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Abstract: The direct detection of dark matter constituents, particularly weakly interacting massive

particles (WIMPs), is central to particle physics and cosmology. In this paper, we develop the

formalism for WIMP–nucleus-induced transitions from isomeric nuclear states, with particular focus

on the experimentally interesting target 180Ta.

Keywords: dark matter; isomeric nuclei; nuclear structure models and methods; shell model; collective

models; Nilsson model

1. Introduction

At present, there is plenty of evidence of the existence of dark matter in the form of
cosmological observations, DASI [1], COBE/DMR Cosmic Microwave Background (CMB),
observations [2] as well as the recent WMAP [3] and Planck [4] data. It is, however, essential
to directly detect such matter in order to unravel the nature of its constituents.

At present, there are many such candidates, which are known as weakly interacting
massive particles (WIMPs).

WIMP direct searches have been performed by exploiting WIMP–nucleus elastic
scattering; see, e.g., the collaborations PandaX-II [5], XENONIT [6,7] and CDMSLite [8].
No WIMPs have been directly detected, but quite stringent exclusion limits have been
extracted for the WIMP–nucleon scattering cross section vs. dark matter mass; see, e.g., the
recent review [9].

Spin-dependent WIMP–nucleon interactions can lead to inelastic WIMP–nucleus
scattering with a non-negligible probability, provided that the energy of the excited state is
sufficiently low. So, for sufficiently heavy WIMPs, the available energy via the high-velocity
tail of the M-B distribution maybe adequate to allow scattering to low-lying excited states
of certain targets, e.g., of 57.7 keV for the 7/2+ excited state of 127I, 39.6 keV for the first
excited 3/2+ of 129Xe, 35.48 keV for the first excited 3/2+ state of 125Te, and 9.4 keV for
the first excited 7/2+ state of 83Kr . In fact, calculations of the event rates for the inelastic
WIMP–nucleus transitions involving the above systems have been performed [10].

The interest in inelastic WIMP–nucleus scattering has recently been revived by a new
proposal of searching for the collisional de-excitation of metastable nuclear isomers [11].
The longevity of these isomers is related to a strong suppression of γ and β-transitions,
typically inhibited by a large difference in the angular momentum for the nuclear transition.
Collisional de-excitation by dark matter is possible since heavy dark matter particles can
have a momentum exchange with the nucleus comparable to the inverse nuclear size [12].
In this reference, the mathematical and physical formulation of the method employed for
the present calculations has been elaborated on. The reader is referred to this reference
for experimental issues that are not discussed in the present work. We only mention that
the transition can lead to the ground state or a lower state of excitation. In the latter case,
one may detect the γ ray following the de-excitation of the final state, providing an extra
signature against the background.
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2. Expressions for the Cross Section

The evaluation of the differential rate for a WIMP-induced transition Ai
iso(Ex) for an

isomeric nuclear state at excitation energy Ex to another one A
f
iso(E′

x) (or to the ground state)
proceeds in a fashion similar to that of the standard inelastic WIMP-induced transition,
except that the kinematics are different. We will make a judicious choice of the final nuclear
state so that it can decay in a standard manner to the ground state or to another less
excited state:

Ai
iso(Ex) + χ → A

f
iso(E′

x) + χ (1)

with χ for the dark matter particle (WIMP). Assuming that all particles involved are
non-relativistic, we obtain the following:

p2
χ

2mχ
+ Ex =

p′2
χ

2mχ
+ E′

x +
q2

2mA
(2)

where q is the momentum transfer to the nucleus q = pχ − p′
χ. So the above equation becomes

−q2

2µr
+ υξq − ∆ = 0, ∆ = Ex − E′x ⇔ −mA

µr
ER + υξ

√

2mAER + ∆ = 0, ∆ > 0 (3)

where ξ is the cosine of the angle between the incident WIMP and the recoiling nucleus, υ

is the oncoming WIMP velocity, ER is the nuclear recoil energy, and µr is the reduced mass
of the WIMP–nucleus system, i.e.,

1

µr
=

1

mχ
+

1

mA
. (4)

The differential cross section is given by

dσ =
1

υ

1

(2π)2
d3qδ

(

q2

2µr
− qυξ − ∆

)(

GF√
2

)2

|ME(q2)|2 (5)

where |ME(q)|2 is the nuclear matrix element of the WIMP–nucleus interaction in dimen-
sionless units and GF is the standard weak interaction strength.

We find it convenient to express this in terms of the nucleon cross section so that our
results are independent of the scale parameters fV and fA. The total WIMP–nucleon cross
section can easily be obtained (see Appendix I of ref. [12]). Thus, Equation (5) can be cast in
the following form:

dσ = Λ
σN

m2
N

1

υ

1

(2π)2
d3qδ

(

q2

2µr
− qυξ − ∆

) |ME(q2)|2|
f 2
V + 3 f 2

A

, Λ =
2π

4
(6)

Folding Equation (6) with the velocity distribution, we find (the factor 1
υ0

, with a
dimension of inverse velocity, was introduced for convenience. A compensating factor
υ0 will be used to multiply the particle density to obtain the flux. Thus, we obtain the
traditional formulas, flux = particle density × velocity and rate = flux × cross section).

1

υ0

1

σN
⟨υ dσ

dER
⟩ = Λ

mA

m2
N

1

υ0

1

2π

|ME(q2)|2
f 2
V + 3 f 2

A
[(

Θ

(

∆ − MAER

µr

))

∫ υesc

υ1

K(υ)dυ +

(

Θ

(

−∆ +
MAER

µr

))

∫ υesc

υ2

K(υ)dυ

]

(7)

where ER is the nuclear recoil energy, Θ is the step function, and K(υ) is given by the
velocity distribution

K(υ) =
∫

dΩ(υ̂)υ fdistr(v) (8)
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Furthermore,

υ1 =
1

q
(∆ − q2

2µr
), υ2 =

1

q
(

q2

2µr
− ∆) (9)

Note that the dependence of the cross section on the recoil energy occurs in two ways:
(i) it results the nuclear form factor and (ii) it also results from the minimum required
velocities υ1 and υ2 in the folding with the velocity distribution.

We will specialize our results in the commonly used Maxwell–Boltzmann (MB) distri-
bution in the local frame [12]. The integrals involved can by computed analytically

1

υ0

1

σN
⟨υ dσ

dER
⟩ = Λ

mA

m2
N

1

υ2
0

1

2π

|ME(q2)|2
f 2
V + 3 f 2

A
[(

Θ

(

∆ − MAER

µr

))

ψ1(y1, yesc) +

(

Θ

(

−∆ +
MAER

µr

))

ψ2(y2, yesc)

]

(10)

where

ψ1(y1, yesc) =
1

4

√
π(erf(1 − y1) + erf(y1 + 1))− 1

4

√
π(erf(1 − yesc) + erf(yesc + 1)),

ψ2(y2, yesc) =
1

4

√
π(erf(1 − y2) + erf(y2 + 1))− 1

4

√
π(erf(1 − yesc) + erf(yesc + 1)) (11)

where

er f (z) =
2√
π

∫ z

0
E−t2

dt (error function)

The functions ψi(yi, yesc) depend on the momentum transfer. This depends on the
specific nuclear target and will be discussed below.

3. Nuclear Structure

The isomeric nuclei are deformed and have complicated structures, so the usual
techniques employed in obtaining the structure of atomic nuclei terms of the spherical shell
model do not apply. We find it simple and appropriate to use the Nilsson model, in which
a cylindrical harmonic oscillator is used instead of a spherical one. It is characterized by a
deformation ϵ, reflecting the departure of the cylindrical shape from sphericity. The single-
particle orbitals in the Nilsson model are labeled by Ω[NnzΛ], where N is the total number
of the oscillator quanta, nz is the number of quanta along the z-axis of cylindrical symmetry,
while Λ (Ω) is the projection of the orbital (total) angular momentum on the z-axis.

In what follows, it will be of interest to consider the expansions of the Nilsson orbitals
on the spherical shell model basis |NljΩ⟩, where N is the principal quantum number, l
(j) is the orbital (total) angular momentum, and Ω is the projection of the total angular
momentum on the z-axis. The necessary expansions have been obtained as described
in Ref. [13] and are found in Appendix IV of ref. [12] for three different values of the
deformation ϵ.

4. The Nucleus 180Ta

This nucleus is preferred for experimental reasons. The even core of 180
73 Ta107 is 178

72 Hf106,
for which the experimental value of the collective deformation variable β is 0.2779 [14];
thus, the Nilsson deformation ϵ = 0.95β [15] is 0.2640 .

Several different theoretical calculations, including covariant density functional theory
using the DDME2 functional [16,17], Skyrmre–Hartree–Fock–BCS [18] (see also the private
communication by N. Minkov), as well as a two-quasiparticle plus rotor model in the mean
field represented by a deformed Woods–Saxon potential [19] agree that the first neutron
orbital lying above the Fermi surface of the core nucleus 178

72 Hf106 is the 9/2[624] orbital,
while the first proton orbital lying above the Fermi surface of the core nucleus 178

72 Hf106 is
the 9/2[514] orbital. Therefore, it is safe to assume that these two orbitals will play a major
role in the formation of the 9− isomer state of 180

73 Ta.
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It is instructive to consider the formation of the abovementioned states in light of
the expansions of the Nilsson orbitals in terms of spherical shell model orbitals, found in
Appendix IV of ref. [12].

The orbitals participating in the formation of the 9− isomer, proton 9/2[514] and
neutron 9/2[624], are both intruder orbitals; thus, the main contribution comes from the
|5 5 11/2 9/2⟩ component of the former and the |6 6 13/2 9/2⟩ component of the latter.

The orbitals participating in the formation of the 2+ excited state are the proton
9/2[514] (intruder) and neutron 5/2[512] (normal parity) orbitals, from which the leading
contribution will come from the |5 5 11/2 9/2⟩ and |5 3 7/2 5/2⟩ vectors, respectively.

5. Some Features Regarding the Target 180Ta

We begin by considering the transition of the isomeric 9− state to the 2+ state. The mo-
mentum dependence of the cross section arising from the velocity distribution for a transi-
tion energy is ∆ = 37 keV, which is given in Figure 1.

100 200 300 400 500 600 700

0.2

0.4

0.6

q → MeV

Figure 1. The allowed momentum distribution arises from the maximum allowed velocity (escape

velocity) of the distribution, in the case of 180Ta. The fine solid line, the thick solid line, short

dash, short long dash, and long dash correspond to the WIMP masses mχ = (0.1, 0.5, 1, 2, 5)mA.

The transition energy is ∆ = 37 keV.

To proceed further, we need to determine the structure of the target 180Ta. As explained
in Section 4, in the context of the Nilsson model, we can consider the proton orbital 9

2 [514]

both in the initial state 9− and the final 2+. Furthermore, for the neutrons, we use 9
2 [624]

for the 9− and the 5
2 [512] for the 2+. To proceed further, we use the expansion of the

Nilsson orbitals into shell model states, as shown in Appendix IV of [12] for a deformation
parameter of 0.30. Note that in this case, only the neutrons can undergo transitions, while
the protons are just spectators.

5.1. Shell Model Form Factors

The vector and axial vector reduced nuclear matrix elements can be obtained using
the standard techniques, as described in Appendix II and Appendix III of [12] with the
quantities of subscript 1 indicating neutrons while those for 2 are associated with protons.
Thus, we find

RMEV =
fV

fA
(0.0644445F(4, 3, 7, u) + 1.01419F(4, 5, 7, u) + 1.01419F(4, 5, 9, u) + 1.52946F(6, 3, 7, u)

+ 1.52946F(6, 3, 9, u) + 1.52946F(6, 5, 7, u) + 1.79799F(6, 5, 9, u) + 2.19718F(6, 5, 11, u)

RMEA = 0.321503F(4, 3, 7, u) + 2.05117F(4, 5, 7, u) + 2.16715F(4, 5, 9, u) + 2.04512F(6, 3, 7, u)

+ 3.3217F(6, 3, 9, u) + 2.04512F(6, 5, 7, u) + 2.31181F(6, 5, 9, u) + 3.58938F(6, 5, 11, u)
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In the above expressions, F(ℓ, ℓ′, λ) are the single-particle form factors. The first two
integers indicate orbital angular momentum quantum numbers ℓ, ℓ′, while the last integer
λ gives the multipolarity of the transition. The quantity u corresponds to bNq, where bN

is the harmonic oscillator length parameter. The relevant form factors are exhibited in
Figure 2a.

100 200 300 400 500 600 700

0.005

0.010

0.015

(a)

100 200 300 400 500 600 700

-0.015

-0.010

-0.005

0.005

0.010

0.015

(b)

100 200 300 400 500

-0.05

0.05

0.10

0.15

(c)

q → MeV

Figure 2. The shell model form factors (a) for F(6,5,7,u), F(6,5,9,u), F(6,5,11,u) and F(6,3,9,u) are

exhibited with long dashed, short dashed, fine solid and thick solid lines, respectively (b) The form

factors F(6,3,7,u), F(4,5,7,u), F(4,5,9,u) and F(4,3,7,u) correspond to long dashed, short dashed, fine

solid, and thick solid curves, respectively. (c) The Helm-type form factors, relevant for the target
180Ta, for λ = 7, λ = 9 and λ = 11 for short dashed, long dashed, and continuous curves, respectively.

These are relevant for the target 180Ta.

The relevant nuclear ME is given by

R2
ME(q

2) =
1

19

(

RME2
V + RME2

A

)

(12)

Its momentum dependence is exhibited in Figure 3a. We should note that the large
value of the matrix element in the case of large fV is due to the normalization adopted to
make the matrix element independent of the scale. Recall that a combination factor appear
in the cross section. In the present work, we will adopt fV = fA.

100 200 300 400 500 600

0.0005

0.0010

0.0015

(a)

100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

(b)

q → MeV

Figure 3. The momentum dependence of the expression R2
ME(q

2) for the target 180Ta is exhibited.

The case fV = fA corresponds to a solid line, while fV = 0 and fV =
√

3 fA correspond to to a short

dashed and a long dashed line, respectively. (a) Those obtained with shell model form factors and

(b) those obtained using the Helm-type form factors. It is clear that the last form factors lead to a

much larger contribution.

5.2. Phenomenological Form Factors

It is generally believed that the shell model single particle factors lead to large sup-
pression. So some phenomenological form factors. One example is the the Helm like single
particle form factors:

Fλ(q) = (2λ + 1)e−
1
2 a2q2 jλ(qR)

qR
(13)
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Our treatment means that the radial integrals are independent of the angular mo-
mentum quantum numbers ℓ, ℓ′. The obtained results are exhibited in Figure 2b. (Odd
(parity-changing) transitions are relevant). The reduced matrix elements for the vector and
the axial vector are

RMEHA = 3.58938F11(a, q, R) + 6.46292F7 + 7.80066F9(a, q, R)

RMEHV =
fV

fA
(2.19718F11(a, q, R) + 4.13756F7(a, q, R) + 4.34165F9(a, q, R)) (14)

where Fλ are the Helm single-particle form factors. The nuclear matrix element is

R2
MEH(q

2) =
1

19

(

RMEH2
V + RMEH2

A

)

(15)

The momentum dependence of this ME is exhibited in Figure 3b.

5.3. Some Results for 180Ta

The numerical value of Λ
mA

m2
N

1
υ2

0

1
2π in Equation (7 for fA/ fV = 1, is 0.068 for A = 180,

expressed in units of keV−1. The plot of 1
υ0

1
σN

⟨υ dσ>
dER

⟩ vs. the previous ones are multiplied
with 0.063. We prefer to express this as a function of ER in units of keV, as shown in
Figure 4a. It can be shown that a similar expression holds for the rate 1

RN

dR
dER

; see Figure 4b.

The expressions for σ and R for 180Ta can be obtained using the relevant values for the
nucleon (see Appendix I of ref. [12]):

σN = 8.8 × 10−40 cm2 ( f 2
V + 3 f 2

A)

fR = 2.1 × 1038 cm−2y−1 mN
mχ

(kinematics factor), yielding. This leads to the total rate:

RN = fRσN = 0.72y−1 ( f 2
V + 3 f 2

A)

For orientation purposes, here, we employ fV = fA = 1.

100 200 300 400 500 600

0.005

0.010

0.015

(a)

100 200 300 400 500 600

0.005

0.010

0.015

(b)

ER → keV

Figure 4. (a) The function 1
υ0

1
σN

⟨υ dσ>
dER

⟩ in units of keV−1 in the case of the target 180Ta. (b) The

differential rate relative to the total nucleon rate (for mχ = mN), 1
RN(mχ=mN)

dR
dER

, in units of keV−1 for

the Ta target. The long dashed curve in the drawing has been reduced by a factor of 5, so the related

rate must be multiplied by 5. The labeling of the curves is the same as in Figure 1. The Helm-type

form factor has been employed.

One can integrate the differential cross section over the recoil energy ER and multiply
it with the total nucleon to obtain the WIMP–nucleus cross section as a function of the
wimp mass mχ; this is exhibited in Figure 5a.
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(b)

Figure 5. (a) The total WIMP–nucleus cross section in units of 10−40 cm2 in the case of the Ta target

as a function of the WIMP mass. (b) The total WIMP–nucleus event rate in units of y−1 in the case of

the Ta target as a function of the WIMP mass in units of the nuclear mass mA. In evaluating the rate,

we assumed 1024 nuclei of Ta in the target.

In the same fashion, one can obtain differential rate

1

RN(mχ)

dR

dER

since the WIMP density used to obtain the densities is the same. The situation is, however,
changed if one is comparing the obtained differential rate relative to the total rate for
the nucleon at some fixed value of the WIMP mass. We note that the overall momentum
dependence is obtained by combining the effect of the velocity distribution—see Figure 1—
and the momentum dependence of the nuclear matrix element as shown in Figure 3b.
The exhibited differential rate contains, of course, the WIMP mass dependence arising from
the WIMP density in our galaxy. The thus obtained differential rate in units total rate of the
nucleon for mN/mχ = 1 is exhibited in Figure 4b.

One can integrate the differential rate over the recoil energy ER and multiply with the
total nucleon rate to obtain the total WIMP–nucleus rate section as a function of the WIMP
mass mχ; this is exhibited in Figure 5b.

6. Discussion

We have seen that, not unexpectedly, the nuclear ME encountered in the inelastic
WIMP–nucleus scattering involving isomeric nuclei is much smaller than that involved in
the elastic process considered in the standard WIMP searches. This occurs for two reasons:
(a) the form factor in the elastic is favorable and (b) in the elastic case, the cross section is
proportional to the mass number A2. In the present case, the nuclear matrix element for
180Ta, as indicated by the coefficients appearing in Equation (14), is not unusually small
compared to other typical inelastic processes. The Nilsson model is expected to work well
in the case of 180Ta, but the obtained event rate is quite small. It seems that the mechanism
of suppression encountered in the standard decay of the isomeric state may somewhat
persist in the WIMP–nucleus cross section as well.

The expected events in this work have been obtained with an unrealistic target mass
1024 particles, compared to more realistic 1019 [12]. On the other hand, an estimated
half-life time limit is 4.5 × 1016 years (90% 350 C.L.) [20]. Further improvement can be
achieved by using an isomer with larger mass combined with a better detection efficiency
in the experiments. Furthermore, the experiments can exploit the signal provided by the
subsequent standard decay of the 2+ state to the ground state. This is an advantage that is
not available in conventional WIMP searches.
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