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Abstract

The Neutrino Mass Ordering (NMO) describes the energetic ordering of the three neutrino
masses m1, ms and mg. Today, the ordering is constrained up to the question of m3 being the
heaviest or the lightest of all neutrino masses, which is commonly called Normal (NO) and
Inverted Ordering (10), respectively. One way to determine the NMO is to measure matter
effects in the oscillation pattern of atmospheric neutrinos. While oscillations arise mainly at
neutrino energies of E), < 30 GeV, matter effects play an important role for E, < 15 GeV.
Such analysis of the NMO is proposed by several future neutrino experiments, that aim for
a measurement of the NMO with > 3 ¢ within the next decade. One of these experiments is
the Precision IceCube Next Generation Upgrade (PINGU), which is a low-energy extension
of the existing IceCube DeepCore detector. However, already DeepCore is capable of probing

the NMO with its energy threshold of £, ~ 5 GeV.

In this work, an analysis of three years of DeepCore data is presented to test the Neutrino
Mass Ordering. The data sample consists of 43 214 events, which comprises Charged Current
and Neutral Current interactions of all flavors and backgrounds from atmospheric muons
and triggered noise. It is tuned to provide high statistics of all flavors around ~ 10 GeV,
while reducing the contamination from background. For this sample, a new event recon-
struction was developed in this work, which provides excellent resolutions in neutrino energy
and zenith-angle at the lowest energies. Moreover, it allows to distinguish different event
signatures, which gives a handle for separating neutrino flavors.

The Neutrino Mass Ordering is fit in a mazimum-likelihood method, which includes system-
atic uncertainties in the atmospheric fluxes, the oscillation parameters, the detector response
and the neutrino-nucleon interactions as nuisance parameters in the likelihood fit. Moreover,
the uncertainties from limited simulation statistics are included into the likelihood function.
The resulting sensitivity to the NMO is found to be on the ~ 0.4 — 0.7 g-level, while the
precise value depends strongly on the true ordering and the value of the atmospheric mixing
angle f23. Moreover, the matter effects, which allow to probe the NMO, can be distinguished
from vacuum oscillations on a ~ 0.6 — 1.1 o-level. All of the analysis chain was developed
blindly, i.e. without applying the analysis to experimental data before finalizing it, and
supervised by the IceCube Collaboration.

In experimental data, a preference for Normal over Inverted Ordering is found with p-values
of pno = 71.1% (CLg = 83.0%) and pio = 15.2% (CLs = 53.3%) for the Normal and
Inverted Ordering hypotheses. This is inline with recent observations of the NOvA, T2K
and Super-Kamiokande experiments. Depending on the ordering, the fit prefers matter
effects (MA) over vacuum oscillations (VA) with p-values of pyia = 62.3% and pya = 12.3%
in case of Normal Ordering and pyia = 53.2% and pya = 22.2% in case of Inverted Ordering.

The impact of various systematic uncertainties on the result is studied in terms of a potential
bias on the result and in terms of potential improvements of the sensitivity. For potential
improvements, further constraints on systematic uncertainties are found to be subordinate at
the current sensitivity level, while the sensitivity could be increased strongly by an improved
event reconstruction.

Besides the experimental result, this work provides a proof-of-concept for an analysis of the
Neutrino Mass Ordering with a future low-energy extension of IceCube, such as PINGU.
It tests the full analysis-chain, including the statistical interpretation of the experimental
result and the understanding of systematic uncertainties. Thus, it provides a benchmark
analysis for these more sensitive future measurements.






Zusammenfassung

Die Neutrino Massenordnung (NMO) beschreibt die energetische Anordnung der drei Neu-
trinomassen m1, mg und mg. Nach heutigem Stand verbleiben zwei mogliche Anordnungen,
wobei mg entweder die schwerste oder die leichteste der drei Neutrinomassen ist, was als
Normale (NO) und Invertierte Ordnung bezeichnet wird. Eine Moglichkeit zur Bestim-
mung der NMO ist die Messung von Materieeffekten in den Oszillationen atmosphérischer
Neutrinos. Wéhrend atmosphérische Oszillationen hauptséchlich bei Neutrinoenergien von
E, < 30GeV auftreten, werden Materieeffekte bei E,, < 15 GeV erwartet. Eine solche Mes-
sung der NMO wird von mehreren, zukiinftigen Neutrinoexperimenten mit > 3 o Sensitivitat
beabsichtigt. Eines dieser Experiment ist das Precision IceCube Next Generation Upgrade
(PINGU), eine Niederenergie-Erweiterung des existierenden IceCube DeepCore Detektors,
der bereits in der Lage ist, erste Anzeichen fiir die NMO zu beobachten.

In dieser Arbeit wird eine Analyse zur Bestimmung der Neutrino Massenordnung mit drei
Jahren Daten von IceCube DeepCore entwickelt. Die Daten umfassen 43214 FEreignisse
von Charged Current und Neutral Current Wechselwirkungen aller Neutrino-Flavor sowie
einen Hintergrund von atmosphéarischen Myonen und Detektorrauschen. Die Datenselek-
tion wurde fir hohe Statistik im Bereich um FE, ~ 10GeV und auf die Unterdriickung
des Hintergrunds optimiert. Fiir die Bestimmung der Energie und der Ankunftsrichtung
der Neutrino-Ereignisse wurde eine neue Ereignis-Rekonstruktion entwickelt, welche fiir die
niedrigsten Energien eine exzellente Auflosung erreicht. Dariiber hinaus erlaubt sie die Sep-
aration von Ereignissignaturen zur indirekten Unterscheidung der Neutrino-Flavor.

Die Neutrino Massenordnung wird in einem mazimum-Ilikelihood Verfahren bestimmt, das
systematische Unsicherheiten im atmosphérischen Fluss, in den Oszillationsparametern, in
den Wechselwirkungen und in der Detektorantwort als Storparameter behandelt. Unsicher-
heiten durch die begrenzte Simulationsstatistik werden in der Likelihood-Funktion bertick-
sichtigt. Die Sensitivitit auf die NMO liegt bei ~ 0.4 — 0.7 ¢ mit einer hohen Abhéngigkeit
vom atmosphérischen Mischungswinkel 633. Dariiber hinaus kénnen Materieeffekte von
Vakuum-Ostzillationen mit ~ 0.6 — 1.1 ¢ unterschieden werden. Die gesamte Analyse wurde
blind entwickelt, d.h. ohne sie vor ihrer Finalisierung auf experimentelle Daten anzuwenden,
und von der IceCube Collaboration begutachtet.

Die experimentellen Daten préferieren die Normale tiber die Invertierte Ordnung mit p-
Werten von pno = 71.1% (CLs = 83.0%) und pio = 15.2% (CLs = 53.3%). Dies deckt sich
mit jingsten Resultaten der NOvA, T2K und Super-Kamiokande Experimente. Dariiber
hinaus werden Materieeffekte (MA) gegeniiber Vakuum-Oszillationen (VA) mit p-Werten
von ppa = 62.3% und pya = 12.3% fiir Normale und pya = 53.2% und pya = 22.2% fir
Invertierte Ordnung bevorzugt.

Der Einfluss systematischer Unsicherheiten auf das Ergebnis (als systematischer Fehler) und
die Sensitivitdt werden untersucht, wobei sich bei dem derzeitigen Sensitivitdtsniveau die
Reduktion von systematischen Unsicherheiten als nachrangig gegeniiber einer Verbesserung
der Rekonstruktions-Auflésung fiir eine Steigerung der Sensitivitdt herausstellt.

Neben dem experimentellen Resultat stellt diese Arbeit eine wichtige Machbarkeitsstudie
(proof-of-concept) fir die Messung der Neutrino Massenordnung mit einer zukiinftigen Nieder-
energie-Erweiterung von IceCube, wie z.B. PINGU, dar. Sie testet die vollstdndige Analyse-
Kette, einschliefflich der statistischen Interpretation der Resultate und der Behandlung sys-
tematischer Unsicherheiten, und ist damit eine wichtige Benchmark-Analyse fir eine zukiinf-
tige, sensitivere Messung der NMO.
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Motivation for Measurements
of the Neutrino Mass Ordering

Mass is one of the fundamental properties of elementary particles. At the same time it is
encountered in all of our everyday life so frequently that a physicist might have difficulties in
explaining to people, that there is a particle, which is studied in detail, but still its absolute
mass is unknown. It sounds even more confusing that while the mass differences between
various types of this particle are known rather precisely, their abolute masses can neither
be measured nor excluded to be zero for each of them - even though they are large enough
to affect the evolution of the universe. Such a particle is the neutrino.

During the last decade, only few observations were found that indicate that the Standard-
model of Particle Physics is incomplete and requires a further generalization. The discovery
of non-zero neutrino masses is one of them and was awarded with the Nobel Prize in physics
in 2015 for Arthur McDonald and Takaaki Kajita, two of the main contributors to this
discovery [1, 2].

The non-zero neutrino masses lead to the phenomenon of neutrino oscillation, which is
the change of neutrino flavor over time and propagated distance. Today, the parameters
describing the oscillations between the three neutrino states are known rather precisely due
to large experimental efforts within the last decades. However, there are still missing pieces
to the puzzle: The Neutrino Mass Ordering, the size of the CP-violation in the neutrino
sector, the absolute value of the three neutrino masses mi, mo and mgs and the question of
neutrinos being Majorana or Dirac particles.

Normal Ordering Inverted Ordering
N N
m’| I s v: |
Figure 1.1: Ordering of the three Am,
neutrino masses in case of Nor- “1
mal (left) and Inverted (right) Am2,,
Ordering; the colors illustrate W Ve )
the mixing with the flavor states oy A
that are described in Section 2.1 = VH
(from [3]). Vs T
Amgol
I 1 vs T

This work addresses the question of the Neutrino Mass Ordering (NMO), which describes
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Chapter 1. Motivation for Measurements of the Neutrino Mass Ordering

the energetic ordering of the three neutrino mass eigenstates. Today, there are only two
options remaining, known as Normal Ordering (NO) and Inverted Ordering (10), which
refer to the large (atmospheric) squared-mass difference Am2, , = m3 — m%Q being positive

or negative, at the top or at the bottom, while the small (solar) squared-mass difference

Amgol = m3 — m? is at the bottom or top, respectively. The corresponding ordering of the

three mass eigenstates is illustrated in Figure 1.1 [4].

Note that the term Neutrino Mass Hierarchy (NMH) is often used synonymously for Neu-
trino Mass Ordering [4]. However, it is not used in this work to avoid confusion with state-
ments on the absolute scale of the neutrino masses, which is not discussed here.

For many fields of physics, the Neutrino Mass Ordering is important to know: For neutrino
oscillation measurements, it changes the oscillation pattern, while for the double-beta decay,
it changes the strength of a potential experimental signature [5]. Moreover, since it also
influences the minimum absolute mass of the neutrinos, it relates the neutrino number
density and the neutrino mass density in our universe, which play an important role in
cosmology [6]. As a result, many future experiments, like the proposed Precision IceCube
Next Generation Upgrade (PINGU), are aiming for a > 30 measurement within the next
decade [7]. However, already the predecessor of PINGU, the currently data-taking IceCube
DeepCore detector, has some sensitivity to the NMO.

In this work, a measurement of the Neutrino Mass Ordering with three years of data from
IceCube DeepCore is presented. It includes the development of a new, low-energy event
reconstruction and uses a binned likelihood method to fit the NMO on an extreme low-
energy data sample. It is similar to the benchmark analysis proposed for PINGU [7]. Thus,
besides providing a first, low-significance measurement of the NMO with IceCube DeepCore,
this work also explores this type of measurement for the future PINGU detector by testing
the full analysis-chain and the understanding of systematic uncertainties, which validates
the analysis method.

2 RWTH Aachen University



Introduction

Neutrinos in the Standard Model of Particle Physics

The neutrino is one of the fundamental particles in the Standard Model of particle physics.
It was postulated in 1930 by Wolfgang Pauli to explain the continuous energy spectrum
of beta-decay electrons. Afterwards, it was experimentally discovered in 1956 [8] and is a
fundamental particle of the Standard Model ever since.

In the Standard Model, the behavior of all particles is derived from the Lagrange formalism,
in which the Action S, given by the spacetime integrated Lagrangian density L, is minimized
with respect to the fields it contains. In this Lagrangian density, the neutrinos are repre-
sented by the three fundamental fields v, 12 and v (labelled by latin index), which are often
referred to as neutrino mass eigenstates. In the following, only the behavior of the neutrino
fields is discussed, while the behavior of the anti-neutrino fields 1, i» and 3 is analogous.
The physics of these neutrino fields is described by terms in the Lagrangian density £ for
their interaction and free propagation [9]. The only interaction terms for the three neutrino

three generations of matter

12
(fermions) 10
| I 1
11 A ™
mass | =2.4 MeV/c? =1.275 GeV/c? =172.44 GeV/c* 0 2125.09 GeV/c* 10 4 u .7 H
charge 2/3 2/3 23 0 W =
spin | 1/2 1/2 C 1/2 t 1 3 H % 1010
g g g = b v
up charm top gluon Higgs ] 9 ®
) ) D | Sl @ 10 >
4.8 MeV/c? 295 MeV/c? 24,18 GeV/c* 0 E 8 m
13 13 a3 0 2 10
112 d 12 S 112 b 1 * 3 S T
g g 4 E 1 07 *
down strange bottom photon a dy
—) —J D | Wkl o AU
=0.511 MeV/c* =105.67 MeV/c? =1.7768 GeV/c* %91.19 GeV/c? 1 0 [ ]
-1 -1 -1 0 t 7 w
5
12 e 1/2 l-l 12 T 1 3 = %8 1
electron muon tau Zboson | 7 1000 ¥
w o total | » mass
= <22ev/c <17 Mev/c? <15.5 MeV/c? =80.39 GeV/c? [«a] 10 R erotel [Suieonel St st W W
0 0 0 1 [F1]
E 12 Ve 112 V].l 112 Vi 1 W = 10 2
E:l o o - Whoson | = 1st 2nd. | 3rd ) bosons
¥ 1 neutrino neutrino neutrino | | o particle generation
(a) Overview of particle properties (from [10]) (b) Overview of particle masses

Figure 2.1: Overview of all Standard Model particles and their properties; for (b), the par-
ticle masses are taken from [11] and [12]; note that the v, limit is based on v, measurements,
while direct . measurements are less constraining by ~ 2 orders of magnitude [11].

fields are given by weak interactions, transmitted by charged W*- or neutral Z%-Bosons [13].
Thus, the total cross-section for neutrino interactions is very small, due to the small Fermi
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Chapter 2. Introduction

coupling constant G g, describing the strength of the weak force, which makes measurements
of the neutrino properties challenging [11]. In these interaction terms, the fields v1, vo and
v3 show up as rotated states, i.e. linearly independent superpositions, which are described
by the unitary, 3 x 3 Pontecorvo-Maki-Nakagawa-Sakata (mixing) matrix U, such that

Ve 1
vy |=U-|1|. (2.1)
vy V3

These superpositions are often considered as the natural choice for describing the three
types of neutrinos, since they represent the states in which all experimental observations
take place. These superpositions are called neutrino flavors. They are commonly labelled as
electron, muon and tau neutrino, or ve, v, v, (labelled by greek index), respectively, where
the label corresponds to the charged lepton, each neutrino flavor couples to via Charged
Current (CC) interactions [9)].

In Figure 2.1(a) an overview of all Standard Model particles is shown, where the neutrinos
are conventionally shown in their flavor states, next to the corresponding charged lepton.

Besides the interactions, the Lagrangian density £ contains terms for the free propagation
of the mass eigenstates. The structure of these terms depends on whether neutrinos are
Dirac or Majorana particles, which is a question of ongoing research and directly related to
the origin of their masses (cf. Section 2.3.1) [14].

In the Standard Model, neutrinos were first believed to be massless as this would avoid
the question of right-handed neutrinos, described in Section 2.2. However, the existence of
non-zero neutrino masses is known from the measurement of neutrino oscillations that are
described in more detail in Section 2.3.2. The measured masses of all fundamental particles
of the Standard Model are illustrated in Figure 2.1(b). Note that the black stars mark only
the direct constraints on the neutrino masses m,,, m,, and m,,_ of the flavor states, while
more constraining measurements exist from [-decay, 55-decay and cosmological data for
other superpositions of the mass eigenstates mq, mo and mg. For example, a limit on the
total neutrino mass m; + mg + mg [12] is shown as blue box in Figure 2.1(b). The limits on
the neurino masses are further discussed in Section 2.3[12, 9].

Thus, the neutrino masses are substantially smaller than any other fundamental particle
mass in the Standard Model. This might be an indication for a different mechanism giving
rise to the neutrino masses than for the other particles, which is discussed in Section 2.3.1.

Neutrino Interactions

Neutrinos carry neither electrical charge nor color. Thus, they do not participate in strong
or electromagnetic interactions. In the Standard Model Lagrangian, they only interact with
other Standard Model particles via a weak interaction term [9]. This term is given by

_ 1 B
£Weak = - %€a7“§(1 - 75)VO¢WN
gw ol 5 +
— EVQ’Y'LL§(1 - )EO‘WH
gw 1 5 0
- —(1— Z 2.2
2COS(0W) Va’}/ 2( /7 )VO( y7% ( )
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2.2. Neutrino Interactions

where W* and Z° represent the gauge bosons of the Charged Current (CC) and Neutral
Current (NC) interactions, respectively, while ¢, with o € {e,u,7} is a charged lepton. The
coupling constants of CC and NC interactions are given by gw and gz = gw/cos(fw),
respectively, where Oy is the weak mixing angle [9].

One should note that the fundamental fields v; do not show up individually in the La-
grangian density Lyeak Of the interaction. Instead, they show up as linear combinations
Vo = 22=1 Uik describing the flavor states. Therefore, the fundamental fields cannot be
observed directly in particle experiments, but are accessible only via their contributions to
the flavor states.

Due to the structure of the interaction terms, the Lagrangian density can be rewritten purely
in terms of left-handed neutrinos v,;, and right-handed anti-neutrinos v, g, using Za’y“%(l —
75)1/a = larVY"Var. Thus, only left handed neutrinos participate in weak interactions,
causing the weak parity violation. Right-handed neutrinos, if they exist, do not participate
in these interactions and are therefore not observable [9].

The fact, that only left-handed neutrinos are experimentally accessible, affects the question
of neutrinos being Dirac or Majorana particles, as discussed in Section 2.3.1.

21.4F H 2 04f

S f~ Loast

1.2 | %0'35;_

o C J T (2 03‘_

g 1 g O9F

=4 N o o

Eos'— ) =0.25F

:0'65 i ':'\:0.2;—

2 F £0.15F

$0.4__ 3 0.15_

@ o [ =

g0.2}- S0.05F
o s (3] - -

> o" 4 _ L o L I> 0—.1 N d i = L
1071 1 10 10 101 1 10 10%

E, (GeV) E, (GeV)

Figure 2.2: Energy-dependent cross-section for CC neutrino-nucleon interactions split into
resonant (RES), quasi-elastic (QE) and deep inelastic scattering (DIS) for neutrinos (left)
and anti-neutrinos (right) (from [15]).

In principle, neutrinos couple to all Standard Model fermions via Charged and Neutral
Current interactions. However, the most relevant processes for the detection of neutrinos
above ~ 1GeV are neutrino-nucleon interactions. Therefore, these are discussed in more
detail in the following [15].

Neutrino-nucleon interactions can be split into three different processes: At high energies
of F, =z 100 GeV, the cross-section is almost exclusively given by deep inelastic scattering
(DIS, cf. Section 2.2.1). At lower energies of E, < 10GeV, resonant (RES), elastic and
quasi-elastic (QE) interactions start dominating (cf. Section 2.2.2). The energy-dependent
cross-section of CC interactions is shown in Figure 2.2, where different processes dominate
at different energies. The overall cross-section is notably smaller for neutrinos than for
antineutrinos, while the ratio between neutrino and anti-neutrino remains roughly constant
at ~ 2. This is shown for the total cross-section in Figure 2.3 and becomes relevant for the
atmospheric signature of the NMO, described in Section 2.4.2 [15].
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Besides these three contributions, the neutrino interaction can generate a charged meson
without exciting the nucleon state. This process is typically referred to as coherent meson
production. Due to its small cross-section, it is not relevant for this work and therefore not
discussed here [16].

4 T2K (Fe) PRD 90, 052010 (2014) O CDHS, ZP C35, 443 (1987)
—_ 4 T2K(CH)PRD 90,052010 (2014) ~ m GGM-SPS, PL 104B, 235 (1981)
> 1.6 % T2K(C), PRD 87, 092003 (2013) m  GGM-PS, PL 84B (1979)
Q A ArgoNeuT PRD 89, 112003 (2014) Y ::EE'JTE: E;NCF;SO'S:Z:;;?%
O 1.4 ® ArgoNeuT, PRL 108, 161802 (2012) : oS, bRE o1 07'2005(201)0)
~ *  ANL,PRD 19, 2521 (1979) A NOMAD, PLB 660, 19 (2008)
E O BEBC, ZP C2, 187 (1979) @ NuTeV, PRD 74, 012008 (2008)
1.2 A BNL, PRD 25, 617 (1982) X SciBooNE, PRD 83, 012005 (2011)
(&} O CCFR (1997 Seligman Thesis) % SKAT, PL 81B, 255 (1979)
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Figure 2.3: Total muon neutrino and anti-neutrino CC cross-section for neutrino-nucleon
scattering; note the switch between log- and linear scale at F, = 100 GeV; overall, the
neutrino cross-section is roughly twice as high as the one for anti-neutrinos (from [17],
based on [11]).

In the following sections, DIS, QE and RES interactions are briefly discussed for the most
interesting energy regime of this work, which is £, ~ 1GeV — 1TeV. The impact of their
uncertainty on the analysis is discussed in Section 6.3.4.

2.2.1 Deep Inelastic Scattering

Deep inelastic scattering is the dominant process for CC interactions above E, ~ 10 GeV.
For DIS interactions, the CC transfers enough energy to an individual quark to break the
bound state of the nucleon. This is the case, if the momentum/energy transfer is large
compared to the nucleon mass of my ~ 1GeV. The resulting remnants of the nucleon N
generate a hadronic cascade of secondary particles. The cascade is called hadronic, since
the production of secondary particles is dominated by strong interactions, in contrast to
electromagnetic cascades, discussed later [15, 18].

The primary interaction of DIS is given by Equation 2.3

O N S 1x, (2.3)
where (L represents a charged lepton and X represents the hadronic cascade generated by

the nucleon remnants.
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y= Ecascade/Eu

This equation is symmetric for neutrinos and anti-neutrinos. However, the density of quarks
is increased compared to anti-quarks in the nucleons, due to the presence of the valence
quarks. This affects the cross-section of the interaction. The cross-section depends on the
relative energy transfer y to the nucleon, called inelasticity or Bjorken-y. It is given by

Equation 2.4

_ EI/ - Eﬁa _ Ecascade ) (24)
E,, E,,

The inelasticity describes the fraction of the neutrino energy F,, transferred towards the

hadronic cascade. In the following, it is used without distinguishing between momentum

and energy transfer, since my, « E, is assumed implicity [9, 18].

)

The y-dependent cross-sections for neutrinos and anti-neutrinos are given by Equation 2.5
and 2.6

do,y G2
T SEs[f+ (-] (25)

_ 2
SN P [ -yl + £, (26)

where f, and f; describe the total momentum fraction carried by quarks and anti-quarks,
respectively, while G = g3, /(4+/2m3;) is the Fermi coupling constant and +/s the center-of-
mass energy. Note that both cross-sections are composed of a term proportional to (1 — y)?
and a y-independent term. The first term dominates in both equations, since f, > f7 holds
due to the presence of the valence quarks [9].

As a result, the neutrino interactions are mostly flat in y with only a small (1 — y)2-
contribution, while the anti-neutrino interactions are dominated by the (1 — 3)? term with
only a small y-independent contribution. The cross-sections for neutrinos and anti-neutrinos
are shown in Figure 2.4, where the different y-dependencies are clearly visible.

The different y-depencence of the neutrino and anti-neutrino cross-section has some impact
on the later-on presented analysis. It leads to small differences in the experimental signature
of neutrino and anti-neutrino events, which is discussed in more detail in Section 5.3.4.
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Resonant and Quasi-Elastic Scattering

Below E, ~ 5GeV, the neutrino-nucleon cross-section is dominated by resonant (RES)
and quasi-elastic scattering (QE) (cf. Figure 2.2). The resonant interactions arise from
generating an excited state of the nucleon N € {p,n} by the neutrino energy transfer. This
is shown in Equation 2.7 and 2.8 for any resonant state N* of the nucleon [18]

cc:

NC: )

a +N - at + N* 5 o + 77/0 4 N, (2.7)
o +N _>(E)a +N*_>(z?)a +rt/0 4 N, (2.8)

The excited state N* is not stable and decays into N’ € {p,n} and a single pion 7 of any
charge in most cases. Due to the pion, N’ = N and N’ # N are possible, independent of
the interaction being CC or NC.

The cross-section is often evaluated for several resonances N*, although it is dominated by
N* = A(1232) in the most interesting energy regime, where it dominates the total neutrino-
nucleon cross-section. The pion 7 and nucleon N’ can trigger a following hadronic cascade
at the primary vertex, analogously to the DIS interaction discussed in Section 2.2.1[18].
Furthermore, in case of charged pions, the pion decays into a muon and a (anti-)neutrino
with a branching ratio of 99.98% [11].

The energy range in which the contribution from resonant scattering is notable is very
limited (cf. Figure 2.2). It is driven by the excitation energy of the nucleon, which is
typically O(1 GeV).

In contrast, elastic and quasi-elastic interactions do not degenerate or excite the nucleon and
their momentum transfer is typically small. For NC interactions, they are called elastic, as no
particle type is changed and thus no energy is needed for such transformations. In contrast,
for CC interactions they are called quasi-elastic, since a charged lepton ¢, is generated and
the nucleon charge is changed according to Equation 2.9 [18]

CC: (;)a +p/n — 1X +n/p, NC: (;)a +p/n —>(;)a +p/n. (2.9)

As shown in Figure 2.2, QE interactions peak at even lower energies than RES ones.

Neutrino Masses and Neutrino Oscillations

As mentioned in Section 2.1, the neutrino masses are known to be non-zero for at least two
of the three neutrino masses m1, ms and mg from neutrino-oscillation measurements.

At the same time, the neutrino masses are known to be small from observations of the
p-decay spectrum [20] and the non-observation of neutrinoless double-beta decays (Ov/3[-
decays) [5]. Furthermore, the neutrino masses are constrained from cosmology [21].

In B-decay experiments, the energy spectrum of the escaping charged lepton is observed. A
non-zero value of the electron neutrino mass m,, limits the maximum energy that can be
transfered to the charged lepton. Observing such a cut-off would provide a measurement of
m,, and thus an indirect measurement of the masses mi, mg and ms. In Figure 2.5, such

cut-off is sketched for a -decay spectrum. However, current measurements are compatible
with m,, = 0, constraining the electon neutrino mass to m,, < 2€V [20].
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2.3. Neutrino Masses and Neutrino Oscillations

In case of Majorana neutrinos (cf. Section 2.3.1), OvfS3-experiments can measure the effec-
tive neutrino mass mgg = |mq|Uet|? + ma|Ue2|?€™" + mg|Ues|?e™2| from the observation of
two charged leptons without energy being transfered to an escaping neutrino. The effective
mass mgg is given by the the mixing matrix U and two majorana phases p; and ps, that
are described in more detail in Section 2.3.2. Since no Ovf3/-decays have been observed so
far, limits are in the order of mgg < 0.5¢V [5].

Finally, the structure formation of the universe is influenced by the gravitational impact of
the Cosmic Neutrino Background (CNB). The mass of the CNB is linked to the cosmological
neutrino mass Meosmo = 2?21 m;. Thus, the value of meosmo can be estimated by observing
the structure formation in our universe and comparing it to corresponding simulations for
different neutrino masses. Although the limits depend strongly on the choice of model and

cosmological data, recent cosmological limits are in the order of meogmo < 0.2V [21].

~
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Figure 2.5: Energy spectrum of electrons released in Tritium beta-decays, as expected by
the KATRIN experiment; a cut-off in the spectrum at the far right, which was not yet
observed, could provide evidence for a non-zero electron neutrino mass (from [20]).

Note that these constraints on the absolute neutrino masses are closely connected to con-
straints on the NMO, which are discussed in more detail in Section 2.5.

From all these measurements, the neutrino mass is known to be small. This is remarkable,
because the mass scale for all of the neutrino masses is no larger than m; ~ O(1eV) with
i = 1,2,3, which is substantially lower than the mass scale my ~ O(1 GeV) observed for all
other particles of the Standard Model (cf. Figure 2.1(b)), which arises from the coupling to
the Higgs boson [15, 9].

Thus, the neutrino masses are of special interest for a potential, future generalization of the
Standard Model. In the following, a possible mechanism is described, that explains the low
value of the neutrino masses.

2.3.1 Origin of the Neutrino Masses

The most general mass term in the Lagrangian density £, that is commonly assigned to the
neutrino fields v 2 3, is given by Equation 2.10 [9]

1
Lpy = —mp (VrvL + VLVR) + —§M (VRVR + VRVR), (2.10)
=Lp :ZJ\/I
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with 7; = v140 being the Dirac-adjoint of v; and v¢ = i?~y%# being the CP-conjugate of
the field v; [9].

The Lagrangian is composed of a Majorana mass term £j; and a Dirac mass term Lp. The
Dirac mass term is generated analogously to all other massive fermions of the Standard
Model. It drops out from spontaneous symmetry breaking after coupling the corresponding
neutrino field v; to the Higgs field. As a consequence, right-handed neutrinos must exist,
which is not supported by any experimental evidence, because they do not participate in
any interaction of the Standard Model. However, without them the gauge-invariance of the
Standard Model Lagrangian is not maintained [9].

In contrast, the Majorana mass term can be added directly to the Standard Model La-
grangian. Since vy, and vg transform as singlets under all Standard Model gauge transfor-
mations, this maintains the gauge invariance of Lpys. The corresponding mass term can be
seen as a direct coupling of a neutrino field v, /g to an anti-neutrino field vj ne Thus, in the

Majorana scenario neutrinos would be their own anti-particle [9].

For neutrinos being purely Majorana or Dirac particles, the corresponding other mass term
vanishes. More generally, it is often assumed that both terms exist. In that case, an
interesting mechanism takes places that gives an explanation for the neutrino masses being
very different from all other masses in the Standard Model. It is often referred to as seesaw
mechanism and briefly explained in the following.

The combined mass term in the Lagrangian density can be re-written as in Equation 2.11,
using vpvp = viUf 9]

_ 1 _ —c 0 mp VE,
ﬁDM = _5 (VL VR) (mD M) (VR) + h.C., (211)
—_—

=S
where h.c. stands for the hermitian conjugate of the previous expression. The physical states
of the system can be derived by diagonalizing the mass matrix S. The resulting eigenvalues
on the diagonal give the masses of the physical neutrino states. Solving det (S — A1) = 0,
one obtains the mass eigenstates in Equation 2.12

1 mp«M 1 1 2m?2
=Xy == | M+ 4/ M2+ 4m? ~ -M+-(M+TD 2.12
m+ + 9 ( o + mD 9 -9 + M ) ( )

where the last equality holds approximately for the Majorana mass being much larger than
the mass obtained from the Higgs mechanism. In the seesaw mechanism, this is assumed to
be the case to obtain two very different neutrino masses

m2
|my| ~ WD and my =~ M. (2.13)

Thus, for a Dirac mass of the same order of magnitude as for all other fermions, i.e.
O(1GeV), and a Majorana mass M ~ 10'! GeV, one obtains a small mass m, ~ 0.01eV,
which is compatible with the expected mass of the neutrino states. In contrast, the larger
mass my must be my ~ M ~ 10 GeV [9).

The resulting neutrino states are described by the mixing angle tan(a) = mp/M and are
given by Equation 2.14 and 2.15 [9]

v =cos(a) (vg + vf) — sin(a) (vg + uf%)sz«M (vp +vf) — % (vr + %), (2.14)
N =cos(a) (vg + vg) — sin(a) (v + yi)sz«M (vr + %) — % (vp +vf). (2.15)
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2.3. Neutrino Masses and Neutrino Oscillations

Thus, the heavy neutrino state IV is almost exclusively right-handed and does not participate
in any weak interactions. In contrast, the light neutrino state v is almost exclusively left-
handed, giving the observed couplings for neutrinos in the Standard Model [9].

Although the seesaw mechanism is only a hypothesis, it provides an interesting mechanism
to explain the large gap between the neutrino masses and the masses of all other Standard
Model particles, shown in Figure 2.1(b). Since neutrinos are the only Standard Model
particles capable of having a Majorana term, this mechanism would only take place for
neutrino masses and explain why neutrino masses are the only ones deviating from the
typical mass scale O(1 GeV) observed for masses generated by the Higgs mechanism [9)].

A possible way to determine the nature of neutrino masses would be the observation of
OvBp-decay. Such decay would be possible, if neutrinos were their own anti-particles and
thus, could confirm the Majorana nature of neutrinos. However, such a process has not been
observed yet by any experiment [14, 5].

2.3.2 Neutrino Oscillations in Vacuum

Flavor transitions between different neutrino flavors during the propagation of the neutrino
fields are called neutrino oscillations. They are possible, because the fundamental fields vy,
v and v3 are not identical to the flavor states ve, v, v-. As a result, a neutrino generated in
a flavor state « € {e,u,7} by a weak interaction is a linear combination of three fundamental
fields, each following an independent time expansion. Thus, each component of the flavor
state develops differently in time, such that the linear composition of v1, 1o and v3 changes
with time and propagated distance. As a result, transitions are possible in the flavor basis [9].

These flavor transitions were first predicted in 1957 by Bruno Pontecorvo [22] and observed
by the Super-Kamiokande [2] experiment in 1998 and the Sudbury Neutrino Observatory [1]
in 2001, which proved the existence of neutrino masses.

Neutrino oscillations in vacuum are described by six parameters. For propagation through
matter, the treatment is more complicated and discussed in Section 2.3.3. Three of these
six parameters are called mizing angles 6;; with ¢ € {1,2,3} and i # j. They describe the
elements of the mixing matrix U in Equation 2.1, that links the neutrino mass and flavor
states. The matrix U can be written as a product of three unitary mixing matrices Ugg, Uss
and Uy, as shown in Equation 2.16 [4]

1 0 0 C13 0 Slge_wcp ci2 S12 O e~ 0 0
U=10 co3 S$93 0 1 0 —819 c12 O 0 ez () ,
0 —S8923 (€23 _8136i5cp 0 C13 0 0 1 0 0 1
023 ﬁlS 012 R
(2.16)

with s;; = sin(6;;) and ¢;; = cos(6;;). In addition to the mixing angles 6;;, Equation 2.16
contains a CP-violating phase dcp as free parameter. In principle, one could assign several
phases to these matrices, which are only constrained by their unitarity. However, the choice
of additional phases is irrelevant here, since the individual phases are not observable and
can be represented by the single phase dcp. The matrix R inserts two additional phases p;
and po. It exists only in case of Majorana neutrinos and is irrelevant here, as it drops out
from the calculation of oscillation probabilities. Thus, these phases are assumed to be zero
in the following [23, 4].
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The remaining two parameters are given by the neutrino masses m1, mo and ms, correspond-
ing to the neutrino mass eigenstates v1, vo and v3. As shown later, neutrino oscillations
depend only on the difference of the squared masses, reducing these three masses to only
two parameters, while the third squared-mass difference can be derived by the other two.

The time expansion of each mass eigenstate i can be obtained by solving Schridinger’s
Equation, as stated in Equation 2.17 (in natural units)

S B = H ) = B (1,3, (2.17)

where H is the neutrino Hamiltonian and E; the energy of the mass eigenstate i [23]. The
solutions to this equation are plane waves, given by

m2
k3

(L)) = e~ Fit [t = 0)) ~ e’i<p”+2pv>w) it = 0)), (2.18)

where L(t) = |Z(t)| corresponds to the distance the neutrino has propagated after the time
t, while p), (with p, = |p,|) and & are the momentum and location vector of the neutrino,
respectively [23]. Note that for this derivation of vacuum oscillations, the momentum vector
Py, is assumed to be the same for all neutrino states i. However, several other assumptions
lead to the same result for the oscillation equations [9]. Moreover, more detailed calculations
consider wave packages instead of plane waves, which are not discussed here for spatial
reasons [24].

The approximation in the second step uses the relativistic identity E? = p2 + m? and the
fact that the neutrino masses m; are substantially smaller than the total energy of the
investigated neutrinos E;. Thus, the energies E; can be approximated by Equation 2.19 [9]

2

m.
FE;, ~ L. 2.19
i TPyt Ty ( )

The resulting solutions for the mass eigenstates ¢ can be converted to a solution for the flavor
states « by calculating the corresponding linear combinations, as done in Equation 2.20 [9]

3 3 m?2
Va(L)) = D Uai i)y = D Uage™ PO 5 M0 (1 = 0)), (2.20)
=1 =1

where the phase e L) is common to all neutrino states ¢ and thus drops out from the
following calculation of probabilities. The probability P, ., for a flavor transition between
two flavors a and S for a neutrino with energy FE, = p, after a propagated distance L can
be calculated according to Equation 2.21

3 3 am2. L
Puaau,g (EI/7L) = |<V5|Voz(L)>|2 = Z Z Ug,iUijUa,iU,B,jeilﬁ, (2'21)
i=1j=1
where Amgj is defined as Am?j = m? — m? Thus, the oscillation probabilities depend
only on the difference of the squared neutrino masses, not on the masses themselves. As a
result, a measurement of the absolute neutrino mass is not possible in neutrino oscillation
experiments [9].

Note that in literature, the convention, which mass difference is chosen to be expressed by the
other two, varies. In particular, the choice of using Am%l or Am%Q to describe atmospheric
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oscillations often depends on the NMO, such that Am%, (Am%,) is conventionally chosen for
NO (IO). This is discussed in more detail for the results in Chater 8. Table 2.1 summarizes
the current state of the knowledge of these neutrino oscillation parameters as obtained
from [25].

best fit value (£10)

parameter
Table 2.1: Summary of the current NO 10
knowledge of the neutrino oscillation sin?(012) 0,307f8:8£ 0. 307*885’
parameters; best-fit values and uncer- sin®(fa3) 0,538f8:828 0. 554+8 8%%
tainties are taken from [26, 25]; the at- sin?(013) 0.022064:8:888% ().022274:8'888%
mospheric mass difference is given in o Am2 oo oo
terms of Am3, = Am3}, > 0 for NO 10 V21 740 039 7402030
and Am3, = Am3, < 0 for 10. 105505 424947008 _2.465+00
dcp/° 234133 278+28

Using the unitarity of U, the probability P,,—.,, can be rewritten as in Equation 2.22

Am?-L
Pyosy(By, L) = aﬁ—42 2 Re{Uj Uz ;Ua Uﬁ,j}Sin2< 4E,j, )

i= 1] i+1
[ AmZL
J_rQZ; lem{UﬁZUj Ul Uﬁ,j}&n( 2EZ ) (2.22)
i=1j=1i+

where the sign corresponds to neutrinos (+) and anti-neutrinos (-), respectively [27, 9].

One should note that Equation 2.22 is sensitive to the NMO in two ways. The first term
of the equation includes Am? ;; only in sine-squared terms. Thus, each term is insensitive to
the NMO. However, if all three mass differences Am are observed at the same time, the
NMO could be determined by finding Am3; > Am32 or vice versa. Thus, the observation
of several oscillation channels at the same time allows to determine the NMO. Furthermore,
the second term is sensitive to the NMO, since it includes sine-terms that are sensitive
to the sign of Amgj in their argument. This requires that the mixing matrix U features
elements with non-vanishing imaginary parts and thus écp # 0. As a result, the sensitivity
of many future experiments to the NMO depends strongly on the true value of dop (cf.
Section 2.5) [27, 28].

Apart from the sine-terms, Equation 2.22 depends only on constants given by the matrix
elements of U. The sine-terms can be rewritten in Sl-units to faciliate their understanding,
as done in Equations 2.23 and 2.24 [27, 9]

Am3 L\ si—unit Am?  L/km
.92 1) units . 9 1]
—_ X 1.27 - . 2.2
sin ( iE, > sin 7 N2 B, GV ) (2.23)
AmQ L\ s1- unlts Am?, L/km
i ~ 2.54 - g ) 2.24
Sm( iAE, ) MV B G (2:24)

Note that the oscillations depend only on the ratio of propagated distance over neutrino
energy L/E,. For the values of Am3, and Am3, stated in Table 2.1, the oscillations become
visible on two different L/E,-scales of ~ 10*km/GeV and ~ 103 km/GeV [27, 23].
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Figure 2.6: Vacuum oscillation probabilities for an electron (top) and muon neutrino
(bottom) being injected; the solid lines show the full three-flavor oscillations, while the
dashed lines represent the two-flavor approximation from Equation 2.26 up to L/E, <
10* km GeV !; vertical solid lines indicate the ratio of the Earth’s diameter dp with certain
neutrino energies.

In Figure 2.6, the oscillations are shown for various ratios of L/E,. The vertical, dashed
lines illustrate the corresponding neutrino energies for using the diameter of the Earth
dg ~ 12742km as baseline L [29].

As one can see, the oscillations arise first in the v, — v, channel for low values of L/E,,
while the mixing of v, or v; with v, is much smaller for L/E, < 1000km GeV~!. Thus,
oscillations of atmospheric neutrinos, discussed in more detail in Section 2.4, with energies
E, > 5GeV and baselines of L ~ dg are mostly visible in the v, — v, channel. This
decoupling of the oscillations channels is due to the small ratio of Am3,/Am3, ~ 0.03,
causing oscillations between different flavors to dominate in different energy regimes.

Since the v, — v; channel is the dominant effect visible in atmospheric neutrino oscillations,
the oscillation pattern can be approximated in a simple two-flavor model. It is briefly

discussed in the following, as it is used for discussing the observed oscillation parameters in
Section 8.1.2.

In the two-flavor model, the neutrino mixing matrix from Equation 2.1 simplifies to

_( cos(b2,) sin(62)
Usy = (— sin(@gy) COS(HQV)) ’ (2.25)

with only one mixing angle 5,,. The matrix Us, can be plugged into Equation 2.22 to obtain

the oscillation probability P,, .. (E,, L) in Equation 2.26 [9]

P

Y

; k
—Vr (EV7L) - Sin2 (2921/) . Sin2 (127 . Ale/ . L/ m ) '

V2 E,/GeV (2:26)
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2.3. Neutrino Masses and Neutrino Oscillations

Note that the oscillation parameters o, and Am3, control the amplitude and the location of
the flavor transition in L/E,,, respectively. The two-flavor oscillations are shown in Figure 2.6
as dashed line up to L/E, < 10*km GeV~!. They resemble the full three-flavor oscillations
for sufficiently small values of L/E, [9].

The oscillation amplitude in Equation 2.26 is proportional to sin? (26s,). Thus, the ampli-
tude is maximal for #5, = 45°, while positive and negative deviations from this value lead to
a reduction of this amplitude. To first order, this is also the case for three-flavor oscillations.
Thus, the value of a3 = 45° or sin?(fa3) = 0.5 is often referred to as mazimum miring. As a
result, the parameter space is split into sin?(f23) < 0.5 and sin?(f23) > 0.5, which is referred
to as first (left, lower) and second (right, upper) octant, respectively.

The oscillation effects described above are valid for the propagation of neutrinos in vacuum.
These effects can be modulated by matter effects, that arise for neutrinos propagating
through matter. These modulations are essential for the signature of the NMO and discussed
in the following section.

2.3.3 Matter Effects in Neutrino Oscillations

The vacuum oscillations discussed in the last section hold only for neutrinos propagating
through vacuum or sufficiently thin matter. In reality, matter effects arise for typical os-
cillation baselines through Earth. The interactions of neutrinos with the electrons in the
surrounding matter are the most relevant effect during the propagation, leading to a shift
in the electron neutrino potential and thus, the neutrino oscillation pattern. The relevant
Feynman diagrams for these interactions are those of coherent forward scattering, sketched
in Figure 2.7. Note that the NC forward scattering is common to all neutrino flavors, while
the CC one is only possible for electron neutrinos and anti-neutrinos. Thus, only the latter
one changes the relative potential between the different neutrino flavors.

Ve, u,r Ve

(a) Neutral Current (NC) (b) Charged Current (CC)

Figure 2.7: Leading order Feynman diagrams of neutrino forward scattering: the NC con-
tribution (left) is independent of the neutrino flavor, while the CC contribution (right) is
only possible for electron neutrinos.

These interactions modify the Hamiltonian from Equation 2.17 by a potential term V, for
electron neutrinos, as shown in Equation 2.27 [30]:

0 Ve

1
H=op |U m3 —m? ; 2(ﬂ+ 0 . (2.27)
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Note, that the Hamiltonian is now expressed in the flavor space (ve, v, v-)T by the trans-
formation U to simplify the structure of the potential term. The electron neutrino potential
V. can be expressed by V() = £4/2GrN,(Z), where N.(Z) is the local electron density in
the medium and the sign corresponds to neutrinos and anti-neutrinos, respectively [30].

This gives rise to two different effects during the propagation: first, resonant enhancement
and second, parametric enhancement. The resonant enhancement is often called Mikhaev-
Smirnov- Wolfenstein-effect (MSW), labelled after the first people pointing out the impact
of such matter interactions on the neutrino propagation in 1978 [31] and 1986 [32].

For three-flavor oscillations in an arbitrary electron density N, (&), the oscillation probabili-
ties can only be derived numerically. However, the MSW effect can be expressed analytically
in case of two-flavor oscillations in a constant neutrino profile N.(Z) = N.. As a result, the
vacuum oscillation angle # and squared-mass difference Am? are modified according to
Equations 2.28 and 2.29.

Am? -»Am?2, = C - Am? with C 2\/((:08(29) — A)2 + sin%(20) (2.28)
. . sin(26) 24/2GrN.E,
sin(20) — sin(20,,) = - A=+ A (2.29)

where the sign in the last line is for neutrinos (+) and anti-neutrinos (—). Therefore, the

disappearance minima of neutrinos and anti-neutrinos are slightly shifted, where the size

of the effect depends on the electron- and thus matter-density. The effect is maximal for

a vanishing first term in Equation 2.28 for the definition of C, such that Equation 2.30 is

satisfied ,

+ Am
24/2G N,

Again, the sign is for neutrinos (+) and anti-neutrinos (-), respectively. This resonance is
often called MSW-resonance. It turns out that for neutrinos travelling through the Earth’s
core and mantle, the resonance is observed at energies of F,, ~ 1—10 GeV, which is discussed
in more detail in Section 2.4.2 [33].

E, = cos(26). (2.30)

In contrast to the MSW effect, parametric enhancement arises only in non-constant matter
profiles N (&), which vary periodically over the distance S, such that

Ve(z) = Ve(z + 9), (2.31)

for the electron neutrino potential, where for simplicity = = |#| is measured in direction of
the neutrino propagation. The effect arises from a phase-shift A¢ that iteratively increases
with each period of the matter profile, such that ¢, = nA¢ is obtained after n iterations of
Ve(x). Although the Earth’s matter profile is not really periodic, it features an increasing
density towards the Earth’s core followed by a decrease towards the surface. This mantle-
core-mantle structure can be seen as a periodicity with n = 1, which is sufficient to give
rise to parametric enhancement effects. However, these effects barely contribute above
~ 1 GeV, such that the effect is of less importance for the analysis presented in the following
chapters [34].

The matter effects in neutrino oscillations give a handle for separating the two Neutrino
Mass Orderings. This is due to the fact that a non-zero electron density leads to an increase
(decrease) in the energy of the electron neutrino (anti-neutrino) state. As a result, shifting
the mass of the flavor state does not have the same effect for both of them:
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2.4. Atmospheric Neutrinos

For Normal Ordering, one has Am? = Am3, > 0. Thus, the sign in the definition of A in
Equation 2.29 allows to satisfy the resonance condition in Equation 2.30 for neutrinos, while
for anti-neutrinos no positive value leads to this resonance. In contrast, for Inverted Ordering
one has Am? = Am3; < 0, which cannot give positive values of E, in Equation 2.30 for
neutrinos, but only for anti-neutrinos [33].

Thus, matter effects arise mainly in the neutrino and anti-neutrino channel for Normal
and Inverted Ordering, respectively. For atmospheric neutrinos, this is further discussed in
Section 2.4.2.

Atmospheric Neutrinos

2.4.1 Cosmic Rays and Atmospheric Neutrino Generation

In 1912, Victor Hess discovered ionizing particles, hitting the Earth’s atmosphere from
outer space [35]. These particles were henceforth called Cosmic Rays. They give rise to
atmospheric neutrinos, which are generated in the Earth’s atmosphere by interactions of
the primary Cosmic Rays with the molecules of the air.

The origin of Cosmic Rays is still unknown, but object of vast investigations. The most com-
mon theories predict Cosmic Rays to be accelerated in astrophysical objects like Supernovae
or Blazars by shock-acceleration. At Earth, the Cosmic Ray spectrum above ~ 10'° eV con-
sists mainly of protons (& 85%) that follow a broken power law behavior in the differential
flux %OCE ~7 over more than 10 orders of magnitude in Cosmic Ray energy. Beside protons,
also heavier nuclei and electrons contribute to the total flux [36].

The broken power law changes its spectral index from v &~ 2.7 to v &~ 3 at ~ 10155eV and
back to v &~ 2.7 at ~ 10'8? eV, which is often referred to as knee and ankle, respectively [11].
In addition, it features a cut-off at ~ 5 - 10 eV, which can be explained by the limited
size of the accelerating astrophysical objects and/or the Greisen-Zatsepin-Kuzmin (GZK)
cut-off [38, 39]. The change in the spectral index is often seen as an indication for different
Cosmic Ray origins: while below the knee, the spectrum might be dominated by galactic
sources, the galactic contribution dies out between knee and ankle, leaving a dominant
extragalactic contribution above the ankle behind. In Figure 2.8, the broken power law is
shown for several components of the flux below the knee, which is the relevant energy regime
for the observation of atmospheric neutrino oscillations [36, 40].

In the Earth’s atmosphere, these Cosmic Rays interact with the air’s molecules via strong
and electromagnetic interactions. Such process is sketched in Figure 2.9. These interactions
generate charged mesons, which also interact with the molecules of the atmosphere or decay,
leaving neutrinos and anti-neutrinos behind. At low neutrino energies of £, < 100 GeV, this
process is dominated by pions, while at higher energies of E, ~ 100 GeV kaons take over,
as shown in Figure 2.10. At even higher neutrino energies of F, = 100TeV, a contribution
from the production of heavier mesons is expected, carrying at least one charm- as a valence-
quark. This contribution is commonly called prompt fluz. However, there is no experimental
evidence for such contribution so far [42].

The mesons decay into neutrinos and other light particles. For charged pions, the branching
ratio of I' & 99.99% guarantees an almost entire conversion into muons. The most important
decay chains for a pion produced by a primary Cosmic Ray proton p and a nucleon N € {p,n}
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Figure 2.8: Differential Cosmic Ray spectrum for several nuclei as observed by various
experiments below the knee at ~ 10'%% eV (from [37]).

Figure 2.9: Sketch of an air shower
generated in the Earth’s atmo-
sphere; the primary proton gener-
ates charged pions that decay, leav-
ing neutrinos and anti-neutrinos as
well as muons behind (from [41]).
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of the Earth’s atmosphere are summarized in Equation 2.32 with the subsequent muon

decays [43, 11]

pT+ N ot +X

o ut +u, (T =100%)
pt et e+,
T o u + (P %100%)

po—e + e+ vy

(2.32)

One should note that these decay chains suggest a (v, + 7,)/(ve + Ve)-ratio of 2 : 1 in
case all pions decay before losing a substantial amount of their energy by interactions with
the Earth’s atmosphere, which is a valid assumptions for low energies. Also v, /v, ~ 1
and ve/Ve ~ pt/u~ can be estimated for the flavor-dependent neutrino to anti-neutrino

ratio [43].

In contrast to pions, the kaon production and decay is not dominated by one process, but
a combination of several non-negligible K*, K% and Kg processes. The most relevant kaon
production and decay chains are summarized in Equations 2.33 and 2.34 [11]

pT+ N> K+ X

PN )

(

K* 7t 479 (
K* 575 +75 4+ 7t (T 6%

(

(

—
4
[\
—

§
l

!

K=+ —>7r0—i-eir—i-(lj)6
K* —>7r0+ui+(lj)
pT+ N> K +X

I

(=)

Kg — ntet+
(=)

K —atut4 v

ve (Dp~41%) — cf.

p (L =27%) — cf.
K —ntnt (s ~69%) — cf.

. pion decay chain
cf.
cf.

pion decay chain

pion decay chain

. pion decay chain

. pion decay chain (2.33)

pion decay chain

pion decay chain

pion decay chain, (2.34)
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where the subsequent decays of muons and pions are analogous to the pions in Equation 2.32.

The slope of the atmospheric neutrino spectrum is driven by two processes: first, the decay
of the mesons and second their interaction between generation and decay with the Earth’s
atmosphere. With increasing energy, the lifetime of pions and kaons increases in the labo-
ratory frame. As a result, they have more time to interact with the surrounding molecules
before they decay. Thus, the mesons lose more energy, having less energy left to be passed
to the neutrino and the muon after decay. The same is true for the decay of the muons,
which lose a crucial amount of their energy, as soon as they hit the Earth’s surface and then
drop out from the production of high-energy neutrinos [40, 43].
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Furthermore, the amount of matter passed by a meson/muon per unit time depends on the
zenith-angle. Since the air is thinner at higher altitudes, a pion that was generated in the
upper atmosphere loses less energy under a flat zenith-angle than it does when crossing the
atmosphere vertically. As a result, the energy-dependence of atmospheric neutrinos features
a zenith-dependent structure [40].

The total spectrum can be described approximately by a %OCE; 3.7 power law. The spectral

index arises from the spectral index of the Cosmic Ray primary spectrum (y = 2.7) and
an additional factor of E,, describing the energy-dependent lifetime of the meson. For high
energies, the elongated lifetime of the muon and the constant interaction probability lead to
an increased energy-loss and thus decreased remaining energy of the decaying meson, which
softens the observed atmospheric neutrino spectrum [40].

More advanced calculations of the atmospheric fluxes take the composition of the primary
spectrum, energy-dependent cross-sections, the inclination angle, the point of observation
and global, atmospheric conditions into account. As a result, these predictions come with
non-negligible uncertainties from multiple sources, feature seasonal variations and have to be
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Figure 2.12: Left: energy spectrum of atmospheric neutrinos for v,,v,, v, and v,; center:
energy-dependent flavor- and neutrino to anti-neutrino-ratio; right: zenith-angle spectrum
of atmospheric neutrinos for various flavors and two different seasons at F, = 3.2 GeV; all
fluxes are calculated for the Geographic South Pole (modified from [46]).

benchmarked by comparisons to experimental data. Some measurements of the atmospheric
neutrino energy spectrum are shown in Figure 2.11. It comprises measurements from various
experiments stretching over ~ 6 orders of magnitude in neutrino energy [40, 46].

The atmospheric neutrino- and anti-neutrino fluxes used in this work are based on predic-
tions from [46] for the South Pole. In Figure 2.12, the resulting energy spectrum (left),
the flavor and neutrino to anti-neutrino ratio (center) and the neutrino zenith spectrum
are shown for the predicted fluxes[46]. The uncertainties on these fluxes are parametrized
based on [47], which estimates the uncertainties on the energy-, flavor- and zenith-spectrum
for neutrinos to anti-neutrinos based on [48]. The resulting systematic uncertainties for this
work are discussed in detail in Section 6.3.2.

Note that the atmospheric fluxes in Figure 2.12 are given only for electron and muon neu-
trinos, since tau neutrinos are not generated in the pion and kaon decays. For high energies,
tau neutrinos can be generated in the prompt contribution by the decay of charmed mesons
like D,;. However, even for these processes, the tau neutrino flux is an order of magnitude
below the one obtained from muon neutrinos [49]. In contrast, the tau neutrinos observed
in atmospheric neutrino measurements arise from neutrino oscillations, as described in Sec-
tion 2.4.2.

The measurement of the appearance of tau neutrinos in the atmospheric neutrino flux is a
key goal of many experiments and allows for probing the unitarity of the PMNS matrix U.
First measurements of the tau-appearance by the Super-Kamiokande detector are consistent
with the standard-oscillation prediction [50], while future experiments like the IceCube-Gen?2
detector are aiming for more precise measurements of the tau-neutrino normalization [51].

Moreover, Figure 2.12 illustrates the difference between the neutrino and anti-neutrino
fluxes. At low energies, the v,/p,-ratio is ~ 1, as the neutrino flux is predominantly
produced by the decay of charged pions, with each pion generating one muon neutrino
and anti-neutrino within its decay chain (cf. Equation 2.32). At higher energies, the ra-
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tio changes, as muons are capable to reach the ground. In that case, muons lose most of
their energy before they decay, such that the neutrino to anti-neutrino ratio depends on
the 7% /m~-ratio and an increasing contribution from kaon decays. The resulting neutrino
fluxes exceed the anti-neutrino fluxes, due to the dominance of positive charges in the Cos-
mic Ray primaries and in the nuclei of the Earth’s atmosphere. As a result, the hadronic
interactions of the air shower produce positive mesons more frequently than negative ones,
leading to the observed preference for neutrinos over anti-neutrinos at high energies [52, 40].
The difference between the neutrino and anti-neutrino fluxes and cross-sections give rise to
an important feature of the NMO signature presented in Section 2.4.2.

Besides atmospheric neutrinos, atmospheric muons are a relevant background for this work.
Since these muons are capable of travelling several kilometers through solid matter, even
underground neutrino detectors are affected by an atmospheric muon background. In the
following analysis, these muons are not removed completely from the data sample and thus,
need to be modelled accurately. This is described in Chapter 4.

Note that the fluxes of atmospheric neutrinos and muons feature seasonal variations: As the
temperature in the atmosphere changes over the year, the neutrino and muon production
are affected by the changes in the air density. However, these changes are small and the
following analysis is based on a multi-year data-sample, such that seasonal changes are
averaged out. Thus, they are not discussed further in the following, as their impact was
found to be negligible for the presented analysis [53, 40].

2.4.2 Oscillations of Atmospheric Neutrinos

Once generated, atmospheric neutrinos propagate almost undisturbed through the atmo-
sphere and the Earth’s matter. Their low cross-section (cf. Section 2.2) avoids a notable
decrease in the atmospheric neutrino flux, due to interactions with the surrounding matter.
Thus, they can be measured anywhere on Earth coming from all zenith-angles. Nonetheless,
underground observations are of course preferable, due to the otherwise large background
from atmospheric muons.

During this propagation through Earth, neutrinos can undergo neutrino oscillations, as
discussed in Section 2.3, before being measured by an underground detector.

The neutrino propagation from the point of their generation through the Earth is sketched in
Figure 2.13. Since the Earth’s geometry is known, the zenith-angle of an incoming neutrino
can directly be linked to the distance it propagated. For a spherical Earth and neutrinos
being generated at an average height of L; ~ 19km, the corresponding relation L, (6, ), can
be written as

L,(6,) = \/ (rg —L1)* + 1% — [2@(@ — L) cos (arcsin((l — f;) sin(9y)>)] (2.35)

where 0, and L, are the zenith-angle and the propagated distance of the incoming neutrino,
respectively, while rg &~ 6371 km is the Earth radius (cf. Section 2.3.2) [29, 56].

As shown in Figure 2.13, the Earth features an inhomogeneous density profile, which is
described by the Preliminary Reference Earth Model (PREM). It parametrizes the Earth’s
density by a core-mantle inhomogenity, where the core is additionally split into an inner
and an outer part of higher and lower density, respectively. The resulting density profile is
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Figure 2.13: Left: visualization of neutrinos propagating through the Earth at Core-Mantle-
Boundary (CMB) and Inner-Core-Boundary (ICB) in the PREM Earth model (modified
from [54]); right: density profile of the PREM Earth model, consisting of a an inner core,
an outer core, a mantle and some minor features (modified from [55]).

shown in Figure 2.13 (right). For the following studies, the PREM12 model is used, which
approximates the PREM model by 12 layers of constant density [55, 57].

Although the neutrino flux is not notably reduced during propagation, the matter profile
has some impact on the neutrino oscillations, as discussed in Section 2.3.3. Due to the
MSW-effect and parametric enhancement, the oscillation pattern is modified with respect
to vacuum oscillations. Depending on the Neutrino Mass Ordering, these matter effects
arise mainly in the neutrino or anti-neutrino sector. This is visualized in Table 2.2, where
the observation channels undergoing matter effects are underlayed in blue, while observation
channels featuring no or negligible matter effects are underlayed in red.

Table 2.2: Oscillation pat- NO 10

. Vacuum
terns relevant for atmospheric
inos: . Ve >V Ve = U, Ve — U,
neutrinos; the hypothese§ of neutrinos e o e o e o
NO, IO and vacuum oscilla- Vy — Va Vy — Vg vy, = Vg
tions are shown for neutrinos (Fig. 2.14(a),(b)) (analogous)
and anti-neutrinos; blue back- " . - - - - ~
. anti- Ve > U, Ve — U, Ve — U,
ground color: matter effects in . € o S o e o
neutrinos Uy — Uy Uy — Vg Uy — Vg

this channel; red background
color: vacuum (or similar) os- (Fig. 2.14(c),(d)) (analogous)

cillations in this channel overall high matter low matter no matter

signature effects effects effects

For these processes, the transition probabilities for a generated electron or muon neutrino
to show up as an electron, muon or tau neutrino after propagating through Earth under a
certain zenith-angle 8, and a neutrino energy FE, are shown in Figure 2.14. However, since
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all oscillation channels of the same background color in Table 2.2 are almost identical, they
are shown only for the case of Normal Ordering for v./, — v, (blue) and 7/, — Uy (red)
with « € {e,u,7}. However, the remaining processes can be derived approximately using
Table 2.2. In this work, the oscillation probabilities with matter effects are calculated with
the Prob3 software [58], which is based on [59]. Moreover, an implementation of the analytic
solution from Equation 2.22 is used for vacuum oscillations.

For a generated muon neutrino, the mixing with tau-neutrinos is strong below E, ~ 30 GeV,
which leads to the effect of v,-disappearance and v -appearance. Both effects can be ob-
served with similar analyses as the one presented in this work. Since atmospheric muon
neutrinos are abundant, the transition probability p(v,, — v;) is high, and no v;-neutrinos
are produced in the atmosphere, both processes can be measured with high significances
with recent atmospheric data [60, 61, 62].

The matter effects can easily be understood by comparing Figure 2.14(a) to 2.14(c) and
Figure 2.14(b) to 2.14(d). In the electron neutrino sector, an increased oscillation probability
arises in case of matter effects, while the electron anti-neutrinos follow almost vacuum
oscillations, in which they barely mix with the other flavors. The sudden jump at cos(6,) =
—0.8 arises at the core-mantle boundary, which changes the observed matter effects. The
increased transition probabilities at log;,(E,/GeV) ~ 0.7 are mainly due to the MSW-
resonance. However, the mixing with v, and v; neutrinos is in general small for neutrinos
and anti-neutrinos.

In the muon neutrino channel, matter effects are mainly visible for long oscillation baselines
with cos(f,) < —0.6 and low energies of E, < 15GeV, i.e. below the first oscillation
extremum. For anti-neutrinos, the matter effects are not visible in case of NO, such that
only vacuum-like oscillations are seen in Figure 2.14(d), while for IO, this behavior flips for
neutrinos and anti-neutrinos. As a result, a detector capable of distinguishing neutrinos
and anti-neutrinos, only needs to show in which of these channels matter effects arise to
determine the NMO.

Note that this might lead to the naive impression, that NO and IO are not distinguishable in
a detector that does only observe v + v and is not capable of separating neutrinos from anti-
neutrinos on an event-by-event basis. However, this is not true: due to the increased cross-
section for neutrino-nucleon interactions compared to anti-neutrino-nucleon interactions (cf.
Section 2.2), the strength of the signature from matter effects is different for NO and IO.
This asymmetry is enhanced by the fact that the atmospheric neutrino flux is higher than
the corresponding anti-neutrino flux, as discussed in Section 2.4. Thus, in an atmospheric
neutrino detector more neutrino than anti-neutrino events are expected. This means that
in case of NO strong matter effects are observed in the combined v + D-channel, while for
10, weak matter effects are observed. This is summarized in the last row of Table 2.2.

Additionally, neutrinos and anti-neutrinos can be distinguished on a statistical basis, even
if the charge of the secondary lepton cannot be observed. The difference in the signature
is based on measuring the fraction of neutrino energy passed to the secondary lepton. This
inelasticity, i.e. Bjorken-y, distribution is different for neutrinos and anti-neutrinos, as shown
in Figure 2.4. This difference allows to estimate the neutrino-to-anti-neutrino ratio from
the reconstructed Bjorken-y distribution. However, this effect is small and only observable
for muon neutrinos in CC interactions, as discussed in Section 3.3.

Beside the measurement of the NMO, these matter effects can also be used for neutrino Earth
tomography. Such measurements are investigated for many future experiments aiming for a
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measurement of the NMO with atmospheric neutrinos [63, 64]. However, this is beyond the
scope of this work and requires a high sensitivity towards matter effects, as not only their
existence needs to be observed, but also modulations on top of them. Such sensitivity is not
reached for the analysis presented in the following.

pR] Status of the Neutrino Mass Ordering Measurements

There are two common approaches to determine the NMO: First, using oscillation experi-
ments, which are sensitive to the mass differences between the neutrino states, and second,
using experiments that are directly sensitive to the neutrinos’ absolute masses [4].

The first group comprises reactor, accelerator (long-baseline) and atmospheric neutrino
experiments. All of them measure the NMO via modulations in the observed pattern of
neutrino oscillations. However, while accelerator and atmospheric neutrino experiments use
mainly matter effects to determine the NMO, reactor experiments use the small difference
between Am3, and Am3, (i.e. Am3;) by measuring multiple oscillation channels at once.
Thus, they are capable to determine the NMO purely from vacuum oscillations [4].

The second group comprises - and [5-experiments as well as cosmological data. All of
them are capable to constrain an effective neutrino mass that is given by a superposition
of the neutrino masses mj, ms and ms (e.g. the effective mass meogmo = m1 + mo + ms
for cosmological data). Assuming the lightest of the three neutrino masses to be zero,
the assumption of NO or IO implies a minimum value for such effective mass. Thus, these
experiments can constrain the NMO by measuring or excluding the corresponding minimum
mass predicted by one of the ordering hypotheses. An overview of these constraints from
cosmology, - and Bf-decays is added to Appendix A [4, 6].

For accelerator experiments, recent indications on the NMO come from the T2K [65, 66],
MINOS/MINOS+ (67, 68], and NOvA[69, 70] Collaborations, with the most significant
result being a slight preference of 1.80 for NO by NOvA [70]. In addition, the Super-
Kamiokande Collaboration provides some result on the NMO based on a measurement of
atmospheric neutrinos, with the observed preference for NO being on a ~ 2o-level [71]. In
contrast to NOvA, the result is based on a full statistical analysis of their x2-fit, which is
similar to the Pseudo-Experiments method described in Section 7.1. However, all of these
measurements are at a < 2o-level. Thus, from current oscillation experiments only weak
evidence exists on the nature of the NMO.

To provide a more significant, global best-fit of the NMO, the oscillation results from several
experiments are combined by NuFit [26, 25]. Besides the best-fit oscillation parameters in
Table 2.1, they provide a global-fit for the NMO based on the ordering-dependent combina-
tion of the oscillation measurements. The resulting best-fit prefers NO over IO by ~ 2 ¢ for
the oscillation parameters stated in Table 2.1[26, 25]. Note that this global-fit does not yet
include the most recent results from all above mentioned experiments. Thus, an increased
significance for NO is expected from global best-fits in the near future.

For non-oscillation experiments, the strongest indication on the NMO comes from cosmo-
logical data, which prefers NO over 1O at the level of AXQNO—IO ~ 0 — 1.6 [12]. However, it
strongly depends on the included data and cosmological model, causing the observed range
in the NMO preference (cf. Appendix A) [6, 12].

Besides these currently data-taking experiments, several future experiments are proposed,
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Figure 2.15: Projected median sensitivity to the NMO for several future experiments as
by 2014; the shaded areas indicate the dependence on dcp for NOvA and DUNE, the
dependence on 623 for PINGU and INO and the energy resolution uncertainty for JUNO;
for DUNE and NOvA, the solid (dashed) lines are obtained for 623 = 40° (50°) (from [72]).

which aim for an NMO measurement within the next 5 to 15 years. Their time-dependent
projected sensitivity to the NMO is summarized in Figure 2.15 for both orderings. Note that
these projected sensitivities change constantly and depend on several assumptions. They
are shown here by the state of 2014 just to illustrate the general state of the field and the
dependence of the sensitivities on different uncertainties. However, the expected start of
data-taking and sensitivities changed in the meantime for several experiments, e.g. for the
PINGU projection [7].

For accelerator experiments, the most prominent proposal is the Deep Underground Neutrino
Ezperiment (DUNE), which reaches 5 — 200 projected sensitivity for 10 years of data,
depending on the true value of dcp [73, 74]. For reactor experiments, one of the leading
efforts is the Jiangmen Underground Neutrino Observatory (JUNQO), which aims to be taking
data by 2020. Its projected sensitivity reaches ~ 3¢ for the NMO with 6 years of data,
which is mostly independent of the value of the other oscillation parameters, in particular
dcp [75, 76).

Finally, for atmospheric neutrino experiments, several ice and water Cherenkov detectors
are proposed like the Precision IceCube Next Generation Upgrade (PINGU) [7], the Oscilla-
tion Research with Cosmics in the Abyss (ORCA) [3] experiment, the India-based Neutrino
Observatory (INO) or the Hyper-Kamiokande [77] experiment.

They all feature a similar measurement principle. However, only the PINGU detector and
its projected sensitivity are described in more detail in Section 3.6, after the introduction
of the IceCube and DeepCore detector. Its design is similar to and motivated by the design
of the currently running IceCube DeepCore detector. Besides the experimental result, the
following work is largely dedicated to providing a full-chain analysis of the Neutrino Mass
Ordering on DeepCore data as a proof-of-concept for a future PINGU detector.
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3.1

The IceCube Detector Set-Up

The IceCube Neutrino Observatory is a ~ 1km? size neutrino detector at the Geographic
South Pole. Completed in December 2010, it is a multi-purpose Cherenkov detector with
the primary goal to measure the astrophysical neutrino flux and its sources [78].

IceCube Lab

X - IceTop

= _-‘/ 81 Stations
0MC gy, - - =S - 324 optical sensors

IceCube Array
| | 86 strings including 8 DeepCore strings
| 5160 optical sensors

1450 m

DeepCore
8 strings-spacing optimized for lower energies
480 optical sensors

Eiffel Tower

324 m
2450 m
2820 m

Figure 3.1: The IceCube detector set-up, showing the IceCube, DeepCore and IceTop arrays
(from [79]).

The reason for its location at the South Pole is the need for a large mass of a transpar-
ent, heavy medium. Since the neutrino cross-section and the astrophysical fluxes are low,
neutrino measurements require a large active mass to obtain reasonable neutrino rates. In
addition, the detector medium needs to be transparent, since neutrino interactions are de-
tected via the Cherenkov light emission of their secondary particles [80]. The transparent
medium allows the photons to propagate towards a photo sensor. At the South Pole, the
~ 2.8 km thick ice shield provides such a large volume of clear, transparent medium [78].

The IceCube detector consists of 86 strings running through the clear Antarctic ice vertically
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Figure 3.2: Projection of the IceCube detector set-up, sketching the string and DOM den-
sities of the IceCube and DeepCore array (modified from [81]).

from the ice surface to almost the bedrock, carrying 5160 Digital Optical Modules (DOMs)
in depth between 1450m and 2450m. These DOMs are equipped with photomultiplier-
tubes (PMTs) [82] to measure the emitted Cherenkov light from neutrino interactions, as
discussed in Section 3.2. The detection hardware of the DOMs is described in more detail
in Section 3.5.1[78, 82].

The strings are arranged in a hexagonal structure, leaving ~ 125 m space between strings
horizontally, while the vertical distance between DOMs is only ~ 17m. The set-up of the
IceCube array is shown in Figure 3.1 and 3.2. With this set-up, the IceCube array is capable
to detect neutrinos above E, ~ 100 GeV.

Additionally, a more densly instrumented volume exists within the IceCube array, forming
the DeepCore sub-detector, which is located roughly in the center of the IceCube array. It
is vertically split into a shallow veto-cap for atmospheric muons at a depth of ~ 1800 m and
a deeper, fiducial volume in a depth of ~ 2100 — 2450 m, where the ice is very clear. It con-
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sists of eight DeepCore-strings surrounding one IceCube string. On six of these strings, the
vertical distance between DOMs is decreased to only ~ 7 m, while the horizontal spacing be-
tween strings in DeepCore is roughly ~ 75m. In addition to the increased density of DOMs,
the DeepCore DOMs feature an enhanced quantum-efficiency, as described in Section 3.5.1.
The remaining two strings of DeepCore consist of a mix of IceCube and DeepCore DOMs
with a vertical spacing of ~ 10m. Due to the more densly instrumented volume, the high
transparency of the ice and the increased quantum-efficiency, DeepCore lowers the energy
threshold of IceCube to ~ 5 GeV. The arrangement of DOMs on the different IceCube and
DeepCore strings is illustrated in Figure 3.2[83, 78].

All IceCube and DeepCore strings are connected to the IceCube Laboratory (ICL) at the
surface. In the ICL, the data from all DOMs is gathered and the trigger conditions are
tested. It serves as an online system running at the detector location and pre-processing
the data before sending it to the Northern Hemisphere via satellite [78].

Beside these sub-surface arrays, there is a surface detector on top of the ice. It is called
IceTop and consists of 81 stations of pairwise deployed frozen water-tanks. Each of these
water tanks carries two DOMs, shielded from outer light, leading to a total number of
324 DOMs for IceTop. It is capable of measuring Air Showers generated by Cosmic Rays
between the knee and the ankle. Additionally, it serves as an atmospheric muon veto for
the underlying IceCube detector and allows for calibration of the IceCube detector using
coincident muon events in both detectors. However, for low-energy analyses it is of no
further relevance and therefore not discussed in this work [84].

84 Detection Principle

Within IceCube, neutrinos and anti-neutrinos are detected via their CC and NC interac-
tions with the nucleons of the surrounding ice. These interactions can be deep inelastic
(DIS), resonant (RES) or quasi-elastic (QE) scattering, as discussed in Section 2.2. The two
corresponding Feynman diagrams are shown in Figure 3.4 for CC and NC.

These interactions generate charged secondary particles. The secondary particles emit
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(a) CC (b) NC

Figure 3.4: Feynman diagrams of CC and NC neutrino interactions as seen by IceCube.

Cherenkov radiation, if they move faster than the speed of light in the medium ¢, = 7,
where n & 1.32 is the refraction index of the Antarctic ice [85, 80].

The light emission arises from the polarization of ice molecules. While propagating, a
charged particle arranges the molecules in its vicinity by its electromagnetic field. As the
particle passes, the molecules return to randomized orientations. This randomization process
moves with the speed of light through the medium and leads to photon emission by the
corresponding molecules. These photons can interfere constructively, if the charged particle
moves with a velocity v larger than the speed of light ¢, in the medium. In that case,
the photons generate a shock-cone coaxial to the movement of the particle and similar to
a jet plane passing the sonic barrier. It was first discovered in 1934 by Pavel Alekseyevich
Cherenkov, giving name to the resulting radiation. The corresponding process is sketched
in Figure 3.5 for a particle with v > ¢, [80, 86].

- Digital Optical

' Modules

wavefront

‘ / ‘ \
/ Y \ \
~ primary vertex ‘ - ) Cherenkov ‘

Figure 3.5: Sketch of a muon generated by a CC muon neutrino interaction, emitting
Cherenkov radiation; the spherical blue waves centered on the muon track are following the
Huygens-Fresnel Principle leading to constructive interference along the Cherenkov cone,
which is aligned with the muon track (pre-published in [87]).
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The opening of the Cherenkov cone is described by the Cherenkov angle ¢ in Equation 3.1.
It is derived by the ratio of the velocity of the shock-front vs = ¢-n and the velocity of the
particle v, ~ ¢
1 1
cos(¥) = % -, (3.1)

o B

where the last equality assumes a highly relativistic particle. Since the resulting expression
depends only on ¢ and n, it is roughly constant within IceCube at cos(d) ~ 41°. After
propagating through the ice, the resulting Cherenkov photons are eventually measured by
the PMTs, carried by the DOMs within IceCube. The number of observed photons and
their arrival time can then be used to reconstruct the direction, energy and flavor of the
preceding neutrino event, as described in Chapter 5 [80, 86].

Note that a single Cherenkov cone is only obtained for a single particle, moving on a
straight line. In case of multiple, charged particles, the resulting light emission is not a
pure Cherenkov cone, but rather a diffuse emission, due to the superposition of several
Cherenkov cones. It is described in more detail in the following section about the event
signatures [86].

The amount of energy emitted by Cherenkov radiation per unit length z travelled by the
particle and per unit of frequency w is given by the so-called Frank-Tamm formula [88].
Although most of the light observed by the IceCube detector is generated via Cherenkov
radiation, the particle’s energy loss due to Cherenkov radiation is small. Instead, charged
particles lose most of their energy via ionization, Bremsstrahlung, photo-nuclear effects and
pair-production, which are described in more detail in Section 3.3 [88, 11].

Event Signatures for Different Neutrino Flavors

3.3.1 Track-Like Events

In case of CC muon neutrino interactions, the muon generated at the primary vertex can
travel long distances through the detector, generating a distinct Cherenkov cone. Due to
the resulting, elongated shape of these events, they are called track-like in the following [78].

During the propagation, the muon loses energy by ionization, Bremsstrahlung, photo-nuclear
effects and pair-production. The total, energy-dependent, average loss is shown in Figure 3.6.
In the vicinity of the minimum at E, ~ 0.3 GeV, the energy loss is dominated by ionization
processes, which are described by the Bethe-Bloch formula for heavy, charged particles [11].
Therefore, muons at this energy are called minimum-ionizing particles (MIP). Moreover,
the energy losses are of similar size between E, ~ 0.1 GeV and ~ 100 GeV [11].

The muon energy E,, = (1 —y)E, can be obtained from the neutrino energy £, and the
inelasticity ¥, which follows the distribution in Figure 2.4 in case of DIS interactions. As a
result, the muon energy is typically of the same order of magnitude as the neutrino energy.
Thus, for CC muon neutrino interactions with F,, ~ 0.1 — 100 GeV the muon generated at
the primary vertex is well-approximated as MIP, which is used for the event reconstruction
in Chapter 5.

In general, the energy loss in ice for muons above ~ 1 GeV per distance x is described by
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assuming an ice density of pjce = 0.92 (;%, which is roughly true for all of the IceCube detec-
tor. The energy loss is composed of an almost energy-independent term a from ionization
processes and an energy-dependent term b - E, from Bremsstrahlung, photo-nuclear effects
and pair production (radiative losses), where the coefficients a and b are only weakly energy-
dependent [90]. The energy Eﬁrit ~ a/b, at which the radiative loses start dominating the
ionization ones, is called critical energy. While the term b- E), is small for minimum-ionizing
muons, this is not the case for electrons, which lose energy dominantly by Bremsstrahlung

and pair production and thus can not be treated as MIPs analogously [90, 11].

Apart from the average loss, the processes feature different stochastic behaviors: For ion-
ization processes, dominating below Effit, the energy loss is almost continuous, while for
the radiative processes, dominating above Eﬁrit, the energy losses feature strong stochastical
fluctuations [11].

In addition to the outgoing muon, CC muon neutrino interactions generate a hadronic
cascade at the primary vertex, caused by the energy transfer to the nucleon. By the following
strong and electromagnetic interactions, multiple charged secondary particles like pions
and electrons are produced, which also generate Cherenkov emission but are incapable of
travelling large distances like the muon. Due to the large number of particles, the resulting
photons do not form a single Cherenkov cone, but cause a rather diffuse, total emission.
The resulting, nearly spherical light emission is similar to the one described in Section 3.3.2
and therefore called starting cascade [86].

Besides the starting cascade, the muon decay causes an additional electromagnetic cascade
at the end of the muon track. However, due to its long lifetime of 7, = 2.2 us, the muon
does not decay before losing most of its initial energy, such that the electromagnetic cascade
is irrelevant for the presented signature and not discussed here [11].

Thus, in this work track-like events comprise the signature of a track and a starting cascade,
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if both are contained inside the detector volume [91, 11]. The signature of track-like events
in sketched in Figure 3.7.

Note that for E, < 100GeV, the length of the muon track is L, < 400m with most of
the tracks being substantially shorter. As a result, upgoing neutrino events are typically
contained within the IceCube detector volume, if the primary vertex is inside DeepCore,
which is the case for most events used in this work. Note that in case of contained events no
energy is deposited outside the detector, which allows for a good energy resolution compared
to uncontained events, as discussed in Chapter 5. In contrast, uncontained events can arise
e.g. from CC muon neutrino interactions below DeepCore with the generated muon entering
the detector.

3.3.2 Cascade-Like Events

Besides CC muon neutrino events, also CC electron and tau neutrino events are measured
in IceCube. For electron neutrinos, the electron generated at the primary vertex is not
capable of travelling large distances through the detector like the muon. Instead, it triggers
a cascade of secondary particles, which is dominated by electromagnetic interactions, and
therefore called electromagnetic cascade.

Like hadronic cascades, the electromagnetic cascade features a rather local energy deposition
and thus, a light emission of nearly spherical symmetry (cf. Section 3.3.1). However,
the electromagnetic cascade is on average brighter, since hadronic cascades deposit more
energy in nuclear bindings and neutral particles, like neutrons, that provide no output in
Cherenkov light. Moreover, hadronic cascades typically feature electromagnetic sub-showers,
that are induced by the generation of 7 and other neutral mesons. However, the differences
between electromagnetic and hadronic cascades are not resolvable on an event-by-event level
in DeepCore. Thus, hadronic and electromagnetic cascades are not distinguished in this
work [92, 86].

For tau neutrinos, the CC primary interaction generates a tau lepton. For energies F, <
100 GeV the resulting cross-section is reduced compared to the other flavors by kinematic
effects, which arise from the large mass of the tau lepton m, = 1777MeV [11, 93]. Due
to the low energies of E; < E, < 1TeV considered in this work, the generated tau lepton
decays close to the primary vertex, as the mean distance between generation and decay is
only (; ~ (E/(mrc))n, = 4.9cm for a tau energy of E; = 1TeV, using the tau mass m,
and its lifetime 7f;, = 0.29ps[11]. This tiny distance is not resolvable with a spacing of
tens to hundreds of meters between PMTs. Instead, the tau decays close to its generation
vertex, following one of the decay channels in Equations 3.3 to 3.5[11, 94]:

(=)

™ >0 +nh*0 (T ~ 64.7%), (3.3)
=550y (;)u +ut (T~ 17.4%), (3.4)
L0 D et (T ~ 17.8%), (3.5)

where nh*/0 represents all possible sets of n € N mesons of any charge [11]. The low-
energy leptons and mesons, generated in the tau decay, can trigger an electromagnetic or
hadronic cascade. However, the additional neutrinos lead to invisible energy, escaping from
the process. Thus, in contrast to electron and muon neutrino interactions, tau neutrino
interactions do not deposit all of the original neutrino energy within the detector, leading
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to a systematic shift in the reconstructed energy for tau neutrinos, which is discussed in
Section 5.3.4.

Note that the tau decay may also generate a muon, that can potentially cause a track-like
signature in DeepCore. However, due to the reduced muon energy and the small branching
ratio, these muons are typically not visible at energies F, < 100GeV relevant for tau
neutrinos arising from atmospheric neutrino oscillations.

For high-energy analyses, going up to energies of £ ~ E, ~ 1PeV, the mean distance
between the generation and decay of the tau lepton grows to £ &~ 50 m, which can be resolved
with current reconstruction methods. This so called double-bang signature is targeted by
several analyses searching for astrophysical tau neutrino events [94].
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Figure 3.7: Event signatures in IceCube: the first three (from left to right) arise from CC
and the last one from NC interactions; track-like events feature a starting cascade, but
are distinguishable from the others due to the outgoing muon track; in contrast, the other
types are not distinguishable for energies E), < 100 GeV and called cascade-like (modified

from [95] and [96]).

In addition to the electromagnetic cascade, triggered by the electron and tau lepton, CC
electron and tau neutrino interactions generate a hadronic cascade at the primary vertex
analogous to the CC muon neutrino interactions. Since these cascades share the same
primary vertex and the same, nearly spherical symmetry, they can not be distinguished in
IceCube, but appear as a single cascade of increased energy. Therefore, all CC electron and
tau neutrino events are considered cascade-like in the following [91].

For NC interactions, the energy, transferred to the nucleon by the Z-Boson, leads to a
hadronic cascade similar to the ones described above. However, the remaining energy is
carried away by the neutrino, that escapes from the detector. Thus, analogous to CC tau
neutrino interactions, a large fraction of the neutrino energy stays invisible, leading to a
systematic shift in the reconstructed energy, as seen in Section 5.3.4. Since NC interactions
cause a cascade without outgoing track, they are also called cascade-like in the following [91].

All event signatures, discussed above, are summarized in Figure 3.7. Additionally, a track-
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like and a cascade-like event are shown in Appendix B, using an event viewer of the IceCube
detector, i.e. visualization software, for illustration purposes.

One should note that the event signature has some notable impact on the energy and direc-
tion resolution. Since tracks provide a long lever arm for the reconstruction, their angular
resolution is typically better than the one for cascade-like events. Moreover, above ~ 1TeV
the energy resolution for cascades is notably better than for tracks, where the muon can leave
the detector, causing energy being deposited outside the instrumented volume. However,
below ~ 1TeV the energy resolution of tracks and cascades is similar (cf. Section 5.3.4).

The Deep Ice within IceCube

The Antarcic ice is the active medium used for the neutrino detection in IceCube. Moreover,
its properties affect the propagation of Cherenkov photons by absorption and scattering.
Thus, precise measurements of atmospheric neutrinos require a profound understanding of
the ice.
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Figure 3.8: Optical properties of the bulk-ice in terms of the depth-dependent, effective
scattering and absorption coefficients at a wavelength of 400 nm; DeepCore and IceCube
detector are indicated by blue shaded areas; at shallow depth, a notable contribution from
air bubbles exists, which vanishes at larger depth, while dust comprises all other impurities.

The Antarctic ice at the South Pole has grown over tens of thousands of years by compressing
fallen snow into dense ice through gravitational pressure. During this process, different
amounts of impurities, called dust, were frozen into these ice-layers, where the amount
and properties of the frozen dust depend on the global weather conditions in the Earth’s
atmosphere for each epoch. As a result, the properties of the ice vary mostly depending on
its depth. The depth-dependent, effective scattering and absorption coefficients of the ice
are shown in Figure 3.8 for a typical Cherenkov wavelength of 400 nm [97, 78].

Note that above ~ 1.3km, the ice becomes substantially less transparent than deep in the
detector. One reason for this change are air bubbles frozen into the Antarctic ice, which are
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a major source of photon scattering. However, below a depth of ~ 1.3km the high pressure
causes the air contamination to be incorporated into the ice crystal structure over time,
featuring the same refractive index as ice [98]. As a result, the scattering contribution from
air bubbles vanishes, while scattering and absorption remain present due to other impurities
of the ice, as shown in Figure 3.8. Note that the DeepCore detector was deployed in a region
of very clear ice, while a pronounced dust-layer is located right above its fiducial volume.
Thus, the absorption and scattering coeflicients are small within the fiducial volume, while
they are large in the dust-layer above [97].

The ice in the detector is limited from below by the bedrock, starting ~ 300m below
DeepCore. It is opaque for photons, but features ~ 3 times higher neutrino-interaction
rates, due to the increased density of rock compared to ice. Since muons, produced by CC
muon neutrino interactions with £, = 100 GeV in the bedrock, are capable to reach and
trigger the DeepCore detector, the bedrock needs to be simulated accurately for neutrino
analyses, which is discussed in more detail in Section 4.2.1[97].

Vertically, the ice properties change rapidly, due to the layered structure of the Antarctic
ice. However, the depth at which certain ice features become visible varies slightly over
the horizontal extent of the detector, leading to the conclusion that a small it in the ice
layers is observed, caused by the landscape of the underlying bedrock. This landscape is
only washed-out slowly, when going to more shallow layers, but is still very visible within
the IceCube detector. Thus, the same ice properties are found at slightly different depths
for different strings [97].

Horizontally, the ice properties are affected by glacial movements. Since the ice at the South
Pole is a moving glaciar, the horizontal isotropy is broken by the direction of movement
of the glaciar. This movement induces an anisoptropy in the absorption and scattering
properties of the Antarctic ice. The underlying processes, that cause these changes, are still
not understood, but object of major, ongoing investigations [97, 99].

This Antartic ice, that has grown naturally without any human interference, is called bulk-ice
in the following.

While the bulk-ice makes up the majority of the ice in the detector, the DOMs are located
in a different type of ice, called hole-ice. The hole-ice is the refrozen ice within the vertical
holes, that were drilled while deploying the strings. Although the melted water was re-used
to fill the drill holes, the resulting ice behaves differently than the bulk-ice. This change in
the ice properties is not yet understood completely, but is likely related to the relatively quick
re-freeze of the ice, which was not generated over thousands of years under gravitational
pressure. As a result, the air contained in the hole water could not escape during the freezing
process. Instead, it was pushed towards the center of the hole-ice, forming the so-called
bubble-column, which is confirmed by in-ice camera observations[100, 101]. Additionally,
the vertical layers found in the bulk-ice were washed-out by the melting and re-freezing
process. As a result, the hole-ice differs in scattering and absorption compared to the bulk-
ice, shown in Figure 3.8 [97].

The hole-ice properties are a major systematic uncertainty for the DeepCore detector. Its
models differ mainly by their assumption on the radial-dependence of the optical hole-ice
properties: For example, a non-uniform radial-dependence of the optical properties is mo-
tivated by the observed bubble-column, which features a much smaller radius than the
drill holes. Thus, the outer parts of the drill hole might have similar optical properties
to the bulk-ice (or better), while deviations from the bulk-ice are mostly contained in the
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Figure 3.9: Parametrization of hole-ice uncertainties by an effective photon detection ef-
ficiency (relative acceptance), depending on the inclination angle cos(n) of the incoming
photon: the blue dots show the simulation of a homogeneous hole-ice with all DOMs cen-
tered in their drill hole; the green shaded area shows the range covered by the systematic
parametrization (modified from [81] and [101]).

bubble-column in the center. In contrast, the hole-ice properties might also be homoge-
neous throughout the entire hole, such that the DOMs are completely contained within a
homogeneous ice column. Moreover, the horizontal location of each DOM within its drill
hole might vary, as well as its orientation with respect to the cable, that shadows photons
arriving from a certain azimuth angle. In general, all these effects are highly correlated.
The resulting models are mostly constrained by in-situ calibration measurements with LED
flashers attached to the DOMs, which are described in Section 3.5.1[100, 81].

For physics analyses, the holeice uncertainties are parametrized by an effective photon detec-
tion efficiency, that depends on the inclination-angle 7 of the incoming photon. It is derived
from propagating photons through pure bulk-ice and comparing the resulting number of
detected photons for all DOMs to LED flasher measurements. The n-dependent acceptance
is then added to the bulk-ice simulation to optimize the agreement with flasher data and
parametrized by two systematic parameters (cf. Section 6.3.5). The resulting photon ac-
ceptance is shown in Figure 3.9, where the parametrization covers the green shaded area.
Note that the parametrization is least constraining at cos(n) =~ 1, which is for upwards
moving photons, where the LED measurements provide almost no constraints. Therefore,
the parametrization is free to vary the acceptance over a large range for these photons.

In addition, the hole-ice can be simulated directly by using different optical properties within
the drill hole for the photon simulation. For comparison, one of these simulations is shown
as blue dots in Figure 3.9 for the case of homogeneous hole-ice properties and all DOMs
centered within the drill holes [97, 81].

The nuisance parameters used in this work for the hole-ice uncertainties, are described in
more detail in Section 6.3.5.
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The IceCube Data Acquisition and Processing

3.5.1 The IceCube DOM

The photon detection in IceCube is performed by the Digital Optical Module (DOM), which
can be seen as the fundamental detection unit of the detector. As sketched in Figure 3.3,
it consists of a 10” photomultiplier tube (PMT) and digitizing electronics, placed in a glass
pressure sphere. Within the sphere, the PMT is arranged looking downwards, increasing
the detection efficiency for photons moving upwards [78].

The PMT is sensitive to photons between 300nm and 600nm wavelength with a peak
detection efficiency of 25% for IceCube and 33 % for DeepCore DOMs at 390nm. The
PMT amplification is ~ 107, generating signals from ~ 8 mV to the linearity limit at ~ 2V.
However, the low-energy events discussed in this work do typically not contain signals outside
the linearity regime [78, 82].
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Figure 3.10: Raw-data processing within a DOM: the PMT response is passed to an FADC
and two ATWD digitizers and tested for local coincidences (LC) up- and downstream the
string; an additional high-voltage supply and flasher LEDs are deployed in each DOM, where
the latter is used for calibration purposes (from [78]).

The PMT is attached to the DOM mainboard, as sketched in Figure 3.10. The voltage
curve, measured by the PMT, when a photon hits the photocathode, is called waveform.
On the mainboard, these waveforms are digitized by two kinds of digitizers in parallel: first,
two Analog Transient Waveform Digitizer (ATWD) on the first 422 ns of each waveform and
second, a Fast Analog-To-Digitcal Converter (FADC) for any longer signal. Two ATWD
chips are implemented per mainboard to allow a waveform to be digitized by one ATWD,
while the other one is being read out, which reduces the dead-time of the digitization. The
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typical width of a digitized waveform ranges from 12ns to ~ 1.4 us|[78]. The system is
capable of resolving up to 300 photoelectrons in 25ns, being limited only by the linearity
regime of the PMT [97].

The integral over these waveforms is interpreted as observed charge of the PMT in units
of photoelectrons (PE), giving an estimate for the number of observed photons on the
photocathode. Instead of calculating the integral, it is approximated by the amplitude of
the waveform, where ~ 8 mV amplitude correspond to 1 PE. The waveform is read out, if the
estimated charge exceeds 0.25 PE, in which case the corresponding DOM is labelled as hit.
Furthermore, the time of each waveform is stored and used as proxy of the time of arrival
for the corresponding Cherenkov photons. These quantities are later used to reconstruct
the neutrino events in Chapter 5 [78].

In addition to the digitizing electronics, each DOM is equipped with 12 LED flashers on a
flasher board, which are pointing into different directions into the surrounding ice. These
LEDs are capable of producing pulsed light of up to 70ns pulse-length and up to 10'°
photons for calibration purposes. Here, calibration includes measurements of the absorption
and scattering properties of the ice (cf. Section 3.4), the DOM positions and the linearity
of the DOM response in photon intensity. The wavelength A\ppp = 405nm emitted by
the LED flashers was chosen to be close to the typical wavelength of Cherenkov photons,
while 16 DOMs were equipped with flashers of different wavelength. The knowledge and
uncertainties of the ice properties, included as systematic parameters in Section 6.3.5, are
largely based on such LED measurements (cf. Section 3.4) [97].

The noise rates for IceCube and DeepCore DOMs are ~ 500 Hz and ~ 650 Hz, respectively,
where the precise value depends on the individual DOM. To reduce this random noise, each
hit is tested for local coincidences (LC) with its nearest or next-to-nearest neighbor on the
same string within 1 us. In case such coincidence is found, ATWD and FADC read-outs
are sent to the surface, which is called Hard Local Coincidence (HLC). Otherwise, only the
FADC read-out is sent to the surface, which is called Soft Local Coincidence (SLC) [78].

At the surface, this data is used in the trigger criteria of the detector, which are described
in more detail in Section 3.5.2.

3.5.2 Online Processing at the Pole
3.5.2.1 Triggering

If a Hard Local Coincidence (HLC) is detected on a string, the data is sent to the IceCube
Laboratory (ICL) at the surface. At the ICL, the HLC data from all strings is tested to
match one of the trigger conditions. Most triggers used in IceCube are Simple Multiplicity
Triggers (SMT). They require a certain number of HLCs in a given time-window to trigger
the full read-out of the detector. In case of the IceCube array, the most relevant trigger is
the SMT-8 trigger, requiring 8 HLCs being seen within 5 us in IceCube DOMs. It triggers
at a frequency of 2.5kHz. Data used in IceCube analyses is mostly based on this trigger,
while other triggers exist for specific physics cases [78].

In contrast, the DeepCore sub-detector used in this work is based on an SMT-3 trigger.
It requires 3 HLCs being seen within 2.5 us among the lower 50 DeepCore DOMs on each
string (without veto cap) and the lower 22 DOMs of the 7 adjacent IceCube strings. This
leads to a trigger frequency of 250 Hz. In contrast to the IceCube array, it is the only trigger
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run on this sub-detector. For the DeepCore trigger, the corresponding read-out window is
[—4 us, +6 us], which is centered at the HLC hit triggering the detector read-out [83, 102].

It is common, that a single event matches multiple triggers. To handle this, the ICL checks
for all individual triggers first, before running a full detector read-out. Different triggers
being launched within 1 us are combined in one global trigger. There, the read-out window
is adjusted such that the read-out windows of all individual triggers are contained. The
resulting event is then flagged with all triggers that were launched [78].

At trigger level, the data is clearly dominated by atmospheric muons, which feature ~ 106
times higher rates than the atmospheric neutrino contribution. As a result, subsequent
filtering and processing is needed to purify neutrino samples [78, 83].

3.5.2.2 Processing and Compressing Data

In the ICL, Processing and Filtering (PnF) scripts are run on the triggered data. This
processing includes [78]:

1. extraction of data for detector and quality monitoring,

2. generation of realtime alerts for events of astrophysical interest,

3. calibration of the raw DOM response data,

4. generation of data files and meta-information for the data interpretation.

Within this process, the waveform data is compressed into the Super Data Storage and
Tranfer format (SuperDST) to be sent to the Northern Hemisphere. This format is known
to lead to small information losses due to discretization, while the resulting loss is small
compared to the calibration uncertainties. However, the format leads to a reduction of
the data size by a factor of ~ 10. In addition to the DOM reponse data, the ICL adds
information on the detector Geometry, Calibration and Detector Status (GCD) to each
run of the detector, which is usually every 8h. This information is later used to identify
problematic DOMs in reconstruction and data selection and to interpret and re-calibrate
the DOM response.

During the calibration (point 3), the best knowledge of the DOM response is used to de-
convolve the digitized waveform into single photon responses. In this process, the photon
arrival time information is extracted and stored for each DOM in each event as so-called
pulses or hits. In addition to the photon arrival times, the amplitude/charge information
is stored, since the photon extraction from the continuous waveform is not perfect and
the amplitude/charge information allows to estimate the number of coincident photons that
might have ended up in the same extracted pulse. Thus, the integrated charge over all pulses
in a single DOM within a certain time frame is a more robust estimator for the observed
number of photons than the number of pulses itself.

The entirety of all pulses in one event is called pulse-map.

3.5.2.3 Hit Cleaning

For each event, the pulse-map is run through a cleaning algorithm, called hit cleaning, which
is supposed to remove unphysical hits from the corresponding pulse-map. Since DeepCore
events are triggered by HLC hits, but also include a large number of SLC hits in the read-out
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data, they include a large number of random noise hits not being related to any physical
light observed by the corresponding DOM [78].

These hits are removed by the so-called SeededRT cleaning. The SeededRT cleaning starts
with a sub-set of pulses in the pulse-map. These are typically chosen to be the HLC hits,
as they are assumed to be of physical origin. Then, each pulse in the sub-set is tested for
other pulses in its spatial and time vicinity, in the same or other DOMs. If such pulses are
found, they are added to the sub-set. After all original pulses were tested, the process is
repeated iteratively with the new, extended set. The algorithm converges, if no more pulses
are added to the sub-set during one interation. Thus, the sub-set contains only pulses, that
are close to each other in space and time.

To define the vicinity of a pulse, a radius of 250 m and a time difference of 1 us is used
for pulses in the IceCube array. For DeepCore, these values are adjusted to 125m and
500ns. Due to the fact that pulses can not be removed from the seeded pulse-map, the final
pulse-map is a super-set of all HLC hits.

The cleaned map is afterwards used for the DeepCore filter, described in the following.

3.5.2.4 Filtering

In the ICL, every event is run through a set of filter criteria using observables from simple
low-level reconstructions like the vertex position, direction, energy or topology. Depending
on these filter criteria, the event is classified as matching or not matching, while events can
match several filters at the same time. These filter decisions split the events into different
data streams, targeting different physics analyses [78].

The data sample used in this work is based on the DeepCore filter. The DeepCore filter
reduces the amount of data by a factor of ~ 100 by removing obvious background events
from triggered dark noise and atmospheric muons [83].
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Figure 3.11: Schematic view of the DeepCore filter: pulses passing the hit cleaning are split
into fiducial and veto hits; while the fiducial hits are used to calculate a time and space COG
within DeepCore, the veto hits are used to calculate the hypothetical velocity of a particle
to this COG coordinates; in case one of these velocities is consistent with an atmospheric
muon hypothesis, the event is rejected (modified from [83]).

To do this, all hits that remain in the SeededRT cleaned pulse-map (s. Section 3.5.2.3)
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are split into fiducial hits and veto hits. The fiducial hits are all hits that are within the
DeepCore fiducial volume, excluding the DeepCore veto cap, while all remaining hits are
defined as veto region.

Afterwards, the following algorithm is applied, as visualized in Figure 3.11 [83]:

1. The center of gravity (COG) for all pulses ¢ within the fiducial volume is calculated.
Since these are not weighted by their observed charge, this is equivalent to calculating
the mean value (Z) of the position vector Z; for the corresponding DOMs j(i) and the
mean (t) of their corresponding hit times t;.

2. The mean value (Z) is refined by taking only hits that are within one standard deviation
of the mean time (t).

3. The mean value (t) is refined by taking the average of the causally corrected hit times
for all hits in the fiducial volume. This causal correction is defined by subtracting the
time that unscattered light would need to travel from the refined COG position (Z)
to the corresponding DOM from each hit time.

4. The refined COG position and time, calculated in step 2 and 3 from the fiducial hits,
are then used to calculate a velocity for each pulse in the veto region. Therefore, a
hypothetical particle is assumed to travel from the corresponding hit to the refined
COG. For a pulse i in the DOM (i) of the veto region, the resulting velocity is

_ T — @)
(&) —ti
where #; is the time of the pulse i and ;) is the position of the DOM j observing

pulse i. The velocity is positive in case the hit happens before the COG average time
and negative otherwise.

Vi

(3.6)

5. In case of atmospheric muons causing the veto hits and the hits in the fiducial volume,
the resulting velocities v; are expected to be close to the speed of light and positive.
Thus, a cut is applied, such that an event is rejected, if the velocity v; for one pulse ¢

in the veto region satisfies:

5 8
¢ < < 5 (3.7)

as it is likely caused by an atmospheric muon.

The DeepCore filter is a simple topological criterion to reduce the amount of data sent via
satellite. Although simple, it allows to remove the vast majority of triggered atmospheric
muons, while keeping almost all atmospheric neutrino events.

The remaining DeepCore data is sufficiently small to be sent via satellite, although the vast
majority of the remaining data is still induced by atmospheric muons. These remaining
muons are later removed by a carefully chosen set of selection criteria, that define the final
data sample. Since this is an analysis-specific selection and not done at the pole, the further
processing is described separately in Chapter 4.

The Precision IceCube Next Generation Upgrade (PINGU)

The Precision IceCube Next Generation Upgrade is a proposed, low-energy extension of the
currently data-taking DeepCore detector. It aims for several physics goals, while many of
them extend already existing DeepCore analyses with increased sensitivity [7].
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Figure 3.12: Proposed baseline detector set-up for the PINGU detector, shown as side view
(left) and on-top view (right) (modified from [7]).

Placed inside the DeepCore volume, the currently proposed baseline scenario for the PINGU
detector consists of 26 additional strings within the DeepCore volume. Each of these strings
carries 192 optical modules, leading to a horizontal, inter-string spacing of 24 m and a verti-
cal, inter-module spacing of 1.5 m, which is a much denser instrumentation than used for the
DeepCore volume. For the optical modules, several options are currently being discussed:
They range from an updated version of the currently used, high-quantum-efficiency Deep-
Core DOMs up to more advanced, possibly multi-PMT modules. In addition to improving
the light detection, several calibration devices are planned to be used during the deploy-
ment of the PINGU strings (while the drill holes are open) and during the data-taking of
the PINGU detector. This will lead to an improved understanding of the ice properties and
allow to reduce systematic errors on the measurements. The PINGU detector set-up from
the most recent Letter of Interest of the PINGU Collaboration is shown in Figure 3.12[7].

Due to the higher instrumentation density and at least small modifications to the optical
modules, the PINGU detector will on average detect more Cherenkov light than the cur-
rently running DeepCore detector for low-energy events. The additional Cherenkov light
will improve the noise suppression and the reconstruction of events and thus reduce the
uncertainties on the extracted physics parameters.

By lowering the energy threshold to E, ~ 1GeV and improving the resolution of the event
reconstruction, PINGU will be capable to produce competitive measurements of the oscil-
lation parameters sin?(f23) and the atmospheric squared-mass difference Am3;. It will also
be capable to detect tau neutrino appearance (cf. Section 2.3.2) with high significance and
measure the corresponding tau neutrino normalization with an excellent accuracy. Further-
more, it aims for a > 3 ¢ measurement of the NMO with less than fours years of data-taking.
The corresponding sin?(fs3)-dependent sensitivity is shown in Figure 3.13 for both ordering
hypotheses and four years of data [63, 7].

Although measuring the NMO is a highly competitive field, the PINGU detector is a rela-
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tively cost-efficient (~ 50 M$) detector that could come online on a short timescale. Thus,
it might be taking data before other, highly sensitive experiments like DUNE or Hyper-
Kamiokande (cf. Section 2.5). However, the time-window for such early measurement is
closing [7].
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Figure 3.13: Projected sensi-
tivity of the PINGU detector
to the NMO for four years of
data, depending on the atmo-
spheric oscillation parameter
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While PINGU is still in its planning stage, its predecessor DeepCore has been taking data
for several years now. Thus, the already available DeepCore data can be used to prototype
such NMO analysis for the future PINGU detector.

This is done in this work by identifying potential future challenges and testing the full
analysis chain for such measurement. Since the DeepCore and PINGU detector set-ups
are similar, except for their spacing of optical modules, they suffer from similar systematic
uncertainties:

1. uncertainties in the (atmospheric) neutrino oscillation parameters (cf Section 2.3),
2. uncertainties in the atmospheric neutrino flux (cf Section 2.4),

3. uncertainties in the neutrino-nucleon interactions (cf Section 2.2),

4. uncertainties in the detector response of the optical modules (cf Section 3.5),

5. uncertainties due to unknown, local, optical properties of the ice (cf Section 3.4).

In Section 6.3, these uncertainties are discussed in detail for this work and the DeepCore
detector [7]. However, the impact of some of these uncertainties varies between DeepCore
and PINGU due to the differences between the detectors, e.g. the energy range that is used
for the measurement.

Beside neutrino oscillations, PINGU is also aiming for other fields of physics, like dark-
matter detection and Earth tomography, that are not described here [7, 63].
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"Wl General Purpose and Strategy of the Sample

The GeV Reconstructed Events with Containment for Oscillations (GRECO) sample is an
extreme low-energy data sample based on the DeepCore trigger and filter. It aims for high
statistics at low energies close to the DeepCore threshold at £, ~ 5GeV.

At these energies, one of the challenges is the weak experimental signature from neutrino
events. The majority of DeepCore events features pulses in only O(10) DOMs, which are
mostly single photons. Due to this limited signature, reconstructions at these energies
provide only poor resolutions for the zenith-angle, neutrino energy and track against cascade
separation. Still, DeepCore is capable to measure atmospheric oscillations competitively, due
to the high statistics of O(10%) events per year on analysis level.

Table 4.1: Monte Carlo (MC) generators used for low energies (LE) and high energies
(HE) in GRECO, optimized for the most accurate description in their energy regime; the
last column gives an estimate for the fraction of the final sample, while the precise values
depend on several nuisance parameters (cf. Section 6.3 and Table 4.4).

type contribution  LE generator HE generator oscillations fraction
CC y, GENIE NuGen yes ~ 60%
neutrinos CC v, GENIE NuGen yes ~ 25%
(signal) CC v, GENIE - yes ~ 5%
NC veur GENIE NuGen no ~ 5%
atmospheric MuonGun+CORSIKA no ~ 5%
background .
noise Vuvuzela no ~ 0.1%

Another challenge at these energies is the separation and modelling of different components
of the incoming flux. While high-energy samples in IceCube reach purities of 99.7% in CC
muon neutrino events [103], low-energy samples typically comprise non-negligible contribu-

tions from:
1. CC muon neutrino events 4. NC neutrino events of all flavors
2. CC electron neutrino events 5. atmospheric muon events
3. CC tau neutrino events 6. triggered dark noise.
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For measuring the NMO, all these contributions need to be modelled accurately in Monte
Carlo simulations (MC). The MC generators used for this are summarized in Table 4.1, while
the MC simulations are described in more detail in the following section before introducing
the data selection in Section 4.4.

In the data selection, experimental data and Monte Carlo are run through the same pro-
cessing, such that no difference is made between them. The final sample, i.e. the sample
after the data selection, is then used for a likelihood analysis of the NMO in Chapter 6.

Monte Carlo Generators

The Monte Carlo generators are summarized in Table 4.1. They are split into high- and
low-energy generators to use the most reliable generator at every energy. In the following,
all neutrino events are classified as signal, while background comprises atmospheric muons
and triggered dark noise. Moreover, NC events are classified as non-oscillating, since the
NC interaction is independent of the neutrino flavor.

4.2.1 Neutrino Simulations

For all neutrino flavors, GENIE 2.8.6 [104] is used to simulate events between 1 GeV and
1TeV. It includes simulations of QE, RES and DIS interaction. Within the simulation, neu-
trinos are forced to interact within the detector volume to avoid a time-intense simulation
of neutrino events that do not interact, due to the small neutrino-nucleon cross-section. At
the primary vertex, the simulation of secondary particles is done by the PYTHIA frame-
work [105], which is closely linked to the GENIE framework.

To further reduce the computation time, neutrino events are generated according to power-
laws with the spectral index depending on the energy range. On analysis level, the events
are then re-weighted according to the expected flux from atmospheric neutrinos and their
interaction probability. The energy ranges and spectral indices used for the simulation are
summarized in Table 4.2. Overall, the simulated statistics correspond to an effective livetime
of ~ 30 years, which is roughly an order of magnitude above the experimental sample size.

Each data sample in Table 4.2 features a unique sample ID to distinguish these baseline
samples from the systematic samples, introduced in Section 6.3.5. While the baseline sam-
ples in Table 4.2 were generated with the default settings of all detector uncertainties, the
systematic samples were generated with varying settings for these systematic parameters to
estimate their impact. The systematic samples are described in more detail in Section 6.3.5.

The sample ID consists of five digits, where the first two digits describe the simulated neu-
trino flavor and the remaining three digits identify the detector simulation (640 corresponds
to the baseline settings). A detailed list of all baseline and systematic samples is added to
Appendix H.1.

For the GENIE simulation, the generation volume, i.e. the volume in which the neutrino
must interact, is shrunk to a cylinder of length ¢ and radius r, which is aligned with the
neutrino direction. The value of ¢ and r depend on the type of simulated event and the
corresponding energy scale, as summarized in Table 4.2. This is done, since low-energy
events within DeepCore feature a very local signature. Thus, neutrino interactions, that
cause light deposition more that ~ 250 m away, are rare. While cascades are incapable to
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Table 4.2: Energy ranges, spectral indices and detector volume used in the neutrino simu-
lation with GENIE; the generation volume is given by a cylinder of radius r and length ¢;
the last column gives the simulated effective livetime of the data sample.

sample ID  type  E,/GeV spec. index 7/m {/m effective livetime / y

Vet 7. 1-4 1.9 250 500 ~ 30
12640  ve+ 7. 412 2.0 250 500 ~ 30
Ve + . 12-1000 2.5 250 500 ~ 30
Vu+ 7, 15 2.0 250 500 ~ 30
14640 v, +7, 580 2.0 330 900 ~ 30
Vu+ 7, 80-1000 2.0 330 1500 ~ 30
ve+ 0, 410 1.5 250 500 ~ 30
16640 v, +7,  10-30 2.0 250 500 ~ 30
v, + 7, 30-1000 3.5 250 1000 ~ 30

generate such light depositions, CC muon neutrino and atmospheric muon events can cause
such signatures, which is the reason for the elongated volume used for the generation of CC
muon neutrinos.

In addition, these far travelling muons cause issues for upgoing events, since the bedrock is
not implemented in GENIE. Instead, the ice extends down into the bedrock region. As a
result, the cross-section of the neutrinos and the energy loss of the secondary particles is not
modelled correctly for these events. However, as muons from that depth with £,, < 100 GeV
do typically not lead to notable light depositions in DeepCore, this effect is only relevant
for CC muon neutrinos of high energy.

To account for these inadequacies of GENIE, a second generator, called NuGen, is patched in
for these critical parts of the parameter spaces (cf. Table 4.1). NuGen is based on the ANIS
simulation framework [106] and is the standard neutrino generator above E, ~ 100 GeV
within the IceCube Collaboration. It has been found to be reliable over several orders of
magnitude in neutrino energy up to £, ~ 1PeV. Moreover, it is not limited by its generation
volume and includes an accurate description of the bedrock below the detector. However,
it includes only DIS interactions, leading to a growing deficit in the neutrino rates below
~ 100 GeV, due to the lack of QE and RES events (cf. Figure 2.2).

NuGen simulations are used to extend the GENIE sets in the following analysis. To do this,
NuGen sets are generated for the same baseline settings as for GENIE. Then, all GENIE
events are replaced by NuGen events if they feature one of the following conditions:

E, = 500GeV (4.1)
Zyvertex = — 600m .
Pvertex = 300m, (43)

where the last two lines describe a cylindrical volume around the DeepCore detector. The
vertical z-axis is given in Ice Cube detector coordinates with the origin at a depth of ~ 1800 m,
while pyertex is the radial distance from string 36 (cf. Figure 3.2), which is roughly in the
center of the DeepCore detector. When z and p are used in the following, they refer to this
cylindrical coordinate system centered at DeepCore.

48 RWTH Aachen University



4.2. Monte Carlo Generators

B oy, -CC,GENIE EEE v, -CC,NuGen [ v, -CC, GENIE HEE v, -CC, NuGen BN v -CC [ all-NC EEE atm. g ‘

D
SRRCes IceCube
104} 10*
bedrock IceCube
£10° i IIII 10°
3
o
o
wv
£10° ‘ “l III' 102
g
GJ
10t I 10*
—-1500 —1000 -500 0 .0 05 . 1.5 20 25 30 35 40

2 /m logy(p™* /m)

Figure 4.1: Distribution of depth z (left) and radial distance p (right) of the primary vertex
to the center of DeepCore; the bedrock, DeepCore and the IceCube array are shown as
shaded areas; note that noise events have no interaction vertex and are thus not shown, while
atmospheric muons enter the detector from far outside, but are plotted at their position on
the generation cylinder, discussed in Section 4.2.2.

Thus, far travelling and high-energy events in the GENIE samples are replaced by NuGen
events. The resulting z and p distribution of the primary vertex are shown separately for
NuGen and GENIE events in Figure 4.1 for the final data sample. As one would expect,
events in the tails of the two distributions are mostly CC muon neutrino events, as other
neutrinos do not produce far-travelling muons. However, the total contribution from NuGen
is only on the order of ~ 1% of the total sample. In the following, NuGen and GENIE events
are not distinguished, but treated as a single simulation sample.

For both generators, the simulated neutrino interactions generate secondary particles, which
emit Cherenkov photons (cf. Section 3.2). The Cherenkov photons are then propagated
through the ice, taking the local ice properties for absorption and scattering effects into
account [107].

In case a photon is not absorbed but hits the surface of a PMT, the corresponding photon is
stored in the so-called photon-level. After the propagation of all photons, the DOM hardware
simulation is launched for each DOM. The DOM simulation drops some of the photons from
the photon-level according to the photon-detection efficiency of the DOM. Then, it adds a
waveform template to the voltage curve for each of the detected photons. This template is
obtained from lab measurements by averaging over the response of all DOMs [82].

The resulting voltage curves are then run through the same online processing as actual data,
described in Section 3.5.2. Therefore, the treatment of data and MC is identical after the
measurement of the waveforms and the following data selection in Section 4.4 is described
without distinguishing between data and MC.

4.2.2 Atmospheric Muon Simulations

The rate of atmospheric muons firing the DeepCore trigger is more than ~ 10 times higher
than the corresponding rate from atmospheric neutrinos. However, the atmospheric muon
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background is suppressed to the percent level by the subsequent filtering and selection chain.
This means that a high number of atmospheric muons needs to be run through the simulation
to obtain a single muon event in the final level sample. Thus, obtaining a sufficiently large
MC sample for atmospheric muons is computationally challenging [83].

This challenge is faced by two generators: CORSIKA and MuonGun. The COsmic Ray
SImulation for KAscade framework (CORSIKA) [108] runs detailed simulations of exten-
sive air-showers, tracking secondary particles through different layers of the Earth’s at-
mosphere. It was developed for the KASCADE experiment and became a quasi-standard
for the simulation of atmospheric air-showers used by several air-shower experiments [109,
110]. It requires an assumption on the primary Cosmic Ray spectrum, which is set to the
Polygonato-Hoerandel model described in [111]. Although more recent parametrizations
exist, this model is sufficiently accurate for the description of the small atmospheric muon
contamination in DeepCore. Here, only the muons generated within these air-showers are
relevant, since the atmosphere and the thick ice above the detector shield it from any other
background contamination. Since CORSIKA stops the simulation of atmospheric muons
at the ice surface, the propagation from the surface to the IceCube and DeepCore detec-
tors is done separately, including an accurate description of the muon energy loss and the
corresponding photon production.

However, these CORSIKA simulations are computationally intense, since they require the
simulation of the entire air-shower. Therefore, MuonGun was developed within the Ice-
Cube Collaboration to allow for a fast simulation of a large number of muons without the
simulation of time-intense air-showers. It bypasses the CORSIKA simulation by directly
generating muons on a vertically oriented generation cylinder centered at DeepCore with a
radius of 800 m and a length of 1600 m. The generated muons are forced to aim towards the
DeepCore fiducial volume, parametrized by a smaller, aligned target cylinder with a radius
of 150m and a length of 500m.

To link the generated muons to a realistic atmospheric muon flux, the templates used to
generate muons randomly on the generation cylinder are obtained from CORSIKA. To do
this, large CORSIKA simulations are run and the generated muons are propagated towards
the surface of the generation cylinder. From these CORSIKA muons, the probability density
function (pdf) of atmospheric muons in energy, direction and position on the cylinder is
derived and used for the generation in MuonGun.

However, MuonGun does not include the simulation of multiple, coincident muons (muon-
bundles) or muons, that do not pass the target cylinder, but still deposit charge in the
DeepCore detector. To account for this, several CORSIKA sets were merged and checked for
events that would not be generated in MuonGun. These events make up a fraction of ~ 5%
of all generated muons. Since the muon contamination itself is ~ 5% of the total sample
(cf. Table 4.1), this corresponds to a fraction of ~ 0.25% of the final sample. For these
CORSIKA events, the final-level observables, later used in this work, were compared to the
distributions obtained from MuonGun. Since no significant deviations from the MuonGun
template were found, the CORSIKA events are not used for the final muon template.

Although the MuonGun simulation is substantially faster than CORSIKA, atmospheric
muon simulations are still the bottle-neck in reducing the statistical errors on the final
templates, since the simulated MC statistics correspond to only ~ 1year of detector livetime.
To reduce these uncertainties on the background, Kernel Density Estimation is used within
the likelihood analysis, which is described in more detail in Section 6.2.1.
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4.2.3 Triggered Detector Noise Simulations

The term dark noise refers to noise in the DOMs that is not caused by the observation of
a Cherenkov photon. Such noise is mainly produced by thermal electronic noise and the
decay of radioactive elements within the glass pressure housing of the DOM. It is added to
the simulation of neutrino and muon events. In addition, such noise is capable to fire the
DeepCore trigger itself in rare cases, called triggered noise. This is possible, since the SM'T3
trigger (cf. Section 3.5.2) is tuned to far lower energies than the IceCube triggers and thus
is far more sensitive to dark noise.

The simulation of such triggered noise is time-intense, since it requires a continuous simula-
tion of all of the detector without any physics event. It is done using the so-called Vuvuzela
tool, which includes an accurate estimate for the noise rate of every DOM based on in-situ
measurements. As soon as random coincidendes fire the DeepCore trigger, the event is run
through the same processing chain as neutrinos.

The total contamination of triggered noise is on the level of ~ 0.1% of the total sample.
Contaminations on that level have typically been dropped in former DeepCore analyses,
since they were negligible for the physics results. For the GRECO sample, this was not
done for historical reasons, as the contribution from triggered noise was previously found to
be higher, but substantially reduced during the last steps of the data selection.

The simulated MC statistics correspond to only ~ 0.3 years of detector livetime. Thus, it is
the worst ratio of all simulated contributions. However, due to the tiny noise contribution,
its impact on the total MC error is much smaller than the one from atmospheric muons.

In the same way as for the atmospheric muon background, the statistical uncertainties on
the noise MC is reduced using Kernel Density Estimation, described in Section 6.2.1.

Experimental Data Sample

The experimental data used in this work was taken between April 2012 and May 2015 with
IceCube in its 86 string configuration. It is split into three subsamples corresponding to
the three seasons, called years, of data taking. Furthermore, each year is split into runs of
typically 8 hours length. For each run, calibration data is taken and stored in a GCD file as
described in Section 3.5.2. This data is used in combination with monitoring data to decide
whether the run is flagged as good or bad, where all bad runs are removed from the following

analysis.
season livetime/s livetime/y
Table 4.3: Summary of the good 2012 28257176 0.895
livetime for the three years of data 2013 28640727 0.908
used in the GRECO sample. 2014 29987 404 0.950

total 86885307 2.753

A run is marked as bad in case of problematic behavior of the data acquisition, planned
downtime of all or parts of the detector or unexpected events influencing the reliability of the
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data acquisition. Since oscillation measurements are very sensitive to systematic influences,
only very clean uptime is used in the following.

The resulting good livetime for each of the years is summarized in Table 4.3.

In addition to flagging whole runs as bad, the Geometry, Calibration and Detector Status
(GCD) information (cf. Section 3.5.2) allows to identify single, problematic DOMs. This
way, DOMs can be flagged that are broken, saturated, have an unreliable calibration or sus-
picious behavior in some of the monitoring data. Such DOMs can be excluded for all of the
year, several months or just a single run. In the reconstruction presented in Chapter 5, these
DOMs are removed from the likelihood to obtain an unbiased result in the reconstruction.

In addition, this work lead to the discovery of two so-called Flaring DOMs within Deep-
Core. These DOMs show a very abnormal behavior in the observed charges and their time
distribution. Their discovery and their behavior is discussed in more detail in Section 4.5.1.

Besides the discovery of the Flaring DOMs, this work also revealed a significant mismatch
between data and Monte Carlo in the observed charge per DOM, arising from an inaccurate
Single-Photo-FElectron (SPE) template used to assign charges to simulated photons, hitting
the DOMs’ photocathode. This is discussed in more detail in Section 4.5.2.

The GRECO Data Selection

The data processing is split into discrete steps, called Levels. The processing up to Level 2
(L2) is given by the online processing, while the subsequent levels are run offfine, i.e. on
the Northern Hemisphere. Level 3 is a common level shared by several analyses aiming
on similar physics cases. Thus, the GRECO sample starts at the Level 3 dedicated to
oscillation analyses. In total, it consists of 7 Levels, that are described in the following. For
this work, it was adapted at Level 5 as developed by Michael Larson, while the subsequent
Level 6 and Level 7 were developed in collaboration with Michael Larson [112] and Elim
Thompson [113].

4.4.1 DeepCore Level 3

After the online processing, the data is run through the physics specific selection on Level 3,
so-called DeepCore Level 3, which is used by all oscillation analyses[83]. It consists of
several direct cuts on simple observables to reduce the amount of data sufficiently to run
more advanced and computationally intense methods on higher levels.

It runs several cleaning methods on the raw pulse-map obtained from Level 2. These meth-
ods are similar to the SeededRT-Cleaning described in Section 3.5.2.3 and remove pulses
from the original pulse-maps based on different causality criteria, i.e. requiring other hits
to be within certain times and distances.

These pulse-maps are used for the following cuts on Level 3:

1. NMicrocount > 2: This quantity counts the number of hit DOMs within DeepCore
within an aggressively cleaned pulse-map. It is supposed to assure that there is a
significant cluster of pulses within the DeepCore fiducial volume.

2. QMicroCount > 2 PE: This quantity measures the corresponding charge analogously to
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the previous cut. Since a detected photon causes ~ 1 PE charge, these two cuts are
highly correlated.

. Q:=_200 < 12PE: This quantity measures the deposited charge above z = —200m in

a loosely cleaned pulse-map within 2 us before the DeepCore trigger. Thus, it removes
events, where a large amount of charge has been deposited in the upper IceCube
detector, which is an indication for a downgoing atmospheric muon.

. ZVertexGuess < —120: This quantity gives the depth of the first hit in the SeededRT

cleaned pulse-map (cf. Section 3.5.2.3). It is introduced, since hits in the upper detec-
tor are an indication for downgoing muons.

. Quncleaned,veto < 7 PE: This quantity assures that there are no more than 7PE charge

deposited in the veto region, i.e. in the IceCube array and the DeepCore veto cap,
that can be causally connected to the DeepCore hits by the hypothesis of a downgoing
atmospheric muon. One should note that this cut is analogous to the DeepCore filter.
However, this cut uses a raw pulse-map without any filtering.

These simple cuts on Level 3 reduce the amount of atmospheric muons by almost two orders
of magnitude, such that the following levels can apply more time-intense methods.

4.4.2 Processing to Level 6

On Level 4 and Level 5, the GRECO selection applies Boosted Decision Trees (BDTs), to
further remove the background from atmospheric muons and triggered noise. Both BDTs

are tr

ained with a small number of variables, that are well-understood and -established

within the IceCube Collaboration. The split into Level 4 and Level 5 is due to historical
reasons, while in principle a single BDT could be trained to combine both levels. The BDTs
are trained with Monte Carlo independent of the one used for this analysis and tested for
only decent overtraining, to maintain a high efficiency. The development of these BDTs is
discussed in more detail in the work by Michael Larson [112].
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Figure 4.2: BDT scores on Level 4 and 5 of the GRECO data selection. The scores are used
to remove atmospheric muons and triggered noise. The chosen cut is at a score of 0.04 for
both levels, while events with higher values are kept for Level 6 (modified from [112]).
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Before training the BDT, the GRECO selection requires more than 3 PE charge to be left in
the SeededRT cleaned pulse-map and more than 6 PE in a more loosely cleaned pulse-map.
This is necessary to calculate all quantities used in the following selection.

Level 4 BDT: The BDT trained on Level 4 is based on six variables:
1. Q,~_200: Defined in Section 4.4.1.
2. ZVertexGuess: Defined in Section 4.4.1.

3. QR6: This quantity is the fraction of charge seen within the first 600 ns compared
to the total charge of an event. It is motivated by the fact that the light emis-
sion in cascade-like events happens almost instantaneously. Thus, the corresponding,
deposited charge is expected to be more peaked in time compared to the charge de-
positions seen from muons, which deposit energy slowly during their propagation.

4. C2QR6: This quantity is calculated analogously to QR6, but removing the first two
observed hits from the calculation. This gives a handle on a possible noise contami-
nation in the early hits.

5. Brinerit: This quantity gives the reconstructed velocity of a hypothetical particle trav-
elling through the detector and causing the observed charge depositions. It is based
on a simple, low-level reconstruction. Values close to ¢ indicate a real particle causing
the charge depositions, which could only be a muon.

6. Imax/(Iz+1Iy+1.): This quantity uses the tensor of inertia I calculated by weighting the
individual DOM positions by their observed charge, analogously to the mass-weighted
tensor of inertia used in mechanics. The resulting three eigenvalues of the tensor are
called I, I, and I.. Due to their elongated shape, muons are expected to have one
of these three Eigenvalues I,,x dominating the others. Thus, it gives a handle on the
atmospheric muon background and flavor separation.

One might note that the above variables are similar to those used on Level 3. This is due
to the fact that the GRECO Level 4 was adapted as Level 3 for all DeepCore analyses.
However, the BDT was replaced by a series of straight cuts on Level 3 to simplify the
understanding and allow for easy checks and reproducibility. Thus, the GRECO Level 4
can be seen as a GRECO-specific refinement of the Level 3 selection.

The final BDT score Sppr4 is shown in Figure 4.2(a). The applied cut on Level 4 is
SepT4 > 0.04. As one can see, this removes most of the atmospheric muon background,
while it was tuned to keep a high fraction of tau neutrinos, appearing from atmospheric
oscillations. This is achieved with nearly 100% efficiency.

Level 5 BDT: The BDT trained on Level 5 is based on six variables:

1. dgi1—qa: This quantitiy gives the distance between the center of gravity calculated for
the first 25% and the last 25% of the observed charge. An elongated shape of the
charge deposition would give large values for this distance, while a low value indicates
a spherically symmetric deposition.

2. Azgi1—qga. This quantity describes the vertical distance between the center of gravity
for the first 25% and the last 25% of deposited charge. Since atmospheric muons are
downgoing events, this gives a handle for the reduction of atmospheric muons.
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3. t75%0: This quantity gives the time at which 75% of the total charge of the event is
deposited within the detector. It is used, since neutrinos induce peaked charge deposi-
tions, while triggered noise and atmospheric muons give a rather uniform distribution
in time.

4. Qvicn: This quantity gives the total charge from Veto Identified Causal Hits in a
loosely cleaned pulse-map. These are hits before the DeepCore trigger, that are
causally connected to the first DOM contributing to the trigger condition. The idea
is analogous to Quncleaned,veto discussed for Level 3.

5. pristmit: Lhis quantity gives the radial distance of the first hit DeepCore DOM from
the center of DeepCore. It uses a loosely cleaned pulse-map to allow for more hits to
veto the event than using the strict SeededRT cleaning.

6. cos(fsppi1): This quantity gives the cosine of the reconstructed zenith-angle Ogppiq
from an algorithm using the times of the first pulses in each DOM in a likelihood
method, where the observed times are compared to the Single-Photo-Electron (SPE)
expectation for an infinite muon track. The 11-label indicates that 11 seeds are used,
while the best one with respect to the likelihood value is chosen to assure that the
global minimum of the likelihood space is found.

The final BDT score Spprs is shown in Figure 4.2(b). The cut is applied at Sgpr4 > 0.04,
which is the same value as for Level 4 (only by coincidence). The cut reduces both, the
amospheric muon and the triggered dark noise contamination.

Level 6 Straight Cuts: Level 6 refines the selection from Level 5 by several straight cuts,
that are described in the following:

1. 8 € Nchammet < 100: This is a simple cut on the total number of hit DOMs in
the final SeededRT cleaned pulse-map. The lower bound strongly reduces the noise
contamination. The upper bound at 100 is introduced for computational reasons
only. Events with more than 100 active channels are never reconstructed into the
energy range < 90 GeV used in this work, but take an exceptionally long time in the
reconstruction on Level 7. Thus, they are removed on Level 6 before the reconstruction.

2. FR(r) < 0.05: The Fill-Ratio calculates the ratio of the number of hit DOMs over the
number of all DOMs within a sphere with radius r around a hypothetical vertex. This
vertex is estimated by the position of the first hit DOM in DeepCore using a decently
cleaned pulse-map. The radius r is chosen to be 1.6 times the average distance of
all hit DOMs within this pulse-map towards this vertex. For atmospheric mouns and
triggered noise, the ratio is small compared to the very local signature from neutrino
events. Thus, a minimum Fill-Ratio reduces the noise and muon backgrounds.

3. zrr — prr: This cut is a two-dimensional cut on the position of the reconstructed
vertex, given by clindrical coordinates (z, p) centered at DeepCore. The used vertex
reconstruction is called FiniteReco[41]. It uses the SPE11-fit of an infinite-muon
hypothesis, described in Level 5. FiniteReco extends this fit by an estimate for the
start and end point of the previously infinite track. To do this, it projects the position
of all hit DOMs in a cleaned pulse-map on the track. For this, the direction of
projection is required to form the Cherenkov angle 8o with the direction of the track
hypothesis. The first and the last projections on the track are then taken as the track’s
start and end point. In a refinement step, the start and end point are then shifted to
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minimize a likelihood, that takes the hit and no-hit probabilities for each DOM into
account. The two-dimensional cut requires z and p to be below a given value. Thus,
vertices far outside or high in the detector are rejected, as they are likely atmospheric
muons surviving up to Level 6. An analogous cut is repeated after the reconstruction

on Level 7 (cf. Figure 4.4).

4. Noorridors = 0: This cut requires no hit to be observed along so-called corridors.
These corridors run radially from the center of DeepCore to outside of IceCube through
uninstrumented Detector volume and are due to the geometry used for the deployment
of strings (cf. Figure 3.2). Through these corridors, atmospheric muons can reach
DeepCore without causing veto hits in the surrounding IceCube array. These corridors
are known to be the origin of a high fraction of the remaining atmospheric muon
contamination. Thus, events with any hit DOM on a string of the IceCube array,
which is at the edge of such corridor, are removed from the sample.

5. Asymg > 0.85: This cut was introduced after finding the Flaring DOMs, described
in Section 4.5.1. These DOMs were found to occasionally observe large charge depo-
sitions, that are not causally connected to any neutrino interaction. Events including
such flares are driven by these large charge depositions and supposed to be removed
from the analysis. The charge asymmetry is defined by Equation 4.4

A NDOMs 2 Var( ) , »
Sme - NDOMS . NDOMS q2>2 + ) ( . )

where ¢; is the total charge observed in DOM i = 1,..., Npoms- From the first equa-
tion, it is easy to see that Asymg € [0..1], where values close to 0 correspond to
very homogeneous charge distribution throughout all DOMs, while values close to 1
correspond to few DOMs dominating the total charge. The distribution is shown in
Figure 4.3. Since the flares are characterized by large charge depositions, uncorrelated
with all other DOMs, such flare events show up close to 1. The decent cut at 0.85
was found to remove all of the events that were obviously caused by such flares, while
keeping almost all of the remaining data. More details on the Flaring DOMs can be
found in Section 4.5.1. The charge asymmetry distribution on final level is added to
Appendix C.

The cuts on Level 6 were largely developed by Michael Larson, while the discovery of the
Flaring DOMs and the charge asymmetry cut are part of this work.

After Level 6, the event-selection is finalized except for cuts depending on the final event
reconstruction.

4.4.3 Processing to Final Level 7

After Level 6, the GRECO sample is run through the Pegleg reconstruction, described in
Chapter 5. It returns an estimate for the vertex position and time (x,y,z,t), the neutrino
direction (6,,¢,) and the neutrino energy F,, which are used for the post-reconstruction
cuts listed below. To present all of the data selection at once, these quantities are assumed to
be available here, while the reconstruction is presented afterwards in the following chapter.

The cuts on Level 7 are not applied on any earlier level, since the time spent on the Pegleg
reconstruction is the bottle-neck in the total computation time of the GRECO processing.
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Figure 4.3: Distribution of the charge asymmetry calculated from Equation 4.4; it is used
to remove events with a very asymmetric charge distribution (Asymg ~ 1); a cut is applied,
removing events with Asymg > 0.85, which removes the large peak at ~ 1 caused by the
two Flaring DOMs discussed in Section 4.5.1.

To reconstruct all MC samples used in this work, the reconstruction took ~ 6 months
using several computer clusters in parallel. Thus, any cut reducing the amount of data
before reconstruction is useful. However, once the reconstruction is done, it can be used to
substantially reduce the background compared to Level 6.

While Level 4, 5 and most of Level 6 were developed by Michael Larson, this work con-
tributed strongly on the design of Level 7.

The post-reconstruction cuts applied on Level 7 are listed below:

1. zpr, — ppr: This cut is analogous to the z — p-cut applied on Level 6 using FiniteReco.
However, since the Pegleg reconstruction is substantially more accurate in estimat-
ing the true event vertex, it allows for an additional background reduction. The cut
removes large values of p and z in a two-dimensional cut shown in Figure 4.4. One
should note that it does not remove events entering the detector from below. Since
atmospheric muon contamination is exclusively downgoing, the resulting contamina-
tion from atmospheric muons is small. Additionally, any lower containment cut would
strongly reduce the amount of good data, since DeepCore is not shielded by the Ice-
Cube array from below. Thus, for a lower veto the DeepCore fiducial volume would
have to be reduced.

2. /Var(t;) — EXY/Ncpanne: This cut is a two-dimensional cut reducing the noise and
atmospheric muon contamination, as shown in Figure 4.5. The first observable is the
standard deviation of the first hit times of all DOMs within the SeededRT cleaned
pulse-map. The idea is analogous to the t759,o-cut on Level 5. For noise events, a hit
is equally likely at any time within the readout-window except for selection effects.
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Figure 4.4: Visualization of the Level 7 cut on the reconstructed vertex position obtained
from Pegleg in cylindrical coordinates z and p; the plot is shown for CC muon neutrino
events, i.e. tracks (top left), atm. muons (top right), all other neutrino events, i.e. cascades
(bottom left), and experimental data (bottom right); each plot is labelled by the fraction of
events that are removed by the two-dimensional cut given by the green dashed line.

In contrast, the light emission caused by neutrinos is very peaked in time. Thus, a
large standard deviation in the first hit times is an indication for a noise event. A
similar argument can be made for the ratio of reconstructed neutrino energy per hit
DOM, i.e. EVPL/NChannel: The number of hit DOMs, Nchannel, iS strongly correlated
with the neutrino energy. Thus, the above ratio is a ratio of two energy estimators,
where the nominator includes the knowledge of topology, ice properties and detector
response, while the denominator does not. As a result, large ratios mean that that
the Pegleg reconstruction favors unusually large energy depositions per channel. This
happens, if the event is reconstructed into obscure, dark regions of the detector, i.e.
into corridors or regions of bad ice-quality. These events are typically atmospheric
muons sneaking in through these dark regions or triggered noise does not follow the
expected hit pattern for a neutrino event. Since noise was not found to cause events
with Nchannel > 11, this cut is applied only for Nehanne < 12.

3. EPT € [3.5,90] GeV: This cut is applied on the reconstructed neutrino energy obtained
from the Pegleg reconstruction (cf. Chapter 5). It is not a general GRECO selection
cut, but the range of reconstructed energies used in this analysis. It can be seen as final
level cut, since only these events enter the likelihood analysis, described in Chapter 6.

4. cos (QEL) < 0: This cut is applied on the reconstructed neutrino zenith-angle obtained
from the Pegleg reconstruction. Like for the previous cut, this is not a general GRECO
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Figure 4.5: Visualization of the Level 7 cut on the variance of the first hit times and
reconstructed energy per channel for events with Nchannet < 12; the plot is shown for all
neutrino events (top left), atm. muons (top right), triggered noise (bottom left) and data
(bottom right); each plot is labeled by the fraction of events that are removed by the two-
dimensional cut given by the green dashed line; note the logarithmic color-scale.

cut, but the range of reconstructed zenith-angles used in the following analysis.

After these cuts, the data selection is finalized. The resulting rates of the final level sample
are summarized in Table 4.4.

Table 4.4: Final level rates of the GRECO selection; the given values correspond to the
best-fit values of the systematic parameters obtained from the fit to experimental data in
Section 8.1.

expectation ve CC v, CC v, CC all NC atm. p noise b

rate of events / mHz  0.108  0.291  0.031  0.044 0.024 0.0006 0.497
tot. number of events 9390 25255 2674 3794 2048 52 43214
fraction of sample 21.7% 58.4% 6.2%  8.8% 4.7% 0.1%  100%

From this sample, three observables are used in the following likelihood analysis: the re-
constructed zenith-angle, neutrino energy and a flavor separating variable, called Particle
Identification or PID (cf. Section 5.5). These three observables are shown in Figure 4.6 for
data and Monte Carlo. The corresponding true energy and zenith-angle distributions are
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shown for comparison.

The values in Table 4.4 and the distributions in Figure 4.6 depend on several systematic
effects, fitted as nuisance parameters in the likelihood analysis. The shown values are
obtained from the best-fit value of the nuisance parameters to experimental data. The fit
is described in more detail in Section 8.1.

In addition to the observables shown in Figure 4.6, several control distributions were pro-
duced. A selection of these variables can be found in Appendix C.

However, before using this sample in the likelihood analysis in Chapter 6, two more things are
presented: First, in Section 4.5 two hardware issues are discussed, which were discovered
in experimental data and previously lead to a major data-MC disagreement. Second, in
Chapter 5 the reconstruction algorithm is presented that was used to obtain the observables
in Figure 4.6.

Observation and Fix of Data-Monte-Carlo Disagreement

During the development of this analysis, two issues with the experimental data used in Deep-
Core analyses were found. They are presented in the following along with the corresponding
fix, used for this work.

4.5.1 Flaring DOMs

The term Flaring DOMs refers to two Digital Optical Modules (DOMs) on string 83 in depth
of 2270 and 2440 m, i.e. deep within the DeepCore fiducial volume. They did not show up as
being suspicious in any standard monitoring, but are now suspected to occassionally emit
light in irregular time steps, caused by an unknown hardware effect. At the same time,
this light is observed by the PMT in the same DOM, causing unexpectedly large charge
depositions without any correlation to a neutrino event.

These DOMs first showed up in a comparison of data and MC distributions in this work.
In particular, they became visible in a two-dimensional distribution of reconstructed event
vertices, as shown in Figure 4.7 for data and Monte Carlo. While Monte Carlo does not
show any suspicious peak arising from single misbehaving DOMs, the two Flaring DOMs are
clearly visible (center plot), because the large charge depositon in these DOMs influences
the reconstruction to push the event vertex into the corresponding DOM. In the same
way, the one-dimensional, event-wise charge-per-channel distribution features an excess at
high values, which is almost exclusively due to these two DOMs. The charge-per-channel
distribution is shown in Figure 4.8.

In this context, the charge asymmetry cut from Level 6 was developed (cf. Section 4.4.2).
This cut was found to remove both, the excess in Figure 4.8 and the two peaks in Figure 4.7,
at the cost of losing only a negligible fraction of neutrino events. In Figure 4.7 and 4.8 the
distributions after the charge asymmetry cut are shown for comparison.

Moreover, during a general re-processing of the sample, the two Flaring DOMs were removed
completely from the pulse-maps of Monte Carlo and data, that enter the reconstruction from
Chapter 5. Still, the charge asymmetry cut was kept for safety reasons. In addition, these
DOMs were intensely studied by the Calibration Group of the IceCube Collaboration, testing
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Figure 4.6: One-dimensional distributions of Level 7 observables of the GRECO sample;
the first two plots show the true distribution of energy and zenith-angle of Monte Carlo
events according to the best-fit values of all nuisance parameters discussed in Section 6.3;
the remaining plots show the three observables (reconstructed energy, zenith-angle and PID)
later used in the likelihood analysis in Chapter 6; note that the PID (cf. Section 5.5) is
shown on a linear-scale (bottom, left) and on a log-scale for its absolute value (bottom,
right) for illustration purposes.

all DOMs for such flares and re-analysing their properties. However, a similar behavior was
not found for any other DOMs.
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Figure 4.7: Two-dimensional distribution of reconstructed event vertices in one horizontal
direction x and depth z for one of three slices in y; the comparison of MC (left) and data
without the charge asymmetry cut (center) clearly shows two clusters of events, drawn to
the position of the Flaring DOMs by the large, unphysical charge excesses; after the charge
asymmetry cut (right) these events are removed from data.

4.5.2 Single-Photo-Electron (SPE) Template Mismatch

Besides the Flaring DOMs, another mismatch was found in the charge description between
data and Monte Carlo, leading to a tilt in the charge-per-channel distribution from Fig-
ure 4.8. The corresponding charge-per-event distribution is attached in Appendix C.

Since the charge-per-channel distribution is the charge-per-DOM distribution averaged over
all hit DOMs within one event, this disagreement indicates a mismatch in the underlying
charge-per-DOM distribution, which is shown in Figure 4.9. Note that in the charge-per-
DOM distribution each entry corresponds to a single hit DOM such that each event enters
the histogram several times, depending on the number of hit DOMs.

The charge-per-DOM distribution is very stable with respect to the systematic uncertainties,
discussed in Section 6.3. As a result, the disagreement in Figure 4.9 cannot be compensated
by any reasonable value of the nuisance parameters from Section 6.3.

After the charge-per-DOM disagreement was discovered, the issue was brought to the Cal-
ibration Group of the IceCube Collaboration, triggering follow-up studies by Spencer Ax-
ani [114] and Martin Rongen [115]. They found that the Single-Photo-Electron (SPE) dis-
tribution, used to assign a random charge to MC pulses, does not describe the real DOM
response. As the charge per pulse is not accurately simulated, this leads to the observed
disagreement in the charge-per-DOM, charge-per-channel and charge distributions [115].

Note that in Figure 4.9, the charge-per-DOM distribution is also shown for applying the
GRECO selection to 2015 data: Due to a re-calibration of the observed charges in early 2015
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Figure 4.9: Charge per DOM for data and MC: note that entries do not correspond to events
but hit DOMs, such that events enter the distribution several times; all years of data and
MC are scaled to the observed integral value of 2014 data; the lower subplot shows the data
over MC ratio with the statistical uncertainties indicated as blue shaded areas; the observed
mismatch between data and MC is caused by the mismodelling of the SPE template; in
2015, a re-calibration was applied, causing the observed shift between 2012-2014 and 2015.
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(unrelated to the above findings), the charge per DOM for 2015 deviates from the curves
observed for 2012 — 2014. Although the resulting data fits more accurately to MC around
gpoMm ~ 1 PE, the agreement between data and MC on analysis level is worse for 2015. This
is due to the fact that the mean value of the charge per DOM was approximately correctly
described by Monte Carlo for 2012 — 2014 data, which is not the case for 2015. However,
the agreement of the mean charge per DOM is crucial for an accurate description of data,
since most selection relevant quantities are calculated event-wise by integrating charges or
charge-weighted quantities over several DOMs.

Producing a more consistent description of the charge per DOM in MC and data for all
years is a major goal of ongoing collaboration efforts. However, Monte Carlo samples using
corrected SPE template are not expected to be available within the scope of this work.

Instead, the impact of the charge on final level observables was removed by re-phrasing the
likelihood used in the final-level reconstruction from Chapter 5. By re-phrasing its likelihood,
the reconstruction was made independent of the charge observed in the individual DOMs.
Using this charge-independent reconstruction, data and Monte Carlo were found to match,
while the re-phrased likelihood obtains the same resolution in energy and zenith as obtained
by the charge-dependent one. The changes to the likelihood are discussed in more detail in
the following chapter.
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The term reconstruction refers to a method, extracting physical properties of an event from
the observed pattern of charge. In IceCube, these properties are typically the direction of the
incoming neutrino and its energy. In addition, the neutrino flavor or interaction type (CC
or NC) is estimated by a parameter called Particle Identification (PID), which separates
experimental signatures as tracks or cascades.

Within IceCube, several reconstructions are available for energy, zenith and PID. While
some of them reconstruct all of these quantities simultaneously, others focus only on one of
them. Since IceCube covers 6 orders of magnitude in neutrino energy, their performance
depends strongly on the considered energy regime.

In this chapter, the reconstructions commonly used below E, ~ 100 GeV are briefly pre-
sented, which is a subset of all available reconstructions. Then, a new reconstruction is
presented that was developed for the simultaneous reconstruction of energy, zenith and PID
of events at extreme low energies, i.e. down to E, ~ 5GeV. Although developed for this
analysis, it has recently been adopted by almost all DeepCore analyses and is also used
as standard reconstruction by the PINGU Collaboration. It provides high performance in
the reconstruction of all three, above mentioned variables, but comes at the price of high
computation times. Parts of the reconstruction were published in [60], [116] and [81].

Note that for oscillation measurements, angular reconstructions are typically stated only for
the zenith-angle, since the atmospheric oscillation pattern is independent of the neutrino’s
azimuth-angle (cf. Section 2.4.2). Thus, the reconstructed azimuth-angle (if any is returned
by the reconstruction algorithm) is ignored in the following.

Ml Pre-existing Reconstructions

5.1.1 SANTA Zenith-Angle Reconstruction

The Single String ANTARES-Inspired Analysis (SANTA) is a reconstruction algorithm
adapted from the Astronomy with a Neutrino Telescope and Abyss Environmental Research
(ANTARES) experiment in [117] and modified for IceCube/DeepCore purposes by Juan
Pablo Yénez[118].

It uses so-called direct photons to reconstruct a zenith-angle for a neutrino event. Direct
photons are photons that are assumed to be unscattered, i.e. that traveled on a straight line
between their generation and their detection at a DOM’s photo-cathode. Thus, they are
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on the Cherenkov cone discussed in Section 3.2. To identify such photons, each string with
more than three hit DOMs is tested individually, whether the arrival times of the first hits
in these = 3 DOMs agree with the hypothesis of a Cherenkov wavefront passing the string.
This is visualized in Figure 5.1. Depending on the zenith-angle of the charged particle, the
corresponding Cherenkov cone is rotated with respect to the vertical string. Thus, from
the depth at which the charged particle is closest to the string, the photon arrival times
at the DOMs up-string and down-string differ and encode the information of the particle’s
zenith-angle. Thus, knowing at what time and depth unscattered photons were seen allows
for a reconstruction of the particle’s zenith-angle [118].

Note that for a single string, the system is symetric with respect to rotations around the
string axis. Thus, no azimuth-angle is reconstructed and the reconstruction depends only
on 4 parameters: the zenith-angle 6, the closest distance to the considered string r., the
time of closest approach . and the depth at the point of closest approach z.. By assuming
an infinitely extended track of such charged particle, these four parameters are sufficient to
derive the estimated time of arrival teyp,; in case of direct photons for each DOM ¢ on the
string [118].

horizontal inclined

depth
depth

time time

Figure 5.1: Illustration of the SANTA reconstruction for a horizontal (left) and an inclined,
upgoing muon (right), emitting a Cherenkov cone observed by several DOMs on the same
string; the resulting light observation of unscattered photons is given by the green shaded
area in the two-dimensions of depth and time (from [118]).

The observed arrival times ¢, ; and the expected arrival time teyp i are then compared for
all hit DOMs in a y2-method. The uncertainty used for the x? calculation is typically chosen
to be 0, = 20ns. An additional term is included to penalize large charge deposition being
far from the point of closest approach, which is of minor relevance and not discussed here.
The resulting y2-function is minimized with respect to the four parameters described above,
resulting in a reconstructed value for the zenith-angle of the event [118].

In some cases, several strings provide = 3 DOMs with direct photons being observed. In
that case, SANTA provides a multi-string algorithm that breaks the rotation symmetry and
adds another parameter to determine a supporting point for the track hypothesis. In this
case, the y?>-method is extended to include the arrival times from both strings [118].

The SANTA algorithm was found to provide good resolutions at F, ~ 15—100 GeV, includ-
ing the first oscillation minimum (cf. Figure 2.14). However, it suffers from the necessity of
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a large number of direct photons. In case no string provides = 3 DOMs consistent with a
direct photon hypothesis, the reconstruction fails. For the GRECO sample, this is the case
for ~ 95% of all final-level events with E, < 15GeV. Since these events carry most infor-
mation on the NMOQO, it is unpractical to use the SANTA reconstruction for the following
NMO analysis.

5.1.2 LEERA Energy Reconstruction

The Low-Energy Energy-Reconstruction Algorithm (LEERA) is an energy reconstruction
used below ~ 100 GeV, which was developed by Andrii Terliuk [119]. It requires a seeded
direction, a start point (vertex) and an end point of a track hypothesis and uses only DOMs
that are within a cylinder of infinite length and 200 m radius, aligned with the seeded track
hypothesis. It is based on a so-called p(hit) — p(noHit) likelihood, that optimizes the binary
probabilities of DOMs being either hit or not hit [119].

The fitted hypothesis consists of a finite track and a starting cascade at the primary vertex.
The seeded track direction is typically obtained from SANTA. The algorithm then modifies
the energy of the starting cascade and the start and end point of the track along the track
direction. Since the energy of the track is directly obtained from its length, assuming a
minimum-ionizing track (cf. Equation 3.2), and the cascade direction is assumed to be coax-
ial with the track, the resulting optimization problem consists of only three free parameters:
the start and end point of the track and the cascade energy [119].

These parameters are modified to optimize the p(hit) — p(noHit) likelihood. The best fit
hypothesis is then converted into an energy estimate by converting the final track length
into a track energy and adding it to the cascade energy. The combined energy is taken to
be the reconstructed neutrino energy from LEERA [119].

Similar to SANTA, LEERA has proven to give good resolutions for events below 100 GeV.
However, its performance depends strongly on the direction and vertex of the tested hy-
pothesis. Although it gives similar resolutions as the reconstruction developed in this work,

it requires an accurate direction and vertex reconstruction to do so, which was previously
not available below ~ 15 GeV [119].

The Millipede Framework

Millipede is a software framework used for high-level reconstructions in IceCube. It consists
of the Millipede likelihood and several auxiliary tools. Since the reconstruction developed
in this chapter is based on it, the framework is briefly described in the following.

5.2.1 The Millipede Likelihood Space

The Millipede likelihood is a Poissonian likelihood, comparing the observed number of pho-
tons N;; in each DOM ¢ = 1,...,M in several time bins 7 = 1,...,T; to the expected number
of photons p;; for a given hypothesis. The resulting negative log-likelihood LLHy,p, is shown
in Equation 5.1

M T;
LLHpp = — Y\ > [Nir -log(pir) — pir + log (D(Nir + 1))] . (5.1)

T T
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The Poissonian statistics arise from the discreteness of the photon counts. However, the
continuous charge is used as a proxy for the observed and predicted number of photons
as previously discussed (cf. Section 3.5.2). Thus, the factorial term of the Poissonian is
replaced by a I'-function to account for the non-integer values of N;;.

In Millipede, the expected number of photons p;: is expressed in terms of discrete energy
losses Ej, with £ = 1,...K in the detector volume, as summarized in Equation 5.2

K
ir = ZA#E(@, ks Ok, Ok, Atr) - (Ex/GeV) + ny, (5.2)
"

where the expected number of photons p;; is the sum of the photons caused by the indi-
vidual energy depositions Ej and a time-independent noise term n;, that is obtained from
multiplying the known noise rate for each DOM with the length of the read-out window.
The link between energy losses and expected photons is illustrated in Figure 5.2.

Photons p;; inDOMi=1,..,Mandbint=1,..T;:

H11 Al_“ Al.lK
o P Ve
Hary _ A171 A1TK 1 +1 ..
Uz1 Apin . Dok Ex Ny
Uty AIV'ITl AM.TK

N * cascade-like energy loss
> * muon-like energy loss

Figure 5.2: Sketch of how Millipede estimates the expected number of photons (i.e. charge)
in each DOM ¢ and time-bin 7 for a set of energy depositions Fj at positions §i: the energy

losses are multiplied with the response matrix AfT/,:, which describes the seen photons in
DOM i and time-bin 7 caused by a loss of £y = 1 GeV at 3.

The proportionality constant A%:(fi, Uk, Ok, O, At;) between the Ej and p;, gives the ex-
pected charge per deposited energy in PE/GeV and depends on several parameters:

1. the position of the DOM =z,

2. the position of the energy deposition i,

3. the time difference between the energy deposition and the photon detection,

4. the energy deposition being cascade- or muon-like (indicated by the indices p and ¢),
5

. the direction of the energy deposition given by the spherical coordinates 0, and ¢y,
which are described in the following.

The values of A%:(fi, Uk, Ok, Or, At;) are read from large photon tables, that were splined to
obtain a continuous value for Aﬁ/kc(fi, Uk, Ok, dr, At) in all of the parameters. To obtain these
tables, cascades and short segments of minimum-ionizing muons are generated on a grid in
all of the above mentioned parameters and the resulting photons are propagated towards
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the IceCube and DeepCore DOMs via photon simulations. Thus, the expected number of
photons includes a simple model of the local ice properties. The parameters 6 and ¢y
describe the orientation of these cascades and muon segments in spherical coordinates. The
probability density functions (PDFs) used for the photon arrival times and the total number
of photons are described in more detail in Appendix D.

Note that the matrix A, expressed by a combined row-index {i,7} and a column-index k, is
not quadratic and typically features substantially more rows (~ M) than columns (= K).
As a result, varying the energy losses Ej does not allow to produce every set of predicted
photons p;-. More specifically, the matrix A can not be inverted to obtain energy losses
that produce precisely the observed number of photons p;r = N;;.

Moreover, the time difference At used in the likelihood is binned, where the number of bins
T; and the bin edges are DOM-dependent. The binning is based on the number of observed
photons in each DOM. To do this, for every DOM the algorithm starts at the beginning
of the read-out window with 7 = 1. Then, the time is increased until the observed charge
of all pulses included in the resulting bin exceeds a predefined value nppotonsperBin. At this
point, the bin is terminated and the next bin 7 + 1 is started. This way, the binning is
determined purely from the observed number of photons, while the expected number of
photons is calculated for this binning.

Thus, the Millipede likelihood maps a set of energy losses given by {Ey, Ui, tx, Ok, ¢r} to a
single likelihood value:
LLHup : {Ek, Uk tis O, ¢} — LLH. (5.3)

Such set of energy losses {FEk, Uk, tk, Ok, O} is called internal hypothesis/parameters in the
following.

5.2.2 Emnergy Optimization within Millipede

One of the auxiliary features of the Millipede likelihood is the internal optimization of the
energy losses Ej for a given internal hypothesis {Ej, Uk, tk, Ok, ¢r}. Thus, the energies are
removed from the minimization problem, simplifying the mapping from Equation 5.3 to

LLHE, : {Gk tr Ok, ¢x} > LLH, Ej. (5.4)

Here, the energy losses E}, are not passed to the likelihood function, but internally optimized
and returned as K additional, positive values from the Millipede framework.

Note that this internal minimization introduces a two-layer optimization process: While
some parameters are minimized by an external minimizer, the energy losses Fj, are optimized
internally for each call of the likelihood. In most cases, such layered optimization slows down
an optimization process. However, the Millipede framework exploits the fact that most of
the time for calling LLH,,;, is spend on evaluating the matrix elements A (%, ¥, At;) from
the photon tables. Since these are independent of the energy losses Ej. (per construction, as
they are derived as 'observed photons per unit energy’), several combinations of energies Fj,
can be tested quickly, once the matrix A is generated for a given hypothesis {@, tx, 0k, ¢}

Additionally, the internal minimization of the energy depositions is a well-known problem
from medical imaging. As such, specialized optimization methods exist for such problems,
like Preconditioned Conjugate Gradient methods (PCG), which was implemented into Mil-
lipede to accelerate the internal optimization [120]. PCG is a powerful tool allowing to
minimize up to ~ 100 energy losses for each call of LLHElp in an acceptable time.
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However, for a likelihood call of LLHElp, the internal energy optimization is the computa-

tional bottleneck, requiring substantially more time than any other part of the likelihood.

5.2.3 Implemented Hypotheses

By converting a physics hypothesis H (called external hypothesis) into a set of energy depo-
sitions {E, Uk, tk, Ok, ¢r} (internal hypothesis), it can be mapped to a Millipede likelihood
value. If the hypothesis H is given by the set of parameters {ps} with s = 1,..., 5 , the
mapping P : {ps} — {Ek, Uk, tk, O, ¢}, is called parametrization.

If such a parametrization exist, a hypothesis can be reconstructed by minimizing the Milli-
pede likelihood with respect to the physics parameters {ps} of the hypothesis.

At the beginning of this work, three parametrizations P : {ps} — {Fk, ¥k, tx, Ok, P} were
already implemented in Millipede. Each parametrization describes a physical hypothesis
and one of the experimental signatures shown in Figure 3.7:

e Monopod: The Monopod parametrization is the most simple parametrization possi-
ble. It consists of only one cascade-like energy deposition. Thus, the external param-
eters ps are identical to the internal parameters, describing the energy E}, the vertex
{Uk,tr} and the direction {0, ¢r} of the cascade. If the energy is internally optimized,
the external hypothesis has six free parameters. Monopod is typically used for fitting
cascade-like events in IceCube (electromagnetic and hadronic).

e Taupede: The Taupede parametrization fits two cascades that are separated by the
distance L and aligned in the direction {6k, ¢r}. Thus, it features seven parameters
describing the vertex of the first cascade {y,t}, the distance between the cascades L,
and the direction of both cascades {6, ¢}. The first and second cascade are inserted
at the times ¢t; = ¢ and t9 =t + L/c, respectively.

e MuMillipede: The MuMillipede parametrization describes a muon moving on an
infinite track through the detector. It digests the corresponding muon hypothesis into
short muon segments of typically ~ 15m length, which are all aligned with the muon
direction. Thus, the external hypothesis consists of the muon direction {#, ¢} and an
arbitrary supporting point of the track {#, ¢}, which are six free parameters. However,
the energy depositions E}, are optimized internally to describe the stochastic losses on
the track, which is a time-intense minimization of up to K ~ 100 internal parameters.

The Pegleg Reconstruction

The Pegleg reconstruction was developed in this work to reconstruct events within F, ~
5 — 100 GeV. However, the lower bound is only given by the energy threshold of DeepCore,
while above ~ 100 GeV, its performance suffers from the incorrect assumption of a minimum-
ionizing muon. The reconstructed hypothesis, the implementation and the performance are
discussed in the following.

Note that Pegleg was one of two independent efforts reconstructing the same hypothesis
on a similar likelihood. The second, independently developed reconstruction, called Hybrid
Reco, was earlier used for the reconstruction of low-energy events, but was finally replaced
by the reconstruction presented in this work. The relation between Pegleg and HybridReco
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is discussed in Appendix E.1.

5.3.1 Reconstructed Hypothesis

Pegleg reconstructs the hypothesis of a finite, minimum-ionizing track with a starting cas-
cade at the primary vertex, that is aligned with the muon direction. Thus, the hypothesis
is given by the primary vertex position and time {7, t}, the direction of cascade and muon
{0, ¢}, the starting cascade energy E. and the length of the minimum-ionizing muon track L.
As for minimum-ionizing muons in ice, the energy loss is set to 0.22 GeV/m - L. Moreover,
the track is split into muon segments of 5m length, while the total number of segments
depends on the track length L.

Although similar to the hypotheses in Section 5.2.3, this hypothesis could not be imple-
mented into Millipede directly for two reasons:

1. The energy losses of the muon track E,‘: are not optimized. Thus, the hypothesis is a
mixture of a free energy parameter E. and fixed energy losses Ff, which could not be
handled in Millipede.

2. The number of energy losses Fj and thus internal parameters changes depending on
the length L, which could not be handled by Millipede previously.

These challenges lead to the three-layer optimization process described in Section 5.3.2.

Note that the Monopod and Pegleg hypotheses are identical, if the track length for Pegleg is
forced to L = 0 and both are run on the modified, charge-independent Millipede likelihood
from Section 5.3.3. Thus, the Monopod hypothesis is nested in the Pegleg hypothesis.

The log-likelihood difference between the Pegleg and Monopod fit is called Particle Identi-
fication (PID):

PID = LLH(Pegleg) — LLH(Monopod). (5.5)
It is used to distinguish track- from cascade-like events in the following analysis. For the

final level sample, the PID distribution is shown in Figure 4.6 (bottom). More details on
the reconstruction method, the seeds and the minimization are added to Appendix E.2.

5.3.2 Three-Layer Optimization in Pegleg

In contrast to the two optimization layers in Millipede, the optimization in Pegleg is done
in three layers, as discussed below. It is sketched in Figure 5.3.

First Layer - Outer Minimizer: The outer minimizer uses the Pegleg likelihood function
fFlas target function of the minimization. It is given by

PL{z,y,2,t,0,6} — LLH, E,, L. (5.6)

Thus, it only has six external parameters, while the optimum cascade energy E. and the
optimum track length L are obtained internally and returned with the corresponding log-
likelihood value LLH.

For the outer minimization, the Multinest minimizer was used, which is an advanced sam-
pling algorithm, that was originally developed for applications in astrophysics [121]. Multi-
nest was found to efficiently solve the minimization problem, while local search algorithms
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1st layer: outer minimizer

Figure 5.3: Sketch of optimization
in three layers, where each layer op-
timizes some of the parameters of
the hypothesis, such that the above
layer obtains an optimum value for
all parameters optimized below and
the corresponding likelihood value.

2" Jayer: L optimization

3" layer: E, optimization

Internal optimization

Millipede Likelihood

(like Migrad [122], Simplex [123] or L-BFGS-B [124]) typically failed, due to the large number
of side minima in the likelihood. The minimizer settings used for this outer minimizations
are listed in Appendix E.2.

Second Layer - Length Optimization: On this layer, the parameters {x,y,z,t,0,¢} are fixed
by the likelihood call of the outer minimizer. The target function of the minimization on
this layer is given by Equation 5.7

fiy : L~ LLH, E, (5.7)

z,y,2,t,0,¢ fixed

Thus, the length L is changed, while for each change the cascade energy FE. is internally
optimized. Here, changing the length L means adding/removing muon segments to/from the
internal hypothesis. Thus, it corresponds to adding/removing columns to/from the detector
response matrix A, as illustrated in Figure 5.4, while for each change of the matrix A, the
new likelihood LLH and optimum cascade energy FE. are calculated.

The optimization in L is done as a scan: The algorithm starts with only one column in A for
the starting cascade. Then, muon segments are successively added as long as this improves
the value of LLH. If the likelihood did not improve during the last two added segments, the
procedure is stopped and the optimum length L is returned together with the corresponding
value for LLH and E..

starting add
cascade

energy
A1:11 A1:12 A1:13 A1:14 losses Figure 5.4: Sketch of successively
' ' ' | Ey extending the detector response ma-
Airya | Airz || Auas || DM ||| E ) =
A * A b A A t Ez trix A and the energy losses E by
2t 22 2T 2Tt E3 adding additional muon segments
: : : : .

during the length optimization.
AMTMI AMTM2 AMTM3 AMTM4 & & P

This scan in L is computationally efficient, since the table read-outs for A dominate the
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5.3. The Pegleg Reconstruction

time needed for a likelihood call. Thus, starting with only a cascade and then subsequently
adding up to K muon segments is similarly fast as testing only the hypothesis of K segments
directly. Therefore, as soon as the marix A for a length L, corresponding to K energy losses,
is calculated, estimating all shorter tracks than I comes at no computational cost.

Third Layer - Cascade Energy Optimization: On this layer, the parameters {x,y,z,t,0,¢, L}
are fixed from the two layers above. Thus, the target function of the minimization is given
by Equation 5.8

A E.— LLH : (5.8)

z,y,z,t,0,¢,L fixed

Since the matrix elements A%ﬁ are independent of the values of Ej, the energy can be
optimized internally. To do this, the muon elements with k = 2,... K are fixed to minimum-
ionizing. Then, the expected number of photons caused by muon segments is derived and
added to the noise term 7 as shown in Equation 5.9

m=i+A-(0,Es, Es, ..., Ex)" . (5.9)

Thus, the effective noise term m includes the photon expectation due to the muon track.
Afterwards, the A matrix is cut to only its first column, representing the starting cascade.
This reduces the optimization problem to just one energy deposition E., which is analogous
to Monopod with an enhanced noise vector mi (cf. Section 5.2.3).

The energy E. can then be obtained internally using PCG (cf. Section 5.2.2). However, for
one parameter, running PCG is inefficient, which was designed to optimize a large number
of energy depositions at the same time. Instead, the likelihood from Equation 5.1 is simply
differentiated with respect to E., as shown in Equation 5.10

dfry dLLH ME N, M T .
déc B ZZA 1E —l—lm - (;ZAHI =0, (5.10)

oc(E.+const.)~ 1 const.

where the last equality is required for the optimization, but cannot be solved analytically
for E.. However, note that the first term in Equation 5.10 is strictly decreasing in E., while
the second term is constant. Thus, there is (at most) one positive value of E, that satisfies
the equation.

To find this value, a simple Newton method [125] is applied that uses the second derivative

;fg? to quickly find the optimum value of F.. It is guaranteed to find the optimum value,
if a positive value exists (otherwise chooses E. = 0), and chosen to stop the optimization
at a tolerance of §E, = 10~% GeV, which is far more accurate than needed in the following.
This accuracy is typically reached with O(10) steps of the Newton method. By seeding
the Newton Method with the optimum value of E. found at the previous call, the number
of steps is further decreased to O(3), such that the time, spent on this optimization, is

negligible.

5.3.3 Redefinition of the Millipede Likelihood

For the Pegleg reconstruction, an additional feature was implemented that modifies the
Millipede likelihood. It was added due to the findings in Section 4.5.2 that the charge per
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Chapter 5. Development of a Low-Energy Event Reconstruction

DOM is not modelled correctly in the Monte Carlo. Although the mismatch is hardly visible
when averaging over all DOMs within an event, it causes some crucial disagreement in the
reconstructed quantities, as the Millipede likelihood is strongly charge-dependent.

Note that this disagreement is less relevant when having a large number of hit DOMs and
a large charge per DOM, as the average charge per DOM is approximately correct. Thus,
the disagreement arises mainly from the stochastical nature of the charges in case of only
few photons being observed.

To overcome this charge-dependence, for this work the Millipede likelihood was re-phrased
in a charge-independent way:

Instead of determining the time-binning by aggregating pulses up to a threshold value
NPhotonsPerBin (Cf. Section 5.2.1), the first observed pulse terminates the time-bin. The
charge of the pulse is ignored and a value of N;; = 1 is used as the observed number of pho-
tons in the bin 7. Afterwards, the DOM is treated as dead for the following dtgeaq = 45 ns.
This means, the time-window is completely removed from the likelihood, since the sub-
sequent DOM behavior after the photon detection is not expected to be well-described by
Monte Carlo. After dtpead, the next bin is started allowing for a observation of late photons.
In case another photon is observed after dtpeaq, the procedure above is repeated.

This way, any unexpected behavior of the DOM within dtpeaq after the photon detection
is completely ignored. Moreover, the charges assigned to each pulse in data and MC are
removed from the likelihood, allowing only for integer values in the number of observed
photons. The value of §tgeaq = 45 ns is obtained from data-MC comparisons and described
in more detail in Appendix E.3.

Although the change to the likelihood seems large, the corresponding resolutions stay almost
unchanged. This is due to the fact that most of the information for the angular reconstruc-
tion is contained in the arrival times of the first observed photons, which are kept for the
charge-independent likelihood. The energy resolution even improves slightly, which is due
to the removed randomness induced by the assignment of charges to the photons using the
SPE template, which is more relevant than the loss of information due to removed pulses.

After these modifications, the reconstruction was found to show no disagreement between
data and MC and the charge-independent likelihood was adapted by all analyses based on
the GRECO sample [61, 116].

5.3.4 Reconstruction Performance

The final level distributions of the reconstructed energy, zenith-angle and PID are shown
in Figure 4.6. In addition, the zenith-angle and neutrino energy resolution of Pegleg are
discussed in the following. For producing the following resolution plots, the final zenith and
energy cuts on the GRECO sample were removed to not bias the resolutions by a cut on
the reconstructed quantities.

In Figure 5.5 (top), the zenith-angle resolution is shown for muon neutrinos and anti-muon
neutrinos separately for different true neutrino energies E,. As one would expect, the
zenith-angle resolution increases with energy, especially between 10 and 40 GeV, due to
the increased amount of observed light. Moreover, the zenith-angle resolution for muon
anti-neutrinos is slightly better than for muon neutrinos. This is due to the inelasticity
distribution in Figure 2.4: The good angular resolution is primarily driven by the outgoing
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Figure 5.5: Energy-dependent zenith-angle resolution shown for CC muon neutrinos and
anti-neutrinos (top) and for the other flavors, combining neutrinos and anti-neutrinos (bot-
tom); solid lines give the median angular error in each vertical slice of true energy, while
the dashed and dotted lines enclose the central 50% and 80% quantiles; the background col-
ormap shows the underlying, colwise-normalized two-dimensional probability distribution
for CC muon neutrinos (top) and CC electron neutrinos (bottom).
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Chapter 5. Development of a Low-Energy Event Reconstruction

muon, causing a long lever arm for the angular reconstruction, while the angular resolution
for cascades is poor, as discussed in Section 3.3. Since anti-neutrinos on average pass more
energy to the muon (small value of inelasticity y), they are on average more track-like than
neutrinos at the same energy and thus feature a better angular resolution.
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=15
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o
Figure 5.6: Neutrino Q‘Elo
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In Figure 5.5 (bottom), the resolutions are shown for CC electron neutrino, CC tau neutrino
and NC interactions, which are the same for neutrinos and anti-neutrinos and therefore not
shown separately. As one can see, the resolution is clearly worse than for the muon neutrinos,
since no lever arm is obtained from an outgoing muon. Additionally, the resolution for CC
electron neutrinos is slightly better than for CC tau neutrinos.

For NC events, the resolution in Figure 5.5 is worse than for CC electron and tau neutrinos.
This can be explained by the invisible energy of the escaping neutrino in NC interactions (cf.
Section 3.3.2), and the cascade being of hadronic origin: Since the Cherenkov light stored in
the reconstruction tables is obtained from the simulation of electromagnetic cascades, the
hypothesis is slightly incorrect in case of hadronic cascades.

Note that all flavors show a slight trend towards negative values, especially for the cen-
tral 80% quantiles. This is mostly due to the zenith-dependent selection efficiency of the
data sample. To illustrate this, the error is shown depending on the true zenith-angle in
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5.3. The Pegleg Reconstruction

Appendix E.4.

In Figure 5.6, the neutrino energy resolution is shown for CC muon and electron neutrino
events (top) and CC tau and NC neutrino events (bottom). As one would expect, the energy
resolution is the best for CC muon and electron neutrino events, where no invisible energy
arises from escaping neutrinos. The drop in reconstructed energy for high-energy muon
neutrinos is due to the resulting muon leaving the IceCube detector volume. Moreover, the
assumption of a minimum-ionizing track is inaccurate leading to an underestimation of the
lost energy per unit of track length.

For CC tau and NC events, the deficit from escaping neutrinos is clearly visible. This deficit
is typically larger in NC events, leading not only to a reduced median in reconstructed
energy, but also to a larger variance.

In Figure 5.7 (top), the zenith-angle resolution for CC muon neutrinos is compared to the
resolution for SANTA. Note that also the Pegleg resolution improves compared to previous
figures, because only events that are reconstructable with SANTA are used here, which is
a strong cut on the event quality. The SANTA resolution is clearly worse than the one
obtained for Pegleg on the same set of events. However, it is comparable to the Pegleg
resolution from Figure 5.5. The fraction of events that can be reconstructed with SANTA
is shown as solid, black line in Figure 5.7 (top) to be read from the right vertical axis. It
decreases to only a few percent when going below 15 GeV, which makes it unusable for the
GRECO sample.

In Figure 5.7 (bottom), the Pegleg energy resolution is compared to LEERA. Pegleg provides
a similar resolution at the lowest energies and an improved resolution at higher energies.
Note that the constant bias towards higher energies observed in LEERA does not reduce
the reconstruction performance, since it could simply be removed by multiplying a constant
correction factor to all of the reconstructed neutrino energies.

For CC electron neutrino events, the comparison to SANTA/LEERA is added to Ap-
pendix E.4, leading to similar conclusions as for CC muon neutrinos.
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Figure 5.7: Comparison of zenith-angle (top) and neutrino energy resolution (bottom) for
Pegleg and SANTA /LEERA (SA/LEE), discussed in Section 5.1; in the top plot, the black,
solid line, to be read from the right vertical axis, indicates the energy-dependent fraction of
the GRECO CC muon neutrino sample that is reconstructable with SANTA.
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B Likelihood Analysis
of the Neutrino Mass Ordering

In this work, the Neutrino Mass Ordering (NMO) is fitted in a binned, mazimum-likelihood
analysis on the final level GRECO sample. All of the analysis, presented in the follow-
ing chapter, was developed blindly, i.e. without running the analysis or relevant parts of
it on experimental data before finalizing the analysis procedure. The full analysis chain
and the subsequent unblinding procedure were supervised and reviewed by the IceCube Col-
laboration. The analysis presented in the following and the results from Chapter 8 were
published in [126], [127] and [116], in combination with a second analysis of the Neutrino
Mass Ordering, that was developed independently and in parallel by Steven Wren [128].

The idea of the following analysis is to measure matter effects in the oscillation pattern
from Figure 2.14. Since the true neutrino energy, zenith-angle and flavor are not accessible,
the analysis uses the corresponding reconstructed observables. To do this, the reconstructed
energy, zenith-angle and PID from the Pegleg reconstruction presented in Chapter 5 are used.
Note that here the PID is no direct proxy for the neutrino flavor, but instead distinguishes
between track-like and cascade-like events (cf. Section 5.3.1).

As mentioned before, IceCube is not capable to separate neutrinos and anti-neutrinos on
an event-wise level. Therefore, no attempt is made to distinguish these within the analysis
binning. Instead, the observed signature is a combination of the neutrino and anti-neutrino
channels, shown in Figure 2.14.

(Ml Analysis Principle

In the following analysis, only upgoing events with cos(6;°°°) € [—1,0] are used, because
downgoing events do not oscillate in this energy range (cf. Figure 2.14). In principle, down-
going events could be added to constrain nuisance parameters in such off-signal region.
However, the gain in sensitivity was found to be small, while including the downgoing re-
gion strongly increases the atmospheric muon contamination. Instead, this analysis extends
to higher energies than previous DeepCore analyses, which also allows to constrain nuisance
parameters outside the oscillation regime [60].

The three-dimensional distribution of energy, zenith-angle and PID, that is used in the like-
lihood analysis, is shown in Figure 6.1, where all contributions from neutrinos, atmospheric
muons and triggered noise are combined. The PID bins are labelled as track-bin, transition-
bin and cascade-bin. The track-bin is strongly dominated by CC muon neutrinos, while the
other neutrino flavors dominate in the cascade-bin. The transition-bin contains events, that
are neither clear tracks nor clear cascades.
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Figure 6.1: Three-dimensional analysis distribution of reconstructed energy, zenith-angle
and PID for Monte Carlo simulations; this distributions is fitted in the likelihood analysis;
the shown distribution is the sum of CC and NC neutrino interactions of all flavors, atmo-
spheric muons and triggered noise, while the individual distributions are shown in Figure 6.3
and 6.4 (bottom) (pre-published in [127]).

The bin-edges, chosen for this three-dimensional analysis distribution, are given by:
o PID: {—0,1.0,8.0,0} (defined by Equation 5.5)
o cos(67°°): 10 equidistant bins between —1 and 0

o E*°/GeV: 10 non-equidistant bins between 3 GeV and 90.5 GeV, where the bin-edges
are chosen differently for the track-bin and the other two PID bins, which share the
same binning.

Note that the reconstructed energy and zenith ranges correspond to the cuts on energy and
zenith-angle introduced in Section 4.4.3.

The energy bin-edges in the track-bin are different from the ones used in the other two
PID bins. The binning for the cascade- and transition-bin were obtained by trying to
obtain sufficient statistics at all energies, while at the same time having a small binning at
~ 10 GeV, which is the most interesting regime for an NMO measurement. For the track-
bin, the bin-edges were manually adjusted, as the PID is highly correlated with the neutrino
energy. As a result, the track-bin is dominated by high-energy events, because events at low
energies are unlikely to give a strong separation between the track- and cascade-hypothesis.
To account for this, the edges are shifted to follow the statistics with larger bins at low
energies and smaller bins at high energies (cf. Figure 6.1).

The resulting signature expected from the Neutrino Mass Ordering (NMO) is shown in
Figure 6.2. Here, the expected pulls are shown for testing Normal Ordering (NO) in case
the true ordering is inverted (IO), which is defined as (n;;x(Hio) —n4ijx (Hno))/A/Mijk (HNo)
for the bin-content n;;;. As one can see, the signature is primarily obtained in the track-like
PID bin for vertically upgoing events. Moreover, the signature is reversed for cascade-
like events, as expected from Figure 2.14. In contrast, horizontal events carry almost no
information about the NMO, as they are nearly unaffected by neutrino oscillations.
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Figure 6.2: Expected signature from the Neutrino Mass Ordering in the analysis distri-
bution from Figure 6.1: the signature is shown in terms of the expected pulls defined by
(nijk(H10) —nijk(Hno))/+/nijk (Hno) with ngj, being the bin-content of the bin 4,j,k, which
is a commonly used measure of the NMO signature [7] (pre-published in [127]).

Besides the combined analysis distribution, the individual distributions for CC muon neu-
trino, CC electron neutrinos, CC tau neutrinos and NC neutrinos are shown in Figure 6.3.
The background distributions for atmospheric muons and triggered noise are shown in Fig-
ure 6.4 (bottom). Note that these distributions were generated using Kernel Density Esti-
mation (KDE), which is described in more detail in the following Section 6.2.

In the following likelihood analysis, these distributions are used for a template-fit of the cor-
responding data distribution. In this template-fit, the combined distribution in Figure 6.1 is
compared to the data histogram in a maximum-likelihood method. This likelihood includes
the expected Poissonian fluctuations on the bin-content in data and the uncertainties on the
MC template due to the limited amount of Monte Carlo events. Due to the Kernel Density
FEstimation (KDE) method, used to derive the MC distributions, the MC uncertainties are
strongly reduced compared to histograms, as described in Section 6.2. Thus, the likelihood
is clearly dominated by the Poissonian fluctuations, while the MC uncertainties are only a
minor correction. The likelihood is described in more detail in Section 6.4.

In the template fit, systematic uncertainties on the neutrino flux, the neutrino cross-sections,
the detector-response and the oscillation parameters are included as nuisance parameters.
To do this, their impact on the analysis distribution in Figure 6.1 is parametrized and for
each systematic, a nuisance parameters is inserted into the template-fit.

This way, the unknown value of the systematic uncertainties is fitted simultaneously with
the NMO, which reduces the sensitivity to the NMO, but includes the uncertainty on these
parameters into the fit result. A list of all systematic parameters is presented in Section 6.3,
while the optimization of the likelihood with respect to these parameters is described in
Section 6.5.

The likelihood is optimized with respect to all nuisance parameters for NO and IO, sepa-
rately. The difference of the two negative log-likelihood values ALLHyo 10 is then used as
a test statistic to obtain the experimental result in Chapter 8. Moreover, it is used in two
independent methods in Section 7.4 to derive the corresponding sensitivities. Finally, it is
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Figure 6.3: Three-dimensional analysis distribution for CC v,, CC v., CC v; and NC neutrino events; note that the track-like PID bin is
populated mostly by CC v, events, while all remaining neutrino events populate mostly the cascade-like PID bin.
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Figure 6.5: Illustration of the analysis procedure: first, KDEs are used for all MC samples
to derive the three-dimensional analysis distribution for neutrinos (bsin v), atmospheric
muons (bsin p) and noise — these distributions are used as templates in the following fit;
second, the parametrizations of the detector systematics are derived from the baseline and
all systematic samples (all v/u), as described in Section 6.3.5; third, these templates and
parametrizations are then used to fit an injected distribution either from MC (sensitivity
estimation) or data (experimental result) in a maximum-likelihood method.

Ll experimental
result

used in Section 7.6, to estimate the impact of each systematic on the NMO result.

The analysis procedure is summarized in Figure 6.5, while the individual steps of this dia-
gram are described in more detail in the following sections.

W] Template Generation Using Kernel Density Estimation

From a discrete set of MC events, the templates in Figure 6.4 and 6.3 can be obtained using
various methods:

A prominent method to generate templates is the histogram. The histogram is a cut-and-
count method, that sums the weights of all events within one patch of the parameter space,
i.e. bin, and takes the resulting sum as predicted bin-content y;. In case of small bins, this
leads to large relative errors on the predicted bin-content, as the prediction is limited by
the statistical power of the events contained within the bin.

A more advanced method for the generation of templates is Kernel Density Estimation
(KDE). In contrast to histograms, it is an unbinned method, that calculates a continuous
probability density function (PDF) instead of an aggregated probability. The PDF can
then be integrated over any chosen interval, i.e. bin, to obtain a probability distribution.
This allows for an arbitrarily small binning without loss in predictive power [129]. For low
statistics and most practical applications, KDEs are known to outperform histograms clearly
in an accurate estimation of PDFs[130].

In this work, a weighted, adaptive KDFE is used to reduce the statistical error of the Monte
Carlo templates. The method is described in more detail in the following section, where the
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6.2. Template Generation Using Kernel Density Estimation

terms weighted and adaptive are also defined.

Since the neutrino MC provides large statistics for estimating the templates in Figure 6.3,
the differences between KDEs and histograms are small. In contrast, for atmospheric muons
and triggered noise the MC statistics is small, leading to large differences between histogram
and KDE templates. In Figure 6.4, the resulting templates for histograms (top) and KDEs
(bottom) are compared, where the statistical fluctuations for histograms are clearly visible.

6.2.1 Multidimensional Adaptive Kernel Density Estimation

The weighted, adaptive KDE method, that is used for the template generation, is based
on [131]. The method can be applied to an arbitrary number of dimensions. However in
the following, the distributions are assumed to be two-dimensional (d = 2) in reconstructed
energy and zenith-angle, which are calculated separately for each PID bin (cf. Figure 6.4).

At any point ¥ = (y1,y2)7, the value of the KDE, generated from a set of N Monte Carlo
events at T; = (7,1, 2;2)7, is defined by Equation 6.1 [131]

N

_, r . 1, o 1

KDE(y)=2wiDiexp(—2<xi—y>Tc1<xi—y> , ) (6.1)
=1

where w; is the weight of the MC event at Z; and C~! is the inverted, weighted covari-
ance matrix of the two-dimensional MC data {Z;}. The term weighted KDE refers to this
weighting of the input data.

As shown in Equation 6.1, the KDE is calculated by convolving each data point #; with a
two-dimensional Gaussian, so-called kernel-function or kernel. The integral of the kernel is
given by the event weight w;. Moreover, the width of the Gaussian, so-called bandwidth, is
given by the covariance matrix C and two scaling factors A and ;.

The quantities \;, h and D; are defined by [131]:

-1
 Jdet(c) C(Nd+2)\F ,
D; = e h = <4 (Silverman’s-Rule) (6.2)

KDE(Z:) 5 —1v;\ ® LN )
Ai = ( J j) g = exp N Z IOg(KDE(xi)b\j:l,vj) (6.3)
=1

9

Thus, the bandwidth is given by the global scaling factor A and an event-wise correction
Ai. The global factor h is estimated using Silverman’s-Rule from [132], which is a common,
heuristic choice for the global bandwidth in case of a Gaussian kernel-function.

The idea of an event-wise correction A; is motivated by distributions with pronounced high-
and low-statistics regions:

In high-statistics regions, small features in the distribution may become very significant.
There, a small bandwidth is necessary to reproduce these feature in the corresponding KDE.
In low-statistics regions, small features may not be resolvable with the available statistics.
Instead, the bandwidth should be chosen to be large to remove statistical features from
individual MC events. Thus, an ideal bandwidth depends on the statistics in the vicinity of
the event. The term adaptive KDFE refers to this adaption of the bandwidth for every MC
event [129].
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Histogram counts Kernel Density Estimation
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Figure 6.6: Sketch of the procedure of Kernel Density Estimation (KDE); left: histogram
of two-dimensional data pulled from an arbitrarily chosen, two-dimensional PDF; center:
width of the individual kernels for each data point, obtained from evaluating a non-adaptive
KDE; the size of each circle is proportional to the bandwidth factor A; of the data point Z;;
right: resulting KDE, given by the weighted sum of all kernels.

To do this, the KDE is evaluated in two iterations: In the first iteration, the KDE is
generated with \; = 1, Vj, such that the bandwidth is & for all events (non-adaptive). Then
the KDE is evaluated at each data point § = Z; and the resulting density KDE(Z;)|x,=1,v;
is used to estimate the statistics in the vicinity of the event Z;. In the second iteration, this
estimate is used to calculate the adaptive KDE with the bandwidth factor A; for every MC
event 1.

Finally, the parameter o in Equation 6.3 determines the extent to which the kernel width
is following the statistical power of the data points #;. The value chosen in this work is
a = 0.3, motivated by [129]. The general idea of KDEs is sketched in Figure 6.6 for an
arbitrarily chosen PDF.

Before this work, this KDE method was implemented in a Python framework by Sebastian
Schoenen [133]. For this work it was re-implemented in C++ and CUDA for several reasons,
discussed in Appendix F.1. All three implementations (Python, C++, CUDA) were tested
to give the same results for one and two-dimensional KDEs, while the C++ implementation
is used for all calculations in this work.

6.2.2 Parametrization Boundaries and Renormalization

To use KDEs for the template generation, two additional steps are required:

First, a boundary treatment must be applied, since KDEs tend do underestimate the PDF
at its parametric boundary (e.g. cos(6;°°°) = —1). To account for this, the KDE is reflected
at all boundaries, such that no density is flowing out of the parameter space. This reflection
method is commonly used for parametric boundaries [134] and was investigated in detail by
Eric per Vogel [135].

Second, the KDE is integrated over the extent of every bin from the binning in Section 6.1.
The resulting distribution obtained from integrating the two-dimensional KDE is then nor-
malized to the sum of the weights of all MC events. The boundary treatment and the
renormalization, are described in more detail in Appendix F.2.
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Note that both, histograms and KDEs, converge to the true probability distribution for
N — 0. In that case, the Gaussian kernels become infinitely small, approximating a delta-
distribution with normalization w;. Thus, solving the integral is equivalent to summing the
weights of all events within that bin, which is identical to a histogram.

A comparison of templates, generated with histograms and KDEs, is shown in Figure 6.4
for atmospheric muons and triggered noise. For histograms, the statistical fluctuations from
limited MC are clearly visible, while the KDE returns a smooth template estimate. Addition-
ally, a comparison of the performance for histograms and KDEs is added to Appendix F.3
for PDFs similar to those used in this work.

The uncertainties on the templates, generated with KDEs, are estimated using bootstrap-
ping [136]. In the following, whenever a KDE uncertainty is used, it refers to such errors
obtained from bootstrapping the Monte Carlo sample and recalculating the KDE several
times from the bootstrapped samples [129].

Implementation of Systematic Parameters

The measurement of the NMO is affected by several systematic uncertainties. In this work,
systematic uncertainties are treated by inserting nuisance parameters into the template fit.
To do this, the impact of each systematic on the analysis distribution is parametrized and
the resulting parameters are used as nuisance parameters. These parameters comprise:

1. uncertainties in the normalization of the contributions in Figure 6.3 and 6.4,

2. uncertainties in the atmospheric neutrino and muon fluxes, discussed in Section 2.4,
3. uncertainties in the oscillation parameters, discussed in Section 2.3,

4. uncertainties in the neutrino-nucleon cross-sections, discussed in Section 2.2,

5. uncertainties in the detector response, discussed in Chapter 3.

Thus, these uncertainties extend from the neutrino generation (1-2), propagation (3) and
interaction (4) to their detection in DeepCore (5).

The systematic parameters are parametrized either

1. event-wise, where the effect on the analysis distribution is obtained from re-weighting
Monte Carlo events or

2. bin-wise, where for each bin an analytical function is used to describe the relative
change of the bin-content depending on the nuisance parameter.

For the event-wise parametrization, only one MC sample is needed for each contribution.
It is called baseline sample, as it was generated with all systematic uncertainties being at
their baseline value.

For the bin-wise parametrization, the bin-wise function is obtained from so-called systematic
samples, i.e. Monte Carlo samples including the investigated systematic effect. To do this,
the analysis distribution is generated for each systematic sample and the observed change
in the bin-content is fitted against the value of the systematic parameter for each bin.

In the following, the bin-wise parametrization is used only for the detector systematics,
while normalization, cross-section, flux and oscillation systematics are parametrized event-
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wise. All systematic parameters are summarized in Table 6.1. The first half of the table

Table 6.1: Systematics treated as nuisance parameters in the likelihood analysis, including
normalization (N), detector response (D), oscillation (O), atmospheric flux (F) and neutrino-
nucleon interaction (I) uncertainties, where the last column gives the baseline value and the
estimated uncertainty: values in brackets are used only for systematic studies in Section 7.6,
while uncertainties without brackets are also used as Gaussian prior in the fitted likelihood;

if possible, a reference for the assumed baseline value and uncertainty is given.

label type short description of parameter baseline £ uncert.
fitted parameters
N, N normalization of total neutrino template [46]¢ 1.00(40.25)*
N, N normalization of v, flux 1.00 £ 0.05*
(before propagation) [46]¢[137]4
Nnc N normalization of the NC template 1.0+ 0.2?
N, N normalization of atmospheric muon template 1.0(£0.5)?
€opt D photon detection (optical) efficiency [78]%4 1.0+0.12
Lhi D photon scattering length in hole-ice [78, 60]9 25 + 10
KR D head-on optical efficiency [60]%¢ 0.0(£1.0)®
Am?, O atmospheric squared-mass difference 2.5 1073 eV?
B3 O atmospheric mixing angle [25, 26]4 0'740&8:2323 rad
Ay, F neutrino spectral index uncertainty [46]°[137]4 0.0 £ 0.1
T F atmospheric muon template uncertainty [138]4 0.0 + 1.0P
Ry F atm. neutrino flux uncertainty [46]°[47]4 0.0 +1.0°
Ry F atm. neutrino flux uncertainty [46]°[47]4 0.0 £ 1.0
M I axial mass uncertainty of RES events [139]%d  1.12 + 0.22 GeV
M I axial mass uncertainty of QIS events[139]Y  0.99 + 0.25 GeV
additional, tested parameters (not fitted)
Noise N normalization of triggered noise template 1.0 + 1.0
Neoin N normalization of events containing 1.0+ 1.0?
a coincident atmospheric muon
sin?(613) O neutrino oscillation parameter [25, 26]%4 0.02206™0 50223
sin?(612) O neutrino oscillation parameter [25, 26]¢4 0.30770:939
Am3, O neutrino oscillation parameter [25, 26]%4 7407082 . 1075 eV?
dcp 0 neutrino oscillation parameter [25, 26]%4 180° — 270°
P18 I TBjorken-dependent DIS cross-section 0+ 0.0757°
for neutrinos [140]4
O'%IS I TBjorken-dependent DIS cross-section 0 + 0.1008P

for anti-neutrinos [140]%4

a relative to the nominal value of this parameter
b ad-hoc parametrization in arbitrary units with baseline value at 0
¢ nominal value motivated by the provided reference

d

uncertainty motivated by the provided reference

consists of all parameters fitted in the NMO analysis, which are described in this section.
The second half of the table comprises additional parameters that were tested, but removed
from the likelihood fit, since their impact was found to be negligible. They are discussed in
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more detail in Section 7.6.

For parameters used with a Gaussian prior in the template fit, the width of the Gaussian
prior is stated in the last column, while the prior is centered at the systematic’s baseline
value. These priors are the same for all ongoing DeepCore analyses, fitting these parameters.
For priors based on external information, a reference is provided to motivate the choice of
the prior. All priors are chosen conservatively in the sense that their width is equal to
or larger than the expected uncertainty of this parameter. This is done to support the
convergence of the fit to the true value, but avoid the fit being driven primarily by the value
of the prior, but the observed data.

The parameters from Table 6.1 are described in more detail in the following.

6.3.1 Normalization Uncertainties

The analysis includes CC electron, muon and tau neutrinos as well as NC events, atmospheric
muons and triggered noise (cf. Figure 6.3 and 6.4). To avoid fitting a systematically wrong
hypothesis, by under- or overestimating the normalization of one of these contributions, the
normalizations N,, N, , Nnc and N, are used as nuisance parameters in the likelihood fit.

The parameter IV, describes the total normalization of the neutrino template, i.e. it scales
the combined templates from CC electron, CC muon, CC tau and NC events. The parameter
N, describes the normalization of electron neutrinos, generated in the atmosphere, i.e.
before applying oscillation effects. This allows to account for uncertainties in the v, /v.-ratio
generated in the Earth’s atmosphere by meson decays (cf. Section 2.4.1). The parameter
Nnc describes the total normalization of NC events, including all flavors. Finally, the
parameter IV, scales the normalization of the atmospheric muon template.

The CC tau normalization N,  and noise normalization Nygise are not used as nuisance
parameters: Since tau neutrinos are not generated in the atmosphere, NN, depends only
on the electron and muon neutrino fluxes and the oscillation parameters. Deviations from
this expectation could only arise from non-standard oscillations (e.g. non-unitarity of the
mixing matrix U) or unknown, systematic selection effects, which should be small, since the
cascade-like signatures from CC tau neutrinos, CC electron neutrinos and NC interactions
are indistinguishable with IceCube at these energies. As the measurement of tau-appearance
is a strong physics case by itself, this analysis focuses only on the NMO, while keeping
the tau normalization to the expectation NV, = 1 for standard oscillations. However, a
similar analysis is conducted on this sample to measure the tau normalization by Michael
Larson [112].

The noise normalization is not fitted, since within any reasonable range of Npgise, this
analysis is not sensitive to it. It can only affect the analysis distribution notably, if it is free
to choose completely unrealistic noise contributions like Nygige ~ 10 — 100. Therefore, the
normalization is fixed in the following.

Moreover, note that the atmospheric muon normalization N, is used without prior. This is
done to give enough freedom to the likelihood fit to describe the amospheric muon contami-
nation, due to the limited MC description and the muons’ strong sensitivity to the detector
response.

Dissertation — Martin Leuermann 89



6.3.2

Chapter 6. Likelihood Analysis of the Neutrino Mass Ordering

Atmospheric Flux Uncertainties

The atmospheric electron and muon (anti-)neutrino fluxes used in Monte Carlo are taken
from the predictions for the South Pole in [46] (cf. Section 2.4.1). The uncertainties on these
fluxes are mostly taken from [47], which discusses the energy-, zenith- and flavor-dependent
uncertainties relative to the flux predicted in [48]. Since the used model of atmospheric
fluxes is an updated version of the model, that was assumed for the calculation of the
uncertainties in [47], the actual errors on the predicted Monte Carlo fluxes are expected to
be smaller than the used one.

The dominant systematic effects on the atmospheric neutrino production arise from uncer-
tainties in the kaon and pion production process in the atmosphere (cf. Section 2.4.1) and
the unknown properties of the primary Cosmic Ray flux [47]. In the following, these effects
are parametrized by the parameters Av,, R, /; and Ry.

The parameter Ay, modifies the weight w; of each MC event ¢ according to its energy E, ;
by w; — wi(E,,i/ GeV)27¥. Thus, it modifies the spectral index of the atmospheric neutrino
flux for all flavors and neutrinos and anti-neutrinos in the same way. The value of the prior
is set to oa~, = 0.1 motivated by [137].

The parameters R, ; and Ry describe the energy- and zenith-dependent uncertainties in
the ratios of neutrino flavors and neutrinos to anti-neutrinos. They are based on an ad-hoc
parametrization of the relevant uncertainties discussed in [47]. The uncertainties on these
ratios from [47] are shown in Figure 6.7.
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S 1p e 0 FT T e 23
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; Ve/Ve uncertainty 16 °
0.1 . . . 0 ‘ . .
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Figure 6.7: Energy-dependent (left) and zenith-dependent (right) uncertainties on ratio of
different neutrino types; left: for all zenith-angles; right: at energies of E, € [3,30] GeV
(from [47]).

Note that changes in the normalization of the individual contributions are already captured
by the parameters from Section 6.3.1, while a global, energy-dependent tilt in all neutrino
templates is already captured by A~,. Moreover, uncertainties at energies FE, < 1GeV are
irrelevant for this work.

The ad-hoc parametrization reduces the 16 independent uncertainties from [47] to the two
parameters R, /; and Ry by focussing only on relevant effects for DeepCore. The most rele-
vant parameter R, /; describes the energy-dependent ratio of neutrinos and anti-neutrinos,
which changes the zenith-dependent ratio at the same time. The second parameter Ry is
a minor correction to the zenith-dependent change, which is used to guarantee that the
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changes cover the uncertainties given by [47]. This two-dimensional parametrization is the
common treatment of atmospheric flux uncertainties in DeepCore analyses [60, 61].

For the ad-hoc parametrization, R, ; and Ry were chosen to be 0.0 at the baseline point
and £1 at +1o¢ uncertainty. Thus, the parameter value gives the pull with respect to
the Gaussian prior. The impact of a +1 o-shift in both parameters on the final analysis
distribution is shown in Figure 6.8. As illustrated, the impact of R, ; is clearly larger than
the one for Ry. In fact, Ry has only a small effect on the template fit, while R, ; is an
important parameter, as discussed in Section 7.6.

A detailed comparison between the uncertainty provided by [47] and the ad-hoc parametriza-
tion was conducted by Juan Pablo Yénez [118]. Another study of all parameters was done
by the PINGU collaboration, which found no relevant effects beyond the ones provided by
the above mentioned ad-hoc parametrization. Thus, the ad-hoc parametrization is also used
for sensitivity studies of the future PINGU detector [7].
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Figure 6.8: Expected pulls from changing R, ; (top) and Ry (bottom) by +1¢ for one
year of data; note the different scale of the colorbars, indicating the larger impact of R, ;
compared to Ry; the pulls from changing the parameters by —1 ¢, are roughly the shown
ones with an inverted sign, since their impact is nearly linear within [—10, +10].

Finally, a nuisance parameter is used for the atmospheric muon template, called «y,. The
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parameter 7y, propagates the uncertainties on the primary Cosmic Ray flux towards the muon
template according to [138]. This comprises uncertainties in the composition of Cosmic Rays
as well as on their energy spectrum.

To obtain the effect on the final muon template, CORSIKA simulations were run for varying
assumptions on the Cosmic Ray primary spectrum. The atmospheric muons were then
propagated to the MuonGun generation cylinder. The covered change in the density of
CORSIKA muons was then splined and parametrized by the parameter «,. Finally, this
parametrized density is used to re-weight the MuonGun events on the generation cylinder,
changing the atmospheric muon template. The parameter is chosen to be v, = 0 at the
baseline point and +1 at +10 [138].

It turns out, that the parameter has only negligible impact on the template fit and the fitted
values are always close to the baseline value for Pseudo-Experiments (cf. Appendix H.2),
which is due to the assumed prior. However, the parameter is kept to check for unexpected,
extreme deviations in the atmospheric muon template.

6.3.3 Uncertainties of Oscillation Parameters

For this work, the oscillation parameters from Table 2.1 are treated as nuisance parameters.
However, most of them have no impact on the oscillation measurement with DeepCore (cf.
Section 7.6). Thus, the parameters Am?2,, 613, 012 and dcp are fixed to the best-fit values.

The remaining, free parameters are the so-called atmospheric oscillation parameters Am%,
and 623. In contrast to the other oscillation parameters, their baseline values are not taken
from the most recent NuFit result [25, 26]. Instead, they were kept unchanged during the
development of this work, but are still compatible with the most recent global fits. These
baseline values are only used for sensitivity and systematic studies and do not affect the
experimental result. In the following, fa3 is mostly replaced by sin?(fa3), which is conven-
tionally chosen for the illustration of the mixing angle. Note that Am3, is no additional
degree of freedom, as it is given by Am3, = Am3, + Am3; (cf. Section 2.3.2).

As shown in Table 6.1, the atmospheric oscillation parameters enter the likelihood without
prior. In principle, such prior could be assigned by taking recent, global best-fit contours
from other experiments, although they would be highly non-Gaussian in 623. However, this
is not done, since IceCube’s sensitivity towards these parameters is competitive to those
measurements and thus the oscillation parameters are of interest themselves. Moreover,
this allows to produce an independent confidence interval on these parameters, so-called
contour, as done in Section 8.1.2. Such contour can still be combined with results from
other experiments, as done in Section 8.2, but also allows to study the result individually.

Although these parameters are nuisance parameters for the NMO measurement, the exper-
imental fit of the atmospheric oscillation parameters is discussed in Section 8.1.2.

6.3.4 Uncertainties of Interactions

Neutrino-nucleon interactions can be split into deep inelastic (DIS), quasi-elastic (QE) and
resonant (RES) interactions, as discussed in Section 2.2. The GRECO sample on final level
is clearly dominated by DIS interactions, contributing ~ 81.4% of all CC neutrino events and
> 99.9% of all NC neutrino events. However, a ~ 11.4% resonant and ~ 7.2% quasi-elastic
contribution for CC events remains - especially at low energies (cf. Figure 2.2).
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The theoretical value of the QE and RES cross-sections depends strongly on the nucleon
form factors. The axial mass M4 arises as a phenomenological parameter, when writting
these form factors in a standard dipole parametrization. Thus, the axial mass rescales the
cross-section of RES and QE neutrino-nucleon interactions, depending on the value of the
transferred, squared four-momentum Q? [139)].

In GENIE, the QE and RES interactions are simulated with

M =1.12 GeV (1.12 + 0.03 GeV)
M9 =0.99 GeV (0.96 + 0.03 GeV), (6.4)

where the values in brackets correspond to the best-fit values reported by [139]. More-
over, GENIE provides the coefficients of a second order polynomial for every generated MC
event. With this polynomial, the event can be re-weighted for any change of the axial mass
parameters M5 and MY’

Besides RES and QFE uncertainties, uncertainties in the DIS cross-section are not included
in the likelihood fit. For DIS interactions, the uncertainties from [141] were parametrized by
Shivesh Mandalia and Teppei Katori [140]. However, the resulting parameters were found to
have no relevant impact on the likelihood and are therefore not used as nuisance parameters
(cf. Section 7.6).

6.3.5 Detector Uncertainties

The detector systematics describe uncertainties in the detector response. This comprises
the propagation of Cherenkov photons through the ice as well as the DOM response to a
photon hit. In this work, they are treated bin-wise by producing systematic samples for
every uncertainty. These systematic samples include the effect from varying the systematic
within its uncertainties and propagate the effect to the final analysis histogram. A full list
of all systematic samples, used in this work, is attached in Appendix H.1.

In this work, three detector uncertainties are used:

1. optical efficiency €opr: The optical efficiency describes the efficiency of the photo de-
tection. This includes the efficiency of the PMT and other DOM hardware as well as
optical properties of the surrounding ice (cf. Section 3.5). Its uncertainty is assumed
to be £10% of the baseline value. To estimate the impact of the optical efficiency, the
MC samples in Appendix H.1 are generated with high photon efficiency and propa-
gated through the selection chain in Chapter 4. Then, the optical efficiency is reduced
by removing some of the observed photons randomly, where the fraction of removed
photons corresponds to the reduction in optical efficiency. After removing the given
fraction of photons, the sample is processed analogously.

2. hole-ice LY. ,...: The hole-ice parameter is the first of two parameters, describing the
optical properties of the hole-ice. Since the DOMSs are located within the drill holes, its
impact is parametrized by changing the photon detection efficiency, depending on the
inclination-angle n of the incoming photons, as described in Section 3.4. The baseline
value and uncertainty of the resulting systematic parameter are LM ..~ = 25 + 10.
For illustration purposes, this value is sometimes interpreted as scattering length in
centimeters, but is in fact not directly linked to the scattering length. However, it was
defined in a way that resembles the scattering length parameter of a previously used

hole-ice model to simplify comparisons. The impact of L2 ... on the n-dependent
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detection efficiency is shown in Figure 6.9. Together with the high-forward parameter,
it covers the parametrized uncertainty from Figure 3.9 (green shaded band). The hole-
ice systematic samples are produced analogously to the optical efficiency parameter by
removing photons according to their inclination-angle 7 and chosen values of L . .
3. high-forward kY ,...: The high-forward is the second of the two parameters, describing
the optical properties of the hole-ice. It changes the n-dependent photon detection
efficiency for vertically upwards moving photons, as shown in Figure 6.9. For these
photons, the acceptance is not well-constrained by string-to-string LED measurements
and therefore largely unknown (cf. Section 3.4). The high-forward parameter is an ad-
hoc parametrization with one dimensionless parameter. Its baseline value kl ., .. = 0is
used without any prior from external knowledge. For values k2., .. >0 (kb . <0),
it enhances (reduces) the acceptance for vertically upwards moving photons. Together
with the hole-ice parameter, it covers the uncertainty given by the green shaded band

in Figure 3.9. The systematic samples are produced analogously to the cases for
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For each systematic sample, the analysis distributions from Figure 6.3 and 6.4 are generated.
For every bin, the bin-content of all systematic samples is then used to parametrize the
systematic effect continuously. The parametrization is done separately for each contribution
¢ € {Ve, vy, Vr, UNC, b}, While the triggered noise is not affected by these detector systematics.

For each contribution, systematic and bin, a first order polynomial is fitted to the values
of the bin-content, obtained from the systematic samples, as a function of the systematic
parameter, except for the parametrization of the optical efficiency for atmospheric muons.
There, an exponential function is fitted for the following reasons:

In contrast to neutrinos, where an increased optical efficiency leads to an increased number
of events, the atmospheric muon contamination decreases in optical efficiency. This is due to
the fact that the muon contamination is largely suppressed by the data selection (cf. Chap-
ter 4). However, the suppression depends strongly on the efficiency of the photon detection.
If the optical efficiency is increased, this also increases the veto-efficiency and thus reduces
the muon contamination. For decreased optical efficiency, the opposite is the case.

In Figure 6.10, the parametrization of the bin-content y, compared to the baseline sample
Yo, is shown for one analysis bin against the optical efficiency €,p¢. Each marker corresponds
to the bin-content of one systematic sample, while the errorbars are obtained from boot-
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Figure 6.10: Example for the &9
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strapping the corresponding KDE (cf. Section 6.2.1). The solid lines passing through the
markers of the same color are the parametrizations, obtained for each contribution.

For each contribution, the baseline sample is located at y/yo = 1, as the bin-content of
the baseline sample y = yq is used for the normalization. However, yy might be under- or
overfluctuating due to small MC fluctuations. To account for this, the parametrization p is
free to choose p(xg) # yo and thus to correct for fluctuations in the baseline sample.

0.0 track-bin transition-bin cascade-bin 1.0
0.8
-0.2 0.6
0.4 |
,-Gé‘.
-04 0.2
g =
z 0.0 %
z ¥
3-0.6 -0.2 é
-0.4
-0.8 -0.6
-0.8
-1.0 -1.0
0.7 10 13 16 19 0.7 10 13 16 19 0.7 10 13 1.6 1.9
log,o(E," /GeV)

Figure 6.11: Pulls on analysis distribution from changing k... by +10; the behavior of
the parameters is nearly linear within [—1c, +10] such that the pulls from changing k5., ..

by —1 ¢ are roughly the shown ones with an inverted sign.

By applying such fit to every bin, contribution and systematic, the impact of each detector
systematic on the analysis distribution in Figure 6.1 is parametrized. In Figure 6.11, the
pulls on the analysis distribution are examplarily shown for shifting k2. ,... by +1o. Note

that this is the sum of the individual effects from all contributions ¢ € {v, ve, v-, NC, u}.

The detector systematics are assumed to be independent close to the baseline values. Thus,
they factorize such that the bin-content y.; for a component ¢ and bin i is given by the
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product

hi DE hi hi )
yCi(GOPtv scatter’ kséatter) = bei * Do (eopt) : pcz (Lséatter) pcz (kséatter) y(C]Z’ (65)

where pRE, pHl and pllF are the parametrizations of the optical efficiency, hole-ice and
high-forward, respectively, while y§ is the raw bin-content of the baseline sample.

A so-called baseline-correction b;. is added to align the parametrizations for all three detector
systematics at the baseline sample, since each parametrization passes its baseline value g
at a different value y. The correction b;. is in general small and described in more detail in
Appendix G.

Modified Poissonian Likelihood

For comparing the total MC template from Figure 6.1 to the data histogram, two statistical
effects are taken into account: The first one are the statistical fluctuations on the bin-content
for data. The underlying statistic is Poissonian, such that the number of observed events IV;
might deviate from the expectation value fi;. The true expectation value [i; is not known,
but estimated from MC simulations as p; with an uncertainty o, due to the finite number
of MC events. The error o, obtained from bootstrapping KDEs, is shown in Figure 6.12
(left) for the total MC template.

track-bin transition-bin cascade bin

0.0 A [ Poiss Poiss |
3.2 — o,/ — o — o,/0;
2
) 28 10
2.4 E
o
g 2.0 %510t
S 5
2 16 o
°—0. €
12 2
10°
) 0.8
0.4
. 107
107 107 107 10
logm F /(;eV ratio

Figure 6.12: Left: template error o, (in expected event counts) from limited MC statistics,
obtained from the combination of the individual MC errors for each contribution; Right:
template error o, (blue) and Poissonian error o} °s¥ = /i (green) relative to total number
of predicted events p; and ratio of both (red), where the MC error is roughly an order of
magnitude smaller than the Poissonian error on the bin-content.

In this work, the uncertainty from limited MC statistics is much smaller than the Poissonian
fluctuations o} = ,/; on the bin-content. Thus, o, < oF°" holds for every bin of the
MC template. The ratio of o, /oY is shown in Figure 6.12 (right).

Although the errors are small, they are conventionally included in DeepCore analyses. This is
done by combining the uncertainty o,, with the Poissonian error. To do this, the Poissonian
distribution is convolved with a log-normal distribution according to Equation 6.6

0
tOt(Nza,Uqu,ul) = JO d,UJ ( PO]SS(N%/]) ' EN(ﬁ?MiaO—,LLi)) ) (66)
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6.4. Modified Poissonian Likelihood
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Figure 6.13: Example of Poissonian probabilities of mean p = 5.5 (left) and p = 80 (right)
convolved with a log-normal distributions of different width o = o,,; the black distributions
show the underlying Poissonian distributions that are obtained in the limit ¢ — 0.

where pZPOiSS (N;, i) is the Poissonian probability to observe NV; events, in case ji are predicted,
and LN (i, 15, 0,,) is a (narrow) log-normal distribution in f with an expectation value y;
and a standard deviation o,,. For illustration, the resulting convolution of the Poissonian
and a narrow log-normal distribution are shown in Figure 6.13.

The probabilities pt©t

)

are used to define the negative log-likelihood in Equation 6.7

tot 2
P (Ni, iy o ;) 1 5 — 50
LLH= |- > log( L S +5] D8 : (6.7)
iefomsy P (Mo Nis o) 2 | sl N 8
The first sum runs over all 3 x 10 x 10 = 300 bins in PID, reconstructed energy and

reconstructed zenith-angle. It compares the observed bin-content NV; to the prediction u;,
taking the uncertainty of the prediction o, into account and normalizing the probability
by pi°*(N;, Ni,0,,). This way, a normalized likelihood [143] is obtained, which allows for
a comparison of log-likelihood values for different realisations of N;. The normalized log-
likelihood values are used in Chapter 8 as a proxy for the agreement of data N; with the

Monte Carlo prediction p;. Such proxies are known as goodness-of-fit estimators [144].

The second sum in Equation 6.7 adds the LLH-contribution from the Gaussian priors on
the systematic parameters in Table 6.1. Each systematic s is compared to its baseline value
so in terms of its uncertainty o5 and the resulting disagreement is taken into account in the
log-likelihood.

In Chapter 8, the fit is repeated with the Poissonian likelihood from Equation 6.8

Poiss 2
Z pi "% (NG, i) 1 Z 5= 80
LLH = — log <pPOlSS(]W) + 5 . (68)

g
ie{bins} 3 se{sys} s

It differs from the convolved likelihood in Equation 6.7 by using only Poissonian probabili-
ties, without taking the uncertainties o,, on the MC template into account. In the following,
only the convolved likelihood is used to obtain the NMO result, while the Poissonian likeli-
hood is used to validate the result in Chapter 8.
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Likelihood Optimization within oscFit

The NMO is fitted simultaneously with the nuisance parameters described in Section 6.3. It
consists of four separate minimizations of the negative log-likelihood. This is done, since the
likelihood space features four separate minima: one in each octant (i.e. for sin?(fa3) < 0.5
and sin?(f23) > 0.5) and ordering (Am3; > 0 and Am32; < 0).

Note that in case of maximum mixing (sin?(fs3) = 0.5), the two octant-dependent minima
converge to just one minimum at the boundary of both octants. For the two NMO-dependent
minima this is only the case for Am3, = 0, which is clearly excluded by DeepCore and several
other experiments (cf. Section 2.3.2).
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Figure 6.14: Validation of the minimization process; each black dot represents a set of
oscillation parameters injected either in the Normal (left) or Inverted (right) Ordering hy-
pothesis; the stars on top show the resulting best-fit values for NO (green star) and 10
(cyan star) being injected; as only green (cyan) stars show up in the NO (IO) plane, they
recover the true ordering; the seed value in both octants and orderings is indicated by a red
triangle.

To account for this non-convexity of the likelihood space, the fit is repeated for every com-
bination of the Neutrino Mass Ordering NMO € {NO,IO} and octant O € {L,R}, while
for each NMO+4O hypothesis, all remaining systematic parameters are optimized. The fit
giving the optimum log-likelihood value is taken as result of the fit, while the likelihood
differences between the four fits is used to determine the sensitivity in Chapter 7 and the
result of the NMO measurement in Chapter 8.

The fit in each octant and ordering is done using oscFit, which is a standard fitting tool
within the IceCube Collaboration. For the likelihood optimization, L-BFGF-B is chosen as
a minimization algorithm (minimizer), which is based on a Quasi-Newton-Method [124].

To validate the minimization performance, the oscillation parameters are injected on a grid,
as shown in Figure 6.14 as black dots for NO (left) and IO (right). The minimizer is
seeded once in each octant and ordering at the values indicated by the red triangles. For all
other systematic parameters, the seed is perturbed randomly within the uncertainty of the
corresponding parameter. Then, the minimizer is tested to recover the correct values of the
oscillation parameters, all other systematic parameters and the correct octant and ordering
hypothesis.
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6.5. Likelihood Optimization within oscFit

This is visualized in Figure 6.14, where each star corresponds to the optimum of four min-
imizations (in both orderings and octants). The best-fit value is indicated by the position
of the star, while the color corresponds to NO (green) and 10 (cyan) being injected. The
stars line-up with the corresponding black dots, such that every injected value is recovered
by the minimizer. Moreover, all green stars are found in the NO plane (left), while all cyan
stars end up in the IO plane (right). Thus, the minimizer always chooses the right octant
and ordering, while also recovering the correct oscillation parameters. Note that it was also
validated that all other systematic parameters were recovered at their injected values.

From the four fits, the best NO and IO fits are taken to derive the log-likelihood difference
from Equation 6.9

Lxo
ALLHNo-10 = LLHNo — LLHjo = —log (3()) = log(Li0) — log(£no), (6.9)
where L0 is the likelihood obtained for the TO € {NO, 10} hypothesis, optimizing over both
octants and all systematic parameters. This log-likelihood difference is used in Chapter 8
to derive the p-values for the NO and IO hypotheses in the experimental result and in
Chapter 7 to calculate sensitivities.

Moreover, by considering all four, above mentioned likelihood values separately, any combi-
nations of ordering and octant can be tested, which is done in Section 7.4.
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Sensitivity for Measuring
the Neutrino Mass Ordering

The sensitivities, presented in the following, are calculated with two different methods: first,
using Pseudo-Experiments, described in Section 7.1, and second, using an Asimov method,
described in Section 7.3.

The Pseudo-Experiments method is very time consuming, but close to what is done for
experimental data. It is the most accurate estimate of the sensitivity used in the following.
However, since its calculation is time intense, it is used only to validate the result from the
Asimov method for some points of the parameter space.

The Asimov method is used for quick estimations of the sensitivity. It allows to test the
sensitivity for various parameters in a suitable amount of time.

Both methods are described in the following Sections 7.1 to 7.3, before the resulting sen-
sitivities are presented in Section 7.4 and 7.5. Afterwards the impact of systematics and
potential improvements on the sensitivity are discussed in Section 7.6 and 7.7.

The shown sensitivities are published in [126], [127] and [116].

Experimental Result and Pseudo-Experiments

For the experimental result, the negative log-likelihood difference from Equation 6.7 is
used as a test statistic, while the sign determines the preference for Normal Ordering
(ALLHNo-10 < 0) or Inverted Ordering (ALLHNo-10 > 0).

From the observed value of ALLHyno 10, & p-value for both hypotheses is derived. The
p-value gives the probability to observe an excess in positive or negative direction of the
test statistic that is at least as strong as the observed one for a given hypothesis.

To derive the p-value, the best-fit values of all systematic parameters for Normal (NO) and
Inverted (IO) Ordering are used to produce Pseudo-FEzperiments. Pseudo-Experiments are
produced by generating a Monte Carlo (MC) template for the given set of systematic param-
eters, scaling it to the observed livetime and adding Poissonian fluctuation on the content of
each bin. These Pseudo-Experiments are supposed to resemble the actual experimental his-
togram, such that repeating the experiment N times would lead to a similar distribution of
fitted parameters as obtained from fitting the N Pseudo-Experiments, in case all systematic
uncertainties are described correctly.

From the Pseudo-Experiments, two distributions of ALLHNo_10 are obtained for NO and 10O
being the injected ordering hypothesis. From these two distributions and the experimentally
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7.1. Experimental Result and Pseudo-Experiments

observed value ALLHY o, a p-value for the NO (IO) hypothesis is derived as the fraction
of Pseudo-Experiments that are right (left) of ALLHGS_ ;5. The procedure is sketched in
Figure 7.1 for the case of NO being observed (ALLHEI’((){IO < 0). It is often referred to as
Feldman-Cousin method, based on [145].

8000 , 1.0
Figure 7.1: Sketch of procedure ’
to determine the p-value for NO 7000
and 10, using ALLHyno_10 as gﬁooo rected NO 0.8
test statistic: the black, solid §5000 - injected 10 | A s =65.1%
line marks an observed value, 5 — observed | SNSRI /N 0.6
while the red and blue Gaus- % 4000 TE
sian distributions are obtained u% 3000 04"
from Pseudo-Experiments; the 8
red and blue, solid lines, to be  &2000 , 1 02
read from the right, vertical axis, 1000 B o1y
determine the p-value from the J_Lui,/ \\\L_L“
cummulative distributions. I -1 0 1 23

ALLHyo_0

Thus, an observed log-likelihood difference ALLH?S_IO can be converted into a p-value for
each hypothesis, using the simulation of Pseudo-Experiments with the best-fit systematic
parameters from data.

Additionally, the expected p-values, called sensitivity, are calculated to estimate the analysis
performance before fitting experimental data. The sensitivity to NO (I0) is defined by the
median p-value obtained for the exclusion of the opposite I0 (NO) hypothesis, in case NO
(I0) is true. It is calculated from the median likelihood difference ALLHNo 10 for a given
hypothesis. The median p-value is estimated by the fraction of the IO (NO) distribution
that is left (right) of the median value ALLHNo 10, obtained for the NO (I0) hypothesis.

Note that another common choice for the definition of sensitivities is replacing the median
by the mean of the ALLHno_10-distributions from Figure 7.1. However, the distribution
of ALLHyo_10 is assumed to be symmetric in the following, such that both definitions are
identical. This assumption is discussed in more detail in Section 7.3, while for Pseudo-
Experiments the median value is used in the following.

The p-value is converted into one-sided Gaussian sigmas according to Table 7.1. The sensi-
tivities stated in the following correspond to these p-values.

Table 7.1: Conversion of p-values p into one- and two-sided Gaussian sigmas.

1-p 0% 30% 50%  68.27%  90% 95% 99%

one-sided —o0 —0.524¢0 Oc 0.4760 12820 1.6450 2.3260
two-sided 0o 03850 0.6740 lo 1.6450 19600 2.5760

Note that the choice of a one-sided instead of a two-sided Gaussian is natural for this
measurement: In case the analysis is not sensitive to the NMO at all, the distributions in
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Chapter 7. Sensitivity for Measuring the Neutrino Mass Ordering

Figure 7.1 overlap at 0.0. In that case, an expected p-value of 50% is obtained for NO and
10, which corresponds to 0c¢ for a one-sided Gaussian, but 0.476 ¢ in case of a two-sided
Gaussian. In other words, even a random choice of NO or 10 would get the true NMO right
in 50% of the cases, which should not be interpreted as sensitivity to the NMO.

To estimate a sensitivity for NO (IO) at a specific value of the oscillation parameters, Pseudo-
Experiments are generated at these parameters with all other systematic parameters being
set to the baseline value. Then, the opposite hypothesis IO (NO) is generated at a set
of oscillation parameters that resembles the original NO (I0) hypothesis most closely. To
obtain this set of parameters, the original NO (IO) template is fitted with the opposite 10
(NO) hypothesis excluding statistical fluctuations. The resulting values of all parameters
are then used to generate the Pseudo-Experiments for the opposite IO (NO) hypothesis.

For all Pseudo-Experiments (injecting NO and 10), both hypotheses are fitted in both
octants and the value of ALLHNo_10 is calculated (cf. Equation 6.9).

250
— true NO
H — truelO
200 i
|z Table 7.2: Example of the
o i distribution of ALLHyo-10
©
5150 obtained from Pseudo-
g Experiments, generated at
100 the baseline value of all
2 systematic parameters for
5 NO and the best-matching
parameters for 10.
%3 -2 -1 0 1 2 3

ALLHyg 10

The resulting distributions for NO and IO are shown in Figure 7.2 for the case of the baseline
parameters from Table 6.1 being chosen for NO. The vertical solid lines correspond to the
median value of ALLHno_10. Thus for NO being true, the expected p-values for testing
the NO and IO hypotheses are

pNo = 65.1% pro = 32.3%, (7.1)

where pro gives the sensitivity for NO, i.e. the expected p-value for the exclusion of the IO
hypothesis.

Besides the log-likelihood difference, the distribution of the oscillation parameters Am%l
and sin?(f3) are shown in Figure 7.2. Here, red stars correspond to NO being injected,
while green stars correspond to IO being injected. Due to the sensitivity to the NMO, the
number of red stars clustering at Am3; > 0 is larger than at Am3, < 0, while for green
stars, the behavior is inverted.

Note that the absolute value for positive Am2; is typically larger than for negative Am3,,
which is mostly due to the mass-difference Am3;.

Moreover, one can see a clustering of events at sin?(fa3) = 0.5, i.e. at maximum mixing.
This is due to the fact, that muon neutrino disappearance is the dominant oscillation effect
in DeepCore. The effect can be understood from the two-flavor approximation in Equa-
tion 2.26. There, the disappearance amplitude is proportional to sin?(26,). Thus, it is
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Figure 7.2: Distribution of sin?(f23) and Am3; for Pseudo-Experiments generated at the
baseline values for NO (red stars) and the best-matching values for IO (green stars); Pseudo-
Experiments preferring NO (I0) show up in the top (bottom) figure; the injected value for
NO and IO are indicated by the dashed black lines; the clustering at maximum mixing is
expected due to the described parametrization effect.

maximal for 0, = a3 = 7/4, which leads to sin?(fa3) = 0.5. As a result, the oscillation
effect reduces when moving away from sin?(fa3) = 0.5 in positive or negative direction,
making sin?(f23) = 0.5 a boundary of the oscillation effect. For Pseudo-Experiments simu-
lated close to maximum mixing, events can prefer more or less muon neutrino disappearance
due to statistical fluctuations. However, more disappearance than at sin?(fa3) = 0.5 is not
parametrized and thus, these Pseudo-Experiments cluster at sin?(f23) = 0.5.

The distributions of the remaining systematic parameters are not discussed here. They are
added to Appendix H.2 as well as a correlation matrix for all systematic parameters for the
baseline scenario discussed above.

Although Pseudo-Experiments are very close to what is done with experimental data, they
are not used for all sensitivity estimations in this work. Since they are very time consuming,
the simulation of Pseudo-Experiments is used only for experimental data and to validate
the results of the Asimov sensitivities, presented in Section 7.3.

In contrast, the Asimov method uses ALLHNo_10 not only as a test statistic. Instead, it
exploits some of its properties that arise from its definition as a negative log-likelihood-ratio.
Such methods are commonly used in particle physics and mostly based on Wilks’ Theorem,
described in the following Section. They allow for a much faster sensitivity estimation
and are used here to test the sensitivity to the NMO for different values of the oscillation
parameters in a suitable amount of time.
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Although Wilks’ Theorem is not valid for the measurement of the Neutrino Mass Ordering,
it is used in Section 8.1.2 to interpret the result on the oscillation parameters. It is described
in Section 7.2, while the Asimov method, used for the NMO, is described in Section 7.3.

Wilks’ Theorem and Asimov Datasets

Hypotheses tests in particle physics are commonly done using Wilks” Theorem, based on the
work by S.S. Wilks [146] and A. Wald [147]. In Wilks’ Theorem, two hypotheses Hg (G for
general) and Hs (S for specific) are tested in a log-likelihood method, where Hg is nested
in Hg such that they differ by nqo.¢ degrees of freedom. The additional conditions on the
likelihood, required by Wilks” Theorem, are not discussed here, but assumed to be satisfied
for the given likelihood function [147].

When fitted to data D, one inevitabably finds LLH(D|H¢) < LLH(D|Hg) for the negative
log-likelihood values, as Hg is nested in Hg and thus the more general hypothesis must
outperform the specific one. The degree to which the general hypothesis outperforms the
specific one is given by ALLH(D) = LLH(D|Hs) — LLH(D|Hg) = 0. Note that besides
the ngor parameters for the Hg hypothesis, both hypotheses might share a common set of
nuisance parameters that are optimized to obtain the above likelihood values.

With statistical fluctuations, Wilks’ Theorem predicts that the values of 2ALLH(D), ob-
tained for repeating the experiment N — oo times follows a y2-distribution with nger degrees
of freedom. As a result, the p-value to obtain ALLH > x in case Hg is true is given by

p(ALLH > 2|Hs) = 1 — cdf,2(2ALLH, ngot), (7.2)

where cdf, 2 (2ALLH, ngof) is the cummulative density function of a x2-distribution with
ngot degrees of freedom, evaluated at 2ALLH.

Note that in literature, Wilks’” Theorem is often stated in terms of Ax? = 2ALLH in case
of Gaussian statistics. In case ngof = 1, this leads to the more widely known formula for
the number of Gaussian standard deviations n, = v/2ALLH = \/ Ax2.

Table 7:3: Conversion of ALLH naot 30%  68.3% 90%  95%  99%
values into p-values according

to Wllks7 Theorem for dlﬁerent 1 0074 0500 1353 ].921 3317
numbers of degrees of freedom 2 0.357 1.148 2.303 2.996 4.605

Ndof [146]. 3 0.712 1.763 3.126 3.907 5.672

An overview over the p-values for different values of ALLH is given in Table 7.3.

For Monte Carlo simulations, the templates can be fitted without statistical fluctuations. In
that case, a deterministic likelihood value LLH is obtained, which is 0.0, in case the injected
hypothesis is the fitted one (or nested in the fitted hypothesis) and > 0.0 otherwise, due to
the normalization of the likelihood (cf. Equation 6.6). Such fits of the templates without
injecting statistical fluctuations are called Asimov fits, while the template is sometimes called
Asimov dataset'. A proper motivation for using the Asimov datasets can be found in [149)].

!referring to the non-scientific short-story Franchise by Isaac Asimov [148], where an election is held by the
vote of only one (the most-representative) voter
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7.3. Asimov Sensitivities for Discrete, Non-Nested Hypotheses

For the Asimov method, it is assumed that the value LLH, obtained without statistical
fluctuations, is a valid estimator for the median (or mean) value of LLH, obtained with
statistical fluctuations. Thus, using LLH = LLH in Wilks’ Method, one obtains an estimate
for the median p-value from Equation 7.2, where small p-values indicate a preference of Hg
over Hg. For analyses, that test a specific hypothesis nested in a more general one, the
sensitivity is typically defined by such median (or mean) p-value.

However, Wilks’ Theorem cannot be used to estimate the sensitivity to the NMO for two
reasons: First, the NO and IO hypotheses are not nested within each other. Second, they
are not connected by a continuous parameter, such that nq.s = 0.

Nonetheless, Wilks” Theorem and the values from Table 7.3 are used in Section 8.1.2 to
derive confidence-level (CL) contours depending on the oscillation parameters.

] Asimov Sensitivities for Discrete, Non-Nested Hypotheses
y

In this work, an alternative Asimov method is used to determine the sensitivity to the
Neutrino Mass Ordering, which is based on [150].

Since the NO and the IO hypotheses are not nested, ALLH = LLHxo — LLHjp is neither
x?-distributed nor strictly positive. Instead, the sign of ALLH determines the preference
for NO (ALLH < 0) or I0 (ALLH > 0). In [150], it is shown that the mean ALLH and the
standard deviation oarpg of the ALLH-distribution are related by Equation 7.3, in case the
statistics in the underlying bins are Gaussian:

OALLH =V 2ALLH. (73)

It is tempting to identify this with the corresponding relation of x?-distributions. However,
2ALLH is clearly not y2-distributed. Instead, it is found in [150] to be well-approximated
by a Gaussian distribution. This motivates the assumption from Section 7.1 about the mean
and median of the ALLH-distribution to be approximately identical.

Due to its Gaussian behavior, any observed value ALLH can be converted into a number of
one-sided Gaussian sigmas n, by Equation 7.4

p, — ALLH = ALLH(#ro) (7.4)

2ALLH(H10)

where ALLH(HT0) is the expected log-likelihood difference for injecting TO € {NO, 10} as
the true ordering.

For calculating sensitivities, ALLH is replaced by its expectation value ALLH(H( ) for
injecting the complementary ordering CO € {IO, NO} to TO € {NO,I0}. Additionally, the
dash in A’ indicates that the two hypotheses Hro and H differ in the set of injected
systematic parameters.

The values ALLH(Hto) and ALLH(H() are obtained by the following steps, which are
sketched in Figure 7.3:

1. generate an Asimov template for the NO (IO) hypothesis with a set of parameters P,
2. fit this template in both octants of the complementary ordering 10 (NO) (2 fits),
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Figure 7.3: Illustration of the four steps applied to calculate the Asimov sensitivity ngo,

where L and R represent the left and right octant, respectively

3. generate an Asimov template for the resulting, best fitting systematic parameters P’
for the complementary ordering 10 (NO),

4. fit this template of the complementary ordering in both octants of the original ordering
NO (I0) (2 fits).

From the best-fit values in Step 2, the value of ALLH(Hyo /IO) is calculated, while the value
of ALLH(H1, /NO) is obtained from fitting the best-fit complementary ordering from step 2
in the original ordering NO (IO) in step 4.

Thus, the sensitivity from Equation 7.4 for NO and 10 is given by:

No _ ALLH(#yo) — ALLH(Hio)
2ALLH(Hi0)

ALLH(H,,) — ALLH(Hxo)
2ALLH(HNo)

10 _
n, =

n , (7.5)

where nY© > 0 and n!© < 0 due to the definition of ALLH = LLHyxo — LLHjo. Note that

the sign is kept here to simplify the discussion of systematic influences in Section 7.6.
A simple way to understand the Equations 7.5 is the following:

The two distributions in Figure 7.1 are Gaussian. Their mean value is at ALLH, while their
width vV2ALLH is directly linked to their mean value. Thus, the average NO experiment,
which gives a value of ALLH(HNo) < 0, is ALLH(HNo) — ALLH(H10) off the expected
value for the average 10 experiment. Expressing this distance in terms of the standard
deviations of the IO distribution, one obtains Equation 7.5 for n)© up to one hypothesis H
being dashed, which indicates the different sets of injected systematic parameters, used to
compare the best-matching NO and IO hypotheses.

Although the Asimov method allows for a quick estimation of the sensitivity for several
values of parameters, one should note that it is not expected to give perfect agreement
with the Pseudo-Experiments method from Section 7.1. For example, the Gaussian ap-
proximation of the ALLH-distribution in Figure 7.3 does not take the degeneracy of the
sin?(fa3)-parameter into account. As a result, the binary choice of the octant is not modelled
accurately, which leads to a sin?(f23)-dependent deviation from the Gaussian assumption
and thus, a sin?(6,3)-dependent deviation from the expected sensitivity. However, the dif-
ferences between the Asimov sensitivity and the result from Pseudo-Experiments are found
to be small in Section 7.4. Therefore, the Asimov sensitivity is kept as a valid sensitivity
proxy, that can be derived in a suitable amount of time.
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Finally, matter effects can be tested against vacuum oscillations. Again, this is a test of
two non-nested, discrete hypotheses. It is done with the same Asimov method by replacing
the log-likelihood-ratio ALLH between the NO and the IO hypothesis by the log-likelihood
ratio between matter effects (MA) and vacuum oscillations (VA), as done in Equation 7.6

ALLH = LLHya — LLHyA = —log <LL"MA> = log(Lvya) —log(Lnma)- (7.6)
VA

Like the binary hypothesis test between NO and 10O is done by assuming matter effects, the
binary hypothesis test between matter effects and vacuum oscillations is done by assuming
a Neutrino Mass Ordering. Thus, the likelihood values Lya and Lya are calculated under
the assumption of NMO € {NO,IO}. The resulting sensitivity for matter effects is estimated
by Equations 7.7

ALLH'(Hya|[Hxno) — ALLH (Hya [Hxuo)

\/QALLH(’HVA |HNmo)

ALLH (Hva |Hxmo) — ALLH(Hyia | Havo)

\/QALLH(’HMA |HNnmo)

)

nMA (Hawo) =

ny®(Hamo) =

. (7.7)

In the following, when the Neutrino Mass Ordering is tested, matter effects are always
assumed implicitly, while for the test of matter effects against vacuum oscillations, a specific
NMO is assumed explicitly. Moreover, for the fit of vacuum oscillations, the ordering is set
to Normal Ordering for simplicity reasons: This is done, since DeepCore is not sensitive to
the NMO without matter effects, such that LLHya (Hya |HNo) & LLHya (Hva|Hio)-

Note that the sensitivity to matter effects is larger for NO than for 10, as the observable
signature from matter effects is increased for NO compared to 10.

Sensitivity to the Neutrino Mass Ordering

In the following, three types of sensitivities are calculated with the Asimov method:
1. testing NO against 1O as described in the previous section,
2. testing NO against 1O for a specific combination of ordering and octant,

3. testing matter effects (MA) against vacuum oscilations (VA) for a specific choice of
NMO € {NO,IO} (MA is replaced by NO and IO in the following to indicate the
assumed ordering).

NO

For the first scenario, the sensitivities nY© and nl© are calculated according to Equation 7.5.

The resulting sin?(f23)-dependent sensitivities are shown in Figure 7.4 as red, dot and blue,
square markers for NO and IO being the true ordering, respectively.

Moreover, the sensitivity is verified at some values of sin?(f23) using the Pseudo-Experiments
method from Section 7.1. The obtained sensitivities are shown as star-like markers, while
the vertical error indicates the statistical uncertainty due to the limited number of Pseudo-
Experiments. Both methods are roughly consistent in their results and feature a similar
sin?(fa3)-dependency, while some expected deviations from the Asimov sensitivity are ob-
served (cf. Section 7.3).
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Figure 7.4: sin?(6a3)-dependent sensitivity to NO and IO obtained from the Asimov method
in terms of one-sided Gaussian sigmas (left, vertical axis) and the expected p-value (right,
vertical axis); the star markers indicate the sensitivity as obtained from Pseudo-Experiments
to validate the Asimov method at selected values of sin?(fa3); in the subplot above, the Ay?2-
scan from global best-fits are shown, as provided by NuFit [26] (pre-published in [127, 116]).

Recall that the sensitivity n)© means that the IO hypothesis is on average rejected at a con-
fidence level corresponding to a one-sided p-value of ngo Gaussian standard deviations. For
the most interesting region around maximum mixing, the obtained sensitivities in Figure 7.4
are ~ 0.4 — 0.7 ¢ for both orderings.

The characteristic shape in sin2(023) is due to the f93-dependence of the matter effects
(cf. Section 2.3.3). It resembles the shape of the sensitivity curve, stated by the PINGU
Collaboration in Figure 3.13. However, the DeepCore and PINGU sensitivities are not
expected to match perfectly, since PINGU will measure oscillation effects down to ~ 1 GeV
with a different data selection and different reconstruction resolutions for PID, energy and
zenith-angle. Thus, the NMO signature is observed by PINGU over a broader enery range
and with higher resolution.

The shape of the curves in Figure 7.4 can be understood from considering the left and right
octants separately. This is shown in Figure 7.5 (left) in terms of ALLHNo-10, separated
for both octants. By forcing a comparison with the same or the opposite octant for the two
orderings, the resulting curves of ALLHyo 10 feature a nearly linear or nearly parabolic
behavior, respectively.

For IO being the true ordering, the best fitting NO hypothesis is always in the left octant,
since the blue dots outperform the blue stars in the left octant, while the stars outperform
the dots in the right octant. For NO being true, this is not the case: In the left octant, the
best fitting IO hypothesis is either in the left or right octant, while in the right octant, the
best fitting IO hypothesis is always in the right octant as well.

The shape of the sensitivity curves in Figure 7.4 is a result of the intersections of these
parabolic and linear behaviors for both octants and orderings.
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Figure 7.5: Left: octant-dependent ALLHno-10 for the true ordering TO € {NO,IO}:
dotted markers are obtained by taking the same octant for the complementary ordering
CO € {IO,NO}, while stars are obtained by taking the opposite octant; right: the resulting
Asimov sensitivity, which is the expected p-value for excluding the same (dots) and the
opposite octant (stars) of the CO hypothesis, in case the true ordering is TO.

Furthermore, Figure 7.5 (left) allows to calculate an octant-dependent sensitivity to the
NMO. This is done according to Equation 7.5 by enforcing the comparison with a specific
octant of the opposite ordering, i.e. by avoiding the optimization with respect to the octant.
The resulting sensitivities are shown in Figure 7.5 (right). Here, the nY© sensitivity for the
same (opposite) octant gives the expected p-value for the exclusion of the same (opposite)
octant in the opposite ordering.

As one can see, the octant-dependent NMO sensitivity is typically larger than the one from
Figure 7.4, since the optimization has less freedom to account for differences between the
orderings by choosing the octant. As a result, the sensitivity increases, especially for large
differences between both octants, i.e. far-off maximum mixing.

@] Sensitivity to Matter Effects

Besides testing the NMO, matter effects can be tested against vacuum oscillations according
to Equation 7.7. In Figure 7.6, the resulting sensitivity is shown for MA and VA being true
and for both ordering hypotheses NO and IO.

As expected, the separation between matter effects and vacuum oscillations is larger for NO
than for IO being the true ordering. Moreover, a peak is observed at maximum mixing,
in case matter effects exist. The peak is due to the fact that fitting vacuum oscillations
on templates, generated with matter effects, leads to a systematic shift of the mixing angle
towards maximum mixing. Thus, if the true mixing angle is already close to maximum
mixing, the vacuum fit is incapable of compensating for the difference with respect to matter
effects by pushing sin?(fe3) closer to maximum mixing. As a result, the log-likelihood
difference between MA and VA is increased, leading to an increased sensitivity for excluding
VA, close to sin?(fs3) = 0.5.

One might be tempted to think that the sensitivity to matter effects should exceed the
sensitivity to the NMO, as the NMO is seen as a result of matter effects. However, this is
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Figure 7.6: sin’(fa3)-dependent sensitivity to matter effects in case of Normal (NO) and
Inverted Ordering (IO) and nearly ordering-independent vacuum oscillations (VA), as ob-
tained from the Asimov method (cf. Equation 7.7) for matter effects in NO or 10 or VA
being true.

a-priori not necessarily the case.

As shown in Table 2.2, matter effects arise in the neutrino channel in case of NO and in the
anti-neutrino channel in case of I0. Moreover, the GRECO sample consists of 65.0% neutrino
and only 30.1% anti-neutrino events. The flavor-dependent composition of neutrinos and
anti-neutrinos is shown in Figure C.4 of Appendix C. As a result, the signature of matter
effects is large for NO and small for IO (cf. Table 2.2). However, the gap between 65.0%
and 30.1% of events featuring matter effects is comparable to the difference between 30.1%
and 0% (vacuum oscillations) of events featuring matter effects.

This leads to the peculiar feature that it is possible to e.g. prefer Inverted Ordering over
Normal Ordering, assuming matter effects, at a higher significance than matter effects over
vacuum oscillations.

Impact of Systematic Uncertainties on the Sensitivity

In addition to estimating the sensitivity, the Asimov method is used to quantify the impact
of the systematic parameters. To do this, three tests are performed for each parameter,
regarding the following questions:

1. How relevant is the inclusion of the parameter into the fit to obtain an unbiased result?
2. How much is the sensitivity affected by the true value of this systematic parameter?
3. How much sensitivity could be gained by knowing the parameter perfectly?

These three questions are answered by so-called (N —1)-tests. The (N — 1) refers to the fact
that for each test, a single systematic parameter is fixed to and/or shifted from its baseline
value and the effect on the Neutrino Mass Ordering (NMO) result is studied. The following
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(N — 1)-tests are applied to answer the questions from above:

1. Fitting Relevance Test (FRT): In the FRT, a parameter is injected at 10 from its
baseline value. In addition, the parameter is fixed to the baseline value in the fitter.
Note that this leads to a systematically wrong hypothesis being fitted. The resulting
shift in ALLHNo-_10 is the bias that would be obtained by fixing this parameter in
the fitter, while a +1 ¢ value is realized in nature. Thus, it answers the first of the
above questions.

2. Sensitivity Stability Test (SST): In the SST, a parameter is injected at +1 o from its
baseline value. The fitter corrects for this shift by moving the corresponding systematic
parameter. The resulting change in the sensitivity is used to answer the second of the
above questions. Note that for sin?(fa3), this is also done in the sensitivity curve in
Figure 7.4.

3. Hidden Potential test (HPT): In the HPT, a parameter is fixed to its baseline value,
which is also the injected value. Thus, the parameter cannot be used in the fit to
compensate for differences between the orderings. However, the true value of the
parameter is used for all fits. As a result, the sensitivity to the NMO increases, which
answers the third of the above questions.

The uncertainties used for all parameters are listed in Table 6.1. For parameters used with
a Gaussian prior, the assumed uncertainty is identical to the value of the prior. For the
remaining parameters, the assumed uncertainty is estimated from external knowledge or
internal parameters studies within the IceCube Collaboration. Where possible, the table
provides a reference for the assumed baseline value and uncertainty.

For the following FRT, more systematics were tested than finally added to the NMO fit.
The remaining parameters were excluded from the likelihood fit, because they were found
to have no impact in the FRT, as shown in the following. They are listed in the lower half of
Table 6.1. This includes the oscillation parameters 013, f12, Am3; and dcp, the uncertainties
on the DIS neutrino and anti-neutrino cross-sections opy;q and O‘%IS and two normalization
parameters, Npoise and Negin. The normalization parameters describe the noise contribution,
relative to the MC prediction, and the contribution from coincident events, which are events
featuring an atmospheric muon, coincident with a neutrino event. For Npgise and Neoin, the
assumed uncertainty is 100% of the value estimated from Monte Carlo. For most of the
oscillation parameters, the 3 o-range from [26] is adapted for the following tests, while dcp
is tested at dcp = 180° and dqp = 270°.

Moreover, two parameters, that are included in the NMO fit, are not tested in the following:
Am3; and N,. For Am3;, the (N — 1)-tests are not clearly defined, since the NMO is
given by the sign of Am3,. Thus, fixing Am3, as systematic parameter also fixes the NMO.
Moreover, the absolute value of Am2, differs notably for the most similar hypotheses of NO
and 10, such that the absolute value and the sign of Am3; are closely entangled. Therefore,
Am3, is not tested in the following. However, the gain from external knowledge on this
parameter is discussed for the experimental result in Section 8.2.

The N, parameter is not tested, as it normalizes the number of observed neutrino events.
Since the total normalization is driven by many effects and not supposed to be fully con-
strained by any external knowledge, but only by the observed data, it is also excluded from
the following tests.
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Fitting Relevance Test (FRT): The results of the FRT are shown in Figure 7.7, where for
several systematic parameters (horizontal axis), the hypothesis pull ngo/ 1o (vertical axis)
is shown according to Equations 7.5. For the hypothesis pull, positive (negative) values
correspond to preferring NO (I0) by the corresponding value of Gaussian sigmas, while the
dashed, horizontal, red and blue lines correspond to the baseline sensitivity for NO and IO,
respectively. The blue and red markers, enframing the blue and red shaded areas, are the
values obtained in the FRT by varying the injected parameter by +1 o, but fixing it to the
baseline value in the fitter. Thus, the vertical size of the shaded areas estimates the bias
in an NMO measurement, where the parameter is not fitted, but off by +1 ¢ from the true

value. The black, solid line separates the fitted and not fitted parameters analogously to
Table 6.1.

As a result, parameters with small shaded areas can be fixed in the fitter without biasing
the NMO result. This is the case for all parameters left of the solid, black line.
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Figure 7.7: Fitting Relevance Test (FRT), showing the hypothesis pull (i.e. ngo/lo from

Equation 7.5) for testing various systematic parameters (horizontal axis): the shaded red
and blue areas indicate the range of hypothesis pulls obtained by fitting a hypothesis that is
off the injected one by +1 ¢ in this parameter; parameters with large shaded areas need to
be fitted to obtain an unbiased result, while small shaded areas indicate that an unbiased
result is also obtained for fixing the parameter to its baseline value (pre-published in [126]).
For the fitted parameters, the most relevant ones are the detector parameters L2, eopt and
kR}Vd as well as the atmospheric flux parameters v and R, ;. Thus, fitting these parameters
is crucial to obtain an unbiased result for the NMO.

The parameters Ry and v, are found to have almost no impact on the analysis result. Still,
they are included as free parameters for the following reasons:

The atmospheric flux uncertainties from [47] were previously parametrized by two other
parameters, which were non-negligible in the fit of the NMO. However, a collaboration-wide
correction of this parametrization lead to R, /; carrying most of the relevant uncertainties,
while Ry only caused a marginal correction to the resulting zenith-spectrum. For consistency
reasons, both parameters were kept, although the latter was found to have no relevance for
any ongoing oscillation analysis.
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The +,, parameter was kept, since it is the only parameter changing the shape of the atmo-
spheric muon template. Since the prior of +1 is strong with respect to the sensitivity to
this parameter, a strong pull is only expected in case of a large disagreement between data
and Monte Carlo. Otherwise, a value close to v, = 0 is expected (cf. Appendix H.2), while
large deviations could indicate an inaccurate modelling of atmospheric muons.

One should note that the relevance of fitting a parameter depends on the assumed uncer-
tainty. For example, if the optical efficiency e,py was assumed to be known by +2%, the
resulting shaded area would shrink substantially. Since the uncertainties are estimated ac-
cording to or larger than the expected true uncertainty (cf. Section 6.3), their impact on
the NMO is estimated conservatively.

Sensitivity Stability Test (SST): The Sensitivity Stability Test ist shown in Figure 7.8.
The plot is read analogously to Figure 7.7. It shows the change in sensitivity depending on
the true value of each of the systematic parameters. To do this, the true value is injected at
+1 0 (analogous to the FRT) but left as floating parameter in the subsequent likelihood fit.
Thus, the fit corrects for the change in the systematic parameter. Naturally, the resulting
shaded area for NO and IO is smaller than for the FRT.
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Figure 7.8: Sensitivity Stability Test (SST), showing the change in sensitivity from varying
the value of a single systematic parameter: the vertical axis is analogous to Figure 7.7 for
NO (red) and IO (blue) being injected.

Note that the injected value is the fitted one, only if it is used without prior in the fitter.
The priors insert a pull on each parameter towards the baseline value, which is not the true
value in the SST. Thus, the fitted parameter deviates slightly from the injected one (for
example, for injecting e,py = 1.1, the fitted value is eqpy = 1.092). However, the impact of
these pulls on the NMO result is small.

As shown in Figure 7.8, the NMO sensitivity depends on the true value of only a few of
the fitted parameters. One of these parameters is o3, where an effect of the true value is
only visible for one of the two markers in NO. This is due to illustration reasons: The two
red and two blue markers for #o3 in Figure 7.8 correspond to two points on the NO and IO
sensitivity curve in Figure 7.4. The uncertainty on 23 in Table 6.1 causes a similar value
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of ngo for the baseline value and for +1¢, which is only a coincidence and does not mean
that 23 has in general no impact in case of 10.

Besides 63, the optical efficiency oy and the spectrum parameter A«, have the largest
impact on the NMO sensitivity. For both parameters, this can be explained by their large
impact on the neutrino energy spectrum, which is crucial for an NMO measurement - es-
pecially at the lowest energies. Moreover, the electron neutrino normalization N, has a
non-vanishing impact on the sensitivity, which can be explained by the fact that the matter
effects arise from interactions in the electron neutrino state. Thus, a large flux of electron
neutrinos before the propagation through Earth increases the observable matter effects after
propagation and vice versa.

Overall, the sensitivity to the NMO does not depend strongly on the value of any of the
systematic parameters. Instead, the sensitivity is roughly stable with respect to the true
value of all systematics.

Hidden Potential Test (HPT): Finally, the Hidden Potential Test estimates the poten-
tial improvement in the NMO measurement, that is obtained from knowing one of the N
systematic parameters perfectly. To do this, the parameter is fixed in the fitter and the
resulting gain in sensitivity is observed. This way, the fitter is free to use only N — 1 pa-
rameters to cover the difference between NO and IO, while all N parameters are available
in the standard fit.
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Figure 7.9: Hidden Potential Test (HPT), showing the increase in sensitivity from fixing a
single systematic parameter: the vertical axis is similar to Figure 7.7, but shows the absolute
value of the hypothesis pull from Equation 7.5 for illustration purposes.

The resulting gain in sensitivity is shown in Figure 7.9. In contrast to the FRT and SST,
the vertical axis shows the absolute value of the hypothesis pull for illustration purposes.
The largest gains are obtained from the mixing angle 623 and the high-forward parameter
kR}Vd, which give an increase of up to ~ 10% and ~ 3%, respectively. However, the absolute
gain from knowing one parameter is in general small.

The result of the HPT is sobbering: Since the knowledge of no systematic parameter in-
creases the sensitivity substantially, external knowledge of any single systematic parameter
is unlikely to increase the sensitivity crucially. However, a more severe gain can be obtained

114 RWTH Aachen University



7.7. Potential Improvements of the Sensitivity

from an improved understanding of several systematics at the same time (cf. Section 7.7).

Potential Improvements of the Sensitivity

Since the presented Neutrino Mass Ordering (NMO) sensitivity of DeepCore is small (cf.
Section 7.4) and no single systematic parameter was found to affect the sensitivity strongly
(cf. HPT in Section 7.6), further potential improvements of the sensitivity are investigated.
This comprises:

1. testing the combined impact of several systematic uncertainties,
2. testing the impact of the atmospheric muon and noise contamination,
3. testing the impact of the resolution of the event reconstruction.

The results of all tests are summarized in Table 7.4.

First, the Hidden Potential Test (HPT) is repeated by fixing groups of systematics instead of
single systematic parameters. To do this, the systematic parameters are grouped according
to Table 6.1 into normalization parameters (N), atmospheric flux parameters (F), detector
response parameters (D), oscillation parameters (O) and interaction parameters (I).

Each group of systematic parameters N, F, I and D is then fixed in the fitter and the resulting
gain in sensitivity is calculated. Note that the oscillation parameters O are always fitted,
since sin?(f3) and Am%, are closely connected to the NMO sensitivity, as already discussed
in the previous section. Moreover, the total neutrino normalization N, is fitted for all of
the shown cases, such that the normalization parameters determine only the composition of
the different contributions, but not the overall number of events. This is done, since a pure
rate difference between data and Monte Carlo should not lead to any NMO sensitivity.

The sensitivity is shown in Table 7.4 as tests 2-5 for three combinations (columns) of
the oscillation parameters: in the left (first) octant, in the right (second) octant and at
maximum mixing. The values in brackets show the corresponding, relative gain compared
to the baseline case (test 1). For all groups of systematics, the found gain in sensitivity is
small, with the largest gains being in the order of < 6% for the detector systematics. Thus,
an improved knowledge on one group of systematic uncertainties is insufficient to reach a
substantial gain in the NMO sensitivity.

Furthermore, the inverse test is applied by fixing all groups of systematics N, F, I and D
except one, where the oscillation parameters O and the total normalization are again fitted
for all cases. The resulting gain is shown as tests 6-9 in Table 7.4 and in Figure 7.10 for
the full range in sin?(fa3).

As expected, the resulting gain in sensitivity is larger than for fixing only one group of
systematic parameters. Moreover, the largest gain in Figure 7.10 is obtained for regions
of sin?(fa3) that are already the most sensitive in the baseline scenario. As a result, the
sin?(fa3)-dependent features of the sensitivity curve become more pronounced.

This can be understood in the following way: If the signature of the NMO, i.e. the differ-
ence between the total NO and IO templates, is small, there is no pull on the systematic
parameters due to the NMO. Instead, the fit of NO and IO return nearly the same value
for all parameters, since the small difference between the orderings is insufficient to pull
any of the parameters notably. Now, if both fits return the same value, the parameters are
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Table 7.4: Summary of potential improvements in NMO sensitivity: test 2-5: by fixing one
group of systematics; test 6-9: by fitting only one group of systematics and the oscillation
parameters; test 10: by fitting only the oscillation parameters; test 11: by removing the

background (atm. muons and noise); test 12-16: by improving the resolution in recon-
structed neutrino energy (diogr) and zenith-angle (dogr); for each test, the sensitivity is

given for both orderings in the left and right octant and at maximum mixing; values in

brackets gives the relative gain w.r.t to the presented analysis (test 1).

#

applied test
fitted parameters

left octant?®

sensitivity (NO|IO)

max. Inixingb

right octant®

ld

N F I D O

0.437100.48300

0.57470|0.50890

0.71600|0.4287c

2

F I D O

N I D O

0.448600.48330
(+2.6%| + 0.6%)
0.43940(0.49380
(+0.5%]| + 2.2%)
0.43700]0.4838¢0
(+0.0%| + 0.1%)
0.459400.49680
(+5.1%]| +2.9%)

0.58330(0.51000
(+1.5%| + 0.2%)
0.59050]0.52380
(+2.7%| +2.9%)
0.57710]0.50990
(+0.4%| + 0.2%)
0.585900.53040
(+1.9%| + 4.2%)

0.72530]0.42730
(+1.3%] + 0.3%)
0.74820(0.42840
(+4.5%]| +0.7%)
0.71840]0.42510
(+0.3%]| + 0.8%)
0.748200.45140
(+4.5%| + 5.3%)

0.47350|0.56 780
(+8.3%| + 17.6%)
0.463100.50220
(+5.9%] + 4.9%)
0.463700.52770
(+6.1%]| +9.3%)
0.48380(0.5877c
(+10.7%| + 21.7%)

0.641400.62670
(+11.6%| + 23.1%)
0.60565]0.53790
(+5.4%]| + 5.7%)
0.62270]0.5648¢0
(+8.3%] + 11.0%)
0.69775|0.67720
(+21.4%]| + 33.1%)

0.87620]0.4737¢c
(+22.4%| + 10.5%)
0.75610|0.45430
(+5.6%]| + 5.9%)
0.80370]0.4574c
(+12.2%| + 6.7%)
0.98270(0.45730
(+37.2%]| + 6.7%)

10

11

0)

N F I D O
no background

0.487300.62660
(+11.5%]| +29.7%)
0.457600.48520
(+4.7%| + 0.5%)

0.71450(0.69340
(+24.3%] + 36.3%)
0.58760]0.52490
(+2.2%]| + 3.1%)

0.99895|0.49400
(+39.5%| + 15.2%)
0.752705]0.44200
(+5.1%] + 3.1%)

12

13

14

15

16

N F I D O
6logEl25%
N F I D O
5logEl50%
N F I D O
0y | 25%

N F I D O
5 | 50%

N F I D O
Biog 5,00 | 50%

0.54530(0.57060
(+24.8%]| + 18.1%)
0.7161¢]0.70550
(+63.8%]| + 46.1%)
0.62670(0.5781c
(+43.4%]| 4 19.6%)
0.81500(0.7592¢
(+86.5%| + 57.1%)
0.95320(0.97970
(+118%| + 103%)

0.6808¢]0.60680
(+18.5%]| + 19.2%)
0.81840|0.7737c
(+42.4%| + 52.0%)
0.74210]0.61300
(+29.1%] + 20.5%)
0.8988¢0.79230
(+56.4%]| + 55.7%)
1.07390(1.07010
(+86.9%]| + 110%)

0.8231]0.5446
(+43.2%]| + 7.0%)
0.96380]0.67660
(+67.7%]| + 33.0%)
0.868900.53690
(+51.1%] + 5.5%)
1.0203¢(0.7028¢0
(+77.5%| + 38.1%)
1.15520(0.95090
(+101%] + 86.9%)

2 at sin?(fa3) = 0.43, Am3; = 2.5- 1073 eV? (NO), Am3; = —2.424- 1073 eV? (10)

b at sin?(fa3) = 0.50, Am3; = 2.5-1073eV? (NO), Am3,
¢ at sin?(fa3) = 0.57, Am3; = 2.5-1073eV? (NO), AmZ,

d standard fit using all parameters

—2.424-1073 V2 (1I0)
—2.424 - 1073 eV? (10)
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Figure 7.10: Sensitivities for fitting only the total normalization, the oscillation parameters
(O) and one of the parameter groups from Table 6.1 (N,F,I,D); for comparison, the projected
PINGU sensitivity [7] is shown, scaled by 0.17 to illustrate the shape differences between
DeepCore and PINGU.

not used to compensate for the difference between the orderings and thus, do not affect the
NMO sensitivity. In other words, the signature of the NMO is too weak to affect the fit of
the systematic parameters and thus, fixing these parameters does not cause a major change
in the fit.

Additionally, Figure 7.10 shows the projected sensitivity for PINGU, obtained from [7] and
scaled by a factor of 0.17. This is done only to illustrate how shape differences can arise from
variations in the fitted nuisance parameters, while the PINGU scaling is arbitrary. However,
there are of course more differences between DeepCore and PINGU, like the observed energy
range and the reconstruction resolution.

Finally, test 10 shows the sensitivity for the case of fitting only the oscillation parameters O
and the total normalization. Naturally, the resulting sensitivity outperforms the sensitivities
obtained by the tests 2-9. However, even with the observed gain of ~ 12% — 40%, the
resulting sensitivity does not exceed the 1o-threshold.

Overall, these tests illustrate that the absolute gain in sensitivity from fixing systematic
parameters is small, although the relative gain might reach ~ 40% for the most progressive
cases. Therefore, any improvement in the understanding of systematic uncertainties is
unlikely to result in a substantial gain in the NMO sensitivity for DeepCore, unless it is
combined with further improvements in the analysis.

Second, the impact of background on the NMO sensitivity is tested in test 11 of Table 7.4.
To do this, the background (atmospheric muons and triggered noise) is removed from Monte
Carlo and the corresponding systematic parameters (IV, and ,) are fixed in the fitter. This
is supposed to test the impact of a perfect background veto, removing all events caused
by atmospheric muons and triggered noise. As visible in Table 7.4, the resulting gain in
sensitivity is on the < 5%-level, such that the background contamination has only negligible
effect on the NMO sensitivity.
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Third, the potential gain from an improved event reconstruction is investigated. This is
motivated by the weak resolutions in neutrino energy and zenith-angle at E, < 15GeV
(cf. Figure 5.5 and 5.6). To test such potential improvements, the reconstruction errors
0log £ and dg of the neutrino energy £, and zenith-angle 6, are calculated for Monte Carlo
according to Equation 7.8. Then, new values for the reconstructed zenith angle é;eco and
energy E};eco are calculated according to Equation 7.9:

Oog £ = 10g(E,7°/GeV) — log(E, /GeV) 0p = 6,7° — 0, (7.8)
ENIzr/eCO = exp (10g(EV/GeV) + Qlog E 5logE) GeV é;eco =0, + ap - dy. (79)

This way, the reconstructed observables are shifted towards their true value with a shifting
parameter o € {oiog g, 9}. Thus, for @ = 1 (o = 0) one obtains the previous reconstruction
(the true value). One should note that this modifies the resolution of the energy and zenith-
angle in the same way for all events. Although this is an unrealistic assumption for future
developments, e.g. with the PINGU detector, it is used here as a benchmark for the impact
of possible improvements in the reconstruction.

Moreover, the above procedure is applied only to neutrinos, while atmospheric muons and
triggered noise are kept unchanged in their reconstructed observables. Naturally, an im-
proved reconstruction, e.g. in the zenith-angle, would also allow for a better suppression
of atmospheric muons. However, choosing ay = 0.5 would remove almost all atmospheric
muons from the template, as they were shifted into the downgoing region, such that the
remaining muons are insufficient to obtain a suitable Monte Carlo template. Moreover, the
true energy is not well-defined for atmospheric muons, as they are produced far outside the
DeepCore volume with initial energies of £, » 100 GeV. Thus, the muon energy and zenith
resolutions are kept unchanged for the following tests.

16 Normal Ordering Inverted Ordering 2%
—n Gy 00gri—B0% v §p—50% —s 5y, 0l0gni—B0%  verv 5y —50%
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Figure 7.11: Sensitivities obtained by scaling the resolutions of the event reconstruction in
log(E,) and 6, by o = 0.5 (69,0108 E,: -50%) for NO (left) and IO (right).

From the resulting set of reconstructed observables, the Asimov sensitivities are re-calculated
according to Section 7.4. To do this, the detector systematics are re-parametrized by ap-
plying the above procedure to all systematic samples. This way, the whole analysis chain is
repeated with the modified reconstructions E™° and .
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The resulting gain in sensitivity is shown in Table 7.4 as tests 12-16 for reducing the recon-
struction errors 0g and dg to a = 0.75 (| 25%) and a = 0.5 (] 50%). Moreover, they are
shown for a = 0.5 in Figure 7.11 for the full range of sin?(6a3).

The gain in sensitivity is typically large compared to the gain from fixing systematic pa-
rameters. Moreover, it is clearly visible over all the range of sin?(f23), since an improved
event reconstruction increases the sensitivity for all values of the oscillation parameters. In
case of ageg p = 0.5 and ag = 0.5, the resulting NMO sensitivity is at the 1o-level for all
values of sin?(f,3). Although this is still a small, absolute sensitivity, the relative gain with
respect to the baseline sensitivity is > 100% for some cases.

In addition, the sensitivity can be increased by an improved particle separating variable
(PID). However, defining an artificial PID improvement, analogous to Equation 7.9 for
zenith-angle and energy, is complicated, because the PID encodes information about the
neutrino flavor, energy, interaction type and its neutrino or anti-neutrino nature. Instead,
a realistic, improved PID was developed by Marvin Beck [151] and Saskia Philippen [152],
using machine-learning techniques. In these first, explorative studies of the PID, a potential
gain of ~ 20% was achieved for the sensitivity of this NMO analysis. However, such improved
PID parameter requires further investigations.

In summary, an improved understanding of systematic uncertainties is unlikely to increase
the DeepCore sensitivity substantially, as long as the observed signature from the NMO
in DeepCore is too weak to be affected by them. However, the signature depends on the
resolution of the event reconstruction in energy and zenith-angle. In case these could be
improved notably in the future, a substantial gain in the NMO sensitivity with DeepCore
may be obtained. Moreover, the sensitivity can be increased by an improved PID, separating
track- and cascade-like events.

For the proposed PINGU detector (cf. Section 3.6), several of the above mentioned im-
provements are planned [7]:

1. Additional calibration devices are supposed to be used during the detector deployment
and afterwards to reduce the uncertainties on the detector response.

2. The surrounding DeepCore detector allows for an efficient veto of atmospheric muons,
reducing the background for oscillation analyses. Additionally, due to the increased
number of optical modules, that are required to trigger the detector, triggered noise
is less likely to occur than for DeepCore.

3. Events at E, ~ 5—10GeV will on average cause more light being observed in PINGU
than in DeepCore, which allows for an improved reconstruction of these events.

4. The more densly instrumented volume and the potentially improved optical modules
will lower the energy threshold to E, ~ 1GeV, such that neutrino oscillations and
matter effects can be observed over an extended energy range [7].

Thus, although a highly significant measurement of the NMO with DeepCore is unlikely,
PINGU will be capable to reach ~ 3 ¢ sensitivity within four years, which is a comparable
time of data-taking[7].

For DeepCore, an additional gain might come from statistics: While the presented analysis
includes three years of data, eight years of data will be available soon. However, the com-
bination of all eight years of data in a single analysis is non-trivial for calibration reasons,
which are not discussed in more detail here. Besides the extended livetime, recent studies
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indicate that a statistical gain of ~ 50 — 100% may be reached by improvements in the
data selection. Thus in an optimistic scenario, a ~ 4 times larger DeepCore sample may be
available within the next years.

This increase in statistics would lead to a factor of ~ 2 gain in sensitivity, as the sensitivity
scales v/ N with the number of data events N. The relation holds, because all systematic
uncertainties are fitted by nuisance parameters, such that any increase in statistics allows
for a more accurate determination of the systematic parameters. As a result, in the limit
of infinite data statistics all systematic parameters would be known precisely. Thus, a sys-
tematic limit to the sensitivity is not present, as long as the parametrization of systematics
is reliable and complete. Otherwise, the uncertainty in the parametrization and the exis-
tence of unknown systematics limits the potential gain from increased statistics. For future
analyses with increased statistics, such limitation must still be investigated.
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Independent Fit of DeepCore Data

The experimental data, described in Section 4.3, is fit with the likelihood method described
in Section 7.1. The results are published in [127] and [116] with a more detailed discussion
presented here.

The best-fit parameters are listed in Table 8.1 for the hypothesis of matter effects in Normal
(NO) and Inverted (I0) Ordering and vacuum oscillations (VA) separately. Note that in
the following, matter effects (MA) are assumed implicitly for the NO and IO fits. Moreover,
for the fit of vacuum oscillations (VA), the Neutrino Mass Ordering (NMO) is assumed to
be Normal (Amg; > 0), since for DeepCore the two ordering hypotheses are degenerated
without matter effects, such that Hno =~ Hio (cf. Section 7.3).

Table 8.1: Overview of the best-fit values obtained from the fit of the Normal Ordering
(NO), Inverted Ordering (I0) and vacuum oscillations (VA) hypotheses; these values are
used for the generation of Pseudo-Experiments in Section 8.1.1.

convolved LLH Poissonian LLH
parameter prior fit NO fit IO  fit VA  fit NO fit IO  fit VA
N, - 0.832 0.836 0.819 0.830 0.835 0.820
Ny, 1.00 + 0.05 1.004 1.004 1.005 1.004 1.004 1.006
Nnc 1.0+0.2 0.741 0.749 0.734 0.740 0.747 0.735
N, - 1.348 1.339 1.360 1.350 1.343 1.359
€opt 1.0+0.1 1.003 1.002 1.008 1.003 1.003 1.007
Lh 25+ 10 31.84 31.76 32.11 31.80 31.65 32.16
kl?vivd - -1.014  -1.014 -1.131 -0.973  -1.012  -1.135
103Am2, /eV? - 2.626 —2.511 2516  2.625 -0.2511  2.518
103Am§2/e\/*2 - 2.551 —2.585 2.442 2.550  -2.585 2.444
63 /rad - 0.7611  0.7701  0.7892  0.7608  0.7701  0.7849
sin?(a3) - 0.4757 0.4847  0.5038  0.4754  0.4847  0.4995
Ay, 0.0+£0.1 0.0727  0.0705 0.0735 0.0731  0.0711  0.0735
Ry 0.0+1.0 -0.120 —-0.113  -0.124  -0.111 -0.111 -0.110
R, 0.0£1.0 -1.034 —-1.019 -1.029 -1.037 -1.024  -1.030
Y 0.0+£1.0 0.0409  0.0406  0.0322 0.0460 0.0369  0.0265
M /GeV 1.12+0.22 1.091 1.095 1.126 1.091 1.096 1.117
M /GeV 0.99 + 0.25 0.862 0.867 0.892 0.868 0.875 0.909
LLH - 146.692 147.061 147.561 148.008 148.373 148.886
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For confirmation, the VA fit was repeated with Amg; < 0: The log-likelihood difference
between the two orderings was found to be more than an order of magnitude below the
already small log-likelihood difference in case of matter effects. Thus, it is neglected in the
following.

Since the NO, IO and VA hypotheses differ only slightly, the resulting values for all system-
atic parameters are very similar. For comparison, the fit is repeated with the Poissonian
likelihood (cf. Section 6.4), i.e. without including the uncertainties from limited Monte
Carlo. This is done to quantify the impact of limited MC statistics on the final experimen-
tal result, which is found to be small: The resulting values for all systematic parameter and
the value of LLH are almost identical with only small deviations, as shown in Table 8.1.

The pulls on all fitted parameters, except for Am3; and sin?(fy3), are shown in Figure 8.1
with respect to the baseline values and uncertainties from Table 8.1, while the obtained
oscillation parameters are discussed in Section 8.1.2. The parameters used with (without) a
Gaussian prior in the likelihood are indicated by the green (grey) background color. Most
parameters are fitted within their prior width, while only the NC normalization leads to
an undershooting, notably below —1 0. However, Nyc has only small impact on the NMO
measurement, as found in Section 7.6. Moreover, the NC events are only a small contribution
to the total sample and degenerated with the electron neutrino normalizations, since both
lead to normalization changes in the cascade channel. Thus, the result is unaffected by the
observed pull in Nyc.

3

observed pull / o

-2

|0 ® data, convolved likelihood = m data, Poissonian Iikelihood|

M¥ MY R, R N, N, N,

o L hi A,—Y

fwd v T

NNC 6opt Ls}éjat
Figure 8.1: Best-fit values of the systematic parameters for fitting data with the convolved
likelihood (cf. Equation 6.7) and the Poissonian likelihood (cf. Equation 6.8): each column
corresponds to one systematic parameter from Table 8.1, while the vertical axis gives the
pull with respect to the baseline value of each parameter; the green (grey) background color

indicates parameters used with (without) Gaussian prior in the likelihood.

Besides the NC normalization, the R, parameter shows a ~ —1o deviation from the
baseline value. Although the pull is small, it might indicate that the properties of the
atmospheric flux, especially the neutrino to anti-neutrino ratio, might deviate from the
baseline value, but could be constraint by a measurement similar to this one.

Moreover, the atmospheric muon normalization N, shows some excess compared to the
baseline value. However, the total muon contamination is low and thus the statistical
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fluctuations on this parameters are large, as shown in Appendix H.2. The observed deviation
is consistent with statistical fluctuations. Moreover, the simulation based on MuonGun
and CORSIKA (cf. Section 4.2.2) features uncertainties in the total normalization of the
simulated flux, which are non-negligible [112]. Thus, the observed normalization is consistent
with the expectations from Monte Carlo simulations.
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Finally, the agreement between data and the MC description is tested using 2LLH as a
goodness-of-fit estimator [144], which is shown in Figure 8.2. Note that in case of Gaussian
statistics for the bin-content of all bins, one would obtain x? = 2LLH. Thus, the test is
analogous to testing the goodness-of-fit in a y2-method.

The observed value for the experimental fit is shown as a vertical, black, dashed line. The
blue background distribution is obtained by generating Pseudo-Experiments with the best-
fit values of the NO hypothesis. For illustration, a y?-distribution (dashed, blue line) is fitted
to the histogram, giving nger & 290 for its scale parameter, also known as number of degrees
of freedom. As expected, the 2LLH-histogram is well-described by the x2-distribution [125].
Moreover, ngor = 290 is compatible with the expectation for 300 bins in the analysis his-
togram and 15 parameters being optimized (cf. Table 8.1). Note that some parameters
have only small impact on the analysis distribution, are mostly constrained by priors or
are largely degenerated with other ones. As a result, the number of effective parameters
300 — ngof = 10 is slightly smaller than the actual number of fitted parameters.

A disagreement between data and Monte Carlo would lead to a shift of the observed value
to the right hand side. This is not observed, while the p-value of 43.5% is well-compatible
with statistical fluctuations.

This y2-method is the conventional goodness-of-fit estimator used for DeepCore analysis,
requiring a p-value of > 5% to accept the fit. More detailed studies on the observed pulls
for the analysis distribution are added to Appendix I.1.

8.1.1 Results on Neutrino Mass Ordering and Matter Effects

The fit of experimental data prefers Normal over Inverted Ordering by ALLHno 10 =
—0.369. Moreover, it prefers the left (first) octant. The likelihood values for both orderings
are given in Table 8.1.
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To estimate the resulting p-values for both orderings, Pseudo-Experiments are generated
with the best-fit values for both cases (cf. Table 8.1). As described in Section 7.1, the
Pseudo-Experiments are then fitted in both orderings and octants and the resulting distri-
bution of ALLHNo_10 is used to derive the experimental p-values.

P — true NO
350 » — truelO
_|L§. - — data (3 years)
300
1]
.8 250 -
-
-+ e
©
200 |
3
€ 150 ]
c
100 J_
50 AI—I_I—
0 : :
-3 A -1 0 1 2 3

Figure 8.3: ALLHN(o_10-distribution used as test statistic to separate NO and 10 (cf. Sec-
tion 7.1): the red and blue distributions are obtained from Pseudo-Experiments generated
with the values from Table 8.1, while the vertical, black, solid line marks the experimen-
tal result; the red and blue vertical, solid lines mark the mean value of the NO and IO
distributions, respectively (pre-published in [127, 116]).

The distributions of ALLHNo 10 obtained for NO and IO are shown in Figure 8.3 as red
and blue histograms, respectively. The experimental value is indicated by a solid, black,
vertical line. The resulting quantiles ¢ and p-values p for NO and IO are (cf. Section 7.1):

gno = 28.9% qio = 15.3%,
pno = 1 —gno = T1.1% pro = qio = 15.3%, (8.1)

where gno and ¢o are the quantiles of the NO and IO distributions, that are left of the
experimental value.

Note that the fit could return small quantiles ¢ (or 1 — ¢) for both orderings, if both hy-
potheses were unlikely to produce the value observed in data. For example, a value of
ALLHyno_10 > 2 or ALLHNxo_10 < —2 is neither compatible with the NO nor 10 hypothe-
sis. In that case, gno and gio may differ only slightly, while the exclusion of the disfavored
hypothesis is very strong in terms of the p-value.

A common way to account for this is the calculation of ClLs-values, according to Equa-
tion 8.2 [153]

1 _
CL, (H1) = & CLy (Hs) = - 22

q2 S l-q’

(8.2)

where ¢; with ¢ = 1,2 are the quantiles of the two tested hypotheses. The method is adapted
from [153]. Note that the quantiles are defined such that ¢; < g2, which can always be
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obtained by switching the definition of H; and Hs or by replacing ¢; — 1 —¢;. This leads to
CLg = 0, if Hs is prefered over H;, while values CLg = 1 allow for no statement concerning
the two hypotheses. In a more illustrative manner, the CLs-value determines, how much less
likely the observed excess is obtained under the assumption of the disfavored hypothesis,
compared to the favored one.

The resulting CLs-values for the p-values from Equation 8.1 are

1 _

CLq (Hno) =——19 — 83.0%, (8.3)
1 —gno

CL, (Hio) = %: 53.3%. (8.4)

Thus, the preference for NO over IO becomes visible in CLs (H o) = 53.3%, stating that the
observed value is roughly twice as likely to occur in case the true ordering is Normal than
in case the true ordering is Inverted.

Although not significant itself, one should note that the observed preference for NO over 10
is in-line with observations by MINOS/MINOS+ [68], T2K [66], Super-Kamikande [71] and
NovA [70], which all report a minor preference for NO over IO in their most recent results.
However, even a potentially more significant, global combination of these results should not
be taken as a final statement on the NMO, but rather as an indication in the absence of
more sensitive, future experiments. Unfortunatly, the global best-fits used in Section 8.2 do
not yet include all of the above results.

In addition to testing the two ordering hypotheses, matter effects (MA) are tested against
vacuum oscillations (VA), as described in Section 7.3. The best-fit parameters for the VA
hypothesis are listed in Table 8.1.

From the LLH values in Table 8.1, the negative log-likelihood differences LLHno _va =
—0.869 and LLH;o_va = —0.500 are calculated. Analogously to the previous test of the
NMO, Pseudo-Experiments are generated for the best-fit VA hypothesis. For the MA hy-
pothesis, the previously generated Pseudo-Experiments for the best-fit NO and 10 param-
eters are fitted with vacuum oscillations to calculate the above log-likelihood differences.

The distribution of ALLHNo—va is shown in Figure 8.4 (left) for injecting matter effects in
Normal Ordering and vacuum oscillations, while Figure 8.4 (right) shows the distribution of
ALLH;o_vya for injecting matter effects in Inverted Ordering and vacuum oscillations. As
one can see, matter effects are preferred over vacuum oscillations for both orderings, while
the preference is larger for Normal than for Inverted Ordering being assumed.

The resulting p- and CLg-values for the hyothesis of matter effects, in Normal (NO) and
Inverted Ordering (I0), and vacuum oscillations (VA) are given by Equations 8.5.

P (Hma|Hno) = 62.3% p (HmalHio) = 53.2%
p (HvalHno) = 12.3% p(Hva|Hio) = 22.2%
CLs (Hma|Hno) = 71.0% CLs (Hma|Hi0) = 68.4%
CLs (Hva|Hno) = 32.6% CLs (Hva|Hi0) = 47.4% (8.5)

The observed preference for matter effects over vacuum oscillations is natural in case NO
is preferred over 10. As summarized in Table 2.2, NO and 10O differ mainly by the amount
of matter effects, while NO features more matter effects than I10. Thus, a preference of
NO over IO already indicates a preference for strong matter effects. As a result, the VA
hypothesis is disfavored compared to the MA hypothesis.
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Figure 8.4: ALLHya_va-distribution used as test statistic to separate matter effects and
vacuum oscillations (VA) in case of NO (left) and IO (right); analogous to Figure 8.3, the
red, green and blue distributions are obtained from Pseudo-Experiments generated with the
best-values from Table 8.1, while the vertical, black, solid line marks the experimental fit.

Note that in Figure 8.4, the distributions seem to be slightly shifted towards negative values.
The effect arises from the different mixing angles obtained for the MA and VA hypotheses in
Table 8.1: If a template is generated with matter effects, but fitted with vacuum oscillations,
the vacuum fit is biased towards maximum mixing. Thus, the VA hypothesis is fitted closer
to sin?(fa3) = 0.5 than the NO and IO fits using matter effects. In the observed case,
the NO and IO fits are already close to maximum mixing. As a result, the VA fit gets
stuck at the parametric boundary at sin?(fa3) = 0.5 (cf. Section 2.3.2), losing its freedom
to account for over- and under-fluctuations in the same way. Since the fit is incapable of
increasing the oscillation amplitude beyond maximum mixing, the hypotheses using matter
effects are at an advantage, as they can vary the mixing angle to compensate for over- or
under-fluctuations in the oscillation region.

Note that this effect is to first order independent of the injected hypothesis, since for ev-
ery injected hypothesis, both tested hypotheses (MA and VA) are fitted. As a result, all
distributions of ALLHya_va are shifted slightly to the left.

8.1.2 Results on Oscillation Parameters

The best-fit oscillation paramters Am3; and sin?(fa3) are stated in Table 8.1 for NO and
I10. To visualize the sin?(f23)-dependent preference for NO over 10, the likelihood space is
scanned with respect to sin?(6y3), while for each value all other systematic parameters are
optimized. The resulting values of LLH for NO and IO are shown in Figure 8.5, relative to
the global minimum LLH,;,.

The best-fit value of sin?(f23) is compatible with maximum mixing, while featuring only a
weak preference for the left octant. The preference for NO over 10 is visible by the offset
between the NO and IO curves at their individual minima. For comparison, the upper sub-
plot shows the Ax?-contours of the global fit of oscillation parameters provided by NuF'it (cf.
Section 2.3) [26, 25]. As one can see, the curves are compatible within their uncertainties.
Moreover, they agree in their preference for NO, while global fits indicate a slight preference
for the right (second) octant, which is not the case for this work.
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Figure 8.5: One-dimensional log-likelihood scan in sin?(f3) for NO (red) and IO (blue),
showing the sin?(623)-dependent preference for the NMO; for each point on the curve, all
other systematic parameters are optimized; in the upper subplot, the Axglob—scan in sin?(fa3)
is shown for the global best-fit, provided by NuFit[26, 25] (pre-published in [127, 116]).

Besides the one-dimensional scan in the mixing angle, a full two-dimensional scan of the
log-likelihood landscape is done in sin?(f23) and Am3,. It is shown in Figure 8.6 for NO
(top) and IO (bottom). Again, for each point of the log-likelihood landscape, all other N —2
systematic parameters are optimized. Note that for NO (I0), the vertical axis is chosen to be
Am3; (Am3,). This is a common choice for showing the ordering-dependent, atmospheric
squared-mass difference, which is adapted here for consistency reasons [25]. It is motivated
by the fact that for NO |[Am3,| > |AmZ,|, while for IO [Am3,| < |Am3,|, such that the two
differences switch their relative size depending on the NMO. Thus, with the above choice
the values of the fitted parameters for both hypotheses become more comparable.

The shown contours (magenta lines) are obtained by converting the ALLH values into confi-
dence levels using Wilks’ Theorem for two degrees of freedom (cf. Section 7.2). Naturally, the
best-fit in the left octant for NO (star marker) agrees with the result of the one-dimensional
scan. The 25%-contour is added to indicate the preference for NO by showing a confidence
level, that is completely contained within the NO hypothesis.

An analogous, two-dimensional Ay?-scan for the atmospheric oscillation parameters is pro-
vided by NuFit [25, 26]. Converting these into log-likelihood contours, using 2ALLH = Ax?,
confidence-level (CL) contours are derived for the global best-fits. These contours are shown
in Figure 8.6 for the fits, published in January 2018 (NuFit 3.2), as green lines for different
confidence intervals. Like this work, the NuF'it result prefers NO over IO with a rather small
region of parameters being allowed in the IO plane. The contours derived in this work agree
reasonably well with the NuFit results. However, a slightly higher value of AmgZ in the left
octant is preferred in contrast to the presented NuF'it result.

Note that although the presented contour is competitive with global measurements of Am%z
and sin?(fa3), this analysis does not aim for a measurement of the oscillation parameters.
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Figure 8.6: Two-dimensional log-likelihood scan in sin?(fa3) and Am3, with £ = 1 for NO
(top) and ¢ = 2 for IO (bottom): the various lines show 99%-, 90%-, 68%- and 25%-contours
obtained by Wilks” Theorem (cf. Table 7.3) for this work (magenta) and the global best-fits
by NuFit (green)[26, 25]; the choice of ¢ = 1 (2) for NO (IO) is conventionally used and
adapted here.

Instead, the shown contour provides a visualization of the sin?(fa3)- and Am3,-dependent
preference for the NMO. However, the oscillation parameters are determined in a similar
analysis of the IceCube Collaboration, driven by Elim Thompson [113]. Still, the analysis
features several differences to the NMO analysis presented in this work and is not discussed
here in detail.

Finally, the effect from neutrino oscillations is illustrated in so-called L-over-FE-plots. To do
this, the ratio of the reconstructed baseline L}°°°, obtained from the reconstructed zenith-
angle (cf. Equation 2.35), and the reconstructed neutrino energy E°° is calculated for every
event. The resulting distribution of L}°°/FE’*°° approximates the oscillograms in Figure 2.6
in reconstructed observables. It is shown in Figure 8.7 (left) for the events entering the
likelihood analysis, where the black dots represent the observed data and the colored, stacked
histograms shows the different Monte Carlo contributions.

For comparison, the dashed, black line shows the predicted total distribution from Monte
Carlo, if neutrino oscillations are not present. Note that it only illustrates the total effect of
disappearing events, in case neutrino oscillations are present. It does not allow to estimate
the significance of the effect, since the dashed, black line is not optimized with respect
to the nuisance parameters for the case of no oscillations. These would compensate for
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Figure 8.7: Visualization of the oscillation effect, showing the ratio of the propagated dis-
tance L7 as obtained from the reconstructed zenith-angle and the reconstructed neutrino
energy E7°° (cf. Figure 2.6); left: for the events entering the likelihood analysis (upgoing
events); right: including up- and downgoing events.

most of the observed difference, but fit a systematically wrong hypothesis. Instead, the
shown distributions illustrate the strength of the observed oscillation effects, given that the
oscillation picture is correct.

Furthermore, the distribution is shown for combining both hemispheres in Figure 8.7 (right),
i.e. for removing the cut on the reconstructed zenith-angle on Level 7 (cf. Section 4.4.3).
Thus, the distribution includes up- and downgoing events, extending the range of L /E*°
to much smaller values. This is done to visualize the difference between the up- and down-
going events, where downgoing events (mostly at log;o(L%°/EX*km 1GeV) < 1) feature
almost no neutrino oscillations and thus, show no major difference between the observed
data and the dashed, black line.

Note that the pulls at logo(L:°/EX“km~'GeV) < 0.5 in Figure 8.7 (right) feature ex-
pected deviations from the MC prediction, due to the extrapolation of systematics to the
upper hemisphere: Since all systematic parameters are optimized on the upgoing sample,
they are not expected to describe the downgoing region perfectly. Especially parameters
which are mostly relevant for the downgoing region, like the atmospheric muon normaliza-
tion, can lead to a notable disagreement there, while they have only little impact on the
upgoing regime.

Besides the three-flavor fit of matter effects, in Normal and Inverted Ordering, and vacuum
oscillations, the data is also fit in the approximation of two-flavor oscillations in vacuum (cf.
Equation 2.26). In this case, sin(26s,) is fitted, instead of the mixing angle 65, as sin?(26s,)
directly scales the effect of muon neutrino disappearance in the two-flavor scenario. As a
result, the fit is free to choose values sin(26y,) > 1, which is an unphysical result that
cannot be interpreted by a mixing angle thetas, in standard oscillations. However, this is
done to identify issues in the background description that can lead to the observation of
more muon neutrinos disappearing than expected for maximum mixing. The test is attached
in Appendix 1.2, where the observed p-value of p = 19.1% is well-compatible with statistical
fluctuations and thus, no indication for a mismodelling of backgrounds is found.

Moreover, a short overview of additional tests, that were applied, is attached to Appendix I.3.
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Chapter 8. Fit of Experimental Data

Combination with NuFit Results

The two-dimensional likelihood scan from Figure 8.6 can be combined with the Ax?-scan
provided by NuFit [26]. To do this, the NuFit 3.2 scan is converted into a log-likelihood
landscape using

Ax? = % — x2,, = 2ALLH = 2(LLH — LLH,,,).

Then, the two independent scans are combined as
LLHotal (023, Am3y) = LLHpeepCore(f23, Am3y) + LLHNyrit (023, Am3,), (8.6)

where LLHpeepcore is the likelihood scan from Figure 8.6 and LLHyyrj; is the converted
Ax?-landscape from NuFit.

Afterwards, the combined likelihood LLHista is normalized by shifting the minimum to-
wards zero. Then, the new log-likelihood landscape is used to derive confidence-level con-
tours using Wilks’ Theorem (cf. Table 7.3), which is analogous to the previous Section.
The scan of the combined likelihood LLHiu, and the resulting confidence-level contours
are shown in Figure 8.8.
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Figure 8.8: Combination of NuFit contours (green) from [25, 26] and the results of this
work (magenta): the combination is shown as 90%- and 99%-CL contours (red), while the
combined likelihood, LLHyota1 (023, Am3,) (cf. Equation 8.6), is shown in the background.

As expected, the red (combined) contours are very close to the contours provided by NuFit,
as NuFit is more constraining on the oscillation parameters than the DeepCore result.
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Moreover, the combined result prefers higher values of |AmZ,| and smaller values of sin?(6a3)
than NuFit, which is expected, due to the preference of the DeepCore result. For the NO
case, the combination flips the contour from a slight preference for the right (second) octant
to the left (first) octant.

Finally, both results prefer Normal over Inverted Ordering. As a result, also the combined
contour features a clear preference for Normal Ordering, such that the 90%-contour of the
combined result (red, solid line) is completely contained within the NO hypothesis. In
particular, the small island of parameters in the right octant of the IO hypothesis, that is
not excluded by the 90%-contour from NuFit, is excluded at 90% confidence level in the
combined result. Moreover, the minimum value of the normalized LLH for the IO hypothesis
changes from minAm§17923 LLHNuFit (7‘[10) = 2.07 for NuFit to minAm§1,923 LLHtotal(HIO) =
2.38 for the combined result.

Thus, the combination of DeepCore with the most recent NuFit results strengthens the
globally seen preference for NO and supports the exclusion of the IO hypothesis.

Note that this naive combination of the results features some subtleties: According to NuFit,
the Ayx2-scan includes the DeepCore result from [154], which was published in 2015. Thus,
the above combination is not strictly correct, since the NuFit contour depends partially on
DeepCore results, which are correlated with the results of this work. In terms of systematics,
the missing alignment of nuisance parameters can be seen as conservative, as it flattens the
likelihood. However, the DeepCore result from [154] uses a data sample that overlaps with
9.99% of the GRECO sample, leading to a statistical dependence between the original
(green) NuFit contour and the (magenta) contour of this work.

Nevertheless, the resulting correlation between the NuFit contour and this work is estimated
to be very small for several reasons: First, the DeepCore result from [154] does not contribute
notably to the global understanding of oscillation parameters. Its 90%-contour in sin?(fa3)
and Am%z is substantially larger than the contours provided by this work or NuF'it and does
not contribute to other oscillation parameters of the global fit. Thus, the NuFit y2-scan in
these parameters is only weakly affected by the previous DeepCore result. Second, even the
small pull of the previous DeepCore result on the NuFit contour is mostly independent of this
work, since the overlap between the DeepCore samples is only ~ 10% of the GRECO sample.
Third, a different reconstruction algorithm was used for the previous result, which does not
use the same information to reconstruct energy, zenith-angle and PID as the reconstruction
presented in Chapter 5. Thus, even for the small number of events in the overlap, the
reconstructed observables are not fully correlated.

As a result, the naively combined contours from Figure 8.8 can be seen as a valid approxi-
mation of a more accurate global fit.
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BE] Summary and Outlook

The existence of non-vanishing neutrino masses is a well-established fact in modern particle
physics. Although the absolute neutrino masses my, mo and mg are unknown, the squared-
mass differences between these states can be explored using neutrino oscillations. Moreover,
neutrino oscillations allow to test for the Neutrino Mass Ordering (NMO) (cf. Chapter 1).

One way to test the NMO with oscillations is to measure the modulations from matter
effects in the oscillation pattern of atmospheric neutrinos. These atmospheric neutrinos are
generated in Cosmic Ray interactions with the Earth’s atmosphere. During their propaga-
tion through Earth, their oscillation probabilities are affected by the Earth’s matter profile,
leading to a NMO-dependent signature from matter effects below E, ~ 15GeV (cf. Chap-
ter 2). One detector capable of probing this effect is the IceCube Neutrino Observatory
with its low-energy sub-detector DeepCore (cf. Chapter 3).

In this work, a low-energy analysis is presented to probe the NMO with three years of
IceCube DeepCore data. To do this, a low-energy data sample, originally developed by
Michael Larson [112], was adapted and refined in collaboration with Michael Larson and Elim
Thompson [113]. It is characterized by high statistics and reaches down to neutrino energies
of E, ~5GeV. It comprises non-negligible contributions from CC muon, electron and tau
neutrinos, NC events of all flavors and atmospheric muons. The contribution from triggered
noise was modelled and found to be negligible. Moreover during this work, a previously
seen disagreement between data and MC was found to be caused by a mismodelling of the
observed charges in Monte Carlo and two light emitting (Flaring) DOMs (cf. Chapter 4).

For this data sample, a new event reconstruction was developed, which achieves an excellent
performance in the reconstruction of the neutrino zenith-angle and the neutrino energy.
Moreover, it allows to separate different event signatures, giving a handle on the neutrino
flavors. As a result, the event reconstruction was adapted by several other DeepCore and
PINGU analyses (cf. Chapter 5).

Finally, a binned, maximum-likelihood method was developed to probe the NMO, using the
reconstructed neutrino energy, zenith-angle and a flavor-separating variable (PID). For this,
uncertainties on the Monte Carlo templates from limited MC statistics were reduced using
Kernel Density FEstimation. The remaining uncertainties were included into the likelihood-
function by convolving the Poissonian likelihood with the bin-wise Monte Carlo uncertainty
(cf. Section 6.1, 6.2 and 6.4).

In the likelihood fit, several nuisance parameters were included to account for systematic
uncertainties on the atmospheric neutrino and muon fluxes, the neutrino oscillation pa-
rameters, the neutrino-nucleon interactions and the detector response. The impact of each
systematic uncertainty on the analysis distribution was parametrized and the resulting pa-
rameter was added to the likelihood optimization. The nuisance parameters were tested for
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their relevance in the NMO measurement and all non-negligible parameters were added to
the NMO fit (cf. Section 6.3 and 7.6).

The sensitivity to the NMO was estimated using two methods: first, a slow but accurate
method using Pseudo-Experiments and second, a substantially faster Asimov method. Ad-
ditionally, the impact of future improvements on the understanding of systematics and the
event reconstruction were investigated. The resolution of the event reconstruction was found
to be crucial for an increased NMO sensitivity. In contrast, an improved understanding of
systematics gives only a small gain in sensitivity, as long as the total NMO signature is too
weak to be affected by the systematic uncertainties (cf. Chapter 7).

All of the analysis was developed blindly with the unblinding-procedure supervised and
reviewed by the IceCube Collaboration.

Finally, the analysis was applied to experimental data: The fit was found to prefer Normal
(NO) over Inverted Ordering (IO) with a p-value of pno = 71.1% and a CLg-value of
CLs (Hno) = 83.0%. In contrast, the IO hypothesis lead to a p-value of pjo = 15.3% and a
CLs-value of CL4 (Hj0) = 53.3%. Moreover, the hypothesis of vacuum oscillation was tested
against the hypothesis of matter effects for both orderings. The resulting fit prefers matter
effects in both cases with p-values of 12.3% (NO) and 22.2% (I1O) for vacuum oscillations,
compared to 62.3% (NO) and 53.2% (IO) for matter effects (cf. Section 8.1).

Finally, a likelihood-scan was conducted in sin?(f23) and Am2; to validate the preference
for NO over 10, depending on the values of the atmospheric oscillation parameters (cf.
Section 8.1.2). The best-fit was found to prefer sin?(fa3) = 0.4757 and Amsz; = 2.626 -
1073 eV, which is compatible with the global-fit results provided by NuFit [26, 25]. The
naive combination of both results excludes every combination of oscillation parameters in
the IO plane at a 90% confidence level (cf. Section 8.2).

To validate the likelihood fit, the goodness-of-fit was estimated in several ways. To do this,
the observed values of all nuisance parameters and the pulls on the analysis distribution were
investigated. Overall, no indication was found for the NMO fit being affected by unmodelled
systematic effects or an underestimation of backgrounds (cf. Section 8.1 and Appendix I).

For future measurements, the DeepCore detector is unlikely to provide a high-significance
measurement of the Neutrino Mass Ordering. Due to its relatively high energy threshold, it
is only capable of observing a small fraction of the total signature from matter effects with
low reconstruction resolution. However, the DeepCore sensitivity might still increase over
the next years: While this work is based on three years of data, eight years might be available
soon. In combination with an improved data selection, this may increase the sensitivity by
a factor of up to ~ 2. Moreover, an improved energy or zenith-angle reconstruction could
lead to an additional improvement on the NMO sensitivity (cf. Section 7.7).

In parallel, the IceCube Neutrino Observatory will be extended to a next generation observa-
tory, called IceCube-Gen2. Part of this instrument is the Precision IceCube Next Generation
Upgrade (PINGU) [7]. This upgrade is supposed to improve the calibration of the detector
response substantially, while lowering the energy threshold and improving the event recon-
struction. A first step to such a detector is the extension of IceCube by eight additional
strings with a dense, vertical spacing of DOMs, that will be deployed within the next years.
It will lower the energy threshold of DeepCore substantially. Moreover, calibration mea-
surements will allow to constrain the current uncertainties on the optical properties of the
ice and to re-calibrate the already collected data (cf. Section 3.6).
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Chapter 9. Summary and Outlook

Some of the key goals of this future extension are an improved measurement of the at-
mospheric oscillation parameters and a precise measurement of tau neutrino appearance,
probing the unitarity of the PMNS mixing matrix U. Besides these goals, the extension will
allow for an improved measurement of the Neutrino Mass Ordering, compared to DeepCore
(cf. Section 3.6).

For these future upgrades, this work provides a proof-of-concept for a more significant NMO
measurement. It tests the full analysis-chain, including the treatment of systematic uncer-
tainties and the statistical evaluation of the experimental result, that could be adapted by
such more significant, future measurement of an IceCube upgrade.
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Appendix

Constraints from Non-Oscillation Experiments

Besides the observation of neutrino oscillations, the NMO could be determined by constraints
on the absolute neutrino masses. These constrains are briefly discussed in the following.

One of these constraints arises from cosmological observations: In the early universe, neu-
trinos decoupled from the other particles early due to their small cross-section, forming the
Cosmic Neutrino Background (CNB), similar to the Cosmic Microwave Background (CMB)
for photons. These CNB neutrinos contributed significantly to the total mass density of the
universe during its evolution and thus influenced the subsequent structure formation. How-
ever, for a given number density n,, the minimum mass density p, depends on the NMO: In
case of NO, the two lower neutrino states could have negligible mass compared to the third
one. In case of 10, only one state might be negligible compared to the other two. Thus, a
higher minimum mass density is expected for IO compared to NO [6, 12].

=m.+m,+m. - 2 - 12, { 2, 2i
o= MM+ My m, —V|U 1|2m%+|U 2|2m§“'|U 3| m3 M= |U 1|2m1+|U Hf m,e?*+|U S mse g ‘

Meosmo IN €V
m, ineV
.

107" 1045

99.7% allowed

-2 R 99.7% allowed 99.7% allowed
B 107 pemmmm—— I B
B H E & [
L " M | L o e " PR | L PR 10"
10° 107 10" 10° 102 10" 10 10° 107
Lightest neutrino mass in eV Lightest neutrino mass in eV Lightest neutrino mass in eV

Figure A.1: Constraints from cosmology (left), 5-decay experiments (center) and 3/5-decay
experiments (right) on the lightest neutrino mass and an effective mass, being defined as a
superposition of the three fundamental neutrino masses m; (from [4]).

By observing the structure formation in the universe, a limit on the effective mass mcosmo =
m1 + mg + mg for cosmology can be calculated. Since NO and IO correspond to some
minimum, effective mass mcosmo, 10 could be excluded, if the observed mcosmo is below
the minimum value required for 1O. A recent summary of the cosmological constraints on
Meosmo and the lightest neutrino mass is shown in Figure A.1 (left). The limit is insufficient

to exclude IO, while recent, more progressive limits go down to even Mcosmo < 0.17€V at
95% Confidence Level [6, 12].

However, one should note that these limits depend on cosmological assumptions, that might
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be wrong. Depending on these assumptions and the data being used, the preference for NO
over 10 in recent cosmological findings is in the range of Ax%o_1o ~ 0 —1.6[6, 12].

In addition to cosmological constraints, 8- and [5-decay experiments provide a handle on
the NMO, using their sensitivity to the absolute masses (cf. Section 2.3). Similarly to the
effective mass mcosmo, they feature effective masses m,, and me. that are linear combinations
of the mass eigenstates mi, mo and mg. Some recent limits on these effective masses are
shown in Figure A.1 for - (center) and 3/-experiments (right). As for cosmology, they could
exclude 10, if their limit on the corresponding effective mass was small enough to exclude
the IO phase-space (red). However, in general they are less compelling in determining the
NMO than the most recent cosmological constraints [4, 12].

BB} Event View of Typical Low-Energy Events

In Figure B.2, a typical track-like and cascade-like event is shown from Monte Carlo, using
the IceCube event visualization software steamshovel. For the cascade-like event, a CC elec-
tron neutrino interaction is used, while the track-like event represents a CC muon neutrino
interaction (inelasticity y =~ 0.3).

The event visualization shows the DeepCore volume, where the individual strings are indi-
cated by thin, grey, vertical lines. On these lines, the individual DOMs are indicated by
spheres of different size and color: Unhit DOMs, that did not observe any pulse during the
event, are represented by small, grey spheres, while hit DOMs are represented by colored
spheres, where the size of the sphere corresponds to the amount of observed total charge and
the color encodes the time of the first observed photon (time ordering: red, yellow, green,
blue).

cds'fc;:adé, 24GeV. | - ‘Wtrack, 24 GeV

Figure B.2: Example of a cascade-like (left) and track-like (right) event at E), ~ 24 GeV,
where the cyan (green) lines respresent the reconstructed (true) direction of the neutrino
event; for the track-like event, the solid fraction of this line represents the reconstructed
(true) length of the outgoing muon track (modified from [142]).

The dashed, cyan (green) lines represent the reconstructed (true) direction of the neutrino
event. Moreover, for the track-like event, the solid fraction of the line represents the recon-
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C. Supplemental Material on GRECO Selection

structed (true) length of the outgoing muon track.

As visible in Figure B.2, the event signatures of tracks and cascades are very similar at low
energies. However, minor differences can be spotted along the muon track. These differ-
ences are used to separate track- and cascade-like signatures in the likelihood reconstruction
method from Section 5.3.1.

Supplemental Material on GRECO Selection

The control distributions in Figure C.3 are a selection of high-level variables, shown for the
final level GRECO sample. They compare the observed data to the best-fit Monte Carlo
(MC) predictions. All shown distributions are event-wise quantities, i.e. each entry in the
histogram corresponds to an observed or predicted event.
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Figure C.3: Overview of some control distributions at GRECO Level 7 that are used to
identify unexpected data or MC behavior in the final level data sample.

The shown distributions (from top left to bottom right) are the charge asymmetry discussed
in Section 4.4.2, the number of hit DOMSs, also called number of channels Nchannel, the
Pegleg reconstructed azimuth-angle of the events ¢.°°° and the observed total charge per
event Q.
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Note that not all of these distributions are expected to show perfect agreement between
data and MC. For instance, the charge distribution is known to be slightly tilted between
data and MC, due to the SPE template issue, discussed in Section 4.5.2. Moreover, the
azimuth-angle is expected to show a slight preference direction in data, that is not present
in MC, due to a weak anisotropy in the ice (cf. Section 3.4).

However, these distributions are conventionally tested to identify unexpected disagreement
besides known deviations.
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Figure C.4: Composition of the
final level GRECO sample of
neutrinos and anti-neutrinos of
different flavors; the vertical axis
gives the fraction of all observed
neutrino events in the sample.
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Finally, Figure C.4 shows the composition of the final level GRECO sample of neutrinos
and anti-neutrinos for different flavors. As one can see, the neutrino contribution dominates,
while the neutrino to anti-neutrino ratio is roughly 2 : 1, as expected from Section 2.4.1.

3] Photon Arrival Time Expectations

If the scattering and absorption properties of the ice were perfectly homogeneous and the
photon acceptance for all DOMs was rotationally symmetric, the arrival time distribution of
photons at a DOM would follow a Gamma distribution. This Gamma distribution is often
refered to as Pandel Function. It is given by Equation D.1 [155].

§4€—1
p(p,{,t) = prt(é-)

G (D.1)

where ¢ = iy — tgeom measures the time, relative to the geometric time tgeom, that an
unscattered Cherenkov photon needs to reach the DOM. Thus before t = 0, no light can be
observed from the interaction vertex. The parameter £ = d/(Asin(6,.)) scales the distance d
between generation and detection of the photons by the mean scattering length A and the
sine of the Cherenkov angle 6. [155].

The optical properties of the surrounding ice are very approximately described by the pa-
rameters A and p. For the IceCube-predecessor AMANDA, they were found to be A\ &~ 33.3m
and p ~ 0.004ns™ ! [155].

Although the Pandel Functions allow for an estimate of the photon arrival times, the as-
sumption of homogeneous and isotropic ice and rotationally symmetric DOMs is unphysical.
Instead, current IceCube reconstructions rely on photon arrival time distributions that are
obtained from the time-intense simulation of photon propagation.
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For this, electromagnetic cascades and short muon tracks are simulated and the resulting
Cherenkov photons are propagated through the detector. The cascades and muons vertices
are generated on a three-dimensional grid, that spans through all of the detector volume
and beyond with a 15 m spacing. Moreover, the orientation of the cascades and muons are
varied, leading to two additional degrees of freedom. The subsequent photon-propagation
includes local ice properties and an accurate simulation of the DOMs photon acceptance
and hardware response. For each of these five-dimensional grid points and each DOM, the
total number of observed photons and the observed arrival time distribution are then stored
in large tables.
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— d=50 m, front === d=50 m, back
“ — d=75m, front ==+ d=T75 m, back
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ton arrival times, relative to the @ 10 4 =200 m, front d=200 m, back
geometric time tgeom, as obtained 2 0 \
. <
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. . 4
for the two cases of pointing g10
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o . (]
(back) the DOM position. 10°
-6 . ;\ . -
10% 500 1000 1500 2000 2500

time since interaction / ns

For the Millipede likelihood, these tables are loaded and splined to obtain a continuous value
in the total number of expected photons and the arrival time distribution. An example
for such a continuous distribution is shown in Figure D.5 for an electromagnetic cascade
of 1 GeV at different distances d to the observing DOM and for the two cases of pointing
towards (front) and away from (back) the DOM position.

Integrating the arrival time distribution over a given binning, one obtains the expected num-
ber of photons A%‘;(@, Uk, Ok, dr, At;) for each time bin At,, that is used in Equation 5.2.

Pegleg Supplemental Material

The following material provides additional information on the Pegleg reconstruction intro-
duced in Chapter 5.

E.1 Relation to HybridReco

The Pegleg reconstruction was one of two independent efforts to reconstruct a track+cascade
hypothesis on the Millipede likelihood. The second, independently developed reconstruction,
called HybridReco, was earlier used for the reconstruction of low-energy events, but was
ultimately not used in any journal publication of DeepCore oscillation results.

Instead, the Pegleg reconstruction was gradually adapted by all DeepCore and PINGU
analyses, previously using HybridReco, for the following reasons:
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First, the Pegleg reconstruction provides the charge-independent Millipede likelihood from
Section 5.3.3, while such likelihood does not exist in HybridReco. Thus, the disagreement
between data and MC, described in Section 4.5.2, was never resolved using HybridReco.

Second, HybridReco uses the Multinest minimizer (and first introduced it to IceCube) to di-
rectly minimize all eight parameters of the track+4cascade hypothesis in the outer minimizer,
without any internal optimizations. This eight-dimensional optimization takes ~ 2 —3 times
longer than the three-layer optimization used in Pegleg (cf. Section 5.3.2). Since the recon-
struction is typically the computational bottle-neck in such analyses, with reconstruction
times of several month up to a year for all of the Monte Carlo samples, this gain was crucial
for the adaption of Pegleg.

Third, the zenith-angle resolutions for Pegleg and HybridReco are almost identical, while
the energy resolution of Pegleg features less outliers due to failed minimizations. This is
due to the fact that the cascade energy is guaranteed to be at the optimum, for the given
set of remaining parameters, the way it is derived within Pegleg, while this is not the case
for the eight-dimensional optimization. However, the difference is very small, such that all
resolutions of Pegleg and HybridReco are nearly identical.

Fourth, the Pegleg reconstruction was implemented within the IceCube software frame-
work for event reconstructions. Thus, its implementation was substantially shorter and
more consistent with other collaboration software than HybridReco, which was developed
as stand-alone tool and called the Millipede likelihood from outside the IceCube framework.

E.2 Reconstruction Settings

The settings used in the Pegleg reconstructions are shown in Table E.1 and E.2, where
the first focusses on the settings of the Multinest minimizer [121], while the latter gives the
settings related to the likelihood space and the parametrization, discussed in Chapter 5.

E.3 The Charge-Independent Millipede Likelihood

The charge-independent Millipede likelihood, described in Section 5.3.3, is motivated by the
finding from Section 4.5.2 that the observed charge is no reliable proxy for the observed
number of photons in each DOM.

The charge assigned to a detected photon in Monte Carlo is obtained as a random variable
following the Single-Photo-FElectron (SPE) distribution. The SPE distribution is obtained
from lab measurements. These templates were found to be insufficiently accurate to obtain
reliable Monte Carlo. Thus, they lead to a disagreement in the final level data sample.
While large efforts were started by Martin Rongen [115] and Spencer Axani[114] to replace
the existing SPE templates by in-situ measurements, this work was aiming for a solution
on a much shorter time scale.

To do this, the charge-dependent Millipede likelihood, used for the event reconstruction,
was replaced by a charge-independent likelihood.

The charge-independent likelihood is obtained by replacing the charge of the first observed
pulse in each DOM by 1 PE. After this pulse, a time-window of dtgeaqa = 45 ns is removed
from the likelihood, such that any pulse, observed in this time-window, is ignored. This
means the DOM is treated as offiine or dead, which accounts for an unexpected post-hit
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Parameter Setting / Value
PulseMap SRT-, TimeWindow-cleaned
OfflinePulses (DeepCore)

EzxcludeDOMs Bad, Saturated, Bright,

Table E.1: Settings of Omitted, Flaring

the Pegleg reconstruc- TimeWindow OfflinePulsesTimeRange

tion that are related LikelihoodService Pegleg

to the likelihood space DomEff 0.99

or the parametrization; PhotonsPerBin 1

the parameters are la- PENormalization 0.85

belled (italic font) as in PartialEzclusion False

the IceCube software to Use UnhitDOMs True

faciliate the reproduc- mazSegSplits 0

tion of the final level minTrackSegments 0

minTrackSegmentsUp 2
minTrackSegmentsDown 200

reconstruction used for

the GRECO sample.

SegmentSpacing 5m

PrereadTables False
fitStochasticLosses False
fitContinuousLength False
usePCG False

Table E.2: Settings of the Multinest minimizer, used for the Pegleg reconstruction; the
parameters are labelled (italic font) as in the Multinest optimization software [121].

parameter setting / value ‘ parameter setting / value
MazModes 10 NIS False
Tolerance 0.5 Efficiency 1.0

NLive 60 Periodic Azimuth
Mazlterations 80000 ModeSeparated t, X, y, z

behavior of the DOM hardware, after the first photon detection.

This is motivated by Figure E.6, showing the time difference between the first observed pulse
and all following pulses in the same DOM for the final level GRECO sample (Flaring DOMs
removed). Note that events enter this histogram several times, if they feature multiple
DOMs with > 2 pulses. In contrast, events with no more than one pulse for all DOMs do
not enter the histogram at all.

As one can see, the distributions for data and MC agree roughly for At > 45ns. The
disagreement for At < 45ns indicates the incorrect description of the DOM behavior after
the first pulse being observed. Therefore, the dead time-window was chosen to extend over
0tDead = 4D 1S to remove the region, where the predicted DOM behavior is unreliable.

Already before this work, it was known that the number of pulses per DOM was no reliable
quantity, since the pulse-splitting was assumed to work differently on data and MC. This
means, a single photon might be split into two pulses in data, but not in MC. In the same
way, several photons might be merged in one pulse in data, but not in MC. However, the
integrated charge per DOM in a given time-window was assumed to be a reliable estimator
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Figure E.6: Time difference between the first and all following pulses within a DOM in
data and Monte Carlo; the distribution is well-described by MC for At > 45ns, while for
At < 45ns the DOMs observe far more pulses in data than simulated in MC; thus, this
region is removed from the likelihood using a dead time-window of dtpeaq = 45 ns.

for the observed number of photons. As discussed in Section 4.5.2, this is not the case for
low energies, where the total number of observed photons is small.

Thus, neither the integrated charge per time-window nor the individual pulses are well-
described in Monte Carlo.

However, the first pulse observed in a DOM is unaffected by any previous pulses and can
be seen as a reliable proxy for the time of the first observed photon. Moreover, after dtpeaq
the DOMs seem to return to their normal behavior. Therefore, the DOMs are turned on
after the dead time-window to potentially observe another pulse, triggering a further dead
time-window and so on. Note that this way, the observed charge is always an integer number
in terms of photo-electrons (PE).

Moreover, one should note that the dead time-window §tpeaq is long, compared to the typical
arrival time distributions for low-energy events. Thus, more than one pulse per DOM is
rarely observed and the majority of events contains DOMs with no photons (0 PE) or only
one photon (1PE) being detected.

E.4 Reconstruction Performance

Figure E.7 shows the zenith-dependent zenith-resolution of the Pegleg reconstruction, de-
veloped in Chapter 5. It illustrates the zenith-dependent bias due to the boundary of the
parameter space. While horizontal events with cos(fiye) = 0 are reconstructed almost un-
biased, the bias increases for more vertically up- or downgoing events. This is due to the
parametric boundaries of cos(fyue) at —1 and +1.
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For example, a neutrino entering the detector from below might be close to cos(grye) = —1.
Thus, it can hardly be reconstructed to more vertical values, while the phase-space for
reconstructions towards more horizontal directions is much larger. This causes the shift of all
quantiles in Figure E.7 towards negative (positive) values for cos(firue) < 0 (cos(firue) > 0).
This shift in the zenith-angle reconstruction could be interpreted as reconstruction bias.
However, it is not due to the algorithm itself, but the choice of events used to determine the
resolution.

Therefore, in Section 5.3.4 the zenith and energy cuts from Level 7 are dropped to obtain a
mostly unbiased result for the energy- and zenith resolutions.

For CC electron neutrino events, the energy-dependent zenith- and energy-resolution for the
Pegleg and SANTA/LEERA reconstructions (cf. Section 5.1) are compared in Figure E.8.
The comparison is analogous to the one for muon neutrinos in Figure 5.7.

As one can see, the Pegleg reconstruction provides an almost unbiased estimate of the true
zenith-direction and the true neutrino energy. A small bias is expected and seen at low
energies due to selection effects, i.e. events surviving the selection up to Level 7 tend to be
exceptionally bright and are therefore reconstructed to higher energies, while events that
are less bright do not survive the data selection.

In contrast, the zenith reconstruction by SANTA and the energy reconstruction by LEERA
are biased compared to the true quantities. Moreover, LEERA provides an almost similar
resolution to the Pegleg reconstruction, while SANTA leads to a clearly worse reconstruction
for the zenith-angle, except at the lowest energies.

Finally, the fraction of reconstructable events with SANTA is shown in Figure E.8 (top) as
black, solid line to be read from the right vertical axis. Similar as for muon neutrinos in
Figure 5.7 (bottom), the fraction of reconstructable events drops quickly, such that only a
small fraction of events is reconstructable at the lowest energies. As for muon neutrinos,
the reconstruction is therefore badly suited for an analysis at £, < 15 GeV.

Supplemental Material on Kernel Density Estimation

F.1

Implementation of Kernel Density Estimation

For this work, the KDE method from Section 6.2.1 was implemented in C++ and CUDA [156].
It was used instead of the Python implementation by Sebastian Schoenen [133] for the fol-
lowing reasons:

1. The C++ implementation is much faster than the Python one
(< 50% computation time).

2. The required memory for the Python implementation scales as ocN?,
which lead to an unfeasible large memory consumption for N = 20 000.

Therefore, the C++ implementation was used for all purposes of this work.
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Figure E.7: Zenith-dependent zenith resolution of the Pegleg reconstruction for CC muon
neutrinos and anti-neutrinos separately (top) and all other flavors, combining neutrinos and
anti-neutrinos (bottom); the dashed and dotted lines give the vertical, central 50%- and 80%-
quantile, respectively, while the solid line gives the corresponding median; at cos(f¢ue) = 0,
the reconstruction is nearly unbiased, while moving towards the poles introduces a bias due
to the asymmetry of the reconstructed phase-space.
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Figure E.8: Energy-dependent zenith (top) and energy (bottom) resolutions for electron
neutrino events, comparing SANTA/LEERA to Pegleg (analogous to Figure 5.7 for muon
neutrinos); in the top plot, the central, vertical 50%-quantile (80%) is enframed by the
dashed (dotted) lines, while in the bottom plot, only the central 50%-quantile is shown; in
both plots, the solid, colored lines indicate the vertical median, while the black, solid line
(top plot), to be read from the right, vertical axis, gives the fraction of events reconstructable

with SANTA.
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Parametrization Boundaries and Renormalization

To generate a template of the analysis distribution (cf. Figure 6.1) from the KDEs, calcu-
lated in Section 6.2.1, two additional steps are required:

First, a boundary treatment must be applied. This is necessary, since KDEs tend do un-
derestimate the PDF at a parametric boundary. Such boundary is for example the value
of cos (GEL) = —1. Below —1, no events enter the KDE calculation. Thus, the true PDF
suddenly drops to zero at —1, while the value at —1 + € with ¢ > 0 and ¢ — 0 is substan-
tially higher. The KDE has no information about this logical boundary and thus, tends to
smear-out the edge at —1 according to the local bandwidth of the kernel. In other words,
the KDE can not resolve jumps in the PDF and thus features probability density flowing
out of the used parameter space, while no density is flowing in from outside events [129].

To account for this, the KDE is reflected at the boundary, such that no density is flowing
out of the parameter space. Additionally, this maintains the integral of the KDE over the
used parameter space to be 1.0. This KDE-reflection mechanism was investigated in details
by Eric per Vogel [135] and is a commonly used method to account for boundaries of the
underlying parameter space [134].

Second, the KDE needs to be integrated over the extent of every bin from the binning in
Section 6.1. This is done by evaluating the KDE on a fine grid of 300 x 300 sampling points
and generating a cubic, two-dimensional spline through these points. This two-dimensional
spline can then easily be integrated numerically over the rectangular extent of each bin.

The resulting distribution obtained from integrating the two-dimensional KDE is then nor-
malized to the sum of the weights of all MC events.

Performance Comparison of KDEs and Histograms

To benchmark the performance of the adaptive, weighted Kernel Density Estimation (KDE),
presented in Section 6.2, a Toy Monte Carlo is generated.

To do this, a two-dimensional probability density function (PDF) is chosen, that resembles
the distribution in energy and zenith used in the actual analysis. To simplify the analogy,
the corresponding two parameters are labelled 0f,. and Efye in the following.

The zenith-distribution is assumed to be uniformly distributed in cos(fgake ), while the energy
distribution is generated as a modified Gamma distribution in log,¢(Efake/GeV). The precise
choice is of no relevance for the following Toy Monte Carlo. The resulting probability density
function (PDF) is shown in Figure F.9.

From this two-dimensional PDF, Monte Carlo events are pulled randomly, while the number
of events N is varied. Afterwards, the Monte Carlo sample is used to generate a probability
distribution by using first a histogramm and second the adaptive, weighted KDE mentioned
above.

For N = 103, the resulting two-dimensional probability distributions are shown in Fig-
ure F.10. The fluctuations in the histogram are clearly visible by eye, while the KDE
returns a much smoother estimate of the true PDF.

Since the true PDF is known, the true probability distribution is obtained by integrating
the PDF over the extent of each bin from Figure F.10. Then, the deviation of the histogram
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Figure F.9: Randomly chosen, two-dimensional PDF, where the two parameters
log(Etake/GeV) and cos(fgake) resemble the reconstructed energy and zenith-angle dis-
tribution of oscillation analyses with DeepCore; the PDF is constructed from a uniform
distribution in cos(f.ke) and a Gamma-distribution in log;y(Efake/GeV).
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Figure F.10: Comparison between estimated probability distribution using a histogram
(left) and Kernel Density Estimation (right): the Monte Carlo fluctuations for histograms
are clearly visible, when compared to the underlying, true PDF in Figure F.9.
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Figure F.11: Comparison of the performance of KDEs and histograms in estimating the
true PDF of the Toy Monte Carlo from a given sample for 10 x 10 and 20 x 20 bins; the x?
compares the bin-content between the KDE or histogram and the true PDF from Figure F.9,
assuming Poissonian statistics.

and the KDE from the true PDF are calculated in a y2-method. The result is shown in
Figure F.11 as XQ/NbinS7 where Npiys is the number of used bins (e.g. for Figure F.10, this
is Npins = 100).

In Figure F.11, the deviations for histograms are clearly larger than for KDEs for any
number of events N. However, the gain from KDEs decreases with an increasing number
of events and with a decreasing number of bins. Both arises from the same effect: As the
number of events increases, the kernel width decreases (cf. Equations 6.3). As soon as the
width is small compared to the binning, the KDE converges to the sum of the weights of all
events within that bin. Thus, the KDE approaches the known behavior from histograms,
while the only events that contribute notably to several bins are those, that are close to one
of the bin-edges.

The same effect occurs for increasing the number of bins: If the number of bins increases, the
size of an individual bin shrinks, such that the typical kernel width becomes larger compared
to the binning. Thus, the effect from in- and outflowing probability densities increases, while
the fraction of events, that contribute almost exclusively to one bin, decreases.

Another way to see this is that the relative uncertainty of the bin-content increases for
histograms with the number of bins. However, this is not the case for KDEs, which do not
predict a probability distribution, but a PDF and derive the probability distribution simply
by integrating the estimated PDF.

Baseline-Correction for Detector Systematics

For each bin of the analysis distribution in Figure 6.1, three one-dimensional parametriza-
tions ps with s = 1,2,3 of the bin-content are derived to parametrize the effect of the optical

148 RWTH Aachen University



G. Baseline-Correction for Detector Systematics

efficiency, the hole-ice and the high-forward parameters. At their baseline value z{, the
parametrizations are not required to pass the bin-content of the baseline sample yg. The
resulting offset dys = ys — yo = ps(x) — yo for the systematic s corrects for the statistical
fluctuations of the baseline sample.

For example, in case the bin-content of the baseline sample is underfluctuating, the parametriza-
tions ps are expected to give dys > 0 for each of the systematics s. The size of the ratio
¢s = Ys/yo > 0 gives an estimate for the correction ¢, of the baseline bin-content yq.

If all parametrizations were simply multiplied to the value of the baseline sample, the re-
sulting bin-content would be given by Equation G.2

3 3
y({5}) = <]_[ps(fv8)) “yo = (]_[ (ys/yo)> Yo (G.2)
s=1

s=1

for all systematics s being at their baseline value x§. Thus, the correction of the baseline
value would be applied three times, once for each systematic, such that the baseline fluc-
tuations are overcorrected. The resulting bias increases with the number of parametrized
systematics.

To account for this, the correction terms ¢, are not simply multiplied, but combined. To do

this, they are averaged with respect to their uncertainty, as stated in Equation G.3

Zi:lchQQ
b= W, (G.3)
s=1%s

where b is the resulting baseline-correction and oy is the uncertainty of the correction ¢, at
the baseline point x§. The uncertainties o, are estimated in Equation G.4 by the covariance
matrix Cov® returned from the individual fits of the parametrizations p;:

== | DY (((111;5 (xf,)) Cov?, (((11];5(963)), (G4)

{geps} {qeps}

where ¢ and ¢ are the fitted parameters of the parametrization ps.

For example, in case of a first-order polynomial ys = ps(xf) = a1-x§+ag the two parameters
are ag and aj, such that Equation G.4 simplifies to:

asz;-\/(ﬁf))coﬁ(“’”f). (G.5)

Thus, the baseline-correction b combines the corrections cg, obtained for each systematic,
and applies the correction once (instead of three times) to the baseline value yg. This is
done for every bin ¢ and component ¢ € {ve,v,, V-, UNC, it}, resulting in the factor b in
Equation 6.5. Moreover, the factor ¢, is removed from each parametrization ps, such that
ps(zg) = 1.0 is obtained at the baseline value x§.

Note that the resulting corrections b.; are small and tested to have only minor impact on the
result in Chapter 8. However, in previous studies with much smaller Monte Carlo samples
(and thus larger corrections dys), combining the baseline correction factors ¢ lead to a
substantial improvement in describing statistically independent Monte Carlo compared to
the three-times (over-correcting) method.
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Systematic Parameters

H.1

Systematic Data Samples

The following two tables summarize the Monte Carlo (MC) samples used to parametrize the
detector systematics in Section 6.3.5. The neutrino samples are listed in Table H.3, while
the atmospheric muon samples are listed in Table H.4.

The neutrino samples are labelled by the sample ID, introduced in Section 4.2.1. The
letter X € {2,4,6} indicates the separate samples for electron, muon and tau neutrinos,
respectively. Moreover, each set comprises ~ 70% neutrinos and ~ 30% anti-neutrinos.

Table H.3: Systematic samples used to parametrize the detector systematics for neutrinos:
here X in the sample ID represents either 2, 4 or 6 for electron, muon and tau neutrinos,
respectively; the individual columns state the parameters used for the generation of the
samples, while the last column (parametrized) states whether the sample was used for the
parametrization of detector systematics in Section 6.3.5.

sample ID Ncoin  €opt ngat kgivd livetime parametrized

1X640 (baseline) 0%  100% 25 0 30 years yes
1X641 0% 8% 25 0 30 years yes
1X643 0%  94% 25 0 30 years yes
1X644 0%  97% 25 0 10 years yes
1X646 0% 106% 25 0 10 years yes
1X648 0% 112% 25 0 10 years yes
1X660 0% 100% 15 0 10 years yes
1X661 0% 100% 20 0 10 years yes
1X662 0%  100% 30 0 10 years yes
1X663 0% 100% 35 0 10 years yes
1X670 0% 100% 25 2 10 years yes
1X671 0% 100% 25 -5 10 years yes
1X672 0% 100% 25 -3 10 years yes
1X673 0% 100% 25 1 10 years yes
1X674 0% 100% 25 -1 10 years yes
1X640C 100% 100% 25 0 30 years no
NG (NuGen) 0%  99% alter. model 10 years yes

Besides the sample ID, Table H.3 shows the coincident fraction (Neoin), the optical efficiency
(€opt), the hole-ice parameter (L), the high-forward parameter (kfi,) and the Monte
Carlo livetime, used for the simulation of the sample. The final column (parametrization)
states whether the sample was used for the parametrization of the detector systematics in

Section 6.3.5, which is the case for all samples except 1X640C.

The coincident fraction Ny is the fraction of neutrino events that contain a coincident
atmospheric muon event. It is 0% for all samples, except 1X640C, as the standard MC sam-
ples are produced without taking coincident atmospheric muons into account. For 1X640C
a pure sample of coincident events is generated to test their impact on the analysis distribu-
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tion. From the rates of neutrinos and atmospheric muons, the fraction of coincident events
is naively estimated to be ~ 10% of the data sample.

In Section 7.6, the 1X640C sample is used to derive the Noi, parameter for the template fit.
There, the coincident fraction is found to have no impact on the analysis, since coincident
muons are typically too faint to be seen or removed by one of the veto cuts. As a result,
the coincident fraction is not used in the template fit (cf. Section 7.6).

The atmospheric muon samples are shown in Table H.4 with columns analogous to Table H.3.

Table H.4: Systematic samples used to parametrize the detector systematics for atmospheric
muons with columns analogous to Table H.3.

sample ID €opt L, kP, livetime parametrized
BS (baseline)  99% 25 0 1 year yes
DE1 69.3% 30 0 1 year yes
DE2 79.2% 30 0 1 year yes
DE3 89.1% 30 0 1 year yes
DE4 105% 25 0 3 years yes
HI1 99% 15 0 1 year yes
HI2 99% 20 0 1 year yes
HI3 99% 30 0 1 year yes
HF1 99% 30 -2 1 year yes
HEF2 99% 30 -4 1 year yes

Distributions of Systematic Parameters for Pseudo-Experiments

The one-dimensional distributions of fitted systematic parameters for Pseudo-Experiments
are shown in Figure H.12, H.13 and H.14. The width of each distribution describes the
uncertainty expected from statistical fluctuations. It is driven by two effects: First, the
sensitivity of the analysis towards the given parameter and second the Gaussian prior on
the likelihood from Equation 6.7. If a parameter is used with a prior, the prior width is
indicated by a green shaded band.

The interplay between the prior and the sensitivity of the analysis distribution leads to a
rather non-intuitive effect: If the prior is much stronger than the sensitivity of the Pseudo-
Data, the optimization of the parameter effectively minimizes the likelihood with respect to
the prior. Thus, the parameter distribution becomes very peaked compared to the width
and at the central value of the prior. However, if the prior has almost no impact and the
Pseudo-Data is very sensitive to the parameter, the distribution also becomes very peaked
compared to the prior width.

Thus, a very peaked distribution (compared to the width of the prior) can indicate either a
very strong or a very weak prior with respect to the sensitivity of the Pseudo-Data. Note
that this behavior changes, if the injected baseline value is different from the central value of
the prior: In that case, the prior and the Pseudo-Data pull the parameter towards different
values, leading to a more complicated picture.

In contrast, the width of the prior is comparably large, if both (the prior and the analysis
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Figure H.12: One-dimensional distributions of systematic parameters (part I) for Pseudo-
Experiments generated for NO (red) and IO (blue); the vertical dashed line indicates the
injected value; for parameters used with a prior in the likelihood fit, the prior is indicated
by a green shaded band.

distribution) constrain the value of the parameter. However, it must obviously be smaller
than the width of the prior for all cases.
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Figure H.13: One-dimensional distributions of systematic parameters (part II) for Pseudo-
Experiments generated for NO (red) and IO (blue); the vertical dashed line indicates the
injected value; for parameters used with a prior in the likelihood fit, the prior is indicated
by a green shaded band.

Note that in Figure H.14, the distributions of the fitted oscillation parameters sin?(fo3) and
Am3; do not peak at their injected values. This is due to the following reasons:
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The colors of the blue and red distributions indicate the injected Neutrino Mass Ordering
for the corresponding Pseudo-Experiments. Thus, each distribution in Am3; (blue and red)
contains a mixture of Pseudo-Experiments, prefering Normal and Inverted Ordering in the
fit. Since the absolute value of Am3; changes, when flipping the NMO, the blue distribution
has a tail to larger values of |Am3,|, caused by the Pseudo-Experiments prefering NO,
although IO was injected. In the same way, the red distribution has a tail to smaller values
of |Am3,|, caused by the Pseudo-Experiments prefering 10, although NO was injected. This
leads to the distributions observed for Am3; in Figure H.14 (right).

For sin?(f23), multiple effects are observed: First, a large fraction of Pseudo-Experiments
gets stuck at the parametric boundary of sin?(653) = 0.5 from maximum mixing. Moreover,
a maximum is observed in both octants, i.e. for sin?(fa3) < 0.5 and sin?(fa3) > 0.5, which is
due to the non-convexity of the parameter space (cf. Section 6.5). Note that the maximum
in both octants is not at the injected value. This is due to the binning of sin?(fs3), instead
of sin(2623) or #a3: Since the injected value is close to maximum mixing, the peak and mean
values of sin?(6a3), sin(26023) and 23 do not correspond to the same mixing angle. As a
result, the peak in sin?(f23) is no unbiased estimator for the injected value, as observed in
Figure H.14 (left).
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Figure H.14: One-dimensional distribution of oscillation parameters sin?(fa3) and Am3, for
Pseudo-Experiments, generated for NO (red) and IO (blue); the vertical dashed line indicates
the injected value for NO and IO; the observed features are discussed in Appendix H.2.

In addition to these one-dimensional distributions, the correlation coefficients between all
systematic parameters are shown in Figure H.15. These correlations are derived separately
from Pseudo-Experiments for NO (upper triangle) and 10 (lower triangle).

Note that all correlation coefficients are within [—0.8, + 0.8, while most coefficients are
substantially smaller. In particular, the atmospheric oscillation parameters feature only
very small correlations with other parameters. Thus, no pair of the parameters is completely
degenerated. Moreover, the correlation coefficients feature the same structure for NO and
10, as one would expect due to the small difference between the orderings.
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Figure H.15: Correlation matrix of systematic parameters obtained from the fits of Pseudo-
Experiments for NO (upper triangle) and 10 (lower triangle); the value in each cell gives
the corresponding correlation coefficient.

Validation of Experimental Fit

Pulls on Analysis Histogram

The pulls on the experimental analysis histogram are defined by the difference between
the observed, experimental bin-content nf;(,f and the total MC prediction ni\fg divided by
the total uncertainty on the bin-content. The indices ¢,j,k describe the three-dimensions
in reconstructed energy, zenith-angle and PID. The total uncertainty is given by the dom-

inant Poissonian error 4 /n%[,g and the minor uncertainty on the MC template a%[f (cf.
Section 6.4), while both are combined quadratically in the denominator, such that
exp MC
n.. —n"
pullj;, = BZZ zﬁc - (1.6)
nyy + (055)

The sum over all pulls is conventionally taken as goodness-of-fit estimator for DeepCore
analyses, as discussed in Section 8.1. Moreover, the one-dimensional distribution of pulls
is shown in Figure 1.16 (left) as black histogram. For comparison, a Gaussian distribution
with mean p = 0 and standard deviation o = 1 is shown as a blue curve on top.

As expected, the pulls follow a nearly Gaussian behavior. Note that a small skewness, tilting
the peak to the left-hand-side, is expected for these pulls, as the actual distribution of the
bin-content is nearly Poissonian, instead of Gaussian. Moreover, the width of the pulls is
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Figure 1.16: Left: distribution of observed pulls in analysis distribution (black histogram),
compared to a standard Gaussian distribution (blue curve) with mean value p = 0 and
standard deviation ¢ = 1; right: corresponding distribution of squared pulls X%in, compared
to a x2-distribution with nges = 1.

expected to be slightly below o = 1, due to the fit of the systematic parameters.

In Figure .16 (right), the corresponding distribution of squared pulls 2, is shown as black
histogram and compared to a y?-distribution with a scale parameter of ngqof = 1, which
is shown on top as a blue curve. The agreement of the pulls with the y2-distribution is
tested in a Komarov-Smirnov-Test (KS-Test) [157], which tests for unexpected over- and
undershooting of the observed values in any region of the distribution, independent of the
bin-edges. The resulting p-value of pxs = 82.1% is well-compatible with the background
expectation.

Overall, the observed fluctuations on the experimental distributions agree well with the total
Monte Carlo template within the statistical uncertainties.

Finally, the full three-dimensional distribution of pulls is shown in Figure 1.17. For all PID
bins, the statistical fluctuations are clearly visible. To check whether any observed cluster
of over- or underfluctuations is inconsistent with the statistical expectations, an additional
test is applied.

To do this, a two-dimensional filter is defined by two integers 7,7 = 1, ..., 10. These integers
describe a two-dimensional window that is moved over the analysis distribution, aggregating
the bin-content of all bins within the filter. The filter width is given by the number of bins
¢ and j in energy and zenith-angle, respectively. Obviously, for each PID bin with N x N
bins in energy and zenith-angle, the number of possible filters is (N + 1 — i) x (N +1 — j)
with V = 10 for this case. For example, for ¢ = j = 1, each bin is tested individually, such
that the number of tested filters (N +1 — ) x (N + 1 — ) = 100 is the number of energy
and zenith bins in each PID bin. In contrast, for ¢ = j = 10 all 100 bins are aggregated,
such that only (N +1—14) x (N +1— j) = 1 single filter is tested. Note that the aggregated
bin-content from adjacent filters is in general highly correlated.
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(marked by black, dashed line).

For every filter size ¢ x j, the maximum excess from all (N +1 —1i) x (N + 1 — j) filters is
calculated for the experimental distribution in Figure 1.17.

The same procedure is applied to Pseudo-Experiments. Thus, for each filter size i x j the
observed values in data can be assigned a p-value derived from the distribution of excesses
seen in Pseudo-Experiments. Finally, the most significant p-value of all filter sizes ¢ x j is
taken as the most significant deviation observed in the data distribution.

For the pulls shown in Figure 1.17, the most significant excess is found for a 3 x 3 filter
in the transition bin for cos(6,°°°) € [—0.5, — 0.2] and log;o(E}°°/GeV) € [1.1,1.4] (filter
marked by a black, dashed line). The aggregated excess in this filter corresponds to a
~ 4.2 0 deviation. The p-value of observing such excess in a 3 x 3 filter anywhere in the
two-dimensional distribution is ~ 0.1%. The p-value to observe such excess in any filter
size i x j is 2.4%. The p-value of observing such excess in any filter of any size in any
PID bin is calculated to 7.1%. Thus, although the p-value is still small compared to other
goodness-of-fit estimators, it is still compatible with a rare statistical fluctuation.

In addition to the above test, the data events populating these 9 bins of the analysis distri-
bution were tested for unexpected behavior in any of the control distributions. However, no
suspicious behavior of these data events was found, that could indicate a systematic bias.

Finally, the excess is found in an off-signal region, i.e. in a region that does not show a strong
signature for determining the NMO (cf. Figure 6.2). To assure that the NMO measurement
is not affected by this excess, the corresponding 3 x 3 bins were masked in the likelihood
calculation (i.e. removed from the sum over all bins in Equation 6.7) to derive a fit of
the NMO without these events being included. The resulting best-fit remains in the left
octant of the NO hypothesis, while the value of LLHxo_10 changed by —0.072 (—19%), i.e.
increasing the preference for NO over 10 slightly. Thus, even if the nature of the observed
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excess was systematic and not statistical, it would be unlikely to affect the NMO result.
Still, it seems reasonable to look for a similar behavior in future data.

Two-Neutrino Fit

The experimental result is tested for unphysical behavior in the mixing angle 63. This is
done by fitting the two-flavor approximation from Equation 2.26 to experimental data. For
this, sin(26,,) is treated as free parameter without boundaries. More specifically, it is al-
lowed to take values sin(26y,) > 1, which is not compatible with any mixing angle 65, = 6a3.
However, this is done for the following reason: The term sin?(26s,) in Equation 2.26 scales
the effect of muon neutrino disappearance. Thus, sin?(263,) = 1 is the maximum disap-
perance observable, that is compatible with standard oscillations. In case the background
is overestimated in Monte Carlo, this can lead to more disappearance being observed than
expected for sin(26s,) = 1. Additionally, sin(26s,) > 1 can be fitted due to statistical fluc-
tuations without any bias in the fitted background templates. Thus, if sin(26y,) is fitted
significantly into the unphysical region of sin(26s,) > 1, this is an indication for a mismod-
elling of the non-oscillating background.

80
— true NO

Figure 1.18: Mixing angle 65, ob- m70 """ c():i;\_lfvdo)
tained from the fit of two-flavor vac- <60
uum oscillations (cf. Section 2.3.2), §50
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dicates the observed value and 'S 40
the background distributions is ob- g 30
tained from Pseudo-Experiments, S
generated with the best-fit parame- 320
ters in the NO hypothesis, but fitted * 10
in the simplified, two-flavor model.
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sin(20,,)

The resulting best-fit value for sin(26s,) is shown in Figure 1.18 as vertical, dashed, black
line. To test whether the observed shift is compatible with standard oscillations, best-fit
Pseudo-Experiments for NO are generated and fitted in the two-flavor approximation. The
resulting distribution is shown in the background of Figure 1.18. The resulting p-value for
the observed data is 19.1%, which is well-compatible with standard oscillations. Thus, no
indication for a mismodelling of the non-oscillating background is found by an unphysical
fit of the two-flavor approximation.

Additional Tests of Unfitted Systematic Influences

Besides the systematic uncertainties that were discussed in Section 6.3 and 7.6, additional
systematic influences were investigated that were not parametrized.

These additional tests are briefly summarized in the following and test the effects from:
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e absorption and scattering in the bulk-ice,

e deviations in the optical properties of the hole-ice,

o variations in the properties of the bubble-column (cf. Section 3.4),

o fitting with and without KDE template generation and baseline correction,
e injection and fit of distributions from independent Monte Carlo.

The impact of the uncertainties on the optical bulk-ice properties were tested in two ways.
First, neutrino simulations were produced with an updated bulk-ice model, called Spice 3.2.1.
The corresponding GENIE samples were injected into the fitter and fitted with the baseline
bulk-ice model. The differences in the depth-dependent scattering and absorption properties
of the two models are on the < 3% level. For these fits, no notable pull on any systematic
parameter was found, while the correct NMO and octant was recovered, independent of the
injected NMO.

Second, systematic samples were generated with modified absorption and scattering prop-
erties of the ice. To do this, the scattering/absorption coefficients were varied by +10%/0%,
0%/ + 10% and —7%/ — 7%. Since these sets became available only after the unblinding of
the presented analysis, they were not included in the list of fitted parameters. Instead, their
impact on the analysis was tested after the presented analysis was finalized:

As the systematic samples for absorption and scattering were not produced on-axis (i.e. the
absorption and scattering coefficients were varied at the same time), the parameters could
not be parametrized independently, as done in Section 6.3. Instead, all detector systemat-
ics were parametrized in a five-dimensional hyperplane, where the bulk-ice properties were
represented by two parameters APUE and APRK for the scattering and absorption properties
of the bulk-ice, respectively. However, both parameters were found to deviate in the data
fit by only ~ 1% from the baseline value, which is consistent with uncertainties stated by
the Calibration Group of the IceCube Collaboration, but substantially smaller than the
assumed (conservative) prior of 10%. As a result, no change in the observed ordering or

octant was found and the original, unblinded result was kept unchanged.

Concerning the parametrization of the hole-ice properties, an alternative ice-model was pre-
viously used for the generation of GENIE Monte Carlo, which is commonly called H2 [100].
However, this model was consistently found to give worse agreement between data and MC
in several independent analysis. Thus, it was dropped at an early stage of this analysis.

Moreover, the impact of the existence of a bubble-column in the hole-ice was investigated
at an early stage of this analysis and similar analyses. It was found that all models that
could lead to a flip of the NMO could be excluded by bad data-Monte-Carlo agreement in
the analysis or one of the control distributions.

Finally, it was tested that the preference for NO and IO is independent of the usage of KDEs
(cf. Appendix 6.2.1) and the baseline correction (cf. Appendix G). Thus, even a fit using
no baseline correction and no KDE to estimate the MC templates would recover the NO
preference shown in this work. The same could be shown for splitting the MC sample into
two samples of equal size and using one half for injecting an analysis template and one half
for fitting it. There, the injected NMO could be recovered with independent MC for both
ordering hypotheses.
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