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Introduction 

In these lectures we discuss two-body hadronic scattering in the high-energy 

limit, under the hypothesis that it is dominated by Regge singularities, i.e., 

singularities in the finite parts of the complex angular momentum plane of the 

partial-wave amplitudes in the crossed channel. In particular we discuss the 

motivation of the hypothesis, the procedure for putting it into practical use, some 

of its experimental consequences, and possible glimpses into the dynamics of strong 

interactions. For general references the following books are recommended. 

R.J. Eden, High Energy Collisions of Elementary Particles, (Cambridge, The 

University Press, (1967)). 

E.J. Squires, Complex Angular Momentum and Particle Physics (W.A. Benjamin, 

New York (1964)). 

P.D.B. Collins and E.J. Squires, Regge Poles in Particle Physics (Springer­

Verlag, Berlin (1968)). 

I. Regge Poles in Potential Scattering 

A. Regge Poles and Resonances: 

As an introduction to the idea of Regge poles, we give a brief review of 

potential scattering, where they were first introduced as a new way to describe 

bound states and resonances. 

Suppose a spinless non-relativistic particle is scattered by a central 

potential central V(r), with kinematics as shown in the accompanying sketch. 

In units such that n = 2m = 1 let E be 

the energy of the particle and z be the 

cosine of the scattering angle: 

E k2 

k jkij jkfj 
~ - 2 z = case ki ·kf/k 

The differential cross section is given by 

J f (E, z) 1
2 

( 1. 1) 

(1. 2) 

where the scattering amplitude f(E,z) has the familiar partial-wave expansion 
00 

f (E, z) ( 1. 3) 

.t=O 

where the partial-wave amplitude F.t(E) is determinable from the solution to the 
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radial equation 

(1.4) 

Asymptotically the solution is of the form 

~ Csin ( kr- rct + 5 (E)) 
\.. 2 J, 

( 1. 5) 

The partial-wave ampliitude is then given in terms of the phase shift oJ,(E) by 

( 1. 6) 

It is a real analytic function of E, and it has a branch cut along the positive 

real E axis. There are no poles on the physical Riemann sheet except along the 

negative real axis, where they correspond to bound states of spin J,. Complex poles 

can occur only in conjugate pairs on the second Riemann sheet. If they are close 

to the branch cut, the one just below the cut is near the physical region, and 

correspond to a resonance of spin J,. Its conjugate partner is far from the 

physical region, and thus not directly "visible". (Except when the pair of poles 

are near E=O, but there threshold effects become important.) 

Regge shows that the same bound states and resonances show up as poles of 

FJ,(E) in the complex J,-plane, in the following way. First, from the radial equation 

for a superposition of Yukawa potentials, one can show that FJ,(E) can be uniquely 

continued to complex J,, thereby giving a function F(E,J,). It has the following 

properties: 

1. F(E,J,) is meromorphic for ReJ, > 
2. F(E,J,) ~ 0 as JtJ ~oo, 

3. The positions of the poles in J, move with the energy E. 

Such a moving pole is called a Regge pole, its locus a(E) a Regge trajectory. 

In the usual description, a resonance is identified with a pole of 

F(J,,E) in E, at a positive integer value of a(E), which generally occurs at complex 

E. We now propose to keep E real and associate resonances with the behavior of 

a(E) in the complex a plane. 

A typical locus of a(E) in the complex angular momentum plane is shown in the 

sketch below. 

- 162 -



C' 
Imcx(E) 

J increasing E 

E=+ co 

Recx(E) 
2 3 4 

E=- co 

The imaginary part lmry(E) vanishes for E < 0. Whenever Rery(E) passes through 

positive integer t with d[Rery(E)l/dE > 0, a bound state or resonance of spin t occurs, 

provided Imry(E) is small. In the sketch, for example, A is a bound state, and B,C,D 

are resonances. This family of bound states and resonances appear as recurrences of 

the same state. Other families can occur as well, and will be characterized by 

other trajectories. Each family is characterized by the principal quantum number 

(i.e. the number of codes in the radial wave function). The points B', C', D' do not 

correspond to identifiable resonances, because the poles corresponding to them are far 

from the physical region. Actually, each trajectory ry(E) has a complex conjugate 

partner represented by its mirror image with respect to the Re ex axis. The mirror 

images of B,C,D and B',C' ,D' all lie too far from the physical region to be identi­

fiable as resonances. Another way to exhibit the resonances is to plot Rery(E) against 

E, as shown in the sketch below. Recx(E) 

3 

2 

spin 0 bound state 
1 

- spin 1 

E 

- - _-1 __ -

To see the correspondence between the new way and the old way of describing a 

resonance, let us examine F(E,t) near 1 = ry(E): 

B(E) 
F(E, t) ""'=' t-ry(E) 

Suppose that for some real value E=E we have Rery(E ) 
n n 

of E = E we can write 
n 

Rery(E) ~ n + ry1 (E-E ) , 
n 
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n. Then in the neighborhood 

ry 1 - dry (E=E ) 
dE n 



Hence 

13 (E ) 
F(E,n) n 

~ n-ry(E) 

13(E ) 
(1. 8) n 

~ n-[n + 0' 1 (E-E ) ]-i ImO'(E ) n n 

1 S(E ) n 
QI E-E 

. Imry 
n + J_ O'' 

If a' > 0, this is the familiar Breit-Wigner formula for a resonance with mass E and 
n Imry(E ) 

total width 2 n . If ry 1 < 
ry' 

O, there is still a pole on the second sheet, but it 

is not close to the physical region. 

B. Sommerfeld-Watson Transform: To isolate the contribution of a Regge tra­

jectory to the scattering amplitude, we write the partial-wave series in the form 

of a contour integral. Noting that l/sinnJ, has poles at integer values of J,, 

and 

we have 

where we have used 

Res [ n~-l~J, J = 1, J,=0, + 1, + 2, ... 
sinn -

00 

f(E,z) = l (2J,+l)P /z)F(E, J,) 
J,=0 

Z~i ~di,~ P /-z)F(E, J,) 

(1. 9) 

(1. 10) 

and where C is the contour shown in the accompanying sketch 

For fixed lzl ~ 1, 

P /-z) 

J, plane 
X ._ Regge po le J, =a(E) 

c -elimJ,\ (z=cose) ----7---r e 
It I .... co Ct) 2 

(1.11) 

Since F(E,J,) ~ 0 as It!~ oo, we can expand the contour, drop the piece at infinity, 

and pick up the Regge poles: 
~ Regge pole 
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f(E,z) = L [-
ct 

Rea> -?z 

n(20'+~)8(E)PO'(-z)l 1 
sinnry _ + 2i F (E, i,) ( 1. 12) 

The term in brackets represents the contribution from a Regge trajectory ry(E), which 

contains the effects of a whole family of bound states and resonances. 

The original partial-wave expansion converges only for z lying in an ellipse with 

foci+ 1 (the Lehmann ellipse), but with (12) we can continue it outside of the 

ellipse. In particular (12) has a simple asymptotic form for lzl ~ "'· The region is 

of course unphysical for potential scattering; but for relativistic scattering it 

corresponds to high energy in the crossed channel. To obtain the asymptotic behavior 

we note 

p (z) ~ 
Ci I z I-cc 

Hence as I z I _, 00 , 

f (E, z) ~ l 
Rea> -~ 

f(o: + ?z) (2z)ct [1 + O(z-2)], (Re ct> -?z) . 
f(ct + 1) 

[-(n)~(~ct + 12 l~Q'. + ~2 (-2z)O' J -1 

f(ct + 1) 
+ O(z 2

), 
s innQ' 

(1.13) 

( 1. 14) 

where the term 0 ( z -?z) comes from the "background" integral in (12). If there are 

Regge poles with Rect(E) > -?z, then the highest one dominates the asymptotic behavior. 

If there are no Regge poles with Rect(E) > -?z, then we learn nothing from (14). 

It won't help to push the background integral further to the left, even if that is 

possible. The reason is that P (z) = P 
1
(z), so that for Rect < -?z the asymptotic O' -ry-

behavior of P (-z) is 
O' 

-ry-l -2 J (2z) [1+0 ( z ) , (Rect < -?z) ( 1. 15) 

instead of (13), hence the background integral would still dominate over the pole 

contributions. Thus, we need to know something about the background integral in (12), 

and the Mandelstam symmetry comes to our aid. 

C. Mandelstam Symmetry: The Mandelstam symmetry states 

F(E,t) = F(E,-,t-1) fort= half-integer. (1.16) 

Note that the radial equation (4) is invariant under i, ~ -,t-1. If V(r) - oo faster 

than r- 2 as r - 0, so that it dominates over the centrifugal potential J,(J,+l)/r2 , then 

u.t(r) vanishes at r=O in a manner independent of ,t. In this case it is clear that 

the Mandelstam symmetry holds not only for half integers, but for all £. If, how­

ever, the centrifugal potential dominates over V(r) near r=O, then the two solutions 

to the radial equation have the respective behaviors 

{ 

rJ, 

uh ----7 
~ r ... o -.t-1 

r 
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For t > 0 we must choose the first solution, while for i, < 0 we must choose the second 

solution. It turns out that the Mandelstam symmetry holds only for half-integer t. 
We make use of the Mandelstam symmetry to do the Sommerfeld-Watson transform in a 

different way. First let us define 
P.t(z) i, = o, 1,2, ... 

(Yt(z) = { (1. 18) 
0 J, = -1, -2' .. 

This function can be continued to complex i,: 

(f.t (z) 
tan:n:.t - --r-

:n: 
(1.19) 

with asymptotic behavior 

( 1. 20) 

which holds for all .t. We note that (f.t(z) has simple poles at half-integer t, with 

residues given by 
"-k (-).Kl 2 

TT Q-i,-l (z)) (t "" half-integer) 

-Res P-J,-l (z), (J, = half-integer) 

The last equality comes from the well-known equality Qt(z) 

integer i, . We now write 
ro 

f(E,z) = l (2J, + 1) F J,(E) Cfi,(z) 
t= -ro 

1 I dt fl; (Zi, + 1) F(E,i,)<.J.(z) 
z1 sinnt "-' 

c 
where the contour C is shown in the accompanying sketch . 

pole cancelled by (2.t+l) .t plane 

X - Regge pole 

3 c ~ -2 
~..--+-~..---+-....--1~----+-------+~•--l-~-

~ ~-+--~--+~~+--+-~-+-~-+--

(1.21) 

( 1. 22) 

(1.23) 

poles cancel in pairs by 
Mandelstam symmetry 

The poles of<f>t(z) at half-integer J, do not give spurious contributions to the inte2ral 

because the one at J, = ~ is cancelled by the factor (2J, + 1), and the other cancels 

in pairs by (16) and (22). 

We now expand the contour and discard the contribution from infinity, 
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_J g~Regge poles 

®.,__,_______~---~/ 

+ CI 

and obtain 

f(E, z) = l [- TI8~ 2a + l) P (-z)J +background integral. 
sinncy cy _ 

Recy > -L 

Hence 

f (E, z) I z I > \ 1 __ c )¥ e ~ 2cy + 1) 
_, ro L l re s i nncy 

Recy > -L 

( 1. 24) 

( 1. 25) 

In this representation, the Regge poles always dominate the background integral. 

D. Exchange Potential and Signature: Suppose we have an exchange potential 

(1.26) 

where 

Pf (J;) = f (-?) (1.27) 

Then the effect potential is different for even and odd partial waves, for the 

radial equation reads 

iu 
_____!__ + E = [t(t + 1) + V 
d 

2 u.£ 2 1 
r r 

Since (-l)t does not have a unique analytic continuation in J,, we separately continue 

the two equations 

d
2

u / + Eu ± __ [tU + 1) J + 
• 2 + vl ± v2 u .-

dr2 ~ r ~ 

+ and obtain from them the two partial wave amplitudes F-(E,J,). Clearly 

F /E), (p, even) 

FJ,(E).(J, odd.) 

(1.28) 

We refer to F±(E,J,) as partial~wave amplitudes of even (odd) signature. Regge poles 

occuring in F±(E,t) will be characterized by signature. An even (odd) signatured 

Regge pole produces a resonance only where it passes through an even (odd) integer 
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value. We illustrate this in the accompanying 

sketch. The two signatured 

trajectories become degenerate if 

either v
1

=0, or v
2

=0. Such a 

degeneracy is called exchange 

degeneracy. 

• denotes a bound state or resonance 

Rea(E) 

To carry out the Watson-Sommerfeld transform write 

Trajectory of signature 

+ 
JI L 

f(E,z) = l (2t + 1) F+(E,t)~(z) + L(H + 1) F-(E,t)~(z) 
J, even t odd 

co 

= ~ l (2J, + l)F+(E, £,) [Sf/z) + {jJ,(-z) J 
J, = -co 

co 

+ ~ l (2t + l)F-(E, .t) [Cf,e,Cz) - <?/-z) J 
.t = -oo 

Then, in a manner analogous to the earlier development, we obtain 

+(E,z) l { -;s~~~n: 1) [~(-z) +(Pa:(z)J} 

a of + signature 

_ n5(2a: + 1) 
2 sinna: 

a of - signature 

+(Background integrals). 
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II. Relevance of Regge Poles to Relativistic Scattering 

We discuss some motivations for taking over the ideas of Regge poles from the 

realm of potential scattering, where it is proved, to the realm of relativistic 

scattering, where it is unproved. There is a practical and a theoretical motivation. 

The former rests on the hope that Regge poles will lead to a simple description of 

high energy scattering. The latter is based on the fact that the bootstrap hypo­

thesis seems to find a concrete expression in terms of Regge poles. 

A. High-Energy Scattering 

To illustrate the role of Regge poles in high-energy scattering, consider the 

elastic scattering of spinless particles of equal mass, represented schematically 

by the sketch shown, with 

2 4(k2-Mn2) s (pl+p2) 

2 2 
t (pl-p3) -2k (1-cosB) 

(2. 1) 
2 2 

u (pl-p4) -2k ( l+cosB) 

where k and e are the center of mass three-momentum and scattering angle, respectively. 

Let the scattering amplitude f(s,t) describe the s-channel reaction p
1
+p

2 
~ p

3
+p

4 
for s > 4m

2
, t < 0. Then by crossing symmetry, the same function f(s,t) describes 

the t-channel reaction p
1
+p

3 
p

2
+p

4 
when analytically continued to the region 

t > 
2 

4m , s < 0. Similarly, if f(s,t) is analytically continued to the region 
2 2 

4m -s-t > 4m , s < 0, t < 0, it describes the u-channel reaction p
1
+p

4 
~ p

2
+p

3
. u = 

Of course no such crossing symmetry exists in the case of potential scattering. 

where 

We now make a partial wave expansion in the s-channel: 
co 

f(s,t) l (2.t+l)F /, (s)P /, (z) 

t=O 

case 1 + 
t 

z = 
2k

2 

(2.2) 

(2.3) 

Suppose that we can continue F/,(s) into the complex/, plane and carry out the 

Sommerfeld-Watson transform. Then, if the only singularities are simple poles, 

we will obtain as in potential scattering 

f ( s , t) ----;> - :n: 13 ( 2a+l) p ( - z ) 
(z) ~ 00 sin:n:o: a 

where a(s) is the leading Regge pole in the s-channel. Using (2.3) and the 

asymptotic form of P , we have a 

- 169 -

(2. 4) 



f(s,t) --~> C (s) ta(s) 
t -->CX) 

s fixed 

(2.5) 

which says that the energy dependence of high-energy t-channel scattering at fixed s 

is governed by the leading Regge pole in the s-channel. Similarly, for the s-channel 

reaction, f?rward scattering (B--> 0) is governed by the leading t-channel Regge pole, 

and backward scattering (e--> n) is governed by the leading u-channel Regge pole. 

f(s,t) 

f(s,t) 

----> C (t) sa(t) 
s -7 CX) 

t fixed 

s -->CX) 

u fixed 

C (u) sa(u) 

(2. 6) 

(2.7) 

We have not bothered to distinguish the trajectory a in (2.5), (2.6), (2.7), but of 

course they need not be the same trajectory. The t-channel trajectory, for example, 

generates bound states resonances having the quantum numbers of the t-channel, and 

will be characterized by these quantum numbers. We assume that the trajectory 

function a is independent of the external particles in the scattering process, and 

speak of 11Regge pole exchange" in analogy with single-particle exchange. As we can 

see from (2.6) the salient feature of Regge pole exchange is that asymptotically 
th 

the scattering amplitude is proportional to the a power of the squared c.m. 

energy, where a is the variable spin of the object exchanged in the crossed channel. 

As we change the momentum transfer t, the spin varies along the Regge trajectory. 

This furnishes a simple and physically attractive picture of high energy scattering. 

B. The Bootstrap Idea 

The bootstrap idea, first proposed by Chew and Mandelstam, is that among the 

hadrons there are no 11elementary11 particles, but that they are composite states of 

one another. It has been difficult to state this idea in a form that is both 

sufficiently practical and sufficiently precise, so that one may use it in an actual 

calculation. To appreciate the difficulty, let us look at some attempts at formula-

tion. 

A simple-minded example, which illustrates the idea, but which does not give a 

consistent scheme for calculation, is the following. Suppose we calculate n-n 

scattering by solving a non-relativistic Schr~dinger equation with an attractive 

Yukawa potential 
2 

V(r) = -g 
-mr 

e 
r 

(2. 8) 

which we regard as the adiabatic potential due to the exchange of a p meson of mass 
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m and coupling constant g. The P-wave phase shift, 5
1

(E;m,g) will then depend on 

the energy E of the nn system, as well as on the parameters m and g. If m and g are 

appropriately chosen the P-wave effective potential, as shown in the sketch below, 

can accommodate a resonance, whose position and width depend on m and g. The boot­

strap requires that this resonance be the p meson that generated the potential in 

the first place. Thus 

P-wave resonance 

/ 

~P-w~ve centrifugal potential 

; _ __,- - Effective potential 2/r
2 

6
1 

should pass through n/2 at E 

for p -7 :rm: 

m, with a slope consistent with the decay width r 

2 r = g C(µ,m) (2.9) 

where C depends on the pion mass µ and the p mass m in a known way. The relation 

between r and the phase shift may be obtained by noting 

i61 . 61 1 
~ 

1 1 
e sin 

cot6
1
-i 61' (Eo) E-Eo+[i/61'(Eo)] 

(2.10) 

where 5
1 

I 06/oE, and EO is such that 51 (EO) n/2. Thus we require 

5
1 

(m;m,g) n/2 

6
1

1 (m;m,g) 
2 

(2. 11) 
2 

g C(µ,m) 

from which m/µ and g can be determined. This, however, is not a real example because 

the potential (2.8) is actually incorrect for spin 1 exchange, and there is no 

simple way to find a "correct" version. Also, pions don't obey the Schrtjdinger 

equation. A general way to state the bootstrap idea is that the requirements of 

analyticity, crossing symmetry, and unitarity, plus "boundary conditions" of some 

kind, should completely determine all scattering amplitudes, including the existence 

of particle poles, and their location and residues. To make this precise, one has 

to be more specific about the "boundary conditions". A suggestion that has under­

lined many practical calculations (the so-called N/D calculations) is to impose 

Levinson's theorem, taken over from potential scattering: 

6 (E=0)-6 (E = oo) = nN 
J, J, J, 

(2. 12) 
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th 
where 5t(E) is the l wave phase shift, and Nt is the number of bound states (not 

resonances, but bound states), of spin t. When inelastic channels are open, one 

would replace 5t(E) by eigen-phase shifts. The idea expressed by (2.12) is that, 

since N =O when there is no interaction (i.e., when 5 =O), there would be no 
t t 

"elementary" bound state. In mathematical examples>'< in which (2.12) can be 

rigorously imposed, one does find that it determines the number of bound states and 

resonances that can occur, and places restrictions on their positions and coupling 

constants. But its general consequences has not been fully explored, owing to the 

difficulty in using it in a full relativistic scattering problem. 

Instead of the Levinson theorem, it seems far simpler, and more satisfactory 

to take over from potential scattering the idea that all particles lie on Regge 

trajectories. The statement is precise, and is independent of a detailed formu­

lation of the dynamical equations. It has the immediate experimental consequence 

that all known p hadrons should be classifiable according to Regge trajectories, 

which should also control the asymptotic behavior of scattering amplitudes. 

C. Chew-Frautschi Plot 

We can immediately test the hypothesis that all hadrons lie on Regge tra-
2 

jectories by plotting the spin vs. (mass) for known hadrons, resulting in what is 

known as Chew-Frautschi plots, as shown in the following figures. The trajectories 

that one might postulate from such a plot can be tested experimentally by analyzing 

high energy scattering data. A striking feature is that all known trajectories seem 
0 

to be straight lines. The presence of the f at spin 2 on the p trajectory suggests 

that there is exchange degeneracy of the p and f trajectories. 

* K. Huang and A.H. Mueller, Phys. Rev. 140, B365 (1965). 
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III. Relativistic Scattering of Spinless Particles 

A. Preliminaries 

We consider the two body scattering process a+b ~ c+d, and define as usual 

s = = ((p 2-tm 2)~+(p 2-+m 2)~)2 
ab a ab b 

u = (3. 1) 

t ~h<-u 
a/t~~ s 

t 

where pab is the magnitude of the three-momentum in the center of mass of a and b. 
4 

These variables satisfy 

s+t+u 

i=l 

m. 
]_ 

We write the S matrix for this process as 

s = l+iT 

where 

2 
(3.2) 

(3.3) 

(3. 4) 

where f(s,t) is Lorentz invariant, provided single-particle states are so normal-

ized that the phase-space volume for one particle is invariant: 

I =~JfpI 
one-particle( n) p a 

(3. 5) 

states 

where a indicates quantum numbers other than momentum. The differential cross 

section is 

da 
dn 

1 p cd 2 
-

2 
- jf(s,t)j . 

4n s Pab 
(3. 6) 

Crossing symmetry states that f(s,t) describes different reactions in different 

domains of its arguments. The three reactions, or channels, are as follows: 
2 2 

s-channel: a+b ~ c+d, for s > max [(ma+mb) ,(mc+md) ] 

2 2 
t-channel: a+c ~ b+d,for t > max [(ma+mc) ,(mb+md) ] 

2 2 
u-channel: b+c ~ a+d,for u > max [(mb+mc) ,(ma+md) ] (3.7) 

We assume that f(s,t) can be analytically continued from one of these domains to 

another. 
+ Unitarity states that S S = 1, or 

and time reversal invariance implies 

< 13JTl0: > 
Then, taking the matrix element of (3.8) we obtain 
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Cf) 

" 
"' a: 

Cf) 

" "' a: 

7 

6 

5 

4 

3 

2 

p 

CHEW-FRAUTSCHI PLOT 
FOR NON- STRANGE MESONS 

*SPIN IS NOT KNOWN BUT 
IS ASSIGNED ON THE BASIS OF 
STRAIGHT- LINE REGGE TRAJECTORIES 

w 
~ 
00 

Al 
oB 

f' 
0 

g 

T* 

s* p 

ap (S) =0.45+ l.05S 

0D~---<~~~~-0-'---<>'~~V~~~~~~~---<~~~~~~~~~~~~~ 
0 2 3 4 5 6 

21 
2 

17 
2 

13 
2 

9 
2 

5 
2 

I 
2 

S(GeV 2
) 

CHEW-FRAUTSCHI PLOT 
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Imf b d(s,t) a --> c (3. 10) 

The optical theorem reads 

(3. 11) 

where crT(s) is the total cross section for a+b--> anything. By virtue of (3.10) 

f(s,t) has a series of branch cuts ins, with branch points at the various thresholds 

for ab--> n. The right hand side of (3.10) gives the discontinuities across the cuts. 

The discontinuity across the elastic cut is given by the elastic unitarity 

1 k r 
Imf(s,t) = ~-2 ~/dD'f*(s,t 1)f(s,t 2 ) 

Brc ( s) 2 

where, in the equal mass case, 

t 
2 

-2k (1-cose) 
2 

-2k (l-cos8 1 ) 

2 
-2k (1-cos/) 

COS)' cosecose•+sin8sin8 1 cos~· 

The geometrical relationship among the angles is shown below. 
It ..... 

~· k" 

/ 

I 
I 
I 
I 
I ~ ..... .._ 
I // ~· .... ,,J 
I/ 

/ 

relation 

(3.12) 

(3.13) 

We can expand the two-body scattering amplitude f(s,t) in partial waves: 

00 

f(s, t) = l~ (U+l)Pt (zs)F.t (s) . 

t=O 

If f is an elastic amplitude, then elastic unitarity takes the simple form 

with the solution 

(3.14) 

(3.15) 

(3.16) 

If the elastic threshold is the lowest threshold then Im5.t(s) = 0. Using the 

orthognality of the Legendre polynomials, we can invert the partial wave expansion 
+l to obtain 

F (s) 
t 

~ ,[azP J, ( z) f ( s, t ( z)) , (t =O, 1, 2, ... ) 

-1 
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B. Froissart-Gribov Continuation 

We wish to continue FJ,(s) into the complex plane so that we may study its 

poles and other singularities there. In potential scattering this could be done by 

solving the Schr~dinger equation for complex t. In relativistic scattering we must 

make use of dynamical assumptions. A guide to the analytic continuation is 

Carlson's Theorem: Let f(z) be analytic for Rez ~ 0. Suppose f(z) = 0 for 

z = 0,1,2, ... , and that if(z) I < const x enlzl as lzJ ~oo. Then f(z) = 0 for all 

Rez >- 0. 

Hence if we can find an analytic function F(E,t) which reduces to Ft(E) fort= 0,1, 

2, .... and which grows less fast than enltl, then we know that any other analytic 

continuation must grow at least as fast as enltl. Since Pt(z) grows essentially like 

enzJtl for -1 < z < 1, and therefore does not possess a unique continuation, we 

have to examine the properties of f(s,t) to see whether FJ,(s) has a unique continua­

tion. We assume that f(s,t) satisfies an N-times subtracted dispersion relation 

at fixed s: 

f(s,t) 

00 00 N-1 
tN Jdt 1 At(s,t') 

+UN r du' 
A (s,u') I i u 

+ a.(s)t 
n 'N t 1 -t n 1N u 1 -u }_ 

t ' u i=O to uo 

(3. 18) 

The first term gives rise to the analog of a potential, and the second term an 

exchange potential. Now both t and u are linear functions of z = z , of the forms 
s 

t = az+b, u = -a'z+b', where a> 0, a'> 0 in the s-channel physical region. Hence 

(3.18) may be rewritten in the s-channel physical region, as 

00 00 N-1 

NJ' n1 (s,z') NJ' n2 (s,z') +l f(s,z) ~ dz' (-1) N £_ dz' c.(s)z i 
n 'N z 1 -z + n 'N z '+z }_ 

z z i=O zl z2 

(3. 19) 

For J, = 0,1,2, ... , (3.17) is certainly valid, and we can substitute (3.19) into it 

and interchange the order of integration to obtain 

00 +l 

lfdz' D (s z')l (iz 
n 'N 1 ' 2 Jc 

z z -1 
1 
+l N-1 

1 r ZN \' 
zJdz z'+z PJ,(z)+ l 
-1 i=O 

Now 

N 
z 

z'-z 
N 

Pt(z)+(-1) 
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N 
z 

z'-z 

N z 
z 1+z 

N 
[ (z-z ')+z'] 

Z I -z 

N [(z+z')-z'] 
z '+z 

N-1 N-2 z'N 
-(z-z') -Nz 1 (z-z 1 ) - ••• + -,-z -z 

'N N-1 N-2 N z 
+(z+z') -Nz'(z+z') + ... +(-1) ~+ z z 

If t ~ N, then the polynomials do not contribute, and we obtain 
00 +l 

Ft (s) ; J dz •n 1 (s,z •)t. {az 

00 +l 
Pt(z) lfc 1 (c 
--- + - dz'D (s z 1 )- dz 

Z I -z 1( 2 ' 2 

Pt (z) 

z '+z 
z

1 
-1 -1 

Noting that 
pt (z) 

Z I -z 

we have 
00 00 

l ~'D (s z')Q (z')+ lfdz'D (s z')Q (-z') 
1( J 2 

1 ' t 1( 2 ' J, 

(.t=N, N+l, N+2, ... ) . 

Recall that for integer .t, 
.t 

(-1) QJ, (z) 

so that 
00 00 

;,[ dz 1n1 (s,z')Q.t(z')+(-1).t ;,[ dz 1 D2 (s,z 1 )Q.t(z') 

(3. 21) 

(3.22) 

(3. 23) 

(3.24) 

(3.25) 

(3.26) 

As in potential scattering, we are therefore led to define the signatured partial 

wave amplitudes 
00 00 

+ F-(s ,.t) ; J dzD 1 (s, z)Q.t (z)±; J dzD2 (s,z)Q.t (z) (3.27) 

zl z2 

This is the Froissart-Gribov formula. As in potential scattering we have 

J 
l 

+ F (s,.t) (.t=0,2,4, ... ) 

F - ( s, .t) (.t = 1, 3, 5, ... ) 
(3.28) 

We must still show that (3 •. 27) defines a unique continuation of F.t(s) to complex .t. 

By hypothesis, the dispersion relation (3.19) requires only N subtractions. Hence 

the integrals in (3.27) converge at least for Re.t ? N and so define an analytic 

I l -k 2 k -.t-k 
fraction there. Also, as .t ->-co, Q.t(z) ~ C.t 2 [z+(z -1) 2

] 
2

• Hence, since 

z 1 > 1 and z2 > 1, F±(s,.t) _.. 0 as I.ti ->-co and so satisfies the hypotheses of Carlson's 

Theorem. It therefore gives a unique analytic continuation. 

The Mandelstam symmetry 
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+ + F-(s,t) = F-(s,-t-1) (t =half integer) (3.29) 

is assumed to hold. It is fonnally true of (3.27),for Qt has this property. However, 

the integral do not converge as they stand and the assumption is that the analytic 

continuation still maintains this property. 

Since Qt(z) has simple poles at t = -1,-2, ... , F±(s,t) would, in general, have 

fixed poles (i.e., s-independent poles) at these values oft. These are inadmissible 

by the elastic unitarity realtion (3.15). For, by similar arguments given above, 

(3.15) can be uniquely continued to complex t to read 

1 
2i Lim 

E: -+ 0 

This cannot be satisfied if F±(t,s) has real fixed poles int. 

To get rid of them, we require their residues to vanish, namely 

c. Regge Poles 

co 

,{ dzD1 (s,z)Pt(z) 

zl 

0 • (t=0,1,2, ... ,i=l,2). 

(3.30) 

(3.31) 

We have seen that (3.27) defines an analytic function oft for Ret >- N. For 

Ret < N, singularities may occur, the simplest being Regge poles. They arise from 

a failure of the integrals in (3.27) to converge at the upper limit. Suppose 

D.(s,z) ~ 
1. 

z -+co 

~. (s)za:(s) 
1. 

We split the integrals into two parts, for example 

co 

"!; ,[ dzD1 (s, z)Qt (z) 

zl 

(i=l,2), (3. 31) 

(3. 32) 

where z is fixed but arbitrarily large. The first part, being a finite integral, 

defines an analytic function. The second part can be evaluated using (3.31) and the 

fact 

We then obtain 

+ I\ (s)±~2 (s) 
F-(s,.t) = t-a:(s) + 

-t-1 z 

[Tenns regular at t = a:(s)] . 

+ Thus F-(s,t) has a Regge pole at t = a:(s), if ~l (s) ± ~2 (s) 1 0. 

(3.33) 

To examine the singularities of a:(s) and ~(s) we keep only the parts of (3.27) 
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that contribute to a Regge pole: 
00 

+ 1 r F 1 (s,J,) = - dz 
po e 1t: l, 

(3.34) 

z 
This is valid in the s-channel physical region. To continue in s, we must first 

restore t and u as integration variables. We carry this out explicitly for the 

simple case of equal-mass scattering: 
00 

± 1 f t F 1 (s,J,) = --2 dt[At(s,t)±A (s,t)]QJ,(1--2) 
po e 2 k u 2k 

(3.35) 
n: T 

where T is positive and arbitrarily large. This can now be continued in s. 

We first note that the function QJ,(z) has a cut from z = +l to z = -1, and 

one from z = -1 to z = - oo, with discontinuities as indicated in the sketch. 

2 
k =-co 

t 
z plane(z=l+ ~-2 ) 

z 
2 

k =O 
• a 

Q (z )=-e-in:J,Q (-z) 
J, a J, 

-1(}, 
Q (z )=-e Q (-z) 

J, b J, 

(-za=-zb=-z) 

+l 

DiscQJ, (x) 
1( 

--P (x) 
2 J, 

2h 

The cut from -1 to - oo gives rise to as-cut in F i (s,J,) from k
2 

= 0 to k
2

= -t/4. 
po e J, 

It is present only when J, is non-integer. The combination (z-1) QJ,(z), however, has 

no cut from -1 to - oo, even for non-integer J,. Since k
2 

t/2(z-l), we see that the 
+ 21, 2 2 

combination F 
1
-(s,J,)/k has no cut from k = 0 to k = -t/4. This means that po e 

for a Regge pole the reduced residue function 

- 2a(s) 
~(s) = ~(s)/k (equal mass case) (3.36) 

2 2 
and the trajectory a(s) can have only the cut from k = -t/4 to k - oo, (coming 

from the cut of QJ,(z) from z = -1 to z = +l), plus other cuts coming from A +A . 
t- u 

The former cut is, in fact, absent because t > T, and T ~oo. The factor 

k2J, ( 6) h ld ., (k) k2J,+l 1 in 3.3 corresponds to t e thresho condition uJ, k: 0 , fami iar 

from potential scattering. 
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+ We now examine singularities of F - due to those of A +A , which for fixed 
pole t- u 

t has right and left hand cuts in s, and is real analytic. At fixed t, the s-cuts 

of At run from sA(t) to oo, and from sB(t) to - oo, as shown in the sketch below. 

Similarly the s-cuts of Au run from sA 1 (u) to oo, and from sB
1

(u) to - oo. Since tis 

u=T 

t=O 
2 t=4m 

I 

I 
I 

I ,_ 

2 
u=4m 

left cut 

right cut 

I 
s=O 

integrated from T up, and T -oo, it is clear from the sketch that only the right cut 
+ . 2 remains in F -
1 

(s,t), and 1t runs from 4m to oo. The left hand branch point recedes 
po e 

to - oo because both Band B' reced to s = - co as T -oo. Therefore a(s) and ~(s) 

can have a right cut, but no left cut. Since they are real analytic functions, they 
2 

are real for s < 4m . 

For the general mass case similar results are obtained. The reduced residue function 

is given by 

( 3. 37) 

as a generalization of (3.36). Both a(s) and ~(s) are real analytic functions, with 

possibly a right cut from the lowest s-channel threshold to oo, but no left cut. 

Below threshold both a(s) and ~(s) are real. 

D. Reggeization 

By Reggeization we mean the isolation of Regge pole contributions to the 

scattering amplitude. The way to do this is to perform the Sommerfeld-Watson trans­

form. We write the partial wave expansion in the t-channel: 
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where 

00 

f(s,t) = l (2.t+l)P.t(zt)G.t(t) 

.t=O 

s-u 

s --+ 00 

(3.38) 

(3.39) 

We assume that the signatured amplitudes have only simple poles of the form 

+ @(s) 
G-(s,.t) ~ .t-a:(s) 

Then, repeating the steps of Sec. I-C, we find that as s -+co 

f(s,t) 

a 

R (s,t) + (background integral) 
a: 

Ra:(s,t) ~ - :n:[ 2a:(t)+l] f3(tn[CP (-z )+(? (z )] 
sin:n:a:(t) a: t - a: t (3. 40) 

where the ± sign corresponds to signature = ±1. As a function of zt' (3.38) converges 

in the Lehmann ellipse of the t-channel, which includes the t-channel physical 

region but not the s-channel physical region. We can now continue it to the s-channel 

physical region using (3.40). Before we do this, we must determine the phase of 

(?0:(-zt)' with the help of the relation 

+· > cJ (-z) = e i:n:aa?(z), (Imz < 0) 
a: a: (3. 41) 

In the physical region of the t channel, Imt > 0 and s < 0. Hence, Imzt > 0, so that 

R (s,t) a 
:n:(?~t) (2a(t)+l) Ve -i:n:a:(t) +1)(£ (z ) 

s1n:n:a(t) - a: t (3.42) 

and this can be continued to the s-channel physicsl region. The reason we must use 

(3.41) before the continuation is that the path of continuation passes through a 

branch point of(p(z) in z, and the phase, if not determined beforehand, becomes 
a: 

ambiguous thereafter. 

1) 

We now examine the singularities of R (s,t) in t: 
a -1 

R (s,t) has poles at the integers from the factor [sin:n:a:(t)] . We discuss 
a 
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separately two types of poles: 

(a) Those poles at a=0,1,2, .... correspond to physical particles of spin a. 
Because of the signature factor, only the even or odd ones are actually present in 

R . However, if a(O) > 0, and the signature is positive, then a=O corresponds to a 
a 

particle of negative mass, a "ghost", which may be removed by assuming that 

p(t) cc a(t). (There are other mechanisms to deal with this problem 

extrenal particles have spin. See discussion later, in Sec. VII). 

when the 

(b) Those poles at a=-1,-2,-3, .. , correspond to unphysical, or "nonsense", 

values of singular momentum. They are automatically removed from R because LY (z) a a 
vanishes at these points. The signature factor then produces zeroes in R (s,t) at 

a 
nonsense wrong-signature values of a, unless p(t) has poles at these values of a. 

(See discussion later, in Sec. IVC). 

2) R (s,t) has poles at a= j:!z, +3/2, ... , arising from the poles of CP (z). The 
a a 

pole at a=-~ is cancelled by the factor (2a+l). For the others there are two 

possibilities. 

(a) The residue of the pole may vanish. 

(b) If the residue does not vanish, then the Mandelstam symmetry (3.29) requires 

that there be another trajectory at -a-1 with the same residue. The pole from this 

trajectory exactly cancels the original pole. This is known as a "compensating 

trajectory". 

For negative values of a, the compensating trajectory would lie above the 

original one. For this reason it is customary to assume that (a) is the correct 

choice and to take 

p(t) cc 3 
r(a(t)+z) 

1 

To obtain the required analyticity properties, the correct threshold behavior, 

and the absence of a ghost at a(t) = 0, we write 

p(t) )" (t) (3.43) 

where s
0 

is an arbitrary scale factor. Then y(t) is real analytic with no left hand 

cut. Recalling (1.20) and using the properties of the gamma function, we find that 

as s --> co, 

R (s,t) a (3. 44) 

This is the formula which is used in practical applications. Note that the 

threshold factor in (3. ) is cancelled by a similar factor in z [see (3.38)]. This 
t 

is of course no accident, for R (s,t) is expected on general grounds to be a real 
a 
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analytic function of s. If the ghost-killing zero is not needed, and we do not put 

it in, then r(l-a) in (3.44) is replaced by -r(-a). 

E. Khuri Poles 

We have kept only the leading term in the asymptotic expression (3.44) for the 

contribution of a single Regge pole. Keeping the full asymptotic expansion of the 

hypergeometric function in the definition (1.19) of Lf' (z ) , we obtain a t 
00 

R (s,t) = - .2'..i.!f I'(l-a(t))(e-i:rra(t)+l)(~)a(t)[l+ \ d (t)(~)-nl(3.45) 
a (rc)'2 - s 0 L n s 0 

The d (t) are just such that 
n 

, as a(t) ~ t 

n=l 

(3.46) 

which is required for a resonance to have a definite spin. Thus (3.45) is signifi­

cant if resonance positions are non-degenerate. If, however at the same energy 

there exist resonances of various spins, then the residue function in(3.46) could be 

an arbitrary polynomial in zt, and the combination (3.45) is not particularly 

significant. Since we do not have full knowledge of all the resonances present, 

and since asymptotically only the leading term in (3.45) is significant, it would be 

advantageous to have an alternative expansion to the partial-wave expansion, such 

that the result of a Sommerfeld-Watson transformation would lead naturally to just 

* one term in the infinite n sum in (3.45). Such an expansion is supplied by Khuri . 

One can expand f(s,t) in a power series of s instead of in a series of Legendre 

polynomials in zt in the form 

f(s,t) 

00 

= l en (t)sn 

n=O 

(3.47) 

which converges in some circle in s. 

obtain c±(t,n), defined in the complex 
+ 

One then analytically continues c (t) in n to 
n 

n plane (with signature introduced in the 

usual way). Assuming that c-(t,n) has poles inn whose positions depend on t, (which 

might be called Khuri poles), one can pick up their contribution to (3.47) by doing 

the Sommerfeld-Watson transformation and obtain 

f(s,t) K (s,t) + (background integral) 
a 

a 

I.ill_ 
K (s,t) = - ~ 
a (re) 2 

r(l-a(t)) (e -irca(t) +l) (~)a(t) 
- so 

where a(t) is the trajectory of a Khuri pole. Clearly, one Regge pole corresponds 

to an infinite family of Khuri poles, spaced successively by one unit. The leading 

* N.N. Khuri, Phys. Rev. 132, 914 (1963). 
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member of this family of Khuri poles coincides with the Regge pole. Conversely, one 

Khuri pole corresponds to an infinite family of Regge poles. As long as we do not 

have a dynamical theory, there is little to choose between the point of view of Regge 

poles and that of Khuri poles. In either case the requirements of analyticity and 

unitarity in all channels probably can only be satisfied with an infinite number of 

poles, Regge or Khuri. For formal considerations, however, Khuri poles are often 

convenient. 

Instead of (3.47), we can, in fact, consider a power series in some other 

variable, for example in v = (s-u)/2s
0

. 

replaced by 

Then we could arrive at (3.48) with K (s,t) 
0: 

K (v, t) 
0: 

- ~ r(l-o:(t))(e-irrO:(t)±l)vo:(t) 
(rr) 2 

(3.48a) 

which is convenient when it is important to take into account the symmetry of the 

scattering amplitude under s-u interchange. 

F. Factorizability of Regge Residues 

The residue function ~(s) of a Regge pole can be written as a product of two 

factors in a manner similar to coupling constants in field theory. This is a conse­

quence of elastic unitarity, and we shall prove it for the case of the following 

set of s-channel reactions: 

1. rr+n ~ rr+n with partial wave amplitude F1(s,t) 

2. rr+n ~ N+N with partial wave amplitude F2 (s,t) 

3. N+N ~ N+N with partial wave amplitude F3 (s,t) 

The spin of N is ignored for simplicity, and signature is understood. For 

4m 2< s < 16m 2 the 2rr state is the only intermediate state in the unitarity relation 
n n 

(3.10), for all three reactions. Therefore in that interval of s, the unitarity 

relations for the partial waves, continued in J, are simple generalizations of (3.30): 

where 

ImF
1
(s,t) 

ImF
2
(s,t) 

ImF3 (s,t) 

p(s)F 1*(s,t)F
1
(s,t) 

p(s)F
2
*(s,t)F

1
(s,t) 

p(s)F
2
*(s,t)F

2
(s,t) 

p(s) = ~n ~) ~ 
ImF (s,t) = 

2
1

.[F (s+iE,t)-F (s-iE,t)] (n=l,2,3) 
n i n n 

(3.49) 

(3. 50) 

Since all three reactions have the same quantum numbers, the same Regge pole O:(s) 

occurs in F (s,t), (n=l,2,3). Thus near t = o:(s+iE), 
n 
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t3 (s+i€) 
Fn(s+i€,t) ~ t~a(s+i€) 

t3 (s-i€) 
F (s-i€,t) ~ n . . 

n a(s+1€)-a(s-1€) (3.51) 

Substituting these into (3.49), multiplying through by t-a(s+i€), and taking the 

limit t-a(s+i€) -+ 0, we obtain 

(3.52) 

Taking the quotient of the last two equations, we obtain 

t32 (s+i€)
2 

= [:>1 (s+i€)t3 (s+i€),(4m 
2 < s < 16m 

2
) 

3 :n: :n: (3.53) 

It is to be noted that our proof depends on the fact that there is no other 

state degenerate with the 2rt state. Similarly a generalization of the proof to take 

the spin of the nucleon into account works only because the pion has spin zero, 

and would not go through if there is spin degeneracy. If the 2:n: state were degeneracy, 

the proof would have to be modified by considering new linear combinations of the 

degenerate states. Since (3.53)is analytic ins, we can continue it into the complex 

s plane. It therefore holds for all s. The reduced residue y(s) defined in (3.43) 

also satisfies (3.53), because the factors in its definition trivially factorize. 

We can therefore write, as a solution to (3.53), 

g (s)g (s) 
:n::n: :n::n: 

g:n::n: ( s) gNN(s) 

gNN(s)~N(s) (3.54) 

The same proof can be used to show that the discontinuity function of a Regge 

cut has similar factorizability, for a Regge cut may be thought of as a continuous 

distribution of Regge poles. 

G. Complication Due to Spin and Intrinsic Quantum Numbers 

In order to apply the formulas we have derived to actual experiments, we have 

to understand, at least qualitatively, how our results are affected by the spin and 

intrinsic quantum numbers of the external particles. We now give a brief discussion 

of this. A detailed consideration of spin will be postponed till later. 

If the particles have spin, we must specify their helicities Aa' Ab' Ac' and Ad 
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as well as their momenta. We do this by using the 

* 
helicity amplitudes f d b(s,t) 

c ;a 
of Jacob and Wick , where cd;ab is an abbreviation of Ac,Ad;Aa,Ab· The s- and t-

channel amplitudes are no longer identical but are 

That is, 

related by a crossing matrix. 

fH s ( s , t) == I .m RH I ( s , t) fH I t ( s , t) 

H' 

(3.55) 

where Hor H' denotes the relevant set of helicity indices. The crossing matrix 

** 1"J1,HH' has been calculated by Trueman and Wick For our present purposes we only 

need to know that it is a real orthogonal matrix: 

m-m== 1 . (3.56) 

The unpolarized differential cross section in the s channel is given by 

do 
dn 

1 
2 

411'. s 

kf 1 \"'I s 2 
k:° (2J +1)(2J +l) l fH (s,t)j ' 

1 a b H 
(3.57) 

where Ja and Jb are the incident spins. Because#'Z-~== 1, this is equivalent to 

1 
2 

411'. s 

kf 1 \I t 12 
k:° (2J +1)(2J +l) i_J fH (s,t) 

1 a b H 

(3.58) 

If fHs(s,t) describes elastic scattering, a+b ~ a+b, then the optical theorem states 

s ~ 
Im< f (s,0) > == ~k(s) aT(s) (3. 59) 

where aT(s) is the total unpolarized cross section for a+b ~ anything and < > denotes 

the following helicity average: 

s 1 I s 
< f (s,O) > (2Ja+l)(2Jb+l) fab·ab(s,O). , 

a,b 

(3. 60) 

It can be shown that 

s 1 I t 
< f (s,O) > 

(2Ja+l)(2Jb+l) fb -b·a -a(s,O) , , , 
a,b 

(3.61) 

so that we can compute the s-channel total cross section directly in terms of t­

channel Regge poles. 

The helicity amplitudes are particularly appropriate for Regge pole analysis 

because they have simple partial wave expansions: 

* M. Jacob and G.C. Wick, Ann. Phys. (N.Y.) ]_, 404 (1959). 

** T.L. Trueman and G.C. Wick, Ann. Phys. (N.Y.) 1.§., 322 (1964). 
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t 
f d b (s,t) c , a 

\ (2J+l)F d bJ (t)cl J (z ) L c ,a /\µ t 
J 

A. = a-b, µ c-d (3.62) 

where dA.µJ(z) is a rotation coefficient. If a=b=c=d=O, then (3.62) reduces to the 

partial wave expansion of the spinless case. Regge poles occur as J-poles of 

F J suitably continued into the J plane. The contribution of a single Khuri 
cd,ab' 

pole a(t) to (3.62) has the same form as in the spinless case, except that the 

reduced residue now acquires helicity indices: 

t 
fH (pole) 

! (t) . 
-~ r(l-a(t))(e- 111a(t)+l)(~)a(t). (3.63) 

(11) 2 - so 

Actually the helicity amplitudes contain kinematic singularities and satisfy con­

straint equations that did not exist in the spinless case. This means that !H(t) 

have kinematic singularities, and that the !H(t) of different Regge poles may be 

related to one another at some value of t. The simplest of these constraints come 

from the requirement that in s-channel forward or backward scattering the total 

helicity be conserved. Through crossing this forces certain linear combinations 

of t-channel helicity amplitudes to vanish at these kinematic points. 

We now turn to intrinsic quantum numbers, and use isospin as an example. If 

we do not work with scattering amplitudes of definite isospin, the no further 

complication arises. For example, consider the s-channel reaction 11 p-> 11 p, with 

the corresponding t-channel reaction 11-11+ pp. Crossing between the two channels 
s - t 

is simply given by (3.55), in which f refers to 11p->11 p and f refers to 
- + 11 11 -> pp. If we decompose all scattering amplitudes into amplitudes with definite 

total isospin, however, then an isospin crossing matrix enters into the crossing 
s 

relation. For example, let fH denote the helicity amplitude for 11 p -> 11 p in 
, I t 

the total isospin state 
+ -

11 11 

I, and let fH' 1 denote the corresponding amplitude for ,I 
-> pp. Then the crossing relation reads 

s \ t 
fH' I ( s ' t) = l Ill HH I ( s ' t) c II I fH I I I ( s ' t) (3.64) 

H'I I 

where CII' is the isospin crossing matrix. It is a constant matrix independent 

of s and t. We merely outline the procedure to derive it. 

Suppressing helicity indices, and denoting a two-particle state by 

IP
1
,I

1
,m

1
;p

2
,I

2
,m

2 
>, where I is the particle isospin and m its z-component, 

crossing symmetry states 

< P3,I3,m3;p4,I4,m4ITJpl,Il,ml;p2,I2,m2 > 

= < -p2,I2,-m2;p4,I4,m4JTjpl,Il,ml;-p3,I3,-m3 > (3.65) 
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Now, both sides can be decomposed into linear combinations of amplitudes of 

definite total isospin and give a relation of the form 

(3.66) 

where a,b, are certain Clebsch-Gordan coefficients. We may now use the orthogonality 

relations of Clebsch-Gordan coefficients to solve (3.66), resulting in the crossing 

relation (3.64). The only delicate problem in the derivation is the choice of 

phases for the coefficients a and b. A clear and elementary discussion of this is 

given by Carruthers and Krisch.* They have worked out isospin crossing matrices 

for many useful cases. For reference we cited some of these in Table I. 

* P. Carruthers and J. Krisch, Ann. Phys. (N.Y.) 33, 1 (1965). 
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Table I - I-spin Crossing Matrices 

s 
f

1 
(s,t) I st t ell, fl, (s,t) 

I' 

!~It 0 1 2 

1 5 
s: :n::n: -> :n::n: 0 

3 
1 

3 
t: :n::n: -> :n::n: est 1 1 _2 1 

3 2 6 u: :n::n: -> :n::n: 
1 1 1 

2 
3 2 6 

!~It 0 1 

_;) 
est 1 

(+' s: :n:N-> :n:N 
2 

t: :n::n: -> NN 
3 u: :n:N-> :n:N 
2 .k 

(6) 2 

!~It 
1 3 
2 2 

csn 1 

(1 D same for 
2 

s: :n:K -> :n:K etc. 
3 
2 

1 3 I~I 2 2 s t 

est 1 

(:1 -n s: NN-> NN 
2 

t: NN-> NN 
3 

u: NN-> NN 2 

I~t 1 3 
2 2 

1 

(t n same for c 
2 sn 

s: KK-> KK etc. 
3 
2 

- 189 -



IV. Some Simple Physical Consequences 
A. Single Pole Dominance 

Suppose a(t) is the leading Regge trajectory which can be exchanged in the 

t-channel. If there are no Regge cut$, it alone will dominate the s-channel scat­

tering when s is sufficiently large. From (3.58) and (3.63) we obtain the asymptotic 

differential cross section: 

do 1 :~ b(t)r
2

(1-a(t))I 
e-i:rca~t)±l 12 (~) 2cx(t) 

an 2 so 4Jf s ]_ 

cos k [ 2~J 1 (~) 2cx(t) kf b(t)r
2

(1-cx(t)) 2 ~ ,(signature 2 • • J{(X t so 
±1), (4.1) 

4Jf s 1 s1n 
2 

where 

b (t) 
1 1 

J{ (2Ja+l)(2Jb+l) 
a,b,c,d 

Hence (ki/kf)(do/dn) has a very simple asymptotic s-dependence: 

do 
an 

(4.2) 

(4.3) 

k. d ]_ o 
If we plot tn(~ dn) vs. s 

tn(~) at fixed t, we should obtain a straight line whose 
so f 

slope is 2cx(t)-l. This would enable us to determine the trajectory cx(t) for negative 

values of t by comparison with experiments. Most of the trajectories determined 

so far conform remarkably well to a straight line: 

B. Total Cross Sections 

cx(t) = ex +cx't 
0 

(4.4) 

By using the optical theorem (3.59) and the formulas (3.61) and (3.63), we 

can calculate the asymptotic total cross section in the s-channel in terms of the 

leading Regge pole cx(t) in the t-channel: 

cacb cxo-1 
(~) 

r(cx
0

) s
0 

where oT is the total cross section for a+b ~ anything, and cx
0 

c (n=a,b) is defined by 
n k -1 k 

(4Jf2S )2I -0 nn 
en = -(2_J_+-l)- gA. -A. (O) ' 

n ' 
A. 

(4.5) 

cx(O), and 

(4. 6) 

nn 
where~ (t) is the coupling [in the sense of Eq. (3.54)] of the t-channel Regge 

µ -
pole to the nn system with helicities A.,µ. Since the Froissart bound* requires 

>~ See Khuri 's lee tures in this Summer Schoo 1. 
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oT < c(tns)
2

, we see that no Regge trajectory can have an intercept a0 greater than 

unity. If a0=1 then according to (4.5) oT approaches a finite constant, otherwise 

it approaches zero by a power law. 

It seems attractive to assume that there is a trajectory with a
0

=1, having 

the quantum numbers of the vacuum. It should have positive signature so that it 

does not create a zero-mass spin-one hadron. If such a trajectory exists, it 

would be exchanged in all elastic scatterings, and by (4.5) all total cross sections 

will approach constants ass ->co. Furthermore, the total cross sections for a+b 

and a+b will be equal in that limit, because the trajectory will in both cases be 

coupled to aa and bb pairs, thus giving the same cacb. These are just the conclu­

sions of the Pomeranchuk theorem, and this trajectory is named the Pomeranchuk 

trajectory or the Pomeron and is denoted by C),(t). However, experimental data so 

far have neither clearly confirmed nor ruled out the Pomeron. If it exists, then 

the factorized form of the coefficient in (4.5) predicts relations among asymptotic 

cross section, for example 
2 o (co) = o (co) o (co) 

:rrN :rr:rr NN 
(4.7) 

Assuming that at plab = 30 GeV/c, the total cross sections have essentially 

attained their asymptotic limit, as is consistent with the trends in the experi­

mental data, one finds 

o (co) 
J(J( 

16 mb. 

This number, of course, has not been measured experimentally. 

(4.8) 

While the Pomeron (assuming that it exists) gives the asymptotic constant 

cross section. The way this limit is approached depends on lower-lying Regge 

trajectories. Their effect on the total cross section is simple to calculate via 

the optical theorem, because the latter involves the amplitude linearly, so the 

contributions from different trajectories are simply additive. Consider, for 

example, pion-nucleon scattering. The s channel is :rr+N -> :rr+N, and the t channel 

is :rr+:rr -> N+N. The quantum numbers of the t channel are P +(-l)J, G = +l, and 

I = 0, 1. The known 

Hence for large s 

trajectories with these quantum 

I 0: P, 

I I: p 

+ f
0
-(s,t) 

t 
f

1 
(s, t) 

fo (signature 

(signature 

numbers are 

+l) 

-1) (4.8) 

(4.9) 

where K_ = K (s,t), with K (s,t) given by (3.48). Using the isospin crossing 
-F °i> a 

matrices of Table I, in Sec. III, we find 
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s 1 
(Kp+Kf)+Kp f

112 
(s,t) --r 

( 6) 2 

s 1 
(K +Kf)-12K f

312 
(s,t) --i; 

(6) 2 
p p 

which leads to 
1 +-1- - ko o + --r op k 2 p 

1( p (6) 2 ( 6) 2 

1 1 ko o --1: op +-- -k 2 p 
1( p (6) 2 ( 6) 2 

Using the approximate value O:p(O) ~ o:f
0

(0) ~ 12, we have 

o + (s) 
1( p 

-~ 
o +(cf-c )s 
co p 

-~ o _ (s) = o +(cf+c )s 
l1P co p 

( 4 .10) 

(4.11) 

(4.12) 

where 0
00

, cf, cp are constants. The constants cf and cp are proportional to residue 

functions evaluated at t=O. These residue functions must be positive when t as at 

the squared mass of a particle, but may change sign by the time we extrapolate to 

t=O. Assuming, however, that cf and cp are positive, we have 

o _ (s) > o + (s) 
11'.P l1P 

(4.13) 

which happen to be experimentally correct so far. 

c. Diffraction Scattering 

In any elastic scattering, we expect the amplitude to be dominated by Pomeron 

exchange for small t and larges (i.e., high energy scattering near the forward 

direction): 

f(s,t) )' (t)I'(l-o: (t)) 
p p 

-i1(0: (t) 0: (t) 
e p ±1 (.a__) p 

2 so 

as t ~ 0, o: (t) ~ 1 by hypothesis. Then 
p 

-i1(0: (t) 
e P ±1 

I'(l-o:p(t)) 2 

t ~ 0 2 

Hence the amplitude is pure imaginary at t=O: 
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f(s,O) 
k a (O) 

i (rc2) 2 y (O)(~) P 
p so (4.15) 

This means that the ratio of the forward elastic cross section to the total cross 

section is as small as possible consistent with unitarity. That is to say, one may 

physically attribute the elastic scattering to the effect of all inelastic reactions. 

One calls this diffraction scattering because the same picture holds in the diffra~ 

tion of light by a completely absorptive sphere. In that classical example, the 

incident light casts a shadow behind the sphere. The shadow is of course "caased11 

by the absorption (inelastic effects), but its existence requires that there be a 

definite amount of elastic scattering to cancel the incident wave behind the sphere. 

Since the Pomeron has positive signature, the elastic cross section is 

dcr 
dn 

It is convenient to define 

do 
dt 

c (t) 

s 2(CXp(t)-1) 
~ c(t) (-) 

so 

2 2 2 l'( 
rcyp (t)r (1-q_,(t))cos [zq_,(t)] 

A qualitative sketch of do/dt is given below. 

do 
dt 

oo 
e 

2 (a(O) -1) 
00 ex s 

s fixed 

Nonsense wrong-signature points 

-t 

1 

(4.16) 

(4.17) 

This cross section exhibits certain characteristic features. Z(a (O)-l) 

1. The value of cr
0 

(dcr/dt)t=O varies with s like (~) p so that 
so 

it is independent of s if ap(O)=l. The constantcy of cr
0 

is indeed experimentally 
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observed in all elastic scatterings. 

2. Suppose that the trajectory is linear in t, 

then (4.16) becomes 

dcr 
dt 

s 
2 (ex -1) ex' t.tn-

c (t) (~) 0 e so 
so 

(4.18) 

(4.19) 

If c(t) varies slowly for small t, then the dominent t dependence comes from the 

exponential factor. Hence the cross section will show a forward peak with a char­

acteristic width 
1 

(4.20) 

which shrinks logarithmically with s. This shrinkage is observed in some but 

not all elastic scattering, possible because, in existing experiments, the energy is 

not sufficiently high, so that lower trajectories are still important. 

3. dcr/dt vanishes at the nonsense wrong-signature points, ex (t) = -1,-3,-5, .. , 
p 

where the signature factor is zero, provided that ~(t) has no poles there. This 

would produce dips in the cross section, similar to the diffraction minima outside 

of the central maximum in Fraunhofer diffraction. It was, however, pointed out by 

Jones and Teplitz>'< and Mandelstam and Wang,>'<* that ~(t) may have poles at 

precisely the nonsense-wrong signature points. The residues of these poles are 

proportional to certain integrals over the "third double spectral function'' ptu" 

Whether or not these poles actually exists is a dynamical question. We can only 

say that there is no general reason to expect a dip to occur except at nonsense 

wrong-signature points. If a dip does occur at such a point, then the type of pole 

mentioned above is either absent for some reason, or that its residue is small. 

It is interesting to compare the characteristic features discussed above with 

that of the optical model of scattering, which includes the Fraunhofer diffraction 

of light. We start with the partial-wave expansion 

f(s,t) = I (2.t+l)P .t (z)F .t (s) 

.t=O 

.k ~ 2i5 (s) 
1tf~ 22 L (2.t+l)P.t(z)(e .t -1) (4.21) 

.t=O 

At high energies assume that many partial waves contribute, so that for small angle 

* 
** 

C.E. Jones and V.L. Teplitz, Phys. Rev. 159, 1271 (1967). 

S. Mandelstam and L.L. Wang, Phys. Rev. 160, 1490 (1967). 
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scattering we can use the approximation 

P.t(cosB) ~ J 0 (.t8) 
.t ~ 00 

e ~ o 

b .t/k (4.22) 

where b is the classical impact parameter. We further assume that absorption 

effects are important, so that 5.t(s) is pure imaginary, and that it is only a 

function of b. Thus 00 

f(s,t) ~ 4~k
2 

fabbJ (b(-t)~)X(b) 
i )G 0 (4.23) 

0 

where 
2i5.t(s) 

X(b) = e -1 (4.24) 

is real by assumption. The model is then specified by the choice of X(b). 

Suppose that the target is a black sphere with a sharp edge. Then all 

partial waves are completely absorbed if the impact parameter is less than the 

radius of the sphere, and completely unmodified otherwise. This corresponds to 

choosing 

X(b) 

Then 

f(s,t) 

b < R 

b> R 

R 

i41Ck
2x

01
fibbJ

0 
(.t (-t) ~) 

0 
. 2 R k 
i41Ck x

0 
~ J 1 (R(-t) 2

) 

(-t) 2 

(4.25) 

(4.26) 

2 
This gives a diffraction peak of half width .0.t ~ l/R , with diffraction minima 

~ occurring at the zeroes of J
1

(R(-t) ). 
k 

The first zero is at R(-t) 2 = 3.83 which 

corresponds to a scattering single 

(4.27) 

a formula well-known to amateur telescope makers. 

As a second example, let us consider an absorptive sphere with a fuzzy edge, 

represented by 

X(b) 

This leads to 
. 2 R

2 
f(s,t) = i41Ck x0 2 

e 

1 2 l! t 

(4.28) 

(4.29) 

2 
and the cross section exhibits a diffraction peak of width .0.t ~ l/R but no 
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diffraction minima. 

From these examples we gather that the width of the diffraction peak is 

related to the size of the target, while the depth of the diffraction minima is 

related to the sharpness of the edge of the target. If we compare this with Pomeron 

exchange, we see that the effective radius of a hadron as seen by another is 

R:::: s .k 
(4a:'tn-) 2 

so 
(4.30) 

which increases slowly with energy. We cannot say, however, that the presence of 

nonsense wrong-signature dips implies that hadrons have sharp edges, because this 

mechanism for dips is entirely different from that in the optical model. The 

scattering amplitude in the optical model is pure imaginary for all t - a consequence 

of the assumption that X(b) is real. In Pomeron exchange, however, the scattering 

amplitude is pure imaginary only at t=O. Away from t=O a real part comes in through 

the signature factor. It is precisely the interference between the real and 

imaginary parts that give rise to nonsense wrong-signature dips. If we must make a 

classical picture of a hadron according to the Regge picture, we would have to 

say that a hadron is a fuzzy black sphere surrounded by a real potential which 

exerts a direct and an exchange force. 

D. The p Trajectory 
0 0 + 

In the charge-exchange scattering n p --+ n n, the t-channel is n n --+ np, with 
J 

quantum numbers I=l, P=+(-) , G=+l. The only known Regge trajectory with these 

quantum number is the p. Hence one may hope to extract its properties unambiguously 

from experiments, using the procedure described earlier. The result of such an 

analysis is shown in the accompanying figure, and we note that a(t) is consistent 

with a straight line which extrapolates through the p and g mesons. 

In the experimentally cross section, a marked dip is observed at t 
2 

-0.58GeV , 

which is consistent with the first nonsense wrong-signature point, where a =O. 
p 

The single pole model predicts that the spin-flip and the spin-nonflip ampli-

tudes have the same phase, which comes entirely from the signature factor. Hence 

it predicts that the polarization is zero. Experimentally, however, the polarization 

is not zero. This indicates that perhaps a second Regge pole with the same quantum 

numbers is the p, or a cut is present. 

E. The N and!:::, Trajectories 

The N and !:::, trajectories may be studied in the backward scatterings 
+ + n p pn and n p--+ pn (i.e., in the region of small u and large s), as illustrated 

in the sketch below. 
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3.0 

2.0 

1.0 

0.5 

0 

-0.5 

-1.0 

FROM HOHLER et al 
PHYS. LETTERS, 20, 79 

(1966) 

I 1• 1.57•0.9H 
-2.0 -1.5 -1.0 -0.5 

+ 
1( 

~ p 
\ 

\ 

u ~ 
\ 
1--
' \ + 

p '/' \1( 

s 

g 

~ 
p 

0 0.5 1.0 1.5 2.0 2.5 3.0 

t [G~VJ2 

p 

u~ 

\ 

~ f -
\ 1( 

s 

At large s and fixed u, both reactions are controlled by trajectories with baryon 

number B=+l. The u channel for n p -+ pn is a pure I = 3/2 state and so contains 
+ + only the!:,. trajectory. The u channel for n p-+ pn is a mixture of I = 1/2 and 

I = 3/2 and so contains both the N and the!:,. trajectories. However, this cross 

section is much larger than that for n p -+ pn , so we assume that the contribution 

of the I 3/2 state can be neglected, with the result that only N is exchanged. 

Thus the relevant amplitudes may be written 

s 
f + (s,t) 

1( p 

s 
f _ (s, t) 

1( p 

a (u) 
s N 

-n~ (u)(2a_(s)+l)(~) 
N N s

0 

-in(~(u)-~) 
[e +l] 

sinn(ON-(u)-~) 

-in(a
6 
(u)-~) 

[e -1] 
sinn(a

6 
(u)-~) 
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The salient feature of these formula is that, owing to the difference in signature 

of N and 6, f + s has a dip at the nonsense wrong-signature point a_(u)=-~, whereas 
:re p N 

no dip is expected for f _ s at a (u)=-.lz because that is not a nonsense wrong-signa-
:rc p !:::,. 

ture point. This expectation is dramatically verified by experiments. Thus we 

see in both the cases of the p and the N trajectories that the poles of the residue 

function, which theoretically may occur at nonsesne wrong-signature values, do not 

seem to be present. 

If we adopt the point of view of Regge poles (rather than Khuri poles), then 

(4.31) merely represents the first term in the expansion of (jJ (z ) in powers of z a u µ 

For equal mass scattering this is sufficient, for z 
u 
~oo ass ~oo. In the present 

case, however, the last property does not hold, for 

z 
u 

2 2 2 
u(s,t)-(m -µ) 

2 2 
[u-(m+µ) ][u-(m-µ) ] 

4 
u(s-t)-m 

2 2 
(u-m ) 

(4.32) 

where m and µ are respectively the nucleon and pion mass. In the exact backward 

direction e = :re we have u ~ 2m4 /s, hence 
s 

z 
u 

(at e =:re) 
s 

(4.33) 

Therefore we must keep all terms in the expansion of cfl (z ). This leads to a a u 
difficulty,namely when we re-expand the series in powers of s, the coefficients of 

all but the leading term diverge at e =:re. 
s 

Since this would violate analyticity, 

the non-leading powers must, in fact, be absent. This would call for the existence 

of an infinite family of Regge poles, spaced successively one unit beneath the 

leading one, with re~idue functions so arranged to effect the cancellation of all 

terms except the leading one. These new trajectories are called daughter trajec­

tories. In this case, the leading pole plus the infinite family of daughters just 

precisely make up one Khuri pole. The interest of this theoretical problem lies 

in the fact that it illustrates a constraint placed on the existence of Regge poles 

by analyticity: You must take the whole family or none. 

If we take the point of view of Khuri poles from the beginning, then this 

particular problem does not arise. However, when the trajectory of the nucleon 

Khuri pole passes through ~' it calls for an infinite family of daughter Khuri poles 

to make up precisely one Regge pole, in order to make a nucleon of spin~. Thus 

it seems that a Regge pole or Khuri pole is generally accompanied by an infinite 

family. A more detailed study of daughter trajectories is given by Freedman and 

Wang.>'< 

>'< D. Freedman and J.M. Wang. Phys. Rev. 153, 1596 (1967). 
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V. REGGE CUTS 

A. Regge Cut from Two-Particle Unitarity 

Although we have assumed until now that there are only poles in the t plane, 

elastic unitarity strongly suggests that there exist Regge cuts as well. To see this 

let us consider equal mass spin zero scattering, and consider a term in the unitarity 

relation corresponding to intermediate states containing two particles of the same 

mass as the external particles: 

1 k f * Imf(s,t) = - 2 --.k dQ 1 f 2 (s,t2)f1(s,t 1) 
8rc ( s) 2 

' 

(5. 1) 

The kinematics is illustrated in the sketch, with 

1--- --> 12 2 
t = - kf-ki -2k ( 1-cose) 

t 
k' 

1--- --> 12 2 
t = - k 1 -k. -2k (1-cos8 1 ) 

1 l. 

1--- --> 12 2 
t = - k -k' -2k (1-cos)') 

2 f 

s 

cos)' = cos9cos8 1 +sin8sin8 1 cos~ 1 (5.2) 

A geometrical construction of t, t 1 and t
2 

is given in the sketch below, from which 

we see that 

.k 
(-t ) 2 

1 

k 
i 

.k 
r---~~--<-t2)2 

(5.3) 

The equality is actually never attainable, but as s ->co at fixed t, we have e--> 0, 

and the equality is almost fulfilled when ki, kf, k' are coplanar: 
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k k k 1 
(-t ) 2 + (-t ) 2 = (-t) 2 + 0(-) 1 2 s 

[for e=e•+y, s ~w, t fixed (i.e., e ~ O] (5. 4) 

We now lets become large and assume that f 1 (s,t 1) and f
2
(s,t

2
) are each 

dominated by a single Regge pole: 

f
1
(s,t

1
) 

Hence 
0 

Imf (s, t) 
1 k =---, 

8n2 (s) '2 
,{ 
-4k2 

Let the maximum of the exponent of s be denoted by 

We can then transform the integral to the form 

where 

ex (t) cc 
Imf(s,t) = jd.tD(.t,t)s.t 

- 00 

0 2n 

D(.t, t) = -1z f dt 1 facp 1A/ (t 2)A 1 (t
1
)5 (.t-ex1 (t

1
)-0'.z (t

2
)+1) 

8 ' Jc 
rr_oo O 

(5.5) 

(5. 6) 

(5.7) 

(5.8) 

(5. 9) 

The right hand side of (5.8) looks like the contribution of a continuous line of 

Regge poles in the .t plane starting at ex (t). Hence there is a Regge cut from 
c 

.t = ex ( t) to .t = - oo. 
c 

Assume that ex
1
(t) and ex

2
(t) are increasing functions oft, so that the 
k k k k 1: 

maximum in (5.8) occurs at (-t1) 2 + (-t2) 2 = (-t) 2
• Putting x (-t1) 2

, y = (-t2) 2
, 

the maximazation condition reads 

where A is a Lagrange multiplier. The solution is 

where x,y are such that 

ex (t) 
c 

2 
dex

1 
(-x ) 

dx 

2 2 ex (-x )+ex (-y )-1 
1 2 
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For linear trajectories a. a
0

.+o:. 1 t (i=l,2), the explicit solution is 
}_ }_ }_ 

a 'a' 1 2 
ac(t) = a01-+o:02-l) + a1'-+o:2' t (5.13) 

In particular, for a 1(t) a2(t) = ao+o:'t, we obtain 

1 
ac(t) = (2ao-l) + za•t (5.14) 

This result was first derived in a slightly different way by Amati, Fubini and 

Stanghellini.* The type of Regge cuts obtained here is usually referred to as an 

AFS cut. 

Little is known about the discontinuity D(t,t) in (5. ) except that it must 

vanish at t =a (t).** If we assume 
c 

D (t, t) --> 
a 

c (t) (a (t)-t) 
c t __, a 

c 

where a > 0, then for large tns we have 
co 

Imf(s,t) --> 
tns -->co 

a (t) r 
c (t) s c , dx 

0 

a -xtns 
x e r(a+l)c(t) 

a (t) 
c 

s 

(tns) a+l 

(5 .15) 

(5. 16) 

Thus a Regge cut contribution differs from that of a Regge pole by a logarithmic factor. 

How high the energy should be in order that (5.16) be a good approximation depends 

on a more detailed knowledge of D(t,t). Since tns is a slowly varying function, 

(5.16) can hardly be distinguished from a Regge pole contribution over a limited 

range of s. 

The argument we have given for the AFS cut is of course not rigorous, for 

the inelastic contributions to unitarity, which have been neglected, may alter our 

conclusion. These contributions consist of additive terms to the right side of 

(5.6), and they are positive at t=O. They may cancel the AFS cut, and replace it by 

a higher-lying Regge singularity. All we can say is that this seems implausible. 

B. Some Model Calculations 

The argument given earlier for the AFS cut is based only on elastic unitarity, 

and no appeal has been made to any detailed dynamical theory. We would like to give 

a brief qualitative description of some calculations based on Feynman diagrams. Any 

single Feynman diagram behaves asymptotically like sp(tns)q, where p and q are 

fixed integers, and so does not exhibit Regge behavior. However, if we compute the 

leading asymptotic behavior of the n-rung ladder shown in the sketch and sum over n, 

* D. Amati, S. Fubini and A. Stanghellini, Physics Letters!, 29 (1962). 

** J. Bronzan and C.E. Jones, Phys. Rev. 160, 1494 (1967). 
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t~~ 
t I 

s 

we do obtain asymptotic behavior of the 

form sa(t). Therefore this sum of Feynman 

diagrams contains a Regge pole. The 

original Amati, Fubini and Stanghellini 

work was, in fact, based on a sum of 

Feynman diagrams of the type shown in the sketch below; but they only made an 

approximate calculation. The exact sum of 

m rungs 

t --4 A B 

graphs can be written in the form of a 

dispersion integral, in which the absorptw e 

parts are to be obtained by "cutting" the 

graph (i.e., replacing propagators by 

5-functions) in all possible ways and 

s 

adding the contributions. The original AFS 

calculation retains only the two-particle 

absorptive part by cutting the graphs along 

AB. This is not the same as two-particle unitarity, but the mathematics is similar 

and they obtained the cut whose branch point is given by (5. ). 

Mandelstam* has shown, however, that if one takes into account all of the 

multiparticle absorptive parts in the AFS calculation, the discontinuity of the AFS 

cut D(t,s) is identically zero for s on the physical sheet. He considers another 

class of Feynman diagrams, of the type shown in the sketch below, and shows that this 

does give rise to a Regge cut with the same 

branch point as the AFS cut. The essential 

difference between the new class of diagram 

and the old one is that the new class 

consists of non-planar graphs, representing 

an amplitude having a non-vanishing third 

double spectral function p , whereas p = 0 
tu tu 

for the AFS graphs. The lesson learned from 

these calculations seems to be that Regge 

t~ 

s 

cuts owe their existence to the third double spectral function. In this respect, 

they has a common root with the poles of Regge residues at nonsense wrong-signature 

points. 

C. Effect of Regge Cuts in Scattering 

If we accept the existence of the Pomeron and that of AFS cuts, then the 

Pomeron would generate an infinite family of cuts, which would have an appreciable 

effect on elastic scattering ass ->oo, 

-------1~t-~2-&!I§t_§~~-gQ~_th~_fQ~~I~~-g~nerates cuts, and for this purpose assume 

* S. Mandelstam, Nuovo Cimento 30, 1127 (1963). 
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that the Pomeron trajectory is linear: 

a (t) = l+o:'t 
p 

(5.17) 

The AFS cut generated by the exchange of two Pomeron in the t-channel has branch 

points at 

°2(t) l+ ~·t (5.18) 

We can now take f
1
(s,t

1
) in (5.1) to be dominated by the PP cut and f 2 (s,t2) to be 

dominated by the Pomeron. Then we find a new AFS cut which may be looked upon as 

the effect of triple Pomeron exchange: 

a
3

(t) = 1 + a'(~a')t = l+ -hx•t 
a•+~a' 3 

(5.19) 

By repeating this argument, we find that the exchange of n Pomerons gives rise to 

an AFS cut with branch point at 

1 a (t) = l+ -o:•t 
n n (5.20) 

The trajectories of the family of cuts are shown in the sketch below. 

How these cuts may affect high-energy 

scattering, of course, cannot be predicted 

before we have some dynamical information. 

Let us, however, make a reasonable guess. 

Let us assume that the coupling of the PP 

cut is much weaker than that of the Pomeron, 

and that the couplings of the higher cuts 

are pregressively weaker still. Then at 

small t, the separation of P-P and P becomes 

a(t) 

greater, and the P-P will take over. But by then the higher cuts also become well-

separated, so that their total effect may be more important than that from any single 

one. Thus for a given large s, there is a small neighborhood of t=O in which the 

Pomeron dominates, and the cross section will have a diffraction peak which shrinks 

logarithmically with increasing s. Outside of this neighborhood, the PP cut and 

possible other higher cuts too, become important. The cross section then falls off 

less rapidly with -t in this region, since the slope of the cut trajectores are 

smaller. Furthermore, as s is increased, the separation between a (t) and a (t) 
P PP 

becomes greater, and so the neighborhood in which the Pomeron dominates shrinks 

with increasing s. Thus the cross section may have a qualitative behavior as 

illustrated in the sketch below. 
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.tn dcr 
dt 

dominant 

cuts dominant 

-t 
th 

We can make a crude calculation by assuming that the contribution of the n 
n a (t) 

cut to the scattering amplitude has the form g s n , where g may have a weak 

dependence on s. Then the scattering amplitude can be written as 
00 

l+la•t 
00 

f(s,t) ) n n I exp(ntng+ a't.tns] (5.21) g s = s 
L-1 n 

n=O n=O 

Ass ~oo, we convert the sum into an integral which we evaluate by the method of 

steepest descent: 

f(s,t) ::::: s 

0 

exp[ntng+ a•t.tns] ~ s 
n 

- a•t.tns exp[ntng+ _ ] 
n 

where n is the value of n which maximizes the exponent: 

Hence 

n 
k 

[a't.tns/.tng] 2 

f(s,t) ~ 
~ -c(-t) se 

~ dcr ~ .!. e-2c(-t) 
dt 1( 

k 
c = 2[a'.tns(-.tng)] 2 

(5. 22) 

(5.23) 

(5.24) 

It is interesting that the t dependence is the fastest decrease allowed by the 

Cerrulus-Martin bound.* If we asstnne that -(.tns)(.tng) is a constant, then at a 

fixed t, the cross section dcr/dt would fall with increasing s towards a limiting 

envelop. Experiments on pp scattering indicated that this might be so, but a more 

definite conclusion must await future experiments at higher energies. 

;--F~-Cerrulus-and-A~-Martin:-Physi~s-Letters ~. 80 (1964). Also see Khuri 1 s lectures 

in this Summer School. 
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VI. TOWARDS DYNAMICS? 

One of the motivations that we have mentioned for studying Regge poles is 

the hope that it helps to formulate the bootstrap hypothesis, We now discuss 

some important advances in this respect. 

A. Finite-Energy Sum Rules. 

By combining analyticity and Regge asymptotic behavior, one can deduce 

an interesting sum rule that relates s-channel resonances to t-channel Regge 

poles. For this purpose note that Regge asymptotic behavior holds along any 

direction in the s-plane, if it holds at all. This is because (J_ (z) __, zCi ex z->co 
along any direction in the z-plane, hence the ratio of Regge to background 

terms is of the same order in any direction. 

It is convenient to introduce 

\) 
s-u 
2S (6.1) 

0 

where s is an arbitrary scale, and use \!,t as independent variables. We de­
o 

compose the scattering amplitude into terms symmetric and antisymmetric in\!: 

f(\!,t) = f+(\!,t) + f-(\!,t), 

± ± 
f (\!,t) = ± f (-\!,t). 

(6.2) 

Clearly f±(\!,t) admits only t-channel Regge poles of signature ±1. In the com­

plex\! plane, f±(\!,t) has cuts along the real axis and no other singularity. 

If there are bound state poles, we include them as part of the cuts. The branch 

points of the cuts are functions of t, and for some t the right and left cuts 

may overlap. In that event we carry out our development for a value t for which 

they do not overlap and continue the results to the desired t, By Cauchy's 

theorem, then, 

1 
2ni § 
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where n is an integer, and the closed 

contour is shown in the accompanying 

sketch. Note the circle is of 

finite radius N. Since the contour 

has reflection symmetry with re­

spect to v = 0, (6.3) is a trivial 

identity unless the integrand is an 

odd function of v. This means that 

(6.3) has content only for 

-\) ( t) 
0 

+ 
{ 

even integer for f (v,t) 
odd integer for f-(v,t), 

n = 

\) ( t) 
0 

v plane 
t fixed 

(6.4) 

and we shall only consider these values of n. Now separate the integral into an 

integral around the cuts plus that along the circle. Using the antisymmetry 
n ± 

of\! f (v,t), we obtain 

\) 0 

n ± 1 I dv v Imf ( v, t) + - C 2ni 0 ' (6.5) 

where C denotes a circle of radius N, excluding the two points on the real 

axis, and 

± 
Imf (v, t) 

Regge asymptotic behavior states that for large \! 

± 
f (v,t) \ K (v,t) + O(v-L) 

hL O! 
sgn=± 

(6.6) 

(6. 7) 

where K (v,t) is given earlier in (3.48a). The integral of v~ over C is 
O! O! 

elementary: 

J dv \)~()!<\), t) 
c 

A J dv vn[(-v)O! ± vO!J 
c 

TT 

± 2iA w+A+l I de 
-TT 
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± 4 iA s inrr ( O'+n+l) tf+n+l I (O'+n+l) 

le 
where A= -yf(l-O')/(rr) 2

, 

Therefore (6.5) becomes 

JN [ ( _) n tf+n+l 
d\! \!n Imf±(\!,t) ± '\ + ~ ---] + O(N-L) 

\)O a>if:t (rr)'2 f (Cl!) O'+n+l 

sgn=±l 

-L and the above explicitly for f+ and -Neglecting O(N ), writing f 
' 

for sufficiently large N: 

I: n + I 
y Na+n+l 

,(n odd) d\! \) Imf ( \!, t) ~ le 
0 a,sgn=+l (rr) 2 (a+n+l) f(a) 

we 

JN d\! 
m 

Imf- ( \!, t) ~ I 
y tf+rn+l 

· (m even) \) 

(rr) '2 (O'+m+l) r (Cl!) \) Cl!, sgn=-1 0 

(6.8) 

0 

(6.9) 

have 

(6.10) 

These are the finite-energy sum rules (FESR) first derived by Dolen, Horn and 
i'\ 

Schmid by a slightly different method. They have given some actual numerical 

examples, which we shall not go into. 

In the s-channel physical region, \! (t) often becomes negative. The ana-
o 

lytic continuation of (6.10) means that the original contour of integration 

actually looks like that shown in the sketch below. 

We can, in fact, replace \! by 0, if we understand 
± 0 

Imf to be the discontinuity taken between points 

a and b shown in the sketch. a v=O 

b 

In these FESR, an integral of the amplitude extending over the s-channel 

low-energy region, which contains s-channel resonances, is approximately 

equated with the sum of t-channel Regge poles, which dominate the s-channel 

high-energy scattering. It therefore connects low-energy and high-energy 

phenomena, and connects exchanged particles (which produces a "potential") 

with resonances (which are "due" to the potential). Thus by combining ana­

lyticity with the Regge hypothesis, we begin to see some manifestations of the 

bootstrap. 

*--------------
R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768 (1968). 
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B. Duality. 

To explore the dynamical implications of the FESR, we have to make 

simplications in order to form an approximate picture of their real content. 

Suppose that in (6.10) the integrals on the left side can be separated in some 

* manner into contributions from narrow resonances and a background. Harari 

conjectures that the background approximates the Pomeron contribution on the 

right side, while the narrow resonances add up approximately to the rest of 

the Regge poles. This division is of course ambiguous and cannot be made more 

precise until a dynamical theory emerges. We accept this conjecture, however, 
± 

as a first approximation. That is, we approximate f on the left side by a sum 

of narrow resonances, and leave out the Pomeron on the right side, if it is 

there. Then in the v plane for f±(v,t), the right and left cuts are replaced 

by a series of poles that were originally on unphysical Riemann sheets, as in­

dicated in the sketch below. 

In this approximation the 

of the FESR may be stated as 

follows: At a given t the 

sum of residues (generally 

t-dependent) of all the 

poles within a large circle 

of radius N is proportional 
a+l 

to N where a = a(t) is the 

leading non-Pomeron Regge trajectory 

v plane 
t fixed 

Real poles 
approximating 

the cut 

in the t-channel. The criterion for large N is that the leading trajectory 

dominates over the next one. Thus, although any one of the poles produces for 

large Na contribution cr N- 1 , the sum total of them gives Na+l We say that the 

direct-channel resonances add up to a Regge pole in the crossed channel (which 

generates crossed-channel resonances). Conversely, a crossed-channel Regge 

pole already contains the contributions from all direct-channel resonances 

below a large energy N. This phenomenon is referred to as duality. 

As defined above, duality is an innnediate consequence of the FESR plus 

the narrow-resonance approximation. Of these, the FESR are on relative firm 

ground, both theoretically and experimentally. Thus a test of duality in this 

form is mainly a test of the narrow-resonance approximation. An interesting 

experimental test has been made by Schmid.t He calculated numerically the 

----------------
* H. Harari, Phys. Rev. Lett. 20, 1395 (1968). See also Harari's lectures in 

tc. 
this summer school. 

Schmid, Phys. Rev. Lett. 20, 684 (1968). 
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partial wave projection of the amplitude for nN charge exchange scattering 

from p-trajectory exchange, which we write in a simplified way ignoring spin: 

+l 

Fi(s) = ~J_ 1 dz Pi(z) 1-y(t)f(l-a(t)(e-ina(t)_l)va(t)J, (6 .11) 

where the parameters of the p trajectory are taken from fits to actual scatter­

ing data. He found that Fi(s) when plotted in the Argand diagram moves in a 

loop as a function of s, as shown in the sketch below. 

Such loops are also made by a Breit-Wigner 

resonance of spin t. For a narrow resonance 

the top of the loop corresponding to the mass 

of the resonance. By interpreting the loops 

as resonances, Schmid found a semi­

quantitative correspondence between 

his loops and the known direct channel 

lmFi(s) 

increasing s 

resonances. Thus, although the Regge-exchange amplitude has no poles in s, 

its partial-mass projections mimics resonances. This is just what one would 

expect if one believes in duality. The mathematical reason why (6.12) gives 

rise to the loops is essentially the linearity of the p trajectory; namely, 

since a(t) =a -2a'(l-z)k2 , the phase of the signature factor, which is solely 
0 

responsible for the phase of Fi(s), increases withs. 

One might wonder whether the concept of duality is fundameTutal and can be 

stated as a general principle independent of the narrow-resonance approximation. 

We do not yet know the answer to this question. More likely, duality occupies 

a place similar to that of complementarity. Before quantum mechanics, comple­

mentarity cannot be precisely formulated, after quantum mechanics its precise 

formulation becomes uninteresting; but it served as a useful working principle 

that guided the way to quantum mechanics. 

C. Exchange Degeneracy 

The FESR (6.10) treats the even and odd parts of f(v,t) separately. To 

obtain a sum rule for f itself, multiply the first equation in (6.10) by Nm, 
n ± the second by N , add the two equations and re-express f in terms of f by 

(6.2). We find in this manner 

JN nm m n nm m n 
~ dv Im[(v N + v N )f(v,t) + (v N -v N )f(-v,t)] 

v 
0 

Y N
a+n+m+l 

~I k , 
a (n) 2 (a+n+m+l) f(a) 

c~ 
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where on the right side we sum over all trajectories a > -L, of both signatures. 

In the narrow-resonance approximation, we replace f(v,t) by a sum of zero­

width resonance poles, and leave out the Pomeron contribution on the right side. 

Furthermore, we neglect the second term, which contains resonances in the u­

channel, arguing that the factors vnNm - vmNn averages to something small, 

(i.e. of the same order as terms already neglected in the narrow-resonance 

approximation). Consider now a two-body system that has nos-channel resonances. 
+ + + 

Examples are pp, TI TI , pK In our approximation the left side of (6.12) is 

zero. Therefore, the sum of Regge poles on the right side vanishes for all N. 

This means that if there is a Regge pole of a given signature, there must exist 

one of opposite signature, with the same trajectory function a(t), and equal 

and opposite residue function -y(t). It cannot have the same signature, for 

that would cancel the original Regge pole identically. This degeneracy between 

two Regge poles of opposite signature is called exchange degeneracy. It has 

the same physical meaning as in potential scattering. 

The requirement that exchange-degenerate trajectories have equal and 

opposite residue functions depends on one sign convention (3.48a), which has 
-iTia the signature factor in the form e ± 1. If one redefines y(t) to make the 

-iTia 
signature factor 1 ± e then we would require equal residue functions. The 

exchange-degenerate trajectories must be such that when their contribution is 
- iTia odded together, the term e is cancelled. 

For TI+TI+ scattering we know that the p trajectory is exchanged. There­

fore a degenerate trajectory of opposite signature (i.e. positive) is called 
+ -for. In the TI TI system in the t-channel, even signature means that the 

+ -amplitude is symmetric under TI TI interchange, hence I = 0 or I = 2. It can-

h 2 f . h . ld 1 1 + + d . . not ave I = , or in t at case it wou a so coup e to TI TI , contra icting 
. + + the fact that there are no resonances in TI TI • Hence the exchange-degenerate 

partner of p has I = 0, and the only known trajectory with I = 0, G = +l, 

P = (-)J is the f trajectory. Experimentally, the f meson lies remarkably 

close to the p trajectory, taken as the straight line passing through the p 

and g mesons. 

In general, however, we should not be surprised if exchange degeneracy is 

only approximately realized in nature for its theoretical basis depends not 

only on the narrow-resonance approximation, but also on the neglect of the 

effects of u-channel resonances. 
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D. Bootstrap of the p Trajectory. 
* In a very interesting calculation, Ademollo et al. try to bootstrap the 

p trajectory using the FESR in the narrow-resonance approximation. They were 

able to do this only by introducing further assumptions. Let us see what they 

do in some detail, for the true significance of such schemes is not yet clear 

at the present time. They consider the reaction 

Ti Ti 

a, e, y are isospin tensor indices 

A is the w helicity 

n TI~ TI w, for which the s,t,u channels are identical and have I= 1, G = +1, 

P = +(-l)J. Hence in each channel only the p trajectory can contribute. 

This is a particularly happy choice because the Pomeron is not present, and 

we are spared the task of ejecting it forcefully. 
s 

Let the helicity amplitude be fA,af3y(s,t). It must be antisymmetric in 

a and S because I = 1 in the s channel. Similarly, it is antisymmetric in 

a and y and in S and y. Hence 

f~ r:i (s,t) /\_,a.,_,y (6.13) 

s 
By Bose statistics, fA (s,t) is then antisymmetric in p 1 and p2 , p 1 and p

3
• 

It is linear in the polarization vector e(A) of thew. Hence 

(6.14) 

where the invariant amplitude is totally symmetric in s,t, and u, with 

2 2 
s+t+u = L: = 3m + m . (6.15) 

Ti w 

One can evaluate the coefficient of A(s,t,u) explicitly and show 

fs 
o,aSy 

fs 
+1,aSy 

0 

fs 
-1,aSy 

±~ eaSy(stu-~(~-~) 2 )~ A(s,t,u). 

Since fs
1 

r:i (s,t) 
,a.,_,y 

a(t) h . b h . f A . s , t e asymptotic e avior or is 

-------------
*M. Ademollo, H. R. Rubenstein, G. Veneziano, and M. A. Virasoro, 

Phys. Rev. 176, 1904 (1968). 
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CY(t)-1 
A(s,t,u) ~ s • (6.17) 

We ~gain introduce the variable v = (s-u)/2s
0 

and write A(v,t) for the 

invariant amplitude. We consider the FESR from (6.10) with n=l: 

JN 
y Na+l - ::Y+l y a N 

dv v Im A(v,t) (6.18) 
0 (TT) 2 (a+l)I'(a) r (a+2) 

1 

where y = y/(TT)~, and a = a(t) is the p trajectory. 

Since we have omitted from the right hand side of (6.18) any lower-lying 

trajectories that may be present, it is valid only for sufficiently 

large N. Now Aderr.ollo et al. make the additional assumption that for at least 

a limited range of t, (6.18) is valid even for N so small that in the interval 

0 < v < N,A(v,t) has only one resonance, the p resonance. In terms of proper­

ties in the complex v plane, the assumption is that for at least a limit range 

oft, the contour integral of vA(v,t) over the circle shown in the sketch is 

well approximated by that of the leading Regge 

pole contribution. There is no ..e, priori 

justification for this assumption. It was 

introduced partly as an inspired guess, 

partly as a calculational convenience. 

But it turns out to be the condition that 

bootstraps the p with brilliant success. 

Since this requires the FESR in the narrow-

N 

v plane 
t fixed 

g 

resonance approximation to be satisfied in a non-asymptotic region of N, it may 

be called a condition of strong duality. We adopt this word as a shorthand for 

the assumption described and refrain from philosophizing. The input assumptions 
2 2 

are that the p trajectory is linear and passes through 1 at t=mp ~ 0.5(GeV/c) : 

CY(t) a + a't , a(m 2 ) = 1 
0 p 

(6.19) 

This leaves only one unknown constant among a and a'. Now a(t) makes t-channel 
• 

0 
2 2 . resonances at CY= 1,3, ••• , corresponding tot= m , m , ••• By crossing sym-

2 p 2 g . . 
metry, there ares-channel resonances at s = m , m , ••• ,with corresponding 

p g 
v values at 

\) (t) 
p 

\) (t) 
g 

[(s-u)/2so]s=m 2 
p 

v (t) + 2/a' s 
p 0 
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where 

t 
0 

m 2 + 3m 2 - 2m 2 = -0.53(GeV/c) 2 • 
W TI p 

(6.21) 

Assuming strong duality, we cut off the integral in (6.18) at same point between 

the p and the g meson, i.e., 

v (t) < N < v (t). 
p g 

(6.22) 

To do the integral, we have to know the residue of the p pole at v = v (t). 
p 

This can be obtained from the input p trajectory through crossing symmetry, as 

follows. The p trajectory exchanged in the t-channel contributes to A(v,t) the 

Khuri term 

K (v, t) 
Ci 

- - iTIO! O!- l 
y f(l-a)(l-e )v , 

which has a pole at a 1: 

2y 
K (v,t)--jl -1 Ci (i--+ -Ci 

2y 1 
- ;::;r --2 

'-' t-Illo 

(6.23) 

(6.24) 

Hence the residue is -2y/a'. By crossing symmetry, the p pole in the s-channel 

must have the same residue. Hence 

which gives 

2y 1 
A(v, t) v::;v7 - (? --2 

p s-m 
p 

ImA(v, t) 

?Y 1 
- Ci'S v-v 

0 p 
(6.25) 

(6.26) 

in the range (6.22), in the narrow-resonance approximation. Substituting 

(6.26) into the FESR (6.18), we obtain 

v (t) = 
p 

ot's a Na+l 
0 

2r (a+2) 

Note that the residue function y(t) drops out. 

We first note that v (t ) = 0. Hence 
p 0 

a(t ) = O, 
0 

and this completely determines the p trajectory, leading to 

-t 2m 2 - 3m 2 -m 2 
0 p TI w 

0.5 Ci -2- 2 
~ 

0 
3m 3m 

2 2 
m -t - m 

p 0 p TI w 
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Cl! I 
1 

-2-
m -t 

p 0 

~~..,,...--1~-..,..~-.2 ~ l(GeV/c) 2 , 
3m 

2 
- 3m 2 

p TT 
-m 

w 

(6.29) 

which are in remarkably good agreement with experiments. The condition (6.28) 

can be re-expressed in an amusing form by noting that Cl! + Cl! 1 t = O!(s)+a!(t)+a!(u)-2. 
0 0 

Hence, (6.28) is equivalent to the following condition for the p trajectory: 

O!(s) + O!(t) + O!(u) = 2, (6.30) 

which is of course very well satisfied experimentally. 

With O!(t) determined, it remains to be seen whether (6.27) can be satisfied 

for a range oft, Using (6.28), we can write v (t) = O!(t)/2Cl!'s , and sub-
p 0 

stituting into (6.27) yields the condition 

2 (Cl! IS ) 
0 

r (O!(t)+2) = 1. (6.31) 

It is now noted that the following is a miraculously good approximation: 

(-1 < Cl! < +l) (6.32) 

Therefore a solution of (6.31) for -1 < O!(t) <l is 

so = 1/0! 1 

(6.33) 
N = 1 + ~(t) 

Thus the arbitrary scale s is now fixed. 
0 

The cutoff N happens to fall exactly 

halfway between the p and the g meson, for using the O!(t) ands now determined, 
0 

we find that 

~[ v ( t) + v ( t) J = 1 + ~ ( t) • 
p g 

(6.34) 

Ademollo et al. went on to investigate how they might extend the range 

of t in which the FESR is satisfied. It turns out that this involves pushing 

the cutoff N higher to include more resonances on the right-hand side, and at 

the same time including lower-lying trajectories on the right-hand side. 

The most interesting aspect of this calculation is the fact that strong 

duality, which seems to be an ad hoc assumption, leads miraculously to some 

good results. We shall return to it in the Veneziano model, which is a 

crystallization of all the ideas we have discussed. 

E. The Veneziano Model. 

As we have seen, the FESR in the narrow-resonance approximation can 

be satisfied unexpectedly for a limited range of t by using a low cutoff as 
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the left-hand side and only one Regge pole as the right-hand side, To extend 

the range of t, the cutoff has to be increased, and more Regge poles have to 

be included. The Veneziano model is a simple formula that incorporates all 

these features. In short, it is a simple solution to the FESR in the narrow-

resonance approximation. 

Recalling what FESR means in the narrow-resonance approximation, we see 

that for the process 1111 - nw a solution consists of finding an amplutide com­

pletely symmetric in s,t,u, having no cuts but only simple poles in s, and 
. . O!(t)-1 

behaving like s as s 00 Veneziano suggests the form 

A(s,t,u) 

where 

V(s,t) 

+y[V(s,t) + V(s,u) + V(t,u)] 

r (l-O!s)f(l-O!t) 

r < 2-0! s -()! t) 
B ( 1-0! , l -0! ) , 

s t 

(6.35) 

(6.36) 

where O!s = O!(s), O!t= O!(t), and where B(z,w) is the Beta function. Since f(z) 

is a meromorphic function with simple poles at z 0,1, 2 •. ,, V(s,t) has no 

cuts but has poles at O!(s) = 1,2,3,,.,, Because of the gamma functions in 

the denominator, there are no simultaneous poles in s and t. 

To compute the asymptotic behavior, we need the formula 

f(a+bz) lzl->oo (n)~e-b2 (bz)a+bz-~, b > 0,Jargz\~ TI-€, (6,37) 

We first rewrite (6.36) in the form 

v(s,t) 
f(O! + O! 

s t 
r (O! ) 

s 

-1) sin n O! 
s 

sin n (O! + O! 
s t 

-1) 
(6,38) 

The limit s - 00 does not exist along the real axis because V(s,t) has an in­

finite number of poles there. To avoid this difficulty, which is inherent in 

the narrow-resonance approximation, we take the limit along a ray in the com­

plex s planes at an arbitrarily small angle e with respect to the real axis. 

s plane 
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Then 

sin 11 Ql(s) 

and 

so that 

1 [ei11Qls 
2i 

. [ -211E:s J 1 -1.TIQls 1 + O(e ) , 
-2 i e 

Note that to get this result, the linearity of QI is crucial, at least 
s 

(6.39) 

(6.41) 

asymptotically, For V(t,u) we can straightforwardly apply (6,37) to obtain 

Ql(t)-1 
V(t,u) --> f(l-Ql(t)) (Ql 1 s) • (6,42) 

Finally, 

V (s, u) 
1 f(l-Ql(u)) ........,.---...,.....,.----..,....,.. 

f(l-2QI -Ql'(L:-t)) f(Ql(s)) 
0 

11 
sin 11 Ql(s) 

(6.43) 

Hence 

A(s,t,u)------1 -y f(l-Ql(t)) (e-il1Ql(t)_l) (Ql 1 s)Ql(t)-l (6,44) 
s-->o:> ' 

which is the proper Regge behavior. If we had used the complete asymptotic 

expansion for f(z), we would have obtained in place of (6.44) 

Thus there are an infinite number of parallel "daughter" trajectories 

QI (t) = Ql(t)-n (n = 1,2,.,.). 
n 

From the asymptotic behavior of the amplitude we would expect that at each 

mass there would be particles of all odd spins up to the leading trajectory. 

This is in fact the case. From (6,36) and the integral representation of the 

Beta function, we have 
1 

V(s,t) = J 
0 

Using the binomial theorem, we obtain 

-QI -at 
dx x s (1-x) (6.45) 
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00 

V (s, t) n~O 

00 

n~O 

where 

1 
(-l)n(O!t) J -0! 

dx x s 
n o 

<-1)n Cat) 1 
n n + 1 - O! 

n! f(l-0! -n) 
t 

+n 

s 

1 
n! O!t (at +l)(O!t +Z) .•. (O!t +n-l) 

(6.47) 

1 
-; R (O!t). (6.48) 
n. n 

R (x) is called a Pocharnrner polynomial of degree n. Hence 
n 

V (s, t) 

As O! - n + 1, therefore, 
s R (at) + R (0: ) n n u 

A(s,t,u) - ~ n + 1 _ O! 

s 

(6.49) 

(6.50) 

Since O!t and O!u are linear in t, the residue is a polynomial in t symmetric 

under t , u. To find the spin of the resonances at O! = n+l, we have to ex­
s 

press the residue in Legendre polynomials of z : 
s 

z 
s 

s(t-u) 
2 2 2 "2 

[s(s-4m )(s-(m -m) )(s-(m +m) )] 
. TT WTT WTT 

(6. 51) 

We note that this is linear int, and odd under t~u. Hence the residue is 

a polynomial in z containing only even powers. Since thew meson has spin 
s 

one, this implies* that at a mass m satisfying a(m2) = n+l, there are reson-

ances of all odd spins up to n+l. Thus the Veneziano model requires that the 

mass spectrum forms a regular lattice on the Chew-Frantschi plot, as shown 

below. 

*---------
See Chapter 7 for partial-wave expansions. 
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J. 

3 

2 

1 

p I 

• is a resonance in 
TT TT __, TTW 

O is a resonance re­
moved by signature. 

a'' 2 
0 '-------< l'---------1 J-------~>----~ m 

It is clear that the Veneziano model satisfies the FESR because it has 

analyticity and Regge asymptotic behavior. With narrow resonance built in, 

it represents an elegant example of duality. However, while the FESR are 

satisfied, the trajectories are not completely determined. If one of the meson 

masses (say that of the p meson) is supposed to be given, we still have an 

arbitrary slope a'. This again demonstrates, as in the previous calculation of 

Ademollo et al. that the FESR alone is not enough to bootstrap. In the pre­

vious case, the bootstrap comes from the ad hoc assumption of strong duality, 

which turns out to be equivalent to the requirement that not only even-spin 

mesons like the f
0 

be decoupled, but also all mesons (of whatever spin) at the 

same mass. For example, referring to the previous sketch, we would require 

that p' be decoupled also. From (6.50), we see that this would require 

R (at) + R (a ) = 0 (for n odd) , 
n n u 

By (6.48), this is equivalent to 

at(at+l) ••• (at+n-1) = - au(au+l) ·•• (au+n-1), 

(for n odd) 

(6.52) 

(6.53) 

and is solved by setting at 

condition 

-(a +n-1). Noting that n+l 
u 

as' we obtain the 

(6.54) 

which is the same as the consequence of strong duality in the earlier calcula­

tion of Ademollo et al., and which agrees well with experiments. In this model, 

- 218 -



however, there seems to be no compelling reason to require it.* For the present, 

therefore, strong duality remains a tantalizing idea not yet fully understood. 

F. Veneziano Model for TI-TI Scattering. 

Lovelacet has made an interesting application of the Veneziano model to 

TI-TI scattering. To take care of isospin complications, we first show that all 

TT TT+ 3 isospin amplitudes can be expressed in terms of a single 

symmetric function of and Consider first + -s t. TT TT scatter-

ing as illustrated in the sketch, and let 

(6.55) 
+ -Since the t-channel also corresponds to TI n scattering, 

c.p(s,t) = c.p(t,s) 

+ + Since the u-channel corresponds to TI TI scattering, 

s 
f + +(s,t) = w(u,t) TT TT 

(6.56) 

(6.57) 

+ -Now decompose the TI TI amplitude into amplitudes fS(s,t) of definite isospin 
I 

I in the s-channel: 

(6.58) 

where fs and fs are even, and fs
1 

is odd, under t++u: 
2 0 

(6.59) 

Thus 

(6.60) 

Subtracting (6.60) from (6.58), we obtain f~(s,t) = c.p(s,t) - c.p(t,u). We also 

know that n+TI+ is pure I = 2, hence by (6.57) f~(s,t) = c.p(u,t). Substituting 

these results into (6.58), we find fS(s,t). The final results are: 
0 

-----------* 

fS(s,t) 
0 

= ~[c.p(s,t) + c.p(s,u)] - ~ c.p(t,u) 

f~(s,t) = c.p(s,t) - c.p(s,u), 

f~(s,t) = c.p(u,t) 

(6.61) 

In the original paper of Veneziano, (6.54) was invoked to obtain signatured 

trajectories; but we have seen that signature emerges automatically without 

this condition. 

t C. Lovelace, Phys. Letters, 28B, 264 (1968). 
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Therefore specifying ~(s,t) completely specifies TI-TI scattering. 

Lovelace constructed the Veneziano model for TI-TI scattering by taking 

~(s,t) (6.62) 

where f(l - a - a ) rather than f (2 - a - a ) appears in the denominator be-
s t s t 

cause this amplitude should behave like sa(t) as s ~ 00 • With this choice there 

are no resonances in the I = 2 amplitude since ~(u,t) has no poles ins. There 

are resonances of both even and odd spin on a in the I = 0 amplitude, but only 
s 

resonances of odd spin occur in the I = 1 amplitude. The trajectory a is 
s 

identified as the exchange degenerate p-f 0 trajectory. This exchange degener-

acy corresponds to the absence of I = 2 resonances. 

One of the most interesting aspects of this model is the prediction of a 

zero in the amplitude coinciding with that re-

Pe 

t 

quired by the Adler self-consisting condition. 

In general, in the reaction TIA~ BC, where 

AB C are hadrons, the hypothesis of PCAC 

(partial conservation of axial vector current), 

plus some assumption about the absence of poles, 

leads to the conclusion that the scattering amplitude must vanish as the four-

momentum q of the pion approaches zero. This result is known as the Adler self­

consisting condition. In terms of s,t,u, the zero is located at 

s 

t 

u = 

2 
~ (6.63) 

which of course does not satisfy the constraint s+t+u = ~m2 , because the pion 

is taken off the mass shell. For TI-TI scattering (6.63) becomes 

s=t=u 

Let us rewrite(6.62) in the form 

m TI 
2 

(6.64) 

(6.65) 

At s=t=u the Beta function cannot vanish, but the factor 1-a -a vanishes 
s t 

if 

2 Combining this with a(m ) 
p 

2 
a(m ) 

TI 

1, we find 
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QI 
0 

0.483 

QI I Q • 83 

which is in excellent agreement with experiments. 
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VII. SPIN 

We now consider the full complications of spin. In particular we emphasize 

those features that owe their existence to spin, such as kinematic singularities, 

constraints, and sense-nonsense. 

A. Kinematics 

For a general two-body process a+b ~ c+d with arbitrary masses and spins, 

we specify single-particle states by their momenta and helicities. As usual let 

u = (p -
a 

which satisfy the relation 

d 

t ~ 

b 

u 

(7.1) 
a 

s 

(7. 2) 

The cosines of the center-of-mass scattering angles in the s and t channels 

are given by 

where 

z 
s 

cos9 
s 

2 2 2 2 
s(2t+s-~) +(ma -~ )(me -md ) 

_J' ab ..{d 

t(2s+t-~) 
2 2 2 2 

+ (md -~ )(me -ma ) 

,.,J,ab = Jcs-(ma-~)2] [s-(ma~)2] = y4spab2 

( 7. 3) 

r1 = J [ t - ( m -m ) 
2 J [ t - ( m +m ) 

2 J = J 4 t p 
2 

(7 . 4) 
.._; ca c a c a ca 

where the square roots are positive for positive values of their arguments. The 

physical region corresponds to 

cp( s' t) ;;:, 0 ' (7.5) 

where ~(s,t) is the Kibble function: 

~( s' t) 
2 2 2 2 

stu - s(~ -md )(ma -me ) 

2 2 2 2 2 2 2 2 
- (m m -m m )(m +m -m -m. ) 

ad cb ad co (7. 6) 
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B. Helicity Amplitudes 

For the purpose of Regge analysis, it is particularly convenient to use the 
>'< 

helicity amplitudes of Jacob and Wick, because they have simple partial-wave 

expansions. The helicity amplitude for s-channel scattering will be denoted by 

f d bs(s,t), where the subscripts denote both the particles and their helici-
c ,a 

ties. For its definition and properties we refer to the original paper of 

Jacob and Wick. Our normalization is such that the differential cross section 

is given by 

do 1 Pc d I s 
1
2 

dO = _2 ___ f d· b (s,t) 
4n s Pab c ,a 

Our amplitude is related to that of Jacob and Wick by 

JW _ !_, _l_ Ped f s s t 
f d b (s,t) - ·1 2 p cd·ab ( ' ) 
c ; a 'V 4n s ab ' 

The partial-wave expansion reads 

s 
f d b ( s' t) c ,a 

a-b, µ c-d, A = max(A,µ) 
m 

( 7. 7) 

( 7. 8) 

(7.9) 

J where dA (zs) are the usual rotation coefficients. The partial-wave amplitude 
µ 

J F d b(s) is a matrix element taken between helicity states of definite total 
c ,a 

angular momentum J and z component M: 

F~d·ab(s) 
' 

<J,M;c,d!T(s) !J,M;a,b> (7 .10) 

These helicity states transform under spatial reflection P according to 

J-J -J 
PIJ,M;a b> =~al\(-) a blJ,M;-a,-b> (7.11) 

where Ja,Jb are the spins of the particles a,b, and ~a'l\ their intrinsic parities. 

* M. Jacob and G.C. Wick, Annals of Physics z, 404 (1959). 
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Thus parity conservation implies 

(7 .12) 

Time reversal invariance implies 

(7. 13) 

Equations (7.12) and (7.13) serve to reduce the number of independent helicity 

amplitudes. 
~~ 

The crossing relation between the s and t channel helicity amplitudes is 

s 
f d b(s,t) c ,a 

where 

and 

cos~ 

cosX 
c 

2 2 2 2 2 2 2 2 2 
(s-+m -m. )(t-+m -m ) - 2m (m -m -tm. -md ) a o a c a c a--o 

S abgac 

2 2 2 2 2 2 2 2 2 
(s~ -ma )(t~ -md ) - 2~ (me -ma ~ -md ) 

Sabdbd 

2 2 2 2 2 2 2 2 2 
(s-+mc -md )(t+mc -ma ) - 2mc (me -ma ~ -md ) 

Scd~c 
2 2 2 2 2 2 2 2 2 

(s-+mf -me )(t-+md -~ ) - 2md (me -ma ~ -md ) 

5 cd'Ybd 

2m ./Cji{8,t) 
sinX = _a ___ _ 

a Sabdac 

sin~ 

sinX 
c 

2~/cp(s, t) 

8abdbd 

2m/cp(s,t) 
c 

2m/cp(s, t) 

s inXd = S cd';J'bd 

* L. Trueman and G.C. Wick, Annals of Physics 26, 322 (1964). 
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We may write symbolically 

s t 
fH (s,t) = L:: m.HH 1 (s,t) fH 1 (s,t) , 

H' 
(7 .17) 

where tn is a real orthogonal matrix: #t Tm= 1. It should be noted that ( 7.14) 

is not valid for an amplitude that differs from ours by a normalization factor 

that depends on sand t, In particular it is not valid for fJW of (7.8). 

The main advantages of helicity amplitudes are the following. (a) The number 

of independent amplitudes can be easily enumerated and written down for an 

arbitrary reaction. (b) By (7.11) it is easy to form helicity states of definite 

parity, and Regge trajectories couple to them independently. (c) It is straight­

forward to carry out the Sommerfeld-Watson transform on (7.9) to isolate Regge 

pole contributions. 

Helicity amplitudes, however, have kinematic singularities and satisfy con­

straint equations at certain values of s and t. These are intrinsic in their 

definition and give rise to complicated structures in Regge residues that were 

not present in the spinless case. 

Instead of helicity amplitudes one can describe the scattering process in 

terms of invariant amplitudes, which by definition is a set of independent ampli­

tudes completely free of kinematic singularities and constraints. We shall not 

discuss them in general but merely illustrate them in specific examples. Although 

it can be proven that invariant amplitudes exist for an arbitrary reaction, there 

is yet no known method for their explicit construction in the general case. 

From our point of view the main disadvantage of invariant amplitudes is that the 

same Regge trajectory generally couples to more than one amplitude, so that Regge 

residues in different amplitudes cannot be independent. 

C. Kinematic Singularities and Constraints 

According to Jacob and Wick, a general helicity state is defined as follows. 

First define the helicity state of a single particle at rest. Then define that 

for a moving particle by applying the boost operator of a Lorentz transformation. 

The helicity state for two particles is the product of two of the above, rotated 

in a standard way by the application of a total rotation operator. The helicity 

amplitudes are defined as T-matrix elements with respect to two-particle helicity 

states, and singularities and constraints generally arise from the fact that the 

boost and rotation operators become singular at certain kinematic points. These 

have nothing to do with the interactions of particles, and we call them kine­

matic singularities and constraints. An analysis from this point of view is 
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* given by Trueman, who shows from general principles that kinematic singularities 

in s can occur only at one of the following places: 

(a) At cSab = 0 or .Scd = O, namely s = (ma±!Ib)
2 

ors= (mc::!Jnd)
2

• The 

values corresponding to the + sign are thresholds, the others are 

called pseudothresholds. 

(b) Boundary of the physical region ~(s,t) O. 

(c) The point s = O. 

Kinematic constraints can occur only at pseudothresholds or at ~(s,t) = 0. Most 

important for our purpose, the kinematic singularities at (a) or (b) above can 

be factored out of the helicity amplitudes. Those at (c) can be factored out 

except for fermion-boson scattering in the general mass case, where there is a 
!z non-factorizable singularity of the type s • For this case, however, one can 

.k 
circumvent it by using W = s 2 as independent variable. 

Another approach, more elementary but less satisfactory from the point of 
>'<* 

view of general principles, is due to Wang. It makes use only of the crossing 

relation for helicity amplitudes and is a relatively straightforward constructive 

recipe in specific cases. We shall briefly describe this approach here. 

Going back to the partial wave expansion 

co J J 
fHs(s,t) = ~ (2J+l) FH (s) d, (z ) 

J=A. /\µ s 
(7 .18) 

m 

we see that the t dependence is contained in z in the rotation coefficient 
J s 

d, (z ). Now 
/\µ s 

(7.19) 

where 

(7. 20) 

and e~µ (z) is a polynomial in z. (We use the notation of GGLMZ:'<"l<*) Since the 

factor DAµ(z) is independent of J, it can be factored out of the sum in (7.18): 

(7. 21) 

* T.L. Trueman, Phys. Rev. 173, 1684 (1968). Errata, Phys. Rev. 181, 2154 (1969). 

** L.L. Wang, Phys. Rev. 142, 1187 (1965). 

*** M. Gell-Mann, M. Goldberger, FoE. Low, E. Marx, and F. Zachariasen, Phys. 

Rev. 133, Bl45 (1964). 
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where 

-s Q) J J 
fH (s,t) = ~ (2J+l) FH(s) eA (zs) 

J=A. µ 
m 

(7.22) 

- s 
The only t-singularities of ~ (s,t) come from the possible divergences of the 

whole series. We presume that these are dynamical and not kinematic singulari-

ties. Similarly, if we put 

(7. 23) 

then fHt(s,t) has no s-kinematic singularities. 
-s -:t 

The new amplitudes f and f , however, are related through a crossing rela-

tion of the form 

- s - t 
fH (s,t) = ~ #HH 1 (s,t) fH' (s,t) 

H' 
(7. 24) 

where the matrix l1t can be deduced from the matrix~ in (7.17). 
-t 

Since f (s,t) 

has no s-kinematic singularities by construction, all of the s-kinematic singu­

larities of fs(s,t) must come from the known matrix 11,(s,t). Furthermore, 

J1, (s,t) must cancel all of the t-kinematic singularities of ft(s,t), because fs 

can have no such singularities. Thus by studying the matrix J1, all the kinematic 

singularities in s and t can be recognized. In general this is an extremely 

tedious procedure, but one arrives at the same conclusion as mentioned before. 

In particular, we can factor out the s-kinematic singularities from each com-
- s 

ponent of fH : 

-s j/ As 
fH (s,t) =/\. H(s) fH (s,t) (7. 25) 

where fHs(s,t) is now free of all kinematic singularities, s or t (except for a 
~ . 

s 2 branch point for fermion-boson scattering in the general mass case). 
t 

Similarly we factor out all t-kinematic singularities from ~ : 

-t (} At 
fH (s,t) = t/1H(t) fH (s,t) 

A t 
where fH (s,t) is free of all kinematic singularities, s or t. 

(7. 26) 

Substituting (7.25) and (7.26) into (7.24), we obtain a crossing relation 

of the form 

A s 
fH (s,t) ~ 

H' 
1 At 

HH,(s,t) fH (s,t) (7.27) 
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where the matrix 
n As 

..L (s,t) generally has singularities in s and t, although fH 

cannot have these singularities. For values of s,t in the neighborhood of a 

singularity of L (s, t), let us write L (s, t) as a matrix product between a 

matrix ../!
1
(s,t) containing the singularity,and a regular matrix L

2
(s,t) (of 

course L
2 

may be simply the unit matrix): 

_f (s,t) .,/! 1 (s, t) _f 2(s, t) (7. 28) 

Then at the singularity, say s = s0 , t = 0, we must have 

(7. 29) 

which is called a kinematic constraint. 

The kinematic singularities and constraints discussed above lead to kinematic 

singularities and constraints in the t-channel partial-wave amplitudes GHJ(t). 

Since a Regge pole is a J-pole of the latter, with t-dependent residues, it fol­

lows that the Regge residues have known kinematic singularities and satisfy 

known constraints. In particular the constraints relate the residues of Regge 

poles of different quantum numbers at certain values of t. 

D. Example: rm-+ Tiw 

Earlier we have discussed the reaction rm -+ TIW in terms of an invariant 

amplitude (See Eq. (6.14)). Let us discuss it in terms of helicity amplitudes 

as an illustration. 

There are threes-channel helicity amplitudes (See Eq. (6.13)) fAs(s,t), 

where A = 1, O, -1 is the helicity of w. The partial-wave expansion reads 

(7. 30) 

J 
where the partial-wave amplitude FA (s) is a matrix element between helicity 

states: 

< Tiw;J,A!T(s)!rm;J > (7. 31) 

Under the parity operation, the helicity states concerned transform as follows: 

J 
P!rm;J> = (-) !rm;J> 
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The eigenstates of parity for the rw system are 

1 
lrw;J±> = ./2 [lTIW;J,l> ~!TlUl;J,-1>] (7. 33) 

with 

(7. 34) 

By parity conservation the only non-vanishing matrix element between nw and rm 

states is 

(7. 35) 

in terms of which the partial-wave amplitudes are 

J 1 J 
- F_1 (s) = ./2 F (s) 

J r
0 

(s) = o (7.36) 

Therefore there are only two non-vanishing helicity amplitudes f
1
s(s,t) and 

f_
1
s(s,t). Furthermore, owing to the fact that d~ (z) = (-)A.-µ d3

1 
(z), they 

/\µ -/\, -µ 
are equal to each other. Hence there is only one independent helicity amplitude 

s 
f 1 (s,t). Since the reaction is the same for the s, t, and u channels, 

s t 
f
1 

(s,t) = f 1 (s,t) (7. 3 7) 

up to a constant phase factor. 

To factor out the kinematic singularities, we follow (7.21) and put 

s 
f 1 (s,t) (7. 38) 

t 21:-t 
f 1 (s,t) = (1-zt ) 2 f 1 (s,t) (7.39) 

- s - t 
where f 1 (s,t) has no t-kinematic singularities, and f 1 (s,t) has no s-kinematic 

singularities. By (7.37), we have 

(7. 40) 

Now we need to work out some kinematics: 

z (t-u)/4p q s s s 

(7. 41) 
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where 

2 r . 2 .lz q = [[s - (m +m ) 1 LS - (m -m ) ]/4s} ( 7. 42) 
S UlTTJ WTT 

From these we find that 

where 

2 1: 
( 1-z ) 2 

s 
= _l_ [cp(s,t)-(2 

4p q s J s s 
.1: 

_l_ [cp(s,t)]
2 

4ptqt t 

2 2 2 2 
cp(s,t) = stu - m (m -m ) 

TI W TI 

Substituting (7.43) into (7.40) we have 

- s 
f 1 (s,t) 

- t 
f
1 

(s, t) 

4p q /s s s 4ptqt/t 

(7. 43) 

(7. 44) 

(7. 45) 

Since £
1

s has no t-kinematical singularity, and £
1

t has no s-kinematical singu­

larity, each side must be free of all kinematic singularities. That is 

1 - s 
4p q /s f 1 (s,t) = A(s,t,u) 

s s 
(7. 46) 

where A(s,t,u) is an invariant amplitude. Thus 

s 
f
1 

(s, t) (1-z 2).lz 4p q s.lz A(s,t,u) 
s s s 

.lz [cp(s,t)] A(s,t,u) , (7.47) 

which is identical with (6.16). 

E. Conspiracy 

As mentioned before, kinematic constraints on t-channel amplitudes can occur 

only at pseudothresholds, or on the boundary of the physical region. When the 

external masses are equal in pairs, the latter includes the point t = O. A con­

straint occurring at this point is physically interesting, because it corresponds 

to forward scattering in the s-channel. Indeed, in many cases, such a constraint 

is a direct consequence of angular momentum conservation in the s-channel. 

For concreteness, let us consider nucleon-nucleon scattering, for which 

there are 24 
= 16 helicity amplitudes. Parity conservation and time-reversal 

s 
invariance reduce the independent to 5, which we can choose to be f++·+t' 

' f.:,.. __ , f~-·+-' f~-·-+' f.:+.+-' where the subscripts± correspond to the helicity 
' ' ' s ±..lz of a nucleon. Thus in fcd·ab' (a-b) and (c-d) are the components of the total 

' angular momentum along the relative momentum for the initial and final state, 
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respectively. Conservation of angular momentum tells us that for forward scat­

tering (t = O) we must have fHs(s,O) 0 if (a-b) t (c-d). Therefore 

s 
f+- -+(s,O) 0 

' 
s 

f++ +-(s,O) = 0 (7.48) 
' 

These also follow formally from (7.21) due to the fact that the corresponding 

D, (z) vanish at t = 0 (z = 1). Using the crossing relation (7.14), we can 
/\.µ s s 

convert these into linear relations imposed on fHt' When this is done in de-

tail, we find that the second requirement of (7.48) is in fact satisfied identi­

cally, owing to parity conservation and the conservation of total spin, (the 

latter being a special feature of nucleon-nucleon scattering.) The first 

of (7.48) leads to a non-trivial constraint: 

t 
- f+- +- = O, (at t = 0). 

' 
(7. 49) 

Everything we have said so far applies equally well to backward scattering u = O. 

By the analyticity considerations outlined in our earlier discussion, we 

would of course arrive at the same constraint equation. However, we would also 

obtain other constraints at pseudothresholds, which cannot be deduced by such a 

simple physical argument. 

If we assume that at high energies (s ~ oo) the amplitudes occurring in (7.49) 

are dominated by t-channel Regge poles, then (7.49) relates the residues of 

various Regge poles at t = O. The Regge poles are said to "conspire" if their 

individual residues do not vanish, and are said to "evade" otherwise. 

The case of conspiracy is of special interest when one of the conspirators 

is the pion Regge pole. Because t = 0 is so close to the physical pion pole 

t = 4µ
2

, a conspiring pion would give rise to an extremely sharp forward peak 
2 

whose width is of order µ Such sharp peaks have been experimentally observed 

in forward np charge exchange scattering np ~ pn, and in charged pion photopro-
+ duction yp ~ TI n. Although in principle this could be explained by pion con-

spiracy with another Regge pole (which would correspond to a scalar meson), 

actual calculations using the known n-N coupling constant g
2
/4n = 15 have failed 

to reproduce the numerical magnitudes of the forward peaks. It is possible that 
•k 

in these processes Regge cuts are important. So far, therefore, there is no 

clear evidence for conspiracy involving Regge poles only. 

* K. Huang and I.J. Muzinich, Phys. Rev. 164, 1726 (1967); 

D. Gordon and J. Froyland, Phys. Rev. 177, 2500 (1969). 
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F. Reggeization of Helicity Amplitudes 

We begin with the t-channel partial-wave expansion 

t 
f d b(s,t) c ;a 

A _ a-b, µ _ c-d, A ~ µ ~ 0, J = integer. 

(7. SO) 

The object is to calculate Regge pole contributions to this helicity amplitude. 

We restrict our discussions to integer J (and not half-integer) and assume that 

A 2 µ 2 0. The case of half-integer J requires only trivial modifications and 

is discussed in GGLMZ. The restriction A 2 µ ~ 0 represents no loss in generality, 

for all other cases can be reduced to this case by using properties of the rota­

tion coefficients: 

J J+A d (z) = (-) d (-z) 
Aµ A,-µ 

( 7. Sl) 

The discussion here follows closely that of GGLMZ, especially the Appendices of 

that paper. All the special functions used here conform to the notation of 

GGLMZ, which also contains useful tables for them. We put 

ft (s t) = (l+z )~jA+µj(l=z )~IA-µjf t(s t) 
cd;ab ' t t cd;ab ' 

(7. S2) 

and recall from our earlier discussion that 

- t co J J 
fcd;ab (s,t) = J~A (2J+l) Gcd;ab(t) eAµ(zt) (7. S3) 

m 

has no s-kinematic singularities. There are still t-kinematic singularities con­

tained in G
3

d b(t). The functions e~µ satisfy the properties (7.Sl). 
c ;a J /\. 

In general, G d b(t) does not have definite parity, so trajectories of c ;a 
both parities will couple to it. To separate their contributions, we now intro-

duce the parity-conserving helicity amplitudes. Using (7.11), we define helicity 

states of definite parity by 

with 

1 3a +Jb 
/J;a,b>±. = ./Z [\J;a,b> ±. 'f1a'\(-l) jJ;-a,-b>} 

J 
P/J;a,b>+ = + (-1) jJ;a,b>+ 

- 23L. -

(7. S4) 

(7. SS) 



We define partial-wave amplitudes of definite parity by 

J + I J I Gcd:-ab(t) = ±<J;c,d G (t) J;a,b>± (7.56) 

which couples only to Regge poles vf parity ±(-)J. 

amplitudes are then given by 

The original partial-wave 

GJ ( t) I ( I 1 J+ J- J cd;ab = <J;cd G t) J;ab> = z[Gcd;ab(t) + Gcd;ab(t) (7. 5 7) 

Next we define new linear combinations of the amplitudes f that are more 

convenient for reggeization. The motivation is the following. We note that 
J+ 

G - at most changes sign when we reverse the sign of all initial helicities, or 

all final helicities, or both. The coefficient e~µ' however, does not have such 

a simple behavior (See Eq. (7.51)). Hence it is convenient to define new coef­

ficients with simple behavior under helicity reversal and use them to define 

new helicity amplitudes. We define 

J+ 1 J J 
eA.µ...:...Cz) = tc efi.µ (z) ± efi., -µ (z) J (7. 58) 

which at most changes sign whenµ~ -µ. Then by (7.51) 

eJ±c-z) = + (-)J+fi. eJ±(z) (7.59) 
Ii.µ - Ii.µ 

The original coefficients are expressible as 

J J+ J-
e/i.µ (z) = e/i.µ(z) + efi.µ(z) (7.60) 

Now define new helicity amplitudes (the "good" amplitudes) 

(7. 61) 

Then (leaving helicity indices understood) 

-t 1 + -
f (s,t) = z[g (s,t) + g (s,t)] (7. 62) 

Although g±. contains contributions from Regge poles of both parities, g+ is 

dominated by parity (-)J and g- by parity -(-)J as zt ~ oo, The reason is that 
J+ J-

e dominates over e asymptotically. 

Before we can do the Watson-Sommerfeld transform on (7.61), we have to dis­
J+ 

cuss how G - can be analytically continued into the J-plane. For this we have 

to invert (7.61) to obtain the analog of the Froissart-Gribov formula. Recall 

- 233 -



first the orthonormality property 

J
.+- J J' 2 

dz dA (z) dA
11

(z) = ZS+l 6JJ' 
-1 µ, ""' 

Defining a new coefficient 

c~µ,(z) = (l+z)~IA+µ,I (1-z)~IA-µ,j d~µ,(z) 

we rewrite (7.63) in the form 

+l 

J
. J J' 2 
-l dz eAµ,(z) cAµ(z) = ZJ+l 6JJ' 

In analogy with (7.58) define 

J+ 1 J J 
cA~z) = z[cAµ,(z) ± cA,-µ,(z)] 

with the property 

c~~(-z) = ± (-)J+A c~±cz) 

Then we have the orthonormal relations 

+l J+ J'+ J- J' -J dz [eAµ, (z) cAµ, (z) + eAµ, (z) cAµ, (z)] 
-1 

2 
2J+l OJJ I 

+l J+ J' - J- J'+ 
J _l 

dz [eAµ,(z) cAµ, (z) + eAµ,(z) CAµ, (z)] 0 

With the help of this, (7.61) can be inverted: 

(7.63) 

(7. 64) 

(7. 65) 

(7.66) 

(7.67) 

(7.68) 

(7. 69) 

h h 1 . . . d. GJ + d + d d S. +( ) h k. were e icity in ices on - an g- are un erstoo • ince g- s,t as no s- ine-

matic singularities, it satisfies the dispersion relation 

+ 1 00 

g-=-( s, t) = :;:;- J 
zo 

dz I A; t' z I) + l s"' dz I B; t' z I) 
Z I -z Z 1+z t TT Z t 

0 

(7. 70) 

where we have ignored possible subtractions, since they will not contribute to the 

final result, just as in the spinless case. Substituting (7. 70) into (7.69) we 

obtain 
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1 +l 
J+ 

G
3
±ct) =;J 

(X) 
A±ct,z') 

cAµ, (zt) 
dz' - I dz 

2 -1 t z'-z z t 
0 

1 .+l 
J+ 

1 (X) + c (zt) +-J dz ' B"'-( t, z ' ) 2 J _l 
dz 

z'+z TT Z t t 
0 J-

+ 1. J(X) + 1 +l dzt 
c (zt) 

dz' A (t,z') 2 J_l 
z'-z 

TT Z t 
0 

1 +l 
J-

+; { dz' B+(t,z') 
c (zt) 

2 J_l 
dz z '+z t z t 

0 

Let J±c ') 1 +l 
c3±(z) 

CA z 
=-J dz' I.JI 

Aµ 2 -1 z-z' 

with the reflection property 

c
3
±c-z) 

Aµ 

which follows from (7.67). Then 

G3±( t) = .!. J(X) 
TT Z 

dz' [A±c t, z') 

0 

+ 1. J(X) 
TT Z 

dz ' [B±c t, z' ) 

0 

Using (7.73), we rewrite this as 

c~:(z ') + A+(t,z') 

CJ+(-z') 
Aµ 

+B+(t,z') 

c~~(z')] 

C~(-z')] 

GJ±ct) =; J
00 

dz'[A±ct,z') <;(z') + A+(t,z') C~~(z')J 
z 

0 

J+ To continue this to complex J, we need to know some properties of cAµ· 

( 7. 71) 

(7. 72) 

(7. 73) 

(7. 74) 

(7.75) 

J+ 
The f~nctions CA~z) are studied in GGLMZ and in greater detail in Andrews 

and Gunson. We need to know the following properties: 

(i) C~~z) is a linear combination of Legendre functions of the second 

kind, Qi(z),with J-A $ i $ J+A. 

* Andrews and Gunson, J. Math. Phys • .2_, 1391 (1964). They study a function 

e;µ(z), which is related to ours by 
CJ (z) =(-)A-µ (l+z)~(A+µ) (1-z)~(A-µ) e

3
Aµ(z) 

Aµ 
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(i·i·) c~+µ.:.-tz) h b h · · J f · 1 f J " , as square root ranc points in or integer va ues o 

satisfying -/... s J s -µ-1 or µ s J s A.-1. 

(iii) C~~z) has no other singularities in J except those coming from the 

Legendre functions Qi(z), J-A. s £ s J+A.. In particular the apparent poles at 

half-integer values of J in the explicit forms tabulated by GGLMZ are in fact ab­

sent: They cancel by virtue of the symmetry property Qi(z) = Q_£_ 1(z) at 

£=half-integer. The fixed J-poles coming from those of Qi at£= -1,-2, ... 

remain. They occur at J = A.-1, A.-2, 

The analytic continuation of (7. 75) to complex J proceeds in the same manner 

as the continuation in the spinless case. If the functions A±, B± in (7.75) are 

polynomial bounded, then each integral defines a unique continuation in J which 

is analytic for sufficiently large Re J. Since (-l)J+A. does not have a unique 

analytic continuation, we introduce the signatured amplitudes 

+ 
T]G-'-(J, t) 

1 co + 
=; J dz'[A-(t,z') 

z 
c~:(z ') + A'f(t,z') c~~(z')] 

0 

+]Seo + c~:(z') - B'f(t,z') c~~ (z')] dz ' [B-'-( t, z ' ) 
TI Z 

(7. 76) 

0 

where T] = ±1. This can now be continued to complex J and is the generalization 
J+ of the Froissart-Gribov formula. It is related to G - for integer J by 

+ 

GJ±c t) = 
{ 

+ G+..:..CJ, t), for J+A. even 

G..:..CJ, t), for J+A. odd ( 7. 77) 

We may call T] the "apparent signature." It is the same as the signature if 

/... = even integer and is opposite of the signature if /... = odd integer. The func­
J+ 

tions cAµ have the property 

(J half-integer) (7. 78) 

Hence formally 

+ + 
T]G..:..CJ,t) = T]G..:..C-J-1,t) (J = half-integer) (7. 79) 

which is the Mandelstam symmetry. To get rid of fixed J-poles coming from those 

in cJ± 
/...µ,' 

we assume 

+ 
+l r~t,z) 
I dz P/z) o. (J /...-1, /...-2, ... ) (7. 80) 

-1 B-'-(t,z) 
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To carry out the Watson-Sommerfeld transform on (7.61), we first rewrite it as 

+ 
g~s, t) 

1 co + 
= z ~ (2J+l) {[+G~J,t)J 

J=A. 

+ + [_G~J,t)J 

(7. 81) 

To take advantage of the Mandelstam symmetry, we proceed as in the spinless case 

to replace e~~z) by a special continuation in J. The function e~~z) is a linear 

combination o~ Legendre polynomials and their derivatives. We def~ne E~~z) as 

the function obtained from e~~z) by replacing all P£(z) by //£(z). This func­

tion is discussed in more detail in GGLMZ. It has the following properties. For 

integer values of J, and A.~µ~ 0: 

(7. 82a) 

(7.82b) 

E(~µ+x)~z) -+ 
f\. x-+0 

Finite number ( -µ ,,; J ,,; µ -1) (7. 82c) 

(-A. ,,; J ,,; -µ-1) (7. 82d) 

,..., O(x) (7. 82e) 

At J half-integer, it has J-poles with residues satisfying 

J+ (-J-1)+ 
Res E~ = - Res E A.µ - (J = half-integer) (7. 83) 

It also has square root branch points in J. In the partial-wave expansion these 
+ will always be cancelled by corresponding ones in ~G-(J,t) arising from those of 

cJ± 
A.µ 

To simplify our discussion, we pretend for the moment that the range (7.82c) 

does not exist. This will be discussed separately in the next section on the 

problem of sense and nonsense. 

If we ignore the range (7.82c), the discussion proceeds in parallel with 
J+ J+ . 

that of the spinless case. We replace eA.µ by E~ in (7.81), extend the J-sum 

from -co to co, and replace it by a contour integral: 
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+ 1 1 n(2J+l) + J+ + EJ+(-z )] g~ s' t) = 2 Z7 J dJ [[+G~J, t)] [EA. (z ) 
TT1- C sinTT(JH) µ t A.µ t 

- [ G±(J, t)] [EJ+(z ) J+ - E ( -z ) J A.µ t A.µ t 

=F J- J-+ [+G (J,t)J [EA.µ (zt) - E (-z )] 
A.µ t 

- [_G=i=(J,t)J 
J- J-

( 7. 84) [EA.µ (zt) +EA. (-z )]} µ t 

where C is the contour shown below. 

The factor (-l)J+A from the re•idue of [•ijn(J+A)]-l ha' been ab•orbed into the 

E~~z) functions by using (7.59). In addition to the poles of [sinn(J+A.)]-
1

, which 
''I-" J+ 

reproduce the original sum, the integral also picks up the poles of EA.~z) at the 

half-integers. The one at J = -~ is cancelled by (2J+l). By virtue of the 

Mandelstarn symmetry (7. 79)and the property (7.83), the rest cancel in pairs as in 

the spinless case. 
J A. A Regge pole of parity+ (-) , apparent signature ~ [signature = ~(-) J 

occurs in the form 

+ G-
~ cd;ab 

r3cd;ab ( t) 
J-a( t) 

(7. 85) 

Its contribution to g±cs,t) is obtained by unfolding the contour in (7.84) in the 

same manner as in the spinless case. This is trivial to do for any particular 

Regge pole. It seems pointless to give a general formula, for we would merely 

drown in a sea of superscripts and subscripts. 

The asymptotic behavior of g±cs,t) for large zt can be worked out in parti­

cular cases from the explicit formulas for E~; tabulated in GGLMZ. In the asymp­

totic formulas, the true signature (instead of the apparent signature) always 
-irn appears in the usual factor (e ± 1). 

We give a list of factors that r3 d (t) should contain: 
c ·a~ 

(1) Threshold factor [2p bp d/s ja t),where s is an arbitrary scale. 
a c o o 

(2) A factor [f(a(t) - 3/2)]-1, for the same reason as in the spinless case. 

( 3) A factor corning from the J-branch points of CJ± 
A.µ' 

A.-1 1 
TI [a(t)-nJ 2 

-µ-1 1 
TI [a(t)-n] 2 

n=µ n=-A. 
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Q'-1-
cancel a corresponding factor in EAµ • 

(4) 

which will exactly 

A factor K d b( t) c ;a 
containing all the t-kinematic singularities of 

fcd·ab(t) · 
' (5) A factor S(a), explained in the next section, having to do with 

"choosing sense." 

In addition, at certain values of t, the residues of various Regge poles may 

satisfy kinematic constraints. Factorizability requires that ~cd·ab(t) have the 
' form 

(7.86) 

G. Sense and Nonsense 

The discussion of the Sommerfeld-Watson transform in the last section is 

incomplete, because we ignored the fact that EJ± # 0 for integer J-values in the 
Aµ, 

range -µ, s J s µ,-1. These terms are included :i.n the representation 

(7.84), although they were not in the original partial-wave expansion (7.81) and 

should not be included. Actually there is a cancellation among these terms, and 

(7.84) is still correct; but this cancellation implies constraints on Regge poles 

that we have to take into account. 

The cancellation occurs between the various terms in (7.84), made possible 

by certain symmetry properties of E~±µ, and cJ± namely, for integer J in the 
{\. Aµ,' 

range -µ, s J s µ,-1, 

(7. 87) 

(7. 88) 

The first can be proved by using the explicit formula Eq. (A9) of GGLMZ, and the 

second can be proved by induction by using the recursion formula, Eqs. (Al3), 

(Al4) of GGLMZ. The second relation leads via (7. 76) and (7.80) to 

+ =i= 
~G~J,t) = -~G (-J-1,t) (7. 89) 

for the same range of J values. Referring to (7.84) we note that the residues 

of (2J+l)/sinn(J+A) at J and -J -1 are equal to each other. Hence the contri-
o 0 

butions from J = J and J = -J -1 cancel in pairs: the first term in the curly 
0 0 

bracket cancels the fourth, the second against the third. Therefore (7.84) is 

correct. 

The equality (7.89) implies that if 

that a(t) is an integer with -µ,-1 < a(t) 

+ 
~G~J,t) has a pole at 

=i= < µ,, then -~G (-J-1,t) 
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at J = -a(t)-1. That is, whenever t is such that a Regge trajectory a(t) passes 

through integer value between -µ-1 and µ, there must be another trajectory pass­

ing through -a(t)-1, of the same residue but opposite parity and signature, 

unless the residue of a(t) vanishes. Here, as in the discussion of the phenomenon 

associated with a(t) passing through half-integer values, we have the alternatives 

of compensating trajectories vs. vanishing residues. In this case, however, the 

compensating trajectory has opposite parity and signature. 

The integer J-values for J < A are called nonsense values, a definition we 

have already introduced in the spinless case, where A 0. The range -µ-1 ~ J ~ µ 

therefore contains nonsense values of J, since in our convention A~µ~ O. When 

a trajectory passes through these values, it is said to "choose sense" if its 

residue vanishes, and to "choose nonsense" otherwise. These represent different 

dynamical possibilities and one cannot decide in favor of either without a theory. 

The simpler of the two seems to be to choose sense, for that avoids introducing 

a compensating trajectory. 

The factor S(a) listed at the end of the last section is designed to make 

the residue vanish at the appropriate nonsense values of a, if the trajectory 

chooses sense. If the trajectory chooses nonsense, then S(a) = 1, and we must 

specifically include compensating trajectories in the analysis. Since S(a) must 

not introduce singularities in a, it is an entire function of a, usually taken 

to be a polynomial. 

Nonsense values of a also occur in the spinless case, of course. But there 

we were not faced with choosing sense or nonsense because the function ~ does 
a 

not have the peculiarity (7.82c), and consequently nonsense values of a never 

give rise to a pole contribution to the Watson-Sommerfeld transform. An explicit 

example of sense and nonsense is given in GGLMZ, Appendix B. 

- 240 -



VIII. PION-NUCLEON SCATTERING 

As a non-trivial example of reggeization with spin we shall consider 

pion-nucleon scattering in some detail. This example also gives us a chance to 

see the detailed relation between invariant and helicity amplitudes and the 

origin of the kinematic singularities and constraints. 

A. Invariant Amplitudes 

Let us consider n-N scattering in which the individual particles are in 

definite charge states. 

t .... 

N 

Analysis in terms of total I-spin states may be easily 

obtained from what we do here and will not 

be discussed. Suppose we calculate the scat­

tering amplitude by summing all Feynman 

graphs, then we would obtain a Feynman 

amplitude of the form 

( 8.1) 

.... 
where u(p,s) is a Dirac spinor of momentum p and z-component of spin s, and 

T is a 4x4 matrix. We can write T as a linear combination of the 16 Dirac 

* matrices 

with coefficients constructed from the 3 available independent momenta 

(8. 2) 

in such a manner to insure that uTu is a Lorentz scalar. Thus terms proportional 

to y
5

yµ and y
5 

are immediately ruled out, for they would require pseudovector 

and pseudoscalar coefficients, and none can be constructed from (8.3). Any in­

variant constructed from yµy~ and (8.3) reduces to one constructed from 1 or yµ, 

when the nucleons are on the mass shell. Under the same condition, the only 

independent invariant constructed from yµ is y·(q1+q2). Thus the most general 

form is 

* We use the convention in S. Gasiorowicz, Elementary Particle Physics, 

(John Wiley & Sons, New York, 1967), Chap. 2. 
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where A, B are functions having no singularities except the unitarity cuts and 

particle poles. By definition they have no kinematic singularities and no kine­

matic zeros and are called invariant amplitudes. 

From the crossing property of Feynman graphs, the amplitude (8.1) also de­

scribes nn ~ NN when we continue the q2 and p2 to the region where their components 

change sign. For the invariant amplitudes, this simply means that we continue 

the values of s,t from the s-channel physical region to the t-channel physical 

region. 

B. Helicity Amplitudes 

The s-channel helicity amplitudes are 

s 
f, 0 . 1 0 (s,t) 
"2' ' 1\1' 

(8.5) 

where Al and A2 assume the values ±32· We introduce a shorthand notation in which 

the amplitudes are labeled only by the signs of A2 and A
1

; for example, 

s s 
f++ (s,t) = f, 1 O·" 0 (s,t) 

~' ,~, 

Then by (7.11) parity conservation implies 

FJ (s) 
+-

(8.6) 

(8. 7) 

Using this and the properties (7.51) of the rotation coefficients, we find that 

there are only two independent helicity amplitudes, which we choose to be 

s 
f

1 
(s, t) 

s 
f++ (s,t) f 

s 
( s' t) 

s s s 
f 2 (s,t) = f+- (s,t) = -f-+ (s,t) (8.8) 

Identical formulas hold for the t-channel amplitudes, if we change the super­

scripts from s to t. 

The helicity amplitudes are in fact the amplitudes (8.1) with specific 

choices of the Dirac spinors: 

fA A s(s,t) = ~(p2,A2) T(p2,q2;pl,ql) u(pl,Al) 
2 1 

fA A t(s,t) ~ u(p2,A2) T(p2'-pl;-q2,ql) v(-pl'-Al) 
2 1 
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where u(p,A) and v(p,A) are respectively positive and negative energy spinors 

satisfying 

u(p,A) u(p,A) -v(p,A) v(p,A) = +l (8.10) 

and 
" ... (p· a) u(p, A) 

(p· °&) v(p, A) (8.11) 

To find the relation between helicity and invariant amplitudes we use (8.4) and 

find after a lengthy but straightforward calculation 

f
1
s(s,t) =-~ [A(s,t) + s-~~-µ 2 

B(s,t) J 
f/(s,t) = _ J 2 Rs [s+m~-µ2 A(s,t) + s-:2+µ2 B(s,t) J (8.12) 

m 

and 

t 
f 1 (s,t) 

2 
-;==

1==;o:=-[- (t;!m) A(s,t) + s;u B(s,t) J 
- Jt-4m2 

- Jf {,_su ___ (_m_2 __ µ_2_)_2_[B( s' t) J 

2Jt-4m2 (8.13) 
t 

f
2 

(s,t) = 

Since A and B are by definition free of kinematic singularities, the kinematic 

singularities of the helicity amplitudes are hereby explicitly displayed. The 

following amplitudes are therefore free of all kinematic singularities: 

2 ;\.: t 
(t-4m ) 2 f 

1 

(8.14) 

(8.15) 

However, they are not completely independent. To see this we solve for A and B 
" s " s " t " t in terms of the set f

1 
, £2 , and alternatively the set f

1 
, f

2 

2m2 2 2 " s 2 2 " s 
A(s,t) = ,J2 [-(s-m +µ ) f 1 (s,t) + (s+m -µ) f 2 (s,t)] 

3 2 2 
B(s,t) = Jm2 [s~;µ fls(s,t) - f2s(s,t)] (8.16) 

with 

( 8. 17) 
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Since A(s,t) and B(s,t) have no kinematic singularities, the square brackets must 

vanish at s = (m ± µ)
2

. Similarly, in terms of the t-channel amplitudes 

A(s,t) 
2 2m A t s-u A t 

--2 [fl (s,t) + -2 f2 (s,t)] 
t-4m 2m 

B( s, t) 
1 A t 
; f 2 (s,t) (8.18) 

2 
so the square bracket must vanish at t = 4m • Note that no constraint is needed 

at t = 0 and hence there is no conspiracy condition. What happens is that parity 

conservation in the t-channel automatically implies conservation of angular mo­

mentum in the forward direction in the s-channel. 

The crossing relation for the helicity amplitudes is obtained by eliminating 

A(s,t) and B(s,t) between (8.16) and (8.18). Since the arguments of the square 

roots change signs during the continuation from the s-channel to the t-channel 

physical region, the calculation requires a careful consideration of phases. 

This is the whole point of the paper of Trueman and Wick. 

from (7 .14): 

s 
fab (s,t) 

where 

+Jz 
I: 

c=-Jz 

cosx 
2 2 

(s+m ~ )t 
- ~ 

s inX 2mJf}' t) 

,"1 = [s - (m+µ) 2
] [s - (m-µ)

2
] 

2 2 2 
cp(s, t) = stu - t(m -µ ) 

The rotation coefficients are given in the following matrix 

-sin 

cos 
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We take their result 

(8.19) 

(8.20) 

(8.21) 



Using this and (8.8), we obtain 

[
f 1 :(s, t)J = jsinX 

f 2 (s, t) lcosX 
(8.22) 

C. Reggeization of Helicity Amplitudes 

Let us now illustrate the procedure discussed in Section VII D by following 

it step by step for the present case. First we define 

- t 1 t 
f 1 (s,t) = /l+zt f 1 (s,t) 

- t 1 t 
f 2 (s,t) = /l-z f 2 (s,t) 

t 
(8.23) 

These amplitudes have no s-kinematic singularities and have the partial wave ex­

pansions 

-t CD 

G~(t) J f 2 (s,t) = L:: (2J+l) eoo<zt) 
J=O 

- t CD 

GL(t) 
J f 2 (s, t) = L:: (2J+l) eOl (zt) 

J=l 
(8. 24) 

Let !J,A
1

A2> be the NN state with angular momentum J and helicities A2,A1• Then 

PlJ;a,b> = + (-1)
3

!J;-a,-b> (8.25) 

The parity eigenstates are therefore 

with 

1 
IJ;a,b>± = .f2 ClJ;a,b> ± lJ;-a,-b>J 

J 
PlJ;a,b>± = ± (-1) !J;a,b>± 

The parity-conserving partial wave amplitudes are 

c;~t) = +<J;a,blG(t) !J;O,O> 

IJ,00> being the pion state. In terms of these we have 
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(8.26) 

(8.27) 

(8.28) 

(8.29) 



The states of NN and the trajectories coupled to them are given below. 

Parity eigenstate Abbreviation Parity G-2arity Trajectories 

1 
!zCIJ,-t-t-> + IJ,-->J 

1 
jz{JJ,-H-> - JJ,-->J 

} 2t I J, +-> + I J, -+> J 

1 
;2CIJ,+-> - JJ,-+>J 

JJ,0+> 

IJ,o-> 

IJ,l+> 

IJ, 1-> 

J -(-1) 

J -(-1) 

+l P, p, f 0 

-1 w,A2 

+l B 

-1 TI 

+l P,p,f 0 

-1 w,A2 

+l 

-1 

Since the 1111 states all have P 

wave amplitudes are 

J +(-1) and G = +l, the only non-vanishing partial 

J+ 
Goo = <J,O+jG(t) jJ,TITI> 

J+ 
G01 = <J,l+jG(t) jJ,rm> (8.30) 

Substituting this, via (8.29), into (8.24), we have the partial wave expansions 

- t 1 ro J+ J f 1 (s,t) = - I: (2J+l) GooC t) eoo(zt) 
2J=O 

- t 1 ro J+ J f 2 (s,t) = - I: ( 2J+l) GOl ( t) eOl (zt) 
2J=l 

(8.31) 

In the general discussion, we had further decomposed the above into the 
. + amplitudes g-(s,t). But for pion-nucleon scattering, only states with parity 
J . ·. ·. 

+(-1) couple and this is unnecessary. If we do it anyway, we find that 

(8.32) 

and we are back to (8.31). 
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From the table in GGLMZ, we find 

(8.33) 

Hence 

Ego(zt) = ~(zt) J 
coo<zt) = Q/zt) 

J (f~(zt) 
Eo1<zt) = /J(J+l) 

J - /J(J+l) 
COl(zt) - 2J+l [QJ-l(zt) - QJ+l(zt)J (8. 34) 

Then from (7.79) we obtain 

i 
Ct. ( t) Ct. ( t) -t TI s00 (t)(ai(t)+~) 

[Eo~ (-zt) 
1 

fl ( s) t) = 2::: sin TI et. ( t) + T]iEOO (zt) J 
i=P,p,f0 

1 
(8.35) 

i 
eti(t)(-z) 

Ct. ( t) 
- t TI s01(t)(ai(t)+~) - T]iEO~ (zt) J f 2 (s, t) 2::: 0 sinTT(et. ( t)+l) [Eoo t 

i=P~ p,f 1 

The signature ~ which appears here is the true signature. 

We take the residue functions to be 

(8.36) 

where s. 
1 

are arbitrary scales, the first factor provides the compensation required 

by the Mandelstam symmetry, and the second is the threshold 

we factor out the kinematic singularities of £
1
t(s,t): 

i factor. In y00(t), 

(8.37) 

Factorization requires 

-i 2 
y00 (t) ~ o for t < 4µ (8.38) 

In y~ 1 (t), we must factor out both the kinematic singularities of £1t(s,t) and 

the branch points coming from cgl(zt): 

(8. 39) 

Finally we obtain the s-channel amplitudes by using (8.35) and (8.22). 
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