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Abstract

In this dissertation, I discuss the gauge theory description of interacting spin sys-

tems, which results from the application of slave-particle approach. In particular, I

discuss three types of gauge theory description. Starting from the Abrikosov fermion

representation of spin, I review the effective SU(2) gauge theory of the Heisenberg model

on the mean-field level. I then move on to study another types of spin representation, the

Majorana fermion representation. After a discussion on the relationship between the

three types of Majorana representation, namely the SO(3) Majorana representation,

the SO(4) chiral representation and the Kitaev representation, I focus on the SO(3)

Majorana representation and show that its non-local nature makes it equivalent to the

Jordan-Wigner transformation of spin in both one-dimensional and two-dimensional

space. To apply the SO(3) Majorana representation, I discuss three two-dimensional

spin models, namely the Kitaev honeycomb model, the quantum XY model on honey-

comb lattice and the 90◦ compass model on square lattice. Using the SO(3) Majorana

representation, I demonstrate how to map the spin Hamiltonians into Z2 lattice gauge

theories with standard Gauss-law constraint. The mapping differs from the mean-field

approach in that the resulting gauge theories are exact. In the third part of the disser-

tation, I discuss the application of non-local spin representations to some specific spin

models. In particular, I review the effective U(1) lattice gauge theory for the spin ice

model on pyrochlore lattice and discuss the potential application of staggered Abrikosov

fermion representation in spin ice model and kagome antiferromagnetic model.
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are defined on the sites of the square lattice. Under SO(3) Majorana

representation, we pair up the Majorana fermions on the two ends of

the green bonds to form complex fermion. After the pairing, the lattice

breaks into A sublattice labelled by the red dots, and B sublattice labelled

by the blue dots. Complex fermion is defined on the A sublattice, which

then forms a rectangle lattice. The unit vectors of the rectangle lattice
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Chapter 1

Introduction

1.1 Condensed matter physics in a nutshell

To some extent, one of our most important knowledge of the universe we lived in is

that the matter in the universe can be divided into small pieces [1]. To the best of our

knowledge so far, the smallest pieces of the universe are the quarks and leptons and

the gauge field particles [2, 3, 4, 5]. The theory describing the being and interaction of

these particles is the Standard Model, which is a very successful theory whose predictions

keeps being confirmed by experiments [3, 4, 5]. The Standard Model is a non-Abelian

quantum field theory with the gauge group SU(3)× SU(2)×U(1), it incorporates three

of the four fundamental interaction of the universe: the strong interaction, the weak

interaction and the electromagnetic interaction [5]. Spontaneous breaking of the gauge

symmetry through the Higgs mechanism brings masses to the particles of the Standard

Model. The Standard Model is nontrivial in that it breaks some discrete symmetries,

including parity symmetry; it also has complex mixing among its matter contents, the

leptons [4, 5].

There is some evidence that the Standard Model is a low-energy effective field theory

coming from a bigger theory that is only available at high enough energy scales. In

particular, there is yet another type of interaction, the gravity, which cannot be treated

within the same framework as the Standard Model. The theory behind the gravity

force is the General Relativity, proposed by Einstein in 1915 [6]. General Relativity is

a classical theory which relates the phenomenology of gravitation to the curving of the

1
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spacetime manifold which is caused by the energy and momentum of the particles living

in it. There have been several attempts to explore possibilities of a bigger framework

of the theory. For example, string theory was proposed stating that the elementary

particles we observe are all excited modes of elementary strings [7]. The strings interact

in a way that no hard energy (or momentum) cutoff is needed to ensure the converging

of the scattering amplitude. The string excitation spectrum is rich in a sense that it can

incorporate all types of particles, including the boson and fermion and rank-2 tensor

like the gravity. However, there is so far no evidence to show the existence of elementary

strings. More generally, all the theories beyond Standard Model are not getting solid

confirmation so far.

The details of the Standard Model can only be shown at relatively high energies.

As the energy get lower, the matter tends to “condense”. Quarks are glued together by

gluons forming hardrons and mesons (due to the confinement of the SU(3) gauge theory,

the quarks can never be detected individually). Protons and neutrons glued together

to form nucleus which attaches electrons to form electrically neutral atoms. At even

lower energy, the atoms form macroscopic matter that we encounter in our everyday life.

The matter in our everyday life takes three phases, solid, liquid and gas. The number

of atoms within macroscopic matter is large, typically of the order of 1023 or higher.

Needless to say, the phenomenology of the macroscopic matter is quite different from

the microscopic particles [8].

The macroscopic matter typically has three distinct properties. First, the number of

the atoms and electrons within it is very large. Second, these large number of particles

interact with each other in a complicated way. Third, the energy scale of the matter is

relatively low. These three properties render the Standard Model almost irrelevant in

describing the physics of the macroscopic matter. Instead, due to the large scale of the

number of particles, we can normally apply statistical physics to study it [9, 10]. Also

luckily enough, as the energy scale is low enough, the details of the complex structure

of the Standard Model do not matter, instead we can use effective field theories to

approximately describe the interaction between the particles. Therefore, a new type

of theory has been developed in recent decades which is called many-body theory [10,

11, 12, 13]. The many-body theory is very important in that the rich structure and

phenomena of the universe always involves macroscopic number of particles interacting
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among themselves. Therefore, the development of the many-body theory takes place

parallel with the quest for the ultimate theory of the universe. In some sense, both of

these are essential to explain the rich phenomenology that is being observed. Recently,

the research of macroscopic matter and many-body theory has developed into a new

field called condensed matter physics. In condensed matter physics, the subfield of the

solid state is usually called hard condensed matter, while the study of liquid and other

form of matter (for example, life) is usually called soft condensed matter.

On one hand, the study of many-body physics should be familiar to physicists be-

cause of the similarity between quantum mechanics and statistical physics. Such simi-

larity can be seen from the path integral formalism, and it results in the fact that the

general structure of many-body theory is very similar with the quantum field theory

of elementary particles [2, 10, 12, 13]. In light of this, as we shall see later in this

thesis, the specific treatments of many many-body phenomena also borrow and share

the concepts and methods of the quantum field theory (especially lattice gauge theory

[14]). On the other hand, due to the large number of particles, the study of many-

body theory is challenging. As we shall describe in greater detail later, a considerable

amount of approximation is usually needed to work out some concrete predictions in

many-body theory. Therefore, the possible number of interesting phenomena that can

acquire a clear many-body theoretical description is limited. Here, before we jump into

the details of the thesis, let’s take a moment to give a brief description of some of the

most interesting phenomena (or physics) in the many-body physics area.

To some extent, a great part of the most interesting physics in the hard condensed

matter physics is related to “macroscopic quantum phenomena”. According to common

assumption, quantum mechanics only shows its peculiarities in the microscopic world,

but experiments in condensed matter physics show that the macroscopic matter can also

demonstrate “quantum mechanical behavior” which is unusual and cannot be explained

by classical theory at all. In this regard, two interesting phenomena in condensed matter

physics stands out, which is superfluidity and superconductivity [10, 12, 15, 16]. Su-

perfluidity refers to the phenomenon that at low temperature, some liquids (say liquid

helium) which consist of bosonic atoms can flow with zero viscosity. Superconductivity is

the phenomenon that below a certain temperature, the electrical resistance of some ma-

terials drops down to zero. While superfluidity can be explained by the Bose-Einstein
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condensation of a bosonic system [10], the explaination of superconductivity is more

complex. It took people a long time to realize that the Fermi surface of some fermionic

system can be unstable when interaction is adiabatically turned on, this observation is

called “Cooper instability” [15]. At low temperature the fermionic system is unstable

and particles near the Fermi surface tend to pair up and form bosonic “Cooper pair”.

At low temperatures, such Cooper pair will Bose condense and thus cause superfluid-

ity. The superfluidity of Cooper pairs then explains the superconductivity phenomena

[12, 15]. On the other hand, there is another type of macroscopic quantum phenom-

ena which is restricted to the two-dimensional electronic systems, that is the Qantum

Hall Effect (QHE). Theoretically, it was shown by Thouless et al that the Hall conduc-

tivity, calculated quantum mechanically is necessarily quantized for two dimensional

electronic systems, the quantization is related to geometric quantity called the (first)

Chern number [13, 17, 18]. Needless to say, there are other types of fascinating physical

phenomena that have been or are being understood in condensed matter physics. These

research works make the condensed matter physics one of the most fast developing field

in physics.

In this thesis, I will focus on another sub-field of (hard) condensed matter physics,

the spin systems [19]. As we shall explain later in this chapter, the interacting spin

systems can sometimes be seen as the large coupling limit of half-filled electronic systems

in which electrons are nearly static. However, the theoretical methods developed to

study the spin systems share a lot of similarities with the “free electron” limit in which

electrons are “moving freely”. On the other hand, as we shall see, these theoretical

methods also have some similarities with the (lattice) gauge theories in elementary

particle physics (although some of the concepts are not understood in exactly the same

way). In light of these, I will begin the discussion with a background description of the

spin systems starting with general electronic many-body theory.

1.2 Spin interaction from correlated electron Hamiltonian

To study a system of electrons on a lattice, we have to make some approximations.

When the temperature is low, the electrons tend to localize in adjacent to each individual

atom neucleus, thus it is reasonable to describe the electron states using a basis labeled
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by their location in the lattice. Under second quantization, the electron states are

thus denoted by creation and annihilation operators c†iσ and ciσ, in which i labels the

lattice sites the electron reside in and σ denotes the spin states of the electron. Such

approximation is usually taken as the starting point of the many-body theory and it is

called “tight-binding approximation”. Using the tight-binding approximation, it is then

possible to write down the electronic Hamiltonian [12].

H =
∑
ij

tijc
†
iσcjσ +

∑
ii′jj′

Uii′jj′c
†
iσc
†
i′σ′cj′σ′cjσ (1.1)

As can be seen from Eq. 1.1, the many-body electronic Hamiltonian contains two parts.

The first part is a hopping term which denotes the second quantized kinetic energy of the

electronic system. Here we usually assume that in the hopping term, the two sites i and

j are nearest neighbours of the lattice under the tight-binding approximation (higher-

order hopping term generally have much smaller t parameter as their wavefunction

hardly overlap). The second term is an interaction term, in which the parameter Uii′jj′

comes from the electron-electron interaction. As discussed in the previous section, due

to the low energy scale, it is usually sufficient to approximate the interaction strength

U to be a constant depending on the locations of the electrons (such an approximation

has also been used in the Fermi theory of the Weak interaction in particle physics [4]).

For the next step, let’s take a closer look at the interaction term [12]. First of all,

the U parameters for i = j and i′ = j′ are generally large due to the fact that the

overlapping of wavefunction is the largest in this situation. The term

∑
i 6=i′

Uii′ii′c
†
iσc
†
i′σ′ci′σ′ciσ =

∑
i 6=i′

Vii′nini′ , (1.2)

in which ni =
∑

σ c
†
iσciσ denotes the electron number on each site, is called the “di-

rect term”. This term denotes the density-density interaction in the electronic system.

Second, the U parameters of the situation i′ = j and j′ = i in Eq. 1.1 are usually

comparable to the direct term. We have

∑
i 6=j

Uijjic
†
iσc
†
jσ′ciσ′cjσ = −2

∑
i 6=j

JFij (Si · Sj +
1

4
ninj), (1.3)
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in which we have defined JFij = Uijji. The (second-quantized) spin operator is defined

as

Si =
1

2
c†iασαβciβ, (1.4)

with σαβ being the Pauli matrix. To derive Eq. 1.3, we used the identity

σαβ · σγδ = 2δαδδβγ − δαβδγδ. (1.5)

From Eq. 1.3 we can see that the exchange term in the electron interaction contains a

ferromagnetic interaction whose strength is JFij and is positive. Finally, the situation

with the largest U parameters in Eq. 1.1 comes from the on-site Coulomb interaction

in which i = i′ = j = j′. Let us define Uiiii = U
2 then we have the term

∑
iσσ′

Uiiiic
†
iσc
†
iσ′ciσ′ciσ =

∑
i

Uni↑ni↓. (1.6)

in which ↑ and ↓ label the specific spin state up and down. This term (Eq. 1.6) is also

called Hubbard interaction.

In many cases the coupling parameters U of the Hubbard term of interaction are so

large that it is reasonable to ignore other terms in the summation of the interaction term

in 1.1 and just keep the Hubbard term. Under such approximation, the Hamiltonian

takes a simple form

H = t
∑
〈ij〉

c†iσcjσ + U
∑
i

ni↑ni↓. (1.7)

This Hamiltonian, in which the kinetic energy term is the nearest-neighbour hopping, is

called the Hubbard model [12, 13]. It is the simpliest and probably the most important

and commonly used model for certain correlated electronic systems. The Hubbard model

captures two important features of the electronic system, first the hopping term is the

kinetic energy of the electrons and the second term is the on-site repulsive interaction

term for electrons.

There are two interesting limits of the Hubbard model Eq. 1.7. The first limit is

U � t. In this limit the kinetic energy of the electrons dominates and the interaction

among the electrons provides a perturbation. Without the perturbation, the system is

a free electron system and the ground state of it can be easily obtained by going to
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the Fourier space. The perturbation coming from interactions can be treated using the

standard quantum field theory method [10, 20]. The other limit, which is what we are

interested in and focus on in this thesis, is the strong coupling limit t � U . In this

limit, the interaction term dominates and the ground state of the system is a half-filled

system with a single electron per site. This ground state leaves the interaction term of

the Hubbard model being zero. Any other state with additional number of electron (or

hole) which violates the half-filling will have potential energy higher than the ground

state at least on the scale of U . Thus the system is gapped [13, 21]. The kinetic term

in this limit will serve as a perturbation. Using standard perturbation method we can

obtain a second-order perturbation from the kinetic term

H′2 = J
∑
〈ij〉

Si · Sj , (1.8)

in which the coupling strength J = 4t2

U and the spin operator is defined in Eq. 1.4. Eq.

1.8 is the Hamiltonian of an antiferromagnet, it is also known as the Heisenberg spin

Hamiltonian. When the system is in the large coupling limit, the unperturbed ground

state is half-filled with zero energy as stated above, in the case the only relevant term

in the electronic Hamiltonian is the antiferromagnetic interaction Eq. 1.8.

In this way, we have found the usual spin interaction term in the most simple (and

yet general) correlated electronic Hamiltonian Eq. 1.1. It can be either ferromagnetic,

from the exchange term Eq. 1.3, or antiferromagnetic, from the on-site Hubbard term

Eq. 1.8. In real materials, the electron Hamiltonian is usually much more complex

and the corresponding spin interaction Hamiltonian can also take various forms. In this

regard, in later chapters of the thesis, we will study various types of spin Hamiltonian,

some of which has real material realizations. In the thesis, we shall focus on the anti-

ferromagnetic spin Hamiltonians in which the spin coupling J > 0. Before we move

on, it is useful to take a moment to emphasize the importance of the study of the spin

Hamiltonian (Eq. 1.8) as the large coupling limit of the electronic systems. On one

hand, the study of spin systems is important in real materials. In insulators where the

system is gapped and in large coupling limit, spin interaction can be the dominant term

in the Hamiltonian (while in metals where the systems are in the free-electron limit,

the spin interactions can be less important) [8]. On the other hand, the study of spin
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systems can be useful in other fields such as quantum computing [22, 23]

1.3 The study of spin systems

1.3.1 General methods for spin systems

To study the spin Hamiltonian Eq. 1.8, people have developed various approaches. In

this section we first briefly summarize some of the methods used. The first method is the

spin path integral [13, 24, 25, 26]. To define a spin path integral one should first define

the spin coherent states. In a general spin-S system, the coherent state is labeled by a

vector with unit length in the three-dimensional space, it satisfies S|n〉 = n|n〉. With

proper definition of the coherent states [13, 26], we can write the partition function as

Z = tre−βH =

∫
Dn exp(iS

∑
i

SWZ [n]− i
∫ T

0
dt
∑
ij

JS2n(i, t) · n(j, t)), (1.9)

in which the term SWZ is the Wess-Zumino action, it has a clear geometric intepretation

which is the area the vector n(i, t) swept on the unit sphere in each path in the path

integral [13]. Using this partition function, one can work out the simpliest case, the

one-dimensional quantum spin chain, in detail, the resulting Lagrangian is the following

[13]

L(n) =
1

2g
(

1

vs
(∂0n)2 − vs(∂1n)2) +

θ

8π
εµνn · (∂µn× ∂νn). (1.10)

in which n is a unit vector and g = 2
S , vs = 2a0JS and θ = 2πS. In the Lagrangian,

the first term is usually refered to as non-linear sigma model and the second term is

a topological term. Interesting analysis on the Lagrangian 1.10 and then on the one-

dimensional spin model can be made based on the topological term and renormalization

group [13], details of this study is beyond the scope of this thesis.

For the one-dimensional spin-1
2 Heisenberg chain, the exact solution can be obtained

by the Bethe ansatz [13, 27]. On the other hand, there is another method that was de-

veloped to the study of one-dimensional spin chain and is more commonly used, that is

the Jordan-Wigner transformation [13, 89, 90]. As will be discussed in detail in Chapter

3, the Jordan-Wigner transformation defines a non-local mapping between spin-1
2 oper-

ators and a complex fermion operator connecting to a half-infinite fermionic operator
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creating a quantum kink. The definition of the Jordan-Wigner (JW) transformation is

given by Eq. 3.32.

The spin path integral method, Bethe ansatz and JW transformation are generally

useful for any quantum spin systems regardless of the actual spin ground states, there

are other types of treatments designed for certain types of spin ground states. For an

interacting spin system, the ground state is sometimes ordered. If so, according to the

Landau’s theory of phase transtition, there is expected to be a phase transition between

the ordered state and the disordered states when temperature gets higher [9]. For an

ordered spin ground state, it is sometimes useful to write the spin operators in terms of

a bosonic operator using the Holstein-Primakoff transformation [12, 28]

Ŝ−i = a†i

√
2S − a†iai, Ŝ+

i =

√
2S − a†iaiai, Ŝzi = S − a†iai. (1.11)

This transformation holds for any spin S, the spin operators are denoted by Ŝ and ai

is the bosonic annihilation operator. This bosonic operator is actually representing the

spin-wave excitation of an ordered spin ground state, it is also called magnon.

On the other hand, it is also possible that the spin ground state is not ordered, in

other words, this type of spin ground state does not break any symmetry (especially the

spin rotation symmetry). This kind of spin ground state is proposed and studied only

recently and it is called the quantum spin liquid (QSL) states [29, 30, 31, 32, 33, 34,

35, 36, 22]. To study the quantum spin liquid states, there are many other methods

developed [33]. In the next section, we are going to briefly review these methods and

set a stage for the discussion for later sections.

1.3.2 Quantum spin liquid states and gauge theories for spin systems

As discussed above, the quantum spin liquid is a type of spin ground state in which no

symmetry is broken. The possibility of such states in real model is usually ensured by

frustration, either from the specific lattice structure or from competing spin interactions.

For the first case, we can think about a model on a triangular lattice, spins located on the

sites of the lattice interact with their nearest neighbours with antiferromagnetic Ising

coupling (the Hamiltonian only involves Szi S
z
j terms). For each triangle in the lattice,

the interaction terms on the three bonds cannot be satisfied at the same time. In this
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case, the ground state is not ordered on the z-direction, instead, it is a superposition

state. For the second case, the lattice itself might not be frustrating but the spin

Hamiltonian takes a special form such that the ground state cannot be ordered. Later

in this thesis, we will discuss the Kitaev honeycomb model which falls into this category

[23].

The quantum spin liquid states are interesting in general because it cannot be de-

scribed by Landau’s characterization of phases by explicit symmetry of states [9]. States

of such kind are generally considered to possess topological order [13, 30, 37, 38, 39].

Moreover, quantum spin liquid states usually possess non-trivial quantum entanglement

[30, 33]. Besides, there has been evidence showing that there is connection between the

quantum spin liquid states and high-Tc superconductivity [40]. Although the quantum

spin liquid states are interesting, the study of the properties of such states is challenging

because of lack of order. In recent years some new methods have been developed to de-

scribe quantum spin liquid states, including the resonant-valence-bond (RVB) method

[13, 29, 41, 42] and slave-particle approach [30, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52]. In this thesis, we will put considerable focus on the slave-particle approach,

we shall see that the application of slave-particle approach usually maps the spin in-

teraction into some (lattice) gauge theories. In order to lay the foundation for future

chapters, here we will give a brief description of the slave-particle approach and the

resulting gauge theories.

The first step of the slave-particle approach is to write the spin operators in terms

of bosonic or fermionic particle operators (such artificial particles are usually called

spinon). The most commonly used ones are the Abrikosov fermion representation (which

will be discussed in detail in Chapter 2) and the Schwinger boson representation. When

constructing such mapping between the spin operator and the particle operators, some

redundancy is necessarily brought in. To see this let’s take a brief look at the Abrikosov

fermion represetation,

Si =
1

2
f †iασαβfiβ, (1.12)

in which the fiσ is the annihilation operator of the fermionic spinon. Although the

representation 1.12 happens to take the same form as the second-quantization of spin

operators in Eq. 1.4, the physical meanings of the spinon (denoted by fi) and electron
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operator (denoted by ci) are different. We will emphasize this point again in Chapter

2. In order to make sure that the spin algebra is faithfully represented, we have to

require that there is a single spinon on each spin site, this means
∑

α f
†
iαfiα = 1. Notice

that on the right-hand side of Eq. 1.12, if we rotate the phase of the fermionic spinon

fi → fie
iφ, the left-hand side, which is the spin operator, remains unchanged. This

symmetry is local, meaning that the phases of the spinon operators on each site can be

independently chosen such that the physical spin operators are unaffected. This U(1)

local symmetry is similar to the gauge symmetry of the standard quantum field theory

[2, 3], therefore, we would call such symmetry a gauge symmetry that comes in the slave-

particle approach of spin systems. In Chapter 2 we will discuss such gauge symmetry in

detail and we will show that the full gauge group for this case is SU(2) instead of U(1).

Importantly we should also note the limitation of such terminology, especially when

comparing with the gauge symmetry in the Standard Model; they are not the same

because while the former is brought in by hand with the particular spin representation,

the gauge symmetry in standard model is chosen by nature. Nevertheless, as we will see

in later chapters, the construction of the theory allows us to borrow the methods of the

quantum gauge theory (especiall lattice gauge theory) to study the system of spinons.

One of the most significant difficulty of the slave-particle approach is that the re-

sulting Hamiltonian after replacing spin operators using spin representations is usually

quartic in spinons. Thus in most cases the analysis of the ground state and the excita-

tion spectrum can be performed only at the mean-field level. Although this approach

can be justified in some limits, its applicability to physical spin models is questionable

in many cases. In some rare cases, exact solution of the QSL Hamiltonian is achiev-

able. Such solutions not only give us a chance to study the QSL states thoroughly in

the model itself, but also provide us with opportunities to compare the applicability

of other approximate theoretical methods. Of particular interest in this regard is the

Kitaev honeycomb model which describes a system of spin-1/2 on sites of a honeycomb

lattice interacting via Ising-like nearest-neighbor exchange interactions [23]. This model

is not only exactly solvable with a QSL ground state, but also realizable in materials

[23, 53, 54]. In particular, recent years have seen much progress in identifying candi-

date materials for realizing the Kitaev QSL, such as the honeycomb iridates A2IrO3

[55, 56, 57, 58, 59], honeycomb ruthenium chloride α−RuCl3 [60, 61, 62], and another
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5d Ir honeycomb compound H3LiIr2O6 [63, 64, 65, 66, 67]. The exact solution of the

Kitaev honeycomb model has been achieved by a slave-particle representation of spins

using four Majorana fermions in an extended Hilbert space [23]. Using this representa-

tion, Kitaev demonstrated that the low-energy physics of the original spin model can

be understood by studying a system of Majorana fermions coupled to a static Z2 gauge

field in the extended Hilbert space. From this, it is explicitly showed that the ground

state of the model is a gapless Z2 QSL, while the fractionalized excitations are gapless

(or gapped) Majorana fermions and gapped Z2 gauge fluxes [23].

The slave particle representation of spin used in the exact solution of the Kitaev

model belongs to a special type of spin representations, the Majorana representations.

Majorana fermions are real fermions that have the properties that they anticommute

with each other and they are antiparticle of themselves (see Chapter 3 for details). The

Majorana representation of spin has a long history. Besides Kitaev representation with

four Majorana fermions [23], two other types of Majorana representation of spin are

known. The first one was introduced in the 1970s [68, 69, 70, 71, 72, 73, 74, 75, 76].

This representation contains three Majorana fermions transforming under SO(3), thus

we will call it SO(3) Majorana representation. As we will discuss in detail in Chapter 3,

the SO(3) Majorana representation has a significant advantage over the Kitaev represen-

tation that no unphysical states is involved [72, 73]. Using this representation, various

spin models have been studied on the mean-field level including one-dimensional spin

chain [75] and two-dimensional triangular lattice [76, 77]. The second type of Majorana

fermion representation was introduced by Chen et al in their study of QSL realized on

a two-dimensional square lattice using projective symmetry group (PSG) method [78].

We will call it SO(4) chiral Majorana representation for the reasons that will become

clear later. Previous works of the Majorana representations of spin ususally studied

the spin models on the mean field level [76, 77]. Similar to other types of slave-particle

representations, the Majorana representations have gauge redundancy, since they are

real, the gauge group is Z2.
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1.4 Motivation and outline of the dissertation

As we discussed before, the study of quantum spin models (especiall quantum spin liq-

uid states) using slave-particle approach usually results in some lattice gauge theories.

This motivates me to explore more of the mapping between strong correlated electronic

systems in condensed matter physics and lattice gauge theories that are usually dis-

cussed in particle physics. In this regard, I will start with a review of the application

of the Abrikosov fermion representation to the spin liquid states, in particular I will

show how the SU(2) gauge structure emerges in the mean-field treatment. Then I will

move on to the Majorana representation. I will first discuss the three known types

of Majorana representation in detail. In particular I will show that one way to con-

nect these three Majorana representation in a coherent framework is by referring to the

spinor representation of the SO(4) group [74]. I will then focus on the SO(3) Majorana

represenation and show its advantage over the other two. Knowing its non-local nature,

I will argue that the SO(3) Majorana representation is equivalent to the Jordan-Wigner

transformation in both 1D and 2D [79]. Motivated by the Kitaev’s exact solution of

the Kitaev model using the Kitaev representation, I will discuss the application of the

SO(3) Majorana representation in spin models. In this regard, I will discuss first the

Kitaev model itself, then I will move on to two other spin models which do not possess

exact solvability, namely the quantum XY model on honeycomb lattice and the 90◦

compass model on square lattice.

My application of the SO(3) Majorana representation in the three spin models all

result in Z2 lattice gauge theories. In particular, the Z2 gauge theory for the Kitaev

model takes the standard form which highlights its exact solvability. On the other hand,

the Z2 for the other two models are nontrivial and no exact physical argument can be

made without making approximations to the Z2 lattice gauge theory. In some sense,

such application of SO(3) Majorana representation is unique from previous studies in

that the resulting Z2 lattice gauge theories are exact and no approximation is brought

in to obtain them. The resulting Z2 gauge theories can serve as a platform for further

approximations.

For the next part, I will discuss some exotic spin representations that have been

applied in spin models with special lattice geometry. One distinct example of this
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kind is the quantum spin ice model [32]. The existing theory of the quantum spin ice

model using non-local spin representation results in a U(1) lattice gauge theory [80, 81].

Beforing ending the thesis, I will briefly discuss this theory and propose another non-

local spin representation that can potentially be applied to quantum spin ice model in

3D and Heisenberg model on kagome lattice in 2D.

To summarize, the rest of the dissertation is organized as follows. In Chapter 2 I

will review the Abrikosov fermion slave-particle approach to spin models and explore

the resulting SU(2) gauge structure on the mean-field level. In Chapter 3, I will move

on to discuss the three types of Majorana representations and the relationship between

them. In particular, I will focus on the SO(3) Majorana representation and discuss

its equivalence with the Jordan-Wigner transformation. In Chapter 4 I will apply the

SO(3) Majorana representation in three spin models, namely the Kitaev model, the

quantum XY model on honeycomb lattice and the 90◦ compass model on square lattice.

Using the SO(3) Majorana representation I will develop a method to map the original

spin Hamiltonians to Z2 lattice gauge theories. In Chapter 5, I will review the existing

theory of quantum spin ice model which features a U(1) lattice gauge theory. I will then

propose another type of non-local spin representaion and discuss its potential application

in various spin models. The dissertation ends in Chapter 6 with a discussion on the

results and an outlook for future studies.



Chapter 2

Slave particle approach: SU(2)

gauge theory on the mean field

level

2.1 Basics of the Abrikosov fermion spin representation

In this chapter, we are going to review and discuss the SU(2) slave particle approach to

spin models [30, 40, 43, 44, 47, 49, 50, 51]. The model Hamiltonian we will study is the

standard Heisenberg Hamiltonian.

H = J
∑
ij

Si · Sj , (2.1)

in which Si is the spin-1
2 operators and the spin-spin interaction is usually taken to be

between nearest neighbours i and j. It is generally nontrivial to study this Heisenberg

Hamiltonian in full detail. If we know that the system has ordered ground state, then

the excitations are described by magnons, as described in Chapter 1. However, if it is

possible that the ground state is not ordered, for example, a spin liquid state, then the

magnon description will not work. As mentioned in Chapter 1, in this case one can use

the slave particle approach. In this chapter we will be using fermionic slave particles

15
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(i.e. fermionic spinons). To this end, one can write the spin operators as

Si =
1

2
f †iασαβfiβ, (2.2)

here we have introduced the fermionic spinon operator fiα with spin α =↑, ↓, satisfying

the standard fermionic anticommutation relation {fiα, f †jβ} = δijδαβ (other anticommu-

tators vanish identically). This representation of spin Eq. 2.2 is also called Abrikosov

fermion representation [81]. Note that the spinon is different from real electron in that

the former is purely artificial particle operators, in this regard, the spinons do not have

electric charge although the theory has a U(1) gauge symmetry (or in other words, we

will never be interested in the electric charge of the spinon). To highlight the difference

between the spinon and real electron, the spinon is denoted by f while the real electron

is denoted by c (see Chapter 1).

For the representation 2.2 to produce the correct spin algebra, it can be shown that

one additional condition is needed

f †i↑fi↑ + f †i↓fi↓ = 1. (2.3)

If we use niα = f †iαfiα to denote the number of fermion of spin α, then the condition

2.3 means that only one spinon is occupying each site.

In order to apply the representation in the Heisenberg model, one simply have, using

Eq. 2.2 and the spin identity 1.5 [30],

Si · Sj =
∑
αβ

(
−1

4
f †iαfiαf

†
jβfjβ −

1

2
f †iαfjαf

†
jβfiβ

)
. (2.4)

That means that the Heisenberg model Hamiltonian can be written in terms of spinon

fields as

H = −J
∑
ij

Si · Sj = J
∑
ij

∑
αβ

(
1

4
f †iαfiαf

†
jβfjβ +

1

2
f †iαfjαf

†
jβfiβ

)
. (2.5)

One can easily notice that the Eq. 2.5 is a four-fermion interacting Hamiltonian, it is by

no means simplier than the original interacting electron Hamiltonian Eq. 1.1. The only

difference is that in this case the matter field is spinon instead of real electron. In some
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sense, Eq. 2.5 is harder to solve because there is no small parameter to perform a per-

turbative study. The only possible way to proceed is to use a mean-field approximation,

the theoretical foundation of which is the Hubbard-Stratonovich transformation of path

integral formalism of many-body physics [12]. Here we should pause and give a brief

summary of the path integral formalism of many-body physics to lay the foundation for

future discussion.

To introduce the field theoretical description of many-body physics, we start with

the standard correlated electron Hamiltonian Eq. 1.1 and the thermal partition function

of the system is

Z = tre−β(H−µN), (2.6)

in which µ is the chemical potential. From now on, we will take µ = 0 for simplic-

ity. In order to define the path integral, we introduce coherent states, these states are

eigenstates of the particle creation and annihilation operators. For our case, we need

the fermionic coherent states and the eigenvalues are Grassmann numbers (Grassmann

numbers are numbers that are anticommuting with each other). With these we have for

fermionic coherent states |ξ〉, ci|ξ〉 = ξi|ξ〉 and ξ is a Grassmann number. Specifically

such states can be written as |ξ〉 = exp(−
∑

i ξic
†
i ))|0〉. These coherent states are usefull

to transform operators into fields. With the aid of coherent states, one can rewrite the

trace in the partition function 2.6 in terms of a path integral [12]

Z =

∫
D(ξ̄, ξ)e−S[ξ̄,ξ], (2.7)

in which the action

S[ξ̄, ξ] =

∫ β

0
dτ [ξ̄∂τξ +H(ξ̄, ξ)]. (2.8)

In the action the field ξ and ξ̄ take values in the Grassmann number space. To get

the H(ξ̄, ξ) one simply replaces the electron creation operator with field ξ̄ and the

annihilation operators with field ξ.

As the original second-quantized Hamiltonian 1.1, the action itself will contain in-

teraction terms that are quartic in fermionic fields ξ, ξ̄. To treat these quartic terms,

one can apply a mathematic trick based on Gaussian integral, the Hubbard-Stratonovich

transformation (HS transformation), in which we will introduce a new set of fields to
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rewrite the path integral. Specifically, the quartic terms in ξ can always be decoupled

in the following way ξ̄ξ̄ξξ → ρ̂mVmnρ̂n, in which the ρ̂ are bilinear in ξ̄ and ξ and m

and n are some labels of the bilinear. The following identity provides the foundation of

the HS transformation:

exp[−ρ̂mVmnρ̂n] =

∫
Dφ exp[−1

4
φmV

−1
mnφn − iφmρ̂m]. (2.9)

This identity can be easily proved by Gaussian integral in various forms. Using the

identity 2.9, one transforms a term quartic in the matter fields into a path integral of

a new field φ, the effective action of the new auxiliary field contains quadratic terms in

φ and interaction terms φξξ etc. In this way we can effectively get rid of the quartic

terms in the original action 2.8. In reality, the newly introduced field φ can be chosen

in various ways depending on how we define the bilinear field ρ̂, different choice is

sometimes called different channels.

The final form of the path integral after the HS transformation reads∫
DφD(ξ̄, ξ) exp[−Seff[φ, ξ̄, ξ]]. (2.10)

From this one can obtain the effective Hamiltonian from the effective action Seff[φ, ξ̄, ξ],

which reads Heff[φ, ξ̄, ξ]. Under certain circumstancies, one can then make the assump-

tion that the quantum fluctuations of the auxiliary field φ are small, in this case one

can replace the field φ by its average value 〈φ〉, then the new effective Hamiltonian

Heff[〈φ〉, ξ̄, ξ] is called the mean-field Hamiltonian because the average value of the field

φ has the physical meaning of the “mean-field” of the bilinear field ρ̂ [12]. The mean-

field Hamiltonian typically does not contain fermionic quartic terms and can be solved

easily. To make sure that the mean-field Hamiltonian captures that essential physics

of the original model, in which the auxiliary field φ is always fluctuating, we have to

make sure that the fluctuation is “relatively small”. One key criteria for this is that the

actual average of the auxiliary field cannot be zero.

We have briefly discussed the mean-field approach and the HS transformation, we

are now ready to move back to the spinon quartic Hamiltonian 2.5 and discuss the gauge

structure emerging from its mean-field treatment.
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2.2 Mean-field theory and SU(2) gauge structure

Now we turn to study the spin Hamiltonian Eq. 2.5 on the mean-field level following

Refs. [30, 40]. First we remind ourself that the Abrikosov fermion representation 2.2

only works under the condition that there is one fermion per site. To be precise, the

constraint is that

f †iαfiα = 1, fiαfiβεαβ = 0, (2.11)

in which the εαβ is nonvanishing only when α 6= β. The second constraint is actually

equivalent to the first constraint in 2.11.

To apply mean-field theory, as discussed in the previous section, the key step is to

choose the auxiliary fields that are expected to have non-vanishing expectation values

for the ground states. In general there are various choices of such auxiliary fields in

terms of fermion bilinears in the Hamiltonian 2.5 [51]. Different choices of the auxiliary

field correspond to the assumption that the ground state has different types of orders.

Here, following Ref [30] we choose the following auxiliary fields

ηijεαβ = −2〈fiαfjβ〉, ηij = ηji,

χijδαβ = 2〈f †iαfjβ〉, χij = χ†ji.
(2.12)

Applying only these two types of auxiliary fields in the Hamiltonian assumes at the

same time that 〈fiαfjα〉 = 0 and 〈f †iαfjβ〉 = 0 for α 6= β and so on. On the other hand,

to impose the constraints 2.11, one has to introduce some Lagrange multiplier in the

path integral formalism. To this end, we will denote the Lagrange multiplier fields by

aµi , in which µ = 1, 2, 3. Integrating out the multiplier fields will automatically impose

the certain constraints in the path integral. Using the definition of auxiliary fields 2.12

to decouple the quartic fermionic terms in 2.5, including the multiplier, we can read off

the effective Hamiltonian from the path integral

Heff =
∑
ij

−3

8
J [(χijf

†
iαfjα + ηijf

†
iαf
†
jβεαβ + H.c.− |χij |2 − |ηij |2)]

+
∑
i

{a3
i (f
†
iαfiα − 1) + [(a1

i + ia2
i )fiαfiβεαβ + H.c.]},

(2.13)
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in which the summation over repeated spin indices is assumed. In the effective Hamil-

tonian 2.13, the fields χij , ηij and aµi are all fluctuating, meaning that they are to be

integrated in the path integral formalism. Under such assumption, the effective theory

is still exact.

The approximation is brought in when we neglect the fluctuation of the auxiliary

fields and assume that χij , ηij and aµi are nonvanishing constants. Such treatment

corresponds to taking the mean-field. For the mean-field treatment to make sense, one

need to proceed according to the following procedures. First, pick up a choice of the

mean-fields values for χij , ηij and aµi , then solve the effective Hamiltonian 2.13 and

find its ground states. Second, check if the ground state satisfies the self-consistent

equations (or the definition of the auxiliary fields) Eq. 2.12, and check if the ground

states satisfies the constraint on the mean-field level, namely

〈f †iαfiα〉 = 1, 〈fiαfiβεαβ〉 = 0. (2.14)

Third, if the checking of the second step is satisfied, then the mean-field solution is good,

otherwise, one should change the mean-field values and repeat the first and second steps.

The effective Hamiltonian 2.13 and the constraints 2.11 has SU(2) local symmetry

[82, 83]. To see this, we can rewrite the Hamiltonian with the definition of a fermionic

doublet

ψ =

(
ψ1

ψ2

)
=

(
f↑

f †↓

)
, (2.15)

and the auxiliary fields grouped into a matrix

Uij =

(
χ†ij ηij

η†ij −χij

)
= U †ji. (2.16)

Then the effective Hamiltonian can be written as

Heff =
∑
ij

3

8
J

[
1

2
tr(U †ijUij)− (ψ†iUijψj + H.c.)

]
+
∑
i

aµi ψ
†
iσ

µψi, (2.17)

in which µ = 1, 2, 3 and the σµ are the three Pauli matrices. On the mean-field level,

the Uij matrices are assumed to be constants and the constraint 2.11 on the mean-field
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level is written as

〈ψ†iσ
µψi〉 = 0. (2.18)

The Hamiltonian 2.17 and the constraints 2.18 have a local SU(2) symmetry, both of

these are invariant under local transformation

ψi →Wiψi, Uij →WiUijW
†
j , (2.19)

in which Wi is a SU(2) matrix depending on the sites i. The existance of such SU(2)

local symmetry alters the definition of the mean-field treatment described above. To

understand this better, let us examine the physical meaning of the mean-field states.

As discussed before, each good mean-field state corresponds to a certain choice of

the matrix Uij and parameters aµi . The mean-field states satisfy the constraints 2.18

on the mean-field level. However, such mean-field states, although self-consistent with

the Hamiltonian and constraints, are not physical states of the original Hamiltonian.

For a physical states, the constraints of a single fermion occupation 2.11 must be sat-

isfied rigorously. To get from the mean-field states |ψmean〉 to physical states |ψphys〉, a

projection is needed [30],

|ψphys〉 = P̂|ψmean〉. (2.20)

With the definition of the projection, one can understand the physical meaning of the

SU(2) local symmetry, that is the transformed parameters Uij correspond to the same

physical state after the projection as the untransformed ones. More precisely, we have

|ψphys〉 = P̂|ψ(Uij)
mean〉 = P̂|ψ

(WiUijW
†
j )

mean 〉. (2.21)

This implies that the local SU(2) symmetry is unphysical and is only a local redundancy

of the theory. In light of this, we will refer to this symmetry as the SU(2) gauge

symmetry of the Hamiltonian 2.17 and constraints 2.18.

To gain a full description of the spin systems, the mean-field ground states alone are

clearly not enough. We should also include the fluctuation of the parameters Uij and aµi ,

it is sometimes reasonable to assume that such fluctuation is small. Therefore, the full

spectrum of the spin model 2.5 under the mean-field treatment is the fermion spinon ψ

and the (small) fluctuations of the parameters Uij and aµi . Because of the SU(2) gauge
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symmetry however, certain fluctuations of Uij are not physical, for example, multiplied

by a SU(2) matrix which is close to the identity. Because the Uij can in general be

any matrix, it is quite challenging to study the general case in detail. On the contrary,

sometimes one needs to make assumptions to fix the structure of Uij to facilitate the

discussion. Such assumptions of the Uij are generally called mean-field ansatz.

Under some circumstances, the Uij matrix can be written as [40]

Uij = Ūije
iaµijσ

µ

, (2.22)

in which Ūij is a constant matrix. If Ūij commutes with all the SU(2) matrices, then

we can separate phase fluctuations in the SU(2) manifold eia
µ
ijσ

µ

from the matrix Uij .

Replacing the Uij with the constant Ūij , the SU(2) gauge symmetry is then captured by

the field aµij . In this case, the mean-field spectrum contains fermionic spinon ψ, SU(2)

gauge fluctuation aµij and multiplier aµi . With such construction, we have mapped the

Heisenberg spin Hamiltonian Eq. 2.1 into a SU(2) gauge theory of spinon coupled to

gauge fluctuations.

Before moving on, we will mention a few mean-field ansaetze for Ūij following Ref

[40] for Heisenberg spin models on the two-dimensional square lattice.

(i) the “π-flux state”

Ūi,i+x = −i(−1)iyχ, Ūi,i+y = −iχ. (2.23)

(ii) the “staggered flux state”

Ūi,i+x = −σ3χ− i(−1)ix+iy∆, Ūi,i+y = −σ3χ+ i(−1)ix+iy∆. (2.24)

(iii) the “Z2 gapped state”

Ūi,i+x = Ūi,i+y = −χσ3, Ūi,i+x+y = ησ1 + λσ2,

Ūi,i−x+y = ησ1 − λσ2, a2,3
i = 0, a1

i 6= 0.
(2.25)

In all these definitions, the ix, iy are the position coordinates of the site if we put the

lattice on a grid and χ,∆, η, λ are all constant parameters.

So far we have briefly reviewed the mean-field treatment of the Heisenberg spin
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model using the slave-particle approach (or Abrikosov fermion representation) and dis-

cussed the origin of the SU(2) gauge structure of the mean-field theory. Before ending

this chapter, we will discuss briefly the generalization of the Abrikosov fermion repre-

sentation in various forms.

2.3 Generalization and discussion

There are a few possible generalizations of the Abrikosov fermion representation dis-

cussed in the previous chapter. In this section, we briefly mention two generalizations

without going into details. And then we will give a discussion on the SU(2) slave particle

approach and the mean-field treatment.

Firstly it has been shown that the spinon doublet and the SU(2) gauge structure

can be developed in a more compact form. To this end, we follow Ref [78] and define a

2× 2 matrix in terms of spinon fields

Fi =

(
fi↑ f †i↓

fi↓ −f †i↑

)
. (2.26)

The matrix Fi has the following properties. The left multiplication of a SU(2) matrix

on Fi is spin rotations (in terms of the spinon field fi) and the right multiplication of

a SU(2) matrix on Fi corresponds to the SU(2) gauge transformation described above.

In terms of this new object, the spin operator can be written as

Si = −1

4
tr(σFiF

†
i ). (2.27)

As described above, the spin operator is invariant under gauge transformation Fi → FiUi

in which Ui is a SU(2) matrix. One can define another object

Gi =
1

4
tr(FiσF

†
i ). (2.28)

In terms of Gi the single fermion occupation constraint 2.11 can be expressed as

Gi = 0. (2.29)
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One can then construct the mean-field Hamiltonian using the new objects Si and Gi,

keeping in mind that these two objects exaust all kinds of fermionic bilinears on a single

site [78].

Another generalization of the Abrikosov fermion representation is to generalize to the

case in which vacant site and double-occupation are allowed. This case is relevant in the

doped materials (for example, high-Tc superconductors) [40]. In this kind of materials,

the interaction of electrons is not just the spin-spin interaction but more complex. For a

single site, there are four possible states, which are vacant state, a single electron state

with spin up or down and a double occupation state with two electrons. To represent

these states properly, we use the most general slave-boson representation to write a

single electron operator in the following way [40, 84]

c†iσ = f †iσbi + εσσ′fiσ′d
†
i , (2.30)

in which ε↑↓ = −ε↓↑ = 1. In the slave-boson representation 2.30 the ciσ is the electron

operator, the fiσ is the spinon operator described in previous sections, bosonic bi oper-

ator annihilates the vacant state in which there is no spinon, and bosonic di operator

annihilates the double-occupation state. The representation 2.30 can reproduce all the

commutation of the electron operator with the following constraint

f †i↑fi↑ + f †i↓fi↓ + b†ibi + d†idi = 1. (2.31)

The physical meaning of the constraint follows from the definition of these slave-particle

operators. From the general representation 2.30 we can see the difference between

electron operator and the spinon operator clearly. If the onsite interaction is strong

such that double occupation states are prohibited, then the representation 2.30 can be

simplified as c†iσ = f †iσbi [40]. If further more vacant states are also prohibited, then we

have c†iσ → f †iσ. This is the case in which the Hamiltonian is purely spin-spin interaction

and the Abrikosov fermion representation 2.2 coincides with the second-quantized spin

operator in terms of electron operators Eq. 1.4.

Before closing this chapter, let us summarize what we have discussed for the mean-

field approach of the slave-particle approach. To study the general Heisenberg model

on lattices, one starts with the slave-particle representation (in this chapter, we have
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focused on the Abrikosov fermion representation) to write spin operators in terms of

bilinears of fermionic operators called spinons, in this process, some constraints (such

as single occupation) must be imposed to reproduce the spin algebra. The Heisenberg

Hamiltonian is then transformed into terms quartic in fermion operators. To handle such

quartic terms, one apply the HS transformation and introduce auxiliary fields, whose

physical meaning is the average of fermionic bilinears. After the HS transformation,

one finds that the effective Hamiltonian with the spinon and auxiliary fields have some

gauge symmetry, in our case with the Abrikosov fermion, the gauge group is SU(2).

The next step is to have some assumptions about the fluctuation of the auxiliary fields,

the mean-field approach. Under such mean-field assumptions, the effective Hamiltonian

now becomes a gauge theory with spinons coupling to SU(2) gauge fields.

The origin of the gauge symmetry is rooted in the redundancy of the representation

itself. The SU(2) mean-field gauge theory itself has a few limitations that are needed to

be taken care of. First, it is generally a difficult task to determine the proper choice of

auxiliary fields in various cases; second, the assumptions of the mean-field theory about

the smallness of the fluctuations are usually questionable; third, it is not an easy task to

handle a non-abelian SU(2) gauge theory in general. These considerations motive people

to find different routes to study spin systems. In the following chapters, I will discuss an

alternate way to treat spin systems by using the Majorana representations. Although

still a slave particle approach, the gauge redundancy of Majorana representation is only

Z2. I will also discuss methods to map various spin models in 2D to Z2 lattice gauge

theories without using the mean-field methods.



Chapter 3

Majorana representations of spin

Having discussed the application of the Abrikosov fermion representation to spin models,

we now move on to another type of spin representation, the Majorana representation.

In this chapter, we will first give a detailed description of the three types of Majorana

representations of spin and discuss the relationship between them using the spinor rep-

resentation of the SO(4) group. Then we will focus on the properties of the SO(3)

Majorana representation. Due to its non-local nature, we will show that it is equiva-

lent to the Jordan-Wigner transformation in both one dimensional and two dimensional

space. This discussion will help to clarify the properties of the Majorana representa-

tions of spin, in particular, the SO(3) Majorana representation. Understanding such

properties will lay foundation for the application of the SO(3) Majorana representation

in spin models, which will be discussed in the next chapter.

3.1 Three types of Majorana representations

The three types of Majorana representations of spin-1/2 degrees of freedom fall into

two categories: the SO(3) Majorana representation uses three Majorana fermions to

represent a single spin operator while the Kitaev representation and the SO(4) chiral

Majorana representation use four Majorana fermions to represent a single spin operator.

As a basic criteria the representation needs to satisfy the spin-1/2 algebra, namely,

σασβ = δαβ + iεαβγσγ , α, β, γ = x, y, z. (3.1)

26
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Below we discuss the details of the three types of representations starting with the SO(3)

Majorana representation.

3.1.1 SO(3) Majorana representation

In order to introduce the SO(3) Majorana representation, we first define three Majorana

fermions ηαi , α = x, y, z for each spin σαi (throughout this section, we use i and j to

label the position of the spin and Majorana fermion). They satisfy the following anti-

commutation relations,

{ηαi , η
β
j } = 2δijδ

αβ. (3.2)

The SO(3) Majorana representation of spin is given by [68, 69, 70, 71, 72, 73, 74, 75, 76]

σxi = −iηyi η
z
i , σyi = −iηzi ηxi , σzi = −iηxi η

y
i . (3.3)

The three Majorana fermions ηxi , η
y
i and ηzi form the fundamental representation of

group SO(3), corresponding to the SU(2) rotation of spin. We can define a SO(3) singlet

operator γi using the Majorana fermion operators [72, 73, 74, 76],

γi = −iηxi η
y
i η

z
i . (3.4)

The SO(3) singlet operator commutes with Majorana fermions on the same site [γi, η
α
i ] =

0, and it anticommutes with Majorana fermions on different sites {γi, ηαj } = 0, with

i 6= j. Therefore it commutes with all spin operators, [γi, σ
α
j ] ≡ 0, no matter if i = j or

i 6= j. Furthermore, it follows that the γi operator is a constant of motion because it

commutes with all kinds of spin Hamiltonian [72, 73, 74, 76].

In terms of the SO(3) singlet we have another form of SO(3) Majorana representation

(3.3)

σxi = γiη
x
i , σyi = γiη

y
i , σzi = γiη

z
i . (3.5)

From this expression, we can easily see the SO(3) structure; also this form has certain

advantages since γ operators are constants of motion.

For the next step, we pair up Majorana fermions ηx and ηy and define complex
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fermion

c†i =
1

2
(ηxi + iηyi ), ci =

1

2
(ηxi − iη

y
i ). (3.6)

In terms of these complex fermions we have the spin raising and lowering operators

σ+
i =

1

2
(σxi + iσyi ) = ηzi c

†
i , σ−i =

1

2
(σxi − iσ

y
i ) = ciη

z
i . (3.7)

And there is another form with the SO(3) singlet,

σ+
i =

1

2
γi(η

x
i + iηyi ) = γic

†
i , σ−i =

1

2
γi(η

x
i − iη

y
i ) = γici. (3.8)

On the other hand, in terms of complex fermion (3.6), the z component of the spin

operators is written as

σzi = 2c†ici − 1 = 2ni − 1. (3.9)

Here and hereafter in this thesis, we use ni = c†ici to label the number of complex

fermions. With the complex fermion, we can find a useful relation between γ operator

and the ηz operators,

γi = σzi η
z
i = (2ni − 1)ηzi = −(−1)niηzi , (3.10)

in which we have used the fact that (−1)ni = (1− 2ni) for the fermion number ni can

only take two values 0 and 1.

At this stage it is important to analyze the Hilbert space of the Majorana fermions

introduced to represent the spin space. Suppose we have N spins in our spin model, then

the original spin Hilbert space has dimension 2N . We introduce 3 Majorana fermions to

represent each spin, each Majorana fermion has Hilbert space dimension
√

2 [76], thus

the dimension of the Hilbert space of the Majorana fermions is 2
3N
2 . The dimension of

the Majorana fermion Hilbert space is 2
N
2 larger than the spin Hilbert space [74, 76].

In Ref. [74] and Ref. [76] it was shown that one way to eliminate the additional

dimension is to pair up the N spin sites, forming N
2 pairs. For each pair 〈ij〉 we take

the operator γiγj and fix its value to be +i (or equivalently −i). Since these operators

commute with each other and they all commute with the Hamiltonian, their eigenvalues

are good quantum numbers and fixing them eliminates the extra 2
N
2 dimensions. To see
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this we note that the γiγj operators for all the pairs are Z2 variables whose eigenvalue can

only take ±i, and that the total number of constraints we apply is N
2 . In Sec. 3.3.1 we

will compare the SO(3) Majorana representation and the one-dimensional (1D) Jordan-

Wigner transformation. From this we will see another way to eliminate the extra degrees

of freedom in the Hilbert space. We will also discuss the origin of a Z2 redundancy that

always appears when we apply the SO(3) Majorana representation with N
2 constraints

like these.

With these definitions at hand, one can start looking at spin Hamiltonians. Here,

for the convenience of the discussion in later sections, we use the SO(3) Majorana

representation to transform the Hamiltonian of the XXZ Heisenberg model, namely,

HXXZ =
∑
ij

Jzσ
z
i σ

z
j + J±(σ+

i σ
−
j + h.c.). (3.11)

First, using (3.9), we have the Jz term

Jzσ
z
i σ

z
j = Jz(2ni − 1)(2nj − 1), (3.12)

which is a fermion density-density interaction. The XY part of the Hamiltonian is what

we will focus on. With (3.7) and (3.8) we can rewrite the bilinear spin interaction terms

of the XY Hamiltonian as the following

σ+
i σ
−
j + σ−i σ

+
j = ηzi η

z
j (cic

†
j + c†icj), (3.13)

and in terms of γ operators we have

σ+
i σ
−
j + σ−i σ

+
j = −(γiγj)(c

†
icj + cic

†
j). (3.14)

Therefore we see that under the SO(3) Majorana representation, the XY Hamiltonian

is transformed into a hopping of complex fermions (defined in Eq. (3.6)) coupled to

link variables defined in terms of Majorana fermion ηz or the SO(3) singlet operator γ.

With these results, we move on to discuss the relationship between the SO(3) Majorana

representation and the Jordan-Wigner transformation in one and two dimensions.
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3.1.2 Kitaev representation

To introduce the Kitaev representation [23] we first introduce four Majorana fermions

for each spin operator. For the purpose of clearness, we follow the notation of the

previous section and write them as ηti , η
x
i , η

y
i , η

z
i . The four Majorana fermions transform

in the fundamental representation of SO(4) and they satisfy the Clifford algebra (from

now on we use µ, ν to label index t, x, y, z)

{ηµi , η
ν
j } = 2δµνδij , µ, ν = t, x, y, z. (3.15)

In the Kitaev representation [23], the spin operator is given by a product of two Majo-

rana fermions as

σαi = iηtiη
α
i α = x, y, z. (3.16)

Note that comparing with Kitaev’s original definition of the four Majorana fermions, we

have the following equivalence ci ≡ ηti , b
x
i ≡ ηxi , b

y
i ≡ ηyi , and bzi ≡ ηzi . This Majorana

representation of spins is overcomplete. In particular, the dimension of the Hilbert space

of the Majorana fermions is 4 for each site, while this dimension is only 2 for the physical

spin space. This means that the Majorana Hilbert space contains both physical and

unphysical states. Thus it is necessary to project out the unphysical part in order to get

the relevant physical information. It was proved by Kitaev [23] that the representation

(3.16) satisfies the spin relation (3.1) under the constraint that

Di = ηtiη
x
i η

y
i η

z
i = 1 for every physical state. (3.17)

To enforce the constraint (3.17) we define chirality projection operator as

Pi,L =
1 +Di

2
, (3.18)

for which the meaning of the subscript index “L” will become clear shortly. The physical

states can now be written as
∏
i Pi,L|ψ〉, where |ψ〉 is a state in the extended Hilbert

space of Majorana fermions. This procedure leads us to the definition of the third type

of Majorana representation [78].
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3.1.3 SO(4) chiral Majorana representation

Combining the Kitaev representation (3.16) and the chirality projector (3.18), we obtain

another type of Majorana representation of spin,

σαi = Pi,L(iηtiη
α
i ) =

i

2
(ηtiη

α
i −

1

2
εαβγηβi η

γ
i ), (3.19)

where α, β, γ = x, y, z. Written out explicitly, Eq. (3.19) reads

σxi =
i

2
(ηtiη

x
i − η

y
i η

z
i ),

σyi =
i

2
(ηtiη

y
i − η

z
i η
x
i ),

σzi =
i

2
(ηtiη

z
i − ηxi η

y
i ).

(3.20)

It can be shown that this representation satisfies the spin relation (3.1) with the con-

straint (3.17). We will call this representation (3.19) the SO(4) chiral Majorana repre-

sentation.

The spin operator defined in the SO(4) chiral representation (3.19) satisfies [σαi , Pi,L] =

0, which means that the projection onto the physical space has to be done only once, any

spin terms acts on a physical state will give a physical state. However, to achieve this,

we end up with a representation (3.20) much more complex than the simple Kitaev

representation (3.16). Moreover, we note that in Ref.[78] the SO(4) chiral Majorana

representation was introduced in a different way, there, the representation (3.20) was

obtained as a complementary to the complex fermion representation using the Projective

Symmetry Group (PSG) method [78]. Although the SO(4) chiral Majorana representa-

tion can be seen as a direct generalization of the Kitaev representation, we will treat it

as another type of Majorana representation. To see the reason, we move on to discuss

the Hilbert space of the four Majorana fermions defined in both Kitaev representation

and SO(4) chiral Majorana representation. From that, we shall see that the SO(4) chi-

ral Majorana representation has a direct correposdence to the familiar complex fermion

representation and thus can be seen as a bridge connecting the Kitaev representation

and the complex fermion representation [78].
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Using representation (3.20), we have the spin raising and lowering operators

σ+ =
1

4
(ηz + iηt)(ηx + iηy),

σ− =
1

4
(ηx − iηy)(ηz − iηt).

(3.21)

This invites us to define two complex fermions f = 1
2(ηz − iηt), f † = 1

2(ηz + iηt) and

g = 1
2(ηx − iηy), g† = 1

2(ηx + iηy). For reasons which will become clear later, we may

just label f = f↑ and g = f †↓ , then we have the following relations

f↑ =
1

2
(ηz − iηt), f †↑ =

1

2
(ηz + iηt),

f↓ =
1

2
(ηx + iηy), f †↓ =

1

2
(ηx − iηy).

(3.22)

Conversely, the Majorana fermions can be expressed in terms of these complex fermions

as [78]

ηt = i(f↑ − f †↑),

ηx = f↓ + f †↓ ,

ηy = i(f †↓ − f↓),

ηz = f↑ + f †↑ .

(3.23)

Using (3.23), we can transform the spin raising and lowering operators expressed under

the SO(4) chiral Majorana representation (3.21) into

σ+ = f †↑f↓, σ
− = f †↓f↑,

σz = f †↑f↑ − f
†
↓f↓.

(3.24)

Eq.(3.24) shows that we have recovered the familiar complex fermion slave particle

representation σα = f †β(σ̃α)βγfγ , with σ̃ being the Pauli matrices and fα being the

complex slave particles called spinons. From (3.23) we have the relation ηtηxηyηz =

−(1−2n↑)(1−2n↓), from which we can clearly see that the constraint (3.17) is equivalent

to the constraint in the complex fermion representation that each site has only one

fermion, i.e. f †↑f↑ + f †↓f↓ = 1.
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From the mapping defined in (3.22) and (3.23) it is clear that the Hilbert space

of the four Majorana fermions introduced in both Kitaev representation and the chi-

ral Majorana representation can be mapped to the Hilbert space of the two complex

fermions introduced in ordinary representation (3.24) locally. Moreover, the constraint

(3.17) for the Majorana representations and the familiar one-fermion-per-site constraint

[40] for the complex fermion representation are also mapped into each other. Therefore,

the SO(4) chiral Majorana representation can be seen as exactly equivalent to the com-

plex fermion representation and it is defined in the same Hilbert space as the Kitaev

representation, thus it acts like a “bridge” to the two seemingly unrelated represetations.

In the following, to see the connection between the three types of Majorana repre-

sentations, we will explore the Clifford algebra of the Majorana fermions in detail and

link all the representations to the spinor representation of the SO(4) group and the

Lorentz group.

3.2 The connection between three Majorana representa-

tions based on spinor representation of the SO(4) group

3.2.1 Representation of the Lorentz group

In order to see the relationship between the three types of Majorana representations

of spin introduced above and the spinor representation of SO(4), we have to remind

ourselves about the representation of the Lorentz group SO(1,3), which has almost

identical structure but more familiar terminology. Strictly speaking the Lorentz group

is not exactly the group SO(1,3) but in this thesis, we neglect such difference as long

as no confusion is caused. We will follow and use the notations in Ref. [3] and define

the space-time metric as gµν = diag(1,−1,−1,−1). In the 4-vector representation, the

Lorentz transformation is written as [3] Λv = eiθµνV
µν

, in which θµν are the parameters

charactering the transformation, and V µν are the generators of the Lorentz algebra. Due

to symmetry, only six parameters of θµν are independent, three of them characterize

the space rotation and the other three characterize the Lorentz boost. Taking this into

account, the Lorentz elements in the 4-vector basis is also written as Λv = eiθiJi+iβiKi ,

in which Ji are the generators of rotation and Ki are the generators of boost.
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The Lie algebra of Lorentz group L(SO(1,3)) = so(1, 3) can be decomposed into

two commuting subalgebra so(1, 3) = su(2) ⊕ su(2), with the generators defined as

J+
i ≡

1
2(Ji + iKi), J

−
i ≡

1
2(Ji − iKi). They satisfy two separate SU(2) Lie algebra,

[J+
i , J

+
j ] = iεijkJ

+
k ,

[J−i , J
−
j ] = iεijkJ

−
k ,

[J+
i , J

−
j ] = 0.

(3.25)

Since the representation for a single SU(2) group is the angular momentum eigenstates,

we can label the representation of the Lorentz group as (j1, j2), corresponding to the

two su(2) subalgebra. The most fundamental but not trivial representation is (1
2 , 0)

and (0, 1
2), these are the Weyl spinor representations. The (0, 1

2) is right-handed Weyl

spinor, it transforms as ψR → e
1
2

(iθiσi+βiσi)ψR under Lorentz group. The (1
2 , 0) is the

left-handed Weyl spinor, it transforms as ψL → e
1
2

(iθiσi−βiσi)ψL under Lorentz group.

Again, we have used θi and βi to characterize the space rotation and the boost.

The Weyl spinors are irreducible representations of the Lorentz group and they are

the building blocks of the Dirac spinors, which are of fundamental importance to the

elementary particle physics [3]. Dirac spinor lives in the representation (1
2 , 0) ⊕ (0, 1

2),

and normally it is written in terms of Weyl spinors as ψ = (ψL, ψR)T . In order to study

the Lorentz group in the Dirac spinor representation, it is necessary to introduce the γ-

matrices, which were first used in the Dirac equations of relativistic quantum mechanics

[3]. The γ-matrices are four 4× 4 matrices satisfying the Clifford algebra

{γµ, γν} = 2gµν , µ, ν = 0, 1, 2, 3. (3.26)

Using γ-matrices we can introduce the generators of the Lorentz group in the Dirac

spinor representation as

Sµν =
i

4
[γµ, γν ]. (3.27)

They satisfy the Lorentz algebra

[Sµν , Sρσ] = i(gνρSµσ − gµρSνσ − gνσSµρ + gµσSνρ). (3.28)

A general Lorentz transformation in the Dirac spinor representation is written as Λs =
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exp(iθµνS
µν). It is often useful to project a Dirac spinor to its left-handed or right-

handed Weyl spinor component (called chirality projection). To do so, it is essential

to introduce another matrix γ5 defined as γ5 ≡ iγ0γ1γ2γ3. The chirality projectors

are thus given by PR = 1+γ5

2 and PL = 1−γ5
2 . γ5 matrix satisfies {γ5, γµ} = 0, and

(γ5)2 = 1.

3.2.2 Three Types of Majorana Representation of Spin and the Spinor

Representation of SO(4)

The Clifford algebra satisfied by the four Majorana fermions for each spin (3.15) differs

from the Clifford algebra of γ matrices (3.26) only in the metric. Such difference in

the metric is the source of the marginal difference of the group SO(4) and SO(1,3).

Indeed, if we were to redefine the Majorana fermion ηt → iηt, the Clifford algebra

of the Majorana fermions and the Clifford algebra of γ matrices would be the same.

However for simplicity, there is no need for such redefinition.

Next we follow the steps of building the Dirac spinor representation of Lorentz group

and define the objects

Sµν ∼ i[ηµ, ην ] (3.29)

according to (3.27). Such object Sµν satisfies the following algebra

[Sµν ,Sρσ] = i(δνρSµσ − δµρSνσ − δνσSµρ + δµσSνρ) (3.30)

and thus are the generators of the group SO(4) in some Dirac-spinor-like representation.

The vector space this representation is acting on is the Hilbert space of the four Ma-

jorana fermions, we will explore it in more detail below. Although the four space-time

directions t, x, y, z have identical footing in SO(4), it is more convenient for us to keep

the terminology of the Lorentz group, which puts time direction in a special position.

From the definition 3.29, one can find that the components S0α ∼ i[ηt, ηα] ∼ iηtηα

give exactly the Kitaev representation (3.16). In the Lorentz group terminology, S0α

correspond to the generators of the “Lorentz boosts”. On the other hand, the “space ro-

tation” components, Sαβ ∼ i[ηα, ηβ] ∼ iηαηβ, gives the SO(3) Majorana representation

(3.3), if again we keep the same terminology. The Dirac spinor representation of SO(4)
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can be decomposed into the left-handed and the right-handed Weyl spinor representa-

tion, just like the Lorentz group SO(1,3): SO(4) = SU(2)L× SU(2)R. Therefore we can

still define the chirality projection operator in the Dirac-spinor-like representation

PL =
1 + ηtηxηyηz

2
(3.31)

as in the Lorentz group. This leads us to intepret the projection defined in (3.18) as the

projection to the left-chirality in the Dirac-spinor-like representation. Now the meaning

of the definitions given in the previous section (such as the chirality of the Majorana

representation etc) should become clear.

Therefore, we find that there is a clear connection between the three types of Majo-

rana representation of spin and the Dirac-spinor-like representation of SO(4). In partic-

ular, we find that in a loose sense, the SO(3) Majorana representation (3.3) corresponds

to the “space rotation” SO(3) subgroup of SO(4), the generators of which gives the spin

relation automatically. The Kitaev representation (3.16), corresponding to the “Lorentz

boost” part of SO(4), does not have the desired SO(3) structure. But once we project

all the states to one of the chirality (say left), the Kitaev representation will satisfy the

spin relation (3.1). On the other hand, the SO(4) chiral Majorana representation (3.19),

as the projected Kitaev representation to the left-chirality, is the generators of SU(2)L

in the Dirac-spinor-like representation of SO(4). It has the desired spin commutator,

but the constraint (3.17) is still needed to ensure the normalization (σα)2 = 1.

Now we examine the Hilbert space of the four Majorana fermion ηt, ηx, ηy, ηz, which

is also the vector space the Dirac-spinor-like representation of SO(4) is acting on. From

the discussion in the previous section, we see that this Hilbert space is 4-dimensional

and is the same as the Hilbert space of the two complex fermions f↑, f↓, which has basis

vectors (| ↑〉, | ↓〉), (|0〉, | ↑↓〉). This means that there is a one-to-one mapping between

SO(4) Dirac spinor space and the Hilbert space of 2 complex fermions. A generalization

of this statement for the mapping between Dirac spinor space of SO(2N) and the Hilbert

space of N complex fermions where N is an integer has been proposed in high energy

physics [85, 86] and later used in the description of non-Abelian Anyon [87, 88]. One

can find detailed mathematical description of this mapping in these references. For

our purpose of describing real spin in four space-time dimensions, the SO(4) group is
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sufficient. Generalizations to higher SO(2N) where N > 2 will involve spinor in higher

dimensional space and thus are less interesting to condensed matter physics.

Although the mathematical discussion in this section is far from rigorous, it serves

as a tool to help us think about the representations we have so far and compare them.

From the discussion above, we see that the complex fermion representation might not

be the most fundamental representation of spin as it seems; rather it can be understood

as a part of a bigger class of representations, the Majorana fermion representation.

Among the three types of Majorana fermion representation at hand, the SO(3) Majorana

representation is special because it takes three Majorana fermions instead of four. The

Hilbert space is thus not complete and well-defined for each site alone, and pairing of

sites is required for proper definition of the Hilbert space [76]. In a sense, the Hilbert

space defined in this way no longer possesses the properties discussed above and require

further considerations to explore its nature. To understand the properties of the SO(3)

Majorana representation better, we focus on its non-locality and disscuss its equivalence

with the Jordan-Wigner transformation in both 1D and 2D spin models.

3.3 The SO(3) Majorana representation and the Jordan-

Wigner transformation

As mentioned in the Introduction (Chapter 1), some types of spin representation define a

non-local mapping between spin operators and fermionic (or possibly bosonic) operators.

In particular, the Jordan-Wigner transformation [13, 89, 90] defines a one-dimensional

(1D) mapping between spin operators in a spin chain to a fermion attached to a half-

infinite string operator which creats a quantum kink. Using this transformation the

one-dimensional quantum XY model is mapped into a free fermion hopping model,

which is exactly solvable. The generalization of the Jordan-Wigner transformation to

higher dimensions is also available [71]. In particular, the Jordan-Wigner transformation

in two-dimensions (2D) involves Chern-Simons (CS) gauge theory [13, 91, 92], and thus

it is often called Chern-Simons Jordan-Wigner transformation. Defining a mapping

between spin operators and a fermion coupled to a string-operator of Chern-Simons

gauge field [93], the 2D Jordan-Wigner transformation maps the quantum XY model

in 2D into a model of complex fermion coupled to a Chern-Simons gauge theory (Some
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details of the 2D Jordan-Wigner transformation are given in Appendix B). Besides the

Jordan-Wigner (JW) transformation, another non-local representation of spin is the

SO(3) Majorana representation which we introduced in this chapter [68, 69, 70, 71,

72, 73, 74, 75, 76, 77]. In the SO(3) Majorana representation, each spin operator is

represented by three Majorana fermions. Because the number of Majorana fermions

defined on each site is odd, it is not possible to establish the Majorana Hilbert space

locally. Instead, we have to pair up sites and the Majorana fermions on them to define

the Majorana Hilbert space [74, 76]. This pairing results in the non-local nature of the

SO(3) Majorana representation of spin.

In this section, we focus on the properties of the SO(3) Majorana representation of

spin. Knowing its non-local nature, our first question is whether there is any relation

between the SO(3) Majorana representation and the Jordan-Wigner transformation

in 1D and 2D. If there is such relation, what will it tell us about the properties of

the SO(3) Majorana representation? To answer these questions, in Sec. 3.3.1 we dis-

cuss the relation between the SO(3) Majorana representation and the Jordan-Wigner

transformation in the one-dimensional spin chain. We argue that under some specific

conditions introduced to fix the Majorana Hilbert space, the SO(3) Majorana repre-

sentation of spin can be mapped into the 1D Jordan-Wigner transformation. In the

discussion, we also show that there should always be some Z2 redundancy if we only

impose N
2 (N is the total number of spins in the system) conditions to fix the Majorana

Hilbert space. In Sec. 3.3.2, we analyze the relationship between the SO(3) Majorana

representation and the Chern-Simons JW transformation in the two-dimensional XXZ

Heisenberg model. With the proper definition of the lattice Chern-Simons gauge theory

[94], we show that the SO(3) Majorana representation can be seen as an operator form

of the Chern-Simons JW transformation due to the existence of anti-commuting link

variables in both representations. Furthermore, we argue that the gauge field in the

lattice Chern-Simons Jordan-Wigner transformation is compact (a concept which we

will explain later) which leads to the quantization of the CS gauge connection. Such

quantization further confirms the correspondence between the SO(3) Majorana repre-

sentation and Chern-Simons Jordan-Wigner transformation. The correspondence we

find in the specific models can be directly generalized to other spin models. It means

that, except for some technical details which will be explained later, the application of
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the SO(3) Majorana representation and the Jordan-Wigner transformation in one and

two dimensions are equivalent to each other physically in any spin models.

3.3.1 Relation between the SO(3) Majorana representation of spin

and the one-dimensional Jordan-Wigner Transformation

The Jordan-Wigner transformation defines a non-local transformation of a one-dimensional

spin chain [89, 90, 13]. As we will see below, the non-local nature of the Jordan-Wigner

transformation makes it directly comparable to the SO(3) Majorana representation of

spin. Here, we emphasize again that although the SO(3) Majorana representation acts

as a local transformation between spin and Majorana fermions (see (3.3) and (3.5)), the

Hilbert space of the Majorana fermions can be defined only by pairing up the Majorana

fermions non-locally because we have an odd number of Majorana fermions per site.

We start by considering a one-dimensional spin chain. For a spin chain, it is conve-

nient to label the position of the spin sites as i = 1, 2, 3, ..., N (throughout this section,

we use N to denote the total number of spins in the spin chain). The Jordan-Wigner

transformation in 1D takes the form [13, 89, 90]

σ+
i = c†ie

iπ
∑i−1
j=1 c

†
jcj , σ−i = cie

−iπ
∑i−1
j=1 c

†
jcj . (3.32)

Comparing with (3.7) and (3.8) one notice that the Majorana fermion operator ηz and

γ in the SO(3) Majorana representation acts like the semi-infinite string operator in

(3.32). This provides a guidance for us to discuss the correspondence between the

SO(3) Majorana representation and the JW transformation in the 1D spin chain.

In order to establish the correspondence, our first task is to eliminate the extra

dimensions (which is 2
N
2 as discussed above) in the Majorana Hilbert space. This is

achieved by enforcing a number of constraints on the Majorana Hilbert space. Specifi-

cally, let us denote the many-body physical space of ηxi and ηyi Majorana fermions as Hηx

and Hηy . The product space Hxy = Hηx ⊗Hηy has dimension 2N . If we assign a single

state from the many-body physical space of ηz, which we call Hηz , to each and every

state in Hxy, the resulting space H′xy, which is a subspace of Hxyz = Hηx ⊗Hηy ⊗Hηz ,

will still have dimension 2N and it is what we want. To make such assignment, one need

some conditions or constraints. Here, following the definition of the SO(3) Majorana
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representation in Sec. 3.1.1, we apply the following conditions

ηz2k−1 ∼ (−1)
∑2k−1
j=1 nj , iηz2k ∼ (−1)

∑2k
j=1 nj , (3.33)

in which k = 1, 2, 3, ... and we use nj = c†jcj to denote the number operator of the

complex fermion cj defined in (3.6). Using (3.10), we see that the mapping (3.33)

corresponds to γ2k−1 ∼ −(−1)
∑2k−2
j=1 nj and iγ2k ∼ −(−1)

∑2k−1
j=1 nj . Comparing the

definition of the SO(3) Majorana representation in (3.8) and the JW transformation

(3.32), these conditions mean that the c fermion in SO(3) Majorana representation

corresponds to the fermion in Jordan-Wigner transformation up to some extra phases;

at sites 2k − 1, the phase is −1, at sites 2k, the phase is −i. These extra phases have

no influence on the definition of fermion number.

One may argue that the mapping in (3.33) is not mathematically rigorous because

the left-hand-side is fermionic while the right-hand-side is bosonic. However, such dis-

crepancy is not physical, all physical quantities must be functions of spin operators which

come with the complex fermion operator c. After mutiplying the complex fermion oper-

ator, all the commutation relation (or algebra) of relevant operators is restored for the

one-dimensional spin chain geometry. In this sense, there is no problem in (3.33). In

physical applications, it is clearer to define an equivalent form of the mapping. Using

the relation between γ and ηz (3.10) we see that the mapping (3.33) is equivalent to the

following up to a global Z2 degree of freedom,

iηz2k−1η
z
2k ∼ (−1)n2k , (3.34)

iγ2kγ2k+1 ∼ (−1)n2k , (3.35)

in which k = 1, 2, 3, .... Here in the mapping (3.34) and (3.35), both sides are bosonic

operators.

To give a physical intepretation of the conditions (3.34) and (3.35), we pair up the

Majorana fermions ηz2k−1 and ηz2k and define complex fermion d2k = 1
2(ηz2k−1 − iηz2k)

whose locations are defined on sites with an even number. Since we have iηz2k−1η
z
2k =

1− 2d†2kd2k = (−1)nd2k , the mapping (3.34) means that the number of d fermion on site

2k is equal to the number of c fermion (formed by ηx and ηy Majorana fermions) on
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site 2k. There are N
2 d fermions and so there are N

2 such conditions, which fix the state

of the d fermion once the state of c fermion is defined. In this way, we have assigned

a state in Hηz to each and every state in Hxy. Therefore the N
2 conditions in (3.34)

are already sufficient to fix the dimension of the Hilbert space to be that of the spin

space. But there is another N
2 constaints which take the form as (3.35). At first sight,

the conditions (3.34) and (3.35) seem to be overcomplete.

To remedy this, we note that the extra N
2 constraints in (3.35) actually fix the

remaining Z2 gauge redundancy of the Majorana fermions. The SO(3) Majorana fermion

representation involves bilinear form of Majorana fermions. Under the sign flip ηα →
−ηα with α = x, y, z, the original spin operator in (3.3) is invariant. After enforcing the

conditions (3.34) there is still some Z2 redundancy left. To see this, we note that the

spin operator in the representation (3.3) and the conditions in (3.34) are invariant under

simultaneous sign flipping ηα2k−1 → −ηα2k−1 and ηα2k → −ηα2k with k being an arbitrary

integer and α = x, y, z. Although the dimension of the Hilbert space is 2N once the

first N
2 constaints in (3.34) are enforced, the Hilbert space is still 2

N
2 times larger than

the spin space. Due to the remaining Z2 gauge redundancy, for each state in the spin

space, there are 2
N
2 states in the corresponding Majorana Hilbert space H′xy. Once the

other N
2 gauge fixing constaints of (3.35) are enforced, the remaining gauge redundancy

is eliminated.

Therefore, the mapping (3.33) or (3.34) and (3.35) give a correspondence between

the SO(3) Majorana representation and the 1D Jordan-Wigner transformation. The

SO(3) Majorana representation (Eq. (3.7) and Eq. (3.8)) with some proper constraints

(Eq. (3.34) and Eq. (3.35)) to fix the extra degrees of freedom will lead us to the same

form as the 1D Jordan-Wigner transformation in (3.32). Throughout our discussion, we

make no reference to the specific form of the spin Hamiltonian of the spin chain, thus the

correspondence is between the two spin representations and can be applied to any one-

dimensional spin Hamiltonian. On the other hand, the constraints in (3.34) and (3.35)

take different form from the constrains that are previously discussed [74, 76], in which

we pair up sites and demand that for each pair 〈ij〉, γiγj = −i. In general there are

multiple ways to fix the extra degrees of freedom in the SO(3) Majorana representation.

Different fixing will lead to different forms of the resulting theory.

It is important to emphasize that the complete elimination of extra degree of freedom
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in Majorana Hilbert space is only achievable in one-dimensional spin chain. In 1D

spin chain, after we pair up sites and enforce the first N
2 constraints to eliminate the

extra dimension of the Majorana Hilbert space (like the ones in (3.34)), the rest of

the link variables decouple and allow us to fix the extra Z2 redundancy by introducing

another set of constraints (like (3.35)). In higher dimensional space, the number of

links connecting to each site is larger than two, it is generally impossible to define the

second set of constraints. Without the extra gauge-fixing constraints like in (3.35), the

original spin model is always mapped to some Z2 gauge theory with complex fermion

as its matter field. In Sec. 4.2 and Sec. 4.3, we study two spin models using the SO(3)

Majorana representation, namely the quantum XY model on honeycomb lattice and the

90◦ compass model on the square lattice. We explicitly show that, if only N
2 constraints

are enforced, both models can be mapped into some non-trivial Z2 gauge theory. In

our discussion, to get the N
2 constraints, we pair up sites of the lattice and demand

that for each pair 〈ij〉, the product of the SO(3) singlets γiγj = i (or −i). Due to the

fact that all γiγj commute with the spin Hamiltonian, we are able to transform these

constraints into the form of standard Gauss law constraints in Z2 gauge theory [13, 14],

which commute with the Z2 Hamiltonian by construction.

As another example, in Chapter 4 it is shown that the Kitaev honeycomb model

[23] can be solved using SO(3) Majorana representation, the resulting solution takes

the form of a Z2 lattice gauge theory with standard Gauss law constraint. In other

words, in the Kitaev model, due to the unique form of the Hamiltonian and the lattice

geometry, it is possible to fix the Z2 gauge without introducing any approximation. In

this sense, the Kitaev model on 2D honeycomb lattice behaves like the 1D spin chain.

The models we are considering in Sec. 4.2 and Sec. 4.3 do not have such property.

3.3.2 Relation between the SO(3) Majorana representation of spin

and the two-dimensional Jordan-Wigner Transformation

There is a direct generalization of the Jordan-Wigner transformation to two-dimensional

(2D) space with the aid of Chern-Simons gauge theory [91, 92, 93, 95, 96, 97]. The

two-dimensional Jordan-Wigner transformation starts with the hard-core boson repre-

sentation of spin [13, 91] (see Appendix B for a review). With the U(1) Chern-Simons



43

term, the statistics of the hard-core boson can be changed to fermionic. More gener-

ally, the statistics of particles in (2+1)D spacetime are not just bosonic and fermionic

[98]. Particles in (2+1)D with exotic statistics are called anyons [13, 22, 23, 99]. The

2D Jordan-Wigner transformation maps the spin operator to a complex fermion at-

tached to a half-infinite string operator of gauge field [91, 92, 93]. For a lattice spin

model, applying the 2D Jordan-Wigner transformation (or Chern-Simons JW trans-

formation) requires proper definition of U(1) Chern-Simons gauge theory on a lattice

[92, 93, 94, 100, 101]. It is proved that the lattice Chern-Simons theory can only be

defined on 2D lattices which have a one-to-one mapping between sites and plaquettes

[94]. On 2D lattices with such property, the 2D Jordan-Wigner transformation maps a

quantum XY model, whose Hamiltonian is given by

HXY =
∑
ij

J±(σ+
i σ
−
j + h.c.), (3.36)

into a system of complex fermions ci defined on lattice sites interacting with Chern-

Simons gauge field Aij defined on lattice bonds 〈ij〉 [13, 91],

HXY =
∑
ij

J±c
†
ie
iAijcj + h.c.. (3.37)

To lay foundation of the discussion on the relationship between SO(3) Majorana repre-

sentation and the 2D Jordan-Wigner transformation, we need to review the basics of the

Chern-Simons gauge theory and the lattice Chern-Simons theory. We give such review

in Appendix A following Ref. [13, 94]. In the following we will continue our discussion

with the equations and conclusions from Appendix A. In order to discuss the relationship

between the SO(3) Majorana representation of spin and the 2D Chern-Simons Jordan-

Wigner transformation, we need one more element, which is the compactification of the

lattice U(1) Chern-Simons gauge theory.
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Compactification of U(1) Chern-Simons gauge theory on a lattice

As with other types of lattice gauge theories, the gauge field in the lattice Chern-Simons

theory couples to the matter field by a Wilson line [13, 14, 92, 93],

H ∼ c†ie
iAijcj + h.c., (3.38)

in which Aij is the lattice gauge field defined on the bond 〈ij〉. Throughout this section,

we interchangably use 〈ij〉 (contains the start point and the end point of the bond) and

e to label the bonds of the lattice. We note that the gauge field on the bond Ae actually

corresponds to line integral of gauge field Aµ in the continuous theory. The Wilson line

on each bond e takes the form of We = eiAe , we call them the Wilson link variables (or

Wilson links). The Wilson links are invariant under the addition of integer multiples

of 2π to the gauge field on the link. This requires that the lattice Chern-Simons gauge

field is defined in a compact manifold. The compactification of the gauge field Ae means

that Ae and Ae + 2nπ are always equavilent when n is an integer. In other words, we

have

Ae + 2π ≡ Ae. (3.39)

From the discussion in Appendix A, we have that the commutator of the gauge field

on a lattice is given by (A.19). It follows from (A.16) that

[Ae, Ae′ ] = −2πi

k
K−1
e,e′ =

2πi

k
(±1

2
) = ± iπ

k
, (3.40)

when e and e′ share a vertex. For 2D Jordan-Wigner transformation, we are taking the

level k = 1 (the corresponding theory is called U(1)1 Chern-Simons gauge theory, see

Appendix A for detailed definitions), so we have

[Ae, Ae′ ] = {
±iπ, if e and e′ share a vertex,

0, otherwise.
(3.41)

Now we suppose that [Ae, Ae′ ] = iπ, which means that

[Ae,
Ae′

π
] = i. (3.42)
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Then, for an arbitrary variable θ, we have operator identity

ei
Ae′
π
θAee

−i
Ae′
π
θ = Ae + θ. (3.43)

Specifically when θ = 2π, we have the following, using condition (3.39),

e2iAe′Aee
−2iAe′ = Ae + 2π ≡ Ae. (3.44)

To ensure this is an identity for all Ae we have to require that e2iAe′ = C, where C is a

constant. Eq. (3.44) implies that |C|2 = 1, which means

e2iAe′ = eiφe′ , (3.45)

in which φe′ is a constant phase defined on bond e′.

On the other hand, if [Ae, Ae′ ] = −iπ, we have [Ae,−Ae′
π ] = i. This leads to

e−2iAe′Aee
2iAe′ = Ae + 2π ≡ Ae. (3.46)

Once again we arrive at the requirement (3.45). In summary, to compactify gauge field

defined on bond e, we have to require that on all the bonds that share a vertex with

it, the gauge field satisfies (3.45). Since the lattices we are interested in are always

connected, all the bonds have some other neighbouring bonds, to compactify all the

gauge field, we have to require that

e2iAe = eiφe , for all the links e of the lattice. (3.47)

In (3.47), the constant φe can vary from bond to bond. On each bond, there are multiple

solutions for (3.47) for each value of the constant phase φe, namely Ae = 1
2φe+nπ, where

n is an integer. If we restrict that 0 ≤ φe < 2π, then there are two solutions for Ae

satisfying 0 ≤ Ae < 2π, which are Ae = 1
2φe and Ae = 1

2φe + π. For all values of φe, we

see that under the condition of compactification (3.39), the lattice U(1)1 Chern-Simons

gauge theory (see Appendix A for definition) naturally breaks down to a Z2 theory

whose Wilson link can only take eigenvalues ei
φe
2 or ei(

1
2
φe+π).

There is another intepretation of this result. The commutation relation of gauge
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fields (3.41) means that the Hilbert space of the lattice gauge field Ae is not a “coordinate

space”, instead, it is a phase space containing both coordinate and momentum degrees

of freedom. Consistency requires that this Hilbert space (or phase space) is defined in a

compact manifold with finite volume. Quantization of a phase space with finite volume

always results in a Hilbert space with finite dimension [18]. This is the origin of the

quantization of the gauge field in the lattice U(1)1 Chern-Simons gauge theory.

With these results, we are ready to discuss the relationship between the SO(3) Ma-

jorana representation of spin and the compactified U(1) Chern-Simons Jordan-Wigner

transformation.

SO(3) Majorana representation of spin as compactified Chern-Simons Jordan-

Wigner transformation

In the Chern-Simons Jordan-Wigner transformation of spin in 2D, any spin Hamiltonian

which is bilinear in spin operators is mapped to a lattice model of fermions intereacting

with Chern-Simons gauge field. In particular the XY spin Hamiltonian is mapped

according to

σ+
i σ
−
j + σ−i σ

+
j = c†ie

iAijcj + h.c.. (3.48)

Based on the Baker-Hausdorff-Campbell formula (A.8), the Wilson link variables on the

lattice We = eiAe , or Wij = eiAij satisfy the following relation WeWe′ = We′Wee
−[Ae,Ae′ ].

Using the commutator (3.41) we arrive at the commutation relations between Wilson

links on the lattice,

{
We,We′

}
= 0, if e and e′ share a vertex,[

We,We′
]

= 0, otherwise.
(3.49)

On the other hand, in the SO(3) Majorana representation of spin, the XY spin

Hamiltonian is mapped according to Eq. (3.14), the link variables are γiγj on link 〈ij〉.
Following the commutation relation of Majorana fermions, these link variables satisfy

the following commutation relations

{
γiγj , γjγk

}
= 0, for k 6= i,[

γiγj , γkγl
]

= 0, for k 6= i, j and l 6= i, j.
(3.50)
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In other words, the link variables in the SO(3) Majorana representation of the spin

model have the following commutation relation: two link variables anticommute if they

share a vertex, otherwise they commute with each other. This is the same commutation

relations as the Wilson links in the Chern-Simons Jordan-Wigner transformation of

spin, which is given by (3.49). Based on this similarity and compare Eq. (3.14) and

Eq. (3.48) we arrive at the following correspondence between the link variables in the

SO(3) Majorana representation and the Wilson links in the lattice Chern-Simons JW

transformation,

(−γiγj) ∼ eiAij , (3.51)

The correspondence in (3.51) is not complete until we analyze the eigenvalues of

the link variables in both representations. According to the compactification of the

gauge field in lattice U(1)1 Chern-Simons gauge theory, its Wilson links can only take

Z2 values. Specifically, we have the Wilson links eiAe take values ei
φe
2 or ei(

φe
2

+π) for

constant φe satisfying 0 ≤ φe < 2π. If we take φe ≡ π for all the bonds e, then

the Wilson links take values eiAe = ±i. On the other hand, for the SO(3) Majorana

representation of spin we also have (−γiγj) = ±i. Therefore the link variables and the

Wilson links in both sides of Eq. (3.51) can have the same eigenvalues. To clarify the

physical meaning of the condition, φe ≡ π or e2iAe ≡ −1 for all bonds, we point out the

following intepretation. Every time the gauge field changes by 2π on each bond, the

wavefunction (of the whole system of fermions and gauge field) goes back to itself but

acquire a phase eiπ = −1. This phase is identified as a Berry phase [102, 103, 104] since

the gauge field is defined on a compact manifold.

In the discussion above, we have used the XXZ Heisenberg model (given by Eq.

(3.11)) in 2D as an example to analyze the relation between the SO(3) Majorana rep-

resentation and the Chern-Simons JW transformation. From the transformation of the

XY part of the Hamiltonian, we find that the complex fermions in both representations

(in SO(3) Majorana, complex fermion is defined by Eq. (3.6)) are identified with each

other and the Chern-Simons Wilson links are identified with the link variables in SO(3)

Majorana representation. In addition, we point out that the Jz part of the Hamiltonian

under both representations are exactly the same four fermion interaction, given by Eq.
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(3.12). These results can be directly generalized to other spin Hamiltonians in two di-

mensions, and the correspondence we find is between two spin representations without

reference to specific spin models.

In summary of the discussion in this section, we conclude that the SO(3) Majorana

representation of spin is equivalent to the Chern-Simons Jordan-Wigner transformation

in two dimensions under the condition that the U(1)1 Chern-Simons gauge field in the

latter is compactified with a Berry phase eiπ. Such equivalence has several implications.

Most importantly, from the equivalence (3.51) and the commutation relations (3.49),

(3.50) we see that the key property of both representations is the anticommuting link

variables. In previous studies of the Chern-Simons JW transformation [91, 92, 93], field

theoretical approach was used to look for the saddle point of the gauge field config-

uration. Such approach neglects the anticommuting nature of the neighbouring link

variables. In some sense it corresponds to a mean-field treatment of the anticommuting

link variables. In the SO(3) Majorana representation, previous studies [75, 76, 77] also

used mean-field approach to handle the link variables, which turns out to results in

large discrepancies with the real physical states, as shown by Ref. [75]. In general,

there is some difficulties in the treatment of anticommuting link variables. However,

as we show in Sec. 3.3.1, it is possible to get rid of the anti-commuting link vari-

ables in one-dimensional systems due to the unique lattice geometry. Also, as a special

two-dimensional case, in the solution of the Kitaev model using SO(3) Majorana repre-

sentation [74] the anticommuting link variables are mapped out due to the specific form

of spin Hamiltonian and lattice geometry. For general spin models in two dimensions

and beyond, we do not expect such possibility.

Besides the similarities discussed previously, it is also important to note the sub-

tleties in the correspondence between the SO(3) Majorana representation and the Chern-

Simons Jordan-Wigner transformation (3.51). First, the definition of the Chern-Simons

Jordan-Wigner transformation is restricted to two-dimensional space in which the Chern-

Simons gauge theory exists. Specific to two-dimensional space, the proper definition of

the 2D Jordan-Wigner transformation requires that the lattice has a one-to-one corre-

spondence between its sites and plaquettes [94]. On the contrary, the SO(3) Majorana

representation can be applied in any spatial dimension and in two-dimensional space

specifically, it can be applied to any type of lattice. Moreover, due to the definition of
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the SO(3) singlet γ in the SO(3) Majorana representation 3.4, the fermion operators

defined on site i always anticommute with the link variables γiγj that are connected to

it. There is no such anticommuting relations in the Chern-Simons JW transformation.

These discrepancies mean that the equivalence between the SO(3) Majorana representa-

tion and the 2D Jordan-Wigner transformation is not mathematically rigorous. We can

understand it in the following way. Whenever the 2D Jordan-Wigner transformation

can be applied to some spin model, the SO(3) Majorana representation can provide an

alternative operator form for it. In general, the SO(3) Majorana representation can be

applied to a broader range of models.

On the other hand, we should also mention the limitation of the theory. In par-

ticular, we note that there should always be a Maxwell term SM = −1
4

∫
d3xFµνFµν

(in which Fµν is the standard field strength tensor for the gauge field) coming along

with the pure Chern-Simons term in the total continuous action (A.1). The Maxwell

action will make sure that the Hamiltonian is bounded from below (i.e. there exists an

minimum energy eigenvalue). After including the Maxwell action, the theory becomes

a Maxwell-Chern-Simons theory [105, 106]. Specifically, the flux attachment constraint

(A.5) and the commutator between gauge field (A.6) are modified accordingly, including

the contribution from the electric field. In the continuum limit, the Chern-Simons term

will give the gauge field a mass [105], making the interaction coming from the Maxwell

term short-ranged, thus we can ignore the Maxwell part if we are only interested in long

distances. However, things are different for the lattice version of the theory. Whether

it is still possible to ignore the Maxwell term in the lattice Chern-Simons gauge theory

is still an open question. If we include the Maxwell term in the lattice Chern-Simons

theory, all the commutation relation discussed in this section will have to be modified

significantly, including the compactification of gauge field. Exploration of the lattice

Maxwell-Chern-Simons theory is beyond the scope of this work and left for future study.

Summarizing Sec. 3.3.1 and Sec. 3.3.2, we find that there is a correspondence

between the SO(3) Majorana representation and the Jordan-Wigner transformation in

both 1D and 2D under certain conditions. In Sec. 3.3.1 we see that under the SO(3)

Majorana represetation general spin models will be mapped into a Z2 gauge theory if

only N
2 (N is the total number of spin in the system) fixing conditions are imposed.

In Sec. 3.3.2 we see the importance of anticommuting link variables in both the SO(3)
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Majorana representation and the Chern-Simons JW transformation.

To explore the application of the SO(3) Majorana representation, in Chapter 4 we

will consider two spin models, namely the quantum XY model on the honeycomb lattice

and the 90◦ compass model on the square lattice. We will map the two models into some

lattice Z2 gauge theories using the SO(3) Majorana representation. Our treatments of

the two spin models is unique in that no approximation is introduced in obtaining the

Z2 gauge theory.



Chapter 4

Application of the SO(3)

Majorana representation: Z2

gauge theories for spin systems

Having discussed the three types of Majorana representation in Chapter 3, with an

emphasize on the SO(3) Majorana representation, we now turn to demonstrate the

application of the SO(3) Majorana representation in spin models. We will start with

the Kitaev model which has exact solvability [74], then we will use the same strategy to

study the quantum XY model on honeycomb lattice and 90◦ compass model on square

lattice [79]. Our results map the three spin models to Z2 lattice gauge theory of complex

fermions. As mentioned in the Introduction (Chapter 1), our results differ from previous

studies in that the Z2 gauge theories we obtained are exact and can serve as a platform

for further approximations.

4.1 The Kitaev model

The Kitaev model is a two-dimensional exactly solvable model of spin-1/2 degrees of

freedom defined on honeycomb lattice [23]. To introduce the model, the bonds of the

honeycomb lattice are categorized into three types which are labelled by x, y, and z, and

denoted by 〈ij〉a where a = x, y, z. Spins interact with their nearest neighbours via an

51
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anisotropic Ising-like interaction. In particular, on each type of bond only corresponding

spin components are interacting (see Fig 4.1). The Hamiltonian of the model is given

by,

H = Jx
∑
〈ij〉x

σxi σ
x
j + Jy

∑
〈ij〉y

σyi σ
y
j + Jz

∑
〈ij〉z

σzi σ
z
j , (4.1)

where Jx, Jy and Jz are the Ising coupling strengths on the x, y, and z bonds, respec-

tively.

The Hamiltonian (4.1) can be solved exactly using the Kitaev representation of spins

(3.16) [23]. The resulting theory is a Z2 quantum spin liquid, which is either gapped

or gapless depending on the values of Jx, Jy and Jz. Here we will not discuss Kitaev’s

original solution of the model, instead, we discuss some details about the Kitaev model

and the solution by Kitaev [23] in Appendix C. As we discussed in Chapter 3, since

the representation (3.16) is defined in the extended Hilbert space, every calculation of

the model in Kitaev’s original solution should be projected onto the physical space in

each step. Such projection based on the chirality constraint (3.17) has been discussed

in Refs. [23, 107, 108], where it has been explicitly shown that observables computed

in the extended Hilbert space can be substantially different from the ones calculated in

the physical space [107]. But in general the projection is hard to do, especially when the

system size is small such that it is away from the thermodynamic limit [107]. Therefore,

more systematic ways of obtaining the physical solution is desired to better understand

the model and make reliable predictions. Some previous works have already made

progress in this direction. In paticular, it has been shown that it is possible to achieve

a solution of the model without using the slave-particle representation of spin, e.g.,

using Jordan-Wigner transformation [109, 110, 111]. Here in this section we will show

that it is possible to obtain the solution of the Kitaev model using SO(3) Majorana

representation of spin instead of the Kitaev representation. Without extending the

Hilbert space, our solution is automatically physical.

4.1.1 Solution of the Kitaev model in SO(3) Majorana representation

In this section we show how the solution of the Kitaev model (4.1) can be obtained

using the SO(3) Majorana representation. As described in Sec.3.1.1, we first introduce

three Majorana fermions for each spin and label them as ηxi , η
y
i , η

z
i . We then rewrite the
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Hamiltonian (4.1) using representations (3.3) and (3.5) as following

H =
∑
〈ij〉x

Jx(−iηyi η
z
i )(−iη

y
j η

z
j ) +

∑
〈ij〉y

Jy(−iηzi ηxi )(−iηzj ηxj ) +
∑
〈ij〉z

Jz(γiη
z
i )(γjη

z
j )

=
∑
〈ij〉x

Jx(ηyi η
y
j )ηzi η

z
j +

∑
〈ij〉y

Jy(η
x
i η

x
j )ηzi η

z
j +

∑
〈ij〉z

Jz(−γiγj)ηzi ηzj .
(4.2)

In particular, for all the z-bonds we use Eq. (3.5) to represent spins while for x-bonds

and y-bonds we apply representation (3.3).

For the second step, we group the two sites belonging to every z-bond together and

require that

γiγj = −i, for each 〈ij〉z (4.3)

with i belonging to A sublattice. As discussed above, such pairing of honeycomb lattice

sites and condition (4.3) eliminate all the extra degrees of freedom and the Hilbert

space for ηxi , η
y
i , η

z
i is now the same as the spin space. With the condition (4.3), the

Hamiltonian is transformed as

H′ =
∑
〈ij〉x

Jx(ηyi η
y
j )ηzi η

z
j +

∑
〈ij〉y

Jy(η
x
i η

x
j )ηzi η

z
j +

∑
〈ij〉z

iJzη
z
i η
z
j . (4.4)

Note that we have [ηyi η
y
j ,H

′
] = 0 for 〈ij〉x and [ηxi η

x
j ,H

′
] = 0 for 〈ij〉y, therefore we are

free to pick up eigenfunctions to solve the transformed Hamiltonian H′ , one can choose

ηyi η
y
j = ±i for 〈ij〉x and ηxi η

x
j = ±i for 〈ij〉y. With this, the Hamiltonian is finally

transformed to a free hopping Hamiltonian for ηz Majorana fermions,

H′′ =
∑
〈ij〉x

(±i)Jxηzi ηzj +
∑
〈ij〉y

(±i)Jyηzi ηzj +
∑
〈ij〉z

iJzη
z
i η
z
j . (4.5)

The Hamiltonian H′′ has the same spectrum as the spectrum obtained in the Kitaev

solution [23] but for ηz rather than for c Majorana fermions (or in our definition, ηt

Majorana fermion). Note that in H′′ the sign of the Majorana fermion ηz is not a

local degree freedom. Now, for the physical space to be the same as the spin space we

have to change the sign of two Majorana fermions on the end-points of a given z-bond
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Figure 4.1: The Kitaev model on the honeycomb lattice. e1 = a(−1
2 ,−

√
3

2 ) and e2 =

a(1
2 ,−

√
3

2 ) are the primitive translations, with a being the lattice constant. The two
sublattices denoted in the main text by A and B are shown by blue and red dots,
respectively. The sites of each of the two sublattices form a diamond lattice, as shown
by the green dotted line for the A sublattice.

simultaneously. Mathematically, such transformation is given as ηαi = εijη
α
i , η

α
j = εijη

α
j

for every z-bond 〈ij〉z with εij = ±1. We call this a reduced Z2 gauge redundancy.

After the pairing of the two sites of each z-bond, we can define three complex

fermions cxi , c
y
i , c

z
i for three flavors of Majorana fermions on every z-bond [76]. We use

the honecomb site of A sublattice of the corresponding z-bond to label the real-space

position of these complex fermions. Namely, we define

cαi =
1

2
(ηαi + iηαj ), α = x, y, z, (4.6)

for z-bond 〈ij〉z with i in A sublattice and j in B sublattice. Conversely, the Majorana

fermion operators are given by ηαi = cαi + cα†i for site i in the A sublattice, and ηαj =

−i(cαi − c
α†
i ) for site j in B sublattice. The complex fermions live on the A sublattice of

the honeycomb lattice and their positions form a diamond lattice, as shown by Fig.4.1.

By definition γi = −iηxi η
y
i η

z
i , thus for every z-bond the condition (4.3) can be written
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as [76],

γiγj = i(2nxi − 1)(2nyi − 1)(2nzi − 1) = −i(−1)n
x
i +nyi +nzi , (4.7)

where nxi , nyi and nzi are the bond fermion numbers. Thus, the requirement that for every

z-bond γiγj = −i is equivalent to the requirement that the total fermion number is even

on each z-bond, or on each site of the diamond sublattice. Now for each diamond lattice

site, all the states can be represented as |nx, ny, nz〉 = |000〉, |110〉, |101〉, |011〉. These

four states span exactly the spin Hilbert space of the z-bond: | ↑↑〉, 1√
2
(| ↑↓〉+ | ↓↑〉),| ↓↓〉

and 1√
2
(| ↑↓〉− | ↓↑〉). Thus our Hilbert space is settled to be the physical Hilbert space.

The other condition for solving the Hamiltonian can also be written in terms of the

c-fermions. Take x-bond condition iηyi η
y
j = ±1 as an example, we have

iηyi η
y
j = (cyi c

y
j + cy†j c

y†
i ) + (cy†i c

y
j + cy†j c

y
i ) = ±1. (4.8)

With the complex fermion, one can obtain the energy spectrum of H′′ in Eq. 4.5,

and show that it is the same as the Kitaev solution [23]. Details of this is given in

Appendix C.3.

4.1.2 Z2 Gauge Theory for Complex Fermions and Generalized Kitaev

Model

The simple solution in the previous section suffers from the following fact. In the

solution, we take the energy eigenstate to be eigenstate of operator γiγj on each z-

bond, ηyi η
y
j on each x-bond and ηxi η

x
j on each y-bond, but the three group of operators

do not mutually commute. This means that the eigenstates found in this way are

hardly the true eigenstates of the model itself. To treat this problem, we start from

the Hamiltonian itself and try to map the Hamiltonian into some other forms which we

are more familiar with. In doing so, we can see what the real eigenstates of the system

look like and thus figure out how the solutions presented above are related to the real

eigenstates.

Firstly, let’s define a bond operator

Tαij ≡ iηαi ηαj = cαi c
α
j + cα†j c

α†
i + cα†i c

α
j + cα†j c

α
i , (4.9)
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where α = x, y, z. Note that once we transform into complex fermions, the lattice is no

longer a honeycomb lattice but a diamond lattice, with only x-bond and y-bond left,

as shown in Fig 4.1. To obtain the solution of the Kitaev model we have required that

on x-bond T yij takes its eigenstates with eigenvalues ±1 and on y-bond T xij takes its

eigenstates with eigenvalues ±1.

Let us now give the complex fermions cx or cy a closer look. In the previous section we

found that cx and cy are completely independent. For a given diamond site, the number

of these fermions can be nxi = 0, 1 and nyi = 0, 1 independently. For a given y-bond ij

on the diamond lattice, the Hilbert space can be defined by the occupation numbers

|nxi , nxj 〉, and there are four states |00〉, |01〉, |10〉, |11〉. The acting of the operator T xij

gives the following: T xij |00〉 = |11〉, T xij |01〉 = |10〉, T xij |10〉 = |01〉, and T xij |11〉 =

|00〉. This is equivalent to say that the operator T xij flips the occupation number of cx

fermion on both sites i and j, and flips it on each site independently. If we map this

Hilbert space to some spin space and associate fermion occupation state |1〉 with spin

state |↑̃〉 and |0〉 with |↓̃〉 on each site, the operator T xij is equivalent to the operator

τ̃xi τ̃
x
j , in which we use τ̃ to label the new type of spin to avoid confusion with previous

notations. Therefore we arrive to the following mapping

Tαij → {τ̃xi τ̃xj }α, α = x, y, (4.10)

which is actually changing from one bosonic operator to another bosonic operator acting

on the Hilbert spaces of the same dimension.

With this mapping the problem of the original Kitaev model has been changed

to the following: on each site of the diamond lattice there is one complex fermion cz

interacting with two flavors of spins, τ̃α1i and τ̃α2i: one flavor of spin interacts with the

cz fermions only on x-bonds and the other flavor interacts with cz only on y-bonds.

Having performed this reformulation, we now write the Hamiltonian H′ in Eq. (4.4) in

terms of these new variables as (from now on we will sometimes use vector simbol r to
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label sites of the diamond lattice)

H′ =
∑
r∈A
−Jx(τ̃x2r τ̃

x
2,r+e1)[(czr + cz†r )(czr+e1 − c

z†
r+e1)]

− Jy(τ̃x1r τ̃x1,r+e2)[(czr + cz†r )(czr+e2 − c
z†
r+e2)]

+ Jz(2c
z†
r c

z
r − 1).

(4.11)

Now we use a duality transformation from the site spins to the bond spins for the two

quasi-one-dimensional spin chains along x and y-bonds of the diamond lattice:[13, 14]

τ̃xi τ̃
x
j → σ̃zij , σ̃

x
i−1,iσ̃

x
i,i+1 → τ̃ zi . (4.12)

Since the new spin variables σ̃zij are defined specifically on each type of the bonds and

thus are independent by nature, we can drop the indices 1 and 2. Now the Hamiltonian

is written as follows

H′ =
∑
r∈A
−Jx(σ̃zr,r+e1)[(czr + cz†r )(czr+e1 − c

z†
r+e1)]

− Jy(σ̃zr,r+e2)[(czr + cz†r )(czr+e2 − c
z†
r+e2)]

+ Jz(2c
z†
r c

z
r − 1).

(4.13)

This Hamiltonian describes a complex fermion on a diamond lattice interacting with a

Z2 gauge field defined on the bonds. Since topologically the diamond lattice is equivalent

to a square lattice, the known results for Z2 gauge theory on square lattice[13, 14] can

be borrowed here.

However, this mapping is not complete until we consider the constraints. Recall that

the original constraint is there is an even number of complex fermions on each diamond

sites (see Eq. 4.7). The fermion occupation numbers nxi and nyi in terms of two flavors

of spin τ̃1 and τ̃2 are given by

nxi =
1

2
(τ̃ z1,i + 1), nyi =

1

2
(τ̃ z2,i + 1). (4.14)
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Consequently, in terms of the new bond spins they are:

nxr =
1

2
(σ̃xr−e1,rσ̃

x
r,r+e1 + 1),

nyr =
1

2
(σ̃xr−e2,rσ̃

x
r,r+e2 + 1).

(4.15)

Considering that the fermion occupation numbers can only be 0 and 1, the constraint

that there is an even number of fermions per site can be written as

(−1)n
z
r σ̃xr−e1,rσ̃

x
r,r+e1 σ̃

x
r−e2,rσ̃

x
r,r+e2 = 1, (4.16)

which can be simplifed as (−1)n
z
i
∏
j σ̃

x
ij = 1, with j being the four nearest neighbour

sites to i.

The Hamiltonian (4.13) and the constraints (4.16) define a model of complex matter

fermion interacting with Z2 gauge field. The fermion number measures the defects of

star operators in the system (see Fig 4.2). In terms of lattice gauge theory Eq. (4.16)

can also be intepreted as the Gauss law in the Z2 gauge theory [13, 112].

From now on, we will drop the index z of the matter fermion whenever no confusion

is caused. One important observation is that the operator in (4.16) commutes with the

Hamiltonian H′ in (4.13), that is

[(−1)nr σ̃xr−e1,rσ̃
x
r,r+e1 σ̃

x
r−e2,rσ̃

x
r,r+e2 ,H

′
] = 0. (4.17)

To prove this, we use the fact that {(−1)nr , cr + c†r} = 0, and {(−1)nr , cr − c†r} = 0,

and for spin variables, {σz, σx} = 0. To make things clear, we define the operator as

Dr = (−1)n
z
r σ̃xr−e1,rσ̃

x
r,r+e1 σ̃

x
r−e2,rσ̃

x
r,r+e2 . (4.18)

We have, from Eq. 4.17, [Dr,H
′
] = 0 and from the definition [Dr,Dr′ ] = 0, so the

eigenstates of the Hamiltonian can be chosen as eigenstates of the operator Dr. Actually

Dr generates the Z2 local gauge transformation of the model at site r, so the condition

(4.16) is actually equivalent to the gauge invariance of the physical states [13],

Dr|ψ〉phys = |ψ〉phys. (4.19)
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e1

e2

Figure 4.2: The diamond lattice corresponding to the original honecomb lattice, with
unit vectors e1, e2. The matter (complex) fermion lives on the lattice sites, labelled by
the black dots. The Z2 gauge connection σ̃z lives on the bonds, labelled by the red dots.
One of the plaquettes is shown by the blue dotted lines and one of the groups of sites
involved in the constraint (4.16) is shown by the green dotted lines.

To make further progress, we add the pure gauge term to the Hamiltonian H′ in the

standard way [13, 14, 112]. We thus have the total Hamiltonian for the Z2 gauge field

interacting with matter fermion [14, 113],

H =H′ +Hg

=
∑
r∈A
−Jx(σ̃zr,r+e1)[(cr + c†r)(cr+e1 − c

†
r+e1)]

− Jy(σ̃zr,r+e2)[(cr + c†r)(cr+e2 − c
†
r+e2)] + Jz(2c

†
rcr − 1)

−K
∑
P

∏
rr′∈∂P

σ̃z
rr′
− h

∑
rr′

σ̃x
rr′
.

(4.20)

In the equation above, P denotes the plaquettes in the two-dimensional lattice. The

full Hamiltonian (4.20) together with the Gauss law condition (4.19) gives the effective

theory of the Kitaev spin model in terms of Z2 gauge fields interacting with complex

matter fermions.

Now we move on to study the pure gauge sector of the Hamiltonian(4.20), Hg =
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HP +HE . The first term is the magnetic plaquette term

HP = −K
∑
P

∏
rr′∈∂P

σ̃z
rr′
, (4.21)

which can be shown to be related to the plaquette operator Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 de-

fined in the original Kitaev model [23], see Fig 4.1. To see this correspondence, we

note that the bond spin σ̃zij defined on the diamond lattice actually comes from the

product of two Majorana fermions on the corresponding honecomb bond, in particular

σ̃zr,r+e1 = −iηyr+e1,A
ηyr,B, for x-bond; and σ̃zr,r+e2 = −iηxr+e2,A

ηxr,B for y-bond. (In

these expressions, we again use r to label the sites of diamond lattice and r+e1, A and

r, B denote the two sites of the x-bond of the honeycomb lattice belonging to A and B

sublattice). Using this, we have for one plaquette operator (the labelling of the sites is

shown in Fig 4.1 and the plaquette is shown explicitly in Fig 4.2),

σ̃zaσ̃
z
b σ̃

z
c σ̃

z
d = (−iηy2η

y
1)(−iηx6ηx1 )(−iηy4η

y
5)(−iηx4ηx3 )

= σz1σ
y
2σ

x
3σ

z
4σ

y
5σ

x
6 = WP .

(4.22)

In this equation, we have used the condition that for every z-bond ij, γiγj = −i and the

representation for spin operators (3.3) and (3.5). Thus, the adding of plaquette term

(4.21) is equivalent to adding a term of WP in the original Hamiltonian,

−K
∑
P

WP ↔ HP . (4.23)

It is noteworthy that this magnetic plaquette term has been considered in a generalized

Kitaev model proposed in Ref. [114], in which the mean field theory is applied to study

the quantum phases of the generalized Kitaev model.

For the electric part HE = −h
∑

rr′ σ̃
x
rr′

, it can be shown from lattice gauge theory

that it corresponds to H = 1
2gE

2 term in the standard Electromagnetic Hamiltonian

[112]. It is hard to find the spin correspondence for this form of electric Hamiltonian

due to the complex mapping between bond gauge connection and the Majorana fermion.

However, there are some other ways to write down HE , for example, Ref. [112] studies

another form of the electric Hamiltonian given by the Kitaev star operator in the toric
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code model, HE = −h
∑

r

∏
r′ σ̃

x
rr′

, with r
′

denoting the four sites adjacent to r. This

term, however, can be translated to a chemical potential term due to the Gauss-law

constraint (4.16). It is then combined with the Jz term in Hamitonian (4.20) to give

the total chemical potential term,

Jz(2c
†
rcr − 1)− h

∑
r

∏
r′

σ̃x
rr′

→ (Jz + h)(2c†rcr − 1) = µ̃(2nr − 1),

(4.24)

in which µ̃ = Jz + h is the effective chemical potential term.

4.1.3 Physical States of the Model

To describe the states of the pure Z2 gauge theory without matter fermion, it is conve-

nient to work in the σx basis [13], resulting in a geometric intepretation of the states in

terms of loops. With matter fermion as in our model, it is more useful to work in the σz

basis, which will have a close relationship with the Kitaev solution. First, we consider

the model Hamiltonian (4.20) with K = h = 0. Without considering the Gauss-law

condition (4.19), the naive eigenstates can be written as

|ψ〉 = |{σz
rr′
}〉 ⊗ |φ{σz}〉, H|ψ〉 = E|ψ〉, (4.25)

in which |{σz
rr′
}〉 denotes the product state of eigenstate of σz

rr′
on each bond. For

every such distribution, H reduces to a free fermion Hamiltonian for complex fermion

c, with eigenstate |φ{σz}〉 corresponding to the distribution {σz}. The Kitaev solution,

although given in a different approach, is simply one of the states |ψ〉.
Now, we enforce the Gauss-law condition (4.19). We note again that the Dr opera-

tors commute with each other and with the Hamiltonian and generates the local gauge

transformation. Since D2
r = 1, we have (Dr − 1)1+Dr

2 |ψ〉 = 0 and thus we can define

the following projection of states from the eigenstates (4.25)

P̂|ψ〉 = 2
N−1

2 (
∏
r

1 +Dr

2
)|ψ〉 =

1

2
N+1

2

(
∑
{r}

∏
r′∈{r}

Dr′ )|ψ〉. (4.26)

This projected state is given by equal superposition of all the states in the same gauge
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sector as |ψ〉, and the prefactor 2
N−1

2 is added to ensure the proper normalization of the

states. This projected state satisfies two properties. First, since Dr operator commutes

with each other, we have DrP̂|ψ〉 = P̂|ψ〉, that is, the Gauss-law condition (4.19) is

satisfied. Second, since Dr operator commutes with H, we have HP̂|ψ〉 = P̂H|ψ〉 =

EP̂|ψ〉, which means that the projected state (4.26) is eigenstate of the Hamiltonian

with the same energy as the unprojected one (4.25).

If the system has some periodic boundary condition, i.e. is defined on a torus, then

the operation of performing gauge transformation for all the sites is important. For the

operator P̂ to be non-zero, this operation has to have eigenvalue +1 instead of -1 for

every physical state. This means that

∏
r

(−1)nr
∏
r′

σ̃x
rr′

= (−1)
∑

r nr = +1, (4.27)

that is, the total number of fermion has to be an even number.

In order to calculate physical observables, we should use the projected states, which

are the physical states of the model. However, the unprojected state |ψ〉 given by (4.25)

can sometimes be useful as well. In terms of energy spectrum, they gives the same

results as the projected states. Moreover, for other gauge invariant operators Ô, we

have [Ô, P̂] = 0 from gauge invariance. So we have

〈Ô〉 = 〈ψ|P̂ÔP̂|ψ〉 = 〈ψ|ÔP̂2|ψ〉 = 2
N−1

2 〈ψ|ÔP̂|ψ〉, (4.28)

in which we use the fact that P̂2 = 2
N−1

2 P̂.

4.2 Quantum XY Model on Honeycomb Lattice

4.2.1 The model under SO(3) Majorana representation

Following our definition in Chapter 3, we now turn to study the quantum XY model

on the honeycomb lattice (see Fig. 4.3) using the SO(3) Majorana representation. We

introduce three types of Majorana fermions ηx, ηy, ηz on each site to represent spins

in the model. For each site, we pair up Majorana fermion ηx and ηy to form complex

fermion c according to Eq. (3.6). Then, based on Eq. (3.14), the Hamiltonian of
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2k
2k-1 2k+1 2k+2

e1 e2

e3a1 a2

Figure 4.3: The honeycomb lattice and the diamond lattice. The original spins in the
quantum XY model are defined on the sites of the honeycomb lattice, the three types
of bonds are labelled by vectors ê1, ê2 and ê3 respectively. The A sublattice of the
honeycomb lattice is formed by the red dots which in turn form the diamond lattice,
whose bonds are denoted by the red dashed lines. The unit vectors of the diamond
lattice are â1 and â2. After defining the staggered fermion, the link variables form
horizontal zig-zag chain. The sites in one of the chain are denoted by integer numbers
2k − 1, 2k,..., with A sublattice sites labelled by even numbers. Link variables on each
zig-zag chain are mapped into spin variables defined on the â1 bonds of the diamond
lattice, labelled by black dots. Spins corresponding to the same zig-zag chain form a
horizontal line, which is the black dashed line.
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quantum XY model on honeycomb lattice under the SO(3) Majorana representation is

given by

H = J
∑
〈ij〉

(−γiγj)(c†icj + cic
†
j), (4.29)

in which i and j are sites of the honeycomb lattice and 〈ij〉 denotes the bonds of the

lattice. The three types of bonds of the honeycomb lattice are labelled by vectors

ê1, ê2, ê3 and the two primitive vectors are denoted by â1, â2, as shown in Fig. 4.3. The

ci fermions are formed by the Majorana fermion ηxi and ηyi according to (3.6), such

definition leaves the ηzi Majorana fermion unpaired at this stage. From now on and

throughout this section, we use hatted symbol î to label the sites (and also the position

vectors) of the honeycomb lattice belonging to the A sublattice (the red dots in Fig.

4.3). As discussed in Sec. 3.3.1, to fix the Hilbert space of the Majorana fermions, we

have to introduce N
2 constraints. Here we choose to pair up each ê3 bond (vertical bond

in Fig. 4.3) and require that

γîγî+ê3 = −i, (4.30)

in which γî is the SO(3) singlet of the Majorana representation defined in (3.4) and î

belongs to the A sublattice. With (4.30) the Hamitonian (4.29) is transformed into

H = J
∑
î∈〈A〉

(−γîγî+ê3)c†
î
cî+ê3 + (ηz

î
ηz
î+ê1

)c†
î
cî+ê1+

(ηz
î
ηz
î+ê2

)c†
î
cî+ê2 + h.c.

= J
∑
î∈〈A〉

(ηz
î
ηz
î+ê1

)(c†
î
cî+ê1 + cîc

†
î+ê1

)+

(ηz
î
ηz
î+ê2

)(c†
î
cî+ê2 + cîc

†
î+ê2

)+

i(c†
î
cî+ê3 + cîc

†
î+ê3

),

(4.31)

in which we have used the alternative form of XY spin interaction given by Eq. (3.13)

for ê1 bonds and ê2 bonds.

For the next step, to simplify notation, we can pair up the complex fermions cî and

cî+ê3 located on the two ends of each ê3 bonds on the honeycomb lattice into a staggered
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fermion

ψî =

(
cî+ê3
cî

)
, ψ†

î
=
(
c†
î+ê3

c†
î
.
)

(4.32)

The positions of the staggered fermion are chosen to be the sites of the A sublattice.

Using the staggered fermions we have that

c†
î
cî+ê3 + cîc

†
î+ê3

= ψ†
î

(
0 −1

1 0

)
ψî,

c†
î
cî+ê1 + cîc

†
î+ê1

= ψ†
î

(
0 0

1 0

)
ψî+â1 − h.c.,

c†
î
cî+ê2 + cîc

†
î+ê2

= ψ†
î

(
0 0

1 0

)
ψî+â2 − h.c..

(4.33)

Using these relations, the Hamiltonian (4.31) can be transformed as

H = J
∑
î∈〈A〉

[
1

2
ψ†
î
σ̃yψî + (ηz

î
ηz
î+ê1

)ψ†
î

(
0 0

1 0

)
ψî+â1

+ (ηz
î
ηz
î+ê2

)ψ†
î

(
0 0

1 0

)
ψî+â2

]
+ h.c.,

(4.34)

in which σ̃y is the Pauli matrix acting on the spin space of the staggered fermion.

The link variables ηz
î
ηz
î+ê1

and ηz
î
ηz
î+ê2

in Eq. (4.34) form a quasi-one-dimensional

structure. In the honeycomb lattice, taking a horizontal zig-zag chain formed by ê1 and

ê2, we see that there is a Majorana fermion ηz on each site of the zig-zag chain (see

Fig. 4.3). In the Hamiltonian (4.34), Majorana fermions ηz on different zig-zag chains

do not talk to each other. For one specific horizontal zig-zag chain we label the sites in

the following way: for site î on the A sublattice, we assign an even integer 2k to it; the

site î + ê1 is assigned an odd integer 2k − 1 and the site î + ê2 the number 2k + 1, as

shown in Fig. 4.3. The Majorana fermions ηz on the zig-zag chain form a Kitaev chain

[115]. Previously we paired up each ê3 bonds to define the staggered fermion in terms

of the complex fermions formed by ηx and ηy Majorana fermions, we can pair up the

independent ηz Majorana fermions in a different way. Here, we choose to pair up the
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Majorana fermions ηz on sites 2k − 1 and 2k, in other words, sites î + ê1 and î, and

define complex fermion d, which we place on the middle point of the two paired sites,

as

d2k− 1
2

=
1

2
(ηz2k−1 − iηz2k), d†

2k− 1
2

=
1

2
(ηz2k−1 + iηz2k), (4.35)

in which we temporarily use the assigned integer number to label sites in the horizontal

zig-zag chain (see Fig. 4.3).

To make further progress, for the horizontal (zig-zag) chain, we can perform the

1D Jordan-Wigner transformation (see Sec. 3.3.1) for complex fermion d2k− 1
2

in the

following way:

d2k− 1
2

= σ−
2k− 1

2

e
iπ

∑k−1
j=1

1
2

(1+σz
2j− 1

2

)
,

d†
2k− 1

2

= σ+
2k− 1

2

e
−iπ

∑k−1
j=1

1
2

(1+σz
2j− 1

2

)
,

(4.36)

with Jordan-Wigner spins defined on sites numbered 2k − 1
2 , which is the mid-point of

two integer-numbered sites: site 2k − 1 and site 2k. Using these definition, the link

variables in (4.34), which in terms of d fermion read iηz2k−1η
z
2k = 1− 2d†

2k− 1
2

d2k− 1
2

and

iηz2kη
z
2k+1 = −(d2k− 1

2
− d†

2k− 1
2

)(d2k+ 3
2

+ d†
2k+ 3

2

), can be transformed into

iηz2k−1η
z
2k → −σz2k− 1

2

, iηz2kη
z
2k+1 → σx

2k− 1
2

σx
2k+ 3

2

. (4.37)

So far we have discussed only one chain, for other zig-zag chains we can pair up ηz

Majorana fermions in the same way and put the d complex fermion and the Jordan-

Wigner spins on the mid-points of all the ê1 bonds.

After the pairing of sites î and î + ê3 in our definition of staggered fermion, the

effective lattice for the staggered fermions has become a diamond lattice whose sites are

the A sublattice points of the honeycomb lattice. In Fig. 4.3, the diamond lattice is

formed by the red dots and we still use î to label the sites of the diamond lattice. The

honeycomb bond 〈̂i, î+ ê1〉 effectively becomes diamond bond 〈̂i, î+ â1〉. For the system

of staggered fermions, we can effectively put the Jordan-Wigner spins on the diamond
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lattice bonds 〈̂i, î+ â1〉. Using these notations, the mapping (4.37) becomes

iηz
î+ê1

ηz
î
→ −σz

î+ 1
2
â1
, iηz

î
ηz
î+ê2
→ σx

î+ 1
2
â1
σx
î+â2− 1

2
â1
. (4.38)

On the other hand, according to QED in dimension (2 + 1), we define the conjugate

staggered fermion ψ̄ = ψ†σ̃y. Using (4.38) and the definition of conjugate spinor, we

transform the Hamiltonian (4.34) into

H =J
∑
î

[
1

2
ψ̄îψî + σz

î+ 1
2
â1
ψ̄î

(
−1 0

0 0

)
ψî+â1

+ σx
î+ 1

2
â1
σx
î+â2− 1

2
â1
ψ̄î

(
−1 0

0 0

)
ψî+â2

]
+ h.c.,

(4.39)

in which the summation is over every diamond lattice site î.

4.2.2 Z2 gauge theory

In order to fix the Hilbert space of the Majorana fermion, we have to impose the

constraint (4.30). To make further progress, we have to rewrite the constraint in terms

of fermion operators. To this end, we use the relation (3.10) and the definition of the

staggered fermion (4.32) to get the following relation

γîγî+ê3 = (−1)
nî+nî+ê3ηz

î
ηz
î+ê3

= (−1)ψ
†
î
ψîηz

î
ηz
î+ê3

, (4.40)

in which n = c†c is the number of the complex fermion c. With this relation, the

constraint can be rewritten as

(−1)ψ
†
î
ψîηz

î
ηz
î+ê3

= −i. (4.41)

In our previous discussion, we have taken the ηz Majorana fermion on each horizontal

zig-zag edge to form a Kitaev chain and pair them up within the chain to form complex

fermion d. In terms of the d fermion, the ηz Majorana fermion can be written as

ηz
î

= i(dî+ 1
2
â1
− d†

î+ 1
2
â1

), ηz
î+ê3

= (dî− 1
2
â1

+ d†
î− 1

2
â1

). (4.42)
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a2a1

δ

A

B
C

DE

F

Figure 4.4: The diamond lattice, with unit vector â1 and â2. Vector δ̂ is defined to be
â1− â2. The spins from the link variables of the original honeycomb lattice are denoted
by black dots in the â1 bonds. The original horizontal zig-zag chains in the honeycomb
lattice become the horizontal black dashed lines. The treatment of the constraint (4.41)
for site î in the middle of the (green dashed) block ABCD involves the spins in the half-
infinite block CDEF. Duality transformation for each spin chain labelled by the black
dashed line introduces new spin variables whose positions are denoted by black crosses.
The Gauss-law constraint for the Z2 gauge theory involves the staggered fermion and
the four spin operators enclosed in ABCD.
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We then performed 1D Jordan-Wigner transformation for the d complex fermion to

define the spin variables on the middle points of the â1 bonds of the diamond lattice.

In the Jordan-Wigner transformation, the spins (denoted by small black dots in Fig.

4.3) belonging to the same zig-zag edge form horizontal lines that cross the edges of the

diamond lattice (the black dashed line in Fig 4.3 and Fig. 4.4). Based on the definition of

the Jordan-Wigner transformation (4.36) and (4.42) we have, defining vector δ̂ = â1−â2,

ηz
î
→ i(σ−

î+ 1
2
â1
− σ+

î+ 1
2
â1

)e
iπ

∑
j≥1

1
2

(1+σz
î+1

2 â1+jδ̂
)

ηz
î+ê3
→ (σ−

î− 1
2
â1

+ σ+
î− 1

2
â1

)e
iπ

∑
j≥1

1
2

(1+σz
î− 1

2 â1+jδ̂
)
,

(4.43)

here and hereafter we use j to denote an integer variable. Therefore we have

ηz
î
ηz
î+ê3

= σy
î+ 1

2
â1
σx
î− 1

2
â1
e
iπ

∑
j≥1[1+ 1

2
(σz
î+1

2 â1+jδ̂
+σz

î− 1
2 â1+jδ̂

)]
. (4.44)

To evaluate the phase factor in (4.44), we note that in Fig. 4.4, the σz operators

appearing in the exponent in (4.44) are denoted as the black dots enclosed in the half-

infinite region CDEF for the site î enclosed in the square ABCD. To make further

progress, we have to make some assumptions about the boundary conditions. Let us

suppose that the number of sites on the horizontal lines from the site î + 1
2 â1 and

î− 1
2 â1 to the boundary are equal, which means that the boundary is parallel to vector

â1. Under such assumption, we have the total number of σz operators enclosed in the

region CDEF is an even number, which we call 2Ñ . Suppose that among these σz

operators m of them take the value −1 (which implies that 2Ñ −m σz operators take

+1). Then the phase factor in (4.44) is (−1)2Ñ−m = (−1)m. This means that under

this specific boundary condition we have

e
iπ

∑
j≥1[1+ 1

2
(σz
î+1

2 â1+jδ̂
+σz

î− 1
2 â1+jδ̂

)]

=
∏
j≥1

σz
î− 1

2
â1+jδ̂

σz
î+ 1

2
â1+jδ̂

.
(4.45)
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Using (4.45) we map the constraint (4.41) into

(−1)ψ
†
î
ψîσz

î+ 1
2
â1
σx
î+ 1

2
â1
σx
î− 1

2
â1

∏
j≥1

σz
î− 1

2
â1+jδ̂

σz
î+ 1

2
â1+jδ̂

= 1, (4.46)

in which we rewrite σy operators as iσzσx to facilitate further discussion.

To make further progress, we note that the Jordan-Wigner spins on the diamond

lattice form horizontal spin chains, corresponding to the horizontal zig-zag edges of the

original honeycomb lattice. In Fig. 4.4, the spin chains are denoted by black dashed

lines. For each horizontal spin chain in the diamond lattice, we can perform a duality

transformation among spins defined on the sites and spins defined on the bonds [14, 13].

Specifically, for a horizontal spin chain on the diamond lattice formed by sites î+ 1
2 â1+jδ̂

where j is an integer, we define a new set of spin variables τ on the mid-points of the

two neighbouring sites of the original chain, formed by sites î+ 1
2 â2 +jδ̂, in the following

way

τ z
î+ 1

2
â2

= σx
î+ 1

2
â1
σx
î+ 1

2
â1−δ̂

,

τx
î+ 1

2
â2

=
∏
j≥0

σz
î+ 1

2
â1+jδ̂

.
(4.47)

We emphasize that the new set of spin is located on the â2 bonds of the diamond lattice,

they are labelled as black crosses in Fig. 4.4.

Under such duality mapping, the Hamiltonian (4.39) and the constraint (4.46) are

both simplified significantly. The Hamiltonian becomes

H = J
∑
î

[
1

2
ψ̄îψî + σz

î+ 1
2
â1
ψ̄î

(
−1 0

0 0

)
ψî+â1 + τ z

î+ 1
2
â2
ψ̄î

(
−1 0

0 0

)
ψî+â2

]
+ h.c..

(4.48)

It takes the form of a standard lattice gauge theory [13, 14, 112] in which the staggered

fermion couples to Z2 gauge field σz and τ z. The constraint (4.46) becomes

(−1)ψ
†
î
ψîσx

î+ 1
2
â1
σx
î− 1

2
â1
τx
î+ 1

2
â2
τx
î− 1

2
â2

= −1. (4.49)

It takes the form of a standard Z2 Gauss law [13].
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Here let’s move on and discuss the gauge symmetry of the problem. Most im-

portantly we note that the Jordan-Wigner transformation and the duality transfor-

mation make the Z2 gauge symmetry somewhat non-local. Specifically, the trans-

formation ψî → −ψî in the matter field must accompany the following change in

the σ gauge field: σx,y
î+ 1

2
â1−jδ̂

→ −σx,y
î+ 1

2
â1−jδ̂

, σy,z
î+ 1

2
â1
→ −σy,z

î+ 1
2
â1

and σx,y
î− 1

2
â1−jδ̂

→
−σx,y

î− 1
2
â1−jδ̂

. σx,z
î− 1

2
â1
→ −σx,z

î− 1
2
â1

, in which integer j = 1, 2, 3, ...; and the corresponding

transformation for τ spin can be deduced from Eq. (4.47). Although the gauge trans-

formation involves half-infinite spin chains, the only relevant change that manifests in

the Hamiltonian (4.48) is the following: ψî → −ψî and σz
î± 1

2
â1
→ −σz

î± 1
2
â1
, τ z

î± 1
2
â2
→

−τ z
î± 1

2
â2

, which is local. For all î, the gauge transformation results in a sign change for

even number of spins in the constraint (4.49), thus leaves it invariant.

Despite the simple form of the Z2 Hamitonian (4.48) and the Gauss-law constraint

(4.49), the model is still not solvable because the nontrivial relations between the Z2

gauge fields (4.47), they are not independent from each other and thus we cannot fix

the gauge in the usual way.

In order to discuss the physical states of the model, we first use the constraint (4.49)

and define a projection operator for each site î,

Pî =
1

2
[(−1)ψ

†
î
ψîσx

î+ 1
2
â1
σx
î− 1

2
â1
τx
î+ 1

2
â2
τx
î− 1

2
â2
− 1]. (4.50)

It can be proved that the projector on each site commutes with the Hamiltonian (4.48),

[Pî,H] = 0. This can be seen by noting that in the original definition of the constraint

(4.30) the operators γîγî+ê3 commute with the original spin Hamiltonian. The Hamilto-

nian (4.48) is defined in an enlarged Hilbert space. To get to the physical Hilbert space,

we have to use the projection operator to project the state

|ψphys〉 =
∏
î

Pî|ψ〉, (4.51)

in which |ψ〉 is any state in the enlarged Hilbert space and the projected state |ψphys〉
is in the physical space.

Because the projectors commute with the Hamiltonian, if we manage to find the

eigenvalues of the Hamitonian (4.48) in the enlarged Hilbert space, the true spectrum
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ex
ey

x

y

Figure 4.5: The square lattice, with unit vectors êx and êy. Spins in the 90◦ compass
are defined on the sites of the square lattice. Under SO(3) Majorana representation,
we pair up the Majorana fermions on the two ends of the green bonds to form complex
fermion. After the pairing, the lattice breaks into A sublattice labelled by the red
dots, and B sublattice labelled by the blue dots. Complex fermion is defined on the
A sublattice, which then forms a rectangle lattice. The unit vectors of the rectangle
lattice are labelled by x̂ and ŷ.

of the system will be the same. Unfortunately, as mentioned before, the spectrum

of (4.48) is hard to find even in the enlarged Hilbert space because of the non-trivial

relation of the gauge fields (4.47). The duality mapping (4.47) does not allow us to

simply pick up a gauge like σz = 1 and τ z = 1 for all the bonds, therefore exact solution

of the spectrum is unavailable.
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4.3 The 90◦ Compass Model on Square Lattice

4.3.1 The model and SO(3) Majorana representation

The compass models refer to a group of frustrated lattice spin models in which the spin

interaction is Ising-like and bond-dependent (for a review, see Ref. [116]). On the two-

dimensional square lattice, the bonds can be categorized by its direction, as shown in

Fig. 4.5, we call the horizontal bonds in the lattice x-bonds and vertical bonds y-bonds.

In the 90◦ compass model on 2D square lattice [116, 117, 118], the spins are placed on

each site of the square lattice and only the x-components are interacting on x-bonds and

only y-components are interacting on the y-bonds. Correspondingly, the Hamiltonian

is given by

H =
∑
〈ij〉x

J1σ
x
i σ

x
j +

∑
〈ij〉y

J2σ
y
i σ

y
j , (4.52)

in which 〈ij〉x denotes the x-bonds, and 〈ij〉y denotes the y-bonds, and J1 and J2 are

the coupling strength on x-bonds and y-bonds respectively.

Following our discussion in Chapter 3, we can use the SO(3) Majorana representation

to study this model. The first step is to use three Majorana fermions ηαi with α =

x, y, z to represent each spin operator. Using the definition of the SO(3) Majorana

representation in Eq. (3.3), we have

σxi σ
x
j = (ηyi η

y
j )(ηzi η

z
j ), σyi σ

y
j = (ηzi η

z
j )(η

x
i η

x
j ). (4.53)

According to the Hamiltonian (4.52), such decomposition into Majorana fermions im-

plies that the ηx and ηy Majorana fermions only hop on y and x-bond, respectively and

the ηz Majorana fermions hop on the entire lattice. Because the hopping of ηz Majorana

fermion on x and y bonds mutually commute, it is expected that some kind of dimen-

sional reduction exists in this model (which we do not discuss in detail) [116, 117, 118].

For the next step we pair up the sites and define complex fermion operators. Here

we choose to pair the Majorana fermions on half of the y-bonds. In Fig. 4.5, the paired

bonds are denoted by the green bonds. After the pairing, the lattice rotational symmetry

is broken and the lattice contains two sublattices. The lower sites on the paired y-bonds

are defined to be the A sublattice and the upper sites are the B sublattice. We then
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pair up the Majorana fermions to form three flavors of complex fermion,

cα
î

=
1

2
(ηα
î
− iηα

î+êy
), cα†

î
=

1

2
(ηα
î

+ iηα
î+êy

), (4.54)

in which α = x, y, z and the position of these complex fermions is chosen to be on the A

sublattice. Here and hereafter, we use hatted symbol î to label sites of the A sublattice

of the original square lattice. Note that this definition of complex fermions is different

from the one we used in Sec. 3.1.1 and Sec. 4.2. With this definition of pairing and

complex fermions, the lattice is effectively transformed into a rectangle lattice in which

only the A sublattice sites of the original square lattice are kept. The unit vectors of the

original square lattice are labelled by êx and êy, respectively. In the effective rectangle

lattice, the unit vector of the y direction becomes ŷ = 2êy, while the unit vector on the

x direction is x̂ = êx (see Fig. 4.5). We will use x̂ and ŷ to label the unit vectors as

well as bonds on the rectangle lattice.

In order to fix the Hilbert space of the Majorana fermions, we require that for each

paired bond γîγî+êy = i, with γî being the SO(3) singlet in the Majorana representation

defined in (3.4). In terms of the complex fermions, it reads

γîγî+êy = −i(2cx†
î
cx
î
− 1)(2cy†

î
cy
î
− 1)(2cz†

î
cz
î
− 1)

= i(−1)n
x
î
+ny

î
+nz

î = i,
(4.55)

in which we use nα
î

= cα†
î
cα
î

to denote the number of complex fermion of each flavor.

The condition (4.55) implies that there are even number of complex fermion on each

site.

Using the complex fermions (4.54) and decomposition (4.53), we can transform the

Hamiltonian (4.52), which is first expressed as H = Hx +Hy, in which Hx contains the

spin interaction on x̂-bonds and Hy contains spin interaction on ŷ-bonds. We have

Hx =
∑
î∈〈A〉

J1(σx
î
σx
î+êx

+ σx
î+êy

σx
î+êx+êy

)

=
∑
î

2J1[(cy
î
cy
î+x̂

+ cy†
î
cy†
î+x̂

)(cz
î
cz
î+x̂

+ cz†
î
cz†
î+x̂

)

+ (cy†
î
cy
î+x̂

+ cy
î
cy†
î+x̂

)(cz†
î
cz
î+x̂

+ cz
î
cz†
î+x̂

)].

(4.56)
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And

Hy =
∑
î∈〈A〉

J2(σy
î
σy
î+êy

+ σy
î+êy

σy
î+2êy

)

=
∑
î

J2[(2cy†
î
cy
î
− 1)

− (cx
î
− cx†

î
)(cx

î+ŷ
+ cx†

î+ŷ
)(cz

î
− cz†

î
)(cz

î+ŷ
+ cz†

î+ŷ
)].

(4.57)

In the equations above, we have used the condition (4.55). In both (4.56) and (4.57),

the summation is done for the sites on the retangle lattice, which coincide with the A

sublattice of the original square lattice and thus are also labelled by î.

Notice from Eq. (4.56) and Eq. (4.57) that the complex fermions cx and cy only

hop within each individual chain of y-bonds and x-bonds respectively. Fermions on

different chains don’t talk to each other, which implies that the dynamics of the complex

fermions cxi and cyi is quasi-one-dimensional. This invites us to perform 1D Jordan-

Wigner transformation for fermions cxi and cyi .

4.3.2 Jordan-Wigner transformation for complex fermions and duality

transformation

According to the one-dimensional Jordan-Wigner transformation (3.32), we can map

a 1D chain of complex fermions ci into a chain of spins σi. Specifically in our case,

for each site î we have to define two sets of spin variables: one for the Jordan-Wigner

transformation of cy
î

fermions on x-axis, which we call σî; the other one for the Jordan-

Wigner transformation of cx
î

fermions on y-axis, which we call σ̃î. (The cz fermion

and the Jordan-Wigner spin variables σ and σ̃ are located at sites of the rectangle

lattice, labelled by red dots in Fig. 4.6.) Using (3.32) we have the Jordan-Wigner

transformation on x̂-bonds,

cy
î
cy
î+x̂

+ cy†
î
cy†
î+x̂
→ i

2
(σy
î
σx
î+x̂

+ σx
î
σy
î+x̂

)

cy†
î
cy
î+x̂

+ cy
î
cy†
î+x̂
→ i

2
(σy
î
σx
î+x̂
− σx

î
σy
î+x̂

).

(4.58)
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x
y

A B
1 2 3

Figure 4.6: The rectangle lattice, with unit vectors x̂ and ŷ, note that we have shrinked
the length of ŷ to half of its length to achieve a clearer look. The complex fermion lives
on the sites of the rectangle lattice, denoted by the red dots. The spin variables τ are
defined on the bonds of the lattice, which are the black dots. In the Z2 gauge theory
Hamiltonian (4.69), the hopping of complex fermions defined on sites A and B couples
to the spins on sites 1, 2, and 3. The dual lattice can be defined by connecting the
centers of plaquettes of the original lattice. Part of the dual lattice is shown by the
green dashed lines.
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The Jordan-Wigner transformation on ŷ-bonds reads,

(cx
î
− cx†

î
)(cx

î+ŷ
+ cx†

î+ŷ
)→ −σ̃x

î
σ̃x
î+ŷ

. (4.59)

At this stage, it is important to consider the constraint (4.55) in the form of the

Jordan-Wigner spin variables σ and σ̃. We have, based on the Jordan-Wigner trans-

formation (3.32), that the number of fermion on each site is transformed according

to

nî = c†
î
cî → σ+

î
σ−
î

=
1

2
(1 + σz

î
). (4.60)

Thus the condition that there are even number of fermions on each site (see Eq. (4.55))

is transformed into the following condition in terms of the number of the cz fermions

and the two Jordan-Wigner spins on each site,

2nz
î

+ σz
î

+ σ̃z
î

= ±2, (4.61)

or in another form

(−1)n
z
î σz
î
σ̃z
î

= 1. (4.62)

Now we have two types of spin variables on each site. To simplify the problem we can

apply a duality transformation of 1D spin system [13, 14] to transform the two types of

spins on sites to spins on bonds.

To define the duality transformation, we introduce a new set of spin variables τ on

the x̂ and ŷ bonds of the rectangle lattice. The new spin variables on x̂-bonds τî+ x̂
2

are

used to represent the σî variables and the new spin variables on ŷ-bonds τ
î+ ŷ

2
are used

to represent σ̃î variables. In Fig. 4.6, the new spin variables τ are denoted by the small

black dots on the bonds. Due to the distinction between the τ variables on x-bonds

and y-bonds (in contrast to the σ and σ̃ variables which are located at the same site),

there is no confusion in this transformation although we are using the same symbol to

label all the new spin variables (for both σ and σ̃). The duality transformation [13, 14]

can be defined subsequently; in particular, we have that the σî variables on x-bonds are

transformed as

σz
î

= τx
î− x̂

2

τx
î+ x̂

2

, σx
î

=
∏
j≥1

τ z
î+ x̂

2
−jx̂, (4.63)
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in which we use j to denote an integer variable. Therefore we have

σy
î
σx
î+x̂

= −iσz
î
σx
î
σx
î+x̂

= −τx
î− x̂

2

τy
î+ x̂

2

,

σx
î
σy
î+x̂

= iσx
î
σx
î+x̂

σz
î+x̂

= −τy
î+ x̂

2

τx
î+ 3x̂

2

.
(4.64)

Similarly, the Jordan-Wigner spins on y axis are transformed as

σ̃x
î
σ̃x
î+ŷ

= τ z
î+ ŷ

2

, τx
î− ŷ

2

τx
î+ ŷ

2

= σ̃z
î
. (4.65)

With this duality transformation (4.64) and (4.65), the condition (4.55) (and further

(4.62)) is transformed as

(−1)nîτx
î− x̂

2

τx
î+ x̂

2

τx
î− ŷ

2

τx
î+ ŷ

2

≡ 1. (4.66)

4.3.3 Z2 gauge theory

Using the bond spin operators, the two parts of the Hamiltonian (4.56) and (4.57) can

be transformed. First, using Jordan-Wigner transformation on x-axis (4.58) and duality

transformation (4.64) we have

Hx →
∑
î

2J1[
i

2
τy
î+ x̂

2

(−τx
î− x̂

2

− τx
î+ 3x̂

2

)(cz
î
cz
î+x̂

+ cz†
î
cz†
î+x̂

)

+
i

2
τy
î+ x̂

2

(−τx
î− x̂

2

+ τx
î+ 3x̂

2

)(cz†
î
cz
î+x̂

+ cz
î
cz†
î+x̂

)]

=
∑
î

J1[(τx
î+ x̂

2

τx
î− x̂

2

)τ z
î+ x̂

2

(cz
î

+ cz†
î

)(cz
î+x̂

+ cz†
î+x̂

)

+ (τx
î+ x̂

2

τx
î+ 3x̂

2

)τ z
î+ x̂

2

(cz
î
− cz†

î
)(cz

î+x̂
− cz†

î+x̂
)].

(4.67)

Here we have used the fact that aA+ bB = 1
2 [(a+ b)(A+B) + (a− b)(A−B)] for any

variables a, b and A,B. Similarly we can transfrom Eq. (4.57) as follows

Hy →
∑
î

J2[τx
î− x̂

2

τx
î+ x̂

2

+ τ z
î+ ŷ

2

(cz
î
− cz†

î
)(cz

î+ŷ
+ cz†

î+ŷ
)], (4.68)
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in which we have used the following transformation coming from the Jordan-Wigner

transformation and duality transformation mentioned above: (2cy†i c
y
i − 1) → σzi →

τx
i− x̂

2

τx
i+ x̂

2

.

Combining (4.67) and (4.68) we can see that now the Hamiltonian involves complex

fermion cz
î

defined on the sites of the rectangle lattice and spin variables τα defined on

the bonds of the rectangle lattice (see Fig. 4.6). The unphysical degrees of freedom are

eliminated by the gauge condition (4.66) which takes the form of standard Z2 Guass

law [13, 74]. Although the form of the transformed Hamiltonian is simple, it is not the

usual Z2 gauge theory [112] in that the bond variables contain non-commuting τx and

τ z.

For the next step, we can safely drop the index z of the complex fermions with-

out causing confusion since it is the only fermionic degree of freedom left. The total

Hamiltonian is now given by

H =
∑
î

J1[(τx
î+ x̂

2

τx
î− x̂

2

)τ z
î+ x̂

2

(cî + c†
î
)(cî+x̂ + c†

î+x̂
)

+ (τx
î+ x̂

2

τx
î+ 3x̂

2

)τ z
î+ x̂

2

(cî − c
†
î
)(cî+x̂ − c

†
î+x̂

)]

+ J2τ
x
î− x̂

2

τx
î+ x̂

2

+ J2τ
z
î+ ŷ

2

(cî − c
†
î
)(cî+ŷ + c†

î+ŷ
).

(4.69)

To see the Z2 gauge symmetry, we note that the Hamiltonian (4.69) and the con-

straint (4.66) are invariant under the transformation: cî → −cî and τ z
î± x̂

2

→ −τ z
î± x̂

2

, τ z
î± ŷ

2

→
−τ z

î± ŷ
2

, with all τx components unchanged.

From the condition (4.66) we can define a projector for each site î,

Pî =
1

2
[(−1)nîτx

î− x̂
2

τx
î+ x̂

2

τx
î− ŷ

2

τx
î+ ŷ

2

+ 1]. (4.70)

The projector (4.70) commutes with the Hamiltonian (4.69), [Pî,H] = 0 following the

fact that {(−1)ni , ci} = 0 and {(−1)ni , c†i} = 0. It can also be seen by noting that

the operators γîγî+êy that are picked to define the condition (4.55) commute with the

original spin Hamiltonian. The Z2 Hamiltonian (4.69) is defined in an enlarged Hilbert

space, which contains the physical space as a subspace. The physical space is obtained

by projection |ψphys〉 =
∏
î Pî|ψ〉, in which |ψ〉 is any state of the enlarged Hilbert space.

As discussed in earlier sections, because we have [Pî,H] = 0, if we manage to find the
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eigenstate ofH, the physical state will have the same energy after projection. This allows

us to focus on the Hamiltonian (4.69) first, find its eigenstates and its eigenvalues give

the exact energy spectrum of the model.

Unfortunately the Z2 Hamiltonian is highly non-trivial. In Fig. 4.6, we note that

the hopping of complex fermions between sites A and B couples to Z2 gauge fields on

bonds 1, 2 and 3. In analogy to the U(1) lattice gauge theory [13], the τx operator

acts like electric field while the τ z operator acts like magnetic vector potential. The

non-trivial form of Hamiltonian (4.69) means that the charge current in this Z2 gauge

theory couples non-trivially to the electric field. Another way to study the Hamiltonian

is by going to the dual lattice which is defined by connecting the centers of all the

plaquettes of the retangle lattice (in Fig. 4.6, part of the dual lattice is shown by green

dashed lines). On the dual lattice, we perform the duality transformation of electrical

and magnetric fields, i.e. define a new set of fields τ̃ z = τx and τ̃x = −τ z on the same

sites of the original fields. The new set of gauge fields τ̃ are still defined on the bonds

of the dual lattice; however, the charges, which become the magnetic monopoles after

the transformation, are located at the centers of the plaquettes of the dual lattice and

the condition (4.66) becomes the flux attachment constraint to the magnetic monopole.

4.4 Discussion on the Z2 gauge theories and the applica-

tion of SO(3) Majorana representation in spin models

Applying the SO(3) Majorana representation, we study three spin models on 2D lattices,

including the Kitaev model, the quantum XY model on honeycomb lattice and the 90◦

compass model on square lattice. For our solution of the Kitaev model in Sec 4.1, it is

noteworthy that the physical solution we obtained is different from the previous works

[107, 108] in that our results highlights the importance of the Z2 gauge transformation

in the relation between the physical state and the naive eigenstate of the Hamiltonian.

Moreover, our results give an explicit formula to calculate the physical expectation of any

observable, namely Eq. (4.28). This method is applicable to small systems away from

the thermodynamic limit as well. Using this, one can obtain the physical observables

such as the structural function and calculate the experimental response. In the quantum

XY model on honeycomb lattice and the 90◦ compass model on square lattice, we show
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how to use the SO(3) Majorana representation to exactly map these models into Z2

lattice gauge theories. Specifically, we introduce N
2 constraints by pairing up sites and

requiring that for each pair 〈ij〉, the value of the product of SO(3) singlets γiγj is fixed.

Due to the fact that these product operators commute with the spin Hamiltonian, we

show that the conditions can be mapped into the standard form of Gauss law in the

Z2 gauge theories. Unfortunately, neither of the two models is exactly solvable and the

resulting Z2 gauge theories are non-trivial because we cannot simply pick up a gauge

and determine the spectrum of the matter fields. To this end, further approximations

are needed to treat these non-trivial Z2 gauge theories. Here we give a brief discussion

on the possible approximations that may be applied and make some remarks on future

direction of study.

In the quantum XY model on honeycomb lattice, we obtain the exact Z2 Hamil-

tonian (4.48) with Gauss-law constraint (4.49). If we ignore the non-trivial relation

between gauge fields (4.47) and set σz = 1 and τ z = 1 for all the bonds, we can get

an approximate spectrum of the fermion. For that, we have to return to the language

of complex fermion c. Due to the form of the Hamiltonian (4.48) and the underlying

lattice, the resulting spectrum is similar to that of graphene [119]. Adding a magnetic

field to the model will corresponding to adding a chemical potential term to the com-

plex fermion [93]. On the other hand, using the approximate spectrum we can study

the possible phase transition in the quantum XY model with finite temperature [120].

In the 90◦ compass model on square lattice, the Z2 Hamiltonian (4.69) and the

condition (4.66) are exact results. To go further, we note that the link variables in (4.69)

on the x̂ direction are still anti-commuting to each other. Such property is rooted in

the anti-commuting link variables in the original Hamiltonian under SO(3) Majorana

representation which was discussed in Sec. 3.3.2. We can apply mean-field theory to

treat them, and it is believed that proper mean-field treatment of (4.69) will lead to

comparable results as the previous works [116], such as quantum phase transition near

the point J1 = J2 [117].

In summary, our application of SO(3) Majorana representation in the three models

in this chapter shows a new way to treat spin models. This method features a series of

exact mapping and the results are always Z2 gauge theories with standard Gauss law.

The exact Z2 gauge theories contain all the physics of the original spin model and serve



82

as the starting point of further approximations, if needed. At this stage, it is important

to point out the limitation on the applicability of this method on spin models. As we

seen in Sec. 3.1.1, in the SO(3) Majorana representation the z-component spin interac-

tion is mapped into a four-fermion interaction (or density-density interaction), as shown

in Eq. (3.12). There is considerable difficulty in treating such four-fermion interaction

[21, 40]. Therefore, the mapping of spin models to exact Z2 gauge theories is only

applicable to the spin Hamiltonians which do not have the spin rotational symmetry.

Otherwise the four-fermion interaction is included and the application of SO(3) Majo-

rana representation holds no advantage over other representations. Specifically, there

is no “σz − σz” interaction in either of the models considered here, and in the Kitaev

model only one spin component is interacting on each bond [23]. However, the exact

condition on the applicability of the method is still lacking and one should consider the

application of SO(3) Majorana representation in each individual spin model separately.



Chapter 5

U(1) gauge theory of spin models

from nonlocal spin

representations

In previous chapters, we presented the study of spin models using various spin repre-

sentations. In Chapter 2, we showed that the application of Abrikosov fermion repre-

sentation on the mean-field level results in SU(2) gauge structure. We then focus on the

SO(3) Majorana representation and demonstrated its application in three types of 2D

spin models, which all resulted in exact Z2 gauge theories (see Chapter 3 and Chapter

4). In this chapter, we will show the application of a special types of spin representation,

the nonlocal spin representation. Unlike the previous discussed ones, in the non-local

spin representation, the spinon operators are not defined on the same site as the spin.

Such spin representation is generally useful for some special types of lattice geometries,

such as the pyrochlore lattice and the kagome lattice. To illustrate this, we start with

a review of the previous study of the quantum spin ice, a model in which spins live on

the sites of a pyrochlore lattice. And then I will propose another nonlocal spin repre-

sentation and discuss its possible application. As we will see, the resulting theory of the

nonlocal spin representation usually has a U(1) gauge structure.

83
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Figure 5.1: The pyrochlore lattice relevant for QSI materials. The centers of blue and
yellow tetrahedra, labeled by x, form the A and B sublattices of the diamond lattice,
correspondingly. µ = 0, 1, 2, 3 label the bonds of the diamond lattice. The spins,
Sx,µ, reside on the pyrochlore sites located on the middle of the bond µ. The dashed
lines illustrate the electron hopping paths involved in the super-exchange processes that
generate the spin Hamiltonian.

5.1 Quantum spin ice model and the U(1) gauge theory

In this section, we study a model quantum spin liquid (QSL), the quantum spin ice

(QSI). Defined on the pyrochlore lattice, a network of corner-sharing tetrahedra (see

Fig.5.1), this QSL emerges naturally from the classical spin ice limit [31, 32, 121]. In

this limit, there are a macroscopic number of ground states characterized by the so-called

“ice rule”; each tetrahedron must be in a two-in/two-out state [121]. Excitations about

this manifold have three spins up and one down (or vice-versa) and can be separated at

no energy cost [122]. As first shown by Ref. [80], adding transverse exchange induces

quantum tunneling between different ice states. A sufficiently weak tunneling stabilizes

a QSL ground state with an emergent U(1) gauge field and bosonic spinon excitations[32,

80, 81, 123, 124]. Much effort has been put forth to understand the nature of the QSI

phase as well as its static and dynamic properties [80, 81, 123, 124, 125, 126, 127, 128,

129, 130, 131].
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5.1.1 Spin Hamiltonian of the quantum spin ice

Before discussing the effective theories developed for the quantum spin ice, we first

review the relevant anisotropic exchange models for the pertinent pyrochlore materials.

In the candidate materials for QSI, the magnetic degrees of freedom originate from the

rare-earth ions [32]. Although we are not per se confining ourselves to the details of

the rare-earth ions that currently form the majority of the QSI materials, it is useful

to set the stage and make some general observations about the spin Hamiltonian so far

considered in the theoretical and experimental investigations of QSI systems [32].

In rare-earth ions, the atomic interactions dominate; the free-ion ground state is

determined by following Hund’s rules, first minimizing the Coulomb energy, followed by

the spin-orbit energy. These free-ion states have well defined total angular momentum,

J . In a crystalline environment, due to the electric fields from the surrounding ions,

the remaining 2J + 1 degeneracy of this manifold is partially lifted. When J is a half-

odd-integer, only Kramers’ degeneracy remains and one has a series of doublets for

the relevant D3d site symmetry [132]. With respect to this symmetry, these doublets

can transform either like spin-1/2 objects, a “pseudo-spin” doublet (as in Yb2Ti2O7 or

Er2Ti2O7) [126], or like a more exotic “dipolar-octupolar” doublet [133] (as in Dy2Ti2O7

and Nd2Zr2O7). For integer J , Kramers’ theorem does not apply and singlet states are

possible. However, the D3d site symmetry can allow a non-magnetic doublet, a so-

called non-Kramers doublet (as, for example in Ho2Ti2O7 or Tb2Ti2O7) [132]. If well

separated from the other crystal field levels, these crystal field doublets behave like

an effective spin-1/2 degree of freedom. For this reason, we will refer to all of these

states as a “spin” regardless of whether they are pseudo-spin-1/2, dipolar-octupolar or

non-Kramers type.

To describe these doublets, we introduce the spin operators Si, defined in the local

basis at each site [126]. For the dipolar-octupolar and non-Kramers doublets, only

Szi contributes to the magnetic dipole moment with µi = −gµBSzi ẑi, where ẑi is the

local [111] direction. For the pseudo-spin-1/2 case, both the ẑi component and the

components perpendicular to ẑi contribute to the dipole moment. Since these three

types of doublets transform quite differently under lattice symmetries [123, 133], the

allowed exchange interactions are generally distinct. The most general nearest neighbor
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anisotropic exchange model on the pyrochlore lattice can be written as [81, 126]:

Hex =
∑
〈ij〉

[JzzS
z
i S

z
j − J±

(
S+
i S
−
j + S−i S

+
j

)
+ J±±

(
γijS

+
i S

+
j + H.c.

)
+ Jz±

(
ζij

[
Szi S

+
j + S+

i S
z
j

]
+ H.c.

)
],

(5.1)

where the matrices ζij = −γ∗ij and γij are defined in Appendix D. For the case of a

pseudo-spin-1/2 doublet, all of these couplings are allowed. For a non-Kramers doublet,

one has Jz± = 0 whereas for a dipolar-octupolar doublet, the phases are absent, i.e.

γij = 1 and ζij = 1 [133]. Microscopically, these kinds of short-range anisotropic

interactions can be generated by various super-exchange mechanisms [134, 135]. If Jzz >

0 and J±± = J± = Jz± = 0, one recovers the model of classical spin ice. Here we are

focusing on a nearest-neighbor description and exclude long-range dipolar interactions.

Introducing a finite J± or J±± with Jzz � J±, J±± � Jz± induces quantum tunneling

between the ice states [80, 81], and stabilizes a QSI ground state [125, 127, 128, 129].

Note that finite Jz±, for a pseudo-spin-1/2 doublet, produces an ordered ferromagnetic

state drawn from the ice manifold [81]. To obtain QSI, one can thus only include Jz± in

concern with J± or J±±. For a dipolar-octupolar doublet, Jz± is entirely innocuous and

can be removed by a local redefinition of the doublet states. While in Dy2Ti2O7 and

Ho2Ti2O7 one expects J± and J±± to be negligible [135], in other materials such as

Yb2Ti2O7, Er2Ti2O7 or Tb2Ti2O7, experiments strongly suggests that these couplings

are significant [126, 136, 137, 138, 139]. Since we are interested in the spin ice limit, we

shall restrict ourselves to cases where Jzz is dominant and is antiferromagnetic (Jzz > 0).

In the remainder of the paper, we thus work with the dimensionless ratios

j± = J±/Jzz, jz± = Jz±/Jzz, j±± = J±±/Jzz, (5.2)

which we assume to be small such that we remain in the QSI phase.

5.1.2 U(1) gauge theory of scalar spinon

We now review the scalar slave-particle description of QSI [81], using the formulation

introduced in Ref. [124]. In the following, we use the notation of Refs. [81, 124] and

label the pyrochlore sites by a combined index (x, µ), in which x denotes a diamond
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lattice site (center of a tetrahedron) belonging to sublattice A and µ = 0, 1, 2, 3 are the

four nearest neighbors of the diamond site, as shown in Fig. 5.1. The spin at the center

of the bond 〈x,x+ µ〉 is then labeled as Sx,µ, with µ being the vector connecting the

two neighboring diamond sites shown in Fig. 5.1.

We study the exchange Hamiltonian, Eq. (5.1), in an enlarged Hilbert space contain-

ing both charge and spin degrees of freedom separately. We construct this by introducing

a new Hilbert space for the charge operator Qx on the diamond lattice sites independent

of the spins on the pyrochlore sites. In terms of the spins, the charges are defined as

Qx =

{
+
∑

µ S
z
x,µ, x ∈ A,

−
∑

µ S
z
x−µ̂,µ, x ∈ B.

(5.3)

The charge operator Qx characterizes violations of the ice rules: Qx = 0 being satisfied

for a two-in/two-out state, while tetrahedra with three-in/one-out or three-out/one-in

have Qx = ±1 and those with all-in/all-out have Qx = ±2.

Next, we enlarge the range of allowed charges from strictly 0,±1 and ±2 to include

all integers. Explicitly, if we define the physical Hilbert space as Hphys =
⊗

x,µH1/2,

where H1/2 is the spin Hilbert space, then the extended space is

Hext =

[⊗
x,µ

H1/2

]
⊗

[⊗
x

HO(2)

]
≡ Hs ⊗HQ, (5.4)

and where HO(2) is the Hilbert space of an O(2) rotor, defined at each diamond site and

spanned by an infinite set of basis states that satisfy Qx|qx〉 = qx|qx〉, where qx is an

integer. We define the physical subspace as the one in which the Qx operators satisfy

the constraint of Eq. (5.3).

In this extended space, one then introduces a phase θx, conjugate to the charge

operators Qx [81]. These two operators satisfy the canonical commutation relation

[θx, Qx′ ] = iδx,x′ . (5.5)

The quantization of Qx implies the periodicity of θx. The operators Qx and θx allow

us to introduce a spinon operator, ψx, which is the basic element in a slave particle

description of spin ice. To be precise, we define the raising and lowering operators
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ψ†x = e+iθx and ψx = e−iθx , satisfying

[ψ†x, Qx′ ] = −ψ†xδx,x′ , [ψx, Qx′ ] = +ψxδx,x′ , (5.6)

which thus increase or decrease the charge quantum number at diamond lattice site

x. We then interpret Qx as the spinon number operator in the quantum theory, with

ψ†x and ψx being spinon creation and annihilation operators [81], living in the Hilbert

space HQ.

For the Hs part of the extended Hilbert space, we define new auxiliary spin-1/2

operators, sx,µ. The original physical spin-1/2 operators Sx,µ can be expressed in

terms of the sx,µ, ψ†x and ψx operators as

S+
x,µ = ψ†xs

+
x,µψx+µ̂, (5.7a)

S−x,µ = ψ†x+µ̂s
−
x,µψx, (5.7b)

Szx,µ = szx,µ. (5.7c)

These combinations of operators are chosen such that the canonical commutation rela-

tions of the original spin-1/2 operators, Sx,µ, are preserved, and the physical constraint

defined by Eq. (5.3) is also respected. If we were able to enforce these constraints

exactly, Eqs. (5.3-5.7) would then constitute an exact reformulation of the original spin-

1/2 problem of Eq. (5.1). While such an exact description is not feasible, this set of

variables have nevertheless proven to be a useful starting point for describing the QSI

phases of the anisotropic exchange model given in Eq. (5.1) [81, 124].

The enlargement of the Hilbert space implies a large degree of redundancy in this

description. In particular, note that the mapping defined by Eq. (5.7) is invariant under

the U(1) transformation

ψx → ψxe
iαx , s±x,µ → s±x,µe

±i(αx−αx+µ̂), (5.8)

for an arbitrary local phase αx. This gauge redundancy can be made explicit by re-

casting the sx,µ operators in terms of an emergent gauge field, Ax,µ, and an emergent
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electric field, Ex,µ, via

s±x,µ = |s±x,µ|e±iAx,µ , szx,µ = Ex,µ. (5.9)

To simplify the problem, we replace the transverse components of the spin operator by

their average values, with |s±x,µ| ≈ 〈|s±x,µ|〉, and only keep the phase of s±x,µ as dynamical

variable [30]. It is easy to check that the electric field and the gauge field satisfy the

commutation relation

[Ax,µ, Ex′,ν ] = iδxx′δµν . (5.10)

By construction, these fields are compact given the redundancy built into the definition

of Ax,µ and the periodicity of θx. This kind of mapping of an auxiliary spin-1/2 system

to a gauge theory has been explored in many contexts; we refer the reader to the

literature for further details [80, 128, 131].

Having performed this reformulation of the original spin degrees of freedom, we now

rewrite Hex in terms of these new variables. One finds

Hex =
1

2

∑
x

Q2
x

− j±〈s±〉2
∑

x∈〈A〉

∑
µ<ν

[
ψ†xe

i(Ax,µ−Ax+µ̂−ν̂,ν)ψx+µ̂−ν̂ + ψ†x+µ̂e
−i(Ax,µ−Ax,ν)ψx+ν̂ + H.c.

]
− jz±〈s±〉

∑
x∈〈A〉

∑
µ6=ν

[
Ex,µ(ψ†xe

iAx,νψx+ν̂ + ψ†x+µ̂−ν̂e
iAx+µ̂−ν̂,νψx+µ̂)ζµν + H.c.

]
− j±±〈s±〉2

∑
x∈〈A〉

∑
µ<ν

[
(ψ†xψx+µ̂ψ

†
xψx+ν̂ + ψ†x+µ̂−ν̂ψx+µ̂ψ

†
xψx+µ̂)γµν + H.c.

]
.

(5.11)

Here we see that the Jzz- and J±-parts of Hex describe the spinon degrees of freedom,

as well as their interaction with the gauge field A. Including finite Jz± introduces

further spinon-gauge couplings, while J±± produces direct four-spinon interactions. In

the current work we consider only Jz± = J±± = 0. Focusing on this limit has several

advantages; aside from being theoretically simpler, this limit is common for the exchange

models for all three types of microscopic degrees of freedom discussed in Sec. 5.1.1. In

addition, there is no sign problem for the exchange model when J± > 0 and J±± = Jz± =

0. This would in principle allow validation of these results though direct numerical



90

simulation [125, 129]. However, in this thesis we pursue an analytical route.

As it stands, the reformulated model Hex of Eq. (5.11) lacks any dynamics for the

gauge fields at leading order. To remedy this, we follow Ref. [124] and add to the model

Hg ≡
U

2

∑
x∈〈A〉,µ

E2
x,µ − g

∑
7

cos

 ∑
xµ∈7

Ax,µ

 , (5.12)

to endow the gauge sector with its own dynamics. We denote the full model, with this

additional gauge part, as

HQSI ≡ Hex +Hg. (5.13)

One should also include the constraint of Eq. (5.3) in addition to the Hamiltonian. Such

constraints can be implemented by including a non-dynamical constraint field φx into

the problem [124]. This field induces a Coulomb interaction between the charges Qx

on different sites. Within low-density limit of the exclusive boson representation (to be

introduced) these terms can be neglected. The final form can be inspired from the one of

the effective Hamiltonian that arises when considering the effects of transverse exchange

on the ground state spin-ice manifold [80]. The “ring”-exchange term, proportional to

g in Eq. (5.12), appears first at third order in j± or at sixth order in j±± [80]. Such

effective model has been analyzed in detail in Refs. [80, 128]. Here we have added it by

hand to make up for some of the deficiencies in the slave-particle approach. In terms of

Axµ, the second term in Eq. 5.12 describes the “lattice curl” of the gauge field, while the

first term penalizes large electric fields, as required for the mapping of the auxiliary spin-

1/2 spins, sxµ, to a gauge theory. For our purposes, we will assume the compactness

of the gauge field as innocuous; namely the effects of the gauge monopoles [14, 80] are

not considered. Consistent with this assumption, we also take Ax,µ � 1. Under such

condition, Hg can be expanded to give [124, 128]

Hg =
∑

x∈〈A〉,µ

[
U

2
E2

x,µ +
g

2
B2

x,µ

]
, (5.14)

where the magnetic fluxes Bx,µ derive from the lattice curl of the gauge field Ax,µ

[128]. In such a phenomenological description, the magnitudes of U and g must be set

by comparison with more precise calculations within the full model, Eq. 5.13. For the
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case of j±± = jz± = 0 they have been estimated to be on the order of ∼ j3
± [124, 128].

More specifically, we use the values of Ref. [124], which are

g ' 24j3
±, U ' 2.16j3

±. (5.15)

Because of the quantum rotor nature of the bosonic spinon ψ, it is nontrivial to

handle the dynamics of the spinon in general. As proposed by Ref. [124], a specific

bosonic many-body theory involving special representation of the ψ operators in terms

of normal bosonic operators can be applied. Based on this theory, it is possible to

calculate the Raman scattering response of the quantum spin ice material under some

approximations, this process can be intepreted as the interaction between real U(1)

gauge field (the light) and the effective (or artificial) U(1) gauge field in the QSI materials

[140]. Details of these studies is beyond the scope of the thesis.

5.2 Staggered Abrikosov fermion representation and po-

tential U(1) gauge theories for spin models

The nonlocal bosonic spin representation in Eq. 5.7 captures the collective dynamics of

the spins around a certain tetrahedron by defining a bosonic spinon operator ψ located

on the center of the tetrahedron. Such bosonic operator then becomes a new degree

of freedom. However, the spin algebra cannot be reproduced with only the spinon

operators, so an additional auxiliary “little-s” operator is necessary in Eq. 5.7. The

physical meaning of the “little-s” operator is unclear and was treated on the mean-field

level. In the effective theory discussed in previous section, the only physical degree of

freedom that is left of the “little-s” operator is its phase flucturation. One then expects

that the bosonic representation 5.7 can hardly capture all the physics of the quantum

spin ice model.

This motivates me to propose another type of nonlocal spin representation for the

quantum spin ice models (and some other model) based on the Abrikosov fermion rep-

resentation. Such representation does not rely on unclearly defined degrees of freedom

and is called staggered Abrikosov fermion representation due to its structure.
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5.2.1 The represenation and its gauge structure

To introduce the staggered Abrikosov fermion representation, we start by considering

a spin σ located on site r of a pyrochlore lattice (or kagome lattice, see below). One

then introduce two complex fermions a and b, located at positions r + δr and r − δr
respectively. Here the definition of the vector δr depends on the specific lattice and will

be explained in detail later. The staggered Abrikosov fermion representation is given

by

σ+ =
1

2
(σx + iσy) ∼ a†b; σ− =

1

2
(σx − iσy) ∼ b†a; σz ∼ a†a− b†b. (5.16)

At this stage, we omit the label of the position vectors for these operators, such labelling

will be brought back when we discuss real models. More explicitly, we have

σx ∼ a†b+ b†a; σy ∼ −i(a†b− b†a); σz ∼ a†a− b†b. (5.17)

From the Abrikosov fermion represenation, it can be shown that the representation

(5.16) satisfies the spin relation automatically if we enforce the constraint that the

number of fermion is one:

a†a+ b†b = 1. (5.18)

The name “staggered Abrikosov fermion representation” comes from the fact that this

representation is nonlocal in that the positions of the fermionic spinons are not the same

as the spin operator.

Before we move on, some discussions on its applicability is needed. First, let’s

consider the Hilbert space. The fermion Hilbert space has the same dimension as the

spin space once the constraint is imposed. As with the Abrikosov fermion representation,

the fermionic operators and the spin operators have the same algebric commutation

relations. Thus, the Hilbert space of the nonlocal fermions and the spin Hilbert space

have a one-to-one correspondence. Although the position of the fermionic spinons is

not the same as the spin operators, the discrepancy has little influence in physical

observables since the distance between them is on the scale of one lattice spacing and

is small when macroscopic physics is being considered. The physics of the spin systems

and the mapped fermionic spinon system is thus expected to be the same as long as
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each operator is mapped according to (5.16) properly.

The representation does not change under phase rotation a → aeiφ, b → beiφ,

i.e. the two fermions on different sites rotate the same angles. According to the gauge

principle, the gauge structure requires that the phases of the fermions on different sites

can rotate separately and independently. Thus we enlarge the representation (5.16) by

introducing a U(1) gauge connection on site r, which is the site of the spin.

σ+
r ∼ a

†
r+ µ̂

2

b
r− µ̂

2
eiAr ; σ−r ∼ b

†
r− µ̂

2

a
r+ µ̂

2
e−iAr ; σzr ∼ a

†
r+ µ̂

2

a
r+ µ̂

2
− b†

r− µ̂
2

b
r− µ̂

2
.

(5.19)

Such representation will be invariant under the local U(1) gauge transformation,

a
r+ µ̂

2
→ a

r+ µ̂
2
e
iφ

r+
µ̂
2 ; b

r− µ̂
2
→ b

r− µ̂
2
e
iφ

r− µ̂2 Ar → Ar + φ
r+ µ̂

2
− φ

r− µ̂
2

(5.20)

In the equations above, the meaning of the vector µ̂ will become clear later. Similarly

with the case of quantum spin ice discussed in the previous section, the staggered

complex fermion representation can be applied to spin models defined on the pyrochlore

lattice (and the kagome lattice). The lattice structure will facilitate the interpretation of

the fermionic spinon a and b as a charge operator on the lattice and it is thus possible to

map the spin model to some kind of U(1) lattice gauge theory with the gauge structure

5.20. Contrary to the case we discussed for quantum spin ice in the previous section, in

this case there is no need to introduce the “little s” operator whose physical meaning

is vague. However, as we shall see later the price to pay is that the “spinon” now is

fermionic and is potentially hard to handle.

For the next step, we will move on to discuss the application of the staggered complex

fermion representation in the two models, namely the XXZ Heisenberg model on kagome

lattice and the XXZ QSI model. Due to the similarity between the kagome lattice and

the pyrochole lattice, the treatment of the two cases can be described in the same

framework.
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0

1 2

Figure 5.2: The kagome lattice where the XXZ Heisenberg model is defined on. The
centers of triangles, labeled by the red and blue dots, form the A and B sublattices of
the honeycomb lattice, correspondingly. µ = 0, 1, 2 label the bonds of the underlying
honeycomb lattice. The spins reside on the sites of the kagome lattice located on the
middle of the honeycomb bond. The a and b-fermions reside on the A and B sublattice
sites of the honeycomb lattice.
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5.2.2 Application of the staggered Abrikosov fermion representation

to the XXZ spin models on kagome and pyrochlore lattice

Let us now consider the XXZ Heisenberg spin interaction, the spin Hamiltonian is

written as

H =
∑
〈ij〉

JzS
z
i S

z
j + J±(S+

i S
−
j + S−i S

+
j ). (5.21)

When J± = 0, this is the Ising model and when Jz = 0, it is the XY model. The

kagome XXZ Heisenberg model and the XXZ quantum spin ice are very similar in this

framework. The pyrochlore lattice and the kagome lattice both have A and B sublattices

and we can thus place the a-fermions and b-fermions in the staggered complex fermion

representation Eq. 5.16 on the A and B sublattices, respectively. For an illustration of

the kagome lattice system, see Fig. 5.2.

For the kagome lattice, the lattice becomes honecomb lattice for the fermionic spinon

after the mapping, each site of which has three a-fermions or three b-fermions (coming

from the three spins around a certain triangle) on it. For pyrochlore lattice, the lattice

for the fermionic spinons becomes diamond lattice (same as the previous section), each

site of which has four a-fermions or four b-fermions, which come from the four spins

around the tetrahedron, placed on it. We label these fermions by arµ or brµ, in which

µ denotes the position of the spin which the fermions are introduced to represent. On

kagome lattice, µ = 0, 1, 2 and on pyrochlore lattice, µ = 0, 1, 2, 3. A simple comparison

between Fig. 5.1 and Fig. 5.2 can clarify these statements. The spin Hamiltonian (5.21)

can be written as, with the U(1) gauge field,

H =
∑
r∈A

∑
µν

{
Jz(a

†
rµarµ − br+µ̂,µbr+µ̂,µ)(a†rνarν − br+ν̂,νbr+ν̂,ν)

+ J±

[
(a†rµarν)br+µ̂,µb

†
r+ν̂,νe

i(A
r+

µ̂
2
−A

r+ ν̂2
)

+ H.c.

]}
+
∑
r∈B

∑
µν

{
Jz(a

†
r+µ̂,µar+µ̂,µ − brµbrµ)(a†r+ν̂,νar+ν̂,ν − br,νbr,ν)

+ J±

[
(brµb

†
rν)a†r+µ̂,µar+ν̂,νe

i(A
r+

µ̂
2
−A

r+ ν̂2
)

+ H.c.

]}
.

(5.22)

As stated above, for the kagome lattice (honecomb lattice), we have µ, ν = 0, 1, 2 and for
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the pyrochlore lattice (diamond lattice) we have µ, ν = 0, 1, 2, 3. The vector µ̂ denote

the lattice vectors (connecting A and B sublattices) of the underlying diamond lattice

on the pyrochlore lattice and the underlying honeycomb lattice of the kagome lattice

(see Fig. 5.1 and Fig. 5.2 for an illustration). The summation
∑

µν is understood as

taken over all possible combinations of µν, it is not summed over µ and ν independently.

The constraint on the fermionic Hilbert space is written as (on both the kagome and

pyrochlore lattices)

narµ + nbr+µ̂,µ = 1, (5.23)

in which we define narµ = a†rµarµ as the number of a-fermion on A sublattice correspond-

ing to bond µ and nbr+µ̂,µ being the number of b-fermion on B sublattice correspondingly.

For the next step we focus on the Jz term in the Hamiltonian 5.22. We have∑
r∈A

∑
µν

(a†rµarµ − br+µ̂,µbr+µ̂,µ)(a†rνarν − br+ν̂,νbr+ν̂,ν)

=
∑
r∈A

∑
µν

(narµ − nbr+µ̂,µ)(narν − nbr+ν̂,ν)

=
∑
r∈A

∑
µν

(2narµ − 1)(2narν − 1)

=
∑
r∈A

∑
µν

4narµn
a
rν − 2narµ − 2narν + 1.

(5.24)

We note that for both kagome and pyrochlore lattices, using the fact that the number

of fermion n can only be 1 or 0 we have

(
∑
µ

narµ)2 =
∑
µ

narµ + 2
∑
µν

narµn
a
rν . (5.25)

Again, the summation
∑

µν is understood as taken over all possible combinations of µν.

This invites us to define

Qar ≡
∑
µ

narµ, (5.26)

which is the total number of the a-fermion on each site of the A sublattice. Similar

definition applies for the b-fermion on each B sublattice site. With this definition we
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have, ∑
µν

narµ + narν = 3Qar for pyrochlore lattice

∑
µν

narµ + narν = 2Qar for kagome lattice.
(5.27)

Therefore the initial Jz term in the Hamiltonian 5.22 can be written as∑
r∈A

∑
µν

4narµn
a
rν − 2narµ − 2narν + 1 =

∑
r∈A

[2Qa2
r − 8Qar + 1] for pyrochlore lattice

∑
r∈A

∑
µν

4narµn
a
rν − 2narµ − 2narν + 1 =

∑
r∈A

[2Qa2
r − 6Qar + 1] for kagome lattice.

(5.28)

With these definitions and transformations, the Hamiltonian for XXZ model on

pyrochlore lattice is written as,

H =∑
r∈A

{
Jz[2Q

a2
r − 8Qar + 1] +

∑
µν

J±

[
(a†rµarν)br+µ̂,µb

†
r+ν̂,νe

i(A
r+

µ̂
2
−A

r+ ν̂2
)

+ h.c.

]}
+
∑
r∈B

{
Jz[2Q

b2
r − 8Qbr + 1] +

∑
µν

J±

[
(brµb

†
rν)a†r+µ̂,µar+ν̂,νe

i(A
r+

µ̂
2
−A

r+ ν̂2
)

+ h.c.

]}
.

(5.29)

And the Hamiltonian for XXZ model on kagome lattice can be written simply by re-

placing the Jz term using Eq. 5.28. In both pyrochlore and kagome systems, the system

is completely classical for J± = 0. The ground state for the pyrochlore model is cap-

tured by equation Qar = Qbr = 2. This is exactly the “two-in-two-out” ice rule condition

for spin ice materials discussed in the previous section. For the kagome system on the

other hand, the naive classical ground state is given by Qar = Qbr = 3
2 which cannot

be satisfied. The true ground state is thus expected to be a distribution of Qr = 1 or

Qr = 2 on the entire lattice. Such distribution has macroscopic degeneracy and thus

implies frustration and possible spin liquid behavior.

For the next step, let us briefly discuss the possible ways to treat the Hamiltonian

5.29. It is clear from the four-fermion interaction term in the Hamiltonian 5.29 that the

systems are not exactly solvable, therefore some kinds of approximation are necessary.
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As we can see, the four-fermion interaction terms contain two fermions of the same kind

(a-fermion or b-fermion) on the same site of the lattice, while the term containing the

other kind of fermion describes a hopping within the same sublattice. This invites us

to apply a mean-field theory. To this end, one can define the Hubbard-Stranovich fields

〈a†rµarν〉 = γ̃µνr , 〈b†rµbrν〉 = −γµνr . (5.30)

They satisfy γµν∗r = γνµr . With these, the Hamiltonian Eq. 5.29 (for pyrochlore system)

is transformed into

H =
∑
r∈A

∑
µν

{
Jz[2Q

a2
r − 8Qar + 1] + J±

[
γ̃µνr br+µ̂,µb

†
r+ν̂,νe

i(A
r+

µ̂
2
−A

r+ ν̂2
)

+ h.c.

]}
+
∑
r∈B

∑
µν

{
Jz[2Q

b2
r − 8Qbr + 1] + J±

[
γνµr a†r+µ̂,µar+ν̂,νe

i(A
r+

µ̂
2
−A

r+ ν̂2
)

+ h.c.

]}
.

(5.31)

The mean-field Hamiltonian 5.31 describes a U(1) lattice gauge theory. The theory

actually consists of two parts on the two sublattices, the a-fermion only hopps on the

A-sublattice and the b-fermion only hopps on the B sublattice. The connection between

the two parts is through the mean-field parameter γ. The theory is not easy to solve

because of various constraints. Firstly, the single fermion constraint 5.18 should be taken

into account; and secondly, the consistency of the mean-field definition 5.30 should also

be considered. Possible ways to treat the model Hamiltonian 5.31 is to apply computer

simulation. Detailed subsequent studies in this direction is left for the future.



Chapter 6

Conclusion and Discussion

In this dissertation, I have explored the gauge theory description of spin models, an

approach rooted in the study of quantum spin liquid states. The starting point of this

approach is to write the spin operator in terms of slave-particle operators, which are

often called spinons. After such mapping the original spin model Hamiltonian becomes

an interacting Hamiltonian of spinons. Because there is usually redundancy in the spin

representations, the resulting theories always possess gauge symmetry. In this regard, I

started with a review of the traditional Abrikosov fermion representation and discussed

its application in spin models with Heisenberg interaction. Because the resulting spinon

Hamiltonian contains four-fermion interaction terms, a mean-field approach is applied

and the resulting theory is a SU(2) gauge theory with spinon doublet as its matter

field. As we pointed out, this approach has a number of difficulties in its application.

Most importantly the assumptions of the mean-field approach are not always valid

and it is usually hard to correctly pick up the mean-field parameters for each specific

model. Moreover, the representation itself requires a “single-occupation” constraint to

reproduce the correct spin algebra, such constraint is brought into the effective gauge

theory in terms of a auxiliary Lagrange multiplier field, which makes the theory more

complicated.

Other types of spin representation exist without the difficulties of the traditional

Abrikosov fermion representation. In this regard, we discussed the Majorana represen-

tation in Chapter 3 and Chapter 4. We discussed three types of Majorana represenation,

99
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namely the SO(3) Majorana representation, the SO(4) chiral representation and the Ki-

taev representation, which Kitaev applied in his solution to an exactly solvable spin

model on honeycomb lattice (called the Kitaev model). We started with a discussion

on the relationship between the three types of Majorana representation, and we pointed

out that these three types of representation could be understood in the same framework

by refering to the spinor representation of the SO(4) group. Among the three types,

the SO(3) Majorana represenation stands out because it does not require any additional

constraints to reproduce the spin algebra, which implies potential advantage over the

other types of slave-particle spin representations. In light of this, we focused on the

SO(3) Majorana representation and explored more properties of it. Importantly, due

to its nonlocal nature, we argued that it is equivalent to the Jordan-Wigner transfor-

mation in both 1D and 2D spin models. We also pointed out that the SO(3) Majorana

representation might have broader application than the Jordan-Wigner transformation

because it is better defined, especially in the 2D case.

To apply the SO(3) Majorana representation in real systems, we discussed three 2D

spin models. We started with the Kitaev model and obtained the equivalent solution to

it using the SO(3) Majorana representation. Our solution takes the form of a standard

Z2 gauge theory with standard Gauss law constraint. Comparing with Kitaev’s original

solution, our solution shows how to get to the physical space in a systematic way. We

then consider further application in two other spin models which do not has exact

solvability, namely the quantum XY model on honeycomb lattice and the 90◦ compass

model on square lattice. In these two models we used the same strategy as the solution

of the Kitaev model. The resulting theories are Z2 lattice gauge theories with some

non-trivial features. Although the Z2 theories themselves are not integrable, they are

still different from previous studies using the SO(3) Majorana representation in that

no approximation was brought in. In other words, the Z2 gauge theories we obtained

contain the same physical information as the original spin models. For the next step,

approximation has to be introduced to the Z2 gauge theories to acquire more physical

properties of the model. In this regard, the Z2 lattice gauge theories can serve as a new

platform for the study of these spin models.

Besides the local spin representations, the specific lattice geometries of the spin

model may facilitate the definition of a special type of spin representation, the nonlocal
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spin representation. In this regard, the quantum spin ice (QSI) model stands out. In the

QSI model the spins are located on the sites of the pyrochlore lattice which consists of

corner-sharing tetrahedra. In this specific lattice one can place the spinon operator on

the center of each tetrahedron and each spin is representated by a dipole of spinon. As

we discussed in detail in Chapter 5, previous studies constructed such a theory in terms

of bosonic spinon which results in a U(1) lattice gauge theory. The theory has a number

of difficulties, including a “little-s” operator whose physical meaning was unclear and

had to be treated on the mean-field level. To resolve this problem, I proposed a similar

nonlocal representation based on the Abrikosov fermion representation, in which each

spin of the QSI model is represented by a fermionic dipole. Due to the similarities

of lattice geometry with the pyrochlore lattice, I pointed out that such representation

can be used for XXZ Heisenberg model on the kagome lattice as well. Because of the

redundancy, the resulting theory is a U(1) gauge theory.

In all the cases disscussed in this dissertation, the spin models are mapped into lattice

gauge theories of various gauge group. Such gauge theories are expected to possess part

of (or all of) the physics of the original spin models. To further explore the properties

of such theories, we can certainly borrow the concepts of the gauge theory in particle

physics. Some concepts such as confinement transition has already been used in the

discussion of the physics of the quantum spin liquid phases. Due to various limitations,

such an explaination is far from well-established so far. Further consideration is needed

to clarify these issues. Specifically, in this dissertation we have identified some clear

directions for future studies.

Firstly, in our application of the SO(3) Majorana representation in the three spin

models, future work will be directed to explore more physical properties of the models

based on the Z2 gauge theories. In particular, for the Kitaev model, it is possible to

study the edge modes as well as thermal transport properties using our solution. For

the quantum XY model on honeycomb lattice and the 90◦ compass model on square

lattice, we will have further discussion on the further approximation needed to treat

the Z2 gauge theories and their implications on the physical properties of the models.

It is believed that, although the present Z2 gauge theories are not exactly solvable,

the discrete nature of the gauge group will bring opportunities for us to have a better

controlled way to study them. On the other hand, in future studies one could explore
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the application of the SO(3) Majorana representation in other types of spin models,

such as other types of compass models. Another important direction for future study is

to apply the SO(3) Majorana representation in three-dimensional spin models.

As for the nonlocal spin representations for the QSI model, further treatment is

needed to explore the physics based on the staggered Abrikosov fermion representation.

In this regard, mean-field studies can be applied. Also, it would be an interesting

direction to find other possible spin representations for the specific lattice geometry.

To conclude, due to the interesting features of the quantum spin systems, I believe

that it will remain a major area in modern condensed matter physics. And the gauge

theory description of the spin systems will continue to be an interesting direction of

research.
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Appendix A

Basics of U(1) Chern-Simons

gauge theory and lattice

Chern-Simons theory

A.1 U(1) Chern-Simons gauge theory

The definition of Chern-Simons (CS) term relies on the existence of the total anti-

symmetrized tensor εµνρ in (2+1)-dimensions. The definition of U(1) CS action with

interaction with matter current is given by

SCS + Sint =

∫
d3x(

k

4π
εµνρAµ∂νAρ − JµAµ), (A.1)

in which Aµ is the Chern-Simons gauge field and matter current is given by Jµ, all the

indices µ, ν, ρ = 0, 1, 2. Throughout this paper, we use A to label Chern-Simons gauge

field in continuum and use A to denote Chern-Simons gauge field on a lattice. The pure

Chern-Simons term

SCS =
k

4π

∫
d3xεµνρAµ∂νAρ. (A.2)

116



117

is gauge invariant under local gauge transformation. In particular, under gauge trans-

formation Aµ → Aµ − ∂µφ, the action change to

SCS → SCS −
k

4π

∫
d3x∂µ(εµνρφ∂νAρ), (A.3)

which vanishes because it is a total derivative. In the prefactor k
4π , the k is called the

level of the Chern-Simons theory, it can be proved that k can only take integer values

under the requirement that the Chern-Simons term (A.2) is gauge invariant at finite

temperature [13].

The time component of A does not have any dynamics, to see this we have to write

the action (A.1) in the following way [13]

St =

∫
d3x[(

k

2π
A0B − J0A0)− k

4π
εijAi∂tAj − JiAi], (A.4)

in which magnetic field B is defined by B = εij∂iAj . We can see that the A0 field acts

like a Lagrange mutiplier. Upon intergrating out A0 in the path integral, we have the

constraint that k
2πB − J0 = 0. In the canonical formalism, it should be understood as

the operator on the left hand side acting on the physical states gives zero [13, 94], i.e.

[
k

2π
B(x)− J0(x)]|Phys〉 = 0. (A.5)

This is a requirement that the charge carried by the complex fermion c must come with

a magnetic flux. Due to the Aharonov-Bohm effect, the attachment of magnetic flux to

charged particles results in exotic statistics of particles [13, 99].

The CS term (A.2) has an important property, the canonical momentum conjugate

to the gauge field is the gauge field itself. This results in the following non-trivial

commutation relation

[Ai(x),Aj(y)] = i
2π

k
εijδ(x− y). (A.6)

On the other hand, this property also results in the fact that the Hamiltonian of the

pure Chern-Simons term (A.2) vanishes HCS = 0.

The line integral of gauge field plays important roles in gauge theories, the commu-

tation relation (A.6) results in non-trivial commutation between line integrals. For two
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arbitrary lines C and C′ (with directions defined) we have[ ∫
C
A,
∫
C′
A
]

= i
2π

k
ν[C, C′], (A.7)

in which ν[C, C′] is the number of oriented intersections between two lines [94]. If C and

C′ are closed loops, ν[C, C′] is topologically invariant; besides, if any of C and C′ can

be contracted into a point, ν[C, C′] = 0. The line integral of gauge field can be used

to construct the Wilson line operators and the Wilson loop operators. In general the

Wilson line operator is defined as WL = exp(i
∫
LA · dx).

Now we explore the non-trivial commutation relations between Wilson lines in

Chern-Simons gauge theory. To do this, it turns out that the Baker-Hausdorff-Campbell

(BHC) formula is useful; it states that for any operators X and Y, if commutator [X,Y ]

is a number then we have

eXeY = eX+Y+ 1
2

[X,Y ] = eY eXe[X,Y ]. (A.8)

For two lines C and C′, we define the Wilson line operators

WC = ei
∫
C A, WC′ = ei

∫
C′ A. (A.9)

Using the BHC formula, we have

WCWC′ = WC′WCe
−[

∫
C A,

∫
C′ A] = WC′WCe

−i 2π
k
ν[C,C′]. (A.10)

Now we focus on some special situations. In the 2D Jordan-Wigner transformation we

take the level k = 1 [13, 91] (see Appendix B for details), the corresponding CS theory

is called the U(1)1 Chern-Simons theory. In the U(1)1 Chern-Simons theory we have

e−i
2π
k
ν[C,C′] = 1, therefore

[WC ,WC′ ] = 0. (A.11)

This means that the Wilson lines in the U(1)1 Chern-Simons gauge theory all commute

with each other. This is the result for Chern-Simons theory in the continuum. The

lattice version of the Chern-Simons theory has different results for Wilson lines [94],

which we will discuss in the next section.
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A.2 Lattice U(1) Chern Simons gauge theory

The lattice discretization of the U(1) Chern-Simons gauge theory has been discussed

on square lattice [92, 100, 101] and kagome lattice [93]. A general discussion on the

conditions for lattice Chern-Simons theory has also been done [94]. Here, we follow Ref.

[94] and give a brief review of some general results of lattice U(1) Chern-Simons theory,

and we will focus on the situation where the level k = 1.

From the standard way to define lattice gauge theories [14], we place the paricle

operators on the sites of the lattice and the gauge field operators on the bonds of the

lattice. To discretize the U(1) CS theory (A.2) on a lattice, it is proved that a key

condition is that there is a one-to-one mapping between sites and plaquettes of the

lattice. If a graph or lattice has such mapping, one can find a way to pair up the sites

and plaquettes. Once the pairing is determined, the lattice CS theory will attach the

gauge flux in the plaquette to the particle defined on the corresponding site. For any

given 2D lattice, the three types of elements are sites (or vertices), labelled by v; bonds

(or edges), labelled by e; and plaquettes (or faces) labelled by f . For a lattice with one-

to-one correspondence between sites and plaquettes, we have the action of the lattice

CS theory,

SCS =
k

2π

∫
dt
∑
v,f,e,e′

[
AvMv,fΦf −

1

2
AeKe,e′Ȧe′

]
, (A.12)

in which the sum is over all sites, faces and edges of the lattice. Specifically, the flux

operator Φf is defined by Φf =
∑

e ξf,eAe, in which ξf,e = ±1 if and only if e is an edge

of face f , otherwise ξf,e = 0. The sign of ξf,e is determined by the orientation of the

bond. The Φf defined in this way is the lattice version of the flux. Also, in (A.12) the

Mv,f and Ke,e′ are two matrices. In particular, the matrix element Mv,f picks up the

site that is paired up with each face; in other words, its element is non-zero if and only

if v is paired up with f ; the Ke,e′ matrix is defined in the following way:

Ke,e′ = ±1

2
, if e and e′ belong to the same face,

Ke,e′ = 0, for all other cases.

(A.13)

The sign of non-vanishing elements of Ke,e′ is determined by the orientation of the bonds

and their relative positions in the face, the details of which is not important for our
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purpose (see Ref. [94] for a detailed description).

The gauge transformation in the lattice is defined by

Av → Av − ∂tφ̃v, Ae → Ae −Dv,eφ̃v, (A.14)

in which φ̃v is an arbitrary real function defined on the sites and Dv,e = ±1 if and

only if v is one of the end points of edge e, otherwise it is zero. As defined above, ξf,e

represents a lattice curl and Dv,e represents a lattice gradient. It can be shown that the

key condition for the lattice theory to be gauge invariant is that [94]

∑
f

Mv,fξf,e =
∑
e′

Ke,e′Dv,e′ . (A.15)

It can be proved that this condition is indeed satisfied by the construction described

above [94].

One key property for the lattice satisfying the one-to-one correspondence between

sites and faces is the existance of a dual lattice. To get the dual lattice, one simply

reverses the definition of face and vertices. We put a vertex v∗ in each face of the

original graph and connect two v∗ vertices if in the original graph the two faces share

an edge, and thus we get the dual edge e∗. Obviously, we have the duality of each

element as v∗ = f , e∗ = e etc [94]. In the dual lattice the dual Chern-Simons theory can

be defined according to (A.12). The Ke,e′ matrix in the dual theory becomes K∗
e∗,e′∗

.

Due to the correpondence between edges e and e∗, this can also be denoted as K∗e,e′ , its

definition in the original edge indicies reads

K∗e,e′ = ±1

2
, if e and e′ share a vertex,

K∗e,e′ = 0, otherwise.

(A.16)

It can be shown that the K∗ matrix is actually related to the inverse of the K matrix,

K∗ = −K−1. (A.17)

so that the Ke,e′ matrix is non-singular [94].

In the canonical formalism, the commutator between gauge fields on edges follows



121

directly from the Lagrangian, which is the integrand in (A.12). From Eq. A.12 one can

read off the canonical conjugate variables to gauge fields, which results in the following

commutation relation,

[Ae,
k

2π
Ke′,e′′Ae′′ ] = iδe,e′ . (A.18)

Since the K matrix can be inverted, we have

[Ae, Ae′ ] = −2πi

k
K−1
e,e′ . (A.19)

The flux attachment on the lattice work similarly as in the continous case, we place

charge density J0
v on each vertex v and couple it to Av. We thus have the constraint

[
k

2π
Mv,fΦf − J0

v ]|Phys〉 = 0. (A.20)

With these results at hand, we have a consistent theory of lattice Chern-Simons gauge

theory.



Appendix B

Jordan-Wigner Transformation in

2D Using Chern-Simons Flux

Attachment

Spin can be viewed as hard-core boson which behaves like bosonic operator but under

the constraint that the number of boson on each site can only be 0 or 1 [13]. Here we

start with a system of hard-core bosons and study its properties.

Suppose for each site i we have a hard-core boson ai. For any ordinary bosonic

operator bi, we have the commutation relation [bi, b
†
j ] = δij . However, this is not the

commutation relation for hard-core boson ai, for which we have to require that on each

site there can only be 0 or 1 boson, in other words,

a2
i = 0; a†2i = 0. (B.1)

The Hilbert space for each hard-core boson is restricted to be spanned by two basis

states |0〉 and |1〉. For an ordinary bosonic operator bi, to go to this two-dimensional

subspace of the original Hilbert space (which has inifinite dimension), a projection is

needed. Let’s call it P̂i. We have that the hard-core boson operator ai is obtained from

the ordinary bosonic operator bi by ai = P̂ibiP̂i; a
†
i = P̂ib

†
i P̂i. Due to the fact that

[P̂i, bi] 6= 0, one can see the hard-core boson as dressed boson.
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The hard-core boson has the following commutation relations

{ai, a†i} = 1; and

[ai, aj ] = [ai, a
†
j ] = [a†i , a

†
j ] = 0 for i 6= j.

(B.2)

There is a one-to-one mapping between the Hilbert space of hard-core boson and the

spin space, using the commutation relations of the hard-core boson operator (B.2), we

have the following mapping between spin operator and hard-core boson operator,

σ+
i =

1

2
(σxi + iσyi ) = a†i ,

σ−i =
1

2
(σxi − iσ

y
i ) = ai;

σzi = 2a†iai − 1.

(B.3)

Next we follow Ref. [13, 91, 92, 93] to give a brief review of the 2D Jordan-Wigner

transformation using the Chern-Simons gauge theory. We start with a simple two-

dimensional quantum XY model, which according to (B.3) can be written in terms of

hard-core boson as

Ha =
∑
ij

a†iaj + h.c.. (B.4)

Here we assume the coupling constant J = 1. Due to the exotic commutation relation

of the hard-core boson (B.2), it can be seen as an anyonic operator.

To see this, we start with a fermionic system coupled to Chern-Simons gauge field.

The fermions reside on the sites of the lattice while the gauge field is defined on the

bonds or edges of the lattice. The Hamiltonian is, setting coupling constant to unity,

Hf =
∑
ij

c†ie
iAijcj + h.c.. (B.5)

The gauge field Aij is subject to Chern-Simons action (A.12), which results in a con-

straint (A.20). Classically one can solve the configuation of the gauge field classically

according to the charge distribution of fermion c on a certain lattice using the constraint

[13, 91, 93, 95]. To this end, if we define an operator

ãi = e−iφici, (B.6)
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in which operator φi is a functional of the density of the fermion ni = c†ici. Such

functional form will lead to nontrivial commutation relation between operator e−iφi and

operator ci. This will result in the exotic commutation relation of the anyonic operator

ãi

ãiã
†
j = δij − eiδã†j ãi, (B.7)

in which δ = π
k is a constant, with k being the level of the Chern-Simons theory in

(A.12) and (A.1). If the level k = 1, then δ = π and the commutation relation of anyon

ã becomes bosonic. Further more, it satisfies the hard-core condition (B.1) following

from its definition (B.6). Therefore when k = 1, the anyonic operator ã is identified to

be a hard-core boson.

Under the condition that k = 1, it can also be shown that using (B.6), the fermionic

Hamiltonian (B.5) can be transformed to hard-core boson Hamiltonian (B.4) which itself

is the quantum XY spin Hamiltonian. In this way, we obtain the 2D Jordan-Wigner

transformation.



Appendix C

Some details of the solving of the

Kitaev model

C.1 The original solution of the Kitaev model

In this section, I will briefly review the original solution of the Kitaev model based on

Ref. [23] and the material realization of the model. The Hamiltonian of the Kitaev

model is given by Eq. (4.1), it has a conserved plaquette operator defined by

Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 , (C.1)

it satisfies the following equation [Wp,H] = 0 for every plaquette in the lattice. This

can be checked simply by applying the relation between Pauli matrices:

σiσj = δij + iεijkσ
k. (C.2)

As discussed in Chapter 3, Kitaev proposed a Majorana fermion representation of

spins [23], in which he used four type of Majorana fermions ci and bxi , byi , b
z
i for each site

i. Being Majorana fermion operators, they satisfy c = c† and b = b† by definition. They

also satisfy the following anti-commutation relations: {ci, cj} = 2δij , {bαi , b
β
j } = 2δijδα,β.

And all other anti-commutation vanishes. We can make the following representation of
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the spin operators:

σαi = icib
α
i , α = x, y, z. (C.3)

This representation enlarge the Hilbert space of spins from 2N to 4N (the dimension

of one Majorana fermion is
√

2 while the dimension of a spin is 2)[53]. If we want to

go back to the real physical space, the following constraint must be imposed: for any

physical state |Ψ〉phys, we have

Di|Ψ〉phys = |Ψ〉phys, Di ≡ cibxi b
y
i b
z
i . (C.4)

And it can be proved that if we require cib
x
i b
y
i b
z
i = 1 for all the physical states (which is

equivalent to say that bxby = bzc = −cbz), we can have the representation (C.3) satisfies

spin relation (3.1), which means that this is a faithful representation. In this appendix,

we use the original notation of the Majorana fermions defined by Kitaev in Ref [23],

note that such definition has the following correspondence with the definition we used

in Sec 3.1.2 (more specifically Eq. (3.16)),

ci → ηti , bαi → ηαi , α = x, y, z. (C.5)

When applied to the model (4.1), we have the Hamiltonian can be written as [53]:

H =
∑

α=x,y,z

Jα
∑
〈ij〉α

iciû〈ij〉αcj , (C.6)

in which we defined û〈ij〉α ≡ ibαi b
α
j . Using the fact that [bαi b

α
j , cicjb

β
i b
β
j ] = 0, we can

prove that

[H, û〈ij〉α ] = 0. (C.7)

This means that each bond operator û〈ij〉α is a conserved quantity for the model. This

renders the theory being a free theory for c Majorana fermions, which can be solved

completely for each distribution of the bond variables û〈ij〉α . Thus each distribution of

û〈ij〉α gives a completely separate family of states of c Majorana fermions. The ground

state of the whole model exists in the sector where all û〈ij〉α = 1.

It is easy to notice that the representation (C.3) has the following gauge redundancy

ci → ξici, b
α
i → ξ−1

i bαi . Due to the fact that Majorana fermions are “real”, we can only
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have ξi = ±1. This is a local Z2 gauge symmetry rooted in the representation. Under

this gauge transformation, we have û〈ij〉α → ξiû〈ij〉αξj , thus û〈ij〉α is identified as the

gauge connection or “Wilson line” of the Z2 gauge theory. Unlike the usual gauge

field, this model has completely static gauge fields, it doesn’t have dynamics. It can be

checked that the Wp operator defined above satisfies Wp ∼ Π〈ij〉∈∂P û〈ij〉 up to a sign.

This is the lattice curl of the gauge connection, thus the Wp operator gives the fluxes

of the gauge field in each plaquette.

For convenience, we can define the “bond-fermion” operator [53]:

χ〈ij〉α =
1

2
(bαi + ibαj ) (C.8)

The gauge connection is related to the number operator of the bond fermion through:

û〈ij〉α ≡ ib
α
i b
α
j = 2χ†〈ij〉αχ〈ij〉α − 1. (C.9)

In terms of these bond fermions, we can write the spin operators as [53]:

σαi = ici(χ〈ij〉α + χ†〈ij〉α); σαj = cj(χ〈ij〉α − χ
†
〈ij〉α). (C.10)

C.2 Material realization of the Kitaev model

The material realization of Kiteav’s honecomb lattice model is proposed by Ref. [54] in

the iridium oxides A2IrO3. The Kitaev interaction is generated between two adjacent

Ir sites with jeff = 1
2 through superexchange with the aid of the O atom in between.

However, in real materials, it is too idealized to assume that the Kitaev model is the

only spin interaction. As proposed by Ref. [141], the real effective spin Hamiltonian

should be the following:

H =
∑

〈ij〉=αβ(γ)

[
JSi · Sj +KSγi S

γ
j + Γ(Sαi S

β
j + Sβi S

α
j )

]
. (C.11)

The methodology of the bond labelling is defined in detail in Ref. [141]. The first term

gives the isotropic Heisenberg interaction and the second term is the Kitaev interaction.

The third is a novel spin exchange term which is similar to the Dzyaloshinskii-Moriya
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terms.

While these three parameters J,K,Γ vary in the parameter space, various phases of

the ground state might be possible in real materials. The phase structure is discussed

in Ref. [141].

C.3 Complex fermion spectrum of Kitaev model

In our solution of the Kitaev model in Sec 4.1, it is possible to work out the spectrum

of the complex fermion in a certain chosen gauge of the Z2 gauge theory. On the other

hand, in Kiaev’s original solution discussed above, the free “c Majorana fermion” can

also be paired up and form a system of complex fermions. The spectrum can thus be

calculated in a certain gauge, and the results turn out to be identical as our solution

using the SO(3) Majorana representation. Here we give the details of the calculation

continuing with our discussion in Sec 4.1 using the SO(3) Majorana representation.

In terms of complex fermions introduced in Sec. 4.1.1, namely, Eq. (4.6), the

Hamiltonian (4.5) becomes

H′′ =
∑
r∈A

(−J̃x)[(czr + cz†r )(czr+e1 − c
z†
r+e1)]

+ (−J̃y)[(czr + cz†r )(czr+e2 − c
z†
r+e2)]

+ Jz(2c
z†
r c

z
r − 1),

(C.12)

in which J̃x = ±Jx, J̃y = ±Jy depending on the eigenvalues of ηyi η
y
j and ηxi η

x
j on x- and

y-bonds, respectively.

Next we perform a Fourier transformation of c fermions

cr =
1√
N

∑
k

cke
ik·r; c†r =

1√
N

∑
k

c†ke
−ik·r, (C.13)

where N denotes the total number of unit cells in the system. The sum in the k-space is

taken over the entire first Brillouin Zone, labelled by BZ. However, for the Hamiltonian

only half of the k-points are independent and thus we sum only over half of the BZ,
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labelled by BZ
′
. Therefore the Hamiltonian (C.12) is transformed into:

H′′ =
∑

k∈BZ′

(
cz−k cz†k

)
Mk

(
cz†−k

czk

)
, (C.14)

in which the coupling matrix Mk is given by

Mk =

 − 2J̃x cos(k · e1)− 2J̃y cos(k · e2)− 2Jz 2i(J̃x sin(k · e1) + J̃y sin(k · e2))

− 2i(J̃x sin(k · e1) + J̃y sin(k · e2)) 2J̃x cos(k · e1) + 2J̃y cos(k · e2) + 2Jz

 .

(C.15)

Diagonalize this matrix, we obtain the energy spectrum for the cz fermions which

agrees with the one obtained in the Kitaev’s solution [23],

Ek = 2|J̃xeik·e1 + J̃ye
ik·e2 + Jz|. (C.16)



Appendix D

Details of definitions in the

quantum spin ice model

In this section, we give detailed definition of the variables defined in the quantum spin

ice model in Chapter 5.

Firstly, the definition of the lattice vectors µ is:

0̂ =
+x̂+ ŷ + ẑ

4
, 1̂ =

+x̂− ŷ − ẑ
4

,

2̂ =
−x̂+ ŷ − ẑ

4
, 3̂ =

−x̂− ŷ + ẑ

4
,

where x̂, ŷ, ẑ denote the global cubic axes. The local coordinates (x̂µ, ŷµ, ẑµ) for the

four sites (labeled as µ = 0, 1, 2, 3) of a certain tetrahedron of the pyrochlore lattice are

defined as

x̂0 =
−2x̂+ ŷ + ẑ√

6
, ŷ0 =

−ŷ + ẑ√
2

, ẑ0 =
+x̂+ ŷ + ẑ√

3
,

x̂1 =
−2x̂− ŷ − ẑ√

6
, ŷ1 =

+ŷ − ẑ√
2

, ẑ1 =
+x̂− ŷ − ẑ√

3
,

x̂2 =
+2x̂+ ŷ − ẑ√

6
, ŷ2 =

−ŷ − ẑ√
2

, ẑ2 =
−x̂+ ŷ − ẑ√

3
,

x̂3 =
+2x̂− ŷ + ẑ√

6
, ŷ3 =

+ŷ + ẑ√
2

, ẑ3 =
−x̂− ŷ + ẑ√

3
.

(D.1)
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In Eq.(5.1), the phase factors γ and ζ are defined as [81, 126]

γµν =


0 1 ω ω2

1 0 ω2 ω

ω ω2 0 1

ω2 ω 1 0


µν

, (D.2)

where ω = e2πi/3 and ζµν = −γ∗µν .



Appendix E

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but

this cannot always be achieved. This appendix defines jargon terms in a glossary, and

contains a table of acronyms and their meaning.

E.1 Glossary

• gauge theory – A quantum field theory in which the field has local symmetry,

the symmetry transformed field has identical physical meaning with the original

one.

• lattice gauge theory – Gauge theory defined on lattice, originally introduced

in particle physics for computer simulation. In recent years it has more and more

application and relevance in condensed matter physics.

• slave-particle representation – Refers to the mapping between a spin operator

and an operator in terms of bosonic or fermionic operators, including complex

fermion representation and Majorana representation etc.

• Majorana fermion – A fermion which is its own antiparticle. The operators

describing the Majorana fermions are real and anticommute with each other.

• Majorana representation – A kind of slave-particle representation defined in

terms of Majorana fermions.
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• quantum spin liquid – A special kind of ground state of interacting spin models

in which no symmetry is broken.

• Kitaev model – An exactly solvable spin model on honeycomb lattice proposed

by A. Kitaev. In its original solution, the Kitaev representation was applied.

• Chern-Simons JW transformation – The Jordan-Wigner transformation in

2D, involving Chern-Simons gauge theory.

E.2 Acronyms

Table E.1: Acronyms

Acronym Meaning

QSL Quantum spin liquid

QSI Quantum spin ice

CS Chern-Simons

QHE Quantum Hall effect

HS Hubbard-Stratonovich

JW Jordan-Wigner

RVB resonant-valence-bond

1D (1d) one-dimensional or one dimension

2D (2d) two-dimensional or two dimensions

PSG Projective Symmetry Group

BHC Baker-Hausdorff-Campbell

BZ Brillouin Zone
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