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Abstract. The kaonic clusters KNN and KNNN are studied within the method of hy-
perspherical functions in the momentum representation. Binding energies and widths of
three- and four-body nuclear quasibound states are calculated by employing realistic NN
potentials and the energy dependent chiral KN interaction, as well as a phenomenological
KN potential. The comparison of the results of calculations obtained in the framework of
the variational method, Faddeev, Faddeev-Yakubovsky equations, and method of hyper-
spherical functions in configuration space are discussed.

1 Introduction

The study of antikaon interactions with nucleon and nuclei has a long history and during the last
decade attract many attentions after Akaishi and Yamazaki [1] predicted the existence of deep and
narrow K bound states in K—nuclear few body clusters by calculating their binding energy within the
framework of the Brueckner-Hartree-Fock theory. Due to the strong K p interaction K mesons are ex-
pected to form light kaonic clusters KNN, KNNN, and KNNNN beginning with the K pp. The report
summarizes our understanding of K—nuclear interactions and reviews the present theoretical situation
in the quest for quasibound antikaon-nuclear systems is presented in Ref. [2]. The light kaonic clus-
ters KNN and KNNN represent a three- and four-body systems and theoretically can be treated in the
framework of a few-body physics approaches: the variational method [1], [3] - [6], the method of Fad-
deev [7] - [13] and Faddeev-Yakubovsky [14] equations and the method of hyperspherical harmonics
(HH) [15]. Variational calculations have been focused on using a phenomenological KN potential or
KN effective interactions based on chiral SU(3) dynamics [16], [4], [5], while three-body calculations
solving Faddeev equations in the formulation of Alt-Grassberger-Sandhas were used separable inter-
actions. Binding energies and widths of three-body KNN and four-body KNNN bound states were
calculated in the hyperspherical basis using realistic NN potentials and the energy dependent chiral
KN interactions. For the theoretical calculations for the simplest antikaon-nuclear system, the KNN
cluster with total isospin I = % for studying the role of the antikaon as a possible mediator to bind
two baryons which would otherwise not form a bound state, one encounters a broad band of binding
energies ranging between about 16 and 80 MeV, while the decay widths cover values between 40
and 110 MeV. The Faddeev approaches lead to binding energies higher than the variational approach.
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The comparison of results of calculations for bound states of the kaonic cluster KNNN obtained by
using separable potential models for the NN and KN interactions and by employing the realistic NN
potential and the energy dependent chiral KN interaction shows deep binding of KNNN in contrast
to the weak binding result based on the chiral SU(3) dynamics model of the KN interaction.

In this report we present three- and four-body nonrelativistic calculations within the framework
of the potential model for the K—nuclear clusters KNN and KNNN using the hyperspherical basis in
momentum representation. In our calculations we are using two type of realistic NN interactions and
KN interactions derived within a chiral model [16], as well as the energy independent KN interaction
given in Ref. [1]. This provides the understanding of the dependence of the binding energy on the
NN interaction and an importance of the KN interaction in the formation of the light kaonic clusters
KNN and KNNN.

2 Theoretical framework

The hyperspherical harmonics (HH) method represents a technique to describe the bound and scat-
tering states for a few body system. The main idea of this approach is the expansion of the wave
function of the corresponding nuclear states in terms of hyperspherical harmonics that are the eigen
functions of the angular part of the Laplace operator in the six-dimensional space (three-body prob-
lem) or in the nine-dimensional space (four-body problem). The review of the research performed
within this method can be found in the monographs [17] - [18]. In our calculations we use the HH
method in momentum representation [19]. In this approach after the introduction of the trees of Jacobi

coordinates for three- or four-particle system x; = W Iijrj lrﬁl}, [ =1,2,3,..N, where

m; and r;are the particles masses and position vectors, respectively and N is the number of particles,
follow Refs. [19], [18] one starts from the integral form of the Schrodinger equation for the three-
or four-particles, respectively, and then rewriting this equation in momentum representation using the
set of the Jacobi momenta q; in 3(N — [)-dimensional momentum space conjugated to the coordinate
presented above. After that one introduces the set of the hyperspherical coordinates in the momen-

N

tum space given by the hyperradius %= quz and the set of angles Q,, which define the direction
=1

of the vector x in 3(N — [)-dimensional momentum space, as well as the symmetrized hyperspherical

harmonics in momentum representation (Dﬁ(Q%,O', 7) that are written as a sum of products of spin
and isospin functions and hyperspherical harmonics. Above, for the sake of simplicity, we denoted
by A the totality of quantum numbers on which the N—body hyperspherical harmonics depend and
the integer u is the global momentum in the 3(N — /)-dimensional configuration space, which is the
analog of angular momentum in case of N = 2. The HH are the eigenfunctions of the angular part of
the 3(N — I)-dimensional Laplace operator in configuration space with eigenvalue Ly(Ly + 1), where
Ly = p+ 3(N — 2)/2 and they are expressible in terms of spherical harmonics and Jacobi polyno-
mials [17], [18]. By expanding the wave function of N bound particles in terms of the symmetrized
hyperspherical harmonics in momentum space

W0, Q) = %% > ule00kQ,, P 7), (1)

wa

and substituting Eq. (1) into the integral Schrodinger equation in the momentum representation one
obtains a system of coupled integral equations for the hyperradial functions uﬁ(%).
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Figure 1. The convergence of the ground state energies of the kaonic clusters K pp, Kppp and K ppn.

3 Results and discussion

In the calculations for the NN interaction we used the Argonne AV 18 potential and Minnesota (M)
potential [20], while for KN interaction we use the energy dependent effective interaction derived
based on chiral SU(3) meson—baryon dynamics KN interaction [4], [5] that we refer as DHW potential
with the range parameter b = 0.47 fm and a phenomenological KN potential [1] that we refer as
AY potential with the range parameter b = 0.66 fm. The symmetrized hyperspherical harmonics
(Dﬁ(Q,{, o, 7) for the system K pp were antisymmetric with respect to the permutation of protons and

the symmetrized (I)ﬁ(Qx, o, 7) for the system KNNN were built based on the three-body Raynal-Revai
coefficients [21], [22]. To find the binding energies with above mentioned set of potentials we solve a
system of coupled integral equations for the hyperradial functions uﬁ(%) with pmax = 10.

The convergence of ground state energy are shown in Fig. 1 as a function of ppax. Us-
ing the wave function obtained for umsx = 10 the width was evaluated through the expression
r=-2 <‘{’ |Im V[—(N| ‘P>, where Vg, sums over all pairwise KN interactions. In Table 1 we present

our results for Kpp that we compare with those obtained by the different methods. Results of our
calculations for the energy and the width show dependence on the NN potentials and on the KN inter-
actions. However, this dependence is dramatically different: for the same KN interaction and different
NN potentials the ground state energy and the width are changed by about 20%, while for the same
NN potential and different KN interaction the energy is changed by the factor more than 2.5 and the
width is changed by more than twice. The same tendency can be observed from Table 2 that presents
the results of calculations for the ground state energy and width for Kppn and Kppp.

Table 1. Ground state energy and width for K pp.
Present work
AV18+AY AVIS8+DHW M+AY M+DHW

B, MeV 39.8 14.9 48.3 16.9
I', MeV 74.6 36.5 95.8 43.2
Faddeev Equations Variational Method | HH

(71-18]1 [9)-[11] [13] [14] | [1] [4]-[5] [6] | [15]
B,MeV | 50-70 16-80 35 515 | 48 203 40-80 | 15.7
I, MeV | 90-100 47-75  50-80 61 40-70 40-85 | 41.2

02022-p.3



EPJ Web of Conferences

Table 2. Ground state energy and width for KNNN.

AVI8+AY AVI8+DHW M+AY M+DHW
Kppn | B, MeV 64.6 17.2 66.7 18.7

I, MeV 74.2 27.1 80.4 31.4
Kppp | B, MeV 101.9 25.8 107.6 28.1

I, MeV 19.8 28.1 19.7 31.2

For the comparison let’s mention that in Ref. [15] for the binding energy and the width of K ppn
cluster obtained 18.5 MeV and 31.0 MeV and for Kppp 29.3 MeV and 32.6 MeV, while calculation
within the Faddeev-Yakubovsky equations gives 69 MeV. The comparison our results for Kpp, K ppn
and K ppp obtained for AV18 NN interaction and DHW KN interaction with calculations in Ref. [15]
within the variational HH method for AV14 NN interaction and DHW KN interaction shows that they
are very close.

Based on the results of our calculations we can conclude that the pairwise KN interaction plays
the major role in the formation of the kaonic bound state and we found that KN effective interactions
[4], [5] based on chiral SU(3) dynamics [16] gives relatively modest binding for the Epp, Eppn and

Kppp.
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