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Neutron decay, dark matter and neutron stars
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Abstract. Following up on a suggestion that decay to a dark matter fermion might explain the 4o discrepancy
in the neutron lifetime, we consider the implications of such a fermion on neutron star structure. We find that
including it reduces the maximum neutron star mass to well below the observed masses. In order to recover
stars with the observed masses, the (repulsive) self-interactions of the dark fermion would have to be stronger

than those of the nucleon-nucleon interaction.

1. Introduction

Over the past decade or so, neutron lifetime measurements
have settled into two groups whose average values differ
by about 4o. Lifetime measurements using a beam of
neutrons yield an average lifetime of 887.7 2.2 s,
whereas the average result from “bottle” experiments
is 878.5+0.8 s [1] with two new bottle experi-
ments giving 877.7+0.7+ 03 s [1] and 881.5+0.7
4 0.6 s [2]. Fornal and Grinstein [3] proposed a possible
resolution of the problem: that roughly 1% of the time
neutrons decay to a dark fermion and other standard
model or dark sector particles. Dark matter particles,
with very weak interactions with standard model particles,
would not be among the decay products detected in the
beam experiments, whereas they would contribute to the
overall decay rate of neutrons as measured in the bottle
experiments. A narrow mass range for a dark fermion is,
in fact, allowed by the systematics of stable nuclei [3]

937.9 MeV < m, < 938.7 MeV; (1)

in what follows, for simplicity, we will assume m, = m,
unless explicitly noted.

In addition to studies by two other groups [4,5] that
reach similar conclusions, we have considered the impact
on the structure of neutron stars [6] of neutron decay
to a dark fermion. Neutron stars form, typically, in the
aftermath of supernova explosions as the gravitational
pressure overcomes the degeneracy pressure of the
electrons (just the result of the Pauli exclusion principle)
and neutrons (largely) form from the combination of
electrons and protons. In neutron stars, the gravitational
pressure is balanced both by the neutron degeneracy
pressure as well as by the repulsive n—n interaction at
high densities. The basic physics scenario we investigate
is this: if the neutron were to decay to a dark fermion
1% of the time, over a time period much shorter than
the neutron star lifetime the dark fermions would come to
equilibrium and fill their own fermi sea, thereby reducing
the number and the Fermi momentum of the neutrons
(note that the pressure, P o p%). Furthermore, if the
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dark fermions have weak self-interactions, the substantial
additional pressure generated by the repulsive neutron-
neutron (n—n) interactions would be reduced.

Along with the effect on neutron stars, there has been
a study of the impact of a dark decay on the relation
between the neutron decay rate and the axial coupling
constant g4 [7]. Based on the current value of g4, this
analysis suggests a tension with 1% of the neutron decay
going to a dark channel. There have also been two searches
for standard model particles likely to accompany dark
fermions in neutron decay. Final states with photons [8]
and with eTe™ [9] have been largely ruled out.

2. Neutron star physics

Neutron stars consist of a fluid of interacting neutrons'

which we model assuming spherical symmetry, and
mechanical and thermal equilibrium at zero temperature.
For ordinary stars, mechanical equilibrium is expressed by
Newton’s second law

dP G
ﬁ = —rij(r)1 ()

where P is the pressure, p is the mass density and
M(r) is the mass inside the radius r; for neutron stars
it is modified to account for the effects of the strong
gravitational field. With corrections for general relativity,
the Tolman-Oppenheimer-Volkov (TOV) equations obtain
[10,11]

dP Ge+P m(r)+4nr’P 3)
dr 12 2 2 [1—=2Gm(r)/rc?]’
where €(r) is the energy density and
m(r) = / dr'dmre(r’) 4)
0

is the total energy density contained within the radius r.

I'Protons and electrons, in chemical equilibrium with the
neutron—typically at a relative concentration of several
percent—are included in the equations of state used to model the
neutron stars.
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The equation of state of neutron matter defines
the relation between the pressure and the energy
density (for normal stars, e.g., typically the equation of
state provides P(p)); we have performed calculations
using both a nucleons-only equation of state, Akmal-
Pandharipande-Ravenhall (APR) [12], and an equation of
state incorporating deconfined quarks at high densities, a
so-called quark-hadron crossover model (QHCI18) [13].
Because the densities are high, the Fermi momentum can
be large relative the neutron mass, therefore, relativistic
kinematics are used. The TOV equations are solved
numerically by assuming a central energy density and
integrating outward until P = 0. We are thereby able to
calculate the total neutron star mass as a function of central
density.

Among the many neutron stars observed, there are
two that have particularly well-established masses, PSR
J1614-2230 with a mass of 1.928 +0.017 solar masses
(Mp) [14,15] and PSR J0348+0432 with a mass of 2.01 &
0.04 Mg, [16]. Both are neutron-star-white-dwarf binaries
and the masses are determined, in part using the general
relativistic time shift of the pulsar signal as it passes the
white dwarf (Shapiro delay). It is these observations that
set the benchmark of the minimum upper limit for neutron
star mass to which we will compare our models. Typically,
calculations using nuclear equations of state built from
microscopic particle interactions and nuclear properties
tend to underpredict the maximum mass; the two equations
of state used here are able to generate maximum masses
somewhat higher than 2 M.

For the calculations including dark matter, we assume
it is in the form of a non-interacting, relativistic Fermi gas.
The energy density in this gas is simply

kry 3
GX :2/(; d‘kxlzlxxy (5)

where p, = /ki +m? is the dark matter chemical

potential, kr , is the dark matter Fermi momentum and
the 2 is from the spin degeneracy. Equilibrium in the
neutron matter plus dark matter system is determined by
the equivalence of their chemical potentials at each radius
Mn = Ly, Where p, is given by the equation of state.
This leads to a relation between the Fermi momenta of
the neutrons and the dark matter particles, x = kg ,/kr »,
which is a function of density and hence of the radius
within the neutron star. The dark matter energy density
and the corresponding pressure, P, = nia(ex/nx)/anx,
add to those of the neutrons; for illustration, the standard
non-relativistic forms for the total energy and pressure in
the system are

k3
€ = €,(pn) + my pux® + —21 %3, (6)
x 1072m,,
and
ke s
P = Py(py) + ——x". (7
157%m,,

The key physics in the problem can be seen in the
chemical potential for neutrons as a function of density,
Fig. 1. Relative to the energy of a non-interacting fermion,
the chemical potential for a neutron is negative for
densities near that of nuclear matter, corresponding to
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Figure 1. Neutron chemical potential, w,, (including the rest
mass) as a function of the neutron density, p,, in units of
the nuclear saturation density, py. As would be expected, the
chemical potential for interacting neutrons is lower than that of
a non-interacting fermion in the region of nuclear densities. At
higher densities, however, because of the hard core of the n—n
interaction, the chemical potential is much higher than that of a
free fermion gas. In fact the “degeneracy pressure”, reflected here
by the difference between the non-interacting fermion chemical
potential and the rest mass, is relatively small compared to the
effect of the hard core for densities p, = po.

T

Prlpn

Figure 2. The number of dark matter fermions vs. the total
number of fermions (neutrons plus dark fermions) at chemical
equilibrium for the QHC18 nuclear equation of state. At twice
nuclear matter density, 20y, the ratio is about 0.5 and grows
to 0.7 at 10py. The flat region around 2p, corresponds to pion
condensation.

the binding of ordinary nuclei. However, as the density
increases, the hard core of the n—n interaction dominates
and the chemical potential grows to values exceeding
twice the neutron mass at the highest densities. Therefore,
at these densities, converting neutrons to non-interacting
fermions produces a large energy saving.

In more detail, we can ask what the equilibrium ratio
of dark matter to neutron matter is as a function of their
total density as is shown in Fig. 2. As expected from
the discussion above, as the overall density increases, the
fraction of dark matter also increases.

3. Neutron star simulations and
implications for neutron decay to
dark matter

In Fig. 3 we show the solutions of the TOV equations in
terms of the neutron star mass as a function of central
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Figure 3. Neutron star masses calculated using the TOV
equations for various equations of state: APR [12], QHCI18
[13], for non-interacting neutrons and for the QHC18 equation
of state with non-interacting dark matter particles in chemical
equilibrium. Whereas both the APR and QHCI18 equations of
state predict maximum neutron star masses consistent with
observations, the addition of the non-interacting dark matter
degree of freedom reduces the maximum mass to that of the
non-interacting bound (at very high central energy densities).
Note that the APR + yx equation of state gives masses only
slightly higher than those of QHC18+x. The flat regions at low
central density correspond to pion condensation in the underlying
nuclear equation of state.

energy density. The nuclear equations of state, APR and
QHCI18, generate neutron stars with maximum masses
greater than 2 M, as observed. Non-interacting fermions
generate a curve with a maximum mass just above 0.7 M,
called the Oppenheimer-Snyder bound [17]. The result
for the QHCI18 plus dark matter equation of state is
easiest to understand at high central densities—as the
density increases the matter becomes dominated by its dark
component and approaches the non-interacting bound. At
low central densities, the physics is dominated by the
degeneracy pressure and is reduced by roughly a factor
of two as the numbers of neutrons and of dark matter
particles are roughly equal. We therefore conclude that
neutron decay to dark fermions with no self-interactions
is ruled out by the existence of 2 M neutron stars.

4. Further observations

Whereas this study apparently invalidates the original
suggestion of Fornal and Grinstein, it suggests other
questions. The possibility of heavier dark fermions
produced by a similar mechanism in the environment of
a neutron star is investigated in Ref. [6], with the result
that, as expected, the only mass that works is m, 2 2m,,
such that there are very few dark fermions in the star.

If one solves the problem by invoking interacting dark
fermions, the interactions would have to be repulsive
and, in fact, stronger those between neutrons in order to
overcome in additional the reduction of the degeneracy
pressure resulting from the second fermion species. There
have been a number of considerations of gravitational
capture of dark matter particles by neutron stars [18]
and the corresponding limits on the neutron-dark-matter
interaction scales—here, the interaction strengths probed
by the putative neutron decay, limited only by the neutron
star lifetime, are typically much smaller, depending on
the particular structure of the dark sector. In the same
context, one could also consider the possible coupling
of dark matter to strange standard model particles that
might exist in the high density regions of neutron stars—
a coupling that would be very difficult to probe in any
other way.
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