
0 2 1

2 0 2
0 1 2
1 2 2

Table 5.2: Ternary Logical Gates Exmaples Ternary multiplication does not satisfy
restriction 1 since if we know the value of Qa × Qb is non-zero we immediately know the
values of both Qa and Qb cannot be zero. While ternary addition and ternary subtraction
satisfy both two restrictions.

In ternary case there are at least two different logical gates satisfy restriction 1. Before
discussing different logical gates, we first exclude equivalent logical gates.

Qa Qb Qa +Qb

0 0 0
2 1 0
1 2 0

1 0 1
0 1 1
2 2 1

2 0 2
1 1 2
0 2 2

0→2,1→0,2→1−−−−−−−−→

Qa Qb Qa ∗+ Qb

0 0 2
2 1 2
1 2 2

2 0 0
1 1 0
0 2 0

1 0 1
0 1 1
2 2 1

Table 5.3: Variant of Ternary Addition By knowing the value of Qa + Qb we can
immediately know the value ofQa∗+Qb, and vice versa. These two logical gates are equivalent
up to a permutation (021).
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In the example shown in Table 5.3, if we know the value of Qa + Qb, then we know
the value of Qa ∗+ Qb, and vice versa. Just as in the binary case, where XNOR and XOR
are equivalent up to a negation operation, the operations Qa + Qb and Qa ∗+ Qb are also
equivalent up to a permutation in the symmetric group S3. This can be generalized to n-ary
logical gates: if an n-ary logical gate satisfies restriction 1, then it is equivalent to n! − 1

variations, with each variation corresponding to a non-identity element in Sn.

Now, we can investigate different logical gates, and two problems need to be solved.
First, what is the maximal number of different logical gates in the n-ary case? And how can
we construct these different logical gates?

By excluding equivalent variations, the truth table of each logical gate can be written
in the same pattern. As Table 5.4 shows, the truth table of a logical gate is divided into
blocks, and in each block, the second column ranges orderly in 0, 1, . . . , n− 1, and the first
column remains constant.
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Qa Qb Qa +Qb

0 0 0
0 1 1
0 2 2
1 0 1
1 1 2
1 2 0
2 0 2
2 1 0
2 2 1

Qa Qb Qa −Qb

0 0 0
0 1 2
0 2 1
1 0 1
1 1 0
1 2 2
2 0 2
2 1 1
2 2 0

Qa Qb Qa ∗1 Qb
0 0 0
0 1 1
0 2 2
0 3 3
0 4 4
1 0 1
1 1 2
1 2 3
1 3 4
1 4 0
2 0 2
2 1 3
2 2 4
2 3 0
2 4 1
3 0 3
3 1 4
3 2 0
3 3 1
3 4 2
4 0 4
4 1 0
4 2 1
4 3 2
4 4 3

Qa Qb Qa ∗2 Qb
0 0 0
0 1 2
0 2 4
0 3 1
0 4 3
1 0 1
1 1 3
1 2 0
1 3 2
1 4 4
2 0 2
2 1 4
2 2 1
2 3 3
2 4 0
3 0 3
3 1 0
3 2 2
3 3 4
3 4 1
4 0 4
4 1 1
4 2 3
4 3 0
4 4 2

Table 5.4: Example of Logical gates by Fixing Two Columns We rearrange the
first two columns of a logical gate in the given order. For a n-ary logical gates, we divide the
truth table into n different blocks. In the first column, each block contains only one number
while in the second column each block contains numbers from 0 to n− 1.

The benefit of this pattern is that we can combine different tables into one larger table.
By doing so, the combined table becomes an orthogonal array, a concept well-investigated
in mathematics. Table 5.5 provides an example of a combined table in the ternary case.
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Qa Qb Qa +Qb

0 0 0
0 1 1
0 2 2

1 0 1
1 1 2
1 2 0

2 0 2
2 1 0
2 2 1

∪

Qa Qb Qa −Qb

0 0 0
0 1 2
0 2 1

1 0 1
1 1 0
1 2 2

2 0 2
2 1 1
2 2 0

→

Qa Qb Qa +Qb Qa −Qb

0 0 0 0
0 1 1 2
0 2 2 1

1 0 1 1
1 1 2 0
1 2 0 2

2 0 2 2
2 1 0 1
2 2 1 0

Table 5.5: Logical Gate and Orthogonal Array The truth tables of ternary addition
and ternary subtraction are both orthogonal arrays of 9 rows , 3 columns, level 3 and strength
2. Level 3 means there are 3 different elements. Strength 2 means it is a table of 9 rows and
3 columns and for every selection of 2 columns, all ordered 2-tuples of the elements appear
exactly row

levelstrength times. These two tables can be combined into a larger orthogonal array
with 4 columns.

The combined table of ternary addition and subtraction is an orthogonal array [49, 2].
An orthogonal array, denoted as OA(N, k, s, t), is an array with N rows and k columns,
where there are s different elements, and its strength is t. This means that every N × t

subarray contains each t-tuple exactly λ times as a row, with λ = N/st. In this case, the
orthogonal array is of size 32 × 4, with level 3 and strength 2.

As all possible logical gates can be combined into a single orthogonal array, the question
of the maximal number of different logical gates can be rephrased as follows: What is the
maximal number of columns in an orthogonal array with size n2, level n, and strength 2?
This problem is well-investigated when n is a power of a prime number but extremely difficult
in other cases.

Fact 1. The maximal number of columns for an orthogonal array with n2 rows, level n, and
strength 2 is n+ 1 if n is a prime power [2, p. 38].

This fact implies that when n is a prime power, there will be n − 1 different logical
gates. The next problem is the construction of these n− 1 different logical gates. We have
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found that, if n is a prime number, the n− 1 logical gates, denoted as 1, 2, · · · , ∗n− 1, can
be represented in this way:

Qa ∗i Qb := Qa + i×Qb (mod n) ∀i ∈ {1, 2, · · · , n− 1}. (5.27)

The example of the quinary case is shown in Table 5.6.

Qa Qb Qa +Qb

0 0 0
0 1 1
0 2 2
0 3 3
0 4 4

1 0 1
1 1 2
1 2 3
1 3 4
1 4 0

2 0 2
2 1 3
2 2 4
2 3 0
2 4 1

3 0 3
3 1 4
3 2 0
3 3 1
3 4 2

4 0 4
4 1 0
4 2 1
4 3 2
4 4 3

Qa Qb Qa + 2×Qb

0 0 0
0 1 2
0 2 4
0 3 1
0 4 3

1 0 1
1 1 3
1 2 0
1 3 2
1 4 4

2 0 2
2 1 4
2 2 1
2 3 3
2 4 0

3 0 3
3 1 0
3 2 2
3 3 4
3 4 1

4 0 4
4 1 1
4 2 3
4 3 0
4 4 2

Qa Qb Qa + 3×Qb

0 0 0
0 1 3
0 2 1
0 3 4
0 4 2

1 0 1
1 1 4
1 2 2
1 3 0
1 4 3

2 0 2
2 1 0
2 2 3
2 3 1
2 4 4

3 0 3
3 1 1
3 2 4
3 3 2
3 4 0

4 0 4
4 1 2
4 2 0
4 3 3
4 4 1

Qa Qb Qa + 4×Qb

0 0 0
0 1 4
0 2 3
0 3 2
0 4 1

1 0 1
1 1 0
1 2 4
1 3 3
1 4 2

2 0 2
2 1 1
2 2 0
2 3 4
2 4 3

3 0 3
3 1 2
3 2 1
3 3 0
3 4 4

4 0 4
4 1 3
4 2 2
4 3 1
4 4 0

Table 5.6: Four Different Quinary Logical Gates The colored numbers indicates
how the four logical gates are non-informative to each other. If the value of Qa + Qb is 0,
there will be five different combinations of values of Qa and Qb, and each combination yields
a different value in other gate.
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Unfortunately, this construction fails when n is a prime power. Up to now, we have
not found any elegant representations of logical gates when n is a prime power. Therefore,
we shall henceforth focus on the case where all questions have prime number outcomes.

Once we obtain a relatively clear form of logical gates in a p-ary system, we immediately
have the following consequence:

Corollary 1. In a two-body composite system QAB, Qa, Qb, Qa∗Qb are mutually compatible,
where Qa ∈ QA, Qb ∈ QB, and ∗ is any allowable logical gate. If the exact values of two of
them are known, then the value of the remaining question will be ensured due to the specific
form of logical gate ∗.

This result is an analogy of the commutativity between σ̂i ⊗ Î , Î ⊗ σ̂j, σ̂i ⊗ σ̂j. If we
take measurements of any two of the three operators, the state of the system will be ensured,
and the possible outcome of the unmeasured operator can also be ensured.

In the binary case, since there is only one allowable logical gate, the relation between
composite questions and composite operators seems natural when replacing ∗ with ⊗. In
higher-order cases when we have more allowable logical gates, this correspondence may not
be very clear. Later, we will introduce a general correspondence between composite questions
and composite operators.

5.2.4 Information of questions and consequences

So far, we have obtained a nice property and expression of logical gates, specifically
in prime number dimensional systems. However, this couldn’t yield more information about
the internal structure of QM . Suppose we assume that QM contains a finite number of
questions, but what is that number? In the following discussions, we will introduce a new
concept: information of questions, to help construct the structure of quantum questions
under informational postulates.

Like many existing information measures that are built upon probability distributions,
we tend to define the information of a question based on its outcome probability. Given the
background knowledge of the system, the historical interrogations h<t we have conducted on
the system before time t, the outcome probability of a question Q at this moment t is denoted
as Pr (“Q, q, t”|h<t, I). For an n-outcome question, there will be n outcome probabilities.
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The information of a question Q given the background knowledge h<t is a function of
these outcome probabilities:

I(Q|h<t) = H( Pr (“Q, 0, t”|h<t, I), Pr (“Q, 1, t”|h<t, I), · · · , Pr (“Q,n− 1, t”|h<t, I)).
(5.28)

H is a function of probability distributions and as a convention we set the following
restrictions of information I and function H:

1. 0 ≤ I(Q|h<t) ≤ 1;

2. H(~p) = 0 if and only if ~p = ( 1
n
, 1
n
, · · · , 1

n
);

3. H(~p) = 1 if and only if ~p is a n-tuple contains n− 1 zeros and 1 one.

Instead of offering a formal measure of information, our approach focuses on considering
two extreme cases concerning the information of questions. To find a detailed expression of
this information, we would need more informational assumptions regarding the constraints
of this measure. However, at the current stage, we cannot find more intuitive informational
postulates. In fact, in the following calculations, the information of each question is either 0
or 1. The two extreme cases are already sufficient for us to demonstrate the subtle structure
of quantum questions.

Now, we can define non-informative questions in terms of information. Two questions,
Qa and Qb, are said to be pairwise non-informative if from the interrogation of one of them
alone, we cannot obtain any information about the other question,

I(Qa|“Qb, q, t”) = 0, I(Qb|“Qa, q, t”) = 0. (5.29)

This definition lead to two subsequent consequences on complementary and compatible
questions.

Corollary 2. If we perform interrogations on two complementary questions, the latter in-
terrogation will erase the information about the question interrogated earlier.

Proof. Assume two questionsQa andQb are pairwise complementary. If we take interrogation
of question Qa at time t1 with outcome qa, then after the interrogation we obtain 1 unit
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information of Qa and 0 unit information of Qb:

Pr (“Qa, q
′
a, t2”|“Qa, qa, t1”, I) = δq′a,qa , I(Qa|“Qa, qa, t1”, I) = 1;

Pr (“Qb, qb, t2”|“Qa, qa, t1”, I) =
1

n
, I(Qb|“Qa, qa, t1”, I) = 0.

(5.30)

Then we take interrogation of question Qb at time t2 with outcome qb. After t2 we gain 1
unit information about question Qb and 0 unit information about Qa:

Pr (“Qa, q
′
a, t2”|“Qb, qb, t2”, “Qa, qa, t1”, I) =

1

n
, I(Qa|“Qb, qb, t2”, “Qa, qa, t1”, I) = 0;

Pr (“Qb, q
′
b, t2”|“Qb, qb, t2”, “Qa, qa, t1”, I) = δq′b,qb , I(Qb|“Qb, qb, t2”, “Qa, qa, t1”, I) = 1.

(5.31)

This shows the interrogation “Qb, qb, t2” erases the information we gain about Qa at
time t1. Similar results will be yielded if we change the order of interrogations on Qa

and Qb.

Qa unknown
Qb unknown

I(Qa) = 0

I(Qb) = 0

Qa = qa

Qb unknown

I(Qa) = 1

I(Qb) = 0

Qa unknown
Qb = qb

I(Qa) = 0

I(Qb) = 1

Qa = qa Qb = qb

< t1 t1 t2

Figure 5.4: Mutually Complementary Questions in Interrogation Qa and Qb are
mutually complementary. Initially, we have no knowledge about the state and two questions.
At time t1, we conduct an interrogation of Qa with an outcome qa. After this interrogation,
we gain 1 unit of information about Qa and cannot obtain any information about Qb. At
time t2, we conduct another interrogation of Qb with outcome qb, and this interrogation may
erase the information of Qa.

Corollary 3. If we perform interrogations on two compatible questions, the later interroga-
tion will retain the information about the question interrogated earlier.

Proof. For two compatible questions Qa and Qb, from the definition we may have the fol-
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lowing relations:

Pr (“Qa, q
′
a, t3”|“Qb, qb, t2”, “Qa, qa, t1”, h<t1 , I) = δq′a,qa ,

Pr (“Qb, q
′
b, t3”|“Qa, qa, t2”, “Qb, qb, t1”, h<t1 , I) = δq′b,qb .

(5.32)

This suggests that I(Qa|“Qb, qb, t2”, “Qa, qa, t1”, h<t1) = I(Qb|“Qa, qa, t2”, “Qb, qb, t1”, h<t1) =

1. If we have conducted an interrogation of a question, the latter interrogation of another
compatible question will retain the information obtained in both interrogations.

Qa unknown
Qb unknown

I(Qa) = 0

I(Qb) = 0

Qa = qa

Qb unknown

I(Qa) = 1

I(Qb) = 0

Qa = qa

Qb = qb

I(Qa) = 1

I(Qb) = 1

Qa = qa Qb = qb

< t1 t1 t2

Figure 5.5: Mutually Compatible Questions in Interrogation Qa and Qb are mu-
tually compatible. Initially, we have no knowledge about the state and two questions. At
time t1, we conduct an interrogation of Qa with an outcome qa. After this interrogation, we
gain 1 unit information of Qa and cannot obtain any information about Qb. At time t2, we
conduct another interrogation of Qb with outcome qb, and information of Qa is reserved.

Based on the information of questions, we can then try to define the information of the
system. Since we assume that the outcome probabilities of questions in QM determine all
other outcome probabilities of questions in the set Q, it is intuitive to define the information
of the system as a sum of the information of questions in QM , say

∑
Q∈QM

I(Q|h<t).

However, simply taking the summation over QM may not be very useful, especially
when dealing with a composite system, and QM contains compatible questions. Interroga-
tions on compatible questions will retain each other’s information, and they may also ‘derive’
information about non-interrogated questions.

Consider a two-body qubit system where {σ̂x ⊗ σ̂x, σ̂y ⊗ σ̂y, σ̂z ⊗ σ̂z} is a set of pair-
wise commuting operators. Under certain situations, say h≤t2 = {“σ̂x ⊗ σ̂x,+1, t1”, “σ̂z ⊗
σ̂z,+1, t2”}, from these two interrogations we may have 1 unit information for both σ̂x ⊗ σ̂x

100



and σ̂z ⊗ σ̂z. Moreover, now the system is in the common eigenstate of σ̂x⊗ σ̂x and σ̂z ⊗ σ̂z,
which is just the Bell state |Ψ+〉, and the outcome probabilities of σ̂y ⊗ σ̂y will be ensured,
even if we haven’t conducted an interrogation on it,

Pr (“σ̂y ⊗ σ̂y, 1, t3”|h≤ t2, I) = 1, Pr (“σ̂y ⊗ σ̂y, 0, t3”|h≤ t2, I) = 0. (5.33)

This suggests that the information of σ̂y ⊗ σ̂y is not independent, but can be derived
from the results of the other two interrogations.

ρ̂ = 1
4
Î

I(σ̂x ⊗ σ̂x) = 0

I(σ̂y ⊗ σ̂y) = 0

I(σ̂z ⊗ σ̂z) = 0

|ψ〉 ∈ E(σ̂x ⊗ σ̂x, 1)

I(σ̂x ⊗ σ̂x) = 1

I(σ̂y ⊗ σ̂y) = 0

I(σ̂z ⊗ σ̂z) = 0

|ψ〉 = |Ψ+〉

I(σ̂x ⊗ σ̂x) = 1

I(σ̂y ⊗ σ̂y) = 1

I(σ̂z ⊗ σ̂z) = 1

σ̂x ⊗ σ̂x = 1 σ̂z ⊗ σ̂z = 1

< t1 t1 t2

Figure 5.6: Information Acquisition in Joint Measurements Initially, we have no
information about these joint measurements, and the initial state is taken as the maximal
mixed state with no preference for any projection. At time t1, a measurement of σ̂x ⊗ σ̂x

is taken, projecting the system into the eigensubspace of σ̂x ⊗ σ̂x. At time t2, another
measurement of σ̂z ⊗ σ̂z is conducted, ensuring that the system is in one of the four Bell
states. All the information about the three joint measurements is obtained.

We want to focus on those non-derived information only, the information of the system
will be sum of these independent information in the subset QM :

Isystem(h<t) =
∑

Qi∈QM
Qi rel. ind.

I(Qi|h<t). (5.34)

Here Qi rel. ind. denotes to all the questions such that the outcome probabilities can-
not be derived from other questions in QM . In the above example when h<=t2 = {“σ̂x ⊗
σ̂x,+1, t1”, “σ̂z ⊗ σ̂z,+1, t2”}, then σ̂y ⊗ σ̂y will be excluded in the sum.

Assumption 4. For n-ary single system, the upper bound of information of system is 1

101



unit. For composite system composed of N subsystems, this upper bound is N units.

This assumption together with logical gates directly leads to the following corollaries:

Corollary 4. In single n-ary system, all questions in QM are mutually complementary.

Proof. Let Qa, Qb ∈ QM , and we take interrogation on Qa at time t1 with outcome qa and
interrogation on Qb at time t2 with outcome qb.

After t2 we may obtain 1 unit information about question Qb:

Pr (“Qb, q
′
b, t3”|“Qb, qb, t2”, “Qa, qa, t1”, I) = δq′b,qb , I(Qb|“Qb, qb, t2”, “Qa, qa, t1”, I) = 1.

(5.35)

The information of the system is no more than 1 unit:

Isystem(“Qb, qb, t2”, “Qa, qa, t1”) = I(Qa|“Qb, qb, t2”, “Qa, qa, t1”)+I(Qb|“Qb, qb, t2”, “Qa, qa, t1”) ≤ 1.

(5.36)

This yields I(Qa|“Qb, qb, t2”, “Qa, qa, t1”) = 0 and
Pr (“Qa, q

′
a, t3”|“Qb, qb, t2”, “Qa, qa, t1”, I) =

1
n
,∀q′a.

By applying the same argument, if we first take interrogation of Qb and then take
interrogation of Qa we may have Pr (“Qb, q

′
b, t3”|“Qa, qa, t2”, “Qb, qb, t1”, I) =

1
n

∀q′b.

The above procedures show that Qa and Qb are pairwise complementary, and choice
of Qa and Qb are arbitrary. Therefore all questions in QM are mutually complementary.

Corollary 5. Two composite questions Qa ∗i Qb, Qa′ ∗j Qb′ are not compatible if Qa = Qa′

or Qb = Qb′ , ∗i, ∗j are any two allowable logical gates.

Proof. By contradiction, assume if Qa = Qa′ then Qa ∗i Qb, Qa ∗j Qb′ are compatible.

According to Assumption 4, the three questions Qa, Qa ∗i Qb, Qa ∗j Qb′ are mutually
compatible. This means we can make three interrogations on each of them and information
on each question won’t be lost.

The outcomes of Qa, Qa∗iQb will yield the outcome of Qb and outcomes of Qa, Qa∗jQb′

will yield outcome of Qb′ . Yet if Qb, Qb′ ∈ QMB
then this violate Corollary 3 since we cannot

know the outcomes of two complementary questions.
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The same argument can be applied on the case that Qb = Qb′ .

Corollary 6. In two body p-ary system, there are at most p + 1 mutually compatible
composite questions, where every composite question is in the form Qa∗iQb, Qa ∈ QMA

, Qb ∈
QMB

, ∗i is any allowable logical gate.

Proof. Assume there are k different mutually compatible composite questions, which are
labeled as Q1 ∗i1 Qj1 , Q2 ∗i2 Qj2 , · · · , Qk ∗ik Qjk .

The compatibility of those questions means we may take k those different interroga-
tions, say h<=tm = {“Qm ∗im Qjm , qm, tm”}km=1, and after that information of each of the k
different questions is retained.

Yet for two body system we can only obtain at most 2 units information of system.
Of course it’s possible to require k ≤ 2 but it could be very trivial. We want to attain
the maximal value of k. If k > 2, even if information of every question is retained, the
information of system is still 2 units.

Assume we first take 2 interrogations, {“Q2 ∗i2 Qj2 , q2, t2”, “Q1 ∗i1 Qj1 , q1, t1”}, we will
have 1 unit information for each of the question. Those two questions are independent to
each other, this suggests that we must have 2 units information of the system. Yet if we take
another k − 2 consecutive interrogations, {“Qn ∗im Qjm , qm, tm”}km=1, the information of the
system is still 2 units, it won’t violate the upper bound,

Isystem(h<=tm) = Isystem(“Q2 ∗i2 Qj2 , q2, t2”, “Q1 ∗i1 Qj1 , q1, t1”) = 2. (5.37)

All the k questions are mutually compatible, and we could ensure their outcomes simulta-
neously. This means the remained k − 2 interrogations are pre-determined, the outcomes of
those k − 2 interrogations must be determined from the outcomes of first 2 interrogations:

{q3, q4, · · · , qk} are determined by {q1, q2}.

In other words, ∀m ∈ {3, 4, · · · , k} ∃fm : Fp × Fp → Fp s.t. qm = fm(q1, q2). And there are
two restrictions of function fm:

1. qm is independent with q1 and qm is independent with q2;
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2. qm is independent with qm′ if m 6= m′.

Those two restrictions come from the fact that {Qm ∗im Qjm}km=1 ⊂ QMAB
and they are

mutually independent, so are their outcomes. The domain and image of fm are both collec-
tion of discrete numbers and it is possible to write down a truth table of fm. According to
the discussion of logical gates above, in such a p-ary system, there are only at most p − 1

such functions, which means k − 2 ≤ p − 1. Therefore the maximal possible number of k
is p+ 1.

Assumption 5. In a two-body composite system, given two composite questions in the
form Qi ∗n Qj and Qk ∗m Ql, if i 6= k and j 6= l, then for every logical gate ∗n, there exists a
unique logical gate ∗m such that Qi ∗n Qj and Qk ∗m Ql are compatible.

This assumption is not very intuitive. From the viewpoint of tomography, we may re-
gard each composite question as a combination of two questions asked on individual systems,
and different logical gates shouldn’t be affected much. However, this assumption actually
arises from a fact of correspondence in linear space. Later, when discussing the quantum
mechanical correspondence of the quantum question structure, we will provide a detailed
proof of that fact. With the help of this assumption and Corollary 6, we will derive an
important result.

Theorem 5.1. For single p-ary system, the size of QM is no more than p+ 1.

Proof. By contradiction, assume size of QM is large than p+ 1, say equal to p+ 2.

Consider a two body p-ary system. According to Corollary 5, there are at most p + 1

mutually compatible composite questions, and we may choose a set of them labeled as Q1 ∗i1
Qj1 , Q2 ∗i2 Qj2 , · · · , Qp+1 ∗ip+1 Qjp+1 .

Let Qjp+2 ∈ QM \ {Qj1 , Qj2 , · · · , Qjp+1}, then Qp+2 ∗′ Qjp+1 is not in the collection of
those (p+ 1) mutually commuting operators for any logical gate ∗′.

From Assumption 6, for every k ∈ {1, 2, · · · , p + 1}, there exists a unique logical
gate ∗mk

such that Qk ∗ik Qjk and Qp+2 ∗mk
Qjp+2 are compatible.

Since there are at most p−1 different logical gates, this means there must be repetition
among the collection of logical gates {∗m1 , ∗m2 , · · · , ∗mp+1}. Let the repetition logical gate
be ∗mα = ∗mβ

. Therefore Qα ∗iα Qjα and Qβ ∗iβ Qjβ are both compatible to Qp+2 ∗mα Qjp+2 .
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Follow from the argument of Corollary 5, Qp+2∗mαQjp+2 must be a function of Qα∗iαQjα

and Qβ ∗iβQjβ . Yet in the collection {Q1∗i1Qj1 , Q2∗i2Qj2 , · · · , Qp+1∗ip+1Qjp+1} all operators
other than Qα ∗iαQjα and Qβ ∗iβ Qjβ are also different functions of Qα ∗iαQjα and Qβ ∗iβ Qjβ .
This suggests that Qp+2 ∗mα Qjp+2 will also be compatible with the collection of composite
questions.

However, Qp+2 /∈ {Q1, Q2, · · · , Qp+1} and Qjp+2 /∈ {Qj1 , Qj2 , · · · , Qjp+1}, Qp+2∗mαQjp+2

is different with any member of the collection {Ql ∗il Qjl}
p+1
l=1 . Now there are (p+2) different

compatible composite questions, which contradicts with Corollary 5.

5.3 Correspondences in quantum mechanics

In the above discussions, the key concepts are compatible and complementary questions.
The former corresponds to commuting operators while the latter are closely related to the
concept of mutually unbiasedness [37, 21] in quantum mechanics.

Definition 5.3.1. Two non-degenerate operators Â and B̂ with d distinct eigenvalues are
said to be mutually unbiased if there is a set of orthonormal eigenstates {|an〉} of Â and a
set of orthonormal eigenstates {|bn〉} of B̂ such that

|〈ai|bj〉|2 =
1

d
∀i, j ∈ Fd. (5.38)

The mutually unbiasedness between two non-degenerate operators is in fact deter-
mined by their eigenstates. The concept of mutually unbiased operators can be extended to
degenerate operators where the two set of eigensubspaces are mutually unbiased.

Definition 5.3.2. Two degenerate operators Â and B̂ with d distinct eigenvalues {λAi}di=1,
{λBi}di=1 are said to be mutually unbiased if

|〈ai|bj〉|2 =
1

d
∀i, j ∈ Fd |ai〉 ∈ E(λAi, Â) |bj〉 ∈ E(λBj, B̂). (5.39)

Definition 5.3.3. In Cd, two orthonormal bases {|an〉}, {|bn〉}(n ∈ {0, 1, 2, · · · , d− 1}) are
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said to be mutually unbiased bases if

|〈ai|bj〉|2 =
1

d
∀i, j ∈ Fd. (5.40)

In Cd, we can always find a set of orthonormal basis {|i〉}(i ∈ {0, 1, 2, · · · , d− 1}) as compu-
tational basis. Another set of orthonormal basis {

∣∣j̃〉}(j ∈ {0, 1, 2, · · · , d−1}) can be defined
by quantum discrete Fourier transformation:

∣∣j̃〉 = 1√
d

d−1∑
k=0

ω−kj
d |k〉 ωd = e2iπ/d, (5.41)

where {|i〉} and {
∣∣j̃〉} are unbiased since

〈
i
∣∣j̃〉 = 1√

d
ω−ij
d .

Based on those two set of mutually unbiased bases, we can introduce generalized Pauli
matrix X̂ and Ẑ:

X̂
∣∣j̃〉 = ωjd

∣∣j̃〉 , Ẑ |i〉 = ωid |i〉 . (5.42)

From the definition, it follows that X̂, Ẑ have the following important properties:

1. X̂d = Ẑd = Î;

2. X̂ |i〉 = |i+ 1〉,
〈
j̃
∣∣ Ẑ =

〈
j̃ + 1

∣∣∣;
3. ẐX̂ = ωdX̂Ẑ (Weyl commutation relation).

X̂ =



0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


Ẑ =



1 0 0 0 0

0 ω5 0 0 0

0 0 ω2
5 0 0

0 0 0 ω3
5 0

0 0 0 0 ω4
5


Table 5.7: Matrix Representation of X̂, Ẑ in the Computational Basis of Di-
mension 5

Fact 2. In Cd, there are at least three mutually unbiased bases which are the eigenstates
of {X̂, Ẑ, X̂Ẑ}. If d is a prime number, Cd has the maximal number of of MUBs, which are
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the eigenstates of {X̂, Ẑ, X̂Ẑ, X̂Ẑ2, · · · , X̂Ẑd−1}[21]. The eigenstate of X̂Ẑk is expressed as:

∣∣ejk〉 = 1√
d

d−1∑
i=0

ω−ijωki(i−1)/2 |i〉 , (5.43)

where |i〉 is the eigenstate of Ẑ and X̂Ẑk
∣∣ejk〉 = ωj

∣∣ejk〉.
5.4 Connections between question set structure and quantum me-

chanics

5.4.1 Single system

5.4.1.1 Relations between p-ary question set structure and quantum mechanics

In the following, we list some connections that we have established between quantum
mechanics in Cp space and a system represented as set of p-ary questions.

p-ary question question structure Quantum mechanics in Cp

Question Qa with p different outcomes Unitary operator Ûa with p different
eigenvalues

Questions in QM are mutually
complementary

Bases of corresponding operators in QM

are MUBs

The probabilities of set QM determines
state of system

Probabilities of projections of MUBs
determines density matrix

Table 5.8: Comparison between Question Set Structure and Quantum Mechan-
ics on Single System

1. Each questionA in the question set Q has p different outcomes, which are 0, 1, 2, . . . , p− 1.
Question A corresponds to a unitary operator Â in Cp with p distinct eigenvalues
ω0
p, ω

1
p, ω

2
p, . . . , ω

p−1
p . While Â is not Hermitian, we can always decompose it in terms

of its eigenstate projectors, such as Â =
∑

i ω
i−1 |ei〉 〈ei|. Every interrogation of ques-

tion Qa corresponds to a collection of p projections, with each projection onto an
eigenstate of Â. Of course, we can find a set of p real values λ0, λ1, . . . , λp−1 to create
a Hermitian operator, denoted as ÂHer. =

∑
i λi |ei〉 〈ei|, where λi ∈ R. This makes it
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more natural to connect the interrogation of Qa to the measurement of ÂHer.. However,
such a ÂHer. is not convenient for the following calculations, especially for a composite
system. Therefore, we will continue to use the interrogation-projection connection.

2. The set QM corresponds to a maximal set of Mutually Unbiased Bases (MUBs) of
Cp. For each set of bases en in a maximal set of MUBs, we can define a unitary or
Hermitian operator based on en. In fact, the generalized Pauli matrices introduced
above are used to label different bases in a set of MUBs.

5.4.1.2 Example of information changed on different interrogations

In a single p-ary system, there are p+1 questions in QM , say QM = {Q1, Q2, · · · , Qp+1}.
Their corresponding operators are just the generalized Pauli matrices in Cp,
{X̂, Ẑ, X̂Ẑ, X̂Ẑ2, · · · , X̂Ẑp−1}.

Quantum Question Scenario

Assume we are facing an unknown system, all the knowledge we have is that this is
a p-ary outcome system. In this situation we may initialize the system being the state such
that all the outcome probabilities of those questions are the same,

Pr (“Qi, qi, t1”|h<t1 = ∅, I) = 1

p
∀Qi ∈ QM ∀qi ∈ Fp, (5.44)

where h<t1 = ∅ denotes we know nothing about the system before time t1.

In other words, the information of any question is zero unit, the information of system
is also zero,

I(Qi|h<t1) = 0 ∀Qi ∈ QM , Isystem(h<t1) = 0. (5.45)

At time t1 we conduct an interrogation of Q1 and obtain an outcome m. After this
interrogation we obtain 1 unit information about Q1:

Pr (“Q1,m
′, t2”|“Q1,m, t1”, h<t1 , I) = δm,m′ I(Q1|“Q1,m, t1”, h<t1) = 1. (5.46)

All questions in QM are mutually complementary, hence the outcome probabilities of all
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other questions are remained as uniform distributions,

Pr (“Qi, qi, t2”|“Q1,m, t1”, I) =
1

p
∀Qi ∈ QM Qi 6= Q1 ∀qi ∈ Fp,

I(Qi|“Q1,m, t1”) = 0 ∀Qi ∈ QM Qi 6= Q1.

(5.47)

The information of all other questions are just zero, when calculating the information
of the system, we needn’t to exclude any questions since there is only one non-zero term.
The information of system is just one unit:

Isystem(“Q1,m, t1”, h<t1) =
∑

Qi∈QM

I(Qi|“Q1,m, t1”, h<t1) = 1. (5.48)

At time t2 we take another interrogation of Q2 with outcome n. After this interrogation
we obtain 1 unit information about Q2:

Pr (“Q2, n
′, t3”|“Q2, n, t2”, “Q1,m, t1”, h<t1 , I) = δn,n′

I(Q2|“Q2, n, t2”, “Q1,m, t1”, h<t1 , I) = 1.
(5.49)

The information of Q1 is lost according to the second interrogation, and information of all
other questions are still zero:

Pr (“Qi, qi, t3”|“Q2, n, t2”, “Q1,m, t1”, h<t1 , I) =
1

p
∀Qi ∈ QM s.t. Qi 6= Q2 ∀qi ∈ Fp,

I(Qi|“Q2, n, t2”, “Q1,m, t1”, h<t1) = 0 ∀Qi ∈ QM s.t. Qi 6= Q2.

(5.50)

Similarly the information of the system is still 1 unit, it didn’t exceed the upper bound,

Isystem(“Q2, n, t2”, “Q1,m, t1”, h<t1) =
∑

Qi∈QM

I(Qi|“Q2, n, t2”, “Q1,m, t1”, h<t1) = 1 (5.51)

Quantum Mechanics Scenario

At time t1, we take measurement X̂ on a single p-dimensional system with an out-
come ωmp . After this measurement, the state of the system is ensured, which is the eigenstate
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of X̂:
|ψ〉t>t1 = |m̃〉 . (5.52)

We gain 1 unit information about X̂ and zero information about all other measure-
ments,

Pr (“X̂, ωm
′

p , t2”|“X̂, ωmp , t1”, I) = δm,m′ , I(X̂|“X̂, ωmp , t1”) = 1. (5.53)

The information of the system is 1 unit, achieving the upper bound. As expected,
when information of the system achieving the upper bound we could ensure the state.

At time t2, we take another measurement Ẑ with an outcome ωnp . After the second
measurement, the state of the system is now changed to the eigenstate of Ẑ:

|ψ〉t>t2 = |n〉 . (5.54)

We now gain 1 unit information about Ẑ and the information of X̂ is lost. Information
of all other measurements in QM remain the same. The information of the system is still 1
unit.

5.4.1.3 Interpretation of the size of QM

The density matrix of a quantum system, which lies in Cp, has a degree of freedom of
p2 − 1 due to hermiticity and normalization. In the question set structure, every question
in QM can be represented as a p-tuple probability distribution, resulting in every question
having p − 1 degrees of freedom. As deduced above, for a single p-ary question set system,
there are a total of p + 1 mutually independent questions, and the total degree of freedom
of QM will be exactly (p− 1)(p+1) = p2 − 1, which is equal to the degree of freedom of the
density matrix of a p-dimensional system. This shouldn’t be surprising, as each value in a
p-tuple probability distribution corresponds to the probability of a projection.

This is consistent with our assumption that QM contains the smallest number of p-
outcome questions that determine the state of the system, as well as the probability distri-
butions of questions in the set Q \ QM .
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5.4.2 Two-body composite system

5.4.2.1 Additional relations for composite systems

Based on the connections above and the discussion of logical gates for a p-ary question
set structure, we propose a set of connections between a two-body p-ary system under the
question set structure and quantum mechanics in Cp ⊗ Cp.

p-ary two-body system in quantum
question structure

Quantum mechanics in Cp ⊗ Cp

Question Qa with p different outcomes Unitary operator Ûa with p different
eigenvalues

The probabilities of set QM determines
state of system

Probabilities of projections of MUBs
determines density matrix

Composite question is in the form
of Qa ∗i Qb

Composite operator in the form of Ûa ⊗ Û i
b

Table 5.9: Comparison between Question Set Structure and Quantum Mechan-
ics on Two-body System

1. For a two-body composite system, composite question Qa∗iQb is related to the compos-
ite operator Ûa⊗Û i

b in L(Cp⊗Cp). Ûa⊗Û i
b has p distinct eigenvalues {ω0

p, ω
1
p, · · · , ωp−1

p },
each eigenvalue has degeneracy p.

2. QM for composite system contains both complementary and compatible questions. Two
questions are compatible if and only if their corresponding unitary operators commute.

5.4.2.2 Example of information change when interrogating compatible questions

Here is an example of interrogations on composite compatible questions on 5-dimension,
consider a family of commuting operators, {X̂⊗ X̂, Ẑ⊗ Ẑ4, X̂Ẑ⊗ X̂Ẑ4, X̂Ẑ2⊗ X̂Ẑ3, X̂Ẑ3⊗
X̂Ẑ2, X̂Ẑ4 ⊗ X̂Ẑ}, and label them in the form of composite questions, {Q1 ∗1 Q1, Q2 ∗4
Q2, Q3 ∗1 Q6, Q4 ∗1 Q5, Q5 ∗1 Q4, Q6 ∗1 Q3}.

Quantum Question Scenario
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At time t1 if we take an interrogation of question Q1 ∗1 Q1 and obtain an outcome m,
we could immediately write down the following two outcome distributions:

Pr (“Q1 ∗1 Q1,m
′, t2”|“Q1 ∗1 Q1,m, t1”, I) = δm,m′ ,

Pr (“Q, q, t2”|“Q1 ∗1 Q1,m, t1”, I) =
1

5
∀Q 6= Q1 ∗1 Q1 ∀q ∈ F5.

(5.55)

This suggests that we gain 1 unit information about Q1 ∗1 Q1,

I(Q1 ∗1 Q1|“Q1 ∗1 Q1,m, t1”) = 1, (5.56)

but 0 unit information of all other questions,

I(Q|“Q1 ∗1 Q1,m, t1”) = 0 ∀Q 6= Q1 ∗1 Q1. (5.57)

The information of the system is 1 unit:

Isystem(“Q1 ∗1 Q1,m, t1”) =
∑
Q∈QM

I(Q|“Q1 ∗1 Q1,m, t1”)

= I(Q1 ∗1 Q1|“Q1 ∗1 Q1,m, t1”) +
∑
Q∈QM

Q 6=Q1∗1Q1

I(Q|“Q1 ∗1 Q1,m, t1”)

= 1 + 0 + 0 + · · · = 1.

(5.58)
Here when calculating the information of the system, we could sum the information of all
questions in QM without excluding any questions. The only non-zero information we obtain
is on question Q1 ∗1 Q1, and all other questions are independent of it, nothing else could be
derived from the outcome of Q1 ∗1 Q1.

We then take an interrogation of question Q2∗4Q2 at time t2 and obtain an outcome n,

Pr (“Q2 ∗4 Q2, n
′, t3”|“Q2 ∗4 Q2, n, t2”, “Q1 ∗1 Q1,m, t1”, I) = δn,n′ . (5.59)

After the second interrogation, we got 1 unit information about Q2 ∗4 Q2:

I(Q2 ∗4 Q2|“Q2 ∗4 Q2, n, t2”, “Q1 ∗1 Q1,m, t1”) = 1. (5.60)

112



The information of Q1 ∗1 Q1 is not “lost”, since Q1 ∗1 Q1 is compatible with Q2 ∗4 Q2,

Pr (“Q1 ∗1 Q1,m
′, t3”|“Q2 ∗4 Q2, n, t2”, “Q1 ∗1 Q1,m, t1”, I) = δm,m′ ,

I(Q1 ∗1 Q1|“Q2 ∗4 Q2, n, t2”, “Q1 ∗1 Q1,m, t1”) = 1.
(5.61)

The information of Q1 ∗1Q1 and Q2 ∗4Q2 are independent to each other, the outcomes
of both questions are not related. Therefore the information of the system must contain at
least these two questions:

Isystem(“Q2 ∗4 Q2, n, t2”, “Q1 ∗1 Q1,m, t1”) ≥ I(Q1 ∗1 Q1|“Q2 ∗4 Q2, n, t2”, “Q1 ∗1 Q1,m, t1”)+

I(Q2 ∗4 Q2|“Q2 ∗4 Q2, n, t2”, “Q1 ∗1 Q1,m, t1”) = 2.

(5.62)

The information of the system hits the upper bound, 2 units. Even if we can still
gain information about other four compatible composite questions, {Q3 ∗1Q6, Q4 ∗1Q5, Q5 ∗1
Q4, Q6 ∗1Q3}, they are not independent and can be derived from the information of Q1 ∗1Q1

and Q2 ∗4Q2. In fact from Corollary 5, the outcomes of the other four compatible composite
questions must be a function of outcomes of Q1 ∗1 Q1 and Q2 ∗4 Q2:

Q3 ∗1 Q6 =(Q1 ∗1 Q1) ∗1 (Q2 ∗4 Q2) = m ∗1 n = m+ n,

Q4 ∗1 Q5 =(Q1 ∗1 Q1) ∗2 (Q2 ∗4 Q2) = m ∗2 n = m+ 2n,

Q5 ∗1 Q4 =(Q1 ∗1 Q1) ∗3 (Q2 ∗4 Q2) = m ∗3 n = m+ 3n,

Q6 ∗1 Q3 =(Q1 ∗1 Q1) ∗4 (Q2 ∗4 Q2) = m ∗4 n = m+ 4n.

(5.63)

Quantum Mechanics Scenario

At time t1, we take measurement of X̂ ⊗ X̂ and obtain an outcome ωm5 . After this
measurement, we cannot write down the state of system, since X̂ ⊗ X̂ is degenerate and all
we can know is that the state of system lies in the eigensubspace of X̂ ⊗ X̂. The outcome
probability of all other measurements remains unknown,

|ψ〉t>t1 ∈ E(ωm5 , X̂ ⊗ X̂). (5.64)

We gain 1 unit information about X̂ ⊗ X̂, but 0 unit information of all other measure-
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ments. The information of the system is 1 unit.

We then take measurement Ẑ ⊗ Ẑ4 with outcome ωn5 at time t2. Based on these
two measurements, we can then write down the state of the system, which is a maximally
entangled state:

|ψ〉t>t2 =
1√
5

(
|0〉
∣∣∣m
4

〉
+ ω4n

5 |1〉
∣∣∣∣m− 1

4

〉
+ ω3n

5 |2〉
∣∣∣∣m− 2

4

〉
+ω2n

5 |3〉
∣∣∣∣m− 3

4

〉
+ ωn5 |4〉

∣∣∣∣m− 4

4

〉)
.

(5.65)

After the second interrogation, we got 1 unit information about Ẑ ⊗ Ẑ4. The informa-
tion of X̂⊗X̂ is retained, since X̂⊗X̂ and Ẑ⊗ Ẑ4 commute. The outcome probability of the
other four commuting composite operators, {X̂Ẑ ⊗ X̂Ẑ4, X̂Ẑ2 ⊗ X̂Ẑ3, X̂Ẑ3 ⊗ X̂Ẑ2, X̂Ẑ4 ⊗
X̂Ẑ}, are ensured:

X̂Ẑ ⊗ X̂Ẑ4 |ψ〉t>t2 =ω
m+n
5 |ψ〉 ,

X̂Ẑ2 ⊗ X̂Ẑ3 |ψ〉t>t2 =ω
m+2n
5 |ψ〉 ,

X̂Ẑ3 ⊗ X̂Ẑ2 |ψ〉t>t2 =ω
m+3n
5 |ψ〉 ,

X̂Ẑ4 ⊗ X̂Ẑ |ψ〉t>t2 =ω
m+4n
5 |ψ〉 .

(5.66)

This means the information of those four operators are derived from the information
of X̂ ⊗ X̂ and Ẑ ⊗ Ẑ4. When calculating the information of the system, we need to exclude
those four operators. Moreover, based on this state, the outcome probability of all other
non-commuting composite operators will be just the uniform distribution. The information
of the system will be 2 units, as expected, since the state of the system is already ensured.

5.4.2.3 Size of QM and degrees of freedom of density matrix

For a single system, we find that the degree of freedom of QM is equal to the degree
of freedom of the density matrix. In fact, this relation also holds for a two-body composite
system. Since all composite questions also have p outcomes, every question in QM can be
represented as a p-tuple probability distribution with p− 1 degrees of freedom.

As for the size of QM , consider a composite system QAB that contains two individual
system QA and QB, the number of elements in QMAB

can be derived from its structure.
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Recall that from assumption 2, QMAB
= QMA

∪ QMB
∪ Q̃MAB

and Q̃MAB
= {Qa ∗i Qb|Qa ∈

QMA
, Qb ∈ QMB

, i ∈ F∗
p}, therefore we could calculate the cardinality of QMAB

:

|QMAB
| = |QMA

|+ |QMB
|+
∣∣∣Q̃MAB

∣∣∣
= (p+ 1) + (p+ 1) + (p+ 1)(p+ 1)(p− 1)

= (p+ 1)(p2 + 1).

(5.67)

The total degree of freedom of QMAB
is now equal to the product of |QMAB

| and p− 1,
which is equal to p4 − 1, the same number of degrees of freedom as the density matrix of a
two-body p-dimensional system in quantum mechanics.

The agreement of degrees of freedom can be generalized to anN -body p-ary/p-dimensional
system. In this situation, QM will contain composite questions from single systems, two-
body systems, and so on, up to N -body systems. The total number of questions in QM is
given by: (

N

1

)
(p+ 1) +

(
N

2

)
(p+ 1)2(p− 1) +

(
N

3

)
(p+ 1)3(p− 1)2 + · · ·

+

(
N

N

)
(p+ 1)N(p− 1)N−1

=
p2N − 1

p− 1
.

(5.68)

The total degree of freedom of QM is p2N − 1, which is the same as the degree of freedom of
the density matrix for an N -body p-dimensional quantum system.

5.5 Methodology

5.5.1 Abstracting Observables as Questions

In this study, we abstract the concept of an observable in quantum mechanics as a
question. An observable Ô is represented as a question Q. This abstraction facilitates the
reformation of quantum measurement processes using information theory, offering a novel
perspective on understanding quantum systems. The motivation behind this abstraction is to
provide an intuitive framework that aligns with the statistical nature of quantum mechanics
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and leverages the well-established principles of information theory.

5.5.2 Characterization of Questions

Each question Q is characterized by a collection of outcome probabilities under a given
context. This can be mathematically expressed as:

Q : {Pr (outcome|context)} (5.69)

Here, Pr (outcome|context) denotes the probability of a particular outcome given the con-
text. By framing measurements as questions, we encapsulate the essence of quantum uncer-
tainty and the probabilistic interpretation of measurement outcomes. This characterization
allows us to systematically analyze the informational content of different measurements and
their implications on the system’s state.

5.5.3 Information Content of a Question

The information content of a question under a given context is defined as a function of
the outcome probabilities. We utilize the Shannon entropy H to quantify this information:

I(Q|context) = H({Pr (outcome|context)}) (5.70)

Shannon entropy, which measures the uncertainty associated with the outcomes, provides a
robust framework for quantifying the information gained from a measurement. This approach
enables us to assess the value of different measurements in terms of the knowledge they
provide about the quantum system.

5.5.4 Information of the System

To quantify the total information content of the system under a given context, we sum
the information content of a selected set of questions. Thus, the total information of the
system is expressed as:

Isystem(context) =
∑

I(Q|context) (5.71)
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This summation approach allows us to comprehensively capture the informational content
of a quantum system by aggregating the contributions from individual measurements. It
provides a holistic view of the system’s informational structure, reflecting the collective
impact of multiple measurements.

5.5.5 Measurement Processes

Single System Measurements When investigating a single quantum system, we perform
various measurements to extract information. Each measurement outcome provides infor-
mation about the system’s state post-measurement. For instance, if a measurement Â is
performed at time t1 and results in an outcome λA, the system collapses to the eigenstate
corresponding to λA. The information gained from this measurement can be represented as:

∆It<t1→t>t1(Â) = It>t1(Â)− It<t1(Â) (5.72)

Assuming we initially know nothing about the system and the possible outcome of
measurement Â, we assign a uniform prior probability distribution:

Pr (“Â, t, ~λA”)|t<t1 = Pr (“Â, t, ~λA”|I) =
(

1

N
,
1

N
, · · · , 1

N

)
(5.73)

For most information measures, the peak probability distribution will achieve a maximal
value, Pr (“Â, t, ~λA”)t>t1 = Pr (“Â, ~λA, t”|“Â, λA, t1”, I), indicating maximal information
gain:

∆It<t1→t>t1(Â) = H
(
Pr (“Â, t, ~λA”)t>t1

)
−H

(
Pr (“Â, t, ~λA”)t<t1

)
= 1− 0 = 1 (5.74)

Multiple System Measurements In quantum state tomography, we perform different
measurements on many identical systems. By statistically analyzing the outcomes, we can
infer the original prepared state. The information gained from the sequence of measurements
Dn is updated as:

IDn = H( Pr ({q1, q2, · · · , qs}|Dn, I)) (5.75)

where {q1, q2, · · · , qs} are parameters uniquely determining the system’s state. This approach
leverages Bayesian inference to update our knowledge based on measurement data, ensuring
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a consistent framework for state estimation.

5.5.6 Evolution of Information About Single Observable

For an isolated system, the information about a measurement Â remains unchanged if
no further actions are taken. However, performing another measurement B̂ at a later time
t2 can affect our knowledge about Â. If Â and B̂ are pairwise independent, the information
about B̂ can be calculated similarly:

∆It<t2→t>t2(B̂) = It>t2(B̂)− It<t2(B̂) = 1− 0 = 1 (5.76)

However, if Â and B̂ do not commute, the knowledge gained from Â may be partially or
fully lost after t2:

∆It<t2→t>t2(Â) = H
(
Pr (“Â, t, ~λA”)t>t2

)
−H

(
Pr (“Â, t, ~λA”)t<t2

)
< 0 (5.77)

5.5.7 Composite Systems

Non-Interacting Subsystems For a composite system with no interactions between sub-
systems, the total information is the sum of the information of the individual subsystems:

Icomposite = Isubsystem 1 + Isubsystem 2 (5.78)

This linear addition reflects the independence of the subsystems and provides an upper
bound for the composite system’s information.

Interacting Subsystems When interactions are present, additional terms representing
correlations between subsystems are included in the set of probability distributions. These
correlations are constructed to ensure they have the same number of outputs as the proba-
bility distributions of the subsystems, reflecting the dependency between outcomes of mea-
surements on different subsystems. For example, a correlation between measurements A and
B on different subsystems could be:

Correlation: “sum (modulo n) of their outcomes”
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This correlation is only meaningful in the presence of interactions.

5.5.8 Information Upper Bound

We propose that the information content of a quantum system should have an upper
bound, justified by the gain/loss cycle observed during repeated measurements. For a qubit
system, choosing three mutually unbiased measurements (e.g., σ̂x, σ̂y, σ̂z) ensures that the
information content remains finite and consistent. The total information is the sum of the
information of these measurements:

Iqubit = I(σ̂x) + I(σ̂y) + I(σ̂z) (5.79)

This approach ensures a finite and manageable upper bound for the information content of
quantum systems.

5.6 Conclusion

Summary In this chapter, we present a new way to describe finite-dimensional quan-
tum systems without relying on the language of linear spaces.

We begin with an ideal finite-dimensional quantum system, where every measurement
yields the same and a finite number of outcomes. We can abstract each measurement as
posing a question to the system. We introduce a new set of assumptions, motivated by
quantum tomography and information theory, to deduce the relationships between these
questions. Among these assumptions, we use classical logical gates to represent joint mea-
surements in composite quantum systems. By rewriting the logical gate operations in terms
of truth tables, we find that all feasible logical gates can be connected through a specific
orthogonal array, which exhibits special properties in prime-number-dimensional cases.

The information of a single question is used to quantify our knowledge of a particular
question based on a given background. It is defined as the generic entropy of the probability
distribution of all possible outcomes for that question. The information of the system is used
to quantify our knowledge of the entire system based on a specific background. It is defined
as the sum of the information from selected questions, where these selected questions are
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assumed to characterize the state of the whole system. The constraints on logical gates and
the assumptions regarding the information of the system lead us to derive detailed relations
among these selected questions. These selected questions are mutually complementary, akin
to the complementarity between Pauli matrices. The number of selected questions is also
determined, which is p + 1 for a p-ary system. Furthermore, the degree of freedom of
the system is found to be the same as the degree of freedom of the density matrix of the
corresponding quantum system.

We have also established a connection between this new structure and the conventional
quantum system. This bridge is built on the concept of mutually unbiased bases, which share
similarities in construction and properties with orthogonal arrays. Each concept we introduce
in this new framework has a direct correspondence with concepts in the conventional quantum
system. Furthermore, through derivations within this new structure, we have uncovered new
insights into conventional quantum systems with the assistance of this connection.

Comparison to prior work As mentioned in the introduction, our work is built
upon a lineage of research that originated with Rovelli and was continued by Brukner,
Zeillinger, and Höhn. All of these works aim to employ information to describe quantum
theory. There are two significant differences between our work and the work of others. The
first difference is our emphasis on arbitrary prime-number-dimensional systems, rather than
exclusively binary systems. The binary case, as we have demonstrated in the section on
the representation of logical gates, is somewhat fortuitous. The second difference is our
attempt to alleviate confusion regarding the definition of information, encompassing both
the information of a question and the information of a system. Ideally, we seek to represent
the information of a system as a combination of information from specific questions. It is
essential to determine the types of questions required to characterize the system. In table 5.10
we show the comparison between our work and three selected work.
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Rovelli Z & B Höhn Our work

Basic carrier of
unit information

Binary outcome
question

Binary outcome
question

Binary outcome
question

p-ary outcome
question

Finiteness of
information of
system

Yes Yes Yes Yes

Information of
single system

Sum of complete
questions

Sum of all
complementary
questions

Sum of
independent bits

Sum of all
questions in QM

Information of
composite
system

Sum of selected
correlation
questions

Sum of
independent bits

Sum of rel.
ind. questions
in QM compare
to context

Table 5.10: Comparison between the Four Ideas that Describing Information
of System (1)“p-ary outcome question” denotes to an arbitrary prime number dimensional
system. We extend the type of discussed system from binary case to higher dimensional
case. (2) We provide a criterion to choose the selected questions for characterizing composite
system, that is, the mutually independent questions and the choice will be changed under
different background.

We would like to emphasize that the most crucial aspect of incorporating informa-
tion theory into quantum systems is to clarify the notion and definition of the concept of
information, as well as the interpretation of probability distributions. Since most informa-
tion measures are based on probabilities, we contend that the majority of the confusions
surrounding information stem from an unclear understanding of probability distributions.

Discussion on unsolved problems In this chapter, we define the information of
a single measurement, similar to Shannon entropy, although we do not provide a detailed
expression. At present, we have not identified a compelling reason to choose a specific
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measure, and the extreme case of this measure suffices for our purposes. We leave this
measure in its general form, which may be useful for deriving other ideas. We also point out
the challenge of defining the information of a system, for which we do not present a complete
solution but suggest a way to improve it.

It is worth noting that both logical gates and MUBs have special properties in prime-
number dimensions. This is why we focus exclusively on prime-number dimensional systems
and why we were motivated to establish a connection between the question formalism and
conventional quantum mechanics. Such a coincidence may have a profound mathematical
explanation. Unfortunately, dealing with non-prime number dimensional cases is consider-
ably more challenging. The construction of orthogonal arrays and MUBs is mathematically
difficult in arbitrary finite dimensions, and whether this difficulty has a physical significance
remains to be determined.
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CHAPTER 6

Conclusion

6.1 Key Findings and Contributions

The first study focused on the operational perspective of information gain from quan-
tum measurements, introducing the Principle of Information Increase. This principle was
used to determine the most appropriate measure for quantifying information gain, leading
to the identification of differential information gain as the most physically meaningful met-
ric. The study highlighted the significance of the Jeffreys binomial prior, demonstrating its
optimal characteristics in maximizing information communication.

One of the most remarkable findings was the equivalence of the expected values of
differential and relative information gain for any prior and for any n-outcome probabilistic
source. This unexpected result may provide a unified perspective that can simplify the
analysis of information in quantum systems. By proving that the differential information
gain is more physically meaningful, this study extends previous theoretical frameworks and
offers a more nuanced understanding of information gain.

Furthermore, within the family of symmetric beta distributions, the Jeffreys binomial
prior was shown to exhibit notable characteristics that enhance the intuitive notion that
more data from measurements leads to more knowledge about the system. This result aligns
with Summhammer’s work and confirms that the Jeffreys prior enables maximal information
communication. Additionally, the novel concept of robustness was introduced and applied
to the Jeffreys binomial prior, suggesting that it exhibits maximal robustness within the
set of symmetric beta distributions. This work raises intriguing questions about the po-
tential extension of this feature to the Jeffreys multinomial prior and other probabilistic
distributions.

The second study proposed a new framework for describing finite-dimensional quan-
tum systems without relying on linear spaces. Traditional reconstructions of quantum theory
often focus on two-dimensional systems, while this work extends the discussion to higher-
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dimensional systems, especially prime-number dimensional cases. By conceptualizing quan-
tum measurements as questions posed to the system, the study introduced classical logi-
cal gates to represent joint measurements in composite quantum systems. This approach
revealed special properties in prime-number dimensional cases, leading to a deeper under-
standing of the structure of quantum measurements.

The information of a single question was used to quantify knowledge of a particular
question based on a given background, defined as the generic entropy of the probability
distribution of all possible outcomes for that question. This approach allowed for the in-
troduction of constraints on logical gates and assumptions regarding the information of the
system, which led to detailed relations among selected questions. These selected questions
were found to be mutually complementary, similar to the complementarity between Pauli
matrices, and their number was determined to be p+1 for a p-ary system, where p is a prime
number. The degree of freedom of the system was found to be the same as the degree of
freedom of the density matrix of the corresponding quantum system.

Moreover, the study established connections between this new framework and conven-
tional quantum mechanics through the concept of mutually unbiased bases (MUBs), which
share similarities in construction and properties with orthogonal arrays. Each concept in-
troduced in this new framework has a direct correspondence with concepts in conventional
quantum systems. This bridge provides new insights into conventional quantum systems
and enhances our comprehension of information flow during measurements on maximally
entangled systems.

6.2 Significance and Implications

The findings of these studies have profound implications for both theoretical and prac-
tical aspects of quantum information theory. The first study’s introduction of the Principle of
Information Increase and the identification of differential information gain provide a robust
framework for optimizing quantum communication and state tomography. By establishing
that the expected values of differential and relative information gain are equivalent, the
study offers a unified perspective that can simplify and enhance the analysis of information
in quantum systems.
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The Jeffreys binomial prior, shown to exhibit maximal robustness within the set of
symmetric beta distributions, provides a valuable tool for quantum state tomography and
communication. The study’s findings on the characteristics of this prior are particularly
significant for scenarios involving the communication of maximal information, such as in
quantum cryptography and quantum computing, where understanding and optimizing in-
formation gain is crucial.

The second study’s framework for describing quantum systems through questions and
logical gates opens new avenues for understanding the foundational structure of quantum
theory. By extending information theory to prime-number dimensional quantum systems,
the study reveals new relationships between classical logical operations and quantum mea-
surements. This approach not only bridges the gap between classical and quantum infor-
mation theories but also provides a novel way to explore the complex relationships between
measurements and quantum states.

The insights gained from this study can enhance the development of quantum algo-
rithms and improve the design of quantum information protocols. For example, understand-
ing the special properties of prime-number dimensional systems can lead to more efficient
algorithms for quantum computing and more robust protocols for quantum communication.
Furthermore, the framework’s ability to connect new theoretical constructs with conven-
tional quantum mechanics provides a deeper understanding of how information flows and
is processed in quantum systems, which is fundamental for advancements in quantum tech-
nologies.

6.3 Limitations and Future Research Directions

Despite the significant contributions of this thesis, there are several limitations that
warrant further investigation. The analysis in the first study was restricted to symmetric beta
distributions. Future research should explore the applicability of the principle and concept
of robustness to other priors and probabilistic sources, particularly the robustness of Jeffreys
multinomial prior in n-outcome probabilistic sources. Additionally, a deeper understanding
of the robustness of the Jeffreys prior remains an open question that could reveal further
insights into information measures.
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Expanding the scope of priors and distributions studied will help validate the robustness
concept and potentially uncover new priors that exhibit similar or superior characteristics.
Such research could involve empirical studies or theoretical analyses to test the robustness of
different priors in various quantum information scenarios. Understanding how these priors
perform in practice will be crucial for developing more effective quantum state tomography
techniques and optimizing quantum communication protocols.

The second study focused exclusively on prime-number-dimensional systems, highlight-
ing the special properties of logical gates and mutually unbiased bases in these dimensions.
However, extending this framework to non-prime number dimensions poses significant math-
ematical challenges. Future research should address these challenges and investigate whether
the difficulties have physical significance. For instance, developing methods to construct or-
thogonal arrays and MUBs in arbitrary finite dimensions could significantly advance our
understanding of quantum measurements and information theory.

Moreover, defining the information measure function remains an open problem. While
this study suggested ways to improve the definition, a comprehensive solution is still needed.
Future research could explore alternative definitions and measures of information that are
consistent across different quantum systems and dimensions. Investigating how these mea-
sures relate to existing concepts in quantum mechanics and information theory could lead
to a more unified and comprehensive understanding of information in quantum systems.

Additionally, the use of logical entropy as an alternative choice of information measure
function presents an interesting direction for future research. Logical entropy, while offering
a different perspective on measuring uncertainty, lacks the intuitive informational relation-
ship with quantum theory that measures like Shannon or von Neumann entropy provide.
Exploring the potential applications and limitations of logical entropy in quantum contexts
could yield new insights and help refine our understanding of informational measures in
quantum systems.
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APPENDIX A

Appendix for Principle of Information Increase

A.1 Derivation of Differential Information Gain

The posterior is determined by TN and prior. For the sake of simplicity we would set
the prior belongs to the family of beta distributions:

Pr(p|I) = pα(1− p)α

B(α + 1, α + 1)
(A.1)

where α > −1, B(x, y) is the beta function.

Given N , there are 2N different TN . However, we may not need to calculate all the 2N

sequences. Suppose every toss is independent, this happens in quantum mechanics, then this
coin tossing model would become a binomial distribution. Let hN be the number of heads
inside TN , the posterior Pr(p|N, TN , I) is equivalent to Pr(p|N, hN , I) and likelihood will be

Pr(hN |N, p, I) =
(
N

hN

)
phN (1− p)N−hN (A.2)

hence the posterior after N tosses

Pr(p|N, hN , I) =
Pr(hN |N, p, I) Pr(p|I)∫
Pr(hN |N, p, I) Pr(p|I)dp

=
phN+α(1− p)N−hN+α

B(hN + α + 1, N − hN + α + 1)

(A.3)

The information gain in the N + 1th toss would be

Idiff = DKL(Pr(p|N + 1, {TN , tN+1}, I)||Pr(p|I))−DKL(Pr(p|N, hN , I)||Pr(p|I)) (A.4)

Idiff is determined by hN , prior and the result of N + 1th toss tN+1. tN+1 could be
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either “Head” or “Tail”, then posterior after N + 1 tosses could be

Pr(p|N + 1, {TN , tN+1 = “Head”}, I) = phN+α+1(1− p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
(A.5)

Pr(p|N + 1, {TN , tN+1 = “Tail”}, I) = phN+α(1− p)N−hN+α+1

B(hN + α + 1, N − hN + α + 2)
(A.6)

Taking tN+1 = “Head”,the first term in (A.4) would become

DKL(Pr(p|N + 1, {TN , tN+1 = “Head”}, I)||Pr(p|I))

=

∫ 1

0

Pr(p|N + 1, hN + 1, I)ln
Pr(p|N + 1, hN + 1, I)

Pr(p|I)
dp

=

∫ 1

0

phN+α+1(1− p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
ln
phN+1(1− p)N−hNB(α + 1, α + 1)

B(hN + α + 2, N − hN + α + 1)
dp

=

∫ 1

0

phN+α+1(1− p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
{ln[phN+1(1− p)N−hN ] + ln

B(α + 1, α + 1)

B(hN + α + 2, N − hN + α + 1)
}dp

=

∫ 1

0

phN+α+1(1− p)n−hN+α

B(hN + α + 1, n− hN + α + 1)
ln[phN+1(1− p)N−hN ]dp+ ln

B(α + 1, α + 1)

B(hN + α + 2, n− hN + α + 1)
(A.7)

By using the integral

∫ 1

0

xa(1− x)bln(x)dx = B(a+ 1, b+ 1)[ψ(a+ 1)− ψ(a+ b+ 2)] (A.8)

where ψ(x) is the digamma function9, we can obtain the following result

DKL(Pr(p|N + 1, {TN , tN+1 = “Head”}, I)||Pr(p|I))

=(hN + 1)ψ(hN + α + 2) + (N − hN)ψ(N − hN + α + 1)− (N + 1)ψ(N + 2α + 3)

+ ln
B(α + 1, α + 1)

B(hN + α + 2, n− hN + α + 1)

(A.9)

9The digamma function can be defined in terms of gamma function: ψ(x) = Γ′(x)
Γ(x)
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The second term in (A.4) would become

DKL(Pr(p|N, hN , I)||Pr(p|I))

=

∫ 1

0

Pr(p|N, hN , I)ln
Pr(p|N, hN , I)

Pr(p|I)
dp

=

∫ 1

0

phN+α(1− p)N−hN+α

B(hN + α + 1, N − hN + α + 1)
ln
phN (1− p)N−hNB(α + 1, α + 1)

B(hN + α + 1, N − hN + α + 1)
dp

=

∫ 1

0

phN+α(1− p)N−hN+α

B(hN + α + 1, N − hN + α + 1)
{ln[phN (1− p)N−hN ] + ln

B(α + 1, α + 1)

B(hN + α + 1, N − hN + α + 1)
}dp

=

∫ 1

0

phN+α(1− p)n−hN+α

B(hN + α + 1, n− hN + α + 1)
ln[phN (1− p)N−hN ]dp+ ln

B(α + 1, α + 1)

B(hN + α + 1, n− hN + α + 1)

=hNψ(hN + α + 1) + (N − hN)ψ(N − hN + α + 1)−Nψ(N + 2α + 2)

+ ln
B(α + 1, α + 1)

B(hN + α + 1, n− hN + α + 1)
(A.10)

Now we obtain the final expression of (A.4)

Idiff (tN+1 = “Head”) = DKL(Pr(p|N + 1, {TN , tN+1 = “Head”}, I)||Pr(p|I))

−DKL(Pr(p|N, hN , I)||Pr(p|I))

= ψ(hN + α + 2)− ψ(N + 2α + 3)+

hN
hN + α + 1

− N

N + 2α + 2
+ ln

N + 2α + 2

hN + α + 1

(A.11)

Similarly we can obtain the Idiff when tN+1 = “Tail”

Idiff (tN+1 = “Tail”) = ψ(N − hN + α + 2)− ψ(N − hN + 2α + 3)+

N − hN
N − hN + α + 1

− N

N + 2α + 2
+ ln

N + 2α + 2

N − hN + α + 1

(A.12)

This suggests that for fixed N and α, Idiff (tN+1 = “Head”) and Idiff (tN+1 = “Tail”)

are symmetric since hN is ranging from 0 to N .
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A.2 Derivation of Relative Information Gain

From Appendix A we know that the posterior after N tosses is

Pr(p|N, TN , I) = Pr(p|N, hN , I) =
phN+α(1− p)N−hN+α

B(hN + α + 1, N − hN + α + 1)
(A.13)

Therefore the posterior after N + 1 tosses would be

Pr(p|N + 1, TN+1, I) =
Pr(hN , TN+1|p,N + 1, I) Pr(p|I)∫ 1

0
Pr(hN , TN+1|p,N + 1, I) Pr(p|I)dp

(A.14)

Depends on different results of tN+1, the posterior after N + 1 tosses would be

Pr(p|N + 1, {TN , tN+1 = “Head”}, I) = phN+α+1(1− p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
(A.15)

Pr(p|N + 1, {TN , tN+1 = “Tail”}, I) = phN+α(1− p)N−hN+α+1

B(hN + α + 1, N − hN + α + 2)
(A.16)

And the corresponding relative information gain would be

Irel(tN+1 = “Head”)

= DKL(Pr(p|N + 1, {TN , tN+1 = “Head”}, I)||Pr(p|N, hN , I))

=

∫ 1

0

Pr(p|N + 1, {TN , tN+1 = “Head”}, I) ln Pr(p|N + 1, {TN , tN+1 = “Head”}, I)
Pr(p|N, hN , I)

dp

=

∫ 1

0

phN+α+1(1− p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
ln
pB(hN + α + 1, N − hN + α + 1)

B(hN + α + 2, N − hN + α + 1)
dp

= ψ(hN + α + 2)− ψ(N + 2α + 3) + ln
N + 2α + 2

hN + α + 1
(A.17)

Irel(tN+1 = “Tail”) = ψ(N−hN+α+2)−ψ(N−hN+2α+3)+ln
N + 2α + 2

N − hN + α + 1
(A.18)

A.3 Equivalence of Expected Differential Information Gain and

Expected Relative Information Gain

In a n-outcome model, the probability of each outcome is pi, and

p1 + p2 + · · ·+ pn = 1 (A.19)
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After N “tosses”, the data sequence has the form

DN = (f1, f2, · · · , fn),
n∑
i=1

fi = N (A.20)

where fi is the number of ith outcomes in these N tosses.

We may use a tuple ~p = (p1, p2, · · · , pn) to represent the probabilities of these outcomes.
The prior is just Pr(~p|I), and the posterior based on the data DN is Pr(~p|DN , I).

The average value of the ith outcome probability is

〈pi〉 =
∫
pi Pr(~p|DN , I)dp1dp2 · · · dpn (A.21)

Assume the (N + 1)th toss is the ith outcome, and the posterior of these after this
additional toss is

Pr(~p|DN , dN+1 = “i”, I) =
pi Pr(~p|DN , I)∫

pi Pr(~p|DN , I)dp1dp2 · · · dpn
=

pi
〈pi〉

Pr(~p|DN , I)

(A.22)

Then we can write Idiff as

Idiff(dN+1 = “i”) =DKL(Pr(~p|DN , dN+1 = “i”, I)|Pr(~p|I))−DKL(Pr(~p|DN , I)|Pr(~p|I))

=

∫
pi
〈pi〉

Pr(~p|DN , I) ln
pi Pr(~p|DN , I)

〈pi〉Pr(~p|I)
dp1dp2 · · · dpn

−
∫

Pr(~p|DN , I) ln
Pr(~p|DN , I)

Pr(~p|I)
dp1dp2 · · · dpn

(A.23)

Then the expected differential information gain is given by
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Idiff =
n∑
i=1

〈pi〉 Idiff(dN+1 = “i”)

=
n∑
i=1

∫
pi Pr(~p|DN , I) ln

pi Pr(~p|DN , I)

〈pi〉Pr(~p|I)
dp1dp2 · · · dpn

−
n∑
i=1

〈pi〉
∫

Pr(~p|DN , I) ln
Pr(~p|DN , I)

Pr(~p|I)
dp1dp2 · · · dpn

=
n∑
i=1

[∫
pi Pr(~p|DN , I) ln

pi
〈pi〉

dp1dp2 · · · dpn +
∫
pi Pr(~p|DN , I) ln

Pr(~p|DN , I)

Pr(~p|I)
dp1dp2 · · · dpn

]
−
∫

Pr(~p|DN , I) ln
Pr(~p|DN , I)

Pr(~p|I)
dp1dp2 · · · dpn

=
n∑
i=1

∫
pi Pr(~p|DN , I) ln

pi
〈pi〉

dp1dp2 · · · dpn +
∫ n∑

i=1

pi Pr(~p|DN , I) ln
Pr(~p|DN , I)

Pr(~p|I)
dp1dp2 · · · dpn

−
∫

Pr(~p|DN , I) ln
Pr(~p|DN , I)

Pr(~p|I)
dp1dp2 · · · dpn

=
n∑
i=1

∫
pi Pr(~p|DN , I) ln

pi
〈pi〉

dp1dp2 · · · dpn

(A.24)

Similarly, Irel can be written as

Irel(dN+1 = “i”) =DKL(Pr(~p|DN , dN+1 = “i”, I)|Pr(~p|DN , I))

=

∫
pi
〈pi〉

Pr(~p|DN , I) ln
pi Pr(~p|DN , I)

〈pi〉Pr(~p|DN , I)
dp1dp2 · · · dpn

=

∫
pi
〈pi〉

Pr(~p|DN , I) ln
pi
〈pi〉

dp1dp2 · · · dpn

(A.25)

Then the expected relative information gain is, accordingly,

Irel =
n∑
i=1

〈pi〉 Irel(dN+1 = “i”) =
n∑
i=1

∫
pi Pr(~p|DN , I) ln

pi
〈pi〉

dp1dp2 · · · dpn (A.26)

From (A.24) and (A.26), we can see that in this n-outcome model, the expected differ-
ential information gain Idiff and expected relative information gain Irel are equal, irrespective
of the choice of prior.
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APPENDIX B

Appendix for Quantum Questions

B.1 Correspondence of Corollary 6 in quantum mechanics

Lemma 1. In Cp ⊗ Cp, among composite operators in the form of Â ⊗ (B̂)k where Â, B̂ ∈
{X̂, Ẑ, X̂Ẑ, X̂Ẑ2, · · · , X̂Ẑp−1} and k ∈ {1, 2, · · · , p− 1}, there are at most (p+ 1) different
mutually commuting composite operators.

Proof. By contradiction, assume there are at least (p + 2) different mutually composite
operators, say Â1 ⊗ (B̂1)

k1 , Â2 ⊗ (B̂2)
k2 , · · · , Âp+2 ⊗ (B̂p+2)

kp+2 .

Since the choice of B̂i is limited, there will be n and m such that 1 ≤ n < m ≤ p + 1

and B̂n = B̂m. This leads to three situations:

1. If Ân 6= Âm, then this leads to contradiction since
[
Ân ⊗ (B̂n)

kn , Âm ⊗ (B̂n)
km
]
6= 0.

[
Ân ⊗ (B̂n)

kn , Âm ⊗ (B̂m)
km
]
=ÂnÂm ⊗ (B̂n)

kn(B̂n)
km − ÂmÂn ⊗ (B̂n)

km(B̂n)
kn

=
(
ÂnÂm − ÂmÂn

)
⊗ B̂kn+km

n

(B.1)
Without loss of generality, assume Ân = X̂ inẐjn , Âm = X̂ imẐjm , where in, im ∈
{0, 1} jn = ‘δin,0 + nδin,1 jm = δim,0 + mδim,1 n,m ∈ F∗

p. By using Weyl com-
mutation relation, we have the following result:

ÂnÂm − ÂmÂn =X̂ inẐjnX̂ imẐjm − X̂ imẐjmX̂ inẐjn

=X̂ inẐjnX̂ imẐjm − ωinjm−imjn
p X̂ inẐjnX̂ imẐjm

(B.2)

However, injm − imjn 6= 0 (mod p) since Ân 6= Âm. This means ωimjn−injmp 6= 1

and
[
Ân ⊗ (B̂n)

kn , Ân ⊗ (B̂m)
km
]
6= 0.

2. If Ân = Âm and kn 6= km, then the common eigensubspace of these two operators is
ensured. Let |a〉 be the eigenstate of Ân and b̂ be the eigenstate of B̂n such that Ân |a〉 =
ωa |a〉 and B̂n |b〉 = ωb |b〉. The eigenspace of Ân ⊗ (B̂n)

kn and Ân ⊗ (B̂n)
km can then
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be expressed in terms of |a〉 ⊗ |b〉:

E(ωnp , Ân ⊗ (B̂n)
kn) = Span(|a1〉 ⊗ |b1〉 , |a2〉 ⊗ |b2〉 , · · · , |ap〉 ⊗ |bp〉) ai + knbi = n

E(ωmp , Ân ⊗ (B̂n)
km) = Span(|a1〉 ⊗ |b1〉 , |a2〉 ⊗ |b2〉 , · · · , |ap〉 ⊗ |bp〉) ai + kmbi = m

(B.3)
The common eigenspace of Ân ⊗ (B̂n)

kn and Ân ⊗ (B̂n)
km can then be determined.

E(ωnp , Ân ⊗ (B̂n)
kn) ∩ E(ωmp , Ân ⊗ (B̂n)

km) = span(|an,m〉 ⊗ |bn,m〉) (B.4)

where an,m + knbn,m = n (mod p) and an,m + kmbn,m = m (mod p).

∀Âl, B̂l ∈ {X̂, Ẑ, X̂Ẑ, X̂Ẑ2, · · · , X̂Ẑp−1}, we have[3]:

Âl |an,m〉 = |an,m ⊕ al〉

B̂l |bn,m〉 = |bn,m ⊕ bl〉
(B.5)

where ⊕ is the addition in Fp and al, bl ∈ Fp. al = 0 if and only if Âl = Ân, bl = 0 if
and only if B̂l = B̂n.

Âl ⊗ (B̂l)
kl |an,m〉 ⊗ |bn,m〉 = |an,m ⊕ al〉 ⊗ |bn,m ⊕ klbl〉 (B.6)

This suggests that |an,m〉 ⊗ |bn,m〉 cannot be the eigenstate of Âl ⊗ (B̂l)
kl if Ân 6= Âl

or B̂n 6= B̂l.

|an,m〉⊗|bn,m〉 cannot be the eigenstate of composite operators other than the members
of {Ân⊗ (B̂n)

1, Ân⊗ (B̂n)
2, · · · , Ân⊗ (B̂n)

p−1}. There is no more composite operators
that |an,m〉 ⊗ |bn,m〉 is one of its eigenstates, which means there are at most (p − 1)

mutually commuting composite operators and this contradicts to the assumption.

3. If Ân = Âm and kn = km, then Ân ⊗ (B̂n)
kn = Âm ⊗ (B̂m)

km and this contradicts the
assumption.
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B.2 Correspondence of Assumption 5 in quantum mechanics

Lemma 2. In Cp ⊗ Cp, ∀Â, B̂, Ĉ, D̂ ∈ {X̂, Ẑ, X̂Ẑ, X̂Ẑ2, · · · , X̂Ẑp−1}, if Â 6= Ĉ, B̂ 6= D̂

then ∀m ∈ F∗
p, ∃!n ∈ F∗

p such that [Â⊗ B̂m, Ĉ ⊗ D̂n] = 0.

Proof. Let Â = X̂ i1Ẑi2 , B̂ = X̂j1Ẑj2 , Ĉ = X̂k1Ẑk2 , D̂ = X̂ l1Ẑ l2

[
Â⊗ B̂m, Ĉ ⊗ D̂n

]
= ÂĈ ⊗ B̂mD̂n − ĈÂ⊗ D̂nB̂m

= X̂ i1Ẑi2X̂k1Ẑk2 ⊗ (X̂j1Ẑj2)m(X̂ l1Ẑ l2)n − X̂k1Ẑk2X̂ i1Ẑi2 ⊗ (X̂ l1Ẑ l2)n(X̂j1Ẑj2)m

(B.7)
By using Weyl commutation relation, we can obtain the following relation:

X̂ i1Ẑi2X̂k1Ẑk2 = wi2k1−i1k2p X̂k1Ẑk2X̂ i1Ẑi2

(X̂j1Ẑj2)m(X̂ l1Ẑ l2)n = wmn(j2l1−j1l2)p (X̂ l1Ẑ l2)n(X̂j1Ẑj2)m

In order to let the commutation relation [Â⊗ B̂m, Ĉ ⊗ D̂n] = 0 holds, we must have

wi2k1−i1k2p wmn(j2l1−j1l2)p = 1

n =
i1k2 − i2k1

m(j2l1 − j1l2)

If Â 6= Ĉ, B̂ 6= D̂ then both numerator and denominator cannot be zero. Moreover both
numerator and denominator are elements in F∗

p. This means n is a unique element in F∗
p.
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