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Abstract. In this talk we first discuss total cross sections for the system n-12C
in the incident energy range 20-500 MeV, calculated with a phenomenological
optical potential and the optical model. We compare with calculations done
with the eikonal model using the same potential and a single folding potential
in the optical limit. Several single folding potentials are obtained using 12C
densities from different models. These potentials are sensitive to the density
used and none of them reproduces the characteristics of the phenomenological
potential nor the cross section results. We then discuss nucleus-nucleus poten-
tials and reaction cross sections for some projectiles on 12C within the eikonal
formalism. We find that single folded projectile-target imaginary potentials and
double folded potentials can produce similar energy dependence of the reac-
tion cross sections but the single folding results agree better with experimental
data provided the radius parameter of the phenomenological n-target potential
is allowed to be energy dependent. We conclude that a single folding nucleus-
nucleus potential build on a phenomenological nucleon-nucleus potential can
constitute an interesting and useful alternative to double folding potentials.

1 Introduction

Realistic nuclear reaction cross-section models are an essential ingredient of reliable heavy-ion transport
codes [1]. The therapeutic use of heavy ions, such as carbon, has gained significant interest due to
advantageous physical and radiobiologic properties compared to photon based therapy [2]. Also in
reactor physics data and models of reaction cross sections are of fundamental importance [3].

Two of the most used targets for measurements of total reaction cross sections and nuclear breakup
with ’normal’ and radioactive ion beams (RIBs), are 9Be and 12C. Most recently exotic nuclei close to
12C, such as 12N, 11C and 10C have been proposed for radiation therapy [4]. From the point of view of
theoretical calculations, while the optical model (OM) and coupled-channel (CC) model are certainly
the most accurate ways to obtain numerical reaction cross sections, the Glauber model [5] with folded
potentials (f.p.) [6, 7], has also been used for many years [8, 9] and its results compared to data. Since
the beginning of physics with RIBs the method has become very popular for its simplicity in deducing
density distributions of exotic nuclei and their root mean square radii (r.m.s.) [10–18] and the core-
target survival probability in knockout reactions [19]. Indeed from the time of the introduction of f.p.
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Satchler [7] suggested that caution should be taken with the model, in particular when applied to obtain
the imaginary part of the optical potential. A known drawback of imaginary folded potentials is that
they are often too absorptive in the internal part while being too shallow on the surface. This can be
a problem for exotic nuclei which are often very diffuse due to the anomalous N/Z ratios and present
phenomena such as neutron halo and neutron skin. In studying the energy dependence of reaction cross
sections several groups have tried to modify some of the ingredients of the double folded potential in the
attempt to improve the performances of the model. For example in Ref. [12] the average neutron-proton
(np) and proton-proton (pp) cross sections were modified, while in Ref. [18] the range parameter β of
the effective (nn) and (np) interaction were fitted. A very detailed study of the dependence of reaction
cross section calculations on the parameters of the folded potential was done in the seminal paper Ref.
[21] while Ref. [22] dealt with Pauli blocking and medium effects in nucleon knockout. In general
double folded potentials need to be corrected to take into account medium effects beyond the simple nn
interaction.

More fundamental, microscopic approaches have been followed by several authors, see Ref. [23]
for a recent, exhaustive review. For nucleon-nucleus (nN) potentials ab-initio methods have reached a
quite high degree of accuracy [24–27]. On the other hand nN potentials [29] and nucleus-nucleus (NN)
potentials Ref. [30–33] and other works by the same authors are based on a microscopic, complex
g-matrix and then either a single folded or a double folded model is constructed. In the following we
will discuss further these approaches and their results in comparison with ours.

In order to improve the calculations of NN folded potentials Satchler and Love [6] proposed single
folded potentials obtained by folding a phenomenological nucleon-nucleus interaction with the den-
sity of the other colliding nucleus. The authors of Ref. [35] applied this idea by using the Bruyères
Jeukenne-Lejeune-Mahaux (JLMB) model [36, 37] for the potentials folded with various projectile den-
sities. The method from Ref. [16] called MOL, for modified optical limit can also be interpreted as a
special kind of the single folded procedure that we will discuss in Eq. (4). In Ref. [16] an effective nN
profile function was introduced which acts as the nN optical potential does in the single folded model.
On the other hand, in Ref. [38] thanks to the existence of an almost continuous series of neutron-9Be
data as a function of the neutron incident energy, a phenomenological and a Dispersive Optical Model
(DOM) optical potentials were introduced for the system neutron-9Be which were able to reproduce at
the same time the total, elastic and reaction cross sections and all available elastic scattering angular
distributions. Then using one of those potentials denoted as (AB) and defined in Eq. (1) a single folded
(light)-nucleus-9Be imaginary optical potential was derived and it was shown that it is more accurate
than a double folded optical potential [39–41] in reproducing NN reaction cross section. Of course one
might wonder whether such results are due to the special nature of 9Be which is itself weakly bound
and strongly deformed. For this reason and to draw more general conclusions we apply in this work
the same (AB) potential to the description of n-12C scattering and calculate by the optical model total
reaction cross sections in the range 20-500 MeV finding excellent agreement with the data. At the mo-
ment we do not attempt to fit the low energy resonance region which would need an ad-hoc study in
particular as far as the spin-orbit potential is concerned. Experiments with exotic nuclei studied at en-
ergies larger than about 60-80A. MeV are insensitive to the low energy part on the nucleon-target cross
section. However there is a large bulk of data at relativistic energies larger than 200A. MeV. Also the
BARB experiment at GSI deals with high energy beams [4]. For this reason we have extended the (AB)
potential to fit n-9Be and n- 12C total cross sections above 200 MeV, finding small differences in the two
cases. Folding the newly established n- 12C optical potential with several projectile densities, we will
then construct single folded N-12C potentials. These potentials are necessary to calculate reaction cross
section and deduce from data unknown nuclear densities and r.m.s. radii, as mentioned above. They
could easily be imported in transport codes. Furthermore, they are also necessary in breakup models to
calculate the S-matrices for the core-target and nucleon-target scattering. In the future we plan to apply
the single folded and double folded potentials to a series of exotic nuclei knockout induced reactions
in order to assess their accuracy in reproducing single nucleon breakup absolute cross sections as sug-
gested in [20]. Of course reactions with 12C have been intensively studied in the past, using it both as
a projectile and as a target. Due to length limitation of this paper we do not revise the large bulk of
data and literature but concentrate only on the implications accurate, new potentials might have in basic
studies of reaction cross sections involving exotic and normal projectiles.

Cross sections are calculated with a standard optical model and with the eikonal method using the
phenomenological potential and some n-target single folded potentials. Results for the energy depen-
dence of the total cross sections are compared.

To lend further support to our approach, similarly to what has been done in Refs. [39, 40], we
will calculate the imaginary part of 12C-12C optical potential with the single folded and double folded
methods and discuss their differences. Finally some NN reaction cross section calculations will be com-
pared to experimental values for the systems 12C+12C, 9Be+12C. Given the symmetry of projectile and
target the former system is a particularly interesting test case for the accuracy of the phenomenological
potential approach vs. folded potential.

2 Theoretical Model

The potential considered in this paper has the form

UAB(r, E) = − [VWS (r, E) + iWWS (r, E)] . (1)

The real part of the neutron-target interaction is given by VWS , the usual Woods-Saxon potential

VWS (r) = VR f (r,RR, aR) (2)

Also, the imaginary part takes the form

WWS (r) = Wvol f (r,RI , aI) − 4aIW sur d
dr

f (r,RI , aI). (3)

with f (r,Ri, ai) =
(
1 + e

r−Ri

ai

)−1

and Ri = riA1/3.

The real (AB) potential of Ref. [38] contained also a correction term δV which originates from
surface-deformation effects and represents channels for which a simple Woods-Saxon form is not ap-
propriate. Because such couplings are important only up to around 20 MeV and here we are not inter-
ested in this low energy region for the present applications on 12C we shall take δV=0. For the same
reason the spin-orbit term will be neglected. The parameters of UAB(r, E) for the n-12C interaction used
in this paper are given in Table I.

Table 1. Energy-dependent optical-model parameters of the potential n-12C for E ≥160 MeV, where
E=Elab. At lower energies, the parametrization is the same as for 9Be from Ref. [38]. aR=0.288fm at

all energies

E VR rR W sur Wvol

( MeV) ( MeV) (fm) ( MeV) ( MeV)

160 ≤ E <200 31.304 − 0.145E 1.647 − 0.005(E − 5) 12.7 − 0.025(E − 160) 4.8 − 0.025(E − 160)

200 ≤ E <215 " " 11.7 3.8

215 ≤ E <220 0 " " "

220 ≤ E ≤ 500 " 0.1 11.7 + 0.02(E − 220) 3.8 + 0.02(E − 220)

Table 2. Energy-dependent optical-model parameter rI for the potential for n+12C used in calculations
of single folded NN potentials.

E ( MeV) 30≤ E ≤160 E >160

rI(fm) 1.32 − 0.0013E 1.118
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We consider also a single folded [7, 35] n-target potential UnT
ρ defined as:

UnT
ρ (r) = −1

2
ℏvσnn(1 − iαnn)ρT (r) (4)

Where ρT (r) is the target density function for which we will use a number of different models as
specified in the following, σnn is the average of the experimental neutron-proton and proton-proton
cross sections and αnn is the ratio of the real and imaginary scattering amplitude at zero degrees. v is
the classical relative motion velocity of the scattering. The previous equation can be generalized in a
obvious way in order to distinguish between the proton and neutron densities and the proton-neutron
and proton-proton cross sections, using: ρP = ρ

n
P + ρ

p
P, and UnT

ρ (r) = − 1
2ℏv[σnp(1 − iαnp)ρp

T (r) +
σpp(1− iαpp)ρn

T (r)]. This is the formalism followed in the present work. Here we are assuming a zero-
range nucleon-nucleon interactions and the values of σnn and αnn will be taken from the parametrization
of Refs. [11, 14, 22].

In the case of NN scattering we will discuss potentials UNN , negative defined as

UNN(r) =
∫

db1UnN(b1 − b, z)
∫

dz1 ρ(b1, z1). (5)

This quantity is the single folded optical potential given in terms of a nN optical potential UnN(r)
and the matter density ρ(b1, z1) of the other nucleus. In the single-folding method, UnN(r) can be a
phenomenological nucleon-target potential, Eq. (1), such as the (DOM) or the (AB) potentials of Ref.
[38]. In the double folded method, UNN is obtained from the microscopic densities ρP,T (r) for the
projectile and target respectively and an energy-dependent nucleon-nucleon (nn) cross section σnn, by
using Eq. (4) for UnN with the notation T=N in Eq. (5). For simplicity, we refer the readers to Ref.
[39, 40] for a review of the eikonal formalism [5] including the well known formulae for the reaction
cross section, phase shift, and S-matrix.

1 10 100 1000
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1

σ to
t(b

)

calc
9Be data
calc
12C data
12C DOM ->9Be

100 200 300 400 500 600
Einc (MeV)

0.1
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calc opt mod 
calc eik pot Eq. (4) 
calc eik pot table 2

Figure 1. (Color on line) [LHS] Total experimental and calculated cross sections. Lower blue curve for
n+9Be, upper red curve for n+ 12C. The optical model calculations are given by the orange and cyan
dashed lines, respectively. The solid green line is a calculation made with a (DOM) potential obtained
for n+12C and applied to n+9Be [43]. [RHS] Total experimental and calculated cross sections for n+
12C. Red curve for the data. Blue full curve and green double-dotted-dashed line are results of optical
model and eikonal calculations respectively, with the potential Eq. (1-3) and Table 1. The orange dot-
dashed line is the eikonal calculation with the single folded potential Eq. (4).

3 Results

We start by showing in Fig. 1 [LHS] the energy dependence of the reaction cross section calculated with
an optical model code using the potential defined by Eq. (1-3) and the parameters given in Table 1 for
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Figure 2. (Color online) [LHS] n+12C potentials calculated with various model densities at 300 MeV,
see legend and text. The blue line is the potential deduced from the profile function of Ref. [16].
The magenta thick curve is the phenomenological potential of Eq. (1-3) and Table 1. [RHS] Total
experimental and calculated cross sections for n+ 12C. The red curve represents the experimental values
[42]. Blue curve is the calculation by the optical model with the phenomenological potential. The other
curves are calculations using the single folded. potential Eq. (4) and Fig. 2 [LHS] using fixed αnn

values in Eq. (4) appropriate for 300 MeV. The brown dashed curve labelled as HFB_N uses the energy
dependent αnn from Ref. [11, 14, 22]. Note that they are known only from 40 MeV. See text for details.

Table 3. Comparison of the reaction cross sections of the 12C+12C system. Incident energies are
indicated in the first column. Strong absorption radius parameter within the single and double folding

methods are listed in the third column. The fourth column provides the volume integrals for active
particle. The next columns contain the theoretical cross sections calculated with various densities.

Before each of them are the r.m.s. radii of the corresponding imaginary potentials, some of which are
shown in Fig. 3.

Einc model rs JW/APAT r.m.s σNCS M r.m.s σHF r.m.s σHFB

( MeV) (fm) ( MeVfm3) (fm) (mb) (mb) (mb)

83 single folded 1.2 184 3.72 994 3.75 1008 3.78 1025

double folded 1.22 279 3.29 957 3.36 995 3.43 1027

300 single folded 1.18 151 3.57 760 3.60 768 3.64 780

double folded 1.11 241 3.29 791 3.36 815 3.43 842

n+12C and in Ref. [38] for n+9Be. We show also the experimental data from Ref. [42]. It is interesting
that the experimental data show a clear scaling between the two nuclei, accurately reproduced by the
calculations. Note that the two corresponding potentials have the same radius parameter but different
radii, due to the difference in mass. Otherwise the other parameters differ only above 160 MeV. Ref.
[38] presented also results for n+9Be from a dispersive optical potential (DOM) calculation. (DOM)
potentials exist also for n+12C. Indeed in the same figure the green solid line shows the results obtained
for a 9Be target using the (DOM) obtained for 12C [43]. It is amazing that also for the (DOM) potential
model, the same parametrization can be successfully applied to the two different targets. As it was found
in Ref. [38] for 9Be, the agreement shown here for the 12C target, between data and OM calculations is
remarkable and is comparable to that obtained for example in Ref. [3] where a coupled-channel (CC)
technique was used. Note that also the authors of Ref. [3] stressed a similarity between parametrizations
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methods are listed in the third column. The fourth column provides the volume integrals for active
particle. The next columns contain the theoretical cross sections calculated with various densities.

Before each of them are the r.m.s. radii of the corresponding imaginary potentials, some of which are
shown in Fig. 3.

Einc model rs JW/APAT r.m.s σNCS M r.m.s σHF r.m.s σHFB

( MeV) (fm) ( MeVfm3) (fm) (mb) (mb) (mb)

83 single folded 1.2 184 3.72 994 3.75 1008 3.78 1025

double folded 1.22 279 3.29 957 3.36 995 3.43 1027

300 single folded 1.18 151 3.57 760 3.60 768 3.64 780

double folded 1.11 241 3.29 791 3.36 815 3.43 842

n+12C and in Ref. [38] for n+9Be. We show also the experimental data from Ref. [42]. It is interesting
that the experimental data show a clear scaling between the two nuclei, accurately reproduced by the
calculations. Note that the two corresponding potentials have the same radius parameter but different
radii, due to the difference in mass. Otherwise the other parameters differ only above 160 MeV. Ref.
[38] presented also results for n+9Be from a dispersive optical potential (DOM) calculation. (DOM)
potentials exist also for n+12C. Indeed in the same figure the green solid line shows the results obtained
for a 9Be target using the (DOM) obtained for 12C [43]. It is amazing that also for the (DOM) potential
model, the same parametrization can be successfully applied to the two different targets. As it was found
in Ref. [38] for 9Be, the agreement shown here for the 12C target, between data and OM calculations is
remarkable and is comparable to that obtained for example in Ref. [3] where a coupled-channel (CC)
technique was used. Note that also the authors of Ref. [3] stressed a similarity between parametrizations
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for 9Be and 12C. As we shall see in the following, the advantage of a simple OP approach, with respect
to CC calculations, is that it can easily be used to build folding potentials for nucleus-nucleus scattering
and also it can be used in eikonal and fully quantum-mechanical models [19, 44] of knockout from
exotic nuclei.

In Fig. 1 [RHS] the total experimental cross section for n+ 12C is shown again by the red curve while
the blue full curve and green double-dotted-dashed line are results of the optical model and eikonal
calculations respectively, with the potential Eq. (1-3) and Table 1. The orange dot-dashed line is the
eikonal calculation with the single folded potential Eq. (4). These results indicate that while the simple
eikonal approximation with the phenomenological potential works well from about 100 MeV incident
energy, the eikonal model with the folded potential starts to work well only from about 200 MeV.
Clearly the Glauber and folding models miss some effects of excitation modes in the target, beyond the
simple nn free scattering concept. The optical model with the phenomenological n-T potential includes
instead such effects. In this respect, we first note that the UnT

ρ potential of Eq. (4) has the same range
and profile as the target density because σnn and αnn are simple scaling factors. To understand better this
point Fig. 2 [LHS] shows the imaginary potentials calculated at 300 MeV with the densities indicated
in the legend from references [45]-[46]. Harthree-Fock-Bogoliubov (HFB) densities were calculated
with the code HFBTHO [47] and the Skyrme interaction SkM* [48]. Using other Skyrme interactions
does not produce substantial differences. No-Core-Shell-Model (NCSM) densities were obtained by
using the nn4lo [28] interaction. We provide also the volume integrals per particle and r.m.s. values.
The former (JW /AT ) have all the same values because all densities are normalized to the number of
nucleons. The latter (r.m.s.) have very similar values although in the internal parts the potentials
are quite different. The phenomenological potential is completely different, being very shallow at the
interior and having instead a pronounced surface peak and long tail. Its volume integral is smaller than
that of the single folded potentials while its r.m.s. is quite larger. Indeed Fig. 2 [RHS] shows again
the experimental cross sections as in Fig. 1 but this time besides the optical model calculation with the
phenomenological potential, results of the eikonal approximation with the single folded potentials of
Fig. 2 [LHS] obtained with different densities, are shown. One can notice the small effect of changing
the target density. However, it is interesting to note that the cross section values seem to scale with the
r.m.s. of the potential. This result suggests that only the surface behaviour of the potential (and of the
target density) determines the value of the cross section, and that in turn it is only the r.m.s. radius of
the target density that can be deduced from data, a confirmation of the simple geometrical nature of
the Glauber model. In this figure the calculations shown as HFB_N were made from 40 MeV using
the HFB density and σnn and αnn taken from the parametrization of Refs. [11, 14, 22] (brown dashed
curve), while in the other calculations with various densities we kept αnn fixed at the value appropriate
to 300 MeV just to show the small dependence on the density. Note that a precise evaluation of the
αnn parameters is a delicate issue which to our knowledge has not been fully resolved to date, see in
particular Fig. 4 of [49].

We turn now to the study of nucleus-nucleus scattering by building a double folded potential and
a single folded potential according to Eq. (5). Note that single folded refers to a potential for n-T
scattering, build on the target density Eq. (4), while in the case of NN scattering single folded indicates
a potential build using in Eq. (5) the projectile density and the n-T phenomenological potential Eq. (1).
Double folded refers to a NN potential obtained from Eq. (4) in Eq. (5).

In Fig. 3 a number of such imaginary potentials are shown for the 12C-12C system at 83 and 300
MeV as indicated in the legend. We show double folded potentials obtained with the HF and No-Core-
Shell-Model (NCSM) densities obtained from the nn4lo [28] interaction and single folded potentials
obtained with the potential of Table 2 varying the rI values and the NCSM and HFB densities. We will
see in the following that, in order to reproduce the experimental cross sections, the rI parameter needs
to be energy dependent when the n-T phenomenological potential is used to build up the NN potential.
The double folded potentials shown in the upper panel of Fig. 3 are deeper and with smaller r.m.s. radii
than the single folded potentials which are characterised instead by longer tails and larger r.m.s. values
while their volume integrals are smaller than those of the double folded potentials, see also Table 3. In
the same table the values of calculated reaction cross sections at 83 and 300A. MeV are given. Incident
energies are indicated in the first column, strong absorption radius parameters within the single and
double folded methods using the HFB densities are listed in the third column while the fourth column
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Figure 3. (Color online) Imaginary part of the 12C-12C optical potential at 83 and 300 MeV as indicated
in the legend. The double folded potentials shown are obtained with the HF and NCSM densities. The
single folded potentials are obtained with the potential of Table 2 varying the rI values and the NCSM
and HFB densities. See text for details. The full magenta line with blue dots is the MOL potential
obtained from [16].
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Figure 4. Comparison of experimental reaction cross sections (circles with error bars) and theoretical
values within single folded and double folded potentials (dot-dashed and full lines respectively), for
the scattering of 12C+12C [RHS] and 12C+9Be [LHS]. In both figures the small data points are from
Ref. [12]. In the [RHS] panel the large red points (a) are from Ref. [9]. The magenta dashed lines
in both panels represent the single folded results obtained using a fixed value rI=1.3 fm for the radius
parameter of the imaginary phenomenological optical potential. The dot-dashed lines correspond to an
energy dependent rI . See text for details.

provides the volume integrals for active particle of the imaginary potentials. The next columns contain
the theoretical cross sections calculated with various densities. On the left hand side of each of them are
the r.m.s. radii of the corresponding imaginary potentials shown in Fig. 3. Typically an increase of 5%
in the r.m.s. value results in a similar increase in the calculated reaction cross section, similarly to what
we have noticed for the n-target potential. The values of Table 3 indicate that the volume integrals are
the same for all densities as they are normalized to the number of particles while the r.m.s are different.
However they obviously depend on the energy and on the method used to build the potential. On the
other hand for each double folded potential the r.m.s. are independent of the energy because they are just
determined by the densities. This is consistent with the results of Ref. [40]. The accuracy of our results
can be discussed for example in comparison to Ref. [31, 32]. In that work the data for 12C+12C elastic
scattering were studied at 100A MeV using microscopic coupled-channel calculations with the explicit
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for 9Be and 12C. As we shall see in the following, the advantage of a simple OP approach, with respect
to CC calculations, is that it can easily be used to build folding potentials for nucleus-nucleus scattering
and also it can be used in eikonal and fully quantum-mechanical models [19, 44] of knockout from
exotic nuclei.

In Fig. 1 [RHS] the total experimental cross section for n+ 12C is shown again by the red curve while
the blue full curve and green double-dotted-dashed line are results of the optical model and eikonal
calculations respectively, with the potential Eq. (1-3) and Table 1. The orange dot-dashed line is the
eikonal calculation with the single folded potential Eq. (4). These results indicate that while the simple
eikonal approximation with the phenomenological potential works well from about 100 MeV incident
energy, the eikonal model with the folded potential starts to work well only from about 200 MeV.
Clearly the Glauber and folding models miss some effects of excitation modes in the target, beyond the
simple nn free scattering concept. The optical model with the phenomenological n-T potential includes
instead such effects. In this respect, we first note that the UnT

ρ potential of Eq. (4) has the same range
and profile as the target density because σnn and αnn are simple scaling factors. To understand better this
point Fig. 2 [LHS] shows the imaginary potentials calculated at 300 MeV with the densities indicated
in the legend from references [45]-[46]. Harthree-Fock-Bogoliubov (HFB) densities were calculated
with the code HFBTHO [47] and the Skyrme interaction SkM* [48]. Using other Skyrme interactions
does not produce substantial differences. No-Core-Shell-Model (NCSM) densities were obtained by
using the nn4lo [28] interaction. We provide also the volume integrals per particle and r.m.s. values.
The former (JW /AT ) have all the same values because all densities are normalized to the number of
nucleons. The latter (r.m.s.) have very similar values although in the internal parts the potentials
are quite different. The phenomenological potential is completely different, being very shallow at the
interior and having instead a pronounced surface peak and long tail. Its volume integral is smaller than
that of the single folded potentials while its r.m.s. is quite larger. Indeed Fig. 2 [RHS] shows again
the experimental cross sections as in Fig. 1 but this time besides the optical model calculation with the
phenomenological potential, results of the eikonal approximation with the single folded potentials of
Fig. 2 [LHS] obtained with different densities, are shown. One can notice the small effect of changing
the target density. However, it is interesting to note that the cross section values seem to scale with the
r.m.s. of the potential. This result suggests that only the surface behaviour of the potential (and of the
target density) determines the value of the cross section, and that in turn it is only the r.m.s. radius of
the target density that can be deduced from data, a confirmation of the simple geometrical nature of
the Glauber model. In this figure the calculations shown as HFB_N were made from 40 MeV using
the HFB density and σnn and αnn taken from the parametrization of Refs. [11, 14, 22] (brown dashed
curve), while in the other calculations with various densities we kept αnn fixed at the value appropriate
to 300 MeV just to show the small dependence on the density. Note that a precise evaluation of the
αnn parameters is a delicate issue which to our knowledge has not been fully resolved to date, see in
particular Fig. 4 of [49].

We turn now to the study of nucleus-nucleus scattering by building a double folded potential and
a single folded potential according to Eq. (5). Note that single folded refers to a potential for n-T
scattering, build on the target density Eq. (4), while in the case of NN scattering single folded indicates
a potential build using in Eq. (5) the projectile density and the n-T phenomenological potential Eq. (1).
Double folded refers to a NN potential obtained from Eq. (4) in Eq. (5).

In Fig. 3 a number of such imaginary potentials are shown for the 12C-12C system at 83 and 300
MeV as indicated in the legend. We show double folded potentials obtained with the HF and No-Core-
Shell-Model (NCSM) densities obtained from the nn4lo [28] interaction and single folded potentials
obtained with the potential of Table 2 varying the rI values and the NCSM and HFB densities. We will
see in the following that, in order to reproduce the experimental cross sections, the rI parameter needs
to be energy dependent when the n-T phenomenological potential is used to build up the NN potential.
The double folded potentials shown in the upper panel of Fig. 3 are deeper and with smaller r.m.s. radii
than the single folded potentials which are characterised instead by longer tails and larger r.m.s. values
while their volume integrals are smaller than those of the double folded potentials, see also Table 3. In
the same table the values of calculated reaction cross sections at 83 and 300A. MeV are given. Incident
energies are indicated in the first column, strong absorption radius parameters within the single and
double folded methods using the HFB densities are listed in the third column while the fourth column
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Figure 3. (Color online) Imaginary part of the 12C-12C optical potential at 83 and 300 MeV as indicated
in the legend. The double folded potentials shown are obtained with the HF and NCSM densities. The
single folded potentials are obtained with the potential of Table 2 varying the rI values and the NCSM
and HFB densities. See text for details. The full magenta line with blue dots is the MOL potential
obtained from [16].
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Figure 4. Comparison of experimental reaction cross sections (circles with error bars) and theoretical
values within single folded and double folded potentials (dot-dashed and full lines respectively), for
the scattering of 12C+12C [RHS] and 12C+9Be [LHS]. In both figures the small data points are from
Ref. [12]. In the [RHS] panel the large red points (a) are from Ref. [9]. The magenta dashed lines
in both panels represent the single folded results obtained using a fixed value rI=1.3 fm for the radius
parameter of the imaginary phenomenological optical potential. The dot-dashed lines correspond to an
energy dependent rI . See text for details.

provides the volume integrals for active particle of the imaginary potentials. The next columns contain
the theoretical cross sections calculated with various densities. On the left hand side of each of them are
the r.m.s. radii of the corresponding imaginary potentials shown in Fig. 3. Typically an increase of 5%
in the r.m.s. value results in a similar increase in the calculated reaction cross section, similarly to what
we have noticed for the n-target potential. The values of Table 3 indicate that the volume integrals are
the same for all densities as they are normalized to the number of particles while the r.m.s are different.
However they obviously depend on the energy and on the method used to build the potential. On the
other hand for each double folded potential the r.m.s. are independent of the energy because they are just
determined by the densities. This is consistent with the results of Ref. [40]. The accuracy of our results
can be discussed for example in comparison to Ref. [31, 32]. In that work the data for 12C+12C elastic
scattering were studied at 100A MeV using microscopic coupled-channel calculations with the explicit
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goal to check the effect of repulsive three-body forces. The potential between the colliding nuclei was
determined by the double folding method with three different complex g-matrix interactions, and also
the reaction cross section was calculated. The calculated value which agreed better with the data was
σR = 950 mb, obtained with the MPa interaction [34] and a renormalization factor NW = 0.57 for the
imaginary potential. The MPa interaction includes repulsive three-body forces. It is interesting to note
that with our single folded potential we obtain 969 mb and 953 mb with the HFB and HF densities
respectively, without any renormalization for the potential, while the experimental value is 962 mb.
With the double folded potential and the HFB densities we obtain 980 mb. Also similarly to what is
shown in Fig. 4 and Table 3 for the double folded and single folded potentials at 300 MeV, we find
that at 100 MeV the depth of the double folded potential should be renormalized by a factor 0.4 with
respect to the single folded potential depths to make their values similar. However as noticed at 300
MeV, also at 100 MeV the r.m.s. radii would be very different, namely r.m.s.=3.75 fm and 3.43 fm
for the single folded and double folded potentials respectively. This confirms the fact that a simple
double folded potential calculated according to Eq. (4,5) would be far too absorptive because it does
not contain in-medium effects which instead are partially contained in the microscopic potential of Ref.
[32] thanks to the introduction of the three-body repulsive force. Thus such potentials need a not too
strong renormalization. In light of such microscopic method results, one possible interpretation for our
surface dominated n-T phenomenological potentials which give rise to relatively shallow but "wide"
NN potentials, cf. Figs. 2 [LHS] and 3, is that they contain in a effective way the effects of short range
repulsion pushing most nn interactions to the surface. Another interesting comparison can be done with
the MOL method of Ref. [16], in particular their Eq. (10)

exp (iχ̃OLA(b)) = exp

−


dbρp(b)ΓNT (b + ξ)


could be interpreted as a single folded model in which the factor ΓNT would be the result of the z-
integration of an effective nucleon-target imaginary potential of gaussian shape

WMOL(r) =
1
2
ℏv

σ1
e−r2/2β1

(2πβ1)3/2 + σ2
e−r2/2β2

(2πβ1)3/2



with σ1,2 and β1,2 given by the values in Table I of [16] and ρp given by Eq. (75) and Table 2 of [50].
Such a potential, shown in Fig. 2 [LHS] by the blue line for n+12C shows a repulsive behaviour at very
short distances which could be an effective representation of the short distance repulsion originating in
the three-body terms of the chiral interaction as used for example in [32]. On the other hand in Fig.
3 the full magenta line with blue dots shows the corresponding NN imaginary potential for the system
12C+12C at 300A MeV. It has a volume integral of 184 MeVfm3 and r.m.s=3.48 fm, consistent with
our single folded results of Table 3. In particular we notice the same large distance behaviour as our
best single folded potential. The modifications to the MOL introduced in Ref. [12] might represent an
effective way to obtain the correct energy and radial dependence of their "effective" NT interaction.

From the discussion above it appears that Hartree-Fock and HFB densities are the best to reproduce
the experimental reaction cross section values and indeed they are used in most codes related to exotic
nuclei reactions. In Table 3 we compare results obtained with the NCSM and the HF and HFB densities.
The energies of the scattering and cross sections and other relevant parameters are given. In particular
as a significative parameter we provide also the strong-absorption radius parameter rs extracted from
Rs = rs(Einc)(A

1/3
P + A1/3

T ) where Rs [51, 52], is obtained from the S-matrices as the distance where
| S PT (Rs) |2= 1

2 . The values of this parameter in Table 3 indicate also that the single folded potentials
provide longer range absorption than the double folded potential.

Fig. 4 presents the energy dependence of the calculated and experimental reaction cross sections
[9, 12] for 12C+12C, and 9Be+12C. There are two curves showing results obtained within the single
folded model: one (dot-dashed line), obtained using in the phenomenological imaginary part of the n-T
potential the radius parameter rI which depends on the incident energy according to Table 2, provides
the best agreement with the data while the other (dashed line) obtained with the standard rI=1.3 fm
corresponds to values larger than the data. The full lines are double folded results which are in between
the two single folded curves. What we have found is interesting because it agrees with what has been

discussed in other works like Ref. [12]. Namely it shows that modifications might be necessary in
reaction models when including ingredients which successfully reproduce simpler reactions. In the
case of the double folded model it is evident that not only the idea of a NN reaction being a collection
of nn free reactions is too simple but it is also too simple the single folded description of a collection
of free nucleons interacting with a nucleus via optical model potentials. However, at the moment it
seems that simple, understandable modifications are sufficient to reproduce the data. For example, the
reduction in the radius parameter found useful in our model might indicate that, when a nucleus scatters
from another nucleus, as the energy increases its nucleons interact with those of the other nucleus at
smaller distances than a free nucleon interacts with the nucleons of a nucleus.

4 Conclusions

In this talk we have discussed an excellent phenomenological n-12C optical potential which fits the total
cross sections up to 500 MeV. We have also single folded it with various projectile densities and have
studied the systems 12C+12C, 9Be+12C finding that the energy dependence of the reaction cross section
data can be fitted introducing a simple energy dependence in the radius parameter of the imaginary n-
target potential. Single folded potentials have also been calculated and it has been shown once again that
they are too deep and too "narrow". On the other hand we have shown that the MOL method to calculate
phase shifts in which nucleon-target multiple scattering effects are taken into account provides potentials
with characteristics similar to ours. The general conclusion of our study is then that it is necessary that
the imaginary part of microscopic and/or semi-phenomenological optical potentials contains higher
order and in medium effects. Also it would be useful to study further the importance of short range
repulsion and the effect of the three-body force which might be at the origin of the necessary reduction
of the strength of the potential at short distances. As a next step we intend to apply our single folded
method to the evaluation of the S-matrices necessary in the eikonal formalism of nuclear breakup.
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goal to check the effect of repulsive three-body forces. The potential between the colliding nuclei was
determined by the double folding method with three different complex g-matrix interactions, and also
the reaction cross section was calculated. The calculated value which agreed better with the data was
σR = 950 mb, obtained with the MPa interaction [34] and a renormalization factor NW = 0.57 for the
imaginary potential. The MPa interaction includes repulsive three-body forces. It is interesting to note
that with our single folded potential we obtain 969 mb and 953 mb with the HFB and HF densities
respectively, without any renormalization for the potential, while the experimental value is 962 mb.
With the double folded potential and the HFB densities we obtain 980 mb. Also similarly to what is
shown in Fig. 4 and Table 3 for the double folded and single folded potentials at 300 MeV, we find
that at 100 MeV the depth of the double folded potential should be renormalized by a factor 0.4 with
respect to the single folded potential depths to make their values similar. However as noticed at 300
MeV, also at 100 MeV the r.m.s. radii would be very different, namely r.m.s.=3.75 fm and 3.43 fm
for the single folded and double folded potentials respectively. This confirms the fact that a simple
double folded potential calculated according to Eq. (4,5) would be far too absorptive because it does
not contain in-medium effects which instead are partially contained in the microscopic potential of Ref.
[32] thanks to the introduction of the three-body repulsive force. Thus such potentials need a not too
strong renormalization. In light of such microscopic method results, one possible interpretation for our
surface dominated n-T phenomenological potentials which give rise to relatively shallow but "wide"
NN potentials, cf. Figs. 2 [LHS] and 3, is that they contain in a effective way the effects of short range
repulsion pushing most nn interactions to the surface. Another interesting comparison can be done with
the MOL method of Ref. [16], in particular their Eq. (10)

exp (iχ̃OLA(b)) = exp

−


dbρp(b)ΓNT (b + ξ)


could be interpreted as a single folded model in which the factor ΓNT would be the result of the z-
integration of an effective nucleon-target imaginary potential of gaussian shape
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with σ1,2 and β1,2 given by the values in Table I of [16] and ρp given by Eq. (75) and Table 2 of [50].
Such a potential, shown in Fig. 2 [LHS] by the blue line for n+12C shows a repulsive behaviour at very
short distances which could be an effective representation of the short distance repulsion originating in
the three-body terms of the chiral interaction as used for example in [32]. On the other hand in Fig.
3 the full magenta line with blue dots shows the corresponding NN imaginary potential for the system
12C+12C at 300A MeV. It has a volume integral of 184 MeVfm3 and r.m.s=3.48 fm, consistent with
our single folded results of Table 3. In particular we notice the same large distance behaviour as our
best single folded potential. The modifications to the MOL introduced in Ref. [12] might represent an
effective way to obtain the correct energy and radial dependence of their "effective" NT interaction.

From the discussion above it appears that Hartree-Fock and HFB densities are the best to reproduce
the experimental reaction cross section values and indeed they are used in most codes related to exotic
nuclei reactions. In Table 3 we compare results obtained with the NCSM and the HF and HFB densities.
The energies of the scattering and cross sections and other relevant parameters are given. In particular
as a significative parameter we provide also the strong-absorption radius parameter rs extracted from
Rs = rs(Einc)(A

1/3
P + A1/3

T ) where Rs [51, 52], is obtained from the S-matrices as the distance where
| S PT (Rs) |2= 1

2 . The values of this parameter in Table 3 indicate also that the single folded potentials
provide longer range absorption than the double folded potential.

Fig. 4 presents the energy dependence of the calculated and experimental reaction cross sections
[9, 12] for 12C+12C, and 9Be+12C. There are two curves showing results obtained within the single
folded model: one (dot-dashed line), obtained using in the phenomenological imaginary part of the n-T
potential the radius parameter rI which depends on the incident energy according to Table 2, provides
the best agreement with the data while the other (dashed line) obtained with the standard rI=1.3 fm
corresponds to values larger than the data. The full lines are double folded results which are in between
the two single folded curves. What we have found is interesting because it agrees with what has been

discussed in other works like Ref. [12]. Namely it shows that modifications might be necessary in
reaction models when including ingredients which successfully reproduce simpler reactions. In the
case of the double folded model it is evident that not only the idea of a NN reaction being a collection
of nn free reactions is too simple but it is also too simple the single folded description of a collection
of free nucleons interacting with a nucleus via optical model potentials. However, at the moment it
seems that simple, understandable modifications are sufficient to reproduce the data. For example, the
reduction in the radius parameter found useful in our model might indicate that, when a nucleus scatters
from another nucleus, as the energy increases its nucleons interact with those of the other nucleus at
smaller distances than a free nucleon interacts with the nucleons of a nucleus.

4 Conclusions

In this talk we have discussed an excellent phenomenological n-12C optical potential which fits the total
cross sections up to 500 MeV. We have also single folded it with various projectile densities and have
studied the systems 12C+12C, 9Be+12C finding that the energy dependence of the reaction cross section
data can be fitted introducing a simple energy dependence in the radius parameter of the imaginary n-
target potential. Single folded potentials have also been calculated and it has been shown once again that
they are too deep and too "narrow". On the other hand we have shown that the MOL method to calculate
phase shifts in which nucleon-target multiple scattering effects are taken into account provides potentials
with characteristics similar to ours. The general conclusion of our study is then that it is necessary that
the imaginary part of microscopic and/or semi-phenomenological optical potentials contains higher
order and in medium effects. Also it would be useful to study further the importance of short range
repulsion and the effect of the three-body force which might be at the origin of the necessary reduction
of the strength of the potential at short distances. As a next step we intend to apply our single folded
method to the evaluation of the S-matrices necessary in the eikonal formalism of nuclear breakup.
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