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Abstract

Model Building from the Hierarchy Problem to Flavor Physics

This dissertation includes several models motivated by the theoretical and experimental

problems in the Standard Model of particle physics. The models are based on the com-

posite Higgs models with different cosets. We show that, with enlarged symmetries and

cosets, we are able to address the hierarchy problem together with the fine-tuning issue

in the Higgs potential, the mass hierarchy between different fermions, and the current

B-meson anomalies. A detailed study of phenomenology, including direct and indirect

searches, is also presented. The models will be tested in the future, which might unveil

the deep connection between Higgs physics and flavor physics.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is the most successful model, which describes

the properties of all the known elementary particles. Since the Large Hadron Collider

(LHC) started up in 2008, about 140 fb−1 of data have been collected and analyzed. So

far, the observations from the two main collaborations, ATLAS and CMS, are consistent

with the SM predictions, including the famous discovery of the Higgs boson in July 2012,

which strengthens the validity of the SM. However, there are still theoretical considerations

and experimental results that indicate the SM is incomplete. To understand these issues,

we can first briefly overview the SM Lagrangian through the following terms

LSM = −1

4

(
F a
µν

)2
+ |DµH|2 + iψ̄ /Dψ −m2

H |H|2 − λH |H|4 − Yijψ̄L,iHψR,j , (1.0.1)

which can be categorized into three different sectors.

First, the Gauge sector, which describes the properties of vector bosons and their

interaction with charged particles, is the most well-understood one among all. The gauge

theory helps us write down the relevant interactions related to spin-one particles, which

are included in the first three terms of Eq. (1.0.1). They are based on the SM gauge group

SU(3)C × SU(2)W × U(1)Y , (1.0.2)

which is composed of two parts - strong interaction and electroweak interaction.

The theory of the strong interaction is constructed through the non-abelian SU(3)C

gauge group with quarks, also known as quantum chromodynamics (QCD). QCD has sev-

eral salient properties. First, it is asymptotically free, which means its coupling becomes
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weaker as the energy scale increases. The property allows us to address QCD pertur-

batively in high-energy collisions, such as in the LHC. On the other hand, the theory

becomes non-perturbative when the energy is below the scale ΛQCD ∼ 200 MeV. The

strong interaction will lead to a fermionic condensate and break the chiral symmetry. At

this energy scale, QCD with quarks and gluons no longer provides a good description.

Instead, the degrees of freedom become composite particles like mesons and hadrons. One

way to describe the low-energy dynamics of QCD is by an effective field theory (EFT)

constructed through the underlying symmetry, such as the chiral perturbation theory.

Building the low-energy EFT based on symmetry is an important method in studying

composite theory, such as composite Higgs models.

The rest, SU(2)W ×U(1)Y , is known as electroweak gauge symmetry. The key feature

is that the symmetry is broken down to the U(1)EM , the electromagnetism with the

photon. The other three gauge bosons become massive and are known as W± and Z

bosons, which mediate the weak force. The way the symmetry is spontaneously broken

brings us to the next and the most important sector.

The Higgs sector, responsible for the electroweak symmetry breaking (EWSB), is

the core of the SM. The Higgs potential, i.e. the fourth and fifth terms in Eq. (1.0.1), is

the most mysterious part of the SM Lagrangian. Especially, the coefficient of the Higgs

quadratic term, m2
H , is the only dimensionful parameter in Eq. (1.0.1). The mass of the

Higgs field is not protected by any symmetry and thus is UV-sensitive. Therefore, the

generic scale should be around Planck scale MPl ∼ 1019 GeV, which is much larger than

the observed value mH ∼ 100 GeV. The problem is known as the Hierarchy problem,

which is eager for a solution to explain the hierarchy between the electroweak scale and

the Planck scale. It is also the main motivation for both the model building (theory side)

and the searches of new physics (experimental side) beyond the Standard Model (BSM)

in the past few decades.

An attractive solution to introduce the electroweak scale is through an asymptotically-

free gauge theory, just like QCD, which introduces the scale ΛQCD and breaks the chiral

symmetry. Based on this idea, theorists constructed the first BSM model for the hierarchy

2



problem, Technicolor (TC) models. However, the models are ruled out due to the discovery

of the light Higgs boson. The successor, Composite Higgs Models (CHM), on the other

hand, introduce the Higgs boson as a pseudo-Nambu Goldstone boson (pNGB), like the

pions in QCD. In this way, the Higgs boson is predicted to be much lighter than other

composite resonances. The models not only explain the origin of the electroweak scale

but also predict the spectrum we observed in the LHC.

The construction of CHMs is analogous to the chiral perturbation theory, where the

chiral symmetry is broken below the compositeness scale ΛQCD. In the low-energy regime

of QCD, considering only the up quark and the down quark, the SU(2)L×SU(2)R global

symmetry is broken down to SU(2)V once a quark-antiquark pair forms a condensate and

acquires a non-zero VEV. The chiral symmetry breaking will introduce three pNGBs, i.e.

pions. In CHMs, we also introduce some global symmetry G, which is broken down to the

subgroup H with a symmetry breaking scale f ∼ 1 TeV. The coset G/H should introduce

at least four pNGBs to play the roles of the Higgs doublet. Among all kinds of coset, the

most popular one is the SO(5)/SO(4) coset, which introduces exactly four pNGBs and is

known as the minimal composite Higgs model (MCHM). However, the coset can be well

beyond the minimal choice and results in a richer mechanism and phenomenology. The

additional mechanism might allow us to solve not only the problem in the Higgs sector

but also other issues in the SM. This is the main motivation of this dissertation. In the

following chapters, we are going to explore a series of models, all based on composite

Higgs models but with larger cosets, aiming at solving different problems together with

the hierarchy problem. Before that, let us go back to the issue in the SM.

The last sector, the little-understood one, is the Yukawa sector, which describes the

interaction between the fermion fields and the Higgs field. Although it is written as merely

one term in Eq. (1.0.1), it actually includes more parameters than the other two sectors.

Unlike the gauge sector, which only includes three different couplings (one for each gauge

interaction), the Yukawa couplings do not follow any underlying rule and thus can all

be different. That is, even we don’t count the mysterious neutrino sector, the other SM

fermions already require three 3× 3 complex Yukawa matrices, i.e. 27 complex couplings

3



in total. They will lead to more than ten physical observables, including fermion masses

and mixings. The problem is not just about the number of parameters but also their

values. The masses of these SM fermions span over six orders of magnitude. The mixing

matrix also shows a weird pattern. It is close to the identity in the quark sector but

far from identity in the lepton sector. The issue is known as the flavor puzzle, which

represents the mysterious structure of SM Yukawa couplings.

Besides the theoretical issues, many experimental results indicate that the SM is not

complete. For example, multiple observations have shown the existence of Dark Matter

and Dark Energy, which are not predicted in the SM. Also, the abundance of matter

over anti-matter derived from the SM mechanism is not enough to explain the observed

Universe. However, these examples are originated from astrophysics and cosmology, where

the solutions might be beyond the scope of particle physics. Even if they are within

particle physics, it is unclear whether the scale of the solution is reachable. In this

dissertation, we focus on the TeV-scale new physics, and there is no guarantee that they

should be related to any of the issues mentioned in this paragraph.

The direct searches of TeV-scale new physics have already been conducted by ATLAS

and CMS collaborations. No significant discrepancies have been found so far, which have

ruled out most of the minimal models aiming at explaining the hierarchy problem. How-

ever, in the other direction, the indirect searches conducted by the LHCb collaboration

show a series of consistent deviations in the semileptonic B-meson decays. The discrep-

ancy first showed up in the measurement of the angular observables P ′5 of a b→ sµµ decay.

Since then, the LHCb have measured branching ratios in many different b→ s`+`− decays.

Among them, the most important measurement is the test of lepton flavor universality

(LFU), which measure the ratio of branching ratios

RK(∗) ≡
Br(B → K(∗)µ+µ−)

Br(B → K(∗)e+e−)
' 1 . (1.0.3)

The theoretical prediction of the LFU is clean (not sensitive to hadronic uncertainties)

and thus can provide clear evidence for the possible deviation. So far, none of these mea-

surements is statistically significant enough to reach the discovery level, but the combined

analysis shows a consistent deviation from the SM prediction. Most important of all, they
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point to the new physics around the TeV-scale, which is precisely the scale we expect for

a solution to the hierarchy problem! Therefore, it will be the only experimental issue that

we are going to address in this dissertation.

Outline of Dissertation

This dissertation explores the possibility of solving the hierarchy problem together with

other SM issues as mentioned within the framework of composite Higgs models. Three

CHMs, each with a different setup and intent, are studied in the content.

In chapter 2, we first try to solve the problem within CHMs. In most CHMs, the tuning

is required to reproduce a Higgs VEV v much less than the symmetry breaking scale f

of CHMs, which requires some level of tuning. We show that, within a SU(6)/Sp(6)

composite Higgs model, there is an enhanced symmetry on the fermion resonances, which

can help minimize the Higgs quadratic term. An additional Higgs quartic term can also

be generated through the collective symmetry breaking. Combining the two mechanisms,

we are able to reach a minimal tuning and get a more natural Higgs potential.

Chapter 3 is an attempt to address the hierarchy problem with the flavor puzzle

together at the electroweak scale. The model is also based on SU(6)/Sp(6) coset but

with an U(1) subgroup identified as the flavor symmetry. We realize the Froggatt-Nielsen

(FN) mechanism within the framework of CHMs. The flavon field arises as a pNGB of the

broken symmetry, and composite fermionic resonances of the strong dynamics can play

the roles of the FN fields (vector-like fermions). The model can be viewed as a composite

UV completion of the Froggatt-Nielsen mechanism.

The last model in chapter 4 targets the B-meson anomalies. One popular solution is

a massive neutral vector boson Z ′ of some flavor-dependent U(1)′ gauge symmetry. We

find that, in a SU(4)/Sp(4) fundamental composite Higgs model, a TeV-scale Z ′ boson

can naturally arise and explain the neutral current B anomalies. We explore the allowed

parameter space and study the corresponding Z ′ phenomenology.

Finally, chapter 5 contains the conclusion and outlook.
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Chapter 2

A More Natural Composite Higgs

Model

Hsin-Chia Cheng and Yi Chung

Center for Quantum Mathematics and Physics (QMAP), Department of Physics,

University of California, Davis, CA 95616, U.S.A.

Composite Higgs models provide an attractive solution to the hierarchy problem. How-

ever, many realistic models suffer from tuning problems in the Higgs potential. There are

often large contributions from the UV dynamics of the composite resonances to the Higgs

potential, and tuning between the quadratic term and the quartic term is required to

separate the electroweak breaking scale and the compositeness scale. We consider a com-

posite Higgs model based on the SU(6)/Sp(6) coset, where an enhanced symmetry on the

fermion resonances can minimize the Higgs quadratic term. Moreover, a Higgs quartic

term from the collective symmetry breaking of the little Higgs mechanism can be realized

by the partial compositeness couplings between elementary Standard Model fermions and

the composite operators, without introducing new elementary fields beyond the Standard

Model and the composite sector. The model contains two Higgs doublets, as well as

several additional pseudo-Nambu-Goldstone bosons. To avoid tuning, the extra Higgs

bosons are expected to be relatively light and may be probed in the future LHC runs.

The deviations of the Higgs couplings and the weak gauge boson couplings also provide

important tests as they are expected to be close to the current limits in this model.
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2.1 Introduction

The Standard Model (SM) of particle physics successfully describes all known elementary

particles and their interactions. At the center of SM is the mechanism of electroweak

symmetry breaking (EWSB), which is responsible for the masses of gauge bosons and

fermions. The discovery of Higgs bosons in 2012 [1, 2] filled in the last missing piece of

the SM. However, the Higgs boson itself brings new questions and puzzles that need to

be answered. As a minimal model to realize EWSB, the Higgs field is characterized by

the potential

V (H) = −µ2|H|2 + λ|H|4 (2.1.1)

with just two parameters. The two parameters are now fixed by the observed Higgs

vacuum expectation value (VEV) v ' 246 GeV and Higgs boson mass Mh ' 125 GeV as

µ2 ' (88 GeV)2 , λ ' 0.13 . (2.1.2)

However, SM does not address the UV-sensitive nature of scalar bosons. The Higgs

mass-squared receives quadratically divergent radiative corrections from the interactions

with SM fields, which leads to the well-known hierarchy problem. To avoid the large

quadratic corrections, the most natural way is to invoke some new symmetry such that

the quadratic contributions cancel in the symmetric limit. This requires the presence of

new particles related to SM particles by the new symmetry, such as top partners, in order

to cut off the divergent loop contributions.

One such appealing solution to the hierarchy problem is the composite Higgs model

(CHM), where the Higgs doublet is the pseudo-Nambu-Goldstone boson (pNGB) of a

spontaneously broken global symmetry of the underlying strong dynamics [3, 4]. Through

the analogy of the chiral symmetry breaking in quantum chromodynamics (QCD), which

naturally introduces light scalar fields, i.e., pions, we can construct models with light Higgs

bosons in a similar way. In a CHM, an approximate global symmetry G is spontaneously

broken by some strong dynamics down to a subgroup H with a symmetry breaking scale f .

The heavy resonances of the strong dynamics are expected to be around the compositeness

scale ∼ 4πf generically. The pNGBs of the symmetry breaking, on the other hand, can
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naturally be light with masses < f as they are protected by the shift symmetry. The

potential of the Higgs field arises from the explicit symmetry breaking effects, such as

the interactions with other SM fields. The largest coupling of the Higgs field in SM is to

the top quark. As a result, for naturalness, the top partners which regulate the top loop

contribution to the Higgs potential should not be too heavy. The top loop contribution

to the Higgs mass term can be estimated as

∆µ2 ∼ Nc

8π2
y2tM

2
T ∼ (220 GeV)2

(
MT

1.2 TeV

)2

, (2.1.3)

where MT is the top partner mass. On the other hand, the bounds on the SM colored

top partners have reached beyond 1 TeV from the collider searches [27, 28]. Compared

with Eq. (2.1.2), we see that the models with colored top partners (including both the

minimal supersymmetric standard model (MSSM) and the CHM) already require some

unavoidable O(10%) tuning, albeit not unimaginable.

In most CHMs, however, the tuning is much worse than that is shown in Eq. (2.1.3).

Depending on the coset G/H and the representations of composite operators that couple

to the top quarks, the strongly interacting resonances of the top sector in the UV often

give a bigger contribution to the Higgs potential than Eq. (2.1.3), which requires more

tuning to cancel. Another problem is that, unlike the pions, the Higgs field needs to

develop a nonzero VEV v. The current experimental constraints require v < f/3. On

the other hand, for a generic pNGB potential, the natural VEV for the pNGB is either 0

or f . To obtain a VEV much less than f , a significant quartic Higgs potential compared

to the quadratic term is needed. In little Higgs models [7, 8, 9], a Higgs quartic term

can be generated without inducing a large quadratic term from the collective symmetry

breaking. Such a mechanism is not present in most CHMs, which is another cause of the

fine-tuning issue.

In this study, our goal is to find a more natural CHM by removing the additional tuning

beyond Eq. (2.1.3). We first identify the cosets and the composite operator representations

that couple to the top quarks, which can preserve a larger symmetry for the resonances to

suppress the UV contribution to the Higgs potential. Next, we implement the collective

symmetry breaking to generate a Higgs quartic potential while keeping the quadratic term

8



at the level of Eq. (2.1.3). In this way we can naturally separate the scales of v and f ,

resulting in a more natural CHM.

This paper is organized as follows. In section 2.2, we review the tuning problems in

CHMs and identify the sources of the extra tuning, using the SO(5)/SO(4) CHMs as an

example. In section 4.2, we introduce the SU(6)/Sp(6) CHM, including the interactions

that produce the SM Yukawa couplings, and show how the large UV contribution to the

Higgs potential is avoided. We then move on to the next step to generate an independent

Higgs quartic term from collective symmetry breaking in section 2.4. The resulting Higgs

potential of the 2HDM is discussed in section 2.5. The complete potential and spectrum

of all the pNGBs in our model are summarized in section 2.6 with numerical estimation.

Section 4.5 and Section 2.8 are devoted to the phenomenology of this model. Section 4.5

focuses on the collider searches and constraints. The analyses of the indirect constraints

from the precision experimental measurements are presented in Section 2.8. Section 4.7

contains our summaries and conclusions. In Appendix A we briefly discuss the possi-

bility of constructing a similar model based on the SU(5)/SO(5) coset. We point out

the differences and some drawbacks of such a model. Appendix B contains the details

of the interactions between elementary fermions and composite operators for a realistic

implementation of the SU(6)/Sp(6) CHM model.

2.2 Tuning in General Composite Higgs Models

We first give a brief review of the tuning problem of the Higgs potential in general CHMs,

which was comprehensively discussed in Ref. [10, 11]. This will help to motivate pos-

sible solutions. As an illustration, we consider the Minimal Composite Higgs Models

(MCHMs) [12] with the symmetry breaking SO(5)→ SO(4). The four pNGBs are iden-

tified as the SM Higgs doublet. The SM gauge group SU(2)W × U(1)Y is embedded in

SO(5) × U(1)X , with the extra U(1)X accounting for the hypercharges of SM fermions.

The explicit breaking of the global symmetry introduces a pNGB potential such that at

the minimum the SO(5) breaking VEV f is slightly rotated away from the direction that

preserves the SU(2)W × U(1)Y gauge group. The misalignment leads to the EWSB at a

9



scale v � f .

The explicit global symmetry breaking comes from SM gauge interactions and Yukawa

interactions. The SM Yukawa couplings arise from the partial compositeness mecha-

nism [20]: elementary fermions mix with composite operators of the same SM quantum

numbers from the strong dynamics,

L = λLq̄LOR + λRq̄ROL, (2.2.1)

where qL, qR are elementary fermions and OL, OR are composite operators of some repre-

sentations of G (= SO(5) in MCHMs). The values of couplings λL, λR depend on the UV

theory of these interactions and are treated as free parameters to produce viable mod-

els. With these interactions, the observed SM fermions will be mixtures of elementary

fermions and composite resonances. The SM fermions can then couple to the Higgs field

through the portion of the strong sector with couplings given by

y ' λLλR
gψ
' εL · gψ · εR , (2.2.2)

where gψ is a coupling of the strong resonances and is expected to be� 1, εL,R are ratios

λL,R/gψ, which are expected to be small. The resonances created by OL,R have masses ∼

gψf , and play the roles of SM fermion partners. They cut off the divergent contributions to

the Higgs potential and make it finite. Notice that the operators belong to representations

of the global symmetry G, but the resonances are divided into representations of H after

the symmetry breaking. Because the elementary fermions in general do not fill the whole

representations of G, the partial compositeness couplings λL, λR explicitly break the

global symmetry G and generate a nontrivial Higgs potential.

The pNGB Higgs field parametrizes the coset G/H so the potential is periodic in the

Higgs field. The Higgs potential can be expanded in sin(H/f) and up to the quartic term

it takes the form

V (H) = −α̂f 2sin2H

f
+ β̂f 2sin4H

f
, (2.2.3)

where α̂ and β̂ have mass dimension two and α̂ corresponds to the mass-squared parameter

of the Higgs field while β̂/f 2 will contribute to the quartic term. By expanding sin(H/f),
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higher powers of H can be generated from each term, but for convenience, we will simply

call the first term quadratic term and the second term quartic term. The parameters α̂

and β̂ are model dependent and are generated by explicit breaking parameters, like λL

and λR. Given the potential, we can get the VEV and Higgs mass parameterized as

v =

√
α̂

2β̂
f, M2

h = 8β̂
v2

f 2
(1− v2

f 2
) . (2.2.4)

The misalignment of the minimum from the SM gauge symmetry preserving direction is

parametrized by

ξ ≡ v2

f 2
= sin2〈θ〉 =

α̂

2β̂
� 1 , (2.2.5)

where angle 〈θ〉 ≡ 〈h〉/f . Therefore, for a realistic model, we need α̂ � β̂ and at the

same time, the correct size of β̂ to get the observed Higgs boson mass Mh ' 125 GeV.

From the most explicit symmetry breaking effects of the composite Higgs models,

one typically gets α̂ > β̂, which is the source of the tuning problem. For example, in

MCHM5 [11, 12], the SM fermions mix with composite operators OL, OR ∈ 5 of SO(5).

After the symmetry breaking, the composite resonances split into 4 and 1 representations

of SO(4). The mass difference between 4 and 1 resonances generates a Higgs potential

at the compositeness (UV) scale with

α̂ ∼ Nc

16π2
λ2L,RM

2
ψ ∼ ε2L,R

Ncg
4
ψ

16π2
f 2, (2.2.6a)

β̂ ∼ Nc

16π2
λ4L,Rf

2 ∼ ε4L,R
Ncg

4
ψ

16π2
f 2. (2.2.6b)

The quartic term coefficient β̂ arises at a higher order in ε than α̂, so generically β̂ � α̂

is expected instead. It is then required more fine-tuning to achieve the correct EWSB. In

some models, it is possible to have α̂ ∼ β̂. For example, MCHM14 [10] with OL, OR ∈ 14

of SO(5) can lead to the potential with

α̂ ∼ β̂ ∼ Nc

16π2
λ2L,RM

2
ψ ∼ ε2L,R

Ncg
4
ψ

16π2
f 2, (2.2.7)

where β̂ arises at the same order as α̂. It requires less tuning to achieve ξ � 1. This has

been called “minimal tuning.” But even so, the UV contribution of Eq. (2.2.7) to α̂ is
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larger than the IR contribution from the top quark loop

∆m2
IR ∼

Nc

16π2
y2tM

2
T ∼ ε4L,R

Ncg
4
ψ

16π2
f 2, (2.2.8)

which already requires some levels of fine-tuning as shown in Eq. (2.1.3). This additional

UV contribution actually worsens the condition and requires more tuning. A less-tuned

scenario is to have a composite right-handed top quark (which is a singlet of G). In

this case, εR ∼ 1 but does not contribute to the Higgs potential. The Higgs potential is

controlled by λL ∼ yt, which can be smaller.

From the above discussion, one can see that to obtain a more natural Higgs potential in

CHM, it would be desirable to suppress the contribution from the composite top-partner

resonances to the quadratic term. For example, a maximal symmetry was proposed

in Ref. [14] to keep the degeneracy of the whole G representation of the top-partner

resonances. However, the maximal symmetry is somewhat ad hoc within a simple model

and its natural realization requires more complicated model constructions by doubling the

global symmetry groups or invoking a holographic extra dimension [15, 16]. We will look

for cosets G/H such that the representation of the top-partner resonances do not split even

after the symmetry breaking of G→ H so that it preserves a global symmetry G in any

single partial compositeness coupling to prevent unwanted large contributions to the Higgs

potential. Besides, we need some additional contribution to the quartic term without

inducing the corresponding quadratic term simultaneously to make β̂ > α̂ naturally. This

may be achieved by the collective symmetry breaking of the little Higgs mechanism [7,

8, 9]. Previous attempts include adding exotic elementary fermions to an SU(5)/SO(5)

CHM model [17] and a holographic model with double copies of the global symmetry [18].

Another way of generating the quartic term without the quadratic term using the Higgs

dependent kinetic mixing requires both new elementary fermions and an enlarged global

symmetry or an extra dimension [19]. We will take a more economical approach by

implementing the little Higgs mechanism without adding exotic elementary fermions or

invoking multiple copies of the global symmetry, but simply using the couplings that mix

SM fermions with composite resonances.
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2.3 The SU(6)/Sp(6) Composite Higgs Model

Among the possible cosets, the cosets SU(5)/SO(5) and SU(6)/Sp(6) are potential can-

didates to realize the ideas discussed at the end of the previous section. If the composite

operator OL,R ∈ 5(6) of SU(5)(SU(6)), the corresponding resonances do not split under

the unbroken subgroup SO(5)(Sp(6)).1 Since they are still complete multiplets of G,

there is an enhanced symmetry for each mixing coupling λL,R, which protects the pNGB

potential. The cosets were also some earliest ones employed in little Higgs models [9, 16]

where the collective symmetry breaking for the quartic coupling was realized. In CHMs, it

requires different explicit implementations if no extension of the SM gauge group or extra

elementary fermions are introduced. The SU(5)/SO(5) model has a general problem that

an SU(2) triplet scalar VEV violates the custodial SU(2) symmetry, leading to strong

experimental constraints. We will focus on the SU(6)/Sp(6) model2 here and leave a brief

discussion of the SU(5)/SO(5) model in Appendix A.

2.3.1 Basics of SU(6)/Sp(6)

To parametrize the SU(6)/Sp(6) non-linear sigma model, we can use a sigma field Σij,

which transforms as an anti-symmetric tensor representation 15 of SU(6), where i, j =

1, . . . 6 are SU(6) indices. The transformation can be expressed as Σ → gΣgT with

g ∈ SU(6) or as Σij → gikg
j
`Σ

k` with indices explicitly written out. The scalar field Σ

has an anti-symmetric VEV 〈Σ〉 = Σαβ
0 (with α, β representing Sp(6) index), where

Σ0 =

0 −I

I 0

 , (2.3.1)

and I is the 3× 3 identity matrix. The Σ VEV breaks SU(6) down to Sp(6), producing

14 Nambu-Goldstone bosons.

The 35 SU(6) generators can be divided into the unbroken ones and broken ones with

1Näıvely they can split into two real representations, but if they carry charges under the extra U(1)X
gauge group which is required to obtain the correct hypercharge, they need to remain complex.

2A CHM with the SU(6)/Sp(6) coset were considered in Ref. [17], but for a different prospect.
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each type satisfyingunbroken generators Ta : TaΣ0 + Σ0T
T
a = 0 ,

broken generators Xa : XaΣ0 − Σ0X
T
a = 0 .

(2.3.2)

The Nambu-Goldstone fields can be written as a matrix with the broken generator:

ξ(x) = ξiα(x) ≡ e
iπa(x)Xa

2f . (2.3.3)

Under SU(6), the ξ field transforms as ξ → gξh† where g ∈ SU(6) and h ∈ Sp(6), so ξ

carries one SU(6) index and one Sp(6) index. The relation between ξ and Σ field is given

by

Σ(x) = Σij(x) ≡ ξΣ0ξ
T = e

iπa(x)Xa
2f Σ0e

iπa(x)X
T
a

2f = e
iπa(x)Xa

f Σ0 . (2.3.4)

The complex conjugation raises or lowers the indices. The fundamental representation of

Sp(6) is (pseudo-)real and the Sp(6) index can be raised or lowered by Σαβ
0 or Σ0,αβ.

The broken generators and the corresponding fields in the matrix can be organized as

follows (ε = iσ2):

πaXa =


1√
2
φaσ

a − η√
6
1 H2 εs H1

H†2
2η√
6

−HT
1 0

εT s∗ −H∗1 1√
2
φaσ

a∗ − η√
6
1 H∗2

H†1 0 HT
2

2η√
6

 . (2.3.5)

In this matrix, there are 14 independent fields. They are (under SU(2)W ): a real triplet

φa, a real singlet η, a complex singlet s, and two Higgs (complex) doublets H1 and H2. We

effectively end up with a two-Higgs-doublet model (2HDM). The observed Higgs boson

will correspond to a mixture of h1 and h2 inside two Higgs doublets H1 = H1/2 ⊃ 1√
2

(
0
h1

)
and H2 = H−1/2 ⊃ 1√

2

(
h2
0

)
. Using the Nambu-Goldstone matrix, we can construct the

low energy effective Lagrangian for the Higgs fields and all the other pNGBs.

14



2.3.2 The Gauge Sector

The SM electroweak gauge group SU(2)W × U(1)Y is embedded in SU(6)× U(1)X with

generators given by

SU(2)W :
1

2


σa 0 0 0

0 0 0 0

0 0 −σa∗ 0

0 0 0 0

 , U(1)Y :
1

2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −1


+XI . (2.3.6)

The extra U(1)X factor accounts for the different hypercharges of the fermion representa-

tions but is not relevant for the bosonic fields. These generators belong to Sp(6)×U(1)X

and not broken by Σ0. Using the Σ field, the Lagrangian for kinetic terms of Higgs boson

comes from

Lh =
f 2

4
tr
[
(DµΣ)(DµΣ)†

]
+ · · · , (2.3.7)

where Dµ is the electroweak covariant derivative. Expanding this, we get

Lh =
1

2
(∂µh1)(∂

µh1) +
1

2
(∂µh2)(∂

µh2) +
f 2

2
g2W

(
sin2

√
h21 + h22√

2f

)[
W+
µ W

−µ +
ZµZ

µ

2cosθW

]
.

(2.3.8)

The non-linear behavior of Higgs boson in CHM is apparent from the dependence of

trigonometric functions.

The W boson acquires a mass when h1 and h2 obtain nonzero VEVs V1 and V2 of

m2
W =

f 2

2
g2W

(
sin2

√
V 2
1 + V 2

2√
2f

)
=

1

4
g2W (v21 + v22) =

1

4
g2Wv

2, (2.3.9)

where

vi ≡
√

2f
Vi√

V 2
1 + V 2

2

sin

√
V 2
1 + V 2

2√
2f

≈ Vi = 〈hi〉 . (2.3.10)

The parameter that parametrizes the nonlinearity of the CHM is given by

ξ ≡ v2

f 2
= 2 sin2

√
V 2
1 + V 2

2√
2f

. (2.3.11)
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2.3.3 The Gauge Contribution to the pNGB Potential

SM gauge interactions explicitly break the SU(6) global symmetry, so they contribute

to the potential of the Higgs fields as well as other pNGBs. SM gauge bosons couple to

pNGBs through the mixing with composite resonances:

L = gWµ,aJ
µ,a
W + g′BµJ

µ
Y . (2.3.12)

The JW and JY belong to the composite operators in an adjoint representation 35 of

SU(6). After the symmetry breaking, the composite operators are decomposed into 21

and 14 of Sp(6). The masses of composite resonances of different representations of

Sp(6) are in general different and this will generate a potential for pNGBs at O(g2). For

SU(2)W , it only breaks the global symmetry partially and generates mass terms for the

two Higgs doublets and the scalar triplet φ:

SU(2)W : (for H1, H2) cw
1

16π2

3g2

2
g2ρf

2 ≈ cw
3

32π2
g2M2

ρ , (2.3.13)

(for φ) cw
1

16π2
4g2g2ρf

2 ≈ cw
1

4π2
g2M2

ρ , (2.3.14)

where gρf ∼ Mρ is the mass of the vector resonances ρ which act as the gauge boson

partners to cut off the SU(2)W gauge loop contribution to the pNGB masses, and cw is

a O(1) constant. Similarly, for U(1)Y , the interaction also breaks the global symmetry

partially. It only generates mass terms for H1, H2:

U(1)Y : c′
1

32π2
g′2g2ρf

2 ≈ c′
1

32π2
g′2M2

ρ , (2.3.15)

where c′ is also an O(1) constant.

Combining these two contributions, we get the mass terms of the pNGBs from the

gauge contributions at the leading order as

M2
η = M2

s = 0, M2
φ = cw

1

4π2
g2M2

ρ ,

M2
H1

= M2
H2

= cw
3

32π2
g2M2

ρ + c′
1

32π2
g′2M2

ρ ≈
(

3g2 + g′2(c′/cw)

8g2

)
M2

φ . (2.3.16)

From the gauge contributions only, we expect that Mφ > MH1 = MH2 and they are below

the symmetry breaking scale f . The SU(2)W × U(1)Y singlets s and η do not receive

masses from the gauge interactions at this order, but they will obtain masses elsewhere

which will be discussed later.
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2.3.4 The Yukawa Sector

For partial compositeness, the elementary quarks and leptons couple to composite opera-

tors of G = SU(6). To be able to mix with the elementary fermions, the representations of

the composite operators must contain states with the same SM quantum numbers as the

SM fermions. For our purpose, we can consider 6 and 6̄ of SU(6) as they don’t split under

the Sp(6) subgroup. To account for the correct hypercharge, e.g., qL = 21/6, qR = 12/3

for up-type quarks and qR = 1−1/3 for down-type quarks, the composite operators need

to carry additional charges under the U(1)X outside SU(6) and the SM hypercharge is a

linear combination of the SU(6) generator diag(0, 0, 1/2, 0, 0,−1/2) and X. The compos-

ite operator as a 61/6 of SU(6) (where the subscript 1/6 denotes its U(1)X charge) can

be decomposed under SM SU(2)W × U(1)Y gauge group as

Oi
L,R ∼ ξiαQ

α
L,R ∼ 61/6 = 21/6 ⊕ 12/3 ⊕ 2̄1/6 ⊕ 1−1/3, (2.3.17)

where QL,R are the corresponding composite resonances. The composite states QL,R

created by these operators belong to the 6 representations of Sp(6) and play the roles of

SM fermion composite partners. For SU(2), 2 and 2̄ are equivalent and related by the ε

tensor. We make the distinction to keep track of the order of the fermions in a doublet.

We see that the composite states have the appropriate quantum numbers to mix with the

SM quarks.

The left-handed elementary top quark can mix with either the first two components

or the 4th and 5th components of the sextet. If we assume that it couples to the first two

components, the mixing term can be expressed as

λLq̄LaΛ
a
iO

i
R = λLq̄LaΛ

a
i

(
ξiαQ

α
R

)
(2.3.18)

where a represents an SU(2)W index, and

(Λ)ai = Λ =

1 0 0 0 0 0

0 1 0 0 0 0

 (2.3.19)

is the spurion which keeps track of the symmetry breaking.
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To get the top Yukawa coupling, we couple the elementary right-handed quark to the

6̄1/6, which decomposes under SU(2)W × U(1)Y as

O′L,Rj ∼ ξ∗j
βΣ0βαQ

α
L,R ∼ 6̄1/6 = 2̄1/6 ⊕ 1−1/3 ⊕ 21/6 ⊕ 12/3 . (2.3.20)

The right-handed top quark mixes with the last component of the 6̄1/6, which can be

written as

λtR t̄RΓtR
jO′Lj = λtR t̄RΓtR

j
(
ξ∗j
βΣ0βαQ

α
L

)
, (2.3.21)

where ΓtR = (0 0 0 0 0 1) is the corresponding spurion.

Combining λL and λtR couplings, we can generate the SM Yukawa coupling for the

top quark (and similarly for other up-type quarks),3

∼ λLλtR q̄LaΛ
a
iξ
i
αΣαβ

0 ξTβ
j
Γ†tRjtR = λLλtR q̄LaΛ

a
iΣ

ijΓ†tRjtR ⊃ λLλtR (q̄LH2tR) . (2.3.22)

Similarly, for the bottom quark (or in general down-type quarks), we can couple bR to

the third component of 6̄1/6 with the coupling λbR and spurion ΓbR = (0 0 1 0 0 0). This

generates a bottom Yukawa coupling of

∼ λLλbR q̄LaΛ
a
iξ
i
αΣαβ

0 ξTβ
j
Γ†bRjbR = λLλbR q̄LaΛ

a
iΣ

ijΓ†bRjbR ⊃ λLλbR (q̄LH1bR) . (2.3.23)

Alternatively, we could also couple the left-handed elementary quarks to 6̄1/6 and

right-handed elementary quarks to 61/6,

λ′Lq̄Laε
abΩb

iO′Ri = λ′Lq̄Laε
abΩb

i
(
ξ∗i
βΣ0βαQ

α
R

)
, (2.3.24)

where

(Ω)a
i = Ω =

1 0 0 0 0 0

0 1 0 0 0 0

 (2.3.25)

3If we had coupled the left-handed quarks to the 4th and 5th components of OR,

λ̃Lq̄Laε
abΛ′biO

i
R = λ̃Lq̄Laε

abΛ′bi
(
ξiαQ

α
R

)
+ h.c.,

with the spurion

(Λ′)bi = Λ′ =

(
0 0 0 1 0 0
0 0 0 0 1 0

)
.

The combination of λ̃L and λtR would generate an up-type Yukawa coupling with H1, ∼ λ̃LλtR
(
q̄LH̃1tR

)
.
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and

λ′bR b̄RΓ′bRjO
j
L = λ′bR b̄RΓ′bRj

(
ξjαQ

α
L

)
, (2.3.26)

where Γ′bR = (0 0 0 0 0 1). Combining λ′L and λ′bR coupling, we can generate the SM

Yukawa coupling for bottom quark as

∼ λ′Lλ
′
bR
q̄Laε

abΩb
iξ∗i

βΣ0βαξ
†α
jΓ
′∗j
bR
bR = λ′Lλ

′
bR
q̄Laε

abΩb
iΣ†ijΓ

′∗j
bR
bR ⊃ λ′Lλ

′
bR

(
q̄LH̃2bR

)
,

(2.3.27)

where H̃ ≡ εH∗. In this case, the bottom mass also comes from VEV of H2. Note that

the combination of λL and λ′bR (or λ′L and λbR) does not generate the SM Yukawa coupling

because it does not depend on Σ.

The lepton Yukawa couplings can be similarly constructed by coupling elementary

leptons to 6 and 6̄ with X = −1/2. In 2HDMs, if the SM quarks have general couplings

to both Higgs doublets, large tree-level flavor-changing effects can be induced. To avoid

them, it is favorable to impose the natural flavor conservation [21, 22] such that all up-type

quarks couple to one Higgs doublet and all down-type quarks couple to either the same

Higgs doublet (Type-I) or the other Higgs doublet (Type-II or flipped depending on the

lepton assignment). We can obtain all different possibilities by choosing the partial com-

positeness couplings. For Type-II and flipped models, the b→ sγ put strong constraints

on the charged Higgs boson mass (& 600 GeV) [38] which would require more tuning in

the Higgs potential. Therefore, we will assume the Type-I 2HDM for the remaining of

the paper, with the top Yukawa coupling coming from λLλtR and the bottom Yukawa

coupling coming from λ′Lλ
′
bR

.

2.3.5 The Top Contribution to the pNGB Potential

The partial compositeness coupling λL or λR individually cannot generate a potential for

the pNGBs by itself, because the coupling Eq. (2.3.18) [or (3.3.6)] preserves an SU(6)

symmetry represented by the α index. Although α is an Sp(6) index, without Σ0, it

cannot distinguish Sp(6) from SU(6). To generate a nontrivial Higgs potential, we need

at least an insertion of Σ0, which distinguishes Sp(6) from SU(6). It first arises through

the combination of λL and λR in Eq. (3.3.7), which is just the top Yukawa coupling.
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Therefore, the first nontrivial Higgs potential shows up at the next order, i.e., O(λ2Lλ
2
R),

as

∼ − Nc

8π2
λ2Lλ

2
Rf

4
∣∣∣(Λ)ai(Γ

∗)jΣ
ij
∣∣∣2 (2.3.28)

It gives a contribution to the H2 squared-mass term of the order

∆M2
H2
∼ − Nc

8π2
λ2Lλ

2
Rf

2 ∼ − Nc

8π2
y2tM

2
T , (2.3.29)

which is the same as the IR contribution from the top loop estimated in Eq. (2.1.3).

Therefore, in this model, we avoid the potentially largeO(λ2) UV contribution and achieve

the minimal tuning for the quadratic part of the Higgs potential.

2.4 Collective Higgs Quartics from Fermion Partial

Compositeness Couplings

In the previous section, we show that in the SU(6)/Sp(6) CHM the UV contribution

from the strong dynamics to the Higgs potential is suppressed, minimizing the tuning of

the quadratic term. However, we need some additional quartic Higgs potential to further

reduce the tuning and to obtain a 125 GeV Higgs boson, as the IR contribution from

the top quark loop to the Higgs quartic term is not enough. Generating a Higgs quartic

coupling without inducing the corresponding quadratic term is the hallmark of the little

Higgs mechanism. For example, in the original SU(6)/Sp(6) little Higgs model [16], a

Higgs quartic term from the collective symmetry breaking can be generated by gauging

two copies of SU(2), with generators given by

Qa
1 =

1

2


σa 0 0 0

0 0 0 0

0 0 02×2 0

0 0 0 0

 and Qa
2 = −1

2


02×2 0 0 0

0 0 0 0

0 0 σa∗ 0

0 0 0 0

 (2.4.1)

and gauge couplings g1 and g2. The two SU(2)’s are broken down to the diagonal SU(2)W

by the Σ VEV. The potential for the pNGBs generated by the two gauge couplings takes

the form

g21f
2

∣∣∣∣s+
i

2f
H̃2
†
H1

∣∣∣∣2 + g22f
2

∣∣∣∣s− i

2f
H̃2
†
H1

∣∣∣∣2 . (2.4.2)
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The g21 term preserves the SU(4) symmetry of the 3, 4, 5, 6 entries which contains the

shift symmetry of H1 and H2. If only the first term of the potential exists, the H̃2
†
H1

dependence can be absorbed into s by a field redefinition and the term just corresponds

to a mass term for s. Similarly, the g22 term preserves the SU(4) symmetry of the 1, 2, 3, 6

entries under which H1 and H2 remain as Nambu-Goldstone bosons, but with a different

shift symmetry. The combination of both terms breaks either of the shift symmetries,

and a quartic Higgs potential is generated after integrating out the s field,

λ
∣∣∣H̃2

†
H1

∣∣∣2 with λ =
g21g

2
2

g21 + g22
. (2.4.3)

The possibility of gauging two copies of SU(2) gauge group is subject to the strong

experimental constraints on W ′ and Z ′. We would like to generate the quartic Higgs

potential without introducing additional elementary fields to the SU(6)/Sp(6) CHM,

so we will consider the collective symmetry breaking from the interactions between the

elementary fermions and the resonances of the strong dynamics.

From the discussion of the previous section, we see that the elementary quark doublets

may couple to composite operators of SU(6) representations 6 and/or 6̄, and each contains

two doublets of the same SM quantum numbers:

61/6 = 21/6 ⊕ 12/3 ⊕ 2̄1/6 ⊕ 1−1/3, (2.4.4a)

6̄1/6 = 2̄1/6 ⊕ 1−1/3 ⊕ 21/6 ⊕ 12/3 . (2.4.4b)

Both operators can create the same resonances which belong to 6 of the Sp(6) group.

Now consider two elementary quark doublets couple to the first two components of

the composite operators of 6 and 6̄ respectively, while both representations contain the

same resonances:

λLq̄LaΛ
a
iO

i
R = λLq̄LaΛ

a
i

(
ξiαQ

α
R

)
, (2.4.5)

where

(Λ)ai = Λ =

1 0 0 0 0 0

0 1 0 0 0 0

 , (2.4.6)

and

λ′Lq̄
′
Laε

abΩb
iO′Ri = λ′Lq̄

′
Laε

abΩb
i
(
ξ∗i
βΣ0βαQ

α
R

)
, (2.4.7)
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where

(Ω)a
i = Ω =

1 0 0 0 0 0

0 1 0 0 0 0

 . (2.4.8)

The combination of the two interactions breaks the SU(6) global symmetry explicitly

but preserves an SU(4) symmetry of the 3, 4, 5, 6 entries. It leads to a potential for the

pNGBs at O(λ2Lλ
′2
L) of the form

[(Λ)ai(Ω
∗)bjΣ

ij][(Ω)b
m(Λ∗)a

nΣ∗mn] , (2.4.9)

which can easily be checked by drawing a one-loop diagram, with qL, q′L, QR running in

the loop.

After expanding it we obtain

∼ Nc

8π2
λ2Lλ

′2
Lf

4
∣∣∣(Λ)ai(Ω

∗)bjΣ
ij
∣∣∣2 → Nc

4π2
λ2Lλ

′2
Lf

2

∣∣∣∣s+
i

2f
H̃2
†
H1

∣∣∣∣2 . (2.4.10)

(The factor of 2 comes from the trace which reflects the degrees of freedom running in the

loop, as both elementary fermions are doublets.) This is one of the terms needed for the

collective symmetry breaking. The coefficient is estimated from the dimensional analysis.

Notice that we have chosen different (generations of) elementary quark doublets, qL and

q′L in the two couplings. If qL and q′L were the same, the loop can be closed at O(λLλ
′
L)

and a large s tadpole term and Higgs quadratic term will be generated,

∼ Nc

8π2
λLλ

′
Lf

4
(
εab(Λ)ai(Ω

∗)bjΣ
ij
)
→ Nc

4π2
λLλ

′
Lg

2
ψf

3

(
s+

i

2f
H̃2
†
H1

)
. (2.4.11)

Such a term is actually needed for a realistic EWSB, but it would be too large if it were

generated together with Eq. (2.4.10) that will produce the Higgs quartic term. It can be

generated of an appropriate size in a similar way involving some other different fermions

and composite operators with smaller couplings.

The way that the mass term for s can be generated without the tadpole term can be

understood from the symmetry point of view. In addition to the SU(2)W × U(1)Y , the

Σ0 preserves a global U(1) Peccei-Quinn (PQ) [19] subgroup of Sp(6). This global U(1)

22



symmetry corresponds to the unbroken generator

U(1)PQ :
1

2



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 0


, (2.4.12)

under which s has charge 1, both H1, H2 have charge 1/2, and the rest of pNGBs have

charge 0. The s mass term is invariant under U(1)PQ while the tadpole term has charge

1 so it will not be induced if the interactions can preserve the U(1)PQ symmetry. On

the other hand, the composite operators in Eqs. (3.7.13), (3.7.15) have the following

PQ charges for their components (assuming that they don’t carry an additional overall

charge),

60 = 21/2 ⊕ 10 ⊕ 2̄−1/2 ⊕ 10, (2.4.13a)

6̄0 = 2̄−1/2 ⊕ 10 ⊕ 21/2 ⊕ 10, (2.4.13b)

where the subscript here denotes the PQ charge instead of the X charge. We see that

qL and q′L couple to components of different PQ charges. If qL and q′L are different, it is

possible to assign PQ charges, i.e., 1/2 for qL and −1/2 for q′L, so that the interactions

Eqs. (3.7.13), (3.7.15) preserve the PQ symmetry and the s tadpole term will not be gen-

erated. If qL and q′L are the same, then there is no consistent charge assignment that can

preserve the PQ symmetry, and hence the s tadpole term can be induced. Furthermore, if

different generations of quarks carry different PQ charges, The U(1)PQ preserving inter-

actions will not induce flavor-changing neutral currents (FCNC) as they violate the PQ

symmetry.

The second term required in realizing the collective symmetry breaking can be gen-

erated similarly by a different set of quarks (or leptons). They should couple to the 4th
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and 5th components of the 6 and 6̄ operators through the spurions

(Λ′)ai =

0 0 0 1 0 0

0 0 0 0 1 0

 and (Ω′)
ai

=

0 0 0 1 0 0

0 0 0 0 1 0

 , (2.4.14)

which preserve the SU(4) symmetry of the 1,2,3,6 entries.

The combination of Λ′ and Ω′ can then introduce the potential

∼ Nc

8π2
λ2Lλ

′2
Lf

4
∣∣∣(Λ′)ai(Ω′∗)bjΣij

∣∣∣2 → Nc

4π2
λ2Lλ

′2
Lf

2

∣∣∣∣s− i

2f
H̃2
†
H1

∣∣∣∣2 , (2.4.15)

which provides the other term needed for the collective symmetry breaking.

To generate all the terms required for the Higgs quartic potential from collective sym-

metry breaking, we need to use several different quarks and/or leptons, with different PQ

charge assignments. As we mentioned earlier, we also need some smaller PQ-violating cou-

plings between the elementary fermions and the composite operators, in order to generate

a proper-sized H̃2
†
H1 term,

m2
12 ∼

Nc

8π2
λLλ

′′
Lg

2
ψf

2, (2.4.16)

where λ′′L represents the smaller U(1)PQ violating coupling. A more detailed coupling

assignment for a realistic model is presented in Appendix B. With all the collective sym-

metry breaking interactions discussed above, we obtain a pNGB potential,

ck`
Nc

4π2
λ2kLλ

′2
`L
f 2

∣∣∣∣s+
i

2f
H̃2
†
H1

∣∣∣∣2 + cmn
N ′c
4π2

λ2mLλ
′2
nL
f 2

∣∣∣∣s− i

2f
H̃2
†
H1

∣∣∣∣2 , (2.4.17)

where ck`, cmn are O(1) constants depending on the UV completion,4 and the indices

k, `,m, n here label different fermions. After integrating out the massive s field, we obtain

a quartic term for the Higgs doublets (take Nc, N
′
c = 3) as

λ12

∣∣∣H̃2
†
H1

∣∣∣2 with λ12 =
3

4π2

ck`cmnλ
2
kL
λ′2`Lλ

2
mL
λ′2nL

ck`λ2kLλ
′2
`L

+ cmnλ2mLλ
′2
nL

. (2.4.18)

4In the Discrete CHMs [26] or UV completions with Weinberg’s sum rules [27, 28] for the MCHM, the
analogous finite quartic potentials have the coefficient c ∼ 2.
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Assuming λkLλ
′
`L
∼ λmLλ

′
nL

and ck` ∼ cmn ∼ 2, then in our estimate

λ12 ∼
3

4π2
λ2kLλ

′2
`L
. (2.4.19)

Including this quartic term, the coefficients of the Higgs potential in this model are

estimated to be

α̂ ∼ 3

16π2
λ2tLλ

2
tR
f 2, β̂ ∼ 3

16π2
λ2kLλ

′2
`L
f 2 . (2.4.20)

Therefore we can further improve upon the minimal tuning (α̂ ∼ β̂) case by requiring

λ′L > λtR =⇒ β̂ > α̂ . (2.4.21)

Of course, however, β̂ can not be arbitrarily large because it is determined by the Higgs

boson mass from Eq. (2.2.4). The required numerical parameters will be discussed in the

next section.

2.5 The Higgs Potential in the 2HDM

The SU(6)/Sp(6) model contains two Higgs doublets. To analyze the EWSB and the

Higgs boson masses, we need to consider the Higgs potential in a 2HDM. A review of

2HDM can be found in Ref. [29]. The other pNGBs do not affect the Higgs potential

much (they either are heavy or couple mostly quadratically to the Higgs doublets), so we

will postpone their discussion to the next section. The Higgs potential in our model can

be parameterized as

V (H1, H2) = m2
1H
†
1H1 +m2

2H
†
2H2 −m2

12

(
H̃2
†
H1 + h.c.

)
+
λ1
2

(
H†1H1

)2
+
λ2
2

(
H†2H2

)2
+ λ12

∣∣∣H̃2
†
H1

∣∣∣2 . (2.5.1)

Notice that, in CHMs, due to the non-linearity of pNGBs, the Higgs potential should

include trigonometric functions instead of polynomials. Also, to match the potential here

to the SM Higgs potential, an additional factor of cos〈θ〉 will appear. However, since the

deviation is strongly constrained by Higgs coupling measurements, we will take 〈θ〉 � 1

and expand sinx ∼ x in the following discussion for simplicity.
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In the 2HDM potential (2.5.1), both Higgs doublets develop nonzero VEVs. Denote the

VEVs of H1 and H2 to be v1 and v2 respectively, and their ratio is defined as tan β ≡ v2/v1.

The total VEV v satisfies

v2 = v21 + v22 = v2cos2β + v2sin2β = (246 GeV)2 . (2.5.2)

H2 couples to the top quark and gets a large negative loop-induced contribution to its

quadratic term, so it is natural to expect v2 > v1. On the other hand, the main quartic

term coming from the collective symmetry breaking is λ12. To have a large enough

effective quartic term for the 125 GeV Higgs boson, we do not want either sin β (≡ sβ)

or cos β (≡ cβ) to be too small. The current constraints [24, 31, 32] have ruled out the

region tan β near 1, so we will consider a benchmark with a medium value,

tanβ ∼ 3 . (2.5.3)

Also, the light neutral eigenstate should be close to the SM Higgs boson, which imposes

some conditions on the parameters in the Higgs potential (2.5.1). In Subsec. 2.5.1, we first

discuss the quadratic potential, which will determine the spectrum of additional Higgs

bosons in this model. Then, we will discuss the alignment issue in Subsec. 2.5.2 and the

corresponding values of the quartic terms in the Higgs potential.

2.5.1 Estimating the Mass Terms

The experimental constraints require that the 2HDM should be close to the alignment

limit (β − α = π/2) [33, 34, 35, 36], where α is the mixing angle between the mass

eigenstates of the two CP-even Higgs boson and the corresponding components in H1, H2

(after removing the VEVs),

h = −h1 sinα + h2 cosα . (2.5.4)

To simplify the discussion of the quadratic terms, we assume that the alignment holds

approximately,

h ≈ h1 cos β + h2 sin β = hSM, (2.5.5)
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then we can calculate the SM Higgs potential by the transformation H1

H2

 =

cosβ −sinβ

sinβ cosβ

 HSM

Hheavy

 . (2.5.6)

The potential of the light SM Higgs doublet becomes (keeping the terms with HSM only

and rewriting HSM → H)

V (H) =
(
m2

1 cos2β +m2
2 sin2β − 2m2

12 sinβ cosβ
)
|H|2

+

(
λ1
2

cos4β +
λ2
2

sin4β + λ12 sin2β cos2β

)
|H|4 . (2.5.7)

Matching the quadratic term with the SM Higgs potential implies that

−µ2 = m2
1 cos2β +m2

2 sin2β − 2m2
12 sinβ cosβ ≈ − (88 GeV)2 . (2.5.8)

As shown in the previous section, these mass terms get contributions from different

sources: m1 comes from gauge contributions, m2 gets an additional large negative con-

tribution from the top quark besides the gauge contributions, and m12 comes from the

PQ-violating interactions. No natural cancellation among the three terms in Eq. (2.5.8)

is warranted. Therefore, the absolute values of all three terms should be of the same

order as µ2 to avoid tuning. For example, for tan β = 3 Eq. (2.5.8) can be satisfied by

m2
1 ∼ (360 GeV)2, m2

2 ∼ (120 GeV)2, and m2
12 ∼ (210 GeV)2 without strong cancellations

among the three terms. These numbers are based on the alignment approximation. More

accurate values need to include the whole 2HDM potential and will be given after the

discussion of the quartic terms.

2.5.2 Estimating the Quartic Terms

There are three quartic couplings in the Higgs potential (2.5.1): λ1, λ2, and λ12. The

effective quartic coupling for the light Higgs, which can be seen from Eq. (2.5.7), is a

combination of the three quartic couplings and tan β. To obtain a 125 GeV Higgs boson

we need
λ1
2

cos4β +
λ2
2

sin4β + λ12 sin2β cos2β ≈ 0.13 . (2.5.9)
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λ1 is mainly induced by the SM gauge loops and is expected to be small. λ2 receives the

top quark loop contribution,

λ2 ∼
3y4t
4π2

ln
MT

v
∼ 0.1. (2.5.10)

This implies that we need λ12 which comes from the collective symmetry breaking to

satisfy

λ12s
2
βc2β ∼ 0.1 ⇒ λ12 ∼ 1 for tan β = 3 . (2.5.11)

If it arises from the collective quartic term obtained in Eq. (2.4.19), it corresponds to

λLλ
′
L ∼ 3.6 ⇒

√
λLλ′L ∼ 1.9 . (2.5.12)

These couplings between the elementary states and composite operators are quite large.

However, the smallness of SM Yukawa couplings can be obtained by small λR couplings.

There are other experimental constraints with these large λL couplings, which will be

discussed in the following sections.

We have been assuming that the 2HDM potential is approximately in the alignment

regime. Let us go back to check how well the alignment can be achieved. A simple way

to achieve the alignment is the decoupling limit where the extra Higgs bosons are heavy.

However, this would require more tuning in the Higgs mass parameters. In our model

λ12 > λ2, λ1. Under this condition, we need tan β ∼ 1 to achieve the exact alignment if

the extra Higgs bosons are not too heavy. This is not compatible with the experiment

constraints. Therefore we expect some misalignment and need to check whether the

misalignment can be kept within the experimental constraints.

Solving the eigenvalue equations, we can get the following equations for the factor

cβ−α,

cβ−α =
1

M2
Atanβ

(
λ1v

2
1

(
−sα
cβ

)
+ λ12v

2
2

(
cα
sβ

)
−M2

h

(
−sα
cβ

))
, (2.5.13)

=
1

M2
Acotβ

(
−λ12v21

(
−sα
cβ

)
− λ2v22

(
cα
sβ

)
+M2

h

(
cα
sβ

))
. (2.5.14)

As the misalignment should be small, to estimate its size, we can assume that the mass

eigenstates of the 2HDM are near alignment, which satisfy (−sα, cα) ≈ (cβ, sβ) approxi-
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mately for the right-handed side. We then have

cβ−α ≈
1

M2
Atanβ

(
λ1v

2
1 + λ12v

2
2 −M2

h

)
, (2.5.15)

≈ 1

M2
Acotβ

(
−λ12v21 − λ2v22 +M2

h

)
. (2.5.16)

Consider the benchmark values

tanβ ≈ 3, λ12 ≈ 1, and MA ≈ 380 GeV , (2.5.17)

where the MA value is chosen to keep the misalignment small and to evade the direct

search in the A0 → hZ decay channel at the LHC [24]. The equations for cβ−α becomes

cβ−α ≈ 0.014λ1 + 0.090 ≈ 0.199− 1.132λ2 . (2.5.18)

Since λ1 in this model is small, we have cβ−α ≈ 0.090 which parametrizes the deviation

from the alignment. The misalignment will have a direct consequence on Higgs physics

and will be discussed in the following sections. The most relevant deviation, the ratio of

Higgs to vector bosons coupling to SM coupling, is proportional to sβ−α ≈ 0.996 and

should still be safe.

Eq. (2.5.18) also implies that λ2 needs to be ≈ 0.1, which is consistent with the

estimate from the top quark loop contribution Eq. (2.5.10). To sum up, the three quartic

couplings in our 2HDM potential take values

λ12 ≈ 1 � λ2 ≈ 0.1 � λ1 . (2.5.19)

2.5.3 A Realistic Higgs Potential

So far, all numbers in the above discussion are estimations based on simplified approx-

imations. In a realistic benchmark model, the exact values can be solved by directly

diagonalizing the mass matrix. To reproduce the correct Higgs boson mass Mh = 125

GeV and small enough cβ−α with fixed tanβ ≈ 3 and λ12 ≈ 1, we choose the following

values as a reference for our study:

tanβ ≈ 3.0, λ12 ≈ 1.0, λ2 ≈ 0.12, and MA ≈ 380 GeV . (2.5.20)
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λ1 is irrelevant as long as it is small so we don’t set its value. The value of λ2 is set by

producing the correct Higgs boson mass.

With these numbers, we can diagonalize the mass matrix and get the mixing angle α

and the misalignment β − α as

sα = −0.215, cα = 0.977 =⇒ cβ−α = 0.1049, sβ−α = 0.9945 . (2.5.21)

The eigenvalues of the matrix give the masses of the CP-even neutral scalar bosons as

Mh ≈ 125 GeV and MH ≈ 370 GeV . (2.5.22)

The complete spectrum will be discussed in the next section.

After we obtain the quartic couplings, we can go back to determine the mass terms.

The value of MA is chosen to satisfy the experimental constraint. It also gives the value

of m12 based on the relation

m2
12 = M2

Asβcβ ∼ (210 GeV)2 . (2.5.23)

Given the values of all the quartic couplings and m12, we can obtain the other mass terms

m2
1 = 3m2

12 −
1

2
λ1v

2
1 −

1

2
λ12v

2
2 ∼ (320 GeV)2 , (2.5.24)

m2
2 =

1

3
m2

12 −
1

2
λ2v

2
2 −

1

2
λ12v

2
1 ∼ (90 GeV)2 . (2.5.25)

These numbers will serve as a benchmark for our phenomenological studies.

Assuming that these masses arise dominantly from the loop contributions discussed

in the previous sections, we can also estimate the masses of the composite states in the

CHM,

m2
1 =

3

32π2
g2M2

ρ ∼ (320 GeV)2 , (2.5.26)

m2
2 =

3

32π2
g2M2

ρ −
3

8π2
y2tM

2
T ∼ (90 GeV)2 , (2.5.27)

m2
12 =

Nc

8π2
λLλ

′′
Lg

2
ψf

2 ∼ (210 GeV)2 , (2.5.28)

where we have ignored the small U(1) gauge contribution and taken cw ∼ 1. The m2
1

equation gives the mass of the gauge boson partners Mρ ∼ 5 TeV. In the m2
2 equation,
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the top loop contribution needs to cancel the positive gauge contribution (320 GeV)2

to produce a (90 GeV)2 term. From that, the top partner is estimated to be around

MT ∼ 1.6 TeV. This corresponds to an O(10%) tuning between the gauge contribution

and the top contribution, but it is hard to avoid given the experimental constraints on

the top partner mass. The desired size of m2
12 can be achieved by a suitable choice of the

PQ-violating coupling λ′′L which is a free parameter in this model.

2.6 The Spectrum of pNGBs

After discussing the Higgs potential from the naturalness consideration, we are ready to

provide the estimates of masses of all other pNGBs, based on the benchmark point alluded

in the previous section.

2.6.1 The Second Higgs Doublet

The 2HDM potential has been discussed in the previous section. In addition to the SM-

like 125 GeV Higgs boson, there is one more CP-even neutral scalar H0, a CP-odd neutral

scalar A0, and a complex charge scalar H±. Their masses from the Higgs potential (2.5.1)

are

M2
A =

m2
12

sβcβ
, M2

H± = M2
A −

1

2
λ12v

2,

M2
h,H =

1

2

(
M2

A ±
√
M4

A − 8M2
H±λ12v

2s2βc
2
β

)
, (2.6.1)

which results in a spectrum MA > MH > MH± . This is different from the 2HDM spectrum

of the MSSM because the dominant quartic term is λ12. For the benchmark point of the

previous section, the three masses are estimated to be

MA ∼ 380 GeV, MH ∼ 370 GeV, and MH± ∼ 340 GeV. (2.6.2)

2.6.2 Other pNGBs

In addition to the two doublets, the pNGBs also include a real triplet φ, a real singlet η,

and a complex singlet s. The triplet obtains its mass from the gauge loop as shown in

Eq. (2.3.14). For Mρ ∼ 5 TeV, it gives

M2
φ = cw

1

4π2
g2M2

ρ ∼ (500 GeV)2 . (2.6.3)
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The singlets do not receive mass contributions from SM gauge interactions. The

complex singlet s obtains its mass from the collective symmetry breaking mechanism

(2.4.17),

M2
s = ck`

Nc

4π2
λ2kLλ

′2
`L
f 2 + cmn

N ′c
4π2

λ2mLλ
′2
nL
f 2 ≥ 4λ12f

2 ≈ (2f)2, (2.6.4)

which is expected to be at the TeV scale. There is also a tadpole term from the PQ-

violating potential, which will introduce a small VEV for s,

〈s〉 ∼ m2
12f

M2
s

≤ (210 GeV)2

4f
∼ O(10 GeV). (2.6.5)

It will have little effect on the mass of the singlet.

Finally, the real singlet η does not get a mass at the leading order but it couples

quadratically to the Higgs doublets (e.g., from Eq. (3.7.8)), so it can still become massive

after the Higgs doublets develop nonzero VEVs. Through Eq. (3.7.8), η receives a mass

M2
η ∼

3

8π2
y2tM

2
T ·
(
v

f

)2

=⇒ Mη ∼
(
MT

f

)
48 GeV. (2.6.6)

For naturalness, a relatively light top partner is preferred. On the other hand, the exper-

imental constraints require η to be heavier than half of Higgs boson mass to avoid large

Higgs decay rate to the ηη channel. We expect a light singlet scalar around 100 GeV,

which can be the lightest composite state in the spectrum.

2.7 Collider Searches

In CHMs, there will be new composite states of scalars, fermions, and vectors near or

below the compositeness scale. The detailed spectrum and quantum numbers depend on

the specific realizations of the CHMs. In this section, we study the collider searches of

and constraints on these new states in the SU(6)/Sp(6) model discussed in this paper.

2.7.1 The Second Higgs Doublet

Under the requirement of naturalness, the second Higgs doublet is expected to be among

the lightest states of the new resonances and could be the first sign of this model. In

the Type-II 2HDM, the flavor-changing process b → sγ has put strong constraints on

the charged Higgs mass to be above 600 GeV, which would require more tuning in the
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Fig. 2.1: Constraints on extra neutral Higgs bosons in a Type-I 2HDM with a small misalign-
ment cβ−α = 0.1. This summary plot is taken from Ref. [24].

Higgs potential. Therefore, we focus on the Type-I 2HDM scenario. As explained in the

previous section, we will consider a relatively small tan β ∼ 3 with a small misalignment

cβ−α ∼ 0.1.

The direct searches can be divided into two categories – charged Higgs bosons H± and

neutral Higgs bosons H0, A0. In the Type-I 2HDM with a small misalignment, neutral

Higgs bosons to fermion couplings are characterized by a factor −sα/sβ ∼ 1/4 and the

charged Higgs boson to fermion couplings are characterized by cβ/sβ ∼ 1/3. Comparing

to neutral Higgs bosons, the charged Higgs boson searches give a more reliable constraint

on tanβ because it doesn’t depend on the mixing angle α.

The charged Higgs boson is searched by its decays to SM fermions. For MH± . mt, the

strongest constraint comes from decaying to τν [37, 38]. Interpreted in the Type-I model,

it excludes tan β < 14 for MH± ∼ 100 GeV and tan β < 3 for MH± up to 150 GeV [39].

For a heavier charged Higgs boson, the main constraint comes from the decay to tb, which

rules out tan β . 2 for MH± in the range of 200-400 GeV, and becomes weaker for larger

MH± [31, 32].
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For neutral Higgs bosons, there are multiple decay channels being searched. For

light states below the tt̄ threshold, they can be searched by H/A → ττ [40, 41] and

H → γγ [42, 43] decays. For heavier states, the decay to tt̄ becomes accessible and

dominant. The searches of H/A → tt̄ has been done at CMS and ATLAS [44, 45].

These searches typically constrain tan β & 1− 2 up to MH/A ∼ 750 GeV. When there is

misalignment as expected in this model, there are also additional decay channels of these

neutral scalars which give important constraints. These include H/A → WW [46, 47]

and ZZ [48, 49], H → hh [50, 51], and A → hZ [52, 53]. The A → hZ and H → hh

turn out to be most constraining for the region that we are interested in. The A → hZ

can exclude tan β up to 10 below the tt̄ threshold. Some higher mass ranges are also

constrained due to data fluctuations. H → hh constrains tan β to be & 3 for a wide mass

range. Various constraints on the neutral scalars for 2HDMs are summarized in Ref. [24],

and the relevant plot is reproduced in Fig. 2.1. We can see that the benchmark point

chosen in the previous section,

MA ∼ 380 GeV, MH ∼ 370 GeV, and MH± ∼ 340 GeV, (2.7.1)

with tan β = 3 is sitting in the gap of the constraints. It is still allowed by but very close

to the current constraints, hence it will be tested in the near future.

For future searches, the most relevant channels for the more natural mass range are

di-boson channels H/A→ V V , H → hh, and A→ hZ. The current bounds are expected

to be improved by ∼ 10 times [54]. It will probe the parameter region that we are most

interested in. If we can also find the charged Higgs with a slightly lighter mass, this

particular spectrum can be an indication of the specific 2HDM Higgs potential (different

from that of the MSSM) that arises from this type of CHMs.

2.7.2 Additional Scalar Bosons

Besides the second Higgs doublet, there are also several additional scalar bosons, which

include a real triplet φ, a complex singlet s, and a real singlet η. At the leading order,

they don’t directly connect to the SM fermions. However, the couplings to SM fermions

are induced through the mixing with Higgs bosons after EWSB, with a suppression factor
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of v/2f ∼ 0.15 (for ξ ∼ 0.1).

Scalar triplet φ: The scalar triplet has unsuppressed gauge interactions with W and

Z bosons, but only through four-point vertices. They can be paired produced through

the vector boson fusion but the production is highly suppressed due to the large energy

required. Therefore, here we only consider the single production through the interaction

with SM fermions. The scalar triplet includes a complex charged scalar φ± and a neutral

scalar φ0. The collider searches of the charged scalar are similar to those of H± of the

second Higgs doublet but with the suppressed couplings. It can be produced in association

with a top and a bottom. However, due to the suppressed coupling and the larger mass,

the charged scalar φ± is less constrained.

The neutral scalar φ0 is searched in the same ways as the neutral scalars in 2HDMs.

Guided by the benchmark scenario, we consider a scalar with mass ∼ 500 GeV, which

gives a cross section 120 fb. The dominant decay mode will be φ0 → tt̄ with a branching

ratio ∼ 75%. The current bound from the LHC searches [44, 45] on the cross section

is σ × BR < 5 pb, which is still loose for a neutral scalar with σ × BR ∼ 90 fb. The

di-boson modes are also important with branching ratios ∼ 16% for WW and ∼ 8% for

ZZ. The most stringent current upper bound comes from φ0 → ZZ channel, which ruled

out σ ×BR above 100 fb [48, 49]. It is also much larger than ∼ 10 fb for the benchmark

point. In the future, around 3.6×105 φ0 (at 500 GeV) would be produced in the HL-LHC

era with an integrated luminosity of 3 ab−1. The bound can be improved by 10 times [54].

And a 500 GeV φ0 could be within reach in the HL-LHC era.

Scalar singlets: The complex scalar s is expected to be at TeV scale and the real

singlet η is around 100 GeV. They both act like the neutral scalar φ0 discussed above,

but without the gauge interactions. They can be produced through the gluon fusion but

the production cross sections will be suppressed by ξ/4 ∼ 0.025.

For the heavy complex scalar s, The expectation of its mass in the benchmark point

is above 1.5 TeV. The dominant decay channel will be a pair of neutral Higgs bosons

s → h1h2 (hh, hH,HH) or charged Higgs bosons due to the large sH̃2
†
H1 coupling. It

also connects to the fermions sector through the mixing with Higgs bosons. However,
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the production is suppressed due to the large mass. Although it is an essential element

of the collective Higgs quartic term, it is hard to detect even at the HL-LHC. It may be

accessible in the next generation hadron collider.

The light real scalar η should be heavy enough so that h→ ηη is forbidden due to the

constraint from the Higgs invisible decay measurement [55]. This requires MT/f & 1.3 for

a realistic model, but it should remain relatively light if the top partner is not too heavy

for the naturalness reason. Since the interactions between η and SM particles are all

through the mixing with the Higgs boson, the search modes are similar but with the ξ/4

suppression on the production rate. The cross section is ∼ 1.5 pb for a 100 GeV η. The

dominant decay modes are bb̄ (78.9%), ττ (8.3%) and gg (7.4%), but they all suffer from

large backgrounds. On the other hand, the clean channel γγ suffers from a low branching

ratio ∼ 0.16%. For the benchmark point, the diphoton channel has σ × BR ∼ 3 fb. The

latest search from CMS [56] still has an uncertainty ∼ 20(10) fb for a diphoton invariant

mass ∼ 80(110) GeV, much bigger than the cross section that we expect. With more data

and improvements in the background determinations, it might be discoverable at future

LHC runs.

2.7.3 Fermionic Top Partners

The top partners in the SU(6)/Sp(6) CHM are vector-like fermionic resonances which

form a sextet of the Sp(6) global symmetry. Their quantum numbers under the SM gauge

symmetry are (3, 2, 1/6)[×2], (3, 1, 2/3), and (3, 1,−1/3), which are identical to those of

SM quarks. There are no exotic states with higher or lower hypercharges. These states are

degenerate in the limit of unbroken Sp(6) global symmetry. (Small splittings arise from the

explicit symmetry breaking effects and EWSB.) Their mass MT plays the important role

of cutting off the quadratic contribution from the top quark loop to the Higgs potential.

Naturalness prefers MT to be as low as possible allowed by the experimental constraints.

The current bound on the top partner mass has reached ∼ 1.2 TeV [27, 28]. The HL-LHC

can further constrain the mass up to ∼ 1.5 TeV [78]. The benchmark value of 1.6 TeV is

close to but probably still beyond the reach of HL-LHC. A future 100 TeV collider will

cover the entire interesting mass range of the top partners if no severe tuning conspires.
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It may even be able to find the fermionic partners of the other SM quarks, which are

expected to be much heavier.

2.7.4 Heavy Vector Bosons

Unlike the top partners, the partners of SM gauge bosons (spin-1 resonances) are not

necessarily light because of the smallness of SU(2)W , U(1)Y gauge couplings. In fact,

their masses need to be large enough to give a sufficiently large mass to the second Higgs

doublet and to cancel in a large part the negative contribution from the top sector to the

quadratic Higgs potential. The largest couplings of these composite spin-1 resonances are

to the composite states, including the pNGBs. Their mixings with SM gauge bosons are

strongly suppressed by their multi-TeV masses, hence their couplings to SM light fermions

are also suppressed, resulting in a small production rate as well as small decay branching

ratios to SM elementary particles [58, 59]. The leading decay modes will be through the

composite states, such as top partners or pNGBs which include the longitudinal modes of

W and Z. The current searches of heavy vector triplets decaying into SM gauge bosons

final states have reached a bound about 4 TeV [60, 61, 62, 63]. The bound is relieved for

larger gρ > 3 with more suppression on the production rate. Besides, the model contains

a richer sector of the pNGBs which will dilute the decay branching fractions to SM gauge

bosons, further reducing the bound. If the vector resonances are heavier than twice the

top partner mass, the decaying into top partners will dominate and it would require

different search strategies. As the production rate quickly diminishes for heavier vector

resonances, the typically expected masses of the vector resonances as in our benchmark

will be out of reach even at the HL-LHC. A future higher energy machine will be needed

to discover them.

2.8 Precision Tests

In this section, we discuss the indirect tests of this model from precision experimental

measurements.
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2.8.1 Higgs Coupling Measurements

The Higgs boson couplings to SM fields in the SU(6)/Sp(6) CHM are modified by two

effects: the nonlinear effect due to the pNGB nature of the Higgs boson and the misalign-

ment from the mixing of the 2HDM. The deviation of the Higgs coupling to vector bosons

is parameterized by

κV ≡
ghV V
gSMhV V

= sin(β − α) cos

√
V 2
1 + V 2

2√
2f

, (2.8.1)

where the first factor comes from the misalignment of the 2HDM and the second factor is

the nonlinear effect of the pNGB. For the benchmark point in Sec. 2.5, sin(β−α) ≈ 0.995,

which gives

κV ≈ (0.995)

√
1− ξ

2
≈ 0.995− 0.249 ξ , (2.8.2)

The deviation of the Higgs coupling to fermion is universal in Type-I 2HDMs because

it couples to all fermions in the same way. The expression is somewhat more complicated

in CHM, and here we only expand to O(ξ),

κf ≡
ghff
gSMhff

=
1

sβ

(
cα − ξ

1

12
(3s2βcα + c2βcα − 2sβcβsα)

)
≈ 1.030− 0.252 ξ , (2.8.3)

where the numerical value of the last expression is obtained for the benchmark point.

The current best-fit values of κV and κF from ATLAS [64] with an integrated lumi-

nosity of 80 fb−1 are

κV = 1.06± 0.04 , (2.8.4)

κF = 1.05± 0.09 , (2.8.5)

with a 45% correlation between the two quantities. The central values for both quantities

are slightly above the SM value 1, but without significant deviations given the uncer-

tainties. As shown in Fig. 2.2, within 95% CL level, ξ ≤ 0.12 is still allowed (for the

benchmark point), which gives a lower bound on the scale f ∼ 700 GeV.

In the future, the uncertainties in κV and κF can be improved to 1% and 3% respec-

tively at the HL-LHC, [65]. Assuming the central values of (1, 1), it can bound ξ down to

0.1 at 99% CL. The next generation Higgs factories, such as ILC, CEPC, and FCCee, will
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Fig. 2.2: The fit of the Higgs coupling strengths to the gauge bosons (κV ) and fermions (κf )
obtained by the ATLAS [64] from the 13 TeV LHC data. The cross is the observed central
value. The circles from inside out represent the 68%, 95%, and 99% CL respectively. The red
star shows the SM value (1, 1). The blue star in the predicted value of the 2HDM benchmark
of Sec. 2.5 with ξ = 0. Along the line, we show the predictions for the same benchmark with
different ξ from 0 to 0.3.

have great sensitivities to the hZZ coupling and can measure κV with a precision ≈ 0.3%.

It can test the scale f up to several TeV and hence cover the entire natural parameter

region for the CHMs.

Another decay mode worth mentioning is h→ γγ. The branching ratio of this decay

mode will receive an additional contribution from charge Higgs bosons. But the current

bound from this decay mode is still loose. It will improve at HL-LHC and future Higgs

factories. It may provide a sign of the heavy charged Higgs bosons if they exist.

2.8.2 Flavor Changing Neutral Currents

New physics appearing near the TeV scale may introduce dangerously large flavor changing

neutral currents (FCNCs), so the flavor-changing processes put strong constraints on the

model constructions. The SU(6)/Sp(6) model contains two light Higgs doublets. If

general Yukawa couplings are allowed between them and SM fermions, large FCNCs will

be induced. Therefore, it is desirable to impose the natural flavor conservation such that

each type of Yukawa couplings only comes from one of the two Higgs doublets. Even so,

a light charged Higgs boson can induce a significant contribution to the branching ratio
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BR(B → Xsγ) [31, 32, 33, 34, 35, 36]. In the Type-II or flipped 2HDM, this gives a lower

bound on the charged Higgs boson MH± > 600 GeV [37, 38], which would introduce more

tuning in the Higgs potential. To have a more natural model, we therefore focus on the

construction of the Type-I 2HDM. In a Type-I model, the B → Xsγ constraint rule out

the region below tan β < 2 [37, 38].

The partial compositeness couplings between the elementary fermions and the com-

posite operators can potentially induce FCNCs. In our construction, the largest such

couplings (for the top Yukawa and the collective Higgs quartic term) preserve a Peccei-

Quinn symmetry with different PQ charges for different generations (see Appendix B). As

a result, there is no FCNC induced by these large couplings in the leading order. Some

FCNCs may be induced by other (smaller) couplings which are responsible for generat-

ing the complete SM fermion masses and mixings, but they are suppressed by the small

couplings and depend on the details of their pattern.

2.8.3 Oblique Parameters

The electroweak oblique corrections provide important tests of new physics near the weak

scale. They are usually expressed in terms of S, T , and U parameters [73, 74]. The

current global fit gives [75]

S = −0.01± 0.10, T = 0.03± 0.12, U = 0.02± 0.11. (2.8.6)

For heavy new physics, U is typically small as it is suppressed by an additional factor

M2
new/m

2
Z . If one fixes U = 0, then S and T constraints improve to

S = 0.0± 0.07, T = 0.05± 0.06, (2.8.7)

with a strong positive correlation (92%) between them. At 95% CL, one obtains S < 0.14

and T < 0.22.

There are several contributions to the oblique parameters in our model, with similari-

ties and differences compared to the MCHM discussed in the literature. First, our model

has two Higgs doublets. Their contributions to S and T can be found in Ref. [76, 77, 78].

To satisfy the other experimental constraints, the Higgs potential needs to be close to
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the alignment limit and the heavy states are approximately degenerate. The contribu-

tions are expected to be small and do not provide a significant constraint [79]. The other

contributions are discussed below.

The S parameter

The leading contribution to the S parameter comes from the mixing between the SM

gauge bosons and the composite vector resonances. It is estimated to be [80, 81, 82]

∆S ∼ cS 4π
v2

M2
ρ

∼ cS 0.03

(
5 TeV

Mρ

)2

, (2.8.8)

where cS is an O(1) factor. It gives a lower bound of ∼ 2.5 TeV on Mρ for cS = 1.

In CHMs, there is a contribution from the nonlinear Higgs dynamics due to the devia-

tions of the Higgs couplings, which result in an incomplete cancellation of the electroweak

loops [83, 84]. This contribution is proportional to ξ and depends logarithmically on

Mρ/Mh. For Mρ = 5 TeV, it gives ∆S ∼ 0.10 ξ which is well within the uncertainty.5

In the MCHM, there is also a contribution due to loops of light fermionic resonances.

It is logarithmically divergent and its coefficient depends on the UV physics [84]. This

contribution can be significant, depending on the UV-sensitive coefficient. However, in

our model, the fermionic resonances are complete multiplets of SU(6) and their kinetic

terms remain SU(6) symmetric, so this divergent contribution is absent.

The T parameter

The T parameter parametrizes the amount of custodial SU(2) breaking. There are also

several potential contributions in our model. First, the pNGB spectrum contains a real

SU(2)W triplet φ. If it obtains a VEV induced by the trilinear scalar couplings to a pair

of Higgs doublets, H†1φH1, H
†
2φH2, or (H1φH2 +h.c.), it will give a tree-level contribution

to ∆T . Its VEV is bounded to be less than ∼ 8 GeV, putting strong constraints on

these couplings. However, if all the large couplings are real and the CP symmetry is

(approximately) preserved, the real scalars φ and η are CP odd and the interactions

H†1φH1, H
†
2φH2, and (H1φH2 + h.c.) are forbidden by the CP symmetry. The η and

φ fields need to couple quadratically to the Higgs fields. This also justifies the Higgs

5A factor of 1/2 is included due to the normalization of f compared to Ref. [83, 84].
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potential analysis based on the 2HDM potential. Of course, CP symmetry has to be

broken in order to allow the nonzero phase in the CKM matrix. We assume that this

is achieved with the small partial compositeness couplings so that the induced trilinear

scalar couplings are kept small enough to satisfy the bound.

Apart from the potential triplet VEV contribution, the leading contribution to ∆T

comes from fermion loops. For the partial compositeness couplings in this model, the

custodial symmetry breaking comes from λR.6 The dominant contribution comes from the

light top partners and the corresponding mixing coupling λtR The deviation is estimated

to be [82]7

∆T ∼ Nc

16π2α
λ4tR

v2

M2
T

∼ 0.16

(
λtR
1.3

)4(
1.6 TeV

MT

)2

. (2.8.9)

There is also a contribution from the modifications of the Higgs couplings to gauge

bosons due to the nonlinear effects of the pNGB Higgs. The contribution to ∆T from

the nonlinear effects again depends on ξ and is logarithmically sensitive to Mρ. For

Mρ = 5 TeV, it gives ∆T ∼ −0.28 ξ [83, 84]. It is significant and can partially cancel

the light top partner contribution. The contribution from the mixing of the hypercharge

gauge boson and vector resonances is small due to the custodial symmetry. The tree-level

contribution vanishes and the loop contribution is negligible. The overall ∆T correction

is expected to be positive and could help to improve the electroweak precision fit in the

presence of a positive ∆S.

In summary, among the various sources of the corrections to the electroweak observ-

ables, the contributions from the composite resonances are expected to be dominant.

They give strong constraints on the masses of heavy resonances Mρ and MT as well as the

relevant coupling like λtR . Nevertheless, for natural parameter values as our benchmark,

the corrections on (S, T ) can still lie safely within the current uncertainty region. A future

Z factory can greatly improve the precisions of the electroweak observables, which can

provide a strong test of the model.

6The custodial symmetry of our model corresponds to the Case B in Ref. [17]
7The partial compositeness couplings are related to the top Yukawa coupling by λtLλtR ∼ yt gT . For

ytsβ ∼ 0.85 at 2 TeV and assuming gT ∼ 2, we need
√
λtLλtR ∼ 1.3.
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2.8.4 Zff̄ Couplings

The partial compositeness couplings generate mixings between elementary fermions and

composite resonances. They can modify the Zff̄ couplings in the SM. This is a well-known

problem in CHMs for the Zbb̄ coupling in implementing the top partial compositeness. A

solution based on an extended custodial symmetry SU(2)V × PLR on the top sector by

embedding the left-handed top-bottom doublet into the (2, 2) representation of SU(2)L×

SU(2)R was proposed in Ref. [85]. The top sector in our construction does not have this

extended custodial symmetry. Furthermore, to obtain the collective quartic Higgs term,

we need several large partial compositeness couplings involving other light SM fermions.

As a consequence, we may expect significant deviations of the Zff̄ couplings for all

fermions involved and they present important constraints on this model.

The third generation left-handed quark’s partial compositeness couplings modify the

ZbLb̄L coupling. Its deviation δgbL from the current experimental determination is con-

strained within 3 × 10−3 [86]. This deviation comes from mixings between the bottom

quark b and the corresponding composite resonances B. Under our assignment in Ap-

pendix B, there are two terms that will have large positive contributions to δgbL . They

are

λtL q̄3,LH1BR → (λtLv1)b̄LBR , (2.8.10)

λ′bL q̄3,LH̃2B
′
R → (λ′bLv2)b̄LB

′
R . (2.8.11)

The first one is responsible for generating the top Yukawa coupling and induces the

mixing between bL and the bottom partner B with PQ charge 0. The second introduces

the bottom Yukawa coupling and the collective quartic term. It induces the mixing with

another bottom partner B′ with PQ charge 1. The deviations that they bring can be

estimated as

δgbL ≈
λ2tLc

2
β

M2
0 (TeV)

× (30× 10−3), δgbL ≈
λ′2bLs

2
β

M2
1 (TeV)

× (30× 10−3) , (2.8.12)

where M0 and M1 are the masses of the fermions resonances B and B′ respectively.

Note that M0 is also the top partner mass which is responsible to cut off the top loop
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contribution to the quadratic Higgs potential so it should not be too large for naturalness.

On the other hand M1 is the bottom partner mass which can be much larger because

of the small bottom Yukawa coupling. These corrections impose strong constraints on

the couplings and masses of the composite fermion resonances. For the first term, taking

λtL ≈ 1.3 and c2β ≈ 0.1 from the benchmark model, it requires M0 = MT & 1.3 TeV, which

is still in the range we expect. Compared to the other models without the SU(2)V ×PLR
custodial symmetry, such as the MCHM4 [12], we are saved by the c2β factor to allow

a relatively light top partner. For the second one, taking λ′bL ≈ 1.9 and sβ ≈ 1 would

require M1 & 6 TeV for the bottom partner. The bound on M1 can be reduced for a

smaller value of λ′bL , but at the cost of a larger λcL if their combination is responsible for

the collective Higgs quartic term, which increases the deviations for δgcL and δgsL .

The collective Higgs quartic term needs at least four large λL, λ
′
L couplings. Each

of them will induce two δgL deviations from SM Zff̄ couplings and all of them reduce

the magnitudes from the SM predicted values. Since the Z decay width and branching

ratios are all well measured at O(10−3) precision, we also need to examine their observable

consequences and the corresponding constraints.

It is harder to extract the constraints on individual couplings from the observables

that depend on more complicated combinations of different couplings. Therefore we con-

sider the constraints from Γ(hadron) and Γ(charged lepton) because they are directly

proportional to the couplings instead of some ratios. We predict smaller values for both

Γ(hadron) and Γ(charged lepton), but their observed central values are both larger than

the SM predictions so the allowed parameter space is strongly restricted. At the 95% CL

level, the allowed negative deviations are [75]

∆Γ(had) ∼ −1.0 MeV , ∆Γ(`+`−) ∼ −0.15 MeV . (2.8.13)

From these, we obtain the constraints on allowed negative deviations on the magnitude
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of different left-handed fermion couplings (assuming only one term dominates) as follow,

|δguL| < 0.7× 10−3 for up-type quarks, (2.8.14a)

|δgdL| < 0.6× 10−3 for down-type quarks, (2.8.14b)

|δgeL| < 0.4× 10−3 for charged leptons. (2.8.14c)

They strongly constrain the parameters of our model. To satisfy these constraints, the

corresponding fermion partners need to be over 10 TeV if their couplings to the elementary

fermions are large enough to be responsible for the collective Higgs quartic term.

These constraints can be relaxed somewhat if we use the neutrino couplings for the

collective Higgs quartic term. The Γ(invisible) is smaller than the SM prediction. The

allowed negative deviation is 4 MeV at the 95% CL level, which corresponds to

|δgνL| < 6× 10−3 for neutrinos. (2.8.14d)

The resulting constraints on the corresponding fermion resonances are milder.

The precision measurements of the Z couplings put strong constraints on our model

because we predict a reduction of all ZfLf̄L couplings in the construction. A future Z

factory may improve the coupling measurements by more than one order of magnitude.

Consequently, it can either establish a deviation from the SM predictions which points to

new physics in the nearby scales, or further affirm the SM predictions which will severely

challenge this model or any other models with similar predictions. Nevertheless, we would

like to emphasize that these constraints are indirect so it is quite possible that one can

extend the model to introduce new contributions to cancel the deviations, at the expense

of complexity and/or tuning.

2.9 Conclusions

Composite Higgs models remain an appealing solution to the hierarchy problem. How-

ever, in realistic models, some tuning in the Higgs potential is often required to obtain

the correct EWSB and the observed Higgs boson mass. One source is from the mass split-

tings within the top partner multiplet of the composite resonances, which can generate a

large quadratic Higgs potential through the partial compositeness couplings at the order
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λ2L(R). The other is to obtain the necessary relative size between the quartic term and

the quadratic term of the Higgs potential in order to separate the EWSB scale and the

compositeness scale. In this paper, we look for models that can address both problems.

We show that a CHM based on the coset SU(6)/Sp(6) can achieve the goals without

introducing additional elementary fields beyond the SM and the composite sector, which

otherwise will introduce a new coincidence problem that why the new elementary fields

and the compositeness resonances are at the same mass scale.

A key part of the setup is to couple the elementary SM fermions to the composite

operators of the fundamental representation of SU(6). The composite resonances do not

split after the symmetry is broken to Sp(6) and hence do not induce any large potential

from the UV dynamics for the pNGBs. The leading contribution to the Higgs quadratic

term is reduced to the unavoidable top quark loop in the IR. In addition, the fundamental

representation of SU(6) contains two electroweak doublets of the same SM quantum

numbers. This allows us to write down different ways of coupling between the elementary

fermions and the composite resonances, each of which preserves a subset of the global

symmetry. In this way, a quartic Higgs potential can be generated from the collective

symmetry breaking of the little Higgs mechanism, without inducing the corresponding

quadratic terms. This independent quartic term enables us to naturally separate the

EWSB scale and the SU(6) global symmetry breaking scale, reducing the tuning of the

Higgs potential.

This model contains many more pNGBs than one Higgs double of the minimal model.

In particular, there are two Higgs doublets and the second Higgs doublet should not be

too heavy for naturalness considerations. The extra Higgs bosons are already subject to

collider constraints and are the most likely new particles to be probed in the future LHC

runs beside the top partners. The other pNGBs, having smaller couplings to SM particles,

are more difficult to find. Together with the heavy vector and fermion resonances, they

need higher energy machines with large integrated luminosities. The top partners in

this model do not include new particles with exotic charges, e.g., 5/3, as in many other

CHMs. The model also predicts deviations of the Higgs couplings and weak gauge boson
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couplings. The current experimental data already provide substantial constraints on the

model parameters in the most natural region. The Higgs coupling measurements will

be greatly improved at the HL-LHC and future Higgs factories. A future Z factory

can also further constrain the electroweak observables. Either the agreements with SM

predictions with higher precisions will push the model completely out of the natural scale

for the solution to the hierarchy problem, or some deviations will be discovered to point

to the possible new physics, and if any of the CHMs can provide an explanation for them.
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Appendix A: The SU(5)/SO(5) Composite Higgs Model

The SU(5)/SO(5) is also a possible coset that can naturally avoid large UV contributions

to the Higgs potential. It was one of the cosets considered in early composite Higgs models

of 1980s [87, 88]. It was also the coset of the littlest Higgs model [9] which was one of

the pioneer models to realize the mechanism of the collective symmetry breaking for the

Higgs quartic coupling. The symmetry breaking can be parametrized by a symmetric

tensor field with a VEV

〈Σ〉 = Σ0 =


0 0 I

0 1 0

I 0 0

 , where I is the 2× 2 identity matrix. (2.9.1)

The SM SU(2)W and U(1)Y generators are embedded as

1

2


σa 0 0

0 0 0

0 0 −σa∗

 ,
1

2


−I 0 0

0 0 0

0 0 I

+XI , (2.9.2)

where the extra U(1)X charge X accounts for the correct hypercharges of SM fermions.

There are 14 pNGBs, with a complex doublet (which is identified as the Higgs field

H), a complex triplet φ, a real triplet ω, and a real singlet η. The partial compositeness

couplings can go through the 5 and 5̄ representations of SU(5). They do not split under

SO(5) and hence do not give large UV contributions to the Higgs potential, just as in the

SU(6)/Sp(6) case. Under the SM SU(2)W × U(1)Y , they decompose as

5x = 2x−1/2 ⊕ 1x ⊕ 2̄x+1/2, (2.9.3a)

5̄x = 2̄x+1/2 ⊕ 1x ⊕ 2x−1/2 . (2.9.3b)

To mix with elementary fermions, we need to choose x = 2/3 for the up-type quarks and

−1/3 for the down-type quarks.

The Higgs quartic term arising from the collective symmetry breaking takes the form,

κ1f
2

∣∣∣∣φij +
i

2f
(HiHj +HjHi)

∣∣∣∣2 + κ2f
2

∣∣∣∣φij − i

2f
(HiHj +HjHi)

∣∣∣∣2 . (2.9.4)

48



A drawback of this potential is that a nonzero VEV of the SU(2)W triplet φ will be induced

after EWSB unless κ1 = κ2. The triplet VEV violates the custodial SU(2) symmetry and

is subject to the strong constraint of the T (or ρ) parameter. Even if we ignore that for a

moment, it is also more challenging to generate the collective quartic potential (2.9.4) in

this model. The two doublets in 5 or 5̄ have different hypercharges if x 6= 0 and hence are

not equivalent. We cannot couple the elementary SM fermion doublets to both 5 and 5̄ in a

way that preserves an SU(3) global symmetry to protect the Higgs mass, so the mechanism

introduced for the SU(6)/Sp(6) model in Sec. 2.4 does not work here. One could add

additional exotic vector-like elementary fermions (with hypercharge 7/6 or−5/6) to couple

to these composite operators for the purpose of generating the quartic term, but these

exotic elementary fermions should have masses comparable to the compositeness scale,

which requires some coincidence. Another possibility is to use the lepton partners that

have x = 0, then the two doublets in 5, 5̄ are equivalent representations. One can

write down the partial compositeness couplings to generate Eq. (2.9.4), analogous to the

SU(6)/Sp(6) model. However, the same interactions will induce the Majorana mass terms

for the left-handed neutrinos through the triplet φ VEV. The couplings need to be O(1)

in order to produce a large enough quartic term. It means that unless the triplet VEV is

tiny (which requires κ1 and κ2 to be equal to a very high accuracy), the induced neutrino

masses will be too large. This constraint on the φ VEV is even much stronger than that

from the custodial SU(2) violation.

Appendix B: Couplings between SM Fermions and

Composite Operators, and Their Peccei-Quinn Charges

Both SM Yukawa couplings and the Higgs quartic potential from collective symmetry

breaking arise from the partial compositeness couplings between the elementary fermions

and composite operators. The leading interactions (with O(1) coupling strength) should

respect an approximate U(1)PQ symmetry to avoid a too large quadratic H̃†2H1 term and

large FCNCs, so it is convenient to assign the PQ charges to the fermions in classifying the

couplings. We will construct a Type-I 2HDM model because of the weaker constraint on
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the heavy Higgs bosons, and produce both terms needed for the collective quartic Higgs

potential.

For the quark sector, we include eight composite operators in 6 and 6̄ representations

of SU(6) with overall PQ charges r = 0, 1, 2, 3,

6r = 2r+1/2 ⊕ 1r ⊕ 2̄r−1/2 ⊕ 1r (2.9.5a)

6̄r = 2̄r−1/2 ⊕ 1r ⊕ 2r+1/2 ⊕ 1r (2.9.5b)

Here the subscript denotes the PQ charge instead of the hypercharge. The 6 and 6̄ of

the same PQ charges create the same resonances which become the quark partners of

different flavors. The U(1)PQ charges of the three generations of elementary quarks are

shown in Table 2.1. The lepton sector can be similarly assigned.

U(1)PQ U(1)PQ U(1)PQ

q3,L = (tL, bL)T 1/2 tR 0 bR 1

q2,L = (cL, sL)T 3/2 cR 1 sR 2

q1,L = (uL, dL)T 5/2 uR 3 dR 3

Table 2.1: PQ charges of elementary quarks. The PQ charge of uR appears out of the pattern.
As discussed in the text, the up quark Yukawa coupling comes from the U(1)PQ violating

coupling, which also generates the required H̃†2H1 term.

There are some requirements for producing a Type-I 2HDM. First, to generate SM

Yukawa couplings, we need to couple one of qL and qR to 6 and the other to 6̄ of the same

PQ charge. In addition, each qL needs to couple to the composite operators at least in two

ways in order to generate the up-type and down-type Yukawa couplings with the same

Higgs doublet. If qL had only one coupling to 6 (or 6̄), the up- and down-type quarks

would couple to different Higgs doublets as we discussed in Sec. 2.3.4. Once qL couplings

are fixed, the right-handed quark couplings follow directly from the PQ charges (except

for the up quark). To generate the Higgs quartic term by collective symmetry breaking,

we need to introduce two pairs of couplings between the elementary doublets and the (6,

6̄) pairs, with each pair of couplings preserving a different SU(4) symmetry. Finally, we

add a U(1)PQ violating λ′′uL which serves to generate the mixed Higgs quadratic term in

Eq. (2.4.16), and also the up quark Yukawa coupling.
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From these requirements, a possible set of couplings between elementary quarks and

the composite operators is shown below (in the parentheses after the corresponding com-

posite operators).

60 = 21/2 (λtL) ⊕ 10 ⊕ 2̄−1/2 ⊕ 10 (2.9.6a)

6̄0 = 2̄−1/2 ⊕ 10 ⊕ 21/2 ⊕ 10 (λtR) (2.9.6b)

61 = 23/2 (λcL) ⊕ 11 ⊕ 2̄1/2 ⊕ 11 (λ′bR) (2.9.6c)

6̄1 = 2̄1/2 (λ′bL) ⊕ 11 ⊕ 23/2 ⊕ 11 (λcR) (2.9.6d)

62 = 25/2 ⊕ 12 ⊕ 2̄3/2 (λ̃′sL) ⊕ 12 (2.9.6e)

6̄2 = 2̄3/2 ⊕ 12 (λ̃′sR) ⊕ 25/2 (λ̃uL) ⊕ 12 (2.9.6f)

63 = 27/2 (λ′′uL) ⊕ 13 ⊕ 2̄5/2 ⊕ 13 (λ′dR) (2.9.6g)

6̄3 = 2̄5/2 (λ′dL) ⊕ 13 ⊕ 27/2 ⊕ 13 (λuR) (2.9.6h)

where the subscript of the coupling tells which elementary quark it is coupled to. (The

left-handed couplings couple to the whole doublets despite the quark labels.) The SM

quark Yukawa couplings are given by

yt ∼
λtLλtR
gψ0

, yb ∼
λ′bLλ

′
bR

gψ1

, (2.9.7)

yc ∼
λcLλcR
gψ1

, ys ∼
λ̃′sLλ̃

′
sR

gψ2

(2.9.8)

yu ∼
λ′′uLλuR
gψ3

, yd ∼
λ′dLλ

′
dR

gψ3

, (2.9.9)

where gψr is the coupling of the strong resonances in 6r, 6̄r, with their masses given by

∼ gψrf . To have a relatively light top partner, we should have gψ0 ∼ 2, while all other gψr ’s

are expected to be large. The quark flavor mixings (CKM matrix) can be generated by

additional U(1)PQ violating couplings which are not shown. These couplings are expected

to be small and will not significantly affect the Higgs potential.

For the Higgs quartic term, the combination of λcL and λ′bL generates one term of

the collective symmetry breaking, while the combination of λ̃′sL and λ̃uL generates the

other. Alternatively, we could also use the lepton sector to generate one of the collective
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symmetry breaking terms. The quartic coupling is estimated to be

λ12 =
3

4π2

ccbcusλ
2
cL
λ′2bLλ̃

2
uL
λ̃′2sL

ccbλ2cLλ
′2
bL

+ cusλ̃2uLλ̃
′2
sL

∼ 3

4π2
λ2cLλ

′2
bL

(if λcLλ
′
bL
∼ λ̃uLλ̃

′
sL
, ccb ∼ cus ∼ 2).

(2.9.10)

To get a large enough λ12, these couplings should be quite large (& 1). The correct SM

Yukawa couplings can still be obtained by suitable choices of λR couplings and gψr . The

λ′′uL coupling violates the U(1)PQ symmetry as it mixes the q1,L with charge 5/2 with the

composite doublet of charge 7/2. By combining with λ′dL , it will generate a mixing mass

term for the two Higgs doublets,

m2
12 ∼

3

8π2
λ′dLλ

′′
uL
g2ψ3

f 2 . (2.9.11)

In this way, all terms required in the Higgs potential for a realistic model can be generated

without introducing additional elementary fermions.
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Chapter 3

Composite Flavon-Higgs Models

Yi Chung

Center for Quantum Mathematics and Physics (QMAP), Department of Physics,

University of California, Davis, CA 95616, U.S.A.

We consider a composite Higgs model based on the SU(6)/Sp(6) coset, where an U(1)

subgroup of Sp(6) is identified as the flavor symmetry. A complex scalar field s, which

is a pseudo-Nambu-Goldstone boson of the broken symmetry, carries a flavor charge and

plays the role of a flavon field. The U(1)F flavor symmetry is then broken by a VEV

of the flavon field, which leads to a small parameter and generates the mass hierarchy

between the top and bottom quarks. A light flavon below the TeV scale can be naturally

introduced, which provides a fully testable model for the origin of flavor hierarchy. A

light flavon also leads to substantial flavor changing neutral currents, which are strongly

constrained by the flavor experiments. The direct search of additional scalar bosons can

also be conducted in HL-LHC and future hadron colliders.

3.1 Introduction

The Standard Model (SM) of particle physics successfully describes all known elementary

particles and their interactions. However, there are still a few puzzles that have yet to

be understood, including two mysterious hierarchies. One is the well-known hierarchy

problem. With the discovery of light Higgs bosons in 2012 [1, 2], the last missing piece
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of the SM seemed to be filled, but SM does not address the UV-sensitive nature of scalar

bosons. The Higgs mass-squared receives quadratically divergent radiative corrections

from the interactions with SM fields, which require an extremely sensitive cancellation

to have a 125 GeV Higgs boson. The other puzzle is related to the large hierarchies in

the masses and mixings of the SM fermions. Even within the quark sector, the masses

of quarks span over six orders of magnitude. The mixing angles also show a hierarchical

structure. The problem is known as the flavor puzzle [3], which represents the mysterious

structure of SM Yukawa couplings.

One such appealing solution to the hierarchy problem is the composite Higgs model

(CHM), where the Higgs doublet is the pseudo-Nambu-Goldstone bosons (pNGB) of a

spontaneously broken global symmetry of the underlying strong dynamics [3, 4]. Through

the analogy of the chiral symmetry breaking in quantum chromodynamics (QCD), which

naturally introduces light scalar fields, i.e., pions, we can construct models with light

Higgs bosons. In a CHM, an approximate global symmetry G is spontaneously broken

by some strong dynamics down to a subgroup H with a symmetry breaking scale f . The

heavy resonances of the strong dynamics are expected to be around the compositeness

scale ∼ 4πf . The pNGBs of the symmetry breaking, on the other hand, can naturally be

light with masses < f as they are protected by the shift symmetry.

For the flavor puzzle, the hierarchy in the masses and mixings of the SM fermions

can be achieved by assuming an abelian U(1)F flavor symmetry [6], where different SM

fermions carry different charges. The low-energy effective Yukawa coupling terms require

the insertion of additional scalar fields as

LYukawa = yij

(
s

ΛF

)aij
q̄L,iHqR,j, (3.1.1)

where yij is a O(1) coupling, the complex scalar field s is called flavon field, and ΛF is

the scale of flavor dynamics. After the flavon field acquires a VEV, it will lead to a small

parameter ε = 〈s〉/ΛF and result in the hierarchy of SM Yukawa couplings. It is known

as the Froggatt-Nielsen (FN) mechanism. Despite the success in explaining the flavor

structure, the scale of flavor dynamics is not predicted and can be arbitrarily high. Also,

the flavon as a scalar boson receives large radiative corrections from the interactions with
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SM fields and is expected to be well beyond the collider search.

In this paper, we explore models that can address these two problems at once and pro-

vide predictive experimental signatures which can be probed by colliders. We choose the

specific CHMs with the unbroken subgroup large enough to include the U(1)F symmetry.

That is, the flavor symmetry arises as part of the accidental global symmetry of the strong

dynamics. Under this construction, the Higgs doublet and the flavon are pNGBs of the

spontaneously broken global symmetries. In this case, the hierarchy problem is relieved,

and a light flavon is naturally introduced, which provides a testable theory for the origin

of flavor hierarchy.

Efforts to generate flavons as pNGBs have been implemented in the little flavon model

[7, 8], which is aimed at realizing collective symmetry breaking on the flavon field. Versions

combined with Higgs doublet were also studied [9, 10], but the large symmetry group

makes them uncompelling. They also failed to treat the generation of Yukawa coupling

carefully. Other attempts aiming at generating the Higgs and flavon from a common

source have been studied recently [11], inspired by axiflavon models [12, 13]. However,

the scalar flavon in the model is not the pNGB mode but the heavy unstable radial mode,

which is hard to be detected, and the FN fields are elementary vector-like fermions added

by hands. There are also other efforts to relate the flavor breaking scale to the electroweak

scale but within the framework of 2HDM [14, 15].

For a concrete model, we consider a composite Higgs model based on the SU(6)/Sp(6)

coset, where the unbroken Sp(6) is large enough to include both the SM gauge group and

the global flavor symmetry group SU(2)W × U(1)Y × U(1)F . The flavons as well as two

Higgs doublets are the pNGBs of the coset. We then show how a suppressed Yukawa

coupling can be generated through partial compositeness with specific flavor charge as-

signments. We discuss different scenarios to realize the Froggatt-Nielsen mechanism and

generate the top-bottom mass hierarchy. The experimental constraints of different cases

will also be discussed.
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3.2 The SU(6)/Sp(6) CHM

The SU(6)/Sp(6) coset is one of the earliest cosets employed in little Higgs models [16]

where the collective symmetry breaking for the quartic term was realized. Recently,

it was considered for dark matter study [17] and natural Higgs potential [18]. It was

pointed out in [18] that there is a U(1) Peccei-Quinn like subgroup [19], which protects

the theory from dangerous tadpole terms and flavor changing neutral currents. In this

paper, this subgroup is identified as U(1)F flavor symmetry to realize the Froggatt-Nielsen

mechanism. For our purpose, we will focus on the fermion sector and Yukawa couplings in

the main text. The gauge sector and the pNGB potential are discussed in the Appendix.

A more comprehensive discussion on these topics can also be found in [18].

3.2.1 Basics of SU(6)/Sp(6)

The SU(6)/Sp(6) non-linear sigma model can be parametrized by a sigma field Σij, which

transforms as an anti-symmetric tensor representation 15 of SU(6), where i, j = 1, . . . 6

are SU(6) indices. The transformation under SU(6) can be expressed as Σ→ gΣ gT with

g ∈ SU(6) or as Σij → gikg
j
`Σ

k` with indices explicitly written out. The scalar field Σ

has an anti-symmetric VEV 〈Σ〉 = Σαβ
0 (with α, β representing Sp(6) indices), where

Σ0 =

 0 −I3×3
I3×3 0

 . (3.2.1)

The Σ VEV breaks SU(6) down to Sp(6), producing 14 Nambu-Goldstone bosons.

The 35 SU(6) generators can be divided into unbroken ones and broken ones with

each type satisfyingunbroken generators Ta : TaΣ0 + Σ0T
T
a = 0 ,

broken generators Xa : XaΣ0 − Σ0X
T
a = 0 .

(3.2.2)

The Nambu-Goldstone fields can be written as a matrix with the broken generators:

ξ(x) = ξiα(x) ≡ e
iπa(x)Xa

2f . (3.2.3)

Under SU(6), the ξ field transforms as ξ → g ξ h† where g ∈ SU(6) and h ∈ Sp(6), so ξ

carries one SU(6) index and one Sp(6) index. The relation between ξ and Σ field is given
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by

Σ(x) = Σij(x) ≡ ξ Σ0 ξ
T = e

iπa(x)Xa
f Σ0 . (3.2.4)

The complex conjugation raises or lowers the indices. The fundamental representation of

Sp(6) is (pseudo-)real and the Sp(6) index can be raised or lowered by Σαβ
0 or Σ0,αβ.

The broken generators and the corresponding fields in the matrix can be organized as

follows (ε = iσ2):

πaXa =


φa√
2
σa − η√

6
1 H2 εs H1

H†2
2η√
6

−HT
1 0

εT s∗ −H∗1
φa√
2
σa∗ − η√

6
1 H∗2

H†1 0 HT
2

2η√
6

 . (3.2.5)

In this matrix, there are 14 independent fields. They are (under SU(2)W ): a real triplet

φa, a real singlet η, a complex singlet s (as the flavon field), and two Higgs (complex)

doublets H1 and H2. We effectively end up with a two-Higgs-doublet model (2HDM).

The observed Higgs boson will correspond to a mixture of h1 and h2 inside two Higgs

doublets H1 = H1/2 ⊃ 1√
2

(
0
h1

)
and H2 = H−1/2 ⊃ 1√

2

(
h2
0

)
. Using the ξ and Σ matrices,

we can construct the low energy effective Lagrangian for the flavon field, the Higgs fields,

and all the other pNGBs.

3.2.2 Unbroken subgroups of Sp(6)

To realize the FN mechanism, we need a global symmetry with scalars and fermions

charged under it. Within the Sp(6) symmetry, there are several unbroken U(1) symme-

tries. The symmetries with generators

1

2


σa 0 0 0

0 0 0 0

0 0 −σa∗ 0

0 0 0 0

 and
1

2


02×2 0 0 0

0 1 0 0

0 0 02×2 0

0 0 0 −1

+XI

are identified as the SM gauge group SU(2)W and U(1)Y , which are discussed in Ap-

pendix A.
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Besides the SM gauge group, there is one more U(1)F global symmetry with the

generator

U(1)F :
1

2


I2×2 0 0 0

0 0 0 0

0 0 −I2×2 0

0 0 0 0

 .

Under U(1)F , the complex scalar field s has charge 1, both Higgs doublets H have charge

1/2, and other pNGB fields have charge 0. The complex singlet s can then be identified

as the composite flavon field. We then get the charge assignment for all pNGBs as

s : 1, H1, H2 : 1/2, φ, η : 0 , (3.2.6)

which is a little different from the normal FN mechanism since Higgs also carries flavor

charges 1. So far, we get the desired scalar sector with the flavon and Higgs doublets. We

can then move on to the fermion sector.

3.3 Yukawa coupling

In CHMs, the SM Yukawa couplings can arise from the partial compositeness mecha-

nism [20]. That is, elementary fermions mix with composite operators of the same SM

quantum numbers from the strong dynamics,

L = λLq̄LOR + λRq̄ROL, (3.3.1)

where qL, qR are elementary fermions and OL, OR are composite operators of some rep-

resentations of SU(6).

To be able to mix with the elementary fermions, the representations of the composite

operators must contain states with the same SM quantum numbers as the SM fermions.

To account for the correct hypercharge, e.g., qL = 21/6 for left-handed quarks, qR = 12/3 for

right-handed up-type quarks, and qR = 1−1/3 for right-handed down-type quarks, the com-

posite operators need to carry additional charges under the U(1)X outside SU(6), and the

1In fact, this global symmetry is more similar to the U(1) Peccei-Quinn (PQ) symmetry [19]. Models
that identify U(1)PQ as flavor symmetry had been studied in axiflavon models [12, 13]. However, in this
paper, we will not deal with the strong CP problem and axions, so we would like to call it U(1)F flavor
symmetry.

65



SM hypercharge is a linear combination of the SU(6) generator Diag(0, 0, 1/2, 0, 0,−1/2)

and X.

Let us start with the top quark. To get the top Yukawa coupling, the suitable and

economical choice of composite operators is 6 with X = 1/6. The composite operator as

a 61/6 of SU(6) (where the subscript 1/6 denotes its U(1)X charge) can be decomposed

under the SM gauge group as

Oi
L,R ∼ ξiαQ

α
L,R ∼ 61/6 = 21/6 ⊕ 12/3 ⊕ 2̄1/6 ⊕ 1−1/3, (3.3.2)

where QL,R are the corresponding composite resonances. The composite states QL,R

belong to the 6 representations of Sp(6) and play the roles of SM fermion composite

partners. For SU(2), 2 and 2̄ are equivalent and related by the ε tensor. We make

the distinction to keep track of the order of the fermions in a doublet. We see that the

composite states have the appropriate quantum numbers to mix with the SM quarks.

The left-handed top quark can mix with the first two components of the sextet. The

mixing term can be express as

λLq̄LaΛ
a
iO

i
R = λLq̄LaΛ

a
i

(
ξiαQ

α
R

)
, (3.3.3)

where a represents an SU(2)W index, and

(Λ)ai = Λ =

1 0 0 0 0 0

0 1 0 0 0 0

 (3.3.4)

is the spurion which keeps track of the symmetry breaking.

To get the complete top Yukawa coupling, we couple the elementary right-handed top

quark to the 6̄1/6, which decomposes under SU(2)W × U(1)Y as

O′L,Rj ∼ ξ∗j
βΣ0βαQ

α
L,R ∼ 6̄1/6 = 2̄1/6 ⊕ 1−1/3 ⊕ 21/6 ⊕ 12/3 . (3.3.5)

The right-handed top quark mixes with the last component of the 6̄1/6, which can be

written as

λtR t̄RΓtR
jO′Lj = λtR t̄RΓtR

j
(
ξ∗j

βΣ0βαQ
α
L

)
, (3.3.6)

where ΓtR = (0 0 0 0 0 1) is the corresponding spurion.
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Combining λL and λtR couplings, we can generate the SM Yukawa coupling for the

top quark

∼ λLλtR q̄LaΛ
a
iξ
i
αΣαβ

0 ξT β
j
Γ†tRjtR ⊃ λLλtR (q̄LH2tR) . (3.3.7)

The top quark gets its mass from the vacuum of H2 as

mt =
λLλtR
gT

v2√
2
, (3.3.8)

where gT is a coupling of the composite top partners.

Similarly, for the bottom quark, we can couple bR to the third component of 6̄1/6

with the coupling λbR and spurion ΓbR = (0 0 1 0 0 0). This generates a bottom Yukawa

coupling

∼ λLλbR q̄LaΛ
a
iξ
i
αΣαβ

0 ξT β
j
Γ†bRjbR ⊃ λLλbR (q̄LH1bR) , (3.3.9)

where the bottom quark gets its mass from the vacuum of H1 instead.

In this paper, we will not address the lepton sector, so there are only two types of

2HDMs satisfying the natural flavor conservation [21, 22]. They are categorized by Type-I

and Type-II based on the Yukawa couplings of the quarks. So far, the Yukawa couplings of

the third generation quarks come from different Higgs doublets, which implies a Type-II

2HDM. The smallness of the bottom quark mass can be achieved by a small VEV of

H1, i.e. a large tanβ Type-II 2HDM. However, the parameter space with a large tanβ

is strongly constrained by direct searches, and it is also not what we want. To get mass

hierarchy between the top and bottom through the FN mechanism, we want an insertion

of the flavon field s in these Yukawa coupling terms.

3.4 Froggatt-Nielsen mechanism

3.4.1 FN mechanism: The first taste

Before we move on to the correct FN mechanism setup, let us first look at the flavor

charges of quarks. In the previous section, all the quarks are embedded in 61/6 and 6̄1/6 of

SU(6) without additional flavor charges, which are decomposed under SU(2)W × U(1)F
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as

60 = 21/2 ⊕ 10 ⊕ 2̄−1/2 ⊕ 10 , (3.4.1)

6̄0 = 2̄−1/2 ⊕ 10 ⊕ 21/2 ⊕ 10 . (3.4.2)

It means that the flavor charges of fermions are set as

qL = (tL, bL)T : 1/2, tR, bR : 0 , (3.4.3)

where both right-handed quarks have no flavor charge.

Within this assignment, we can already write down a suppressed bottom quark mass

through the FN mechanism by the term like

1

f

(
q̄LsH̃2bR

)
∼
(
vsv2
2f

)
b̄LbR , (3.4.4)

where vs is the VEV of the flavon field. The term satisfies the flavor symmetry. The

reason it is possible is that the top quark gets mass from H with flavor charge 1/2, but

the bottom quark can get mass from H̃ with flavor charge −1/2. However, it turns out

that this term can not successfully realize the FN mechanism in this model.

To see that, we can go back to the term we derived for the bottom quark mass in

Eq. (3.3.9). In the non-linear Sigma model, if we expand the Σ field to the next order, it

becomes

q̄L(H1 +
i

2f
sH̃2)bR ⊃

i

2f

(
q̄LsH̃2bR

)
, (3.4.5)

which already contains the term in Eq. (3.4.4). That means, due to the shift symmetry

of pNGBs, the term sH̃2 can only show up following H1. That also means we can always

transfer the nontrivial vacuum of 〈sH̃2〉 to the leading order 〈H1〉 by shift symmetry.

Therefore, the bottom quark mass still comes from 〈H1〉, and it is equivalent to the

Type-II 2HDM we have already gotten.

If we define ∆f ≡ [fL]−[fR] as the difference between flavor charges of left-handed and

right-handed fermions. Fixing the top quark charge as in Eq. (3.4.3) with ∆t = 1/2, we

find that ∆b = 1/2 gives us the bottom quark mass through H1, which leads to a Type-II
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2HDM. ∆b = −1/2, instead, generates the bottom quark mass through H̃2 and makes

it a Type-I 2HDM. Either case is just normal 2HDM. To realize the FN mechanism, we

need to have a larger |∆b|, which would allow us to generate the bottom Yukawa coupling

term with the insertion of two pNGBs, s and H, at the same time. That also requires us

to embed the bottom quark into a larger representation, which will generate a term with

the insertion of two Σ fields.

3.4.2 Antisymmetric tensor representation 15 and 1̄5

The minimal choice is to have a bit larger |∆b| = 3/2. There are two cases, case (1) with

∆b = 3/2 and case (2) with ∆b = −3/2. By analyzing the quantum numbers, we expect

to generate bottom Yukawa coupling terms as

(1) q̄LsH1bR and (2) q̄Ls
∗H̃2bR. (3.4.6)

To realize such |∆b|, the minimal choice is to use antisymmetric tensor representation

15 and 1̄5. To mix the SM quarks with composite operators, we first analyze their SM

quantum numbers. To have operators sharing the same quantum numbers with the SM

quarks, additional gauge U(1)X and global U(1)R are required. With additional x and r

charges, the representation 15x,r can be decomposed under SU(2)W × U(1)Y × U(1)F as

15x,r =(3⊕ 1)x,r ⊕ 2x+ 1
2
,r+ 1

2
⊕ 2x− 1

2
,r+ 1

2
⊕ 2̄x+ 1

2
,r− 1

2

⊕ 2̄x− 1
2
,r− 1

2
⊕ 1x,r+1 ⊕ 1x,r ⊕ 1x,r−1, (3.4.7)

where the first subscript denotes its hypercharge and the second subscript denotes its

flavor charge. Or we can write them in matrix form as

15x,r =


1x,r+1 2x+ 1

2
,r+ 1

2
(3⊕ 1)x,r 2x− 1

2
,r+ 1

2

· 0 2̄x+ 1
2
,r− 1

2
1x,r

· · 1x,r−1 2̄x− 1
2
,r− 1

2

· · · 0

 , (3.4.8)
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and also for it complex conjugate 1̄5x,r as

1̄5x,r =


1x,r−1 2̄x− 1

2
,r− 1

2
(3⊕ 1)x,r 2̄x+ 1

2
,r− 1

2

· 0 2x− 1
2
,r+ 1

2
1x,r

· · 1x,r+1 2x+ 1
2
,r+ 1

2

· · · 0

 . (3.4.9)

Since they are antisymmetric, we only put the numbers on the up-right triangle for sim-

plicity.

3.4.3 Two ways to embed the bottom quark

Next, we want to mix the left-handed bottom quark with 15 and the right-handed bot-

tom quark with 1̄5. The goal is to find a pair with |∆b| = 3/2. From the previous

decomposition, we found two pairs that satisfy our requirement:(
2x+ 1

2
,r+ 1

2
, 1x,r−1

)
and

(
2̄x+ 1

2
,r− 1

2
, 1x,r+1

)
,

which correspond to case (1) with ∆b = 3/2 and case (2) with ∆b = −3/2 respectively.

Let us start with case (1) by taking the first pair with x = −1/3 and r = 0. Just as

we have done before, we first write down the composite operators and the corresponding

composite resonances as

Oij
L,R ∼ ξiαξ

j
βQ

αβ
L,R ∼ 15− 1

3
,0 = 14− 1

3
,0 ⊕ 1− 1

3
,0, (3.4.10)

where QL,R are the corresponding composite resonances. QL,R are 14 and 1 of Sp(6) and

play the roles of the SM fermion composite partners.

The mixing term for the left-handed quark can be expressed as

λbL q̄LaΛ
a
ijO

ij
R = λbL q̄LaΛ

a
ij

(
ξiαξ

j
βQ

αβ
L,R

)
, (3.4.11)

where

(Λ)aij = (



0 0 1 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


) (3.4.12)
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is the spurion that can help us keep track of symmetry breaking.

We still need to mix the right-handed bottom quark with the composite operators

and the corresponding composite resonances as O′L,Rij ∼ ξ∗i
αξ∗j

βΣ0αρΣ0βσQ
ρσ
L,R ∼ 1̄5− 1

3
,0.

The right-handed bottom quark need to mix with the 1− 1
3
,−1 of the 1̄5− 1

3
,0, which can be

written as

λbR b̄RΓijO′Lij = λbR b̄RΓij
(
ξ∗i
αξ∗j

βΣ0αρΣ0βσQ
ρσ
L,R

)
, (3.4.13)

where

(Γ)ij =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.4.14)

is the corresponding spurion.

Combining λbL and λbR couplings, we can generate the bottom quark Yukawa coupling

as

∼ λbLλbR q̄LaΛ
a
ijξ

i
αξ

j
βΣαρ

0 Σβσ
0 ξT ρ

k
ξT σ

l
Γ†klbR

= λbLλbR q̄LaΛ
a
ijΣ

ikΣjlΓ†klbR ⊃ λbLλbR (q̄LsH1bR) , (3.4.15)

which is exactly what we expect in Eq. (3.4.6). The bottom quark gets mass from H1 but

with additional suppression from the FN mechanism as

mb =
〈is〉
f

λbLλbR
gB

v1√
2

=
λbLλbR
gB

vsv1
2f

, (3.4.16)

where gB is a coupling of the composite bottom partners. This is like a Type-II 2HDM

but with smaller tanβ due to the suppression by small vs/f .

Therefore, for case (1), we can get the top-bottom mass hierarchy. Assuming all the

λ and g are O(1) couplings, the mass ratio becomes 2

mb

mt

∼ vs√
2f

v1
v2

=
ε

tanβ
∼ 1

60
, (3.4.17)

2We consider the running of quark masses up to 1 TeV [23], which gives mb/mt ∼
2.43 GeV/150 GeV ∼ 1/60. The ratio might be larger because the VEV of the flavon field is below
the TeV scale.
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where ε ≡ vs/
√

2f . The hierarchy comes from both ε and tanβ. Taking the symmetry

breaking scale f ∼ 1 TeV, we get

vs ∼ 25 tanβ GeV, (3.4.18)

If ε (namely vs) is small, we can get a Type-II 2HDM with a smaller tanβ.

Similarly, consider case (2) by taking the second pair with x = −1/3 and r = 1, i.e.(
2̄ 1

6
, 1
2
, 1− 1

3
,2

)
. The spurion for the left-handed quark becomes

(Λ)aij = (



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


), (3.4.19)

and for the right-handed bottom quark is

(Γ)ij =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 0 0 0 0


. (3.4.20)

Combining λbL and λbR couplings in case (2), we get the bottom Yukawa coupling as

∼ λbLλbR q̄LaΛ
a
ijξ

i
αξ

j
βΣαρ

0 Σβσ
0 ξT ρ

k
ξT σ

l
Γ†klbR

= λbLλbR q̄LaΛ
a
ijΣ

ikΣjlΓ†klbR ⊃ λbLλbR

(
q̄Ls

∗H̃2bR

)
. (3.4.21)

Again it is what we expect in Eq. (3.4.6). This case will lead to a Type-I 2HDM with the

small bottom Yukawa coupling merely due to the FN mechanism as

mb =
〈is〉
f

λbLλbR
gB

v2√
2

=
λbLλbR
gB

vsv2
2f

. (3.4.22)
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Assuming all the λ are O(1) couplings. The mass ratio

mb

mt

∼ vs√
2f

= ε ∼ 1

60
=⇒ vs ∼ 25 GeV, (3.4.23)

if the symmetry breaking scale f ∼ 1 TeV.

3.4.4 Composite resonances and spaghetti diagrams

In the last section, we see how the FN mechanism can be realized and create the hierarchy

between the top and bottom mass. The composite resonances, which carry the same

quantum number but different flavor charges, play the role of the Froggatt-Nielsen fields

in the FN mechanism. We can write down all the composite resonances in matrix form

as

15− 1
3
,0 = 14− 1

3
,0 ⊕ 1− 1

3
,0 =



0 B̃1 T 1
2

B̃′0 T̃0 B̃ 1
2

· 0 B 1
2

Y0 B̃′′0 Y 1
2

· · 0 B− 1
2

T− 1
2

0

· · · 0 B̃−1 Y− 1
2

· · · · 0 B̃− 1
2

· · · · · 0


⊕ B̃0, (3.4.24)

where T and B are composite resonances with the same quantum numbers as the SM top

and bottom quarks but with different flavor charges as labeled in the subscript, T̃ and B̃

are resonances with the same hypercharges as the SM top and bottom quarks but under

different SU(2)W representations, and Y are exotic resonances with hypercharge −4/3.

The FN mechanism can also be expressed through the “spaghetti diagrams”, which

looks like a 2 to 2 scattering in this case with only one flavon inserted. Spaghetti diagrams

that generate the suppressed bottom quark mass are shown in Fig. 3.1. These diagrams

give us the bottom mass we expect after integrating out the heavy Froggatt-Nielsen fields,

which are composite fermionic resonances in this model, and replacing the scalar fields

with their VEVs.

3.4.5 Comparison between two cases

So far, we see two different flavor charge assignments for the right-handed bottom quark,

which lead to two different bottom Yukawa coupling terms. Both of them successfully gen-
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Fig. 3.1: Spaghetti diagrams that generate the bottom Yukawa coupling through the Froggatt-
Nielsen mechanism in case (1). Diagrams for case (2) are similar.

erate a suppressed bottom Yukawa coupling through the FN mechanism. The difference

between these two cases is listed in Table 3.1.

Case (0) Case (1) Case (2)

∆b ≡ [qL]− [bR] 1/2 3/2 −3/2

Flavor charge of bR 0 -1 2

Coupling term q̄LH1bR q̄LsH1bR q̄Ls
∗H̃2bR

Type of 2HDM Type-II Type-II Type-I

Suppression of mb/mt 1/tanβ ε/tanβ ε

Table 3.1: The comparison between two cases with suppressed bottom Yukawa couplings
through the FN mechanism. Case (0) for the unsuccessful first taste is also shown. In the last
row, ε ≡ vs/

√
2f is the suppression by the FN mechanism.

Here we assume the flavor charge of qL is 1/2 and tR is 0, such that the top quark mass

comes from H2. We can see the two cases represent different signs of ∆b. It will affect

the way we extend our model to include lighter quarks, which will be discussed next.

The difference between the types of 2HDM results in different Higgs phenomenology. The

second Higgs doublet is expected to be the main target among the exotic states in the

model. The results of the direct searches will be shown in the next section. The factor of

suppression is also related to the experimental constraint. The smaller ε required for the

correct mass ratio implies a smaller VEV vs of the flavon field, which will end up with a

larger deviation in flavor observables and thus is strongly constrained.
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3.4.6 Include all the generations

As yet, we only get the hierarchy between the top and bottom quarks, which belong to

the third generation. To include the lighter quarks, more suppression is needed, which

means more insertion of the flavon field s and a larger difference in flavor charges. This

will require the lighter quarks to be embedded in even larger representations.

Take case (1) for example. We have already gotten the flavor charges of the third

generation quarks. To extend to the first and the second generations, one possible flavor

charges assignment 3 is listed in Table 3.2. It implies that we need even larger represen-

tations to have flavor charges different by 7/2. That would require representations with

more than 4 indices for the quark sector.

U(1)F U(1)F U(1)F

q3,L = (tL, bL)T 1/2 tR 0 bR -1

q2,L = (cL, sL)T 3/2 cR 0 sR -1

q1,L = (uL, dL)T 3/2 uR -2 dR -2

Table 3.2: A possible flavor charge assignment of all elementary quarks for case (1) setup.

For case (2), it is more difficult to get a consistent flavor charges assignment for the

desired CKM matrix. For the flavor charge of the third generation quarks, we find that

they follow the order [bR] > [qL] > [tR], which is also applied to the extension. From

the relation, the left-handed quarks should always sit in the middle. This requirement

restricts the flavor charge difference we can have. For example, q1,L and q2,L can only be

either 1/2 or 3/2, which will lead to unsuppressed entries in the CKM matrix. Therefore,

considering the flavor charge assignment for the light quarks, case (1) is preferred over

case (2). However, we will still discuss the constraints on parameter space of case (2)

assuming that it can generate a similar Yukawa matrix as case (1).

The exact embedding will be explored in future work. To discuss the experimental

constraints of flavons in the following section, we will assume this mechanism can be ex-

tended to all the generations and is responsible for all the light quark masses in both cases.

3The assignment is borrowed from Eq. (2.15) of [14]. The resulting mass ratios and CKM matrix can
partially reproduce observed values with O(1) correction.
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Also, for flavon phenomenology, the results are mainly determined by two parameters, the

flavon mass Ms and the flavon VEV vs.

3.5 Collider Signature

The phenomenology of this model is similar to other CHMs based on SU(6)/Sp(6) coset

with partial compositeness [18], which includes 14 pNGBs and composite partners of the

SM particles. The main targets would be on the particles that couple to SM particles at

leading order. In our setup, the most important search modes include the second Higgs

doublet, flavons, and fermionic composite resonances.

3.5.1 The second Higgs Doublet

The phenomenology of 2HDM has been well-studied, and we can directly borrow the

results from [24]. For case (2) as a Type-I 2HDM, there is no further constraint since the

second Higgs doublet is decoupled from the fermion sector. But for case (1), a Type-II

2HDM, the constraints are important because the suppression of the bottom mass comes

partially from the FN mechanism and partially from tanβ. Therefore, the value of tanβ

will decide the ε we need from the FN mechanism. The strongest constraint for a Type-II

2HDM comes from the ττ search, which restricts tanβ < 6 − 10 for a wide mass scale.

If we make it a Flipped 2HDM instead, where the charged leptons get masses from H2

instead of H1, the coupling between heavy Higgs and ττ will become much smaller. Then

the main constraint comes from b̄b search, and tanβ ∼ 20 is still allowed. However, we

would like to stick to a normal Type-II 2HDM for case (1) and set the benchmark with

tanβ ∼ 6 =⇒ vs ∼ 150 GeV (3.5.1)

for the following discussion.

3.5.2 Flavons

The physical flavon fields include a scalar component s and a pseudoscalar component

a. The masses of two types of flavons depend on the complete flavon potential, which is

discussed in the Appendix B. If flavor symmetry is exact and spontaneously broken by

flavor symmetry conserving potential, then the pseudoscalar flavon should be massless,
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which is not acceptable. Therefore, the explicit breaking of flavor symmetry in the flavon

potential is needed. For simplicity, we will assume the mass of scalar, Ms, and the mass

of pseudoscalar, Ma, are the same. This spectrum can be achieved if flavor symmetry

is broken by a tadpole term in the flavon potential as shown in Appendix B. Therefore,

from now on, we will use flavon s for both the scalar and pseudoscalar components and

Ms for the flavon mass, which is expected to be at the sub-TeV scale.

The production and decay of flavons have already been comprehensively discussed in

[25, 26]. Although the flavon coupling terms in these papers might look different from

ours, the exact values are determined by the observed quark masses and the CKM matrix.

Therefore, the flavon couplings with the form m/vs should have similar values in all kinds

of flavon models up to an O(1) factor. The numerical values in these two sections are

derived based on their analysis with additional adjustments from our setup.

The main production for sub-TeV flavons come from the single production process

bb̄→ s. The cross section for flavons with Ms = 500 GeV is

σ(bb̄→ s) ∼ 9.8× 10−3
(

150 GeV

vs

)2

pb (3.5.2)

in 14 TeV LHC. Taking vs = 150 GeV, around 2.2× 104 flavons will be produced in the

HL-LHC era with an integrated luminosity of 3 ab−1. In case (2) with smaller vs, the

number is multiplied by a factor of 36.

The decay branching ratios for flavons are independent of vs but only depend on the

flavor structure. If flavons only couple to the third generation, the dominate decay channel

will be bb̄ channel and ττ channel with roughly ∼ 85% and ∼ 15% branching ratio. If the

FN mechanism is extended to all SM particles and responsible for the full Yukawa matrix,

then there will be exotic final states like tc and tu. It turns out that the tc channel will be

the dominant one due to the large mixing required to reproduce the desired CKM matrix.

The ratios depend on tanβ, too. Under the benchmark values, we get the branching ratios

for each channels as tc (96.8%), bb̄ (2.7%), and ττ (0.5%). However, the hadronic channels

suffer from large backgrounds. The leptonic channel can reach σ × BR ∼ 10−3 pb for

sub-TeV flavon in HL-LHC, but it is still above the benchmark value. The discovery can

be made in a future 100 TeV collider, where the cross section is expected to be ∼ 100
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times larger, and the integrated luminosity is also higher. In that case, the distinct tc

channel search will provide strong evidence for the origin of the Yukawa matrix.

3.5.3 Fermionic Resonances

The top partners in the SU(6)/Sp(6) CHM are vector-like fermionic resonances that

form a sextet of the Sp(6) global symmetry. Their quantum numbers under the SM

gauge symmetry are (3, 2, 1/6)[×2], (3, 1, 2/3), and (3, 1,−1/3), which are identical to

those of the SM quarks. There are no exotic states with higher or lower hypercharges.

These states are degenerate in the limit of unbroken Sp(6) global symmetry. Only small

splittings arise from the explicit symmetry breaking effects. Their mass MT ∼ gTf plays

the important role of cutting off the quadratic contribution from the top quark loop to

the Higgs potential. The generic expectation of the composite fermionic resonances is

MF = 5 − 10 TeV with gF = 5 − 10. However, naturalness prefers a smaller MT to

minimize the required fine-tuning, which usually requires gT & 1. The current bound on

the top partner mass has reached ∼ 1.2 TeV [27, 28]. The HL-LHC can further constrain

the mass up to ∼ 1.5 TeV [78]. A future 100 TeV collider will cover the entire interesting

mass range of the top partners if no severe tuning conspires.

For the bottom partners, they form a 14−1/3⊕1−1/3 under Sp(6) global symmetry. The

quantum numbers for the total of 15 fields under the SM gauge group are (3, 2, 1/6)[×2],

(3, 2,−5/6)[×2], (3, 1,−1/3)[×4], and (3, 3,−1/3), which include exotic resonances with

EM charge −4/3. The states are not degenerate, and the singlet is expected to be lighter.

The masses of the bottom partners MB ∼ gBf , unlike the top partners, do not have a

large effect on the fine-tuning due to the small bottom Yukawa coupling. Therefore, they

could be around the compositeness scale with MB = 5 − 10 TeV, which is beyond the

LHC searches. The heavier MB ∼ gBf also leads to additional suppression gT/gB on the

mass ratio between the top and bottom quarks, which can relieve the required ε we need.

If we extend the FN mechanism to the light generations, a larger representation is

required to get a larger flavor charge difference, which also implies a larger EM charge

difference within the multiplet. Therefore, there could be more exotic resonances with EM

charges like −7/3 or 5/3, which are important in identifying the correct representation.
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These heavy fermionic resonances can be found in a future 100 TeV collider. If the exotic

spectrum corresponding to the large representation shows up, it might unveil the nature

of SM fermion partners and the origin of Yukawa couplings.

3.6 Flavor constraints

Compared to the collider signatures, the flavor constraints usually probe a higher scale and

place stronger bounds on the models. Assume that the FN mechanism can be extended

to all elementary quarks and leptons with suitable Yukawa coupling matrices. Then we

can discuss the flavor constraints through a similar analysis as in [26].

The new flavor processes can be mediated through flavons or the second Higgs doublet.

The flavon contributions strongly depend on the couplings and spectrum of flavons. As

we mention above, there are a scalar component and a pseudoscalar component. We will

assume the scalar and pseudoscalar components share the same mass Ms. This assump-

tion will give us the weakest flavor constraints because, for some flavor processes, the

contributions from a scalar and a pseudoscalar will cancel exactly if they are degenerate.

It can also be understood that the assumption raises an U(1) symmetry for the flavon

field around the vacuum, which forbids these flavor processes. However, we will see even

the weakest constraints from flavor are much stronger than the direct searches.

3.6.1 Meson Decay

The new particles might enhance some rare processes that are suppressed within SM. The

measurements of rare decays of neutral mesons can give strong constraints on the new

physics scale. In this model, flavons can mediate some rare decays of neutral mesons.

For example, the branching ratio of Bs → µ+µ− provides a constraint on dimension-6

operators induced by flavons, which include

Cij
S (q̄iPLqj)(¯̀̀ ) and C̃ij

S (q̄iPRqj)(¯̀̀ ) (3.6.1)

from a scalar flavon with coefficient

Cij
S = g``gji

(
1

M2
s

)
and C̃ij

S = g``gij

(
1

M2
s

)
(3.6.2)
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and

Cij
P (q̄iPLqj)(¯̀γ5`) and C̃ij

P (q̄iPRqj)(¯̀γ5`) (3.6.3)

from a pseudoscalar flavon with coefficient

Cij
P = g``gji

(
1

M2
a

)
and C̃ij

P = g``gij

(
1

M2
a

)
. (3.6.4)

The difference between C and C̃ will modify the predicted SM values. The leading order

deviation comes from the pseudoscalar flavon exchange, which interferes with the SM

contribution. The coupling gij is determined by the observed fermion masses over the

flavon VEV vs. Therefore, once we take the mass Ms = Ma, the measurement can put a

constraint on the Cij
P − C̃

ij
P and thus the product of vsMs. Later we will find that most

of the flavor constraints can be transferred into the constraint on the value of vsMs.

The latest result of Bs → µ+µ− measurement by LHCb [30] requires vsMs ≥ 5 ×

104 (GeV)2, which give a Ms lower bound under the benchmark value as

case (1) Ms ≥ 400 (GeV), case (2) Ms ≥ 2000 (GeV).

There is a stronger constraint for case (2) flavon model with smaller vs. The reason is,

though we want to have a small vs to generate the hierarchy, a small vs also implies a larger

coupling between flavons and the SM quarks, which is disfavored by flavor physics. We

also find that case (1) as a Type-II 2HDM has a looser bound due to the assistance from

tanβ. The improvement in the measurement of BR(Bs → µ+µ−) will further constraints

the allowed values in the future. The interesting parameter space might be ruled out by

LHCb and Belle-II.

Meson decays also put strong constraints on the second Higgs doublet. A light

charged Higgs boson can induce a significant contribution to the branching ratio BR(B →

Xsγ) [31, 32, 33, 34, 35, 36]. In the Type-II or flipped 2HDM, this gives a strong lower

bound on the charged Higgs boson mass MH± > 600 GeV [37, 38], which would require a

tuning or an additional symmetry in the 2HDM potential in case (1) model.
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3.6.2 Neutral Meson Mixing

The strongest bounds for flavons come from the neutral meson mixing, especially from

the light mesons. The relevant ∆F = 2 interaction terms include

Cij
2 (q̄iRq

j
L)2, C̃ij

2 (q̄iLq
j
R)2, and Cij

4 (q̄iRq
j
L)(q̄iLq

j
R).

In this paper, since we assume that the scalar and pseudoscalar flavons share the

same mass Ms, there is an U(1) symmetry that forbids Cij
2 and C̃ij

2 terms. That is,

the contributions from scalars and pseudoscalars will cancel exactly. The only relevant

dimension-6 operator is

Cij
4 (q̄iRq

j
L)(q̄iLq

j
R) with Cij

4 = −gijg∗ji
(

1

M2
s

)
. (3.6.5)

The coefficients as a function of vsMs are strongly constrained by experiments.

In Table 3.3, we conclude the flavor constraints on the product vsMs from all neu-

tral meson systems, including those with the first generation quarks. The numbers are

extracted from [26]. The corresponding lower bounds on flavon mass Ms are also shown

based on the benchmark value of each case.

vsMs (GeV2) Case (1) (GeV) Case (2) (GeV)

CBs 32000 210 1280

ϕBs 128000 850 5120

CBd 183000 1220 7320

ϕBd 250000 1670 10000

∆mK 255000 1700 10200

εK 2550000 17000 102000

Table 3.3: Flavor constraints from all kinds of neutral meson mixing observables, including
the lower bounds on the value of vsMs and flavon mass Ms of each case.

From the constraints of neutral meson mixing, we again find that case (1) is preferred

because case (2) has a smaller vs and thus larger couplings to the SM fermions. The lower

bounds for case (2) have reached multi-TeV, which might be too heavy to be treated

as pNGBs. The flavor symmetry is hardly broken, and the sigma model might not be
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an appropriate way to describe it. Even for case (1) with milder bounds, constraints

from the CP phases are also high. If we assume that the flavon preserves CP-symmetry

and ignore the constraints from the CP phase, the current bounds for case (1) become

Ms ≥ 1.2 − 1.7 TeV, and the future experiments will raise the bounds by a factor of

2. If the FN mechanism is not responsible for the first generation quarks, then the only

constraint is from CBs , and a sub-TeV flavon is still allowed. The bounds can also be

relieved if the bottom partner is heavier than the top partner, where gB > gT can give

another suppression, and the required vs can be larger. Nevertheless, the most interesting

mass region for flavons as pNGBs of the TeV scale confinement will be covered in the near

future by LHCb and Belle-II.

3.7 Conclusions

The Froggatt-Nielsen mechanism is an appealing solution to the Flavor Puzzle. However,

the scale of flavor dynamics and the flavon field can be arbitrarily high. The predictive

flavon models require the dynamics to stabilize the flavon potential. One way, analogous to

the composite Higgs models, is to introduce the flavon field as a pseudo-Nambu-Goldstone

boson. In this paper, we construct a non-linear sigma model with pNGBs, including both

the Higgs doublets and the flavon field.

The flavon field as a pNGB provides a possibility to have the origin of flavor hierarchy

at the TeV scale. The shift symmetry is slightly broken, which leads to the flavon mass

and VEV. The non-linear nature of the flavon also constraints the interactions we can

write down. In this paper, we show two possible ways to generate suppressed bottom

Yukawa coupling terms through the Froggatt-Nielsen mechanism, where the composite

resonances play the role of the FN fields. The derivation and explanation of the process

are presented in detail.

Two cases lead to different phenomenology and receive different constraints. Case (1)

as a Type-II 2HDM with small tanβ has a larger vs and smaller couplings to the SM

fermions. Some parameter space with the sub-TeV flavon is still allowed if the constraints

from the neutral meson of the first generation quarks are not taken into account. Case (2)
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as a Type-I 2HDM has a weaker bound on the Higgs sector. However, the requirements

of small vs and the strong couplings with the SM particles are disfavored. Future mea-

surements of neutral meson systems by LHCb and Belle-II will keep probing the scenario

with the light flavon. Either push the mass bound to a much higher scale or find the

existence of the pNGB flavon.
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Appendix A: The SM gauge sector

The SM electroweak gauge group SU(2)W × U(1)Y is embedded in SU(6)× U(1)X with

generators given by

1

2


σa 0 0 0

0 0 0 0

0 0 −σa∗ 0

0 0 0 0

 and
1

2


02×2 0 0 0

0 1 0 0

0 0 02×2 0

0 0 0 −1

+XI .

The extra U(1)X factor accounts for the different hypercharges of the SM fermions but

is not relevant for the bosonic fields. These generators belong to Sp(6)× U(1)X and are

not broken by Σ0.

Using the Σ field, the Lagrangian for kinetic terms of Higgs boson is given by

Lh =
f 2

4
tr
[
(DµΣ)(DµΣ)†

]
+ · · · , (3.7.1)

where Dµ is the electroweak covariant derivative. Expanding this term, we get

Lh =
1

2
(∂µh1)(∂

µh1) +
1

2
(∂µh2)(∂

µh2) +
f 2

2
g2W

(
sin2

√
h21 + h22√

2f

)[
W+
µ W

−µ +
ZµZ

µ

2cosθW

]
.

(3.7.2)

The non-linear behavior of the Higgs boson in CHMs is apparent from the dependence of

trigonometric functions.

The W boson acquires a mass when h1 and h2 obtain nonzero VEVs V1 and V2 of

m2
W =

f 2

2
g2W

(
sin2

√
V 2
1 + V 2

2√
2f

)
=

1

4
g2W (v21 + v22), (3.7.3)

where

vi ≡
√

2f
Vi√

V 2
1 + V 2

2

sin

√
V 2
1 + V 2

2√
2f

≈ Vi = 〈hi〉 . (3.7.4)

The parameter that parametrizes the nonlinearity of the CHM is given by

ξ ≡ v2

f 2
= 2 sin2

√
V 2
1 + V 2

2√
2f

, (3.7.5)

where the VEV v2 = v21 + v22 = (246 GeV)2. The ξ plays an important role in the

phenomenology of CHMs, but it is not of interest in this study.
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Appendix B: The pNGB potential

The pNGB potential comes from the explicit breaking of SU(6) global symmetry. Within

SM, there are symmetry-breaking sources like the gauge couplings and Yukawa couplings.

Additional sources are also needed to introduce the flavon potential. Here we will briefly

list their contributions to the pNGB potential one by one.

Starting with the SM gauge interactions, we can derive the pNGB potential by the

generators listed in Appendix A. Both SU(2)W and U(1)Y only break the global symmetry

partially and generate the potential for the pNGBs which are charged. The two Higgs

doublets are charged under both gauge interactions and get

∆VH =
3

16π2

(
3

4
cwg

2 +
1

4
c′g′2

)
M2

ρ |H|2, (3.7.6)

where Mρ ∼ gρf is the mass of the vector resonances ρ, which act as the gauge boson

partners to cut off the gauge loop contribution to the pNGB masses, and cw and c′ are

O(1) constants. The scalar triplet φ also gets a potential

∆Vφ =
3

16π2

(
2cwg

2
)
M2

ρ (φaφa), (3.7.7)

The SU(2)W×U(1)Y singlets s and η do not receive potentials from the gauge interactions

at this order, but they will obtain potentials elsewhere.

Next, the Yukawa coupling also breaks the SU(6) global symmetry. Take the top quark

loop-induced potential for example, where the required spurions are already written in

section 3.3. We can estimate

∆VH ∼ −
Nc

8π2
λ2Lλ

2
Rf

4
∣∣∣(Λ)ai(Γ

∗)jΣ
ij
∣∣∣2 ⊃ − Nc

8π2
λ2Lλ

2
Rf

2 |H|2 = − Nc

8π2
y2tM

2
T |H|2. (3.7.8)

The dominant quartic term is also from the top loop as

∆VH ∼
Nc

4π2
y4t |H|4. (3.7.9)

Similar potentials also arise for other SM Yukawa interactions.

The real singlet η does not get a potential at the leading order, but it couples quadrat-

ically to the Higgs doublets (e.g., from Eq. (3.7.8)), so it can still obtain a potential after
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the Higgs doublets develop nonzero VEVs. Through Eq. (3.7.8), η gets a quadratic po-

tential

∆Vη ∼
3

8π2
y2tM

2
T ·
(
v

f

)2

η2. (3.7.10)

So far, we have not gotten any potential for the flavon field s. Although the flavon

field in our model couples to the bottom quark, which will lead to a loop-induced pNGB

potential. However, we would like to have the potential from a separate source, so they

are independent of the FN mechanism. A nontrivial potential for the flavon field s is

common in models with collective symmetry breaking [16, 18], where the potential

∆V ∼M2
s

∣∣∣∣s± i

2f
H̃2
†
H1

∣∣∣∣2 ⊃M2
s |s|2 (3.7.11)

is introduced. For example, in the SU(6)/Sp(6) little Higgs model [16], the term can

be generated by gauging two copies of SU(2). However, it introduces new heavy gauge

bosons W ′ and Z ′, which are strongly constrained.

Another way, following [18], is using the interactions between the elementary fermions

and the resonances of the strong dynamics. In the section 3.3, we see that the elementary

quark doublets can couple to composite operators of SU(6) representations 6 and 6̄ with

x = 1/6 and r = 0, which are decomposed under SU(2)W × U(1)Y × U(1)F as

61/6,0 = 21/6,1/2 ⊕ 12/3,0 ⊕ 2̄1/6,−1/2 ⊕ 1−1/3,0, (3.7.12a)

6̄1/6,0 = 2̄1/6,−1/2 ⊕ 1−1/3,0 ⊕ 21/6,1/2 ⊕ 12/3,0. (3.7.12b)

Both operators create the same resonances, which belong to 6 of the Sp(6) group.

Now consider two elementary quark doublets, qL and q′L, couple to the first two com-

ponents of the composite operators of 6 and 6̄ respectively, while both representations

contain the same resonances:

λLq̄LaΛ
a
iO

i
R = λLq̄LaΛ

a
i

(
ξiαQ

α
R

)
, (3.7.13)

where

(Λ)ai = Λ =

1 0 0 0 0 0

0 1 0 0 0 0

 , (3.7.14)
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and

λ′Lq̄
′
Laε

abΩb
iO′Ri = λ′Lq̄

′
Laε

abΩb
i
(
ξ∗i
βΣ0βαQ

α
R

)
, (3.7.15)

where

(Ω)a
i = Ω =

1 0 0 0 0 0

0 1 0 0 0 0

 . (3.7.16)

The combination of the two interactions breaks the SU(6) global symmetry explicitly. It

leads to a potential for the pNGBs at O(λ2Lλ
′2
L) of the form

∆Vs ∝ [(Λ)ai(Ω
∗)bjΣ

ij][(Ω)b
m(Λ∗)a

nΣ∗mn] , (3.7.17)

which can easily be checked by drawing a one-loop diagram, with qL, q′L, QR running in

the loop. After expanding it, we obtain a flavon potential

∆Vs ∼
Nc

8π2
λ2Lλ

′2
Lf

4
∣∣∣(Λ)ai(Ω

∗)bjΣ
ij
∣∣∣2 ⊃M2

s |s|2, (3.7.18)

where

M2
s ∼

Nc

8π2
λ2Lλ

′2
Lf

2 . (3.7.19)

Notice that we have chosen different (generations of) elementary quark doublets, qL and

q′L, in the two couplings such that the leading order potential is the quadratic term |s|2.

To have a nontrivial flavon VEV, we want to introduce interactions that explicitly

break the U(1)F symmetry. It can be achieved by mixing qL to both resonances, which

have the quantum number 21/6,1/2 and 21/6,−1/2, with coupling λL and λ′′L. In this way,

the loop can be closed at O(λLλ
′′
L) and generate a s tadpole term

∆Vs ∼
Nc

8π2
λLλ

′′
Lf

4
(
εab(Λ)ai(Ω

∗)bjΣ
ij
)
∼ κ s , (3.7.20)

where

κ ∼ Nc

8π2
λLλ

′′
Lg

2
ψf

3. (3.7.21)

Combining the two potentials we got, the flavon VEV is given by

vs ∼
κ

M2
s

∼
λLλ

′′
Lg

2
ψ

λ2Lλ
′2
L

f ∝ λ′′Lf, (3.7.22)
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which is controlled by the explicit breaking coupling λ′′L. If λ′′L is small, we can have

vs � f with the desired value. Although the tadpole term shifts the vacuum, it preserves

the shape of the potential. That is, the masses of the two flavon degrees of freedom, a

scalar component s and a pseudoscalar component a, are the same with

Ms = Ma ∼
√
Nc

8π2
λLλ

′
Lf. (3.7.23)

The value is controlled by λL and λ′L, which can be large and lead to a heavy flavon.
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Chapter 4

A Flavorful Composite Higgs Model:

Connecting the B anomalies with the

hierarchy problem

Yi Chung

Center for Quantum Mathematics and Physics (QMAP), Department of Physics,

University of California, Davis, CA 95616, U.S.A.

We present a model which connects the neutral current B anomalies with composite

Higgs models. The model is based on the minimal fundamental composite Higgs model

with SU(4)/Sp(4) coset. The strong dynamics spontaneously break the symmetry and

introduce five Nambu-Goldstone bosons. Four of them become the Standard Model Higgs

doublet and the last one, corresponding to the broken local U(1)′ symmetry, is eaten

by the gauge boson. This leads to an additional TeV-scale Z ′ boson, which can explain

the recent B anomalies. The experimental constraints and allowed parameter space are

discussed in detail.

4.1 Introduction

The Standard Model (SM) of particle physics successfully describes all known elementary

particles and their interactions. However, there are still a few puzzles that have yet to be

understood. One of them is the well-known hierarchy problem. With the discovery of light
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Higgs bosons in 2012 [1, 2], the last missing piece of the SM seemed to be filled. However,

SM does not address the UV-sensitive nature of scalar bosons. The Higgs mass-squared

receives quadratically divergent radiative corrections from the interactions with SM fields,

which require an extremely sensitive cancellation to get a 125 GeV Higgs boson. To avoid

the large quadratic corrections, the most natural way is to invoke some new symmetry

such that the quadratic contributions cancel in the symmetric limit. This requires the

presence of new particles related to SM particles by the new symmetry.

One appealing solution to the hierarchy problem is the composite Higgs model (CHM),

where the Higgs doublet is the pseudo-Nambu-Goldstone boson (pNGB) of a sponta-

neously broken global symmetry of the underlying strong dynamics [3, 4]. Through the

analogy to the chiral symmetry breaking in quantum chromodynamics (QCD), which nat-

urally introduces light scalar fields, i.e., pions, we can construct models with light Higgs

bosons in a similar way. In a CHM, an approximate global symmetry G is spontaneously

broken by some strong dynamics down to a subgroup H at a symmetry breaking scale f .

The heavy resonances of the strong dynamics are expected to be around the composite-

ness scale ∼ 4πf generically. The pNGBs of the symmetry breaking, on the other hand,

can naturally be light with masses < f as they are protected by the shift symmetry.

Among all types of CHMs with different cosets, the CHMs with fundamental gauge

dynamics featuring only fermionic matter fields are of interest in many studies [5, 6, 7, 8],

which is known as the fundamental composite Higgs model (FCHM). In this type of CHMs,

hyperfermions ψ are introduced as the representation of hypercolor (HC) group GHC .

Once the HC group becomes strongly coupled, hyperfermions form a condensate, which

breaks the global symmetry. However, they always introduce more than four pNGBs,

which means more light states are expected to be found. The minimal FCHM, which is

based on the SU(4)/Sp(4) coset [9, 10, 11], contains five pNGBs. The four of them formes

the SM Higgs doublet, and the fifth one, as a SM singlet, could be a light scalar boson

(if the symmetry is global) or a TeV-scale Z ′ boson (if the symmetry is local). No matter

which, it should lead to some deviations in low energy phenomenology.

Although the direct searches by ATLAS and CMS haven’t got any evidence of new
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particles, LHCb, which does the precise measurement of B meson properties, shows inter-

esting hints of new physics. There are discrepancies in several measurements of semilep-

tonic B meson decays, especially the tests of lepton flavor universality (LFU), which are

so-called the neutral current B anomalies [12, 13, 14, 15, 16, 17, 18]. Each anomaly is

not statistically significant enough to reach the discovery level, but the combined anal-

ysis shows a consistent deviation from the SM prediction [19, 20, 21, 22, 23, 24]. These

anomalies might be the deviation we are looking for.

One of the popular explanations is through a new Z ′ vector boson which has flavor-

dependent interactions with SM fermions. Many different types of Z ′ models with diverse

origins of U(1)′ gauge symmetry have been proposed [25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. Depending on its

couplings with fermions, the mass of the Z ′ can range from sub-TeV to multi-TeV. For a

Z ′ boson at the TeV scale, it is natural to try to connect it with the hierarchy problem 1.

In this paper, we realize this idea using a SU(4)/Sp(4) FCHM, where an U(1)′ sub-

group within SU(4) is gauged. The corresponding Z ′ boson only couples to the third

generation SM fermions F3 and the hyperfermions ψ through the terms

Lint = gZ′Z
′
µ ( F̄3γ

µF3 +QHCψ̄γ
µψ ), (4.1.1)

where gZ′ was normalized such that SM fermions F3 carry a unit charge and hyperfermions

carry charge QHC . When the hypercolor group becomes strongly coupled, the global

symmetry SU(4) and its gauged U(1)′ subgroup are broken. The 5th pNGB is eaten by

the U(1)′ gauge boson, which results in a TeV-scale Z ′ boson. We will test the potential for

this Z ′ boson to explain the neutral current B anomalies. The parameter space allowed by

different experimental constraints, mainly from neutral meson mixings and lepton flavor

violation decays, will be discussed. The bounds on MZ′ from the LHC direct searches are

also shown.

1For our interest, we would like to mention some researches aiming at explaining the B anomalies
within composite Higgs models. Different studies using different features of composite theory to address
the problem, such as additional composite leptoquarks [53, 54, 55, 56] or composite vector resonances
[57, 58, 59, 60, 61, 62, 63]. However, they are all different from this study, where we introduce a new Z ′

boson.
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This paper is organized as follows. In section 4.2, we introduce the SU(4)/Sp(4)

FCHM. The calculations of the gauge sector, including SM gauge group and U(1)′ gauge

symmetry, are presented. To study its phenomenology, we specify the transformation be-

tween flavor basis and mass basis in section 4.3. The resulting low energy phenomenology

is discussed in section 4.4, including the B anomalies and other experimental constraints.

Section 4.5 focuses on the direct searches, which play an important role in constraining a

TeV-scale Z ′ boson. Section 4.6 and Section 4.7 contains our discussions and conclusions.

4.2 The SU(4)/Sp(4) FCHM

In fundamental composite Higgs models, additional hyperfermions ψ are added to gen-

erate composite Higgs. The hyperfermions are representations of hypercolor group GHC ,

whose coupling becomes strong around the TeV scale. The hyperfermions then form a

condensate, which breaks the global symmetry and results in the pNGBs as the Higgs

doublet. In this paper, we study the minimal fundamental composite Higgs model based

on the global symmetry breaking SU(4) → Sp(4). The fermionic UV completion of a

SU(4)/Sp(4) FCHM only require four Weyl fermions in the fundamental representation

of the SU(2) = Sp(2) hypercolor group [7, 8]. The four Weyl fermions transform under

GSM = SU(3)C × SU(2)L × U(1)Y as

ψL = (UL, DL) = (1, 2, 0), UR = (1, 1, 1/2), DR = (1, 1,−1/2). (4.2.1)

Next, we rewrite the two right-handed hyperfermions as ŨL = −iσ2CŪT
R and D̃L =

−iσ2CD̄T
R. Since all the four Weyl fermions are according to the same representation of

the hypercolor group, we can recast them together as

ψ = (UL, DL, ŨL, D̃L)T , (4.2.2)

which has a SU(4) global symmetry (partially gauged). The hypercolor group becomes

strongly coupled at the TeV scale, which forms a non-perturbative vacuum and breaks

the SU(4) down to Sp(4). In CHMs, the condensate 〈ψψ〉 ∝ Σ0 is chosen such that

electroweak symmetry is preserved. It will be broken after the Higgs interactions and

loop-induced potentials are taken into account. However, we will only focus on some key

ingredients here and leave the complete analysis to the future.
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4.2.1 Basics of SU(4)/Sp(4)

To study the SU(4)/Sp(4) symmetry breaking, we can parametrize it by a non-linear

sigma model. Consider a sigma field Σ, which transforms as an anti-symmetric tensor

representation 6 of SU(4). The transformation can be expressed as Σ → gΣ gT with

g ∈ SU(4). The scalar field Σ has an anti-symmetric VEV 〈Σ〉, where

〈Σ〉 = Σ0 =

iσ2 0

0 iσ2

 . (4.2.3)

The Σ VEV breaks SU(4) down to Sp(4), producing five Nambu-Goldstone bosons.

The 15 SU(4) generators can be divided into the unbroken ones and broken ones with

each type satisfyingunbroken generators Ta : TaΣ0 + Σ0T
T
a = 0 ,

broken generators Xa : XaΣ0 − Σ0X
T
a = 0 .

(4.2.4)

The Nambu-Goldstone fields can be written as a matrix with the broken generator:

ξ(x) ≡ e
iπa(x)Xa

2f . (4.2.5)

Under SU(4), the ξ field transforms as ξ → g ξ h† where g ∈ SU(4) and h ∈ Sp(4). The

relation between ξ and Σ field is given by

Σ(x) = ξ Σ0 ξ
T = e

iπa(x)Xa
f Σ0 . (4.2.6)

The broken generators and the corresponding fields in the matrix can be organized as

follows:

iπaXa =

 ia I
√

2
(
H̃H

)
−
√

2
(
H̃H

)†
−ia I

 (4.2.7)

In this matrix, there are five independent fields. The four of them form the Higgs (com-

plex) doublet H. Besides, there is one more singlet a, which will turn out to be the

longitudinal part of the Z ′ boson. By these matrices, we can construct the low energy

effective Lagrangian for these pNGB fields.
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4.2.2 The SM gauge sector

The SM electroweak gauge group SU(2)W × U(1)Y is embedded in SU(4)× U(1)X with

generators given by

SU(2)W :
1

2

σa 0

0 0

 , U(1)Y :
1

2


0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 1

+XI . (4.2.8)

The extra U(1)X factor accounts for the different hypercharges of the fermion representa-

tions but is not relevant for the bosonic fields. These generators belong to Sp(4)×U(1)X

and are not broken by Σ0. Using the Σ field, the Lagrangian for kinetic terms of Higgs

boson comes from

Lh =
f 2

8
tr
[
(DµΣ)(DµΣ)†

]
+ · · · , (4.2.9)

where Dµ is the electroweak covariant derivative. Expanding this, we get

Lh =
1

2
(∂µh)2 +

f 2

8
g2W sin2

(
h

f

)[
2W+

µ W
−µ +

ZµZ
µ

cos θW

]
. (4.2.10)

The non-linear behavior of the Higgs boson in the CHM is apparent from the dependence

of trigonometric functions. When h obtains a nonzero VEV 〈h〉 = V , the W boson

acquires a mass of

m2
W =

f 2

4
g2W sin2

(
V

f

)
=

1

4
g2Wv

2, (4.2.11)

where v ≡ f sin(V/f) ≈ V . The non-linearity of the CHM is parametrized by

ξ ≡ v2

f 2
= sin2

(
V

f

)
. (4.2.12)

The Higgs boson couplings to SM fields in the SU(4)/Sp(4) CHM are modified by the

non-linear effect due to the pNGB nature of the Higgs boson. For example, the deviation

of the Higgs coupling to vector bosons is parameterized by

κV ≡
ghV V
gSMhV V

= cos

(
V

f

)
=
√

1− ξ ≈ 1− ξ

2
. (4.2.13)

To decide the bound on the parameter ξ, we also need to determine the Yukawa coupling

in the model, which is beyond the scope of the present work. The most conservative

bound requires ξ . 0.06 [64, 65], which implies the symmetry breaking scale f & 1 TeV.
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4.2.3 U(1)′ gauge symmetry

Besides the SM gauge symmetry, we also gauge the U(1)′ subgroup of SU(4) with the

generator given by

U(1)′ : QHC

I 0

0 −I

 . (4.2.14)

The U(1)′ behaves like the lepton number of hyperfermions, where a hyperfermion carry

charge QHC and an anti-hyperfermion carry charge −QHC . To explain the neutral current

B anomalies without violating the experimental constraints, we assume SM fermions (but

only the third generation) also carry a nonzero, universal charge, which is set to 1 for

simplicity as mentioned in Eq. (4.1.1). To make the U(1)′ gauge symmetry anomaly-

free, we need to take QHC = −2 in the minimal FCHM. Now the U(1)′ gauge symmetry

becomes the difference between the third generation SM number and the hyperfermion

number, or written as SM3 −HF , which is like the hyper version of anomaly-free B − L

symmetry.

When SU(4) global symmetry is broken down by the Σ VEV to Sp(4) at the symmetry

breaking scale, the U(1)′ subgroup is also broken down. It results in a massive Z ′ gauge

boson with

MZ′ = gZ′ (2 |QHC |f) ≡ gZ′f
′, (4.2.15)

where we define the scale

f ′ ≡ 2 |QHC |f = 4f, (4.2.16)

which is relevant in the study of Z ′ phenomenology.

To sum up, in this flavorful SU(4)/Sp(4) FCHM, five pNGBs are generated below the

compositeness scale. The four of them become the SM Higgs doublet we observed but

with non-linear nature, which will be tested in the future Higgs measurements. The 5th

one is eaten by the U(1)′ gauge boson and results in a heavy Z ′ boson around the TeV

scale. Other model construction issues and phenomenology of SU(4)/Sp(4) CHM have

been studied comprehensively in [7, 8]. In the following sections, we will focus on the Z ′

phenomenology and the connection with the B anomalies.
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4.3 Specify the mixing matrices for phenomenology

To discuss the phenomenology, we need to first rewrite the Z ′ interaction terms in

Eq. (4.1.1) to cover all generations and separate different chirality as

Lint = gZ′Z
′
µ ( F̄ f

Lγ
µQf

FL
F f
L + F̄ f

Rγ
µQf

FR
F f
R ), (4.3.1)

where F = (F1, F2, F3) includes SM fermions of all the three generations with superscript

f for flavor basis. The 3× 3 charge matrices in the flavor basis look like

Qf
FL/R

=


0 0 0

0 0 0

0 0 1

 . (4.3.2)

However, to study phenomenology, we need to transform them to the mass basis Fm
L/R

through the mixing matrices as F f
L/R = UFL/RF

m
L/R. After the transformation, we get

Lint = gZ′Z
′
µ ( F̄m

L γ
µQm

FL
Fm
L + F̄m

R γ
µQm

FR
Fm
R ), (4.3.3)

where the charge matrices becomes

Qm
FL/R

= U †FL/RQ
f
FL/R

UFL/R . (4.3.4)

Therefore, we need to know all the UFL/R to determine the magnitude of each interac-

tion. However, The only information about these unitary transformation matrices is the

CKM matrix for quarks and PMNS matrix for leptons. The two relations that need to

be satisfied are

VCKM ≡ U †uLUdL and VPMNS ≡ U †νLUeL , (4.3.5)

which only tells us about the left-handed part with no information about the right-handed

part. Even with these two constraints, they only give the difference between two unitary

transformations, but not the individual one. Therefore, we need to make some assump-

tions about the matrices so there won’t be too many parameters.

To simplify the analysis, we assume all the UFR are identity matrices. Therefore, for

right-handed fermions, only the third generation joins in the interaction with no flavor
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changing at all. The couplings are the same for all the right-handed fermions it couples

to with coupling strength gZ′ .

For the left-handed side, due to the observation of VCKM and VPMNS, there is a

guarantee minimal transformation for UFL . Because we only care about the transition

between the second and third generation down-type quarks and charged leptons, we will

only specify the rotation θ23 between the second and third generation of UdL and UeL as

UFL =


1 0 0

0 cos θF sin θF

0 −sin θF cos θF

 (4.3.6)

where F = d, e. Keeping only the angle θ23 is a strong assumption but a good example case

for phenomenological study because it avoids some of the most stringent flavor constraints

from light fermions and leaves a simple parameter space for analysis. Following this

assumption, the rest of the matrices are fixed as UuL = V †CKMUdL and UνL = V †PMNSUeL .

Notice that, although they looks similar, the magnitude we expect for the two angles are

quite different. For θd, we expect it to be CKM-like, i.e. sin θd ∼ O(0.01). However, for

θe, it could be as large as sin θe ∼ 1.

We can then calculate the charge matrices as

Qm
FL

=


0 0 0

0 sin2 θF −1
2

sin 2θF

0 −1
2

sin 2θF cos2 θF

 , (4.3.7)

where F = d, e, and write down all the coupling for left-handed fermions. To study the

B anomalies, two of them, gsb and gµµ, are especially important, so we further define

gsb ≡ −gZ′εsb with εsb =
1

2
sin 2θd, (4.3.8)

gµµ ≡ gZ′εµµ with εµµ = sin2 θe. (4.3.9)

We will see later that constraints will be put on the three key parameters: the scale f ′,

the mixings εsb, and εµµ.
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4.4 Low Energy Phenomenology

With the specified mixing matrices, we can then discuss the parameter space allowed to

explain the B anomalies. Also, the constraints from other low energy experiments are

presented in this section.

4.4.1 Neutral Current B Anomalies

To explain the observed neutral current B anomalies, an additional negative contribution

on b → sµ+µ− is required. Based on the assumption we make, after integrating out the

Z ′ boson, we can get the operator

∆L =
4GF√

2
VtbV

∗
ts

e2

16π2
CLL(s̄Lγ

ρbL)(µ̄LγρµL) (4.4.1)

in the low energy effective Lagrangian with coefficient

CLL =
gsbgµµ
M2

Z′
(35 TeV)2 = −εsbεµµ

f ′2
(35 TeV)2. (4.4.2)

The global fit value for the Wilson coefficient, considering all rare B decays [19], gives

CLL = −0.82± 0.14 , (4.4.3)

which requires
εsbεµµ
f ′2

=
1

(39 TeV)2
=⇒ f ′ ∼ √εsbεµµ (39 TeV). (4.4.4)

The generic scale with large mixing angles is f ′ ∼ 40 TeV. However, as we mentioned,

the value εsb ∼ O(0.01), which will bring it down to the TeV scale.

4.4.2 Neutral Meson Mixing

The measurement of neutral meson mixing put strong constraints on the Z ′ solution.

Based on our specified mixing matrices, which have suppressed mixings between the first

two generations, the Bs − B̄s mixing turns out to be the strongest constraint. The mea-

surement of mixing parameter [66] compared with SM prediction by recent lattice data

[67] gives the bound on the s̄bZ ′ vertex as

gZ′

MZ′
εsb ≤

1

194 TeV
=⇒ f ′ ≥ εsb · 194 (TeV). (4.4.5)
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Combining with the requirement from Eq. (4.4.4), we can rewrite the constraint as

f ′ ≤ εµµ · 7.7 (TeV) . (4.4.6)

The constraint can be understood as that, in the b → sµ+µ− process, the bs side, which

is constrained by the Bs − B̄s mixing measurement, should be extremely suppressed.

Therefore, the µµ side needs to be large enough to generate the observed B anomalies.

We can also find a hierarchy εµµ/εsb ≥ 25, which leads to the bound εsb ≤ 0.04, which is

consistent with what we expected.

4.4.3 Lepton Flavor Violation Decay

In the lepton sector, there is also a strong constraint from the flavor changing neutral

currents (FCNCs). The off-diagonal term in the charge matrix of charged lepton will

introduce lepton flavor violation decay, in particular, τ → 3µ, from the effective term

LLFV =
g2Z′

M2
Z′
s3ece(τ̄Lγ

ρµL)(µ̄LγρµL) , (4.4.7)

where se = sin θe and ce = cos θe. The resulting branching ratio can be expressed as

BR(τ → 3µ) =
2m5

τ

1536π3Γτ

(
g2Z′

M2
Z′
s3ece

)2

= 3.28× 10−4
(

1 TeV

f ′

)4

ε3µµ(1− εµµ) . (4.4.8)

The value should be < 2.1 × 10−8 at 90% CL by the measurement [68]. It also puts a

strong constraint on the available parameter space. The exclusion plot combining the

constraint from Bs − B̄s mixing on the parameter space f ′ v.s. εµµ is shown in Fig. 4.1.

The small εµµ region is excluded, which give a minimal value εµµ ≥ 0.82. It implies the

angle θe is quite large. The value of f ′ is bounded from above as shown in Eq. (4.4.6) but

not from below as it could be small in the εµµ = 1 limit. However, due to the connection

with symmetry breaking scale f & 1 TeV, we are interested in f ′ & 4 TeV, which corre-

sponds to the upper region of the parameter space. In this region, the Z ′ contributions

to neutrino trident production [69, 70] and muon (g− 2) [71, 72] are negligible, so we will

only focus on the experimental constraints we mention in this section.

4.5 Direct Z ′ Searches

The measurements from flavor physics in the last section can only put the constraints

on the mixings and the scale f ′ = MZ′/gZ′ . The direct searches, on the other hand, can
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Fig. 4.1: The viable parameter space from the experimental constraints. The shaded region is
excluded by the corresponding measurements. The bright blue line labels the upper edge of the
available parameter space.

give the lower bound on the mass of MZ′ directly. A general Z ′ collider search has been

discussed in [73]. In this section, we will focus on the scenario determined by our model.

4.5.1 Decay width and branching ratios

The partial width of the Z ′ boson decaying into Weyl fermion pairs f̄ifj is

Γij =
C

24π
g2ijMZ′ , (4.5.1)

where gij is the coupling of f̄ifjZ
′ vertex and C counts the color degree of freedom. In

the limit that all mf are negligible, we get the total relative width as

ΓZ′

MZ′
=

16

24π
g2Z′ ∼ 0.2 g2Z′ . (4.5.2)

The value is important when we try to pick up the bound from the LHC searches.

The dominant decay channels are the diquarks channel of the third generation quarks

as

Br(tt̄) ∼ Br(bb̄) ∼ 37.5%. (4.5.3)

Decays to the light quarks and exotic decays like tc and bs are also allowed but strongly

suppressed due to the small rotational angles.
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The main constraint is expected to come from the clear dilepton channels. Based on

the specified mixing matrices we gave, the branching ratios are

Br(ττ) ∼ 6.25 (1 + (1− εµµ)2) %, (4.5.4)

Br(τµ) ∼ 12.5 εµµ(1− εµµ) %, (4.5.5)

Br(µµ) ∼ 6.25 ε2µµ %. (4.5.6)

We already get εµµ ≥ 0.82 from the flavor constraints, which implies Br(µµ) ≥ 4.2%.

Therefore, the µµ final state is the most promising channel but also puts the stringent

constraint on the MZ′ .

4.5.2 Production cross section

In the model, the Z ′ boson only couples to the third generation quarks in the flavor basis.

Even after rotating to the mass basis, the couplings to the first and second generation

quarks are still suppressed due to the small mixing angles. Therefore, the dominant

production come from the process bb̄ → Z ′. In the following discussion, we will ignore

all the other production processes and the small mixing angle θd. In this way, the cross

section can be written as

σ(bb̄→ Z ′) ≡ g2Z′ · σbb(MZ′) (4.5.7)

where the coupling dependence is taken out. The σbb is determined by the bottom-quark

parton distribution functions [74, 75], which is a function of MZ′ .

4.5.3 The µµ channel search

From the branching ratios and the production cross section we got, we can calculate the

cross section for dimuon final state

σµµ ≡ σ ×Br(µµ) =
1

16
σbb · g2Z′ ε2µµ. (4.5.8)

Moreover, from the Bs− B̄s constraint, we get the lower bound on εµµ as a function of f ′

in (4.4.6), which gives

σµµ ≥
1

16
σbb · g2Z′

(
f ′

7.7 TeV

)2

= σbb

(
MZ′

31 TeV

)2

. (4.5.9)
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Fig. 4.2: Upper limits at 95% CL on the cross section times branching ratio σµµ as a function
of MZ′ for 10% (red) and 0.5% (black) relative width signals for the dimuon channel. Observed
limits are shown as a solid line and expected limits as a dashed line. Also shown are theoretical
predictions of the minimal cross section for Z ′ in the model (blue) assuming CLL = −0.82 (solid)
and −0.68 (dotted).

The equality holds when εµµ = f ′/7.7 TeV, which corresponds to the blue line in Fig. 4.1.

It gives the minimal cross section as a function of MZ′ that allows us to compare with

the experimental results. The current best search comes from the ATLAS [76] with an

integrated luminosity of 139 fb−1. The result is shown in Fig. 4.2.

Notice that, the bound by collider searches depends on the width. In Fig. 4.2, we

show relative width of 10%(red) and 0.5%(black). The wider one gives a weaker bound.

However, it require a larger gZ′ ∼ 0.7 and thus a smaller f ′ ∼ 1.7 TeV, which is excluded

as shown in Fig. 4.1. The bright blue segment in Fig. 4.1 is the available parameter

space with the minimal cross section. In this region, the value f ′ ∼ 7 TeV, which implies

a smaller gZ′ ∼ 0.17. Therefore, we should use the black line with 0.5% width in the plot,

which requires MZ′ & 1200 GeV. If we relax the best-fit value in the Eq. (4.4.3) to one

sigma region, we get a weaker bound as MZ′ & 900 GeV.
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4.5.4 Other decay channels

To looks for other decay channels, we need to first set up benchmark points. From the

previous discussion, we choose the value MZ′ = 1.4 TeV, which is right above the current

bound. For simplicity, we set εµµ = 1, which makes σττ = σµµ and στµ = 0. Once we pick

up a value for f ′, other parameters are automatically set. We can then calculate all the

cross sections we are interested in. The results are listed in table 4.1. For a fixed MZ′ , a

larger f ′ implies a smaller gZ′ and thus smaller cross sections. We can check that the σµµ

for these benchmark points are still below the bound. Other channels, even with a larger

cross section, are well below the observed limits but will be tested during the HL-LHC

runs.

f ′(TeV) gZ′ σtot(fb) σtt/bb(fb) σττ/µµ(fb)

5.0 0.28 11.21 4.20 0.70

6.0 0.23 7.79 2.92 0.49

7.0 0.20 5.72 2.15 0.36

Table 4.1: The cross sections for each decay channel based on MZ′ = 1.4 TeV with different
choice of f ′.

We only show the flavor conserving final states so far, but the Z ′ boson can also

have flavor violating decays. However, their cross sections are already constrained by the

absence of FCNCs. In the quark sector, the mixings are strongly constrained and thus the

branching ratios for these decays are suppressed. However, in the lepton sector, a larger

mixing is allowed and the search for flavor violating decays like Z ′ → µτ might be viable.

Although other channels are unlikely to be the discovery channel, once the Z ′ boson is

discovered, the next thing to do will be to look for the same resonance in other channels.

Through the searches, we can decide the partial widths and figure out the couplings of

the Z ′ boson to other fields. The structure of couplings can help us distinguish between

different Z ′ models. For example, the Z ′ boson in our model couples universally to all the

third generation SM fermions in the flavor basis. Even considering the transformation to

the mass basis, it still has a unique partial width ratio

Γtt : Γbb : Γ`` : Γνν ∼ 3 : 3 : 1 : 1, (4.5.10)
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where Γ`` is the sum of all the charged lepton partial widths. The measurement will allow

us to probe the nature of the Z ′ boson and the underlying U(1)′ symmetry.

4.6 Discussions

In this study, we are interested in the value of f ′, which is related to the breaking scale f ,

and the bound on MZ′ , which is important for the collider searches. In the last section,

we found that a certain straight line (such as the blue line) in Fig. 4.1 corresponding to

a predicted cross section σµµ(f ′0), which is given by

Line: εµµ =
f ′

f ′0
=⇒ σµµ(f ′0) = σbb

(
MZ′

4× f ′0

)2

, (4.6.1)

where f ′0 represents the slope of the line, e.g. for the blue line in Fig. 4.1, f ′0 = 7.7 TeV.

Using this relation, we can calculate the cross section σµµ for each point in the parameter

space in Fig. 4.1 with a certain value of MZ′ . It allows us to combine “the constraints

in the parameter space in f ′ v.s. εµµ plot” (as shown in Fig. 4.1) with “the direct µµ

channel search results from the ATLAS [76]” into “the viable parameter space in f ′ v.s.

MZ′ plot” as shown in Fig. 4.3.

The blue region is excluded by the Bs − B̄s meson mixing, which gives the lower

bound MZ′ & 1.2 TeV. The bright blue line corresponds to the same parameter space as

in Fig. 4.1 with MZ′ ∼ 1.2 TeV. The yellow region, also excluded by the Bs − B̄s meson

mixing, sets the maximum value for f ′ as shown in Eq. (4.4.6), which can also be found

directly in Fig. 4.1. Once the stronger constraint from Bs − B̄s meson mixing is placed,

the yellow line will move downward and the blue line will move rightward. The red region,

which is excluded by τ → 3µ, restricts the parameter space from below. It places the

lower bound on f ′, which will be pushed upward if the constraint becomes stronger. We

can also see the data fluctuations in dimuon search become the fluctuations on the red

curve. The strength of the coupling gZ′ with three different values is also labeled as the

black straight line in the plot.

There are two regions worth noticed in the plot: (1) The region with the light Z ′ that

corresponds to a small gZ′ but a large f ′ region, i.e. (gZ′ , f
′) ∼ (0.2, 7 TeV). (2) For a

natural CHM without a large fine-tuning, a smaller f (and thus f ′ = 4f) is preferred,
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Fig. 4.3: Constraints on f ′ v.s. MZ′ plot for MZ′ below 3 TeV. The white region is currently
allowed, where εµµ and εsb are chosen to satisfy (4.4.2) from the requirement of the B anomalies.
The shaded regions are excluded by the corresponding constraints from Fig. 4.1 combining with
the direct searches, where we use the ATLAS 139 fb−1 dimuon searches. The three straight
lines represent different values of gZ′ .

which corresponds to a larger gZ′ region, such as (gZ′ , f
′) ∼ (0.5, 4 TeV) with a heavier

Z ′. Both regions are around the boundary. The direct searches will extend both blue and

red exclusion regions rightward, so both points we mentioned will be probed soon. The

lower bound on MZ′ will be pushed to 2 TeV and most of the interesting parameter space

will be explored during the HL-LHC era [77, 78].

4.7 Conclusions

In this paper, we presented a new Z ′ solution to the B anomalies, whose scale is related

to the symmetry breaking scale of the underlying strong dynamics. We found that the

anomaly-free U(1)′ symmetry can arise from SM3−HF , the difference between the third

generation SM fermion number and the hyperfermion number. This type of U(1)′ is

naturally broken at the TeV scale in many fundamental composite Higgs models, which
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allow us to connect it with the hierarchy problem. We constructed a concrete model based

on SU(4)/Sp(4) minimal FCHM. The relation f ′ = 2 |QHC |f = 4f connects the flavor

anomalies scale f ′ with the symmetry breaking scale f in the FCHM.

The potential for the Z ′ boson to explain the B anomalies is discussed in detail. Other

flavor physics measurements, like neutral meson mixings and lepton flavor violation de-

cays, put constraints on the allowed parameter space as shown in Fig. 4.1. The direct

searches also give the bound on the mass of Z ′ as MZ′ & 1.2 TeV. The combined con-

straints on the scale f ′ v.s. mass MZ′ are shown in Fig. 4.3, which gives a clear picture

about how the parameter space will be probed in the future. Some attractive regions are

still viable and will be tested during the HL-LHC era.
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Chapter 5

Conclusions

In this dissertation, we introduce three composite Higgs models aiming at solving different

problems motivated by both theoretical considerations and experimental results. They

are all based on larger cosets that allow additional symmetries and mechanisms beyond

the minimal setup.

In A More Natural Composite Higgs Model, we show how an enlarged symmetry can

help reduce the quadratic term and enhance the quartic term in the Higgs potential,

which can minimalize the required fine-tuning. In Composite Flavon-Higgs Models, a flavor

symmetry is included in the enlarged symmetry of CHMs, which can lead to the Froggatt-

Nielsen mechanism and generate the mass hierarchy between the top and bottom quarks.

In A Flavorful Composite Higgs Model, we find that a TeV-scale Z ′ boson can naturally

arise in a fundamental composite Higgs model and provides a possible explanation to the

neutral current B anomalies.

These models point out the richness of composite Higgs models with enlarged cosets.

Moreover, they all introduce new physics at the TeV-scale phenomenology, which will be

tested through direct and indirect searches in the LHC and other experiments. Especially,

the B anomalies will be checked in the next few years by LHCb and Belle II experiments.

If confirmed, that will be a revolution in the field of particle physics since the discovery

of the Higgs boson. If the solution shows up at the TeV scale, it might unveil the deep

connection between Higgs physics and flavor physics.

116




