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Introduction

In these lectures we discuss two-body hadronic scattering in the high-energy
limit, under the hypothesis that it is dominated by Regge singularities, i.e.,
singularities in the finite parts of the complex angular momentum plane of the
partial-wave amplitudes in the crossed channel. 1In particular we discuss the
motivation of the hypothesis, the procedure for putting it into practical use, some
of its experimental consequences, and possible glimpses into the dynamics of strong
interactions. For general references the following books are recommended.

R.J. Eden, High Energy Collisions of Elementary Particles, (Cambridge, The

University Press, (1967)).

E.J. Squires, Complex Angular Momentum and Particle Physics (W.A. Benjamin,
New York (1964)).

P.D.B. Collins and E.J. Squires, Regge Poles in Particle Physics (Springer-

Verlag, Berlin (1968)).
I. Regge Poles in Potential Scattering

A. Regge Poles and Resonances:

As an introduction to the idea of Regge poles, we give a brief review of
potential scattering, where they were first introduced as a new way to describe
bound states and resonances.

Suppose a spinless non-relativistic particle is scattered by a central

potential central V(r), with kinematics as shown in the accompanying sketch.

In units such that A = 2m = 1 let E be
the energy of the particle and z be the

cosine of the scattering angle:

= k2
= |k, | =lkf_l) )
z = cosf = ki-kf/k (1.1)
The differential cross section is given by
doa _ 2
i |£E,2)| (1.2)
where the scattering amplitude f(E,z) has the familiar partial-wave expansion
leel
£(E,z) = }: (25+1)F£(E)Pz(z) , (1.3)
£2=0

where the partial-wave amplitude FL(E) is determinable from the solution to the
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radial equation

2

d u 1
g + Euz(r) = [V(r) + &S&%ll J uz(r)
dr T
uz(r) - 0 . (1.4)

r-> 0
Asymptotically the solution is of the form

- i - T[—'z—
uz(r) Csin <kr 9 + SL(E)> . (1.5)

The partial-wave ampliitude is then given in terms of the phase shift SL(E) by

218, (B) _
N S R (1.6)

F () = 3 [

It is a real analytic function of E, and it has a branch cut along the positive
real E axis. There are no poles on the physical Riemann sheet except along the
negative real axis, where they correspond to bound states of spin 4. Complex poles
can occur only in conjugate pairs on the second Riemann sheet. TIf they are close
to the branch cut, the one just below the cut is near the physical region, and
correspond to a resonance of spin 4. TIts conjugate partner is far from the
physical region, and thus not directly "visible". (Except when the pair of poles
are near E=0, but there threshold effects become important.)

Regge shows that the same bound states and resonances show up as poles of
Fﬂ(E) in the complex g-plane, in the following way. First, from the radial equation
for a superposition of Yukawa potentials, one can show that FL(E) can be uniquely
continued to complex ¢, thereby giving a function F(E,£). It has the following
properties:

1. F(E,2) is meromorphic for Rel > -%,

2. F(E,4) » 0 as |g]| - o,

3. The positions of the poles in £ move with the energy E.
Such a moving pole is called a Regge pole, its locus ((E) a Regge trajectory.

In the usual description, a resonance is identified with a pole of
F(L,E) in E, at a positive integer value of q(E), which generally occurs at complex
E. We now propose to keep E real and associate resonances with the behavior of
o(E) in the complex ¢ plane.

A typical locus of a(E) in the complex angular momentum plane is shown in the

sketch below.
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Im(E)

5 increasing E

E=+ o

— Re(E)

The imaginary part Img(E) vanishes for E < 0. Whenever Rew(E) passes through
positive integer 4 with d[Rew(E)1/dE > 0, a bound state or resonance of spin # occurs,
provided Imo(E) is small. In the sketch, for example, A is a bound state, and B,C,D
are resonances. This family of bound states and resonances appear as recurrences of
the same state. Other families can occur as well, and will be characterized by

other trajectories. Each family is characterized by the principal quantum number
{i.e. the number of codes in the radial wave function). The points B', C', D' do not
correspond to identifiable resonances, because the poles corresponding to them are far
from the physical region. Actually, each trajectory o(E) has a complex conjugate
partner represented by its mirror image with respect to the Re ¢ axis. The mirror
images of B,C,D and B',C',D' all lie too far from the physical region to be identi-
fiable as resonances. Another way to exhibit the resonances is to plot Reo(E) against

E, as shown in the sketch below. gegy(R)
3 [

f<spin 2 resonance

spin 0 bound state

<:"'_“‘-spin 1 resonance

—_ — -l - SIS

To see the correspondence between the new way and the old way of describing a
resonance, let us examine F(E, ) near { = o(E):
E
e o —BE (1.7
(E, £) ~ p-o(E) )
Suppose that for some real value E=En we have Rea(En) = n, Then in the neighborhood
of E = En we can write

dov
~ 1 - T = = =
Reo(E) = n + o' (E En) , o' =3¢ (E En)
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Hence
B(E_)

F(E,n) ~ Thea(B)

B(E,)

(1.8)
~ n-[n + a'(E-En)]-i ImQ/(En)

8(E)
E-E_ + i Img

al

Il
]
Q [~

If o' > 0, this is the familiar Breit-Wigner formula for a resonance with mass E and

, Imo(E_) n

total width 2 1" If o' < 0, there is still a pole on the second sheet, but it
04

is not close to the physical region.

B. Sommerfeld-Watson Transform: To isolate the contribution of a Regge tra-

jectory to the scattering amplitude, we write the partial-wave series in the form

of a contour integral. Noting that 1/sinpf has poles at integer values of [,

and
n(-1)*
Res sinmt =1, 40, +1, + 2,...
we have ©
- =L T p (-
£(E,2) = Zo(““)Pz(Z)F(E’” “ e [ 40 i PR
t= (1.9)
where we have used
P,(-2) = (DR (2) (1.10)
and where C is the contour shown in the accompanying sketch
£ plane
x + Regge pole L=q(E)
Z
T c
R e S
For fixed lzl <1,
Pz(_z) _C__.; o 'G‘Imf:‘, (Z=COS@) (1.11)
L NO%

Since F(E, 4) — 0 as lzl% ©, we can expand the contour, drop the piece at infinity,

and pick up the Regge poles: /N
<fi> Regge pole

rd

1
NH
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sinmy

m(2041) B(E)P_(-2) pch -
£E,2) =) |- el R B VI sl TR (1.12)
) ]

Req > =%

The term in brackets represents the contribution from a Regge trajectory o(E), which
contains the effects of a whole family of bound states and resonances.

The original partial-wave expansion converges only for z lying in an ellipse with
foci + 1 (the Lehmann ellipse), but with (12) we can continue it outside of the
ellipse. 1In particular (12) has a simple asymptotic form for Izl - o, The region is
of course unphysical for potential scattering; but for relativistic scattering it

corresponds to high energy in the crossed channel. To obtain the asymptotic behavior

we note
P9 A Hed B oo 10 ) Geax ()
Z [0 (II)
Hence as Izl — o,
’ 5Qo +1) T(a+3) -5
€m0 ~ ) [FewFietdd Tt o 406, (1.14)
Rea > ~%

where the term 0 (z_%) comes from the "background" integral in (12). If there are
Regge poles with Rea(E) > -%, then the highest one dominates the asymptotic behavior.

If there are no Regge poles with Rew(E) > -%, then we learn nothing from (14).
It won't help to push the background integral further to the left, even if that is
possible. The reason is that Pa(z) = P—a-l(z)’ so that for Rexy < -% the asymptotic
behavior of Pa(-z) is

P (z) —_— ___q LCo%) (22)'0'1[1+0(z_2)],(Rea < -%) (1.15)
|z "*w(ﬁ) T(-o)

instead of (13), hence the background integral would still dominate over the pole
contributions. Thus, we need to know something about the background integral in (12),
and the Mandelstam symmetry comes to our aid.

C. Mandelstam Symmetry: The Mandelstam symmetry states

F(E,#) = F(E,-4~1) for £ = half-integer. (1.16)

Note that the radial equation (4) is invariant under g & -g-1. If V(r) - o« faster
than r-2 as r - 0, so that it dominates over the centrifugal potential z(£+1)/r2, then
uz(r) vanishes at r=0 in a manner independent of 4. In this case it is clear that

the Mandelstam symmetry holds not only for half integers, but for all 4. If, how-
ever, the centrifugal potential dominates over V(r) near r=0, then the two solutions

to the radial equation have the respective behaviors

o 2ol
r =-s0 (1.17)
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For 4 > 0 we must choose the first solution, while for 4 < 0 we must choose the second
solution. It turns out that the Mandelstam symmetry holds only for half-integer /.
We make use of the Mandelstam symmetry to do the Sommerfeld-Watson transform in a

different way. First let us define

Py(®) 4 - 0,1,2,..

@ (z) = ' (1.18)
4 {o L=-1, -2,.. .

This function can be continued to complex £:

_ _ tangs =1 Ira+3 Lped =2 1 _, 1
Ty =T @) CETG D 9 T TN g s )

(1.19)
with asymptotic behavior

1 T+ %) 4 -2 (1.20)
T LoaoyE ra D @ [t o™ ],

which holds for all £. We note that <j>z(z) has simple poles at half-integer 4, with

residues given by

L
Res G}(z) = i‘%f__ Q_z_l(z% (4 = half-integer) (1.21)
Res(F;(Z) = -Res P_L_l(z))(z = half-integer) - (1.22)

The last equality comes from the well-known equality QL(Z) (z) at half-

= Q-z-l
integer { . We now write

dg

Sintl (1.23)

£ =) @r+ ) 7 ® Py -+

(24 + 1) F(E,z)@(z)
b= - 1 c

where the contour C is shown in the accompanying sketch.
pole cancelled by (24+1) 4 plane
/P X ¥ Regge pole

¢ TS WP T 7T 3
t T' T 7 b ¥
l poles cancel in pairs by

Mandelstam symmetry

The poles of(?}(z) at half-integer f do not give spurious contributions to the intesral
because the one at 4 = % is cancelled by the factor (24 + 1), and the other cancels
in pairs by (16) and (22).

We now expand the contour and discard the contribution from infinity,
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Regge poles

and obtain

\ - .
£(E,z) = ZJ [ (20 + 1) Pa(-z) + background integral. (1.24)

Sin'rro/
Reyy > ~L
Hence
_, 38Ry + 1) T(a+%) ., .\« -L
FE2) EJ [ €y Fle + 1) (722 ] + 06z ) . (1.25)
Rey > -L

In this representation, the Regge poles always dominate the background integral.

D. Exchange Potentigl and Signature: Suppose we have an exchange potential

V(r) = Vl(r) + Vz(r)P (1.26)

where
PE(Y) = £(-T) . (1.27)
Then the effect potential is different for even and odd partial waves, for the

radial equation reads

2
du
— - [z + 1 Y. ]
3 +Eu£ 5 +Vl+(1)‘a\/2 u

dr r

2

Since (-l)z does not have a unique analytic continuation in / , we separately continue

the two equations

2+
duz +Eui___‘:.&£'e'—+ll+v +V]ui_
dr2 2 rZ 1= "2 J

and obtain from them the two partial wave amplitudes Fi(E,L). Clearly

rH(E, 1) F,(E), (1 even)

(1.28)
F (E, 1) = F,(E).(4 odd.)

+
We refer to F—(E,§) as partial-wave amplitudes of even (odd) signature. Regge poles
occuring in Fi(E,Z) will be characterized by signature. An even (odd) signatured

Regge pole produces a resonance only where it passes through an even (odd) integer
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value. We illustrate this in the accompanying

sketch. The two signatured ReC(E)
trajectories become degenerate if
either V1=0, or V2=0. Such a Trajectory of signature
degeneracy is called exchange k/+ /;
degeneracy. i

3 i
® denotes a bound state or resonance 2

1 / 4

é//

__//
/

To carry out the Watson-Sommerfeld transform write

+ ) -
£ =) o+ ) FE T +) e+ 1 P EnE e
4 even 4 odd

- %Z (24 + DFT(E, 9 [@2&) + O’L(-z)]
L =

-0

+%2 (22 + 1)F (E, p) [G’z(z) -@2(-2)]
) = o

Then, in a manner analogous to the earlier development, we obtain

+(E, z) Z{ —rp2d + 1) F‘;(-Z) +Q’a(z)} }

2 Sin'rra
o of + signature

2 { -2t D (@ () -@ (o) | }

2 sinmy
o of - signature

+ (Background integrals).
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II. Relevance of Regge Poles to Relativistic Scattering
We discuss some motivations for taking over the ideas of Regge poles from the
realm of potential scattering, where it is proved, to the realm of relativistic
scattering, where it is unproved. There is a practical and a theoretical motivation.
The former rests on the hope that Regge poles will lead to a simple description of
high energy scattering. The latter is based on the fact that the bootstrap hypo-
thesis seems to find a concrete expression in terms of Regge poles.

A. High-Energy Scattering

To illustrate the role of Regge poles in high-energy scattering, consider the

elastic scattering of spinless particles of equal mass, represented schematically

by the sketch shown, with p3 P4
2 2
s = (p1+p2)2 = 4(k +m") t —» u
2 2
t = (pl'p3) = -2k"(l-cos8)
o 7
u = (pl-p4) = -2k (l4cosfH) 1 $ Py (2.1)

where k and 6 are the center of mass three-momentum and scattering angle, respectively.
Let the scattering amplitude f(s,t) describe the s-channel reaction pl+p2 - p3+p4
2
for s > 4m~, t < 0. Then by crossing symmetry, the same function f(s,t) describes
+p

the t-channel reaction p - ;2+p4 when analytically continued to the region

173
2
t >4m , s < 0. Similarly, if f(s,t) is analytically continued to the region
2 2 - -
u=4m -s-t >4m , s <0, t <0, it describes the u=-channel reaction pl+p4 - p2+p3.
Of course no such crossing symmetry exists in the case of potential scattering.

We now make a partial wave expansion in the s-channel:

e o]
f(s,t) = Z (28+1)F , ()P, (2) (2.2)
£=0
where
z=cos6 = 1+—5 . (2.3)
2k

Suppose that we can continue Fz(s) into the complex 4 plane and carry out the
Sommerfeld-Watson transform. Then, if the only singularities are simple poles,

we will obtain as in potential scattering

_ npCaotl)
sinmgQ

f(s,t) ->

P (- ) 2.4
- ge (2.4)

where a(s) is the leading Regge pole in the s-channel. Using (2.3) and the

asymptotic form of Pa, we have
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£(s,t) —> C(s)eX®) | (2.5)

t >

s fixed
which says that the energy dependence of high-energy t-channel scattering at fixed s
is governed by the leading Regge pole in the s-channel. Similarly, for the s-channel
reaction, forward scattering (0 — 0) is governed by the leading t-channel Regge pole,

and backward scattering (6 — n) is governed by the leading u-channel Regge pole.

£(s,t) —— c(t)sHE) (2.6)

s >
t fixed

£(s,t) —  c(u)s¥® ) (2.7)

s —>
u fixed

We have not bothered to distinguish the trajectory o in (2.5), (2.6), (2.7), but of
course they need not be the same trajectory. The t=channel trajectory, for example,
generates bound states resonances having the quantum numbers of the t-channel, and
will be characterized by these quantum numbers. We assume that the trajectory
function @ is independent of the external particles in the scattering process, and
speak of “Regge pole exchange'" in analogy with single-particle exchange. As we can
see from (2.6) the salient feature of Regge pole exchange is that asymptotically
the scattering amplitude is proportional to the ofh power of the squared c.m.
energy, where ( is the variable spin of the object exchanged in the crossed channel.
As we change the momentum transfer t, the spin varies along the Regge trajectory.
This furnishes a simple and physically attractive picture of high energy scattering.

B. The Bootstrap Idea

The bootstrap idea, first proposed by Chew and Mandelstam, is that among the
hadrons there are no "elementary" particles, but that they are composite states of
one another. It has been difficult to state this idea in a form that is both
sufficiently practical and sufficiently precise, so that one may use it in an actual
calculation. To appreciate the difficulty, let us look at some attempts at formula-
tion.

A simple-minded example, which illustrates the idea, but which does not give a
consistent scheme for calculation, is the following. Suppose we calculate n-x
scattering by solving a non-relativistic Schr¥dinger equation with an attractive
Yukawa potential

~mr

v(r) = -g2 2 " s (2.8)

which we regard as the adiabatic potential due to the exchange of a p meson of mass

- 170 -



m and coupling constant g. The P~wave phase shift, 61(E;m,g) will then depend on
the energy E of the sy system, as well as on the parameters m and g. If m and g are
appropriately chosen the P-wave effective potential, as shown in the sketch below,
can accommodate a resonance, whose position and width depend on m and g. The boot-

strap requires that this resonance be the p meson that generated the potential in

the first place. Thus V(r) /N~ /P-wave centrifugal potential
”,«””Effective potential 2/r2
P-wave resonance N R
e
P /: 2 -mr
-
PG 2

61should pass through /2 at E = m, with a slope consistent with the decay width T
for p = mm:
2
I =g Cu,m ) (2.9)
where C depends on the pion mass p and the p mass m in a known way. The relation

between I’ and the phase shift may be obtained by noting

ei6lsin61 = L ~ L L (2.10)
- _0 ~ [] - . ] .
cot61 i 61 (EO) E EO+[1/6l (EO)]
where &' = BSI/BE, and E, is such that 61(EO) = g/2. Thus we require
5, (m;m,g) = =x/2
8, " (mjm,8) = _E_Z____ (2.11)
g C(u,m)

from which m/u and g can be determined. This, however, is not a real example because
the potential (2.8) is actually incorrect for spin 1 exchange, and there is no

simple way to find a "correct" version. Also, pions don't obey the Schr¥dinger
equation. A general way to state the bootstrap idea is that the requirements of
analyticity, crossing symmetry, and unitarity, plus "“boundary conditions" of some
kind, should completely determine all scattering amplitudes, including the existence
of particle poles, and their location and residues. To make this precise, one has

to be more specific about the "boundary conditions'. A suggestion that has under-
lined many practical calculations (the so-called N/D calculations) is to impose

Levinson's theorem, taken over from potential scattering:

SL(E=O)-6£(E =) = “Nz (2.12)
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where SL(E) is the ith wave phase shift, and Nz is the number of bound states (not
resonances, but bound states), of spin £4. When inelastic channels are open, one
would replace SA(E) by eigen-phase shifts. The idea expressed by (2.12) is that,
since NL=O when there is no interaction (i.e., when SLEO)’ there would be no
"elementary" bound state. In mathematical examples®* in which (2.12) can be
rigorously imposed, one does find that it determines the number of bound states and
resonances that can occur, and places restrictions on their positions and coupling
constants. But its general consequences has not been fully explored, owing to the
difficulty in using it in a full relativistic scattering problem.

Instead of the Levinson theorem, it seems far simpler, and more satisfactory
to take over from potential scattering the idea that all particles lie on Regge
trajectories. The statement is precise, and is independent of a detailed formu-
lation of the dynamical equations. It has the immediate experimental consequence
that all known p hadrons should be classifiable according to Regge trajectories,

which should also control the asymptotic behavior of scattering amplitudes.

C. Chew-Frautschi Plot

We can immediately test the hypothesis that all hadrons lie on Regge tra-
jectories by plotting the spin vs. (mass)2 for known hadrons, resulting in what is
known as Chew-Frautschi plots, as shown in the following figures. The trajectories
that one might postulate from such a plot can be tested experimentally by analyzing
high energy scattering data. A striking feature is that all known trajectories seem
to be straight lines. The presence of the fO at spin 2 on the p trajectory suggests

that there is exchange degeneracy of the p and f trajectories.

% K. Huang and A.H. Mueller, Phys. Rev. 140, B365 (1965).
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TII. Relativistic Scattering of Spinless Particles

A. Preliminaries

We consider the two body scattering process atb — c+d, and define as usual

(]
2 2 2% 2 2.%52 R d
s = (ptp) = ((p,,, m, )2+(pab +my )
2 t —> - U
t = (Pa'pc)z 1 <
u = (p,7P.) (3.1) a S¢ b

where p b is the magnitude of the three-momentum in the center of mass of a and b.
a

These variables satisfy f;
s+t+u =Z mi2 . (3.2)
i=1
We write the S matrix for this process as
s = 1+iT (3.3)
where
< ed|Tfab > = (20%6%(p +p,-p_p ) £(s, 1) (3.4)

where £(s,t) is Lorentz invariant, provided single-particle states are so normal-

ized that the phase-space volume for one particle is invariant:

. 3
1 a’p \
) ==l 0.
one—particle(zﬂ) P (0

states

where ¢ indicates quantum numbers other than momentum. The differential cross

section is
12

P
do _ 1 pc (3.6)

d |
- - f(S9t)
d 4nzs ab

Crossing symmetry states that £(s,t) describes different reactions in different
domains of its arguments., The three reactions, or channels, are as follows:
2
s-channel: at+b — c+d, for s > max [(ma+mb) ,(mc+md)2] s
t-channel: a+c - b+§,for t > max [(ma+mc)2,(mb+md)2] ,
- - 2 2

u-channel: b+c = atd,for u > max [(mb+mc) ,(ma+md) ] . (3.7)

We assume that f(s,t) can be analytically continued from one of these domains to

another.

+
Unitarity states that § S = 1, or

L oty = Lt

21(T T) 2T T s (3.8)
and time reversal invariance implies

<glt|g>= <p|T|la>. (3.9)

Then, taking the matrix element of (3.8) we obtain
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Re a {S)

Re a (S)

T ] I I
CHEW-FRAUTSCHI PLOT
FOR NON-STRANGE MESONS

*SPIN IS NOT KNOWN BUT
IS ASSIGNED ON THE BASIS OF
STRAIGHT-LINE REGGE TRAJECTORIES

o 2L | ) | |
0] ! 2 3 4 5
S{GeV?)

vlo Dl G o

nojon

no|—

L T I I I I I 1

CHEW-FRAUTSCHI PLOT
FOR NON-STRANGE BARYONS

| ¥SPIN IS NOT KNOWN BUT IS
ASSIGNED ON THE BASIS OF
STRAIGHT - LINE REGGE TRAJECTORIES

A(2850)

A(2420)
N(2650)*
Ali950)

N(2190)

]
A3230)%

N(3030%*

n
ol
H

5 3] 7 8 9
S (GeV?)

10
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_LN o= hb,
Imf | q(8:t) =5/ £ 4, (@087 (p mp P E L, - (3.10)
n

The optical theorem reads

Imf b(s,O) = %k(s)%cT(s) (3.11)

ab - a
where OT(S) is the total cross section for a+b — anything. By virtue of (3.10)
f(s,t) has a series of branch cuts in s, with branch points at the various thresholds
for ab » n. The right hand side of (3.10) gives the discontinuities across the cuts.
The discontinuity across the elastic cut is given by the elastic unitarity relation

Inf(s,t) = ~l§ —E*% dQ'f*(s,tl)f(s,tz) (3.12)

8~ (s)

where, in the equal mass case,
—2k2(l—cose)

t=
£, = -2k2(1-cose')
t, = -2k2(l-0037)
cosy = cosBcosf'+sinbsinB'cosp' . (3.13)

The geometrical relationship among the anglﬁs is shown below.
Du

We can expand the two-body scattering amplitude f(s,t) in partial waves:

«©

£(s,t) =A} (24+1)P, (2 )F, (s) . (3.14)
2=0

If £ is an elastic amplitude, then elastic unitarity takes the simple form

L k 2
ImF, (s) = 5 (S)% lFt(s)l , (3.15)

with the solution
. % 2id (s)
2
F,(s) = 22e 2y, s, (s) 2o . (3.16)

If the elastic threshold is the lowest threshold then Im&z(s) = 0. Using the
orthognality of the Legendre polynomials, we can invert the partial wave expansion
+1

FZ(S) = %L/;sz(z)f(s,t(z)), (£=0,1,2,...) (3.17)

-1

to obtain
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B. Froissart-Gribov Continuation

We wish to continue FZ(S) into the complex plane so that we may study its
‘poles and other singularities there. 1In potential scattering this could be done by
solving the SchrBdinger equation for complex £4. In relativistic scattering we must
make use of dynamical assumptions. A guide to the analytic continuation is

Carlson's Theorem: Let f(z) be analytic for Rez 2 0. Suppose £(z) = 0 for

z =0,1,2,..., and that ‘f(z)l < const x e 2l as lzl -, Then £(z) = 0 for all

Rez 2 0.

Hence if we can find an analytic function F(E,£) which reduces to FZ(E> for 4 = 0,1,
2 . and which grows less fast than eﬁ‘z|, then we know that any other analytic
conTiTuation must grow at least as fast as eﬂlzl. Since PL(Z) grows essentially like
7z |4

e

3.

for -1 < z < 1, and therefore does not possess a unique continuation, we
have to examine the properties of f(s,t) to see whether Fz(s) has a unique continua-
tion. We assume that f(s,t) satisfies an N-times subtracted dispersion relation

at fixed s:

© N-1
N A (s,t") N A (s,u") ]
dt' t u du u'’? i
£@s.t) = e t'N tt T N Ta T a;(s)t” . (3.18)
t0 ) i=0

The first term gives rise to the analog of a potential, and the second term an
exchange potential. Now both t and u are linear functions of z = Z s of the forms
t = az+b, u = -a'z+b', where a > 0, a' > 0 in the s-channel physical region. Hence

(3.18) may be rewritten in the s-channel physical region, as
N-

fe's)

D.(s,z") N p- D (s,z") - ,

z dz? 172 N z dz' i

f(S,Z) - f N 7 V-7 + (_l) 7t Z'N '+Z Z‘ C,(S)Z )
Z =

21 2
D,(s,2) = A _(s,£(2)), Dy(s,2) = A (s,u(-2)), z, 21, z, 21,  (3.19)

For £ = 0,1,2,..., (3.17) is certainly valid, and we can substitute (3.19) into it
and interchange the order of integration to obtain

® +1
_ 1 [det W1 z i} le :
F () = nfz'N D (5,215 jdz 77 P, w. ! N Dy (s,z")
2

-1

+1 N-1 +1

lfi il P ( Y (s)% ﬁizzip (2) (3.20)
5 z 21z &y z) ZJ ci s 7. 1 . .
-1 i=0 -1

Now
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N N "
z  _ [(z-zY+2'] _ __\N-1 o N-2_ z
z'-z z'-z (z-2") Nz'(z-z') et o
N N ™N
z-  _ [(z+zy-z']" _ WWN-1 \\N-2 \N_z
7'z 20 +(z+z') Nz'(z+z') “+.o4(-1) S - (3.2D)

1£ 4 2 N, then the polynomials do not contribute, and we obtain

(o) . +1 Pz(z) . 0 / P (2)
(s) \dez'D (s z')2 /ﬁ z'—z k/:iz'D (s, z')2 dz vl (3.22)
zq -1 z, -1
Noting that . /jl PL(Z) i
2. dz z'-z Qi(z) (3.23)
-1
we have © ©
F (s) = k}; D (s z )Q (z")+ i\/pdz'Dz(s,z')Qz(-z') ,
! i
(4=N, N+1, N+2,...). (3.24)
Recall that for integer £,
Q,(-2) = (-D¥q, () (3.25)
so that
foe) ©
F,(s) = [dz D, (s,2")Q, (z")+(- 1)? /dZ'Dz(s,Z')Q!I(Z') . (3.26)
1 )

As in potential scattering, we are therefore led to define the signatured partial

wave amplitudes
o 00

Fi(s,4) = ifdle(s,Z)Qz(Z)i ifdz%(s,z)%(z) : (3.27)

2y )

This is the Froissart-Gribov formula. As in potential scattering we have

( Fl(s,4) (4=0,2,4,...)

F,(s) = (3.28)

U v (s, 4=1,3,5,...)
We must still show that (3.27) defines a unique continuation of Fz(s) to complex £.
By hypothesis, the dispersion relation (3.19) requires only N subtractions. Hence
the integrals in (3.27) converge at least for Rez 2z N and so define an analytic
fraction there. Also as ]Ll - o, Q (z) ~ CL 2[z+(z —1) 21 -%. Hence, since
2, > 1 and z, > 1, F (s,£) = 0 as lzl - © and so satisfies the hypotheses of Carlson's

Theorem. It therefore gives a unique analytic continuation.

The Mandelstam symmetry
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Ft(s,z) = Fi(s,—z-l) (£ = half integer) (3.29)

is assumed to hold. It is formally true of (3.27),for QZ has this property. However,
the integral do not converge as they stand and the assumption is that the analytic
continuation still maintains this property.

Since Qz(z) has simple poles at 4 = -1,-2,..., Fi(s,j) would, in general, have
fixed poles (i.e., s-independent poles) at these values of £. These are inadmissible
by the elastic unitarity realtion (3.13). For, by similar arguments given above,
(3.15) can be uniquely continued to complex 4 to read

+
Lim [F—(L,s+ie)-Fi(Z,s-ie)] - Lk T Fi(l,s+ie)Fi(z,s-ie) . (3.30)
2

€ -0 2 gy

1
2i
This cannot be satisfied if Fi(z,s) has real fixed poles in 4.

To get rid of them, we require their residues to vanish, namely

[e o]

/dle(s,z)Pz(z) =0. (#=0,1,2,...,i=1,2) . (3.31)

21

C. Regge Poles

We have seen that (3.27) defines an analytic function of £ for Relt Z N. For
Ret < N, singularities may occur, the simplest being Regge poles. They arise from

a failure of the integrals in (3.27) to converge at the upper limit. Suppose

D, (s,2) - Ei(s)zo‘(s) (i=1,2). (3.31)
z > Q0
We split the integrals into two parts, for example
@ Z o
%L/‘dle(s,z)QL(z) - %<f+[ >dzD1(s,z)Qll(z) (3.32)
%1 Z 2

where 7z is fixed but arbitrarily large. The first part, being a finite integral,

defines an analytic function. The second part can be evaluated using (3.31) and the

fact
Qz(z) - G z_J&"1 .
7 -
We then obtain
+ B, (8)1B, (s)
F—(s,4) = oy + [Terms regular at 4 = a(s)] . (3.33)

+
Thus F—(s,4) has a Regge pole at 4 = o(s), if 31(5) + Bz(s) # 0.
To examine the singularities of q(s) and B(s) we keep only the parts of (3.27)
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that contribute to a Regge pole:
+ o)
(s,8) = /\dz [D (s,2)3D, (s, z)]Qz(z) . (3.34)

Z
This is valid in the s-channel physical region. To continue in s, we must first

pole

restore t and u as integration variables. We carry this out explicitly for the
simple case of equal-mass scattering:

+

«©

1 t
(s,4) = L/;t[A (s,t)+A (s,t)]Q,(L-—=) (3.35)
anz : t u 2 2k2

pole

where T is positive and arbitrarily large. This can now be continued in s.

We first note that the function Qz(z) has a cut from z = +1 to z = -1, and
one from z = -1 to z = - @, with discontinuities as indicated in the sketch.
k2=—E kz ~c0 z plane(z=1+ —Eiﬁ

P m

Lz, -1 +1
2 e e e ey DTITITIIIIT I T
k=0 <A T T rrrrrrrrrrry !{!!{ZZ:&
'zb
_
—— _A ——

DiscqQ, (x) = '%Pz(x)
—_ "imd .
Q,(z,)=-¢""q, (-2)
.l _
Q,(z,)=-e ", (-2)

(-za=—zb=-z)

The cut from -1 to - ® gives rise to a s-cut in FP le(s £) from k2 =0 to k2= -t/4.
It is present only when 4 is non-integer. The comblnatlon (z- 1) Q (z), however, has
no cut from -1 to - @, even for non-integer 4. Since k = t/2(z- 1), we see that the
combination Fpolz(s,z)/ijhas no cut from k2 =0 to k2 = -t/4. This means that

for a Regge pole the reduced residue function
= 2
B(s) = B(s) /KX %) (equal mass case) (3.36)

and the trajectory 0(s) can have only the cut from k2 = -t/4 to k2 = - 00, (coming
from the cut of Qz(z) from z = -1 to z = +1), plus other cuts coming from AtiAu.

The former cut is, in fact, absent because t > T, and T - . The factor
2
k 4 in (3.36) corresponds to the threshold condition SL(k)k ¢ 0 k2£+1, familiar

from potential scattering.
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. R .y + .
We now examine singularities of F — due to those of At+A , which for fixed
-u

pole
t has right and left hand cuts in s, and is real analytic. At fixed t, the s-cuts
of At run from sA(t) to ©, and from sB(t) to - @, as shown in the sketch below.

Similarly the s-cuts of Au run from SA'(U) to ®©, and from sB'(u) to - ®. Since t is

right cut

s=4m2

u=4m

left cut

integrated from T up, and T -, it is clear from the sketch that only the right cut
remains in Fpo$é(s,z), and it runs from 4m2 to ©, The left hand branch point recedes
to - @ because both B and B' reced to s = - as T - . Therefore a(s) and PB(s)

can have a right cut, but no left cut. Since they are real analytic functions, they
are real for s < 4m2.

For the general mass case similar results are obtained. The reduced residue function
is given by

als)

B(s) = B(s)/(p P q) (3.37)

as a generalization of (3.36). Both «(s) and E(s) are real analytic functions, with
possibly a right cut from the lowest s-channel threshold to @, but no left cut.
Below threshold both «(s) and E(s) are real.

D. Reggeization

By Reggeization we mean the isolation of Regge pole contributions to the
scattering amplitude. The way to do this is to perform the Sommerfeld-Watson trans-

form. We write the partial wave expansion in the t-channel;
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o
f(s,t) =Z (2,6+1)P‘&(zt)G£(t) (3.38)
£=0

where

2 2 2 2
t(s—u)+(md -my )(mc -m )

T
[(t-m_m )%y (e=(m 4m ) ) (£=(m, -m ) ) (e- (mptm ) %) 12

s-u

- PO (3.39)
s > 4pacpbd
We assume that the signatured amplitudes have only simple poles of the form
+ B(s)
G(8:4) ~ Foa(s)
Then, repeating the steps of Sec. I-C, we find that as s » @
f(s,t) = Z Ra(s,t) + (background integral)
a
R (s,t) ~ - 22UEIL] g/ @ (p )4 @ (2 )] (3.40)
o’ sinpa(t) o t'=Vao 't ‘

where the + sign corresponds to signature = +1. As a function of z s (3.38) converges
in the Lehmann ellipse of the t-channel, which includes the t-channel physical

region but not the s-channel physical region. We can now continue it to the s-channel
physical region using (3.40). Before we do this, we must determine the phase of

CP( -z ), with the help of the relation

& (=) = +1’wr?( ), (mz 20) . (3.41)

In the physical region of the t channel, Imt > 0 and s < 0. Hence, Imzt > 0, so that

L IO QO 5 1O P, (3.42)

s,t) ~ "
Ra( ) sinnmo(t)

and this can be continued to the s-channel physicsl region. The reason we must use
(3.41) before the continuation is that the path of continuation passes through a
branch point of (Pa(z) in z, and the phase, if not determined beforehand, becomes
ambiguous thereafter.

We now examine the singularities of R (s t) in t:

1) R (s t) has poles at the integers from the factor [sum:oc(t)] . We discuss
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separately two types of poles:

(a) Those poles at ¢o=0,1,2,.... correspond to physical particles of spin Q.
Because of the signature factor, only the even or odd ones are actually present in
Ra. However, if ¢(0) > O, and the signature is positive, then o=0 corresponds to a
particle of negative mass, a '"ghost!", which may be removed by assuming that
B(t) e a(t). (There are other mechanisms to deal with this problem when the
extrenal particles have spin. See discussion later, in Sec. VII).

(b) Those poles at o=-1,-2,-3,.., correspond to unphysical, or '"nonsense",
values of singular momentum. They are automatically removed from Ra becauseéax(z)
vanishes at these points. The signature factor then produces zeroes in Ra(s,t) at
nonsense wrong-signature values of @, unless B(t) has poles at these values of «.
(See discussion later, in Sec. IVC).

2) Ra(s’t) has poles at ¢ = +%, +3/2,..., arising from the poles of(ja(z). The
pole at o=-% is cancelled by the factor (2a#l). For the others there are two
possibilities.

(a) The residue of the pole may vanish.

(b) 1If the residue does not vanish, then the Mandelstam symmetry (3.29) requires
that there be another trajectory at -a-1 with the same residue. The pole from this
trajectory exactly cancels the original pole. This is known as a “compensating
trajectory".

For negative values of ¢, the compensating trajectory would lie above the
original one. For this reason it is customary to assume that (a) is the correct

choice and to take
1

B(t) o 3
P(a(t)+§)

To obtain the required analyticity properties, the correct threshold behavior,
and the absence of a ghost at a(t) = 0, we write

a(t)

4p_p
B(r) = —AHE < 2 bd> 7(t) (3.43)
D (a(£)+3) 0

where o is an arbitrary scale factor. Then y(t) is real analytic with no left hand
cut. Recalling (1.20) and using the properties of the gamma function, we find that

as s = @,

-ino(t)

R (5,6 ~ - 2 p1-ae)) e LN o S P SIS

(x) 0

This is the formula which is used in practical applications. Note that the
threshold factor in (3. ) is cancelled by a similar factor in z, [see (3.38)]. This

is of course no accident, for Ra(s,t) is expected on general grounds to be a real
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analytic function of s. If the ghost-killing zero is not needed, and we do not put
it in, then I'(l-a) in (3.44) is replaced by -I'(-q).
E. Khuri Poles

We have kept only the leading term in the asymptotic expression (3.44) for the
contribution of a single Regge pole. Keeping the full asymptotic expansion of the

hypergeometric function in the definition (1.19) OECE;(Zt)’ we obtain

R (s,t) = - L& pi-gqey) (e KB4y (S—>a(t)[1+z d <t><s—>'“}<3-45)
[0 3 S n s
() 0 n=1 0

The 4 (t) are just such that
n

Pz(zt)

E_-OC—(!‘:)— , as a(t) = ¢ s (3.46)

Ra(s,t) - const X

which is required for a resonance to have a definite spin. Thus (3.45) is signifi-
cant if resonance positions are non-degenerate. If, however at the same energy
there exist resonances of various spins, then the residue function in(3.46) could be
an arbitrary polynomial in Zos and the combination (3.45) is not particularly
significant. Since we do not have full knowledge of all the resonances present,
and since asymptotically only the leading term in (3.45) is significant, it would be
advantageous to have an alternative expansion to the partial-wave expansion, such
that the result of a Sommerfeld-Watson transformation would lead naturally to just
one term in the infinite n sum in (3.45). Such an expansion is supplied by Khuri
One can expand f(s,t) in a power series of s instead of in a series of Legendre
polynomials in z, in the form ©
£(s,t) =Z c (0)s" (3.47)
n=0
which converges in some circle in s. One then analytically continues cn(t) in n to
obtain ci(t,n), defined in the complex n plane (with signature introduced in the
usual way). Assuming that ci(t,n) has poles in n whose positions depend on t, (which
might be called Khuri poles), one can pick up their contribution to (3.47) by doing

the Sommerfeld-Watson transformation and obtain

f(s,t) =211 KG(S’t) + (background integral)

a

K (s,t) = -
o (ﬂ)%

ZEL p1-aqey) (O 11y (4O
0

where a(t) is the trajectory of a Khuri pole. Clearly, one Regge pole corresponds

to an infinite family of Khuri poles, spaced successively by one unit. The leading

* N.N. Khuri, Phys. Rev. 132, 914 (1963).
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member of this family of Khuri poles coincides with the Regge pole. Conversely, one
Khuri pole corresponds to an infinite family of Regge poles. As long as we do not
have a dynamical theory, there is little to choose between the point of view of Regge
poles and that of Khuri poles. 1In either case the requirements of agnalyticity and
unitarity in all channels probably can only be satisfied with an infinite number of
poles, Regge or Khuri. For formal considerations, however, Khuri poles are often
convenient,

Instead of (3.47), we can, in fact, consider a power series in some other
variable, for example in v = (s-u)/ZSO. Then we could arrive at (3.48) with Ka(s,t)

replaced by

-ina(t) a(t)

Ka(v,t) = - ZXE% T(l-a(t)) (e +1)v (3.48a)

()
which is convenient when it is important to take into account the symmetry of the
scattering amplitude under s-u interchange.

F. Factorizability of Regge Residues

The residue function B(s) of a Regge pole can be written as a product of two
factors in a manner similar to coupling constants in field theory. This is a conse-
quence of elastic unitarity, and we shall prove it for the case of the following
set of s-channel reactions:

1. gt —» qtx with partial wave amplitude Fl(s,Z)

2. g+ = NHN with partial wave amplitude Fz(s,z)

3. N+N - N+N with partial wave amplitude F3(S,L)

The spin of N is ignored for simplicity, and signature is understood. For
4mﬂ2< s < 16mﬁ2 the 2x state is the only intermediate state in the unitarity relation
(3.10), for all three reactions. Therefore in that interval of s, the unitarity
relations for the partial waves, continued in £ are simple generalizations of (3.30):
ImFl(s,z) = p(s)Fl*(s,L)Fl(s,L)
ImFZ(s,L) = p(s)Fz*(s,Z)Fl(s,z)

ImFB(s,z) = p(s)Fz*(s,t)Fz(s,z) (3.49)
where
1 s-4mﬁ2 2
o = )
Ian(s,L) = %I[Fn(s+ie,z)-Fn(s-ie,z)] (n=1,2,3) . (3.50)

Since all three reactions have the same quantum numbers, the same Regge pole Q(s)

occurs in Fn(s,z), (n=1,2,3). Thus near £ = Q(s+ig),
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Bn(s+ie)

+i ~
Fn(s te, ) L-Q(s+ie)

B, (s-i€)
o(s+ie) ~a(s-ie€)

Fn(s-ie,z) ~ (3.51)
Substituting these into (3.49), multiplying through by #-a(s+i€), and taking the

limit £-c¢(s+ie) - 0, we obtain

ﬁl(s+ie) = %éa%g; Bl(s 16)6 (s+i€)

52(s+ie) = %éa%g; 52(s 1e)Bl(s+1e)

53(s+1e) %éa%g; Bz(s-ie)Bz(S+i€) . (3.52)

Taking the quotient of the last two equations, we obtain

Bz(s+ie)2 = 51(s+ie)§3(s+ie),(4mn2 <s < 16mn2) . (3.53)

It is to be noted that our proof depends on the fact that there is no other
state degenerate with the 23 state. Similarly a generalization of the proof to take
the spin of the nucleon into account works only because the pion has spin zero,
and would not go through if there is spin degeneracy. If the 2x state were degeneracy,
the proof would have to be modified by considering new linear combinations of the
degenerate states. Since (3.53)1is analytic in s, we can continue it into the complex
s plane. Tt therefore holds for all s. The reduced residue y(s) defined in (3.43)
also satisfies (3.53), because the factors in its definition trivially factorize.

We can therefore write, as a solution to (3.53),
7,(s) =g _(s)g (s)
75(8) =g (8)gur(s)
73(s) = gNﬁ(s)gNﬁ(s) . (3.54)
The same proof can be used to show that the discontinuity function of a Regge

cut has similar factorizability, for a Regge cut may be thought of as a zontinuous

distribution of Regge poles.

G. Complication Due to Spin and Intrinsic Quantum Numbers

In order to apply the formulas we have derived to actual experiments, we have
to understand, at least qualitatively, how our results are affected by the spin and
intrinsic quantum numbers of the external particles. We now give a brief discussion
of this. A detailed consideration of spin will be postponed till later.

If the particles have spin, we must specify their helicities Aa’ hb’ AC, and Kd
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as well as their momenta We do this by using the helicity amplitudes £ cd; b(s t)
of Jacob and chk , where cdj;ab is an abbreviation of K sA Aa kb The s- and t-

channel amplitudes are no longer identical but are related by a crossing matrix.
That is,

fHS(s,t) = ZMHH,(s,t)fH't(s,t) , (3.55)

Hl
where H or H' denotes the relevant set of helicity indices. The crossing matrix
4wZHH' has been calculated by Trueman and Wick**. For our present purposes we only
need to know that it is a real orthogonal matrix:
44’5/%= 1. (3.56)

The unpolarized differential cross section in the s channel is given by

k —

do 1 f 1 | s 2

— = —= £ 7 (s,t) |7, (3.57)

2
da br’s ki (2Ja+1)(2Jb+1) ZJ H
where J_ and Jb are the incident spins. Because‘ﬁ¢g¢i= 1, this is equivalent to

k

do 1 £ 1 l t 2

10 = = > £ (.07 . (3.58)

dq 4nzs ki (2Ja+1)(2Jb+l) ,'TH

If fHS(s,t) describes elastic scattering, a+b — a+b, then the optical theorem states
s 5
Im < £ (s,0) > = %k(s) OT(S) (3.59)

where oT(s) is the total unpolarized cross section for atb — anything and < > denotes

the following helicity average:

s 1
< PG00 >= (23 1) (23, +1) Z Eabs ab(s 0). (3.60)
a,b
It can be shown that
<EE0 > - 3 £y (5,0) , (3.6l
(297> = 2y ) 23,7 b,-bsa,-a(H® » (.61
a,b

so that we can compute the s-channel total cross section directly in terms of t-

channel Regge poles.

The helicity amplitudes are particularly appropriate for Regge pole analysis

because they have simple partial wave expansions:

* M. Jacob and G.C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
*k T.L. Trueman and G.C. Wick, Ann. Phys. (N.Y.) 26, 322 (1964).
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fcd,abt(s’t) - E;(2J+1)ch,ag(t)dhuj(zt)

A = a-b, u = c-d z, = cosQt (3.62)

where dqu(z) is a rotation coefficient. If a=b=c=d=0, then (3.62) reduces to the

partial wave expansion of the spinless case. Regge poles occur as J-poles of

J
ch,ab’
pole a(t) to (3.62) has the same form as in the spinless case, except that the

suitably continued into the J plane. The contribution of a single Khuri

reduced residue now acquires helicity indices:

74 (8) -
B r-a(e) (70 41y GO,

() 0

th(pole) = - (3.63)
Actually the helicity amplitudes contain kinematic singularities and satisfy con-
straint equations that did not exist in the spinless case. This means that 7H(t)
have kinematic singularities, and that the 7H(t) of different Regge poles may be
related to one another at some value of t. The simplest of these constraints come
from the requirement that in s-channel forward or backward scattering the total
helicity be conserved. Through crossing this forces certain linear combinations
of t-channel helicity amplitudes to vanish at these kinematic points.

We now turn to intrinsic quantum numbers, and use isospin as an example. TIf
we do not work with scattering amplitudes of definite isospin, the no further
complication arises. For example, consider the s-channel reaction ﬂ-p - n_p, with
the corresponding t-channel reaction ﬂ—ﬁ+ - pE. Crossing between the two channels
is simply given by (3.55), in which £° refers to n-p - n_p and ft refers to
n-n+ - pE. If we decompose all scattering amplitudes into amplitudes with definite
total isospin, however, then an isospin crossing matrix enters into the crossing
relation. For example, let fH IS denote the helicity amplitude for n_P - n—p in

3

the total isospin state I, and let fH denote the corresponding amplitude for

t
+ - _ I,Il
n it — pp. Then the crossing relation reads

«
s t
fH,I (S’t) —L%HH'(S’t)CII'fH'I' (S,t) s (3'64)
H'T!
where C is the isospin crossing matrix. It is a constant matrix independent

IT!
of s and t. We merely outline the procedure to derive it.

Suppressing helicity indices, and denoting a two-particle state by
lpl,Il,ml;pz,Iz,m2 >, where I is the particle isospin and m its z-component,
crossing symmetry states

< pysTgmgip,,T,m, [Tlp, T  my5p,,1,,m, >

=< -pz,Iz,-mz;p4,14,m4lT|pl,Il,ml;-p3,I3,-m3 > . (3.65)
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Now, both sides can be decomposed into linear combinations of amplitudes of

definite total isospin and give a relation of the form

\'1 s It t
Za £° = > b_ R (3.66)
: m3m4,m1,m2 I o mz,ma, ml, m3 I

where a,b, are certain Clebsch-Gordan coefficients. We may now use the orthogonality
relations of Clebsch-Gordan coefficients to solve (3.66), resulting in the crossing
relation (3.64). The only delicate problem in the derivation is the choice of

phases for the coefficients a and b. A clear and elementary discussion of this is
given by Carruthers and Krisch.®* They have worked out isospin crossing matrices

for many useful cases. For reference we cited some of these in Table I.

% P. Carruthers and J. Krisch, Ann. Phys. (N.Y.) 33, 1 (1965).
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Table I - I-spin Crossing Matrices

s: KK = KK etc.

s st t
fI (s,t) = ECII' fI' (s,t)
Il
Is It 0 1 2
1 5
S: nux 7T 0 3 1 3
t: nx > nx st _ 1 1 5
N ¢ = ! 3 2 e
LK 1614 T ) 1 1 1
3 2 6
IAIt 0 1
st N ~ aN ¢t = : Lo
. - (6)*
: w —~> NN
u: N = =N % 1 T _Zl
(6)*
1 3
IAIt 2 2
sn
c*" = 1 1 4
same for 2 3 3
s: K = 5K etc. 3 2 1
2 3 3
1 3
Is\It 2 2
st
c 1 103
s: NN = RN 2 2 2
t: NN - NN 3 _l 1
u: NN - NN 2 2 2
1 3
I&t 2 2
1
same for C = -
sn 2
3
2

/—-—‘ul\
N~ N~

N N|W
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IV. Some Simple Physical Consequences
A, Single Pole Dominance

Suppose (t) is the leading Regge trajectory which can be exchanged in the
t-channel. If there are no Regge cuts, it alone will dominate the s-channel scat-
tering when s is sufficiently large. From (3.58) and (3.63) we obtain the asymptotic

differential cross section:

k -ino(t) 2
9 - Froraam | 5| &0,
4xts i 0
1 K¢ 2 cos” uOtzg s . 20(t)
= o b(t)I" (1-a(t)) 2 ¢ ) , (signature = +1), (4.1)
4r"s i sin 19%_1 S0
where
i1 2
b =3 (25 +1) (23, +1) Z Yed;abt® (4.2)

a,b,c,d
Hence (ki/kf)(dc/dﬂ) has a very simple asymptotic s-dependence:
K 4o s\ 20(t)-1
T dg - &) . (4.3)
0

kf dq

If we plot Ln(Ei %%) vs. Ln(g—) at fixed t, we should obtain a straight line whose
0
slope is 2a(t)-1. This would enable us to determine the trajectory a(t) for negative

values of t by comparison with experiments. Most of the trajectories determined
so far conform remarkably well to a straight line:

a(t) = optatt . (4.4)

B. Total Cross Sections

By using the optical theorem (3.59) and the formulas (3.61) and (3.63), we
can calculate the asymptotic total cross section in the s-channel in terms of the

leading Regge pole a(t) in the t-channel:

cc o -1
ab s 0

o, (s)y - - (=) >

T oo (o) s

(4.5)

where O is the total cross section for a+b — anything, and Ob = (0), and

cn(n=a,b) is defined by

o]

(hr®s. 1Y% = —
_ 0 nn
n _———(ZJn+l) Z B, A o, (4.6)

- A
where ghunn(t) is the coupling [in the sense of Eq. (3.54)] of the t-channel Regge

pole to the nn system with helicities A,u. Since the Froissart bound* requires

* See Khuri's lectures in this Summer School.
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2
O < c(4ns) , we see that no Regge trajectory can have an intercept o, greater than
unity. If ob=1 then according to (4.5) OT approaches a finite constant, otherwise

it approaches zero by a power law.

It seems attractive to assume that there is a trajectory with Ob=1’ having
the quantum numbers of the vacuum. It should have positive signature so that it
does not create a zero-mass spin-one hadron. If such a trajectory exists, it
would be exchanged in all elastic scatterings, and by (4.5) all total cross sections
will approach constants as s = ®., Furthermore, the total cross sections for a+b
and a+b will be equal in that limit, because the trajectory will in both cases be
coupled to aa and bb pairs, thus giving the same ¢, These are just the conclu-
sions of the Pomeranchuk theorem, and this trajectory is named the Pomeranchuk
trajectory or the Pomeron and is denoted by o%(t). However, experimental data so
far have neither clearly confirmed nor ruled out the Pomeron. If it exists, then
the factorized form of the coefficient in (4.5) predicts relations among asymptotic

cross section, for example
2
) = 0 o . .
0N @ cm()cNN() 4.7)

Assuming that at Piab = 30 GeV/c, the total cross sections have essentially
attained their asymptotic limit, as is consistent with the trends in the experi-

mental data, one finds
Uﬂﬂcxb = 16 mb. (4.8)

This number, of course, has not been measured experimentally.

While the Pomeron (assuming that it exists) gives the asymptotic constant
cross section. The way this limit is approached depends on lower-lying Regge
trajectories. Their effect on the total cross section is simple to calculate via
the optical theorem, because the latter involves the amplitude linearly, so the
contributions from different trajectories are simply additive. Consider, for
example, pion-nucleon scattering. The s channel is w+N — n+N, and the t channel
is qtx - N+§. The quantum numbers of the t channel are P = +(-1)J, G = +1, and

I = 0,1. The known trajectories with these quantum numbers are

I=20:0P, f0 (signature = +1)
I=1:p (signature = -1) . (4.8)
Hence for large s
+
fo (s,t) = KP+Kf
t
fl (s,t) = K.p (4.9)

where KP =K (s,t), with Ka(s,t) given by (3.48). Using the isospin crossing

matrices of Table I, in Sec. III, we find

- 191 -



s
f1/2 (s,t) L (KP+Kf)+-Kp
(6)
£.,.5(s,t) = ——¢ (K_+K_)-5K (4.10)
3/2 ? 3 P £ o)
(6)
which leads to
" 1 1
o . - z GP + L - écp
T p (6 (6)
o -1 T o + Ly . (4.11)
= 2 P 2 o]
7 p (6) (6)

~

Using the approximate value Ob(O) ~ afo(O) ~ % we have

[N

0n+p(s) = qb+(cf-cp)s

N

Oﬂ_p(s) = qn+(cf+cp)s , (4.12)

where 0o © ¢ are constants. The constants cf and ¢ are proportional to residue
P P

f)
functions evaluated at t=0. These residue functions must be positive when t as at
the squared mass of a particle, but may change sign by the time we extrapolate to

t=0. Assuming, however, that cf and ¢ are positive, we have
o

oﬁ_p(s) > oﬂ+p(s) (4.13)

which happen to be experimentally correct so far.

C. Diffraction Scattering

In any elastic scattering, we expect the amplitude to be dominated by Pomeron
exchange for small t and large s (i.e., high energy scattering near the forward

direction): -ino_(t)

e +1 ap(t)
£(s,t) = - T 7P(t)P(1'OtP(t)) ‘———2—"—"“(‘:—) (4.14)
() 0
as t - 0, o%(t) - 1 by hypothesis. Then
-ing (t) _lEa (t)
P(1-a (6)) Stk - 2 e * 7 Tcosfa (t)
P 2 sinnQL(£)T(0p(t)) 27p
LT
-iso(t)
- b1 27P T
= naP(t) naP(t) e COSEOP<t)
2gin 2 CcOS 2 1 (GP(t))
L - ix
t-0 2

Hence the amplitude is pure imaginary at t=0:

- 192 -



N

o (0)

s\ P

£(s,0) = L 7P(0)(§_)
0

5 (4.15)

This means that the ratio of the forward elastic cross section to the total cross
section is as small as possible consistent with unitarity. That is to say, one may
physically attribute the elastic scattering to the effect of all inelastic reactions.
One calls this diffraction scattering because the same picture holds in the diffrac
tion of light by a completely absorptive sphere. In that classical example, the
incident light casts a shadow behind the sphere. The shadow is of course "caused"
by the absorption (inelastic effects), but its existence requires that there be a
definite amount of elastic scattering to cancel the incident wave behind the sphere.

Since the Pomeron has positive signature, the elastic cross section is

20 (t)
do _ _1 2 2 2 x s %
To = T3 Tp (DT (1-gy(£))eos” [Ta, (£) 1) . (4.16)
4"s 0
It is convenient to define
() -
de _m g g g e O
dt k2 do So
_ 2 2 2'n
c(t) = p () (1 of(t))cos [Eob(t)] . (4.17)
A qualitative sketch of do/dt is given below.
do
dt 4
) OE:SZ(.Ot(O)—l)
s fixed
%
— Nonsense wrong-signature points
e
At ;
. l
! > -t
_r
a'zn(s/so)
This cross section exhibits certain characteristic features.
L 2(a(0)-1)
1. The value of o, = (do/dt) _, varies with s like () P , so that

0

it is independent of s if 05(0)=1. The constantcy of ¢, is indeed experimentally

0
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observed in all elastic scatterings.
2. Suppose that the trajectory is linear in t,
Of(t) = Ob+a't s (4.18)
then (4.16) becomes

s
- 1 ——
do 2(ob ) o thSO
e

@& -emE (4.19)
0

dt
If c(t) varies slowly for small t, then the dominent t dependence comes from the
exponential factor. Hence the cross section will show a forward peak with a char-

acteristic width

At = —2— (4.20)

a'zng—
0
which shrinks logarithmically with s. This shrinkage is observed in some but
not all elastic scattering, possible because, in existing experiments, the energy is
not sufficiently high, so that lower trajectories are still important.

3. do/dt vanishes at the nonsense wrong-signature points, o%(t) = -1,-3,-5,..,
where the signature factor is zero, provided that B(t) has no poles there. This
would produce dips in the cross section, similar to the diffraction minima outside
of the central maximum in Fraunhofer diffraction. It was, however, pointed out by
Jones and Teplitz* and Mandelstam and Wang,** that B(t) may have poles at
precisely the nonsense-wrong signature points. The residues of these poles are
proportional to certain integrals over the "third double spectral function" Py
Whether or not these poles actually exists is a dynamical question. We can only
say that there is no general reason to expect a dip to occur except at nonsense
wrong-signature points. If a dip does occur at such a point, then the type of pole
mentioned above is either absent for some reason, or that its residue is small.

It is interesting to compare the characteristic features discussed above with
that of the optical model of scattering, which includes the Fraunhofer diffraction

of light. We start with the partial-wave expansion

@
f(s,t) }J (2Z+1)PL(Z)FL(S)
Ziﬁz(s)

1=0
y
e Z (24+1)P, () (e 1) . .2
£=0

At high energies assume that many partial waves contribute, so that for small angle

* C.E. Jones and V.L. Teplitz, Phys. Rev. 159, 1271 (1967).
*% §. Mandelstam and L.L. Wang, Phys. Rev. 160, 1490 (1967).
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scattering we can use the approximation

i
P,(cosb) = J (46) = J_(b(-t)?),
) 0 0
L >
6 -0

b = 4/k , (4.22)

where b is the classical impact parameter. We further assume that absorption

effects are important, so that SL(s) is pure imaginary, and that it is only a

function of b. Thus o
2
L
f(s,t) X 4gk /;bbJO(b(-t)z)X(b) (4.23)
0
where 216‘(5)
X(b) = e -1 (4.24)

is real by assumption. The model is then specified by the choice of X(b).
Suppose that the target is a black sphere with a sharp edge. Then all
partial waves are completely absorbed if the impact parameter is less than the

radius of the sphere, and completely unmodified otherwise. This corresponds to

choosing
-XO , b <R
X(b) =
0, bB>R . (4.25)
Then R
i
£(s,t) = i4ﬂk2X0‘/;bbJ0(L(-t)2)
0
L, 2 R %
= bk X _ 3 R0 . (4.26)
GO

2
This gives a diffraction peak of half width At ~ 1/R”, with diffraction minima
L L
occurring at the zeroes of Jl(R(-t)z). The first zero is at R(—t)2 = 3.83 which

corresponds to a scattering single

g =1.22 (%E) > (4.27)

2 formula well-known to amateur telescope makers.
As a second example, let us consider an absorptive sphere with a fuzzy edge,

represented by 2 9

x(b) = -xge > /R

0 (4.28)

This leads to , RZ %th
f(s,t) = ibnk Xo 5 e (4.29)

and the cross section exhibits a diffraction peak of width At ~ l/R2 but no
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diffraction minima.

From these examples we gather that the width of the diffraction peak is
related to the size of the target, while the depth of the diffraction minima is
related to the sharpness of the edge of the target. If we compare this with Pomeron
exchange, we see that the effective radius of a hadron as seen by another is

RY (4a'gni)® (4.30)

°0

which increases slowly with energy. We cannot say, however, that the presence of
nonsense wrong-signature dips implies that hadrons have sharp edges, because this
mechanism for dips is entirely different from that in the optical model. The
scattering amplitude in the optical model is pure imaginary for all t - a consequence
of the assumption that X(b) is real. 1In Pomeron exchange, however, the scattering
amplitude is pure imaginary only at t=0. Away from t=0 a real part comes in through
the signature factor. It is precisely the interference between the real and
imaginary parts that give rise to nonsense wrong-signature dips. If we must make a
classical picture of a hadron according to the Regge picture, we would have to
say that a hadron is a fuzzy black sphere surrounded by a real potential which
exerts a direct and an exchange force.

D. The p Trajectory

In the charge-exchange scattering x p *-non, the t-channel is non+ - ng, with
quantum numbers I=1, P=+(-)J, G=+1. The only known Regge trajectory with these
quantum number is the p. Hence one may hope to extract its properties unambiguously
from experiments, using the procedure described earlier. The result of such an
analysis is shown in the accompanying figure, and we note that q(t) is consistent
with a straight line which extrapolates through the p and g mesons.

In the experimentally cross section, a marked dip is observed at t = -0.58GevV ,
which is consistent with the first nonsense wrong-signature point, where ob=0.

The single pole model predicts that the spin-flip and the spin-nonflip ampli-
tudes have the same phase, which comes entirely from the signature factor. Hence
it predicts that the polarization is zero. Experimentally, however, the polarization
is not zero. This indicates that perhaps a second Regge pole with the same quantum
numbers is the p, or a cut is present.

E. The N and A Trajectories

The N and A trajectories may be studied in the backward scatterings

n+p - pn+ and n_p - pn_ (i.e., in the region of small u and large s), as illustrated

in the sketch below.
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At large s and fixed u, both reactions are controlled by trajectories with baryon
number B=+1. The u channel for n—p - pn_ is a pure I = 3/2 state and so contains
only the A trajectory. The u channel for n+p - pn+ is a mixture of I = 1/2 and

I = 3/2 and so contains both the N and the A trajectories. However, this cross
section is much larger than that for n_p - pn-, so we assume that the contribution
of the I = 3/2 state can be neglected, with the result that only N is exchanged.

Thus the relevant amplitudes may be written

-in (o (u) -%)
o (@ (N +1]

sinﬁ(ON(U)‘%)

£ty (325) = =By (1) (20 ()+D) ()

-ix (o, (u) -%)
Oﬁ(u) [e A -1]

singm (aA(u) -%)

8 = - 5
fn‘p (s,t) = nBA(u)(ZOZ(u)+1)(SO) (4.31)
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The salient feature of these formula is that, owing to the difference in signature
of N and A, fﬂ+Ps has a dip at the nonsense wrong-signature point oh(u)=-%, whereas
no dip is expected for fﬂ_pS at Qh(u)=~% because that is not a nonsense wrong-signa-
ture point. This expectation is dramatically verified by experiments. Thus we
see in both the cases of the p and the N trajectories that the poles of the residue
function, which theoretically may occur at nonsesne wrong-signature values, do not
seem to be present.

If we adopt the point of view of Regge poles (rather than Khuri poles), then
(4.31) merely represents the first term in the expansion of CF;(ZU) in powers of z,
For equal mass scattering this is gsufficient, for z, = @ as s >0, In the present

case, however, the last property does not hold, for

u(s,t)-(mz-uz)2 ~ u(s-t)—m4
[u- (k) 2 ) [u- (m-p) ] (u-m?)?

(4.32)

Z
u

where m and p are respectively the nucleon and pion mass. 1In the exact backward

~

. . 4
direction GS = 51 we have u ® 2m /s, hence

z - 140D,  (at 6 =p) . (4.33)
u S S
s —>

Therefore we must keep all terms in the expansion of Gga(zu>' This leads to a
difficulty,namely when we re-expand the series in powers of s, the coefficients of
all but the leading term diverge at Gs=ﬂ. Since this would violate analyticity,
the non-leading powers must, in fact, be absent. This would call for the existence
of an infinite family of Regge poles, spaced successively one unit beneath the
leading one, with residue functions so arranged to effect the cancellation of all
terms except the leading one. These new trajectories are called daughter trajec-
tories. 1In this case, the leading pole plus the infinite family of daughters just
precisely make up one Khuri pole. The interest of this theoretical problem lies

in the fact that it illustrates a constraint placed on the existence of Regge poles
by analyticity: You must take the whole family or none.

If we take the point of view of Khuri poles from the beginning, then this
particular problem does not arise. However, when the trajectory of the nucleon
Khuri pole passes through %, it calls for an infinite family of daughter Khuri poles
to make up precisely one Regge pole, in order to make a nucleon of spin %. Thus
it seems that a Regge pole or Khuri pole is generally accompanied by an infinite
family. A more detailed study of daughter trajectories is given by Freedman and

Wang.*

* D. Freedman and J.M. Wang. Phys. Rev. 153, 1596 (1967).
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V. REGGE CUTS

A, Regge Cut from Two-Particle Unitarity

Although we have assumed until now that there are only poles in the g plane,
elastic unitarity strongly suggests that there exist Regge cuts as well. To see this
let us consider equal mass spin zero scattering, and consider a term in the unitarity
relation corresponding to intermediate states containing two particles of the same

mass as the external particles:

1k %
Imf(s,t) = —% T /“dQ'f (s,t. )£ (s,t.) (5.1 -
8Tt2 ()% 2 2771 1 kf
The kinematics is illustrated in the sketch, with )
t -
t = -|k_-k 12 = -2k%(1-cosb) . k!
£l (T3
£= -[K-E % = 2% (1-cosO")
1 i ) 5
- 5 k
to= -|RR1? = -2k®(1-cosy) i
2 £
cosy = cosBcosf'+sinfsinb'cosp! (5.2)

A geometrical construction of t, t1 and t2 is given in the sketch below, from which

we see that

i 1 i
(-e? + (-£)* F (-1)* (5.3)
k. 1
. (-t)*
" e
i
(_tl)z . kf
k! L
(_tz)z
6
ey
7
q)l

The equality is actually never attainable, but as s = o at fixed t, we have 6 —- O,

and the equality is almost fulfilled when Zi’ kK., k' are coplanar:

f’
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% 5 % 1
('tl) + ()" = ()7 + O(S)
[for 6=0'4+y, s >, t fixed (i.e., 8 - 0] . (5.4)

We now let s become large and assume that fl(s,tl) and f2(s,t2) are each
dominated by a single Regge pole: al(tl)
fl(s’tl) = Al(tl)s

Oéz(tz)
fz(s,tz) = A2<t2)s . (5.5)

Hence
Tt

2
dt oy (t)+a, (t,)
__% /ﬁd@ A2 (t YA (tl)s R 2
2 2k lO

- / [dcp'Az (£,)4 (£ )s
8 0

Let the maximum of the exponent of s be denoted by

Imf(s,t)

I
|H
N
=
-
-;\-
= o

o, (£ )+, (£, ) -1
1717 7272 (5.6)

R

o (6) = max[ay (£ )4y (£,) =11, ((-£) (-t 2 (-5,  (5.7)

We can then transform the integral to the form

o, (t)
Imf(s,t) = fdw(z,t)s‘ (5.8)
- @
where 0 25t
D(L,E) = —1—5 f /:itp'Az*(tz)Al(tl)S(,&-al(tl)-az(t2)+1) LG9
-

The right hand side of (5.8) looks like the contribution of a continuous line of
Regge poles in the ¢ plane starting at oé(t). Hence there is a Regge cut from
,z=o¢(t) to 4 = - o,

Assume that oy (t) and a (t) are 1ncreas1ng functions of t, so that the
1

L L
maximum in (5.8) occurs at (-t ) + (-t ) = (- t) Putting x = (-tl)z, y = (-t2)2,
the maximazation condition reads

2 2
8{oy (-x")+a, (-y ) -1-A(x+y)} = 0 (5.10)
where A is a Lagrange multiplier. The solution is
2 2
occ(t) = oy (-x)+a, (-y ) -1 (5.11)
where x,y are such that
2 2
doy (=x7) da, (-y)
—&= = & - (5.12)
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For linear trajectories o = o +0&'t (i=1,2), the explicit solution is

0i
al'ocz'
a (t) = oy +o,-1) + m. t . (5.13)
In particular, for al(t) = o&(t) = ob+a't, we obtain
= - 1 1]
ac(t) (Zao 1) + o't . (5.14)

This result was first derived in a slightly different way by Amati, Fubini and
Stanghellini.®* The type of Regge cuts obtained here is usually referred to as an
AFS cut.

Little is known about the discontinuity D(f,t) in (5. ) except that it must

vanish at g = ac(t).w* If we assume

DL e (®)-H% (5.15)
Ao
c
where a > 0, then for large 4ns we have
oty R a. ()
c a -xins _ s
Imf(s,t) - c(t)s /pdx x"e = I(a+l)c(t) ol (5.16)
4ns - © 0 (4ns)

Thus a Regge cut contribution differs from that of a Regge pole by a logarithmic factor.
How high the energy should be in order that (5.16) be a good approximation depends
on a more detailed knowledge of D(4,t). Since 4ns is a slowly varying function,
(5.16) can hardly be distinguished from a Regge pole contribution over a limited
range of s.
The argument we have given for the AFS cut is of course not rigorous, for
the inelastic contributions to unitarity, which have been neglected, may alter our
conclusion. These contributions consist of additive terms to the right side of
(5.6), and they are positive at t=0. They may cancel the AFS cut, and replace it by
a higher-lying Regge singularity. All we can say is that this seems implausible.

B. Some Model Calculations

The argument given earlier for the AFS cut is based only on elastic unitarity,
and no appeal has been made to any detailed dynamical theory. We would like to give
a brief qualitative description of some calculations based on Feynman diagrams. Any
single Feynman diagram behaves asymptotically like sp(Lns)q, where p and q are
fixed integers, and so does not exhibit Regge behavior. However, if we compute the

leading asymptotic behavior of the n-rung ladder shown in the sketch and sum over n,

% D. Amati, S. Fubini and A. Stanghellini, Physics Letters 1, 29 (1962).
#% J. Bronzan and C.E. Jones, Phys. Rev. 160, 1494 (1967).
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we do obtain asymptotic behavior of the

n rungs
form sa(t). Therefore this sum of Feynman
t X I ] I {l diagrams contains a Regge pole. The
original Amati, Fubini and Stanghellini

E ' work was, in fact, based on a sum of
Feynman diagrams of the type shown in the sketch below; but they only made an

approximate calculation. The exact sum of

m rungs graphs can be written in the form of a
l’ ’ ] ] TTT dispersion integral, in which the absorpti e
N W LB parts are to be obtained by 'cutting'" the
n rungs graph (i.e., replacing propagators by
T LTTTT &-functions) in all possible ways and
7\ ) adding the contributions. The original AFS
S calculation retains only the two-particle

absorptive part by cutting the graphs along
AB. This is not the same as two-particle unitarity, but the mathematics is similar
and they obtained the cut whose branch point is given by (5. ).

Mandelstam* has shown, however, that if one takes into account all of the
multiparticle absorptive parts in the AFS calculation, the discontinuity of the AFS
cut D(£,s) is identically zero for s on the physical sheet. He considers another
class of Feynman diagrams, of the type shown in the sketch below, and shows that this
does give rise to a Regge cut with the same
branch point as the AFS cut. The essential
difference between the new class of diagram
and the old one is that the new class
consists of non-planar graphs, representing t >
an amplitude having a non-vanishing third

double spectral function Pru’ whereas Peu = 0 lll

for the AFS graphs. The lesson learned from /7 A \
these calculations seems to be that Regge s
cuts owe their existence to the third double spectral function. In this respect,
they has a common root with the poles of Regge residues at nonsense wrong-signature
points.

C. Effect of Regge Cuts in Scattering

If we accept the existence of the Pomeron and that of AFS cuts, then the
Pomeron would generate an infinite family of cuts, which would have an appreciable

effect on elastic scattering as s —> 0,
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that the Pomeron trajectory is linear:

ap(t) = l+a't . (5.17)

The AFS cut generated by the exchange of two Pomeron in the t-channel has branch
points at
1
ocz(t) = 1+ Eoz't . (5.18)
We can now take fl(s’tl) in (5.1) to be dominated by the PP cut and fz(s,tz) to be
dominated by the Pomeron. Then we find a new AFS cut which may be looked upon as

the effect of triple Pomeron exchange:

- a'Gahte 1, 5.19
a3(t) 1+ pOrEw 1+ o't - ( )

By repeating this argument, we find that the exchange of n Pomerons gives rise to

an AFS cut with branch point at
1 1
= t .
o (t) = 1+ o (5.20)
The trajectories of the family of cuts are shown in the sketch below.

How these cuts may affect high-energy olt)

scattering, of course, cannot be predicted

]
1
1

before we have some dynamical information. %o
Let us, however, make a reasonable guess.

Let us assume that the coupling of the PP

cut is much weaker than that of the Pomeron, ) o

P t

and that the couplings of the higher cuts
are pregressively weaker still. Then at
small t, the separation of P-P and P becomes
greater, and the P-P will take over. But by then the higher cuts also become well-
separated, so that their total effect may be more important than that from any single
one. Thus for a given large s, there is a small neighborhood of t=0 in which the
Pomeron dominates, and the cross section will have a diffraction peak which shrinks
logarithmically with increasing s. Outside of this neighborhood, the PP cut and
possible other higher cuts too, become important. The cross section then falls off
less rapidly with -t in this region, since the slope of the cut trajectores are
smaller. Furthermore, as s is increased, the separation between o%(t) and o5p(t)
becomes greater, and so the neighborhood in which the Pomeron dominates shrinks

with increasing s. Thus the cross section may have a qualitative behavior as

illustrated in the sketch below.
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do
dt /N

Pomeron dominant

cuts dominant

S -t
3
th
We can make a crude calculation by assuming that the contribution of the n
n
cut to the scattering amplitude has the form g s B , where g may have a weak

dependence on s. Then the scattering amplitude can be written as

© 1 ©
N n L n 't a'tins

f(s,t) = > g s =g }z exp[ngng+ ——;———] . (5.21)
n=0 n=0

As s > ®©, we convert the sum into an integral which we evaluate by the method of
steepest descent:
o)
f(s,t) ® s /;n exp|{ngng+
0

where n is the value of n which maximizes the exponent:

' - '
QLﬁéEE] X s exp[ngng+ QLééﬂi] (5.22)

- i
n = [a'tens/Lngl” . (5.23)
Hence

5
f(s,t) = se c(-t) ,

5
dg ~ 1 -2c(-t)
49 ~ 2, ,
dt n

L

c = 2[a'tns(-4ng) > . (5.24)

It is interesting that the t dependence is the fastest decrease allowed by the
Cerrulus-Martin bound.* If we assume that -(fns)(4ng) is a constant, then at a
fixed t, the cross section do/dt would fall with increasing s towards a limiting
envelop. Experiments on pp scattering indicated that this might be so, but a more

definite conclusion must await future experiments at higher energies.

* F. Cerrulus and A. Martin, Physics Letters 8, 80 (1964). Also see Khuri'’s lectures

in this Summer School.
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VI. TOWARDS DYNAMICS?
One of the motivations that we have mentioned for studying Regge poles is
the hope that it helps to formulate the bootstrap hypothesis. We now discuss
some important advances in this respect.

A. Finite-Energy Sum Rules.

By combining analyticity and Regge asymptotic behavior, one can deduce
an interesting sum rule that relates s-channel resonances to t-channel Regge
poles. For this purpose note that Regge asymptotic behavior holds along any
direction in the s-plane, if it holds at all. This is because(fa(z) oo 22
along any direction in the z-plane, hence the ratio of Regge to background

terms is of the same order in any direction.

It is convenient to introduce

_ s-u
v o= 5= (6.1)
o

where g is an arbitrary scale, and use v,t as independent variables. We de-
compose the scattering amplitude into terms symmetric and antisymmetric in v:
+ -
flv,t) = £ (v,t) + £ (v,t),
(6.2)
+ +
f(v,t) = £ f (-v,t).
+
Clearly f (v,t) admits only t-channel Regge poles of signature +1., In the com-
+

plex v plane, £ (v,t) has cuts along the real axis and no other singularity.
If there are bound state poles, we include them as part of the cuts. The branch
points of the cuts are functions of t, and for some t the right and left cuts
may overlap. In that event we carry out our development for a value t for which
they do not overlap and continue the results to the desired t. By Cauchy's

theorem, then,

1 n .+ _
= & Ve, - o, (6.3)
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v plane
t fixed

where n is an integer, and the closed
contour is shown in the accompanying
sketch. Note the circle is of Q
finite radius N. Since the contour

has reflection symmetry with re- _Vo(t)
spect to v = 0, (6.3) is a trivial
identity unless the integrand is an

odd function of v. This means that

(6.3) has content only for

+
0 = { even integer for f (v,t) (6.4)
odd integer for f~(v,t), )
and we shall only consider these values of n. Now separate the integral into an
integral around the cuts plus that along the circle. Using the antisymmetry

+
of v £ (v,t), we obtain

J

Yo

N

= EE )

+
dv v ImES(v,t) + z‘ﬁ‘ll f dv P £ (,e) = 0, (6.5)
[¢}

where C denotes a circle of radius N, excluding the two points on the real

axis, and

+ +
ImeEw,e) = zl Lip [£5(v + de,t) = £ (v-ie,0)] . (6.6)
1 e-0
Regge asymptotic behavior states that for large v

+ -L
£ (v,t) = QZ K (v,t) + 00D, 6.7)
L
sgn=+t

where Ka(v,t) is given earlier in (3.48a). The integral of vnKa over C is

elementary:

g dv vnKa(v,t) A j dv vn[(-v)a + va]

C
ﬂ

+ 2AJ' dv v o 4 ogqa AL f do ol(art1)O
C =77

I
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=+ 4iA sinm(tntl) N @antl) (6.8)

where A = -yl"(l—oz)/(rr)%,

Therefore (6.5) becomes

N n +n+1 _
j dv v ImEF(v,e) ZL [+ VOIS +om ™ = o
Vo o>

6;5% T'(e) o#nt+l
sgn=+1 (6.9)

Neglecting O(N-L), and writing the above explicitly for f+ and £ , we have

for sufficiently large N:

N o+n+l
j av " Imf+(v,t)’§ ;Y N ,{(n odd)
Vo @,sgn=+1 (m)? (a+nt+l) T(@)
(6.10)
N o - Ny+m+l
I dv v Imf (v,t) = A ;Y -(m even)
Vo o,sgn=-1 (1) (a+mtl) T (x)

These are the finite-energy sum rules (FESR) first derived by Dolen, Horn and
Schmid7'< by a slightly different method. They have given some actual numerical
examples, which we shall not go into.

In the s-channel physical region, vo(t) often becomes negative. The ana-
lytic continuation of (6.10) means that the original contour of integration
actually looks like that shown in the sketch below.

We can, in fact, replace Vo by 0, if we understand

+
Imf to be the discontinuity taken between points

il

a and b shown in the sketch. v=0 a

In these FESR, an integral of the amplitude extending over the s-channel
low-energy region, which contains s-channel resonances, is approximately
equated with the sum of t-channel Regge poles, which dominate the s-channel
high-energy scattering. It therefore connects low-energy and high-energy
phenomena, and connects exchanged particles (which produces a ''potential'')
with resonances (which are ”dué” to the potential). Thus by combining ana-
lyticity with the Regge hypothesis, we begin to see some manifestations of the

bootstrap.

“R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768 (1968).
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B. Duality.

To explore the dynamical implications of the FESR, we have to make
simplications in order to form an approximate picture of their real content.
Suppose that in (6.10) the integrals on the left side can be separated in some
manner into contributions from narrow resonances and a background. Harari*
conjectures that the background approximates the Pomeron contribution on the
right side, while the narrow resonances add up approximately to the rest of
the Regge poles. This division is of course ambiguous and cannot be made more
precise until a dynamical theory emerges. We accept this conjecture, however,
as a first approximation, That is, we approximate fi on the left side by a sum
of narrow resonances, and leave out the Pomeron on the right side, if it is
there. Then in the v plane for fi(v,t), the right and left cuts are replaced
by a series of poles that were originally on unphysical Riemann sheets, as in-

dicated in the sketch below.

In this approximation the content

v plane

of the FESR may be stated as t Fixed Real poles

approximating

follows: At a given t the the cut

sum of residues (generally ‘?/////
Y AV

t-dependent) of all the

x
K
K

poles within a large circle

of radius N is proportional
a+1

to N where o = a(t) is the

leading non-Pomeron Regge trajectory

in the t-channel. The criterion for large N is that the leading trajectory
dominates over the next one. Thus, although any one of the poles produces for
large N a contribution = N_l, the sum total of them gives Na+l. We say that the
direct-channel resonances add up to a Regge pole in the crossed channel (which
generates crossed-channel resonances). Conversely, a crossed-channel Regge

pole already contains the contributions from all direct-channel resonances

below a large energy N. This phenomenon is referred to as duality.

As defined above, duality is an immediate consequence of the FESR plus
the narrow-resonance approximation. Of these, the FESR are on relative firm
ground, both theoretically and experimentally. Thus a test of duality in this
form is mainly a test of the narrow-resonance approximation. An interesting

experimental test has been made by schmid.” He calculated numerically the

*

cH. Harari, Phys. Rev., Lett. 20, 1395 (1968). See also Harari's lectures in
¥ this summer school.

C. Schmid, Phys. Rev. Lett. 20, 684 (1968).
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partial wave projection of the amplitude for mN charge exchange scattering
from p-trajectory exchange, which we write in a simplified way ignoring spin:

+1
P (s) =3 | 4z By(2) My ()T (L-a(e) (7 M1y, # By 611

where the parameters of the p trajectory are taken from fits to actual scatter-
ing data. He found that Fz(s) when plotted in the Argand diagram moves in a
loop as a function of s, as shown in the sketch below.

Such loops are also made by a Breit-Wigner
InF  (s)
resonance of spin £. For a narrow resonance 4
the top of the loop corresponding to the mass
of the resonance. By interpreting the loops increasing s
as resonances, Schmid found a semi-

quantitative correspondence between N per(s)

his loops and the known direct channel

resonances. Thus, although the Regge-exchange amplitude has no poles in s,
its partial-mass projections mimics resonances. This is just what one would
expect if one believes in duality., The mathematical reason why (6.12) gives
rise to the loops is essentially the linearity of the p trajectory; namely,
since a(t) = ao-Za'(l-z)kz, the phase of the signature factor, which is solely
responsible for the phase of Fﬂ(s), increases with s,

One might wonder whether the concept of duality is fundamental and can be
stated as a general principle independent of the narrow-resonance approximation.
We do not yet know the answer to this question. More likely, duality occupies
a place similar to that of complementarity. Before quantum mechanics, comple-
mentarity cannot be precisely formulated, after quantum mechanics its precise
formulation becomes uninteresting; but it served as a useful working principle
that guided the way to quantum mechanics.

C. Exchange Degeneracy

The FESR (6.10) treats the even and odd parts of f(v,t) separately. To
obtain a sum rule for £ itself, multiply the first equation in (6.10) by Nm,
+
the second by Nn, add the two equations and re-express £ 1in terms of f by

(6.2). We find in this manner

N
%f dv Im[ (VPN + VN E,E) + (NN E(v,£) ]

%
(o]

o+ttt L

D €

L (1) % (atntmtl) ()

odd integer
even integeé) ’ (6.12)
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where on the right side we sum over all trajectories o > -L, of both signatures.

In the narrow-resonance approximation, we replace f(v,t) by a sum of zero-
width resonance poles, and leave out the Pomeron contribution on the right side.
Furthermore, we neglect the second term, which contains resonances in the u-
channel, arguing that the factors vnNm - van averages to something small,

(i.e. of the same order as terms already neglected in the narrow-resonance
approximation). Consider now a two-body system that has no s-channel resonances.
Examples are pp, ﬂ+ﬂ+, pK+a In our approximation the left side of (6.12) is
zero. Therefore, the sum of Regge poles on the right side vanishes for all N.
This means that if there is a Regge pole of a given signature, there must exist
one of opposite signature, with the same trajectory function o(t), and equal

and opposite residue function -y(t). It cannot have the same signature, for
that would cancel the original Regge pole identically. This degeneracy between
two Regge poles of opposite signature is called exchange degeneracy. It has

the same physical meaning as in potential scattering.

The requirement that exchange-degenerate trajectories have equal and
opposite residue functions depends on one sign convention (3.48a), which has
the signature factor in the form e-iﬂd + 1., If one redefines y(t) to make the
signature factor 1 % e-iﬂa, then we would require equal residue functions. The
exchange-degenerate trajectories must be such that when their contribution is
odded together, the term e-iﬁa is cancelled.

For ﬂ+ﬂ+ scattering we know that the p trajectory is exchanged. There-
fore a degenerate trajectory of opposite signature (i.e. positive) is called
for. In the ﬁ+ﬁ_ system in the t-channel, even signature means that the
amplitude is symmetric under ﬂ+ﬂ_ interchange, hence I = 0 or I = 2. It can-
not have I = 2, for in that case it would also couple to n+ﬁ+, contradicting
the fact that there are no resonances in ﬂ+ﬂ+. Hence the exchange-degenerate
partner of p has I = 0, and the only known trajectory with I =0, G = +1,

P = (-)J is the f trajectory. Experimentally, the f meson lies remarkably
close to the p trajectory, taken as the straight line passing through the p
and g mesons.

In general, however, we should not be surprised if exchange degeneracy is
only approximately realized in nature for its theoretical basis depends not

only on the narrow-resonance approximation, but also on the neglect of the

effects of u-channel resonances.
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D. Bootstrap of the p Trajectory.

In a very interesting calculation, Ademollo et al.* try to bootstrap the
p trajectory using the FESR in the narrow-resonance approximation. They were
able to do this only by introducing further assumptions. Let us see what they
do in some detail, for the true significance of such schemes is not yet clear

at the present time. They consider the reaction

o, B, v are isospin tensor indices

A is the ®w helicity

T =T w, for which the s,t,u channels are identical and have I =1, G = +1,
P = +(-1)J. Hence in each channel only the p trajectory can contribute.
This is a particularly happy choice because the Pomeron is not present, and
we are spared the task of ejecting it forcefully.

Let the helicity amplitude be f)s\’aﬁy(s,t)° It must be antisymmetric in
o and B because I = 1 in the s channel. Similarly, it is antisymmetric in

o and v and in B and Y. Hence
s - s
f)\’asy(s,t) eOlBYfX(S’t)' (6.13)

By Bose statistics, fi(s,t) is then antisymmetric in Py and Pys Py and Py-

O\)

It is linear in the polarization vector € of the w. Hence

s - wvao (AT
fX,@BY eaByepchplPZPBS A(s,t,u), (6.14)

where the invariant amplitude is totally symmetric in s,t, and u, with
tu =T = 3m> + o (6.15)
s L b .

One can evaluate the coefficient of A(s,t,u) explicitly and show

S -
fO,aBY =0

s _ .S
Friasy ~ Fo1,0y

i
- 1% eaBy(stu-nﬁ(n&-mﬁ)z)z A(s,t,u). (6.16)
, a(t) , . .
Since f1 UBY(S’t) ~ 8 , the asymptotic behavior for A is
2

*M. Ademollo, H. R. Rubenstein, G. Veneziano, and M. A. Virasoro,
Phys. Rev. 176, 1904 (1968).
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A(s,t,u) ~ sa(t)-l° (6.17)
We again introduce the variable v = (s-u)/ZSo and write A(v,t) for the

invariant amplitude. We consider the FESR from (6.10) with n=1:

1 1

YNOH' ='\-(Q/Ny+
(n)%(a+l)F(a) T'(a+2)

N
f dv v ITm A(v,t) = (6.18)

o

where v = Y/(ﬂ)%, and o = o(t) is the p trajectory.

Since we have omitted from the right hand side of (6.18) any lower-lying
trajectories that may be present, it is valid only for sufficiently
large N. Now Ademollo et al. make the additional assumption that for at least
a limited range of t, (6.18) is valid even for N so small that in the interval
0 < v < N,A(v,t) has only one resonance, the p resonance. In terms of proper-
ties in the complex v plane, the assumption is that for at least a limit range

of t, the contour integral of vA(v,t) over the circle shown in the sketch is

well approximated by that of the leading Regge v plane
pole contribution. There is no a priori t fixed
justification for this assumption. It was N

introduced partly as an inspired guess, ™ " ; i

partly as a calculational convenience.
But it turns out to be the condition that

bootstraps the p with brilliant success.

Since this requires the FESR in the narrow-
resonance approximation to be satisfied in a non-asymptotic region of N, it may
be called a condition of strong duality. We adopt this word as a shorthand for
the assumption described and refrain from philosophizing. The input assumptions

are that the p trajectory is linear and passes through 1 at t=q3:x 005(GeV/c)2:
a(t) =a_+a't, oz(mpz) -1 (6.19)

This leaves only one unknown constant among ao and o'. Now «o(t) makes t-channel

resonances at @ = 1,3,..., corresponding to t = nbz, mgz,... By crossing sym-
2
metry, there are s-channel resonances at s = nb s mg ,eo0, With corresponding

v values at

vp(t) [(s-u)/250]5=nb2 = (t—to)/ZS0

(6.20)

vg(t) vp(t) + 2/a/'so
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where
= 2 2 _ 2 _ 2
t0 mw + 3mTT Zmb 0.53(GeV/c)”. (6.21)

Assuming strong duality, we cut off the integral in (6.18) at same point between

the p and the g meson, i.e.,

vp(t) <N< vg(t)c (6.22)

To do the integral, we have to know the residue of the p pole at v = vp(t).
This can be obtained from the input p trajectory through crossing symmetry, as

follows. The p trajectory exchanged in the t-channel contributes to A(v,t) the
Khuri term

K (v,0) = § T(l-g) (1-e ¥y, 271 (6.23)

which has a pole at o = 1:

2y _
R s & - ey S (6-24)

Hence the residue is -ZQ/a', By crossing symmetry, the p pole in the s-channel

must have the same residue. Hence

2y 1 _ 2y 1
AV S50 - T T2 T T gt o (6.23)
9 s-m 0 p
Y
which gives
InA(y,t) = 2§ (umy ) (6.26)
o so P

in the range (6.22), in the narrow-resonance approximation. Substituting

(6.26) into the FESR (6.18), we obtain

+
a's a N L

=29
vp(t) NI (6.27)
Note that the residue function y(t) drops out.
We first note that vp(to) = 0. Hence
a(to) = 0, (6.28)
and this completely determines the p trajectory, leading to
-to ZHbz - 3mﬂ2 -mw2
o = 5 = > 5 5 0.5
m -t 3m - 3m - m
p o P w
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ot = - . — 1(Gev/c)? (6.29)

which are in remarkably good agreement with experiments. The condition (6.28)
can be re-expressed in an amusing form by noting that ao + a'to= a(s)ta(t)+ta(u)-2.

Hence, (6.28) is equivalent to the following condition for the p trajectory:
a(s) + a(t) + au) = 2, (6.30)

which is of course very well satisfied experimentally.

With o(t) determined, it remains to be seen whether (6.27) can be satisfied
for a range of t. Using (6.28), we can write vp(t) = a(t)/Za'so, and sub-
stituting into (6.27) yields the condition

' 2 o (t)+1
(o so) N

I'(x(t)+2)

= 1. (6.31)

It is now noted that the following is a miraculously good approximation:

(1 + )%
S — ® 1 (l<a< ) (6.32)

Therefore a solution of (6.31) for -1 < w(t) <1 is

so = 1/o! (6.33)

N=1+%x(t) .
Thus the arbitrary scale Sy is now fixed. The cutoff N happens to fall exactly
halfway between the p and the g meson, for using the «o(t) and s, now determined,

we find that

%[vp(t) + vg(t)] =1 + % (t). (6.34)

Ademollo et al. went on to investigate how they might extend the range
of t in which the FESR is satisfied., It turns out that this involves pushing
the cutoff N higher to include more resonances on the right-hand side, and at
the same time including lower-lying trajectories on the right-hand side.

The most interesting aspect of this calculation is the fact that strong
duality, which seems to be an ad hoc assumption, leads miraculously to some
good results, We shall return to it in the Veneziano model, which is a
crystallization of all the ideas we have discussed.

E. The Veneziano Model.

As we have seen, the FESR in the narrow-resonance approximation can

be satisfied unexpectedly for a limited range of t by using a low cutoff as
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the left-hand side and only one Regge pole as the right-hand side. To extend
the range of t, the cutoff has to be increased, and more Regge poles have to
be included. The Veneziano model is a simple formula that incorporates all
these features. In short, it is a simple solution to the FESR in the narrow-
resonance approximation,

Recalling what FESR means in the narrow-resonance approximation, we see
that for the process 7 — 1w a solution consists of finding an amplutide com-

pletely symmetric in s,t,u, having no cuts but only simple poles in s, and
a(t)-1

behaving like s as s = », Veneziano suggests the form
A(s,t,u) = +y[V(s,t) + V(s,u) + v(t,u)] (6.35)
where
F(l-aS)T(l—at)
V(s,t) = F(z"as_dt) = B(l—as,l—at). (6.36)

where o = o(s), atE a(t), and where B(z,w) is the Beta function. Since T'(z)
is a meromorphic function with simple poles at z = 0,1, 2..., V(s,t) has no
cuts but has poles at o(s) = 1,2,3,.... Because of the gamma functions in
the denominator, there are no simultaneous poles in s and t.

To compute the asymptotic behavior, we need the formula

—— x - -%
T'(atbz) IZ\”m (1) %e bz(bz)a+bZ 2, b> O,largz\é m-€. (6.37)

We first rewrite (6.36) in the form

T'(oe + o -1) sin m o
v(s,t) = [(1l-o,) —= t S

- 6.38)
I'(o in o +o -1 (

@)  sinn (@, ¥, -

The limit s — « does not exist along the real axis because V(s,t) has an in-
finite number of poles there. To avoid this difficulty, which is inherent in
the narrow-resonance approximation, we take the limit along a ray in the com-

plex s planes at an arbitrarily small angle ¢ with respect to the real axis.

s plane
€
IV AR 4
AN AN
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Then

sin 1 a(s) = %? [elﬂas - e_lﬂaS]
(6.39)
L L i [+ 0(e™2™5)7
73
and

sin mla, + o -1) = ~x= o @ T Dy g 729 (6.40)

so that
V(s,t) = T(l-ap) e M@ "Dy -1 (6.41)

Note that to get this result, the linearity of o is crucial, at least

asymptotically. For V(t,u) we can straightforwardly apply (6.37) to obtain

V(t,u) - T(l-a(t)) (a's)*(E-1, (6.42)
Finally,
_ 1 T (1-o(u)) m
Vis,u) = T-2o_-a"@-t) T@(s)) sinm als)
(6.43)
- O(e'TTSS)
Hence
As,t,0) =3 -y T(1-a(t)) M) 1y ()L (6 u

which is the proper Regge behavior. If we had used the complete asymptotic
expansion for I'(z), we would have obtained in place of (6.44)
_ - imog v o -1 3 -n
A(s,t,u) gro Y T(l-a.) (e -1) (@'s) t "1+ Hgl cn(t)s 1.
Thus there are an infinite number of parallel 'daughter' trajectories
an(t) = a(t)-n (n = 1,2,...).
From the asymptotic behavior of the amplitude we would expect that at each
mass there would be particles of all odd spins up to the leading trajectory.
This is in fact the case. From (6.36) and the integral representation of the

Beta function, we have
04

T

1 -
V(s,t) = fo dx x S (1-x) (6.45)

Using the binomial theorem, we obtain
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@ 1
n, -o =0, +n
v(s,t) = 2, DD ]'O dx x %
(6.47)
_ = RS QP 1
nz—‘-O(l) (n)n+1-ozs
where
Sy %y = (o) P T(1-%)
SRV G- -1 n. F(l—at—n)
= Lo (o +1)(@, 42)...(a, +n-1)
nl Y Y t ser & TR
- LR @) (6.48)
ol tal\%e :
Rn(x) is called a Pochammer polynomial of degree n. Hence
R (&)
o= 1 n- t
V(S,t) - 1’120 n' n+ 1 - as . (6.49)
As ¥, " n + 1, therefore,
Rn((lt) + Rn(Otu)
A(s,t,u) — v . (6.50)

n+1l-q
s

Since o, and au are linear in t, the residue is a polynomial in t symmetric
under t ~u, To find the spin of the resonances at as = nt+l, we have to ex-

press the residue in Legendre polynomials of z ¢

2 = s(t-u) . (6.51)
® Ls(stm ®) (= (m om )% (5= (m tm )?)1

We note that this is linear in t, and odd under t<—>u, Hence the residue is
a polynomial in zg containing only even powers. Since the w meson has spin
one, this implies* that at a mass m satisfying a(mz) = nt+l, there are reson=-
ances of all odd spins up to ntl., Thus the Veneziano model requires that the

mass spectrum forms a regular lattice on the Chew-Frantschi plot, as shown

below.

*
See Chapter 7 for partial-wave expansions.
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® is a resonance in
mm—

QO1s a resonance re-
moved by signature.

ot
O m

It is clear that the Veneziano model satisfies the FESR because it has
analyticity and Regge asymptotic behavior. With narrow resonance built in,
it represents an elegant example of duality. However, while the FESR are
satisfied, the trajectories are not completely determined. If one of the meson
masses (say that of the p meson) is supposed to be given, we still have an
arbitrary slope «o'. This again demonstrates, as in the previous calculation of
Ademollo et al. that the FESR alone is not enough to bootstrap. In the pre-
vious case, the bootstrap comes from the ad hoc assumption of strong duality,
which turns out to be equivalent to the requirement that not only even-spin
mesons like the fo be decoupled, but also all mesons (of whatever spin) at the
same mass. For example, referring to the previous sketch, we would require

that p' be decoupled also. From (6.50), we see that this would require
Rn(at) + RnGyu) = 0 (for n odd) . (6.52)

By (6.48), this is equivalent to

+ cos - = - “se - N
dt(dt 1) (at+n 1) au(au+1) (au+n 1), (6.53)
(for n odd)
and is solved by setting o = -(ozu+n-1)° Noting that ntl = as, we obtain the

condition
o + oL + o, = 2, (6.54)

which is the same as the consequence of strong duality in the earlier calcula-

tion of Ademollo et al., and which agrees well with experiments. In this model,
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however, there seems to be no compelling reason to require it.* For the present,
therefore, strong duality remains a tantalizing idea not yet fully understood.

F. Veneziano Model for m-m Scattering.

LovelaceT has made an interesting application of the Veneziano model to

-1 scattering. To take care of isospin complications, we first show that all

+
3 isospin amplitudes can be expressed in terms of a single

. . . . +_-
symmetric function of s and t. Consider first m ™ scatter-

ing as illustrated in the sketch, and let

+ f§+h_(s,t) = p(s,t) (6.55)

+ - .
Since the t-channel also corresponds to mm W scattering,

9(s,t) = op(t,s) . (6.56)
+ + )
Since the u-channel corresponds to 11 11 scattering,

f;+ﬂ+(s,t) = o(u,t) . (6.57)

+ - L . .
Now decompose the m m amplitude into amplitudes fi(s,t) of definite isospin

I in the s-channel:

9s,t) = § £2(s,0) + § £5(s,6) + 3 £50s,8) (6.58)
where f; and fz are even, and fi is odd, under t<su:
£2G,0) = (-1 £2(s ). (6.59)
Thus
9(s,u) = £ £5(s,8) - 5 £5(s,8) + 5 £3(s,0). (6.60)

Subtracting (6.60) from (6.58), we obtain fi(s,t) = (s,t) - p(t,u). We also
know that n+ﬁ+ is pure I = 2, hence by (6.57) f;(s,t) = @(u,t). Substituting
these results into (6.58), we find fz(s,t)° The final results are:
3 1
£2(s,t) = 5[0(s,t) + o(s,u)] - 5 p(t,u)
f?_(s>t) = C.P(S,t) = QP(S,U.) s (6.61)

£5(s,t) = o(u,t)

*
In the original paper of Veneziano, (6.54) was invoked to obtain signatured

trajectories; but we have seen that signature emerges automatically without

this condition.

1-C., Lovelace, Phys. Letters, 28B, 264 (1968).
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Therefore specifying ¢(s,t) completely specifies m-m scattering.
Lovelace constructed the Veneziano model for m-m scattering by taking

F(l-as)F(l-at)

0(s,t) = -y =g (6.62)
S

- Olt)

where T'(1 - a, - at) rather than I'(2 - a - at) appears in the denominator be-

a(t)

cause this amplitude should behave like s as s — «®, With this choice there
are no resonances in the I = 2 amplitude since ¢(u,t) has no poles in s. There
are resonances of both even and odd spin on as in the I = 0 amplitude, but only
resonances of odd spin occur in the I = 1 amplitude. The trajectory as is
identified as the exchange degenerate p-f° trajectory. This exchange degener-
acy corresponds to the absence of I = 2 resonances.

One of the most interesting aspects of this model is the prediction of a
zero in the amplitude coinciding with that re-
quired by the Adler self-consisting condition.
In general, in the reaction mA - BC, where
A B C are hadrons, the hypothesis of PCAC

(partial conservation of axial vector current),

plus some assumption about the absence of poles,
leads to the conclusion that the scattering amplitude must vanish as the four-
momentum q of the pion approaches zero. This result is known as the Adler self-

consisting condition, In terms of s,t,u, the zero is located at

2 2
s = (pA) =m,

£= (o)’ = m” (6.63)

2
u = (py-pp) = mg
which of course does not satisfy the comnstraint s+t+u = Zmz, because the pion

is taken off the mass shell. For m-m scattering (6.63) becomes

2
s=t=u = o (6.64)
Let us rewrite(6.62) in the form
o(s,t) = —y(l—as- at) B(l-as, l—at) (6.65)

At s=t=u = mﬂz, the Beta function cannot vanish, but the factor l-as-at vanishes
if
2 1
a(mﬂ )y = %, (6.66)

Combining this with d(nbz) =1, we find
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o 0.483

(o]

(6.67)
a' = 0.83

which is in excellent agreement with experiments.
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VII. SPIN
We now consider the full complications of spin. In particular we emphasize
those features that owe their existence to spin, such as kinematic singularities,
constraints, and sense-nonsense.

A, Kinematics

For a general two-body process atb < c+d with arbitrary masses and spins,

we specify single-particle states by their momenta and helicities. As usual let

5 d c
- A«
s = (p, + p)
= - 2 t u
t = (p, - py)
u = (p -p)2 (7.1)
a d b t a
s
which satisfy the relation
2 2 2 2 _
s+t +u-= m, + m + m, + my = z . (7.2)

The cosines of the center-of-mass scattering angles in the s and t channels
are given by

s(2t+s-T) + (maz_me)(mCZ_de)

= B = ,
z = cosb Afab‘dzd
t(2st+t-2) + (mdz-mbz)(m 2-m 2)
z, = cosOt = = 2 , (7.3)
TbdTeca
where /
”zéb =’J[s-(ma-mb)2] I:S_(ma-i_mb)z:' - V4Spab2 ’
Jen = «/[t-(mc-ma)zj [t-(n_tm )] = Jucp, 2 , (7.4)

where the square roots are positive for positive values of their arguments. The

physical region corresponds to

o(s,t) = 0, (7.5)

where o(s,t) is the Kibble function:
_ 2 2 2 2 2 2 2 2
o(s,t) = stu s(mb my )(ma -m ) - t(ma -y )(mC -my )

2 2 2 2 2 2 2 2
- (ma my -m my )(ma +md -m " -my ) . (7.6)



B. Helicity Amplijitudes

For the purpose of Regge analysis, it is particularly convenient to use the
helicity amplitudes of Jacob and Wick,* because they have simple partial-wave
expansions. The helicity amplitude for s-channel scattering will be denoted by
fcd,abs(s’t)’ where the subscripts denote both the particles and their helici-
ties. For its definition and properties we refer to the original paper of
Jacob and Wick. Our normalization is such that the differential cross section

is given by

p
do 1 cd s 2
fcd;ab (s,t)| . 7.7

4nzs Pab

Our amplitude is related to that of Jacob and Wick by

1 Peq
JW { c S
£ .. (s,t) = ——— £ _ (s,t) . (7.8)
cd;ab d4ﬂzs P, cd;ab
The partial-wave expansion reads
£ S(s,t) = T (24 B, (s) 4 (z.) (7.9)
cd,ab > cd;ab A Ts '
J=A W
m
A =a-b, g = c-d, Am = max(A,u)
where di (zs) are the usual rotation coefficients. The partial-wave amplitude
W
ng ab(s) is a matrix element taken between helicity states of definite total
>

angular momentum J and z component M:

J

ch;ab(s) -

<J,Mjc,d|T(s)|J,M;a,b> . (7.10)

These helicity states transform under spatial reflection P according to

J-3,-3,
P|J,M;a b> = nanb(-) J,M;-a,-b> (7.11)

where Ja,Jb are the spins of the particles a,b, and na’ﬂb their intrinsic parities.

* M. Jacob and G.C. Wick, Annals of Physics 7, 404 (1959).
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Thus parity conservation implies

J+J -3 -J

J _ Ped ™™ g
F_c’_d;_a,_b(S) = MM 13¢5 Fog;ap(® - (7.12)

Time reversal invariance implies
r! J : (7.13)

cd;ab(s) - Fab;cd(s)

Equations (7.12) and (7.13) serve to reduce the number of independent helicity

amplitudes.
*

The crossing relation between the s and t channel helicity amplitudes is

J J J J

s _ a b c d t
fcd,ab(s:t) = CIAZI:DIbI dAla(Xa) dblb(x-b) dclc(xc) led(Xd) fCIAI’DIbI(S’t),(7'l4)
where 2 2 2 2 2 2 2 2 2
cosx = - (s+ma -m )(t+ma m, ) - Zma (mC -m, +mb ~my )
a égabggc ’

(Smbz_maz)(tmbz_mdz) i 2mbz(mcz_mazmbz_mdz)
= Sabha

]
-

2 (7.15)

2 2 2 2 2 2 2 2
cosx (s+mc -my )(t+mC -m, ) - ch (mC -m, +mb -my )
¢ é;cdggc

I
-

2 2 2 2 2 2 2 2 2
(s+mf -m, )(t+md -m ) - Zmd (mC -m +mb -my )
5 calba ’
and Zma/@Zs,t)

sinX
a ‘5ab:7ac

2mb/@is,t5
S, Eab7 bd

Zmd/mis,ti
c-gcdgalc

o /)
Scd’bd

cosXd

[}

(7.16)

sinX =
c

sinXd

% L. Trueman and G.C, Wick, Annals of Physics 26, 322 (1964).
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We may write symbolically
s t
fH (s,t) = il/%LHH,(s,t) fH.(s,t) R (7.17)

where #, is a real orthogonal matrix:¢¢$T4%L= 1. It should be noted that (7.14)
is not valid for an amplitude that differs from ours by a normalization factor
that depends on s and t. In particular it is not valid for wa of (7.8).

The main advantages of helicity amplitudes are the following. (a) The number
of independent amplitudes can be easily enumerated and written down for an
arbitrary reaction. (b) By (7.1l) it is easy to form helicity states of definite
parity, and Regge trajectories couple to them independently. (c¢) It is straight-
forward to carry out the Sommerfeld-Watson transform on (7.9) to isolate Regge
pole contributions.

Helicity amplitudes, however, have kinematic singularities and satisfy con-
straint equations at certain values of s and t. These are intrinsic in their
definition and give rise to complicated structures in Regge residues that were
not present in the spinless case,

Instead of helicity amplitudes one can describe the scattering process in
terms of invariant amplitudes, which by definition is a set of independent ampli-
tudes completely free of kinematic singularities and constraints. We shall not
discuss them in general but merely illustrate them in specific examples. Although
it can be proven that invariant amplitudes exist for an arbitrary reaction, there
is yet no known method for their explicit construction in the general case.

From our point of view the main disadvantage of invariant amplitudes is that the
same Regge trajectory generally couples to more than one amplitude, so that Regge
residues in different amplitudes cannot be independent,

C. Kinematic Singularities and Constraints

According to Jacob and Wick, a general helicity state is defined as follows.
First define the helicity state of a single particle at rest. Then define that
for a moving particle by applying the boost operator of a Lorentz transformation.
The helicity state for two particles is the product of two of the above, rotated
in a standard way by the application of a total rotation operator. The helicity
amplitudes are defined as T-matrix elements with respect to two-particle helicity
states, and singularities and constraints generally arise from the fact that the
boost and rotation operators become singular at certain kinematic points. These
have nothing to do with the interactions of particles, and we call them kine-

matic singularities and constraints. An analysis from this point of view is
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given by Trueman,* who shows from general principles that kinematic singularities
in s can occur only at one of the following places:

(a) At é;;b =0 or é;cd = 0, namely s = (maignb)2 or s = (mcimd)z. The
values corresponding to the + sign are thresholds, the others are
called pseudothresholds.

(b) Boundary of the physical region o@(s,t) = O,

(c) The point s = 0.

Kinematic constraints can occur only at pseudothresholds or at ¢(s,t) = 0. Most
important for our purpose, the kinematic singularities at (a) or (b) above can
be factored out of the helicity amplitudes. Those at (c¢) can be factored out
except for fermion-boson scattering in the general mass case, where there is a
non-factorizable singularity of the type s°. For this case, however, one can
circumvent it by using W = s% as independent variable.

Another approach, more elementary but less satisfactory from the point of
view of general principles, is due to Wang.** It makes use only of the crossing
relation for helicity amplitudes and is a relatively straightforward constructive
recipe in specific cases. We shall briefly describe this approach here.

Going back to the partial wave expansion

s (oo
£ 7(s,t) = %
H J=

(23+1) FHJ(s) df\u(zs) , (7.18)
A
m

we see that the t dependence is contained in z in the rotation coefficient

J
dku(zs)' Now

J _ J

d,,(2) =D, (2) & (2) , (7.19)
where

DM(Z) = (142)1/2“‘*“‘ (1-z)%l>"“I s (7.20)

and eiu(z) is a polynomial in z. (We use the notation of GGLMZ?K“) Since the
factor Dku(z) is independent of J, it can be factored out of the sum in (7.18):

£, (s,6) =Dy (z) F°(s,0) (7.21)

* T.L., Trueman, Phys. Rev. 173, 1684 (1968). Errata, Phys. Rev., 181, 2154 (1969).
%% L.,L., Wang, Phys. Rev. 142, 1187 (1965).
*%% M, Gell-Mann, M. Goldberger, F.,E. Low, E. Marx, and F. Zachariasen, Phys.

Rev. 133, BL45 (1964).
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where

[ee]
£5%s,t) = ¥ (2341) Fi(s) & (z) . (7.22)
- H A s
J=\ "
m
The only t-singularities of Eﬁs(s,t) come from the possible divergences of the
whole series. We presume that these are dynamical and not kinematic singulari-

ties. Similarly, if we put
t _ -t
£,7(s,t) = D)\M(zs) £, (s0) (7.23)

then fﬁt(s,t) has no s-kinematic singularities.
The new amplitudes t° and Et, however, are related through a crossing rela-

tl‘orl Of the fOIIIl
Il 3 . HHI 3 Hl S, 3 ( .

where the matrix #Z can be deduced from the matrix #2 in (7.17). Since Et(s,t)
has no s-kinematic singularities by construction, all of the s-kinematic singu-
larities of ?S(s,t) must come from the known matrix #Z (s,t). Furthermore,

#L (s,t) must cancel all of the t-kinematic singularities of ?t(s,t), because f°
can have no such singularities. Thus by studying the matrix #Z all the kinematic
singularities in s and t can be recognized. 1In general this is an extremely
tedious procedure, but one arrives at the same conclusion as mentioned before.

In particular, we can factor out the s-kinematic singularities from each com-

ponent of Eﬁsz
-5 _ ~ g
£5(s,0) =K (o) £,5(s,0) (7.25)

where fHS(s,t) is now free of all kinematic singularities, s or t (except for a
L :
s? branch point for fermion-boson scattering in the general mass case).

Similarly we factor out all t-kinematic singularities from Tﬁt:
£ 5(s,t) = / (&) (s, (7.26)
H ™ H H :

where %Ht(s,t) is free of all kinematic singularities, s or t.
Substituting (7.25) and (7.26) into (7.24), we obtain a crossing relation

of the form

£°(s,0) = i' J?HH.(s,t) %Ht(s,t) (7.27)
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where the matrix -Z?(s,t) generally has singularities in s and t, although %HS
cannot have these singularities. For values of s,t in the neighborhood of a
singularity of Jﬂ(s,t), let us write (s,t) as a matrix product between a
matrix 1(s,t) containing the singularity,and a regular matrix 2(s,t) (of

course ‘Z?Z may be simply the unit matrix):

L0 = fis,e) fos,e . (7.28)

Then at the singularity, say s = s> t = 0, we must have
A t _
fl' EJZ(SO’tO)]HH' le (Soato) =0 > (7-29)

which is called a kinematic constraint.

The kinematic singularities and constraints discussed above lead to kinematic
singularities and constraints in the t-channel partial-wave amplitudes GHJ(t).
Since a Regge pole is a J-pole of the latter, with t-dependent residues, it fol-
lows that the Regge residues have known kinematic singularities and satisfy
known constraints. In particular the constraints relate the residues of Regge
poles of different quantum numbers at certain values of t.

D. Example: 17 = Tw

Earlier we have discussed the reaction 7T * Tw in terms of an invariant

amplitude (See Eq. (6.14)). Let us discuss it in terms of helicity amplitudes

as an illustration.
There are three s-channel helicity amplitudes (See Eq. (6.13)) fxs(s,t),

where A\ = 1, 0, -1 is the helicity of w. The partial-wave expansion reads
s ot J J
£.7(s,t) = ¥ (2J41) F."(s) d.."(z ) ’ (7.30)
A J=I)\| A (12N s

. . J . . ..
where the partial-wave amplitude FA (s) is a matrix element between helicity

states:
F0(s) = < musd | T(s) [T > (7.31)
Under the parity operation, the helicity states concerned transform as follows:
P|mmJ> = (-)Jlﬂﬂ;J>

Plmw;J,A> = - (-)JI-nu);J,-X> . (7.32)
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The eigenstates of parity for the mw system are
|3 34> = %5 [|m0;d, 1> Flmw:d,-1>] (7.33)
with

Plmo;J4> = + (-)J|nw;Ji> . (7.34)

By parity conservation the only non-vanishing matrix element between tw and T

states is
<3 d+| T(s) | I> = Fl(s) (7.35)

in terms of which the partial-wave amplitudes are

J _ J o1 J
Fi7(s) = -F 7 (s) =7 F(s)
J
Ey (s) =0 . (7.36)
Therefore there are only two non-vanishing helicity amplitudes fls(s,t) and

f_ls(s,t). Furthermore, owing to the fact that diu(z) = (_)K-u dfk ‘M(Z)’ they
H

are equal to each other. Hence there is only one independent helicity amplitude

s . . .
f1 (s,t). Since the reaction is the same for the s, t, and u channels,

£,5(s,t) = flt(s,t) (7.37)

up to a constant phase factor.

To factor out the kinematic singularities, we follow (7.21) and put

£5s,0) = 12 D F 5,0 (7.38)
flt(s,t) = (1-zt2)% Eltcs,t) , (7.39)

- s . . . s =t . .
where f1 (s,t) has no t-kinematic singularities, and f1 (s,t) has no s-kinematic

singularities. By (7.37), we have

(1-252)% E,%(s,0) = (1-zt2)% FACRI (7.40)

Now we need to work out some kinematics:

N
It

(t-u)/4pq,

N
]

(s-u)/4ptqt s (7.41)
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where

%(s-4mﬂ?)%

o)
1]

2

1
2

1 (s - <mw-mﬁ)21/4s} . (7.42)

{[s

From these we find that

q

s (m®+mﬁ)

(1-z 2)% __1 [@gs,tZJ%
s 4psqs s
L %
(]_-z 2')2 = _-—1-—— [ﬂﬁd—tl] s (7.43)
t 4p. q t
t't
where
_ 2,2 2.2
o(s,t) = stu mﬂ(m(JJ m Yoo (7.44)
Substituting (7.43) into (7.40) we have
15,0 E,%s,0)
= . (7.45)

4pay/s  bp.q/t

. = 8 . . . . = t . . .
Since f1 has no t-kinematical singularity, and fl has no s-kinematical singu-

larity, each side must be free of all kinematic singularities. That is

1
4p qy/s

where A(s,t,u) is an invariant amplitude. Thus

§1s(s,t) = A(s,t,u) (7.46)

X ES %
£°(s,0) = (127 dp_q_s? A(s,t,u0) = [o(s,0)1% A(s,t,u) ,  (7.47)

which is identical with (6.16).
E. Conspiracy

As mentioned before, kinematic constraints on t-channel amplitudes can occur
only at pseudothresholds, or on the boundary of the physical region. When the
external masses are equal in pairs, the latter includes the point t = 0. A con-
straint occurring at this point is physically interesting, because it corresponds
to forward scattering in the s-channel. Indeed, in many cases, such a constraint
is a direct consequence of angular momentum conservation in the s-channel.

For concreteness, let us consider nucleon-nucleon scattering, for which
there are 24 = 16 helicity amplitudes. Parity conservation and time-reversal
invariance reduce the independent to 5, which we can choose to be fi+_++,
£S5 £5 s £5 >

e A L f+-;-+’ ++

+%5 of a nucleon. Thus in £

cpo? where the subscripts + correspond to the helicity
5

cd;ab’
angular momentum along the relative momentum for the initial and final state,

(a-b) and (c-d) are the components of the total
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respectively. Conservation of angular momentum tells us that for forward scat-

tering (t = 0) we must have st(s,O) =0 if (a-b) + (c-d). Therefore

S ——
f+-,-+(s’0) =0
S —
£, 4.(:0) =0 . (7.48)

These also follow formally from (7.21) due to the fact that the corresponding
Dku(zs) vanish at t = 0 (zS = 1). Using the crossing relation (7.14), we can
convert these into linear relations imposed on th. When this is done in de-
tail, we find that the second requirement of (7.48) is in fact satisfied identi-
cally, owing to parity conservation and the conservation of total spin, (the
latter being a special feature of nucleon-nucleon scattering.) The first

of (7.48) leads to a non-trivial constraint:

frow T Ep " B -, =0, (at £ =0). (7.49)

Everything we have said so far applies equally well to backward scattering u = 0,

By the analyticity considerations outlined in our earlier discussion, we
would of course arrive at the same constraint equation. However, we would also
obtain other constraints at pseudothresholds, which cannot be deduced by such a
simple physical argument.

If we assume that at high energies (s # ) the amplitudes occurring in (7.49)
are dominated by t-channel Regge poles, then (7.49) relates the residues of
various Regge poles at t = 0. The Regge poles are said to ''conspire" if their
individual residues do not vanish, and are said to "evade" otherwise.

The case of conspiracy is of special interest when one of the conspirators
is the pion Regge pole. Because t = 0 is so close to the physical pion pole
t = 4@2, a conspiring pion would give rise to an extremely sharp forward peak
whose width is of order pz. Such sharp peaks have been experimentally observed
in forward np charge exchange scattering np = pn, and in charged pion photopro-
duction yp - ﬂ#ﬁ. Although in principle this could be explained by pion con-
spiracy with another Regge pole (which would correspond to a scalar meson),
actual calculations using the known m-N coupling constant g2/4ﬂ = 15 have failed
to reproduce the numerical magnitudes of the forward peaks. It is possible that
in these processes Regge cuts are important.* So far, therefore, there is no

clear evidence for conspiracy involving Regge poles only.

* K. Huang and I.J. Muzinich, Phys. Rev. 164, 1726 (1967);
D. Gordon and J. Froyland, Phys. Rev. 177, 2500 (1969).
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F. Reggeization of Helicity Amplitudes

We begin with the t-channel partial-wave expansion

£t (s,t) = %

J J
cd;ab J_}\(2;r+1) Gy gsap(®) d}\u(zt) (7.50)

A =a-b, y=c-d, Az p 20, J = integer.
The object is to calculate Regge pole contributions to this helicity amplitude.
We restrict our discussions to integer J (and not half-integer) and assume that
A2y = 0. The case of half-integer J requires only trivial modifications and
is discussed in GGLMZ. The restriction A 2 p = 0 represents no loss in generality,
for all other cases can be reduced to this case by using properties of the rota-

tion coefficients:

J _J A d
dm(Z) = d_u,_}\(Z) =) dM(Z)

3 _ IR

O @ = (T e (7.51)

The discussion here follows closely that of GGLMZ, especially the Appendices of
that paper. All the special functions used here conform to the notation of

GGLMZ, which also contains useful tables for them. We put
t - Sl gz, (ElA-ulg t
fcd;ab(s’t) (1+zt) (l—zt) fcd;ab (s,t) > (7.52)

and recall from our earlier discussion that

€ B co
fcd;ab (s,t) = E

J=A
m

J J
(2J+1) ch;ab(t) eku(zt) (7.53)

has no s-kinematic singularities. There are still t-kinematic singularities con-

tained in do_ab(t). The functions eJ satisfy the properties (7.51).
3

A

In general, G (t) does not have definite parity, so trajectories of

cd;ab
both parities will couple to it. To separate their contributions, we now intro-
duce the parity-conserving helicity amplitudes. Using (7.11), we define helicity

states of definite parity by

J +J

. . a by,
,J;a,b>i_ = 7 {|3;a,b> + URINEY |3;-a,-b>} (7.54)
with
J
PlJ;a,b>i =+ (-1) |J;a,b>i . (7.55)
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We define partial-wave amplitudes of definite parity by

Jt
cd,ab

which couples only to Regge poles of parity i(-)J. The original partial-wave

¢t (1) = Tl (o) |5z, (7.56)

amplitudes are then given by

J o et _ _ 1. g+ J-
ch;ab(t) = <J;cd|G(t)|J;ab> 216ed;ap(®) + ch;ab(t)] . (7.57)

Next we define new linear combinations of the amplitudes T that are more
convenient for reggeization. The motivation is the following. We note that
GJi'at most changes sign when we reverse the sign of all initial helicities, or
all final helicities, or both. The coefficient ei , however, does not have such
a simple behavior (See Eq. (7.51)). Hence it is cgnvenient to define new coef-
ficients with simple behavior under helicity reversal and use them to define
new helicity amplitudes. We define
eiﬁkz) = %[eiu(z) + ei,
which at most changes sign when p -+ -j. Then by (7.51)

_M(Z)] > (7.58)

eﬁ(-z) =+ ()72 e}{i(z) . (7.59)

The original coefficients are expressible as

e‘)]\p‘(z) - e“i:(z) + e‘}]\;(z) ) (7.60)

Now define new helicity amplitudes (the "good" amplitudes)

+ _ 2 J+ J+ JF J-
cd;ap(s ) —JEX(ZJH) [Ceq;an(®) & (2 + G g, 4p(0) .z - (7.61)
Then (leaving helicity indices understood)
—t 1. + -
£7(s,t) =355 (s,t) + g (s,)] . (7.62)

Although gt'contains contributions from Regge poles of both parities, g+ is
dominated by parity (—)J and g by parity -(—)J as z ? «. The reason is that
eJ+ dominates over e asymptotically.

Before we can do the Watson-Sommerfeld transform on (7.61), we have to dis-
cuss how GJt can be analytically continued into the J-plane. For this we have

to invert (7.61) to obtain the analog of the Froissart-Gribov formula. Recall

- 233 -



first the orthonormality property

+-

[ a2 @ (@) a2 =26 (7.63)
1 A A 2741 33! ' :
Defining a new coefficient
I (2 = 5| LIRS
cm(z) = (l+z) (1-z) dm(Z) 5 (7.64)
we rewrite (7.63) in the form
+1
. J J 2
J_l dz ehu(z) cku(z) =S SJJ, . (7.65)
In analogy with (7.58) define
Jt, . 1.J J
cka(z) = ZECKu(Z) + CK’_M(Z)] (7.66)
with the property
ey(-2) = 1 ORESON (7.67)
Then we have the orthonormal relations
+1
. J+ J'+ J- J'- 2
J_l dz [exu(z) CKM (z) + eku(z) CXH (z2)] = 2751 Sy R
+1
J+ J'- J- J'+
dz [e z) ¢ z) + e z z =0 7.68
[ [e@ 6, @) + & @ ¢ @] (7.68)
With the help of this, (7.61l) can be inverted:
J,+ 1 J+ + J- ¥
5 = =
¢’ Xt) =3 f_l dz [oy (20) g(s,0) + oy () 8°(s;0)] (7.69)

. + + . + :
where helicity indices on GJ— and g— are understood. Since g—(s,t) has no s-kine-

matic singularities, it satisfies the dispersion relation

o + © +
+ 1 , AX(e,z) |1 . B(t,z")
g(s,t) =2 [ dz' ST+ dz ey , (7.70)

z0 t z0

where we have ignored possible subtractions, since they will not contribute to the

final result, just as in the spinless case. Substituting (7.70) into (7.69) we

obtain
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o +1 c; (z)
JE, . 1 T | A2
G —(t) = = J dz' A—(t,z") 5 I_l dz, =53
o
1 .o - 1 +1 cJ+(zt)
-— 1 —_
+ b[‘ dz' B—(t,z") > 'J dzt e
2z, -1 t
J_
fe] +1 ¢ (zt)
l 1 AT 1 l dz 1
+ jz dz' A (t,z') 5 I_l tzl-z,
0
1.2 T 1 +1 cJ-(zt)
S ' 1y =
+ 2 jz dz' B'(t,z') 3 I_l dz, N (7.71)
o
Let J+
+ 1
CJi(Z) = l ! dz! ELEEE_l (7 72)
A 2 I—l z-z' ’ *
with the reflection property
J+ IR £ N
Cx;( z) =+ (-) CA;(Z) , (7.73)
which follows from (7.67). Then
Ji =l 7 rrat ' J+. + ' J- '
G —(t) - jz dz'[A~(t,z") Cku(z Y + A (t,z") Cku(z )]
o
L o~ + J+ F J-
L dz' ' -z') + ' . ] .
+ - IZ z'[B<t,z") Cku( z') +B (t,z'") CKM( z')] (7.74)
o
Using (7.73), we rewrite this as
J+ L + J+ F J-
- = dz! 1 'y + A 1 ]
SR =0 ] a' e QI AT )]
o
JH L 7 + J+ F J-
- - d ] 1 t - 1 L] . .
+ (-1) - f z'[B—~(t,z") Cku(z ) - B (t,z") Cku(z )] (7.75)

4
o]

. . . J+
To continue this to complex J, we need to know some properties of C.—.

A
The functions Ciﬁ(z) are studied in GGLMZ and in greater detail in Andrews

and Gunson. We need to know the following properties:
(1) Cii(z) is a linear combination of Legendre functions of the second

kind, Q,(2),with J-\ < 4 = JAA.

* Andrews and Gunson, J. Math. Phys. 5, 1391 (1964). They study a function

ﬁu(z), which is related to ours by

Ciu(z) = (_)A—u (1+z)%(X+u) (1_2)%(X-u) eﬁu(z)

e
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(ii) Cii{z) has square root branch points in J for integer values of J
satisfying g A< J € p-lor y <J < A-1.

(iii) Ciikz) has no other singularities in J except those coming from the
Legendre functions Qz(z), J-A = 4 < J+A. In particular the apparent poles at
half-integer values of J in the explicit forms tabulated by GGLMZ are in fact ab-
sent: They cancel by virtue of the symmetry property Qz(z) = Q-Z-l(z) at
4 = half-integer. The fixed J-poles coming from those of Q£ at 4 = -1,-2,...
remain., They occur at J = \-1, A-2, ....

The analytic continuation of (7.75) to complex J proceeds in the same manner
as the continuation in the spinless case. If the functions Ai, Bi in (7.75) are
polynomial bounded, then each integral defines a unique continuation in J which
is analytic for sufficiently large Re J. Since (-1)J+h does not have a unique

analytic continuation, we introduce the signatured amplitudes

[ a2’ I(e,2") oy (=) + AT(2") ¢ (2]

Z
o]

Gi(J,t) =

=N

i

3 - ! + 1 J+ t - + 1 J- 1
+ ﬂ.fz dz'[B—(t,z") CXM(Z ) - B(t,z") Cku(z 1, (7.76)
o
where T} = +1. This can now be continued to complex J and is the generalization
of the Froissart-Gribov formula. It is related to GJi'for integer J by

+Gt(J,t), for J+A even

+
_G—~J,t), for J+A odd . (7.77)
We may call T the "apparent signature." It is the same as the signature if

A = even integer and is opposite of the signature if A = odd integer. The func-

tions Ciﬁ have the property
CJi(z) = C(_J_l)i{z) (J = half-integer) . (7.78)
A A
Hence formally
+ + .
G—(J,t) = . G(-J-1,t) (J = half-integer) s (7.79)

I il

which is the Mandelstam symmetry. To get rid of fixed J-poles coming from those
in CJt, we assume
A
+
+1 A—(t,z)
[ ey S 0. (3= A1, A2, ...) (7.80)
+
-1 B—(t,z)



To carry out the Watson-Sommerfeld transform on (7.6l), we first rewrite it as

gs,0) =2 = (24D {[,6X3,0)] [e‘)]\::(zt) + eg\:(-zt)]
J

M3

A

+ [6M3,0] [ (=) - &.(-2)]
+[EE0] [ (2) - & (-z)]

T J- J-
+ - . .
+[EW0,0] [ (z) + & (2] (7.81)
To take advantage of the Mandelstam symmetry, we proceed as in the spinless case

A

to replace eii(z) by a special continuation in J. The function eJi(z) is a linear
H +
combination of Legendre polynomials and their derivatives. We define Ei;(z) as

the function obtained from eiﬁ%z) by replacing all Pz(z) by /Oz(z). This func-

tion is discussed in more detail in GGLMZ. It has the following properties. For

integer values of J, and A =2 y 2 0:

eii-(z) (J > ) (7.82a)
"
L
~ 0(x%) (p <= J < A-1) (7.82b)
E(i:X)iKz ;:6* Finite number (p <=J =yp-1) (7.82¢c)
1
~ 0(x*) (-X £ J < u-1) (7.82d)
~ 0(x) (J < -r-1) (7.82¢)

At J = half-integer, it has J-poles with residues satisfying

Jt _ (-7-D+
o Res E o s

1t also has square root branch points in J. 1In the partial-wave expansion these

Res E (J = half-integer) . (7.83)

will always be cancelled by corresponding ones in Gi{J,t) arising from those of

il
AT

To simplify our discussion, we pretend for the moment that the range (7.82c)
does not exist. This will be discussed separately in the next section on the
problem of sense and nonsense.

If we ignore the range (7.82c), the discussion proceeds in parallel with
that of the spinless case. We replace eig'by Eif in (7.81), extend the J-sum

from -o to «, and replace it by a contour integral:
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gs,0) = 3 5y [ 4 B 1 6%0, 0] 18]z + (2]

+ J+ J+
- 653,01 [ [(z) - B ()]

+LOW,0] 5 (2 - B (2]

t

F J- J-
- [Le@elE () +E (201}, (7.8

where C is the contour shown below.

> e N
L4 = -

The factor (-1)J+K from the residue of [sinﬂ(J+K)]_1 has been absorbed into the
Eii(z) functions by using (7.59). In addition to the poles of [sinﬂ(J+k)]_l, which
reproduce the original sum, the integral also picks up the poles of Eiﬁ(z) at the
half-integers. The one at J = -% is cancelled by (2J+1). By virtue of the
Mandelstam symmetry (7.79)and the property (7.83), the rest cancel in pairs as in
the spinless case.

A Regge pole of parity + (-)J, apparent signature ] [signature = ﬂ(-)xj

occurs in the form
o Peaan’® (7,85
N ed;ab J-a(t) *
Its contribution to gi{s,t) is obtained by unfolding the contour in (7.84) in the
same manner as in the spinless case. This is trivial to do for any particular
Regge pole. It seems pointless to give a general formula, for we would merely
drown in a sea of superscripts and subscripts.

The asymptotic behavior of gt(s,t) for large z,_ can be worked out in parti-
cular cases from the explicit formulas for Eii tabulated in GGLMZ. In the asymp-
totic formulas, the true signature (instead o% the apparent signature) always
appears in the usual factor (e-iﬂa + 1).

We give a list of factors that B (t) should contain:

cd;a
(1) Threshold factor [Zpabpcd/sO]aEt),where s, is an arbitrary scale.

(2) A factor [I'(a(t) - 3/2)]-1, for the same reason as in the spinless case.

(3) A factor coming from the J-branch points of CJ53

A-1 L -l
I [a(t)-n]® T

n=y, n=-\

[Q(t) _n]1/2 >
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which will exactly cancel a corresponding factor in EK

(4) A factor Kc (t) containing all the t-kinematic singularities of

fcd;ab(t)'
(5) A factor S(a), explained in the next section, having to do with

d;ab

"choosing sense.'
In addition, at certain values of t, the residues of various Regge poles may

satisfy kinematic constraints. Factorizability requires that Bcd'ab(t) have the
3

form

Beasap(t) = B.alt) 8(0) (7.86)

G. Sense and Nonsense

The discussion of the Sommerfeld-Watson transform in the last section is
incomplete, because we ignored the fact that Eit # 0 for integer J-values in the
range -4 < J < p-1. These terms are included iﬁ the representation
(7.84), although they were not in the original partial-wave expansion (7.8l) and
should not be included. Actually there is a cancellation among these terms, and
(7.84) is still correct; but this cancellation implies constraints on Regge poles
that we have to take into account.

The cancellation occurs between the various terms in (7.84), made possible

by certain symmetry properties of Eii and Ciﬁ, namely, for integer J in the
range -y < J < -1,
B (z) = (I, (7.87)
Ao A ? ’
JH, o (=3-1)F
CKE(Z) C A (z) . (7.88)

The first can be proved by using the explicit formula Eq. (A9) of GGLMZ, and the
second can be proved by induction by using the recursion formula, Eqs. (Al3),

(Al4) of GGLMZ. The second relation leads via (7.76) and (7.8Q) to

+ _ Fooo
nG—(J,t) = 'ﬂG (-J-1,t) (7.89)

for the same range of J values. Referring to (7.84) we note that the residues
of (2J+1)/sinm(J+A) at Jo and -Jo-l are equal to each other. Hence the contri-
butions from J = Jo and J = -Jo-l cancel in pairs: the first term in the curly
bracket cancels the fourth, the second against the third. Therefore (7.84) is
correct.

The equality (7.89) implies that if TF1¥J,t) has a pole at J = «o(t), such
that o(t) is an integer with -;-1 < o(t) < u, then _nG¥(-J-l,t) must have a pole
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at J = -g(t)-1. That is, whenever t is such that a Regge trajectory «(t) passes
through integer value between -y-1 and i, there must be another trajectory pass-
ing through -o(t)-1, of the same residue but opposite parity and signature,

unless the residue of o(t) vanishes. Here, as in the discussion of the phenomenon
associated with o(t) passing through half-integer values, we have the alternatives
of compensating trajectories vs. vanishing residues. In this case, however, the
compensating trajectory has opposite parity and signature.

The integer J-values for J < )\ are called nonsense values, a definition we
have already introduced in the spinless case, where A = 0. The range -u-1 < J <
therefore contains nonsense values of J, since in our convention A = p 2 0. When
a trajectory passes through these values, it is said to '"choose sense" if its
residue vanishes, and to ''choose nonsense' otherwise. These represent different
dynamical possibilities and one cannot decide in favor of either without a theory.
The simpler of the two seems to be to choose sense, for that avoids introducing
a compensating trajectory.

The factor S(o) listed at the end of the last section is designed to make
the residue vanish at the appropriate nonsense values of @, if the trajectory
chooses sense., If the trajectory chooses nonsense, then S{(¢) = 1, and we must
specifically include compensating trajectories in the analysis. Since S(&) must
not introduce singularities in o, it is an entire function of @, usually taken
to be a polynomial.

Nonsense values of o also occur in the spinless case, of course. But there
we were not faced with choosing sense or nonsense because the function 'tiy does
not have the peculiarity (7.82c), and consequently nonsense values of o never
give rise to a pole contribution to the Watson-Sommerfeld transform. An explicit

example of sense and nonsense is given in GGLMZ, Appendix B.
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VIII. PION-NUCLEON SCATTERING
As a non-trivial example of reggeization with spin we shall consider
pion-nucleon scattering in some detail. This example also gives us a chance to
see the detailed relation between invariant and helicity amplitudes and the
origin of the kinematic singularities and constraints.

A. Invariant Amplitudes

Let us consider m-N scattering in which the individual particles are in
definite charge states. Analysis in terms of total I-spin states may be easily

qz‘\ﬂ N p2 obtained from what we do here and will not

N\ be discussed. Suppose we calculate the scat-
. ) tering amplitude by summing all Feynman
) graphs, then we would obtain a Feynman
‘? amplitude of the form

W, omr NP

f = U(PZ:SZ) T(p23q2; Plaql) U(Pl’sl) b (8'1)

. - -’ .
where u(p,s) is a Dirac spinor of momentum p and z-component of spin s, and
T is a 4x4 matrix. We can write T as a linear combination of the 16 Dirac

. ®
matrices

1'3 ’Yul’ 'yu'Yvi 'YS'Y“" YS 3 (8'2)

with coefficients constructed from the 3 available independent momenta
(P1+P2)u: (pl_Pz)u’: (ql+q2)u’ ] (8.3)

in such a manner to insure that uTu is a Lorentz scalar. Thus terms proportional
to YSYp and Vg are immediately ruled out, for they would require pseudovector

and pseudoscalar coefficients, and none can be constructed from (8.3). Any in-
variant constructed from vuyv and (8.3) reduces to one constructed from 1 or y“,
when the nucleons are on the mass shell. Under the same condition, the only
independent invariant constructed from y“ is Y'(q1+q2). Thus the most general

form is

T(py,d,5P;59y) = -Als,t) + 7 v-(qy+q,) B(s,t) (8.4)

* We use the convention in S. Gasiorowicz, Elementary Particle Physics,

(John Wiley & Sons, New York, 1967), Chap. 2.
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where A, B are functions having no singularities except the unitarity cuts and
particle poles. By definition they have no kinematic singularities and no kine-
matic zeros and are called invariant amplitudes.

From the crossing property of Feynman graphs, the amplitude (8.1) also de-
scribes 7T -+ NN when we continue the q, and p, to the region where their components
change sign. For the invariant amplitudes, this simply means that we continue
the values of s,t from the s-channel physical region to the t-channel physical
region.

B. Helicity Amplitudes

The s-channel helicity amplitudes are

J J

. (s) d (z) (8.5)
KZ,O,KI,O A, s

s ©
f . (s,t) = Z (2J+1) F
KZ’O’kl’O J=%

where ll and KZ assume the values +%. We introduce a shorthand notation in which

the amplitudes are labeled only by the signs of KZ and Klg for example,

s _ s
f++ (s,t) = f+&2’0;_'_‘1/2’0 (s,t) . (8.6)
Then by (7.11) parity conservation implies
J _J
F++(s) =F (s)
J _oJ
F+_(s) = F_+(s) . (8.7)

Using this and the properties (7.51) of the rotation coefficients, we find that

there are only two independent helicity amplitudes, which we choose to be

1l
]

fls(s,t) f++s(s,t) f__s(s,t)

£,%(s,0) = £, °(s,t) = -£_°(s,0) . (8.8)

Identical formulas hold for the t-channel amplitudes, if we change the super-

scripts from s to t.

The helicity amplitudes are in fact the amplitudes (8.1) with specific

choices of the Dirac spinors:
S - - .
f)\Z)\-l (SQt) - u(pz’}\-z) T(p23q2’p1’q1) U(Pls}\l) H

t —
szxl (S:t) = U(Pzﬁxz) T(Pz,'Pl§'q2:ql) V(_Pl:'xl) 3 (8-9)
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where u(p,\) and v(p,\) are respectively positive and negative energy spinors

satisfying

ul(p,2) ulp,A) = -v(p,A) v(p,A) = +1 (8.10)
and
(3°3) ulp,A) = Au(p,A)

(13'3) v(p,A) = av(p,A) . (8.11)

To find the relation between helicity and invariant amplitudes we use (8.4) and

find after a lengthy but straightforward calculation
s /1+zs m
fl (s,t) =- [A(S,t) +—2—H'—B(S t):l
i < ot
f2 (s,t) = SR A(s,t) + ————iu“-B(s t)] (8.12)

and

£, 5(s,t) = [ (t- "mlA( Jt) +S—;1"B(s,t)]

Jt 4m

2 2.2
- fEysu-(m oy”) [B(s,t)] . (8.13)

2mdf-4m2

Since A and B are by definition free of kinematic singularities, the kinematic

1

t
f2 (s,t)

singularities of the helicity amplitudes are hereby explicitly displayed. The

following amplitudes are therefore free of all kinematic singularities:

- % s _ 8% Ll -5 . s
£° =[50+ )] » B = BT 1 50 (8.14)
) N . 2 2 &
= (t-tm®)f et , B2 l:——————t 4m £t ) (8.15)
1 1 2 %3 2 2.2 2

t su-(m -p")

However, they are not completely independent. To see this we solve for A and B
in terms of the set %1S, %25, and alternatively the set %lt, %zt :

A(s,t) = 2

/52
/gz

2 A ~
B [-(smm ) £%(s,0) + (s’ 0D £5s,0]

B(s,t) = [———L £°%s,0 - £%s,01 (8.16)

2

with

§F=s - @] [s - W] . (8.17)
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Since A(s,t) and B(s,t) have no kinematic singularities, the square brackets must

vanish at s = (m t u)z. Similarly, in terms of the t-channel amplitudes

2m2 A~ t s-u 4+ t
A(s,t) = - 2 [fl (S:t) + 2 fZ (S:t)] s
t-4m 2m
B(s,t) = - = £,5(s,0) (8.18)

so the square bracket must vanish at t = 4m2. Note that no constraint is needed
at t = 0 and hence there is no conspiracy condition. What happens is that parity
conservation in the t-channel automatically implies conservation of angular mo-
mentum in the forward direction in the s-channel.

The crossing relation for the helicity amplitudes is obtained by eliminating
A(s,t) and B(s,t) between (8.16) and (8.18). Since the arguments of the square
roots change signs during the continuation from the s-channel to the t-channel
physical region, the calculation requires a careful consideration of phases.

This is the whole point of the paper of Trueman and Wick. We take their result

from (7.14):

s _ X % t
£ (s:t) = z §; diy OO a2 (mx) £ 47(s,t) (8.19)
c=-% d=-%
where
s+m2— 2 t
COSX = = /J
stnx = 250

S =1[s - i s - (-2
g = £( t-4m?)
o(s,t) = stu - t(m®uH? . (8.20)

The rotation coefficients are given in the following matrix

d%(x) = . (8.21)

NX X
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Using this and (8.8), we obtain

s
f1 (s,t)

s
f2 (s,t)

s

Ci

inX  -cos¥ flt(s,t)

08X sinX fzt(s,t)

C. Reggeization of Helicity Amplitudes

(8.22)

Let us now illustrate the procedure discussed in Section VII D by following

it step by step for the present case. First we define

1

- t R S t
fl (S,t) \/‘1+—zt f]. (S,t)

£,"(s,t) = Vit

1

fzt(s,t)
t

(8.23)

These amplitudes have no s-kinematic singularities and have the partial wave ex-

pansions

-t _ 2 J J
f2 (s,t) —JEO(2J+1) G++(t) eOO(zt)

fzt(s,t) = ¥ (23+1) Gi (t) egl(z )
J=1 } t

Let |J,X1K2> be the NN state with angular momentum J and helicities AZ,X

P|J;a,b> = + (-1)J|J;—a,-b>

The parity eigenstates are therefore

IJ;a,b?t
with

L [|3;a,b> + |J;-a,-b>]

N

J
P|J;a,b>_.t =+ (-1) ‘J;a,b>_lt

The parity-conserving partial wave amplitudes are

J+
a

J,00> being the pion state,

J -
Gab(t) -

1
2

G 5(t) = ,<3a,b|6(£) [3;0,0>

In terms of these we have

J+ J-
[6(E) + 6 (6)]

- 245 -

1

(8.24)

Then

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)



The states of NN and the trajectories coupled to them are given below.

Parity eigenstate Abbreviation Parity G-parity Trajectories

%§{|J,++> + |3,-->] |J,0+> +(-1)J +1 P,p,f°
-1 w,Az

1 J

75{|J,++> - |a,-=>] |3,0-> -(-1) +1 B
-1 -

1 J o)

7§{|J,+-> + |3, -+] [7,1+> +(-1) +1 P,p,£
-1 w,AZ

1 J

7§[|J,+-> - |3, -] [J,1-> -(-1) +1 —_—
-1 A

1

Since the mm states all have P = +(-1)J and G = +1, the only non-vanishing partial

wave amplitudes are

J+
Go = <J,O+|G(t)|J,ﬂﬂ>
Gy = <I,1+|e() |3, (8.30)

Substituting this, via (8.29), into (8.24), we have the partial wave expansions

-t 12 J+ J

£, 7(s,t) = ZJE (23+1) Gyp(t) egp(z))

=t _1zZ J+ J

f2 (s,t) = 2J§1(2J+1) G01(t) e01(zt) . (8.31)

In the general discussion, we had further decomposed the above into the
+
amplitudes g—(s,t). But for pion-nucleon scattering, only states with parity

+(-1)J couple and this is unnecessary. If we do it anyway, we find that

J- - B
e0(zg) = epilzy) =0

I+ 3 T, J
c00(%e) = eoo(2e)s ep1(2y) = egi(z) (8.32)

and we are back to (8.31).
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From the table in GGLMZ, we find

ego(zt) = Py(z)) ch(zt) = Py(z,)
P1(z) J VAIGE0)
SHERE _—’;TJ_:-D c0102¢) = g [Bra (20 - B (2] (8.33)
Hence
Ego(zt) =G>(z ) Cgo(zt) = Q;(z)
R
Bz < R Cored T i (a0t Ga(ep] - (839
Then from (7.79) we obtain
-t m Boo(t)(a (£)+%) ozi(t) o, (t)
f1 (s,t) = 1=Pzp fo- sinn ai(t) [EOO (-z ) + n E (zt)]
2F2 (8.35)
i 1 O!-(t)
. T By (D () ay(e) g o A
£,7(s,t) = i=P?p,fo- sinm(w, (©)+1) [Eqg t 1700

The signature T& which appears here is the true signature.

We take the residue functions to be

where s; are arbitrary scales, the first factor provides the compensation required

B (t) =
A F(oz (t

by the Mandelstam symmetry, and the second is the threshold factor. 1In Y;O(t)’

. . . P =t
we factor out the kinematic singularities of fl (s,t):

i _ 1 —i
4m” -t
Factorization requires
Yoolt) 2 0 for ¢ < w? . (8.38)

In YOl(t), we must factor out both the kinematic singularities of f (s t) and

the branch points coming from COl(z ):

Ve () = w0 Ve 7o (8.39)

Finally we obtain the s-channel amplitudes by using (8.35) and (8.22).
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