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Abstract. The kaonic clusters KNN and KNNN are studied within the method of hy-

perspherical functions in the momentum representation. Binding energies and widths of

three- and four-body nuclear quasibound states are calculated by employing realistic NN
potentials and the energy dependent chiral KN interaction, as well as a phenomenological

KN potential. The comparison of the results of calculations obtained in the framework of

the variational method, Faddeev, Faddeev-Yakubovsky equations, and method of hyper-

spherical functions in configuration space are discussed.

1 Introduction

The study of antikaon interactions with nucleon and nuclei has a long history and during the last

decade attract many attentions after Akaishi and Yamazaki [1] predicted the existence of deep and

narrow K bound states in K−nuclear few body clusters by calculating their binding energy within the

framework of the Brueckner-Hartree-Fock theory. Due to the strong K p interaction K mesons are ex-

pected to form light kaonic clusters KNN, KNNN, and KNNNN beginning with the K pp. The report

summarizes our understanding of K−nuclear interactions and reviews the present theoretical situation

in the quest for quasibound antikaon-nuclear systems is presented in Ref. [2]. The light kaonic clus-

ters KNN and KNNN represent a three- and four-body systems and theoretically can be treated in the

framework of a few-body physics approaches: the variational method [1], [3] - [6], the method of Fad-

deev [7] - [13] and Faddeev-Yakubovsky [14] equations and the method of hyperspherical harmonics

(HH) [15]. Variational calculations have been focused on using a phenomenological KN potential or

KN effective interactions based on chiral SU(3) dynamics [16], [4], [5], while three-body calculations

solving Faddeev equations in the formulation of Alt-Grassberger-Sandhas were used separable inter-

actions. Binding energies and widths of three-body KNN and four-body KNNN bound states were

calculated in the hyperspherical basis using realistic NN potentials and the energy dependent chiral

KN interactions. For the theoretical calculations for the simplest antikaon-nuclear system, the KNN
cluster with total isospin I = 1

2
for studying the role of the antikaon as a possible mediator to bind

two baryons which would otherwise not form a bound state, one encounters a broad band of binding

energies ranging between about 16 and 80 MeV, while the decay widths cover values between 40

and 110 MeV. The Faddeev approaches lead to binding energies higher than the variational approach.
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The comparison of results of calculations for bound states of the kaonic cluster KNNN obtained by

using separable potential models for the NN and KN interactions and by employing the realistic NN
potential and the energy dependent chiral KN interaction shows deep binding of KNNN in contrast

to the weak binding result based on the chiral SU(3) dynamics model of the KN interaction.

In this report we present three- and four-body nonrelativistic calculations within the framework

of the potential model for the K−nuclear clusters KNN and KNNN using the hyperspherical basis in

momentum representation. In our calculations we are using two type of realistic NN interactions and

KN interactions derived within a chiral model [16], as well as the energy independent KN interaction

given in Ref. [1]. This provides the understanding of the dependence of the binding energy on the

NN interaction and an importance of the KN interaction in the formation of the light kaonic clusters

KNN and KNNN.

2 Theoretical framework

The hyperspherical harmonics (HH) method represents a technique to describe the bound and scat-

tering states for a few body system. The main idea of this approach is the expansion of the wave

function of the corresponding nuclear states in terms of hyperspherical harmonics that are the eigen

functions of the angular part of the Laplace operator in the six-dimensional space (three-body prob-

lem) or in the nine-dimensional space (four-body problem). The review of the research performed

within this method can be found in the monographs [17] - [18]. In our calculations we use the HH

method in momentum representation [19]. In this approach after the introduction of the trees of Jacobi

coordinates for three- or four-particle system xi =
1√

l(l+1)

⎡⎢⎢⎢⎢⎢⎢⎣
l∑

j=1

mjr j − lr j+1

⎤⎥⎥⎥⎥⎥⎥⎦ , l = 1, 2, 3, ...N, where

mj and r jare the particles masses and position vectors, respectively and N is the number of particles,

follow Refs. [19], [18] one starts from the integral form of the Schrodinger equation for the three-

or four-particles, respectively, and then rewriting this equation in momentum representation using the

set of the Jacobi momenta qi in 3(N − l)-dimensional momentum space conjugated to the coordinate

presented above. After that one introduces the set of the hyperspherical coordinates in the momen-

tum space given by the hyperradius κ2=

N∑

l=1

q2
l and the set of angles Ωκ, which define the direction

of the vector κ in 3(N − l)-dimensional momentum space, as well as the symmetrized hyperspherical

harmonics in momentum representation Φλμ(Ωκ, σ, τ) that are written as a sum of products of spin

and isospin functions and hyperspherical harmonics. Above, for the sake of simplicity, we denoted

by λ the totality of quantum numbers on which the N−body hyperspherical harmonics depend and

the integer μ is the global momentum in the 3(N − l)-dimensional configuration space, which is the

analog of angular momentum in case of N = 2. The HH are the eigenfunctions of the angular part of

the 3(N − l)-dimensional Laplace operator in configuration space with eigenvalue LN(LN + 1), where

LN = μ + 3(N − 2)/2 and they are expressible in terms of spherical harmonics and Jacobi polyno-

mials [17], [18]. By expanding the wave function of N bound particles in terms of the symmetrized

hyperspherical harmonics in momentum space

Ψ(κ,Ωκ) = κ
− 3N−4

2

∑

μ,λ

uλμ(κ)Φ
λ
μ(Ωκ,

−→σ,−→τ ), (1)

and substituting Eq. (1) into the integral Schrodinger equation in the momentum representation one

obtains a system of coupled integral equations for the hyperradial functions uλμ(κ).
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Figure 1. The convergence of the ground state energies of the kaonic clusters K pp, K ppp and K ppn.

3 Results and discussion

In the calculations for the NN interaction we used the Argonne AV18 potential and Minnesota (M)

potential [20], while for KN interaction we use the energy dependent effective interaction derived

based on chiral SU(3) meson–baryon dynamics KN interaction [4], [5] that we refer as DHW potential

with the range parameter b = 0.47 fm and a phenomenological KN potential [1] that we refer as

AY potential with the range parameter b = 0.66 fm. The symmetrized hyperspherical harmonics

Φλμ(Ωκ, σ, τ) for the system K pp were antisymmetric with respect to the permutation of protons and

the symmetrized Φλμ(Ωκ, σ, τ) for the system KNNN were built based on the three-body Raynal-Revai

coefficients [21], [22]. To find the binding energies with above mentioned set of potentials we solve a

system of coupled integral equations for the hyperradial functions uλμ(κ) with μmax = 10.

The convergence of ground state energy are shown in Fig. 1 as a function of μmax. Us-

ing the wave function obtained for μmax = 10 the width was evaluated through the expression

Γ = −2
〈
Ψ
∣∣∣ImV _

KN

∣∣∣Ψ
〉
, where V _

KN sums over all pairwise KN interactions. In Table 1 we present

our results for K pp that we compare with those obtained by the different methods. Results of our

calculations for the energy and the width show dependence on the NN potentials and on the KN inter-

actions. However, this dependence is dramatically different: for the same
_

KN interaction and different

NN potentials the ground state energy and the width are changed by about 20%, while for the same

NN potential and different KN interaction the energy is changed by the factor more than 2.5 and the

width is changed by more than twice. The same tendency can be observed from Table 2 that presents

the results of calculations for the ground state energy and width for K ppn and K ppp.

Table 1. Ground state energy and width for K pp.
Present work

AV18+AY AV18+DHW M+AY M+DHW

B, MeV 39.8 14.9 48.3 16.9

Γ, MeV 74.6 36.5 95.8 43.2

Faddeev Equations Variational Method HH

[7]-[8] [9]-[11] [13] [14] [1] [4]-[5] [6] [15]

B, MeV 50-70 16-80 35 51.5 48 20±3 40-80 15.7

Γ, MeV 90-100 47-75 50-80 61 40-70 40-85 41.2
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AV18+AY AV18+DHW M+AY M+DHW

K ppn B, MeV 64.6 17.2 66.7 18.7

Γ, MeV 74.2 27.1 80.4 31.4

K ppp B, MeV 101.9 25.8 107.6 28.1

Γ, MeV 19.8 28.1 19.7 31.2

For the comparison let’s mention that in Ref. [15] for the binding energy and the width of K ppn
cluster obtained 18.5 MeV and 31.0 MeV and for K ppp 29.3 MeV and 32.6 MeV, while calculation

within the Faddeev-Yakubovsky equations gives 69 MeV. The comparison our results for K pp, K ppn
and K ppp obtained for AV18 NN interaction and DHW KN interaction with calculations in Ref. [15]

within the variational HH method for AV14 NN interaction and DHW KN interaction shows that they

are very close.

Based on the results of our calculations we can conclude that the pairwise KN interaction plays

the major role in the formation of the kaonic bound state and we found that KN effective interactions

[4], [5] based on chiral SU(3) dynamics [16] gives relatively modest binding for the K pp, K ppn and

K ppp.
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Table 2. Ground state energy and width for KNNN.


