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Abstract In this paper, we analyze the thermodynamics of
five-dimensional Schwarzschild AdS black hole in AdS5×S5

spacetime in the presence of Tsallis entropy. Since the cosmo-
logical constant � is considered as thermodynamical pres-
sure with volume as its conjugate, but this explanation cannot
be employed in AdS/CFT correspondence. In this study, we
associate cosmological constant � in boundary gauge the-
ory with the number of colors N and chemical potential is
taken to be its thermodynamic conjugate. The two geometric
parameters in the AdS black hole, r and L are substituted
for two thermodynamic parameters in the micro-canonical
ensemble, which are considered to be entropy S and N 2.
Moreover, we evaluate several thermodynamical geometry
formulations, including Weinhold, Ruppeiner, and Quevedo
and derive associated scalar curvatures for five-dimensional
Schwarzschild AdS black hole. It is suggested that all these
geometries show repulsive/attractive forces on the particles
at different phases of entropy.

1 Introduction

The Hawking’s area theorem suggested that the area of a
black hole (BH) is analogous to entropy. These findings con-
firmed the area theorem is an outcome of the second law of
thermodynamics by representing that the entropy is related
to the area of the event horizon. It actually paved the way for
BH thermodynamics and the proportionality constant was set
after the discovery of Hawking radiation. The ultimate for-
mulation of Bekenstein entropy and Hawking temperature is
as follows [1–4]
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TH = h̄c3

8πGkBM
, S = c3kB AH

4Gh̄
. (1)

Here, h̄ shows Planck’s constant, the Newton’s constant is
denoted by G, c represents the speed of light, kB shows the
Boltzmann constant, AH is area of event horizon and M is
the mass of BH.

Thermodynamics of BHs has been an intriguing discipline
of study for researchers lately, explicitly after when scien-
tists have been treated the cosmological constant as pressure
P = − �

8π
. This is when the first law of BH thermodynamics

was procured. The thermodynamics of BHs began with the
pioneering work of Bekenstein and Hawking on the relation-
ship between entropy S and area A and temperature T and
surface gravity κ of the event horizon [4–6]. While gener-
alizing Komer’s concept of mass of asymptotically flat AdS
space-times, an important feature of BH thermodynamics
emerges, namely the necessity of a dynamical cosmologi-
cal constant. Black holes in anti-de Sitter (AdS) space have
very different thermodynamical characteristics than BHs in
asymptotically flat or de Sitter space. The major explanation
is because AdS space behaves as a confined cavity, allow-
ing BHs to remain thermodynamically stable in AdS space.
In the correspondence of AdS/CFT, a negative cosmological
constant � is associated with N , the degrees of freedom of
the dual conformal field theory (CFT).

In the case of AdS5×S5 and the finite temperatureN = 4
of the superconformal Yang–Mills theory at large N , it seems
more appropriate to view a dynamical � as the varying num-
ber of colors of the dual CFT and its conjugate associated to
chemical potential [7–9]. On computing the chemical poten-
tial μ, conjugate to the number of colors in the frame of
reference of Schwarzschild BH AdS5 × S5, the chemical
potential in the Yang–Mills theory’s high temperature phase
is discovered to be negative and diminishes as temperature
rises [10,11]. Also, when the temperature falls below the
Hawking–Page temperature, it was observed that the chemi-
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cal potential of spherical BHs in the bulk approaches to zero
and the heat capacity divergence changes the sign at a tem-
perature around that point.

Applying geometrical principles to conventional thermo-
dynamical systems, on contrary, provides a new means of
studying phase transition in such systems. Many scholars
have contributed to the development of this methodology.
Since BHs are thought to be thermodynamic systems, it
makes sense to examine their thermodynamic geometries.
Previous research suggests that the thermodynamic geom-
etry of BHs has a structure from which scientific conclu-
sions may be deduced [12]. In equilibrium states, Hermann
[13] established a differential manifold as an interconnec-
tion of thermodynamic phase space with a natural con-
tact structure of subspace. Weinhold [14] was the first to
develop a metric based on the second derivatives of internal
energy regarding entropy and other thermodynamic param-
eters. Ruppeiner [15] presented another metric, the negative
Hessian of entropy and other extensive variables of a ther-
modynamic system, based on the fluctuation theory of ther-
modynamic equilibrium process.

In contrast to more traditional techniques, Ruppeiner
geometry is a macroscopic probe that may be used to fig-
ure out the nature of interactions in a thermodynamic system
[16]. Furthermore, the Weinhold metric was demonstrated
to be conformal to the Ruppeiner metric [17]. However,
under Legendre transformation, both the Weinhold and Rup-
peiner metrics are not invariant, and occasionally contradict-
ing findings are obtained [18]. Numerous efforts were made,
with the ultimate result being a non-invariant metric under
Legendre transformations [19]. Quevedo proposed that by
using purely mathematical principles, both techniques may
be combined into a single approach. This method is known as
geometrothermodynamics, and it is a unifying technique that
allows us to interpret thermodynamics in a geometric termi-
nology, whether at the phase space level or in the space of
equilibrium states. The phase transition of BHs was studied
by using the thermodynamical geometry technique [20–23].
We have also investigated different phenomenon of the BHs
in various theories of gravity [24–31].

This manuscript is structured in such a way that we explore
the thermodynamics and thermodynamical geometry of a
five-dimensional Schwarzschild AdS BH with respect to
Tsallis entropy in AdS5 × S5 considering the number of col-
ors as a thermodynamical variable from the perspective of
dual CFT. In Sect. 2, we briefly describe Tsallis entropy and
covers the thermodynamical properties of a BH in AdS5×S5

taking the cosmological constant � as number of colors N . In
Sect. 3, we compute the scalar curvatures of various metrics
for the thermodynamical system to evaluate their relation-
ships with phase transition. In support of our study, physical
interpretations are also provided. In Sect. 4, concluding argu-
ments of the study are discussed.

2 Tsallis entropy and thermodynamic properties

The entropy of a BH has fascinating elements that have been
debated for decades and assertions have been made that the
BH entropy is related to the area of its boundary rather than
the BH volume. Hawking demonstrated the emission of black
body radiations with a temperature by relating quantum mat-
ter fields to a classical BH. The Bekenstein–Hawking entropy
can be expressed as

SBH = kB
4

AH

Gh̄/c3 . (2)

Here, AH represents the area of event horizon and G is New-
ton’s constant, kB appears as Boltzmann constant, h̄ shows
the reduced Planck constant, c is the speed of light. Indeed,
since the fundamental ideas of Bekenstein and Hawking,
there has been a widespread recognition in the literature
that the BH entropy is unconventional in the sense that it
breaches thermodynamical extensivity. Thus, if the system
is physically defined as (d-1)-dimensional, then the addi-
tive entropy SBG must be considered as its thermodynamical
entropy. However, if the system is to be physically regarded
as d-dimensional, SBG cannot be recognized as its thermo-
dynamical entropy, and a nonadditive entropy is required to
serve that role. From a historical point of view, the thermo-
dynamical deviation associated with the area law is gener-
ally overlooked. However, there are several scientific and
mathematical facts that identify such a viewpoint as anoma-
lous. To obtain an approach to overcome the issue, for such
complex systems, it is sufficient to associate the thermody-
namical entropy with nonadditive entropies like Sq rather
than the standard Boltzmann–Gibbs–von Neumann (addi-
tive) entropy is not proportional to the volume for highly
entangled systems, black holes, and systems obeying the area
law in general. The thermodynamical entropy cannot be iden-
tified with the conventional one in such strongly correlated
systems but with a significantly different (nonadditive) one.
In order to maintain thermodynamic extensivity for nonstan-
dard systems, entropies generalizing those of BG become
essential. Tsallis and Cirto [32] demonstrated that a BH’s
horizon entropy may be manipulated as

Sq
kB

∝
(
SBG
kB

)d/d−1

(d > 1), (3)

where Sq and SBG denote Tsallis and Boltzmann–Gibbs
entropy respectively. Tsallis suggested that it can be linked
to the renowned Bekenstein–Hawking entropy SBH such as

Sq
kB

∝
(
SBH

kB

)δ

. (4)

Equation (4) may be expressed as follows

Sq = �Aδ, (5)
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where, δ indicates the non-additivity parameter and � is an
arbitrary constant. Bekenstein entropy is clearly retrieved at
the specified limit of δ = 1 and � = 1/4G (in the system
when h̄ = kB = c = 1).

The Schwarzschild metric, discovered by Karl
Schwarzschild in 1916, is an ultimate solution to the Einstein
field equations that explains the gravitational field beyond a
spherical mass under the assumption that all quantities, the
universal cosmological constant, electric charge and angular
momentum are zero. A static Schwarzschild BH has neither
angular momentum nor electric charge. Substantial advance-
ment in higher-dimensional space-time physics has been
accomplished, following the proposal of the five-dimensional
Schwarzschild BH metric. The Schwarzschild-AdS solution
is the most basic example of an asymptotically AdS BH
which is presented as follows [33–35]

ds2 = −g(r)dt2 + g(r)−1dr2 + r2d�2
3. (6)

Metric function g(r) is given by [36]

g(r) = k − 8G5M

3πr2 + r2

L2 , (7)

where L is length scale in AdS5 space-time, with cosmo-
logical constant � = − 6

L2 , k is scalar curvature parameter
and it can take values as −1, 0 or 1. Here M is the mass
of BH, and G5 indicates the five-dimensional Newton’s con-
stant. Now, one must know that, in accordance with AdS/CFT
five-dimensional Newton’s constant G5 is also a function of
L

1

16πG5
= VS5

16πG10
,

where, VS5 = π3L5, volume of five-dimensional sphere with
radius L , which gives G5 = G10

π3L5 where G10 is the fixed ten-
dimensional Newton’s constant linked to ten-dimensional
Planck’s length l p as: G10 = l p8. The relation between AdS
radius L and D-3-branes can be specified by [37]

L4 =
√

2Nlp4

π2 , (8)

In above relation, l p denotes ten-dimensional Planck length
which is constant throughout. The following equation, Eq.
(9) can be derived using, Eqs. (3) to (5)

S = �

(
π5r3L5

2l p8

)δ

. (9)

In compliance with AdS/CFT correspondence, the space-
time Eq. (7) is considered as the gravity dual to N = 4
Superconformal Yang–Mills theory, at finite temperature
with large N . N denotes the rank of the gauge group of the
SU (N ) super-symmetric Yang–Mills theory. In above rela-
tions, although cosmological constant � is normally taken to
be fixed, however, in AdS5 × S5, it is not a priority but just

Fig. 1 The temperature with respect to entropy with k = 1, l p =
1, � = 1 and N = 3

a parameter as any constant in 10-dim super-gravity solu-
tions and can be varied. In, thermodynamic energy of the
boundary CFT was computed as the function of the volume
V , temperature T and N . While the bulk metric has only one
parameter, keeping � fixed and even � is allowed to vary, we
are left with two parameters which are not enough. It entails
a presumption. The ideology here is to use entropy S and
N 2as an alternative for the parameter congenital to the BHs
such as r and L . The mass of BH can be obtained by taking
g(r) = 0 in Eq. (7)

M = 3π4r2L3(kL2 + r2)

8G10
. (10)

2.1 Mass and temperature

Substituting values from Eqs. (9) and (8) in Eq. (10), we get
the mass of BH in terms of N and S as follows

M(S, N ) = 3m̃ p

4�
4
3δ

{
kN

5
12

(
S

π

) 2
3

�
2
3δ S

2(1−δ)
3δ

+
(
S

π

) 4
3

N− 11
12 S

4(1−δ)
3δ

}
. (11)

Here m̃ p =
√

πmp

2
1
8

with mp = l p7

G10
represents the Planck

mass with 10-dimensions. The Hawking temperature follows

T = ∂M

∂S

∣∣∣∣
N
,

T = m̃ p

2�
4
3δ δπ

{
kN

5
12 �

2
3δ

(
S

π

)− 1
3

S
2(1−δ)

3δ

+2N− 11
12

(
S

π

) 1
3

S
4(1−δ)

3δ

}
. (12)

The Fig. 1 shows the relationship between Hawking tem-
perature and entropy. It can be seen from the graph that tem-
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perature gets a minimum value which indicates that it does
not show monotonic behavior.

• For δ = 1, we get minimal temperature T = 0.52 at
S = 10.

• For δ = 1.01, we obtain minimal temperature T = 0.54
at S = 11.

• For δ = 1.02, minimum value of temperature is T = 0.56
at S = 12.

Notably, we do not find any BH solution below this minimal
temperature. There are two branches above the minimal tem-
perature, the branch having small entropy is unstable whereas
the large entropy shows thermodynamical stability.

2.2 Gibbs free energy

The Gibbs free energy is a thermodynamic quantity that may
be used to measure the maximum reversible work that a
thermodynamic system can accomplish at a certain temper-
ature and pressure. The Gibbs free energy is considered to
be a promising state function to use when comparing con-
figurations in the grand canonical ensemble. The Gibbs free
energy is a significant thermodynamic quantity to evaluate
BH global stability. Now, the Gibbs-free energy G is found
by the relation [38]

G = M − T S,

Here M, T and S are mass, temperature and entropy of the
BH respectively. Its expression for this BH becomes

G(T, N 2) =
[

3m̃ p

4�
4
3δ

{
kN

5
12

(
S

π

) 2
3

�
2
3δ S

2(1−δ)
3δ

+
(
S

π

) 4
3

N− 11
12 S

4(1−δ)
3δ

}]

−
[

m̃ p

2�
4
3δ δ

{
kN

5
12 �

2
3δ

(
S

π

) 2
3

S
2(1−δ)

3δ

+2N− 11
12

(
S

π

) 4
3

S
4(1−δ)

3δ

}]
.

Figure 2 depicts the relation between Hawking tempera-
ture and Gibbs free energy. We can see that Gibbs free energy
changes its sign at a point analogous to Hawking–Page tran-
sition point. Figure shows the following observations.

• For N 2 = 4, G increases at T = 0.66 that is its phase
transition point and decreases in the interval [0.63, 1.15].
However, Gibbs free energy exhibits the global stability
of BH in the interval [0.63, 1.15] with respect to temper-
ature.

• For N 2 = 9, G increases at T = 0.6 analogous to transi-
tion point and decreases in the interval [0.55, 1.325]. In

Fig. 2 The Gibbs free energy with respect to temperature for discrete
number of colors with k = 1, l p = 1, � = 1 taking N 2 = 4 (red dashed
line); N 2 = 9 (green solid line); N 2 = 16 (blue dotted line)

this case, global stability of BH appears in the interval
[0.55, 1.325] for temperature.

• For N 2 = 16, G increases at T = 0.55, at this point it
undergoes phase transition and decreases in the interval
[0.53, 1.5] (where global stability appears).

2.3 Chemical potential

The chemical potential μ can be calculated by taking deriva-
tive of M with respect to N 2. Thus,

μ = ∂M

∂N 2

∣∣∣∣
S
,

μ = m̃ p

32�
4
3δ

{
5kN− 19

12

(
S

π

) 2
3

�
2
3δ S

2(1−δ)
3δ

−11

(
S

π

) 4
3

N− 35
12 S

4(1−δ)
3δ

}
. (13)

N 2 has been taken instead of N , since in the boundaryN = 4
supersymmetric Yang–Mills Theory, all the fields are repre-
sented as SU (N ). μ is nothing but energy cost to the system
by the increment of the number of colors.

Figure 3 illustrates the behavior of chemical potential with
respect to entropy, while N is fixed. One can see that for
δ = 1, chemical potential gets positive values with respect
to small values of S and it changes sign at 8.75 and becomes
negative. Starting from S = 0 , the chemical potential expe-
riences positive behavior in the interval 0 ≤ S ≤ 8.75 which
is the stable branch and changes to negative from this point
onwards in the unstable branch.

We plot Fig. 4 to examine the relation of chemical potential
μ with temperature T . We study the behavior of chemical
potential as a function of temperature in the range [0.54–
0.75] and get to the following conclusions.
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Fig. 3 The chemical potential with respect to entropy by taking N = 3
while k = 1, � = 1 and l p = 1

Fig. 4 The chemical potential μ with respect to temperature T while
k = 1, � = 1 and l p = 1, with N = 3 (red dashed line); N = 3.1
(green solid line); N = 3.2 (blue dotted line)

• For N = 3, μ < 0 in (0.555, 0.592], μ = 0 at T =
0.555 and μ > 0 in (0.555, 0.75]

• For N = 3.1, μ < 0 in (0.553, 0.588], μ = 0 at T =
0.553 and μ > 0 in (0.553, 0.75]

• For N = 3.2, μ < 0 in (0.548, 0.582], μ = 0 at T =
0.548 and μ > 0 in (0.548, 0.75]

It can be verified that at the Hawking–Page temperature,
chemical potential approaches to zero. In addition, the
Hawking–Page transition happens in the large BH branch,
while the chemical potential is zero in the small BH branch.

Figure 5 is plotted to analyze the behavior of chemical
potential μ with respect to N with a fixed entropy S. The
chemical potential has its maximum value at N ≈ 2.9 and
declines when N increases. It can be seen that chemical
potential μ is negative for 1 ≤ N ≤ 2 and becomes pos-
itive in the interval (2, 20].

2.4 Heat capacities

The specific heat is a popular merit to investigate the ther-
mal stability. The heat capacity ought to be positive which

Fig. 5 The chemical potential with respect to N for entropy value as
S = 4

Fig. 6 The heat capacity with respect to entropy by taking N = 3

represents a thermally stable system [39]. The heat capacity
of the black hole paves the way to the analysis of the phase
transition. The specific heat of the system at constant N 2 can
be specified as

CN2 = T

(
∂S

∂T

)
N2

,

CN2 = − 3Sδ(2S
2
3δ + kN

4
3 π

2
3 �

2
3δ )

kN
4
3 π

2
3 �

2
3δ (−2 + 3δ) + S

2
3δ (−8 + 6δ)

. (14)

Taking δ = 1, � = 1 and k = 1, the Eq. (14) reduces to
the expression Eq. (3.1) of [36].

Figure 6 represents heat capacity versus entropy with N
as a fixed value. Heat capacity is negative in a region where S
is small and it diverges to become positive when S increases.

• For δ = 1, CN2 < 0 in [4, 9.5], CN2 = 0 in [0, 4) and
CN2 > 0 in [11, 20].

• For δ = 1.01, CN2 < 0 in [4, 10.6], CN2 = 0 in [0, 4)

and CN2 > 0 in [12, 20].
• For δ = 1.02, CN2 < 0 in [4, 11.9], CN2 = 0 in [0, 4)

and CN2 > 0 in [13.6, 20].
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Fig. 7 The heat capacity with respect to entropy S by taking N =
3, k = 1, � = 1 and l p = 1

The negative heat capacity indicates instability of BH system
while its positive sign ensures that BH system is stable. We
can see a close similarity between the divergence point of
heat capacity and minimum Hawking temperature.

Also, specific heat of the system keeping chemical poten-
tial μ fixed can be obtained as

Cμ =
(

∂φ

∂T

)
μ

,

where φ = M − μN 2.

Cμ = − Sδ(70S
2
3δ + 19kN

4
3 π

2
3 S

2
3 �

2
3δ )

8(kN
4
3 π

5
3 �

2
3δ (−2 + 3δ) + S

2
3δ π(−8 + 6δ))

. (15)

The heat capacity as a function of entropy is plotted in
Fig. 7, keeping μ fixed. It can be seen that Cμ decreases as
S increases, also Cμ = 0 for 0 ≤ S ≤ 1 and changes to
negative onwards. It is suggested that BH shows stability in
the range 0 ≤ S ≤ 1 and exhibits instability for S > 1.

3 Thermodynamic Geometry of the Schwarzschild AdS
BH

Let us move towards the BHs thermodynamical geometry to
check whether the thermodynamical curvature may disclose
the singularity of heat capacities. The geometric evaluation
of equilibrium phase spaces plays a key role in aspects of
modern thermodynamic research.

3.1 Weinhold geometry

Weinhold space-time is taken as internal energy with its sec-
ond derivative in relation to entropy and other substantial
quantities. Weinhold geometry is illustrated as follows [14]

gi j
W = ∂i∂ j M(S, N 2). (16)

Fig. 8 The scalar curvature with respect to entropy S for Weinhold
space-time by taking k = 1, N = 3, � = 1 and l p = 1

The line element for the Schwarzschild AdS BH can be
revised as

ds2
W = MSSdS

2 + MN2N2d(N 2)2 + 2MSN2dSdN 2. (17)

which, in matrix form can be represented as

(
MSS MSN2

MNS2 MN2N2

)
. (18)

Using above equations, one can find out curvature scalar of
Weinhold metric as

R = A

B
, (19)

where A and B are as follows

A = 160/3
(
N

9
4 π2k

( − 554S
2(3δ+4)

3δ �
8
3δ N

4
3 π

2
3 k

+2068S
2(3δ+5)

3δ �
2
δ

+1195S
2(3δ+4)

3δ �
8
3δ N

4
3 π

2
3 kδ − 4466S

2(3δ+5)
3δ �

2
δ δ

+641S
2(3δ+4)

3δ �
8
3δ N

4
3 π

2
3 kδ2

+2398S
2(3δ+5)

3δ �
2
δ δ2,

B = S2m
(

95s
4
3δ N

8
3 π

4
3 �

4
3δ k2δ − 80S

4
3δ N

8
3 π

4
3 �

4
3δ k2

−195S
2
δ N

4
3 π

2
3 �

2
3δ kδ

+150S
2
δ N

4
3 π

2
3 �

2
3δ k − 770s

8
3δ δ + 704S

8
3δ

)2
.

We can deduce following results from Fig. 8 about Wein-
hold metric’s scalar curvature as:

• For δ = 0.2, the curvature scalar has transition point at
S = 1.3 and becomes positive.

• For δ = 0.4, the curvature scalar has reached a transition
point at S = 1.7 and becomes positive.

• For δ = 0.6, the curvature scalar has transition point at
S = 2.2 and turns positive.
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Positive scalar curvature indicates the repulsion behavior
while negative curvature scalar suggests attraction behav-
ior. Both behaviors is observed for the present BH through
Weinhold geometry.

3.2 Ruppeiner geometry

We need to analyze the Ruppeiner geometry for the above
mentioned BH which is set up as a major thermodynamic
potential [15]. Ruppeiner proposed that the concept of a met-
ric on the spaces of thermodynamic equilibrium states arises
when the idea of fluctuations is incorporated in the axioms of
equilibrium thermodynamics. The Ruppeiner metric favors
spaces of thermodynamic equilibrium states giving rise to
the idea of a length between the states, that is the probabil-
ity of fluctuation between couple of thermodynamic states
varies inversely to the distance between them. It turns out
that the curvature scalar R associated with Ruppeiner geom-
etry incorporates information regarding phase transitions and
critical points [40–43]. Furthermore, the divergence of R has
been claimed to suggest a strong relation to the microscopic
degrees of freedom. While strength of interactions can be
measured by computing absolute value of R. Lately, this
geometry has been applied to different BHs systems [44–
49]. A temperature conformal factor connects the Ruppeiner
metric to the Weinhold geometry as [50]

ds2
R = 1

T
ds2

W . (20)

The Ruppeiner metric can be expressed in matrix form as

gR = 1

T

(
MSS MSN2

MNS2 MN2N2

)
, (21)

and the corresponding curvature scalar of the above metric
can be calculated as

R = A1

B1
, (22)

where A1 and B1 are as follows

A1 = kN
4
3 π

2
3 S−1+ 2

3δ �
2
3δ (−60kN

4
3 π

2
3 S

4
3δ �

2
3δ

×(70 − 603δ + 582δ2)

−44S
2
δ (896 + 5δ(−354 + 179δ))

+5k3N 4π2�
2
δ (−448 + δ(330 + 233δ))

−15k2N
8
3 π

4
3 S

2
3δ �

4
3δ (−140 + δ(−128 + 359δ))),

B1 = (2S
2
3δ

+kN
4
3 π

2
3 �

2
3δ )δ(15kN

4
3 π

2
3 S

2
3δ �

2
3δ (−10 + 13δ)

−5k2N
8
3 π

4
3 �

4
3δ (−16 + 19δ)

+22S
4
3δ (−32 + 35δ))2.

Fig. 9 The scalar curvature with respect to entropy for Ruppeiner met-
ric by taking N = 3, � = 1, l p = 1 and k = 1

The scalar curvature of Ruppeiner metric is plotted in Fig.
9. As shown in figure, it is clearly visible that scalar curvature
diverges at S ≈ 3.5. The curvature scalar of the Ruppeiner
metric is positive from 0 ≤ S ≤ 3.5, where it has a singularity
point, and it turns negative from this point forward, as seen in
the graph. It means that the trajectories exhibit the attraction
behavior of particles by a BH in the range of entropy 0 ≤
S ≤ 3.5, while repulsive force exerted on the particles by
BH for S > 3.5.

3.3 Quevedo geometry

Quevedo [51–53] presented a technique to derive a ther-
modynamical metric using a Legendre invariant thermo-
dynamic potential. Let (2n + 1)− dimensional thermody-
namic phase space T whose coordinates can be presented
by the set Z A = {φ, Ea, I a}, where A = 0, . . . , 2n and
a = 1, . . . , n. In the set of coordinates, φ, Ea and I a identify
thermodynamic potential, set of extensive and intensive vari-
ables, respectively. In addition, Gibbs 1-form on the space T
can be presented as 
 = dφ − δab I adEb having δab =
diag(1, 1, . . . , 1). The (T ,
) is known as contact manifold
[13,54] undergoing the conditions that T meets the differ-
entiability condition while 
 meets the constraint of being
non-zero of 
∧(d
)n factor. The set {T ,G,
} can describe
a phase manifold or the Riemannian contact manifold [55].
Because of Legendre invariance, the geometric features of
metricG has no effect on the choice of thermodynamic poten-
tial in its construction whenG serves on the space T as a non-
degenerate Riemannian metric. Resulting an n-dimensional
submanifold E induced by the mapping ϕ : E → T , i.e.,
ϕ : (Ea) �→ (φ, Ea, I a) satisfying the conditionϕ∗(
) = 0.
One can obtain the non-degenerate Riemannian metric as
G = (dφ − δab I adEb)2 + (δabEa I b)(ηcddEcd I d) with
ηcd = diag(−1, 1, . . . , 1).
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Fig. 10 The scalar curvature with respect to entropy for the framework
of Quevedo metric by taking N = 3, � = 1, l p = 1 and k = 1

Then Quevedo metric can be computed as follows

g = ϕ∗(G) =
(
Ec ∂φ

∂Ec

)(
ηabδ

bc ∂2φ

∂Ec∂Ed
dEadEd

)
,

(23)

The above equation can also be written as

gQ = (ST + N 2μ)

(−MSS 0
0 MN2N2

)
, (24)

The scalar curvature of Quevedo metric may be calculated
as

R = A2

B2
, (25)

where A2 and B2 are given as

A2 = 768(2
1
4 )(3

5
6 )π

7
3 S

−2
3δ �

10
3δ

(
108π

4
3 S

2
3δ �

4
3δ

×(−744 − 3487δ + 4824δ2)

+22(3
1
3 )S

2
δ (2406 − 7529δ + 5304δ2)

−81(3
1
3 )π2�

2
δ (−5310 − 1037δ

+8088δ2 + (3π)
2
3 S

4
3δ �

2
3δ

×
(
−3550 − 237741δ + 321624δ2

)))
,

B2 = 35(77S
2
3δ − 57(3

1
3 )π

2
3 �

2
3δ )2(S

2
3δ

+3(3
1
3 )π

2
3 �

2
3δ )3(3(3

1
3 )π

2
3 �

2
3δ (−2

+3δ) + S
2
3δ (−8 + 6δ)2.

The scalar curvature of Quevedo metric diverges at two
different points S ≈ 3.5 and S ≈ 10. The divergence point
S ≈ 10 coincides with the zero ofCN2 . The following results
are shown in Fig. 10.

• RQ < 0 at S = 0.
• RQ = 0 in (0, 2] ∪ [12, 14].
• RQ > 0 in (2, 12).

All the results obtained by graphical evaluation are con-
sistent with our study.

4 Conclusions

This work has been devoted to discuss the thermody-
namics and thermodynamic geometries of five-dimensional
Schwarzschild-AdS black hole in AdS5 × S5 spacetime in
correspondence with AdS/CFT in which we have treated cos-
mological constant � as N (which represents supersymmet-
ric Yang–Mills theory’s number of colors at finite tempera-
ture for N = 4). We have computed basic thermodynamic
parameters in terms of S and N 2 replacing the geometric
parameters r and L .

• We have found the relationship between Hawking tem-
perature and entropy. It is observed that temperature has
a minimal value which implies that temperature is not a
monotonic function.

• We have evaluated Gibbs free energy G associated with
Hawking temperature T to find out that it changes its
sign in correlation with Hawking–Page transition point.
Also, Gibbs free energy has shown stable behavior of BH
globally.

• We have examined the behavior of chemical potential μ

which remains negative with respect to BH thermody-
namics’s stable branch. Although this potential may be
positive in the unstable branch.

• Chemical potential with respect to entropy shows positive
behavior versus small values of S and it changes sign at
S = 8.75 and becomes negative.

• The behavior of chemical potential with respect to tem-
perature was investigated. Chemical potential gets zero
value at the Hawking–Page temperature.

• With a constant entropy S, we have observed the behavior
of chemical potential with respect to N . The chemical
potential is maximum at 2.9 and decreases as N increases.

• We have also worked out the heat capacities with fixed
number of colors N and with fixed chemical poten-
tial μ. The former diverges when BH experience min-
imum value of temperature while the later was seen to be
decreasing with the increase in S.

• We have analyzed the thermodynamic geometries of
Weinhold, Ruppeiner and Quevedo metric. It is suggested
that all these geometries show repulsive/attractive forces
on the particles at different phases of entropy. We have
concluded from the interpretation of curvature scalars
of all these metrics that identified divergence points for
Weinhold, Ruppeiner and Quevedo metric scalar curva-
tures are comparable to heat capacity divergence points.
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