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Abstract. We extend the covariant variational approach for Yang-Mills theory in Landau
gauge to non-zero temperatures. Numerical solutions for the thermal propagators are
presented and compared to high-precision lattice data. To study the deconfinement phase
transition, we adapt the formalism to background gauge and compute the effective action
of the Polyakov loop for the colour groups SU(2) and SU(3). Using the zero-temperature
propagators as input, all parameters are fixed at T=0 and we find a clear signal for a
deconfinement phase transition at finite temperatures, which is second order for SU(2)
and first order for SU(3). The critical temperatures obtained are in reasonable agreement
with lattice data.

1 Introduction

The low energy sector of quantum chromodynamics (QCD) and, in particular, its phase diagram are
among the most actively researched topics in elementary particle physics. While heavy ion collisions
at the large hadron collider (LHC) now begin to explore in detail the quark-gluon plasma at large
temperatures and baryon densities, the theoretical description of the full phase diagram through lattice
simulations is still hampered by the sign problem. Alternative functional methods in the continuum
are therefore of particular interest. In covariant gauges, the most widely used tools are functional
renormalization group (FRG) flow equations [1] and Dyson-Schwinger equations (DSE) [2], while
extensions of the Faddeev-Popov action through mass terms [3] or the Gribov-Zwanziger term [4] are
also discussed. If we are willing to dispense with manifest covariance, a particularly appealing and
physically transparent picture emerges in the Hamiltonian approach to QCD in Coulomb gauge using
variational techniques [5].

Recently, we have proposed an alternative continuum approach [6] which attempts to combine the
insightfulness of the Hamiltonian approach with the simplicity of a manifestly covariant setup. The
method is based on simple Ansätze for the euclidean path integral measure, and results in a closed set
of integral equations that can be conventionally renormalized. The numerical solutions give excellent
agreement with zero-temperature lattice propagators [6]. In this talk, I will briefly review the method
and its findings at zero temperature, and then present the recent extension to non-zero temperatures
[7]. The propagators will turn out to be only mildly affected by temperature, and no clear qualitative
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change can be observed across the deconfinement phase transition. The question of confinment must
hence be studied by other means. This is discussed in the second part of this talk, where I report
on the variational calculation of the effective action for the Polyakov loop (the order parameter for
the deconfinement phase transition) at varying temperatures [8] . We find a clear signal for a phase
transition which is second order for the colour group SU(2), and first order for SU(3), and obtain
critical temperatures T ∗ that are in good agreement with lattice data. Finally, I conclude this talk with
a brief summary and an outlook on future developments.

2 Covariant variational approach to Yang-Mills Theory

Let us briefly recall the variation principle for the effective action in the quantum theory of a field
A(x) in euclidean spacetime. The variation is with respect to the normalized path integral measure
dµ(A) which is used to compute expectation values of arbitrary observables. Within the space of such
probability measures, quantum field theory singles out the particular Gibb’s type of measure

dµ0[A] = Z−1DA exp
{
− ~−1 S [A]

}
,

where S [A] is the classical (euclidean) action, and the partition function Z is required for normaliza-
tion. The moments of dµ0 are the usual Schwinger functions of euclidean field theory. Moreover,
Gibb’s measure minimizes the free action

F(µ) ≡
〈

S [A]
〉
µ − ~W(µ) (1)

where the entropyW[µ] = −〈ln ρ[A]〉µ describes the available phase space for quantum fluctuations
in the trial measure dµ = DA ρ[A]. It is convenient to perform the minimization of the free action in
two steps, by first constraining F(µ) such that the expectation value of an arbitrary operator Ω[A] is
fixed at a prescribed classical value ω. The minimum is then called the effective action for the operator
Ω,

Γ[ω] = min
µ

{
F(µ)

∣∣∣ 〈Ω 〉µ = ω
}
. (2)

The most common choice is to take Ω as the quantum field itself (with classical value 〈A〉µ = A)
whence the derivatives of Γ[A] become the 1PI proper functions of the full quantum theory. For
Yang-Mills theory in the continuum, the exact Gibb’s measure has both gauge-fixing terms in the
action and a Faddeev-Popov determinant J[A] in the measure. This modifies the weight of quantum
fluctuations (and hence the free action) by replacing the entropy with the so-called relative entropy

W(µ) =W(µ) + 〈 lnJ[A] 〉µ = − 〈 ln(ρ/J) 〉µ . (3)

Next, we need to make a physically sensible ansatz for the probability measure dµ. The simplest
choice is a modified Gaussian of the form

dµ[A] = N · DAJ[A]1−2α · exp
{
−

∫
d(x, y) A(x)ω(x, y) A(y)

}
. (4)

The parameter α and the kernel ω are variational parameters. Note that the ansatz space (4) is not
large enough to cover the exact Gibb’s measure, i.e. the restricted variation in the space (4) will give
an approximation to the true theory through Gaussian measures, and this approximation is optimal in
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the sense of the effective action. For Yang-Mills theory in Landau gauge, however, we still have to
deal with the normalized Faddeev-Popov determinant,

J[A] =
det

(
− ∂µD̂µ

)
det(−∂2)

. (5)

If we envision a formal loop counting parameter in the exponent of the ansatz (4), it is easy to see that
J[A] can be replaced, to two-loop order in the action, by the simpler expression

lnJ[A] ≈ −
1
2

∫
d(x, y) Aa

µ(x) χab
µν(x, y) Ab

ν(y) , (6)

where the curvature χ, to the same loop order, can be expressed through the Faddeev-Popov ghost
operator G = (∂µD̂µ)−1 and the bare (Γ0) and full (Γ) ghost-gluon vertex,

χab
µν(x, y) = −

〈
δ2 lnJ

δAa
µ(x) δAb

ν(y)

〉
= −Tr

[
〈G〉Γa

µ(x) 〈G〉Γb
0,ν(y)

]
. (7)

By global colour invariance and the Landau gauge condition, we can write χab
µν(k) = δab tµν(k) χ(k),

where tµν(k) is the transversal projector in momentum space. For the ghost propagator appearing in
eq. (7), we can eventually employ an exact resolvent identity. To the given loop order, this leads to and
integral equation for the scalar curvature χ(k) which can be written symbolically as the ghost loop,

χ(k) = . (8)

At this point, we have to make the assumption that the full ghost-gluon vertex appearing on the rhs
is bare (rainbow approximation). This simplification is expected to be very robust, since the vertex is
known to be non-renormalized in Landau gauge due to Taylor’s identity [9], and lattice studies indeed
indicate that it receives only very mild corrections in the infrared [10]. With this approximation, the
ghost form factor η(k) ≡ k2 〈G(k)〉 entering (8) can be written as1

η(k)−1 = 1 − Ng2
∫

d4q
(2π)4

η(k − q)
(k − q)2

1 − (k̂ · q̂)
ω(k)

. (9)

We can now take the expectation values of both the gauge fixed Yang-Mills action and the relative
entropy, and obtain the optimal choice for the variation kernel ω from the gap equation δF/δω(k) = 0,

ω(k) = k2 + M2 + χ(k) , (10)

where M2 is a (quadratically divergent) contstant induced by the tadpole diagram.
The system of integral equations requires renormalization. As layed out in detail in Refs. [6] and

[8], we need three counterterms

LCT = δZA ·
1
4
(
∂µAa

ν − ∂νA
a
µ

)2
+ δM2 ·

1
2
(
Aa
µ

)2
+ δZc ·

(
∂µη

)2
. (11)

1The variation kernel only enters in the combination ω̄ = ω + (1 − 2α) χ, which equals the inverse gluon propagator. The
value of the variational parameter α is hence immaterial and, for simplicity, we will write ω(k) instead of ω̄(k).
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Figure 1. The zero-temperature gluon propagator (left) and the ghost form factor (right) for the scaling type of
renormalization condition, compared to high-precision lattice data [11].

Figure 2. The zero-temperature gluon propagator (left) and the ghost form factor (right) for the decoupling type
of renormalization condition, compared to high-precision lattice data [11].

To fix the coefficients, we prescribe the values Z and MA in the conditions ω(µ0) = ZM2
A and ω(µ) =

Zµ2 at two different scales µ0 � µ. This removes all quadratic and subleading logarithmic divergences
from the gap equation.2 In addition, we must also remove the logarithmic divergence in the ghost
equation (9), for which we fix of the ghost form factor at µc → 0. The reasoning here is that the
present approach allows not only for a single solution, but instead for a whole family of scaling and
decoupling solutions, which differ only in their deep infrared behaviour. Fixing the ghost form factor
at a small scale thus selects a specific type of solution and avoids numerical instabilities in the deep
infrared.

For the scaling type of solution (η(0)−1 = 0), we find the usual power-law behaviour of the propa-
gators

ω(k) ∼ (k2)α , η(k) ∼ (k2)−β (12)

with the same exponents α ≈ 0.191 and β ≈ 0.595 also observed in the FRG and DSE approach. As
can be seen from Fig. 1, the scaling solution gives a rather poor description of the lattice data in the

2Note that the condition for the “mass counterterm” is not imposed at µ0 = 0 and M2
A hence does not have the meaning

of a (constituent) mass. In fact, the mass parameter M2
A mainly affects the mid-momentum region and also appears in the

renormalization of the scaling type of solution, where no gluon mass emerges.
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deep infra-red. By contrast, the decoupling solution (η(0)−1 > 0) plotted in fig. 2 gives an excellent
description of the lattice findings for both the gluon and ghost propagator. We will use the decoupling
solution obtained here as input for the Polyakov loop studies in section 4.

3 Propagators at finite temperature

Since our variation principle computes the moments (Schwinger functions) from a conventional eu-
clidean quantum field theory, the extension to finite temperature through the imaginary time formalism
is straightforward: We compactify the euclidean time direction x0 ∈ [0, β] and impose periodic bound-
ary conditions for gluons and ghosts [12]. Momentum integrals over the frequency k0 are replaced by
Matsubara sums, ∫

d4k
(2π)4 · · · =⇒

∫
β

d̄ · · · ≡ β−1
∑
n∈Z

∫
d3k

(2π)3 · · ·

and fields in momentum space are now functions of k and the Matsubara frequency k0 = νn ≡ 2πn/β
separately. At finite temperatures, the euclidean O(4) invariance is broken because the heat bath
singles out a rest frame with direction vµ = (1, 0, 0, 0). As a consequence, all symmetric rank-2 tensors
such as the gluon propagator, the variation kernel ωµν(k) and the curvature χµν(k) must be linear
combinations of O(3)-invariant rank-2 tensors that can be formed from kµ and vµ. Also taking into
account the Landau gauge fixing condition, this leaves us with just two remaining Lorentz structures,3

ωab
µν(k) = δabω⊥(k)P⊥µν(k) + δabω‖(k)P‖µν(k) . (13)

The two projectors P‖ and P⊥ are both 4-dimensionally transversal, but 3-dimensionally longitudinal
and transversal, respectively [7]. We can now proceed as before and derive a closed system for the
ghost form factor from its resolvent identity, assuming a bare ghost-gluon vertex at all temperatures.
The result are two separate gap equations,

ω⊥(k) = k2
0 + k2 + χ⊥(k) + M2(β) (14)

ω‖(k) = k2
0 + k2 + χ‖(k) + M2(β) +

k2

k2
0 + k2

M̃2(β) (15)

where the two curvature components are related to the ghost form factor by different temperature-
dependent integral equations, and the two tadpole contributions are now also temperature-dependent.
(For further details and explicit formulae, see Ref. [7].)

The renormalization should, in principle, be carried out at T = 0 using the same counter terms as
discussed above. The finite temperature parameters such as M2(β) etc. are then related to the T = 0
parameters M2

A etc. through finite temperature-dependent equations [7]. For practical calculations,
these equations are, however, not well suited, and it is more convenient ot fit the numbers M2(β) and
M̃2(β) directly from the lattice data at every temperature, and prescribe the wave function renormal-
izations as in the case T = 0. This simplified procedure circumvents the cumbersome equations for the
temperature-dependent mass parameters and effectively describes the complete set of all renormalized
propagators with just 4 parameters at any β.

Numerically, the solution of the finite-temperature system is quite expensive, since we now have
five profile functions of (k0,k), which corresponds to 5N scalar functions of k2, if N is the maximal

3For simplicity, we continue to write the momentum argument as k, even though the profiles depend on k0 and k separately.
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Figure 3. From left to right: the parallel and perpendicular gluon propagator and the ghost form factor at non-zero
temperature, compared to high-precision lattice data [11].

number of Matsubara frequencies included in the system. All these functions are coupled in a non-
linear way, which easily results in a factor of 1000 or more in CPU time as compared to the T = 0
case. For practical reasons, we must therefore limit the number of Matsubara modes to N ≤ 40 which
means that we cannot go down with the temperature to much lower than T ≈ T ∗. Still, we were
able to show [7] that the finite temperature propagators at T/T ∗ = 1 and T/T ∗ = 1.67 exhibit all the
qualitative features of the full lattice results, cf. Fig. 3:

• with increasing temperature, there is a moderate suppression of the gluon propagators in the deep
infrared, and a slight enhancement of the ghost form factor;

• the temperature sensitivity is larger in the components longitudinal to the heat bath;

• all propagators are only moderately affected by temperatures well up to T = 2T ∗ and, in particular,
there is no qualitative change in the propagators across the deconfinment phase transition.

4 Effective potential of the Polyakov loop

As mentioned above, the deconfinement phase transition cannot be studied in the low-order Green’s
functions. Instead, a direct computation of the relevant order parameter, viz. the traced Polyakov loop
P(x), is required. In Ref. [13] it has been argued that the field component A0 in Polyakov gauge
∂0A0(x) = 0 can also serve as an order parameter for confinement, because it behaves similar as the
Polyakov loop,

tr 〈P(x)〉 = tr
〈
e−βA0(x)

〉
∼ tr e−β〈A0(x)〉 . (16)

Here, the symbol ∼ means "‘behaves similar as"’, i.e. vanishes in the deconfined phase and does
not vanish (or becomes infinite) in the confined phase. The same reasoning also carries over to the
background gauge on the fluctuation field Qµ ≡ Aµ − aµ,

d̂µQµ ≡ (∂µ1 + âµ) Qµ = 0 ,

provided that the background field aµ = δµ0 a0 is itself in Polyakov gauge, ∂0a0 = 0. Our goal is
therefore to compute the vev of the order parameter 〈A0〉 = amin

0 from the location of the minimum of
the effective potential.

Technically, the transfer of the variational approach from Landau to background gauge is rather
simple and amounts to the replacement of the partial by the covariant derivative, ∂µ → d̂µ in a few
strategic places. Since the background field a0 for the present study can be taken constant, the re-
placement corresponds to a mere shift in the momentum arguments and we can recycle the solution
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Figure 4. Left: The effective potential Veff(x) for the Polyakov loop on the S U(2) Weyl alcove x ∈ [0, 1]. Right:
The Polyakov Loop 〈P〉 as a function of temperature, extracted from the minimum of Veff .

of the variational problem in Landau gauge with shifted arguments. More precisley, d̂µ is a colour
matrix and we must first go to a colour base in which d̂µ is diagonal, d̂ab

µ = ea
σ (eb

τ)
∗ δστ dσµ . This is the

so-called root decomposition of the colour algebra, and the momentum shift becomes

∂µ(p) = ipµ → dσµ (p) = i(pµ − σa0 δµ0) ≡ ipσµ

for every simple root vector σ. We must also replace the factor (N2 − 1) from the colour traces in
Landau gauge by a sum over all simple roots.

It should be emphaiszed that this recipe only holds when using the T = 0 kernels even at finite
temperature (which is introduced as before by compactifying the euclidean time direction). The tem-
perature dependent kernels involve the background field in other ways than just through the covariant
derivative d̂µ, and the same also happens if we go beyond two-loop in the effective potential. However,
as we have seen above, the kernels are only mildly affected by temperature, and it has been further
argued in Ref. [13] that the dominant contributions to the integral equations come from momentum
and frequency regions where the finite temperature corrections to the kernels are negligable. We will
thus use the T = 0 decoupling solutions introduced earlier as input of the present calculation.

After renormalization, the effective potential Veff of the Polyakov loop is obtained as the difference
of the effective actions Γ[a0] − Γ[0] per unit 4-volume. Due to global colour invariance, the potential
can only depend on the eigenvalues of a0 = ac

0T c, which can therefore be restricted to the Cartan
subalgebra from the outset. For G = S U(2), there is only a single Cartan generator T 3 = σ3/(2i)
and the fundamental domain (Weyl alcove) for the background a0 is conveniently parametrized by the
rescaled component x ≡ βa3

0/2π ∈ [0, 1]. The explicit formula for Veff(x) can be put in the form

β4 Veff(x) = β4W(x) +
6
π2

∞∑
m=1

1 − cos(2πmx)
m4 h(βm) , (17)

where the Weiss potential in first term is the perturbative one-loop result, βW(x) = 4
3π

2x2(1− x)2. The
non-perturbative correction in the second term involves the function

h(λ) = −
1
4

∫ ∞

0
dξ ξ2 J1(ξ)

[
ln

(
ω(ξ/λ)
(ξ/λ)2

)
−
χ(ξ/λ)
ω(ξ/λ)

]
, (18)

where ω and χ are the T = 0 solution of the variational problem in Landau gauge and J1(ξ) is a
regular Bessel function. The potential Veff(x) is periodic outside the Weyl alcocve x ∈ [0, 1]. Center
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Figure 5. Left: Slices y = 0 of the effective potential Veff(x, y) for the Polyakov loop on the G = S U(3) Weyl
alcove. Right: The Polyakov Loop 〈P〉 as a function of temperature, extracted from the minimum of the effective
potential.

symmetry acts as x → 1 − x and the center symmetric point is hence located at x = 1/2. At this
point, the Polyakov loop P vanishes and we have confinement, while the maximally center breaking
configurations with P = 1 located at x = 0 and x = 1 describe deconfinement.

The deconfinement phase transition thus occurs as a rapid change of the location of the minimum
of Veff(x), from x = 0 and x = 1 at T > T ∗ to x = 1/2 at T ≤ T ∗. This is shown in Fig. 4. The
transition is clearly second order and the phase transition temperature can be translated into absolute
units by using the mass scale M2

A introduced in the T = 0 propagators. This gives a value of

T ∗ ≈ 214 MeV (19)

which is in fair agreement with the lattice findings of T ∗ ≈ 300 MeV [14], in particular since the
determination of the scale M2

A from the fit of the variational solutions to lattice data has rather large
uncertainties.

Similar results can be obtained for the colour group G = S U(3), which has rank 2 so that the
effective action of the Polykov loop can be parametrized by two rescaled components4

x ≡
βa3

0

2π
∈ [0, 1] , y ≡

βa8
0

2π
∈

[
0,

2
√

3

]
. (20)

Fig. 5 shows slices y=0 of the effective potential Veff(x, y) at various temperatures, and the Polyakov
loop as obtained from the minimum of Veff . The transition is now clearly first order and the transition
temperature

T ∗ ≈ 245 GeV (21)

is in good agreement with the lattice estimate of T ∗ = 284 MeV [14]. Fig. 6 finally shows the effective
potential Veff(x, y) for a temperature T = 141 MeV in the confined, and T = 400 MeV in the decon-
fined phase. As one can clearly see, the minimum moves from the three center symmetric points to
the center breaking points in the corner of the Weyl alcove as we cross the phase transition.

5 Conclusions
In this talk, I have argued that the covariant variational approach to gauge theory can be used to
describe the low-order Green’s functions rather accurately, both at zero and non-zero temperature,

4This rectangular parametrization actually covers two triangular Weyl alcoves, i.e. two periods of the effective potential.
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Figure 6. The effective potential Veff(x, y) for the SU(3) Polyakov loop, for a temperature T = 141 MeV (left),
and T = 400 MeV (right).

even when based on a rather simple Gaussian ansatz. The system can be renormalized conventionally
through local counter terms and is well amenable to numerical treatment. The deconfinement phase
transition can be studied from the effective action of the Polyakov loop. We find the correct orders and
qualitative behaviour of the transition for both colour groups SU(2) and SU(3), and numerical values
for the transition temperatures which are in good agreement with lattice data.

One immediate future application is the study of thermodynamics, as the pressure of the Yang-
Mills system is readily accessable from the free or effective action studied for the Polyakov loop. In
addition, we also plan to extend the variational ansatz beyond Gaussian measures, and employ Dyson-
Schwinger equations to obtain the necessary moments. Finally, the inclusion of dynamical fermions
and the description of full QCD is currently underway.
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