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Abstract

Future space based gravitational wave detectors, such as the Laser Interferometer Space Antenna (LISA)
will allow for the detection of previously undetectable gravitational wave sources. These include extreme
mass ratio inspirals (EMRIs) which consist of a stellar mass compact object spiralling into a massive black
hole (MBH) due to gravitational radiation reaction. These sources are of particular interest for their
ability to accurately map the spacetime of the MBH, allowing for unprecedentedly accurate measurements
of the MBH's mass and spin, and tests of general relativity in the strong field regime. In order to reach
the science goals of the LISA mission, one requires waveform models that are (i) accurate to within a
fraction of a radian, (ii) extensive in the source's parameter space and (iii) fast to compute, ideally in
less than a second. This thesis focuses on the latter criteria by utilising techniques that will speed up
inspiral trajectory calculations as well as extending prior models to include the MBH's spin.

To this end, we develop the first EMRI models that incorporate the spin of the MBH along with
all effects of the gravitational self-force (GSF) to first order in the mass ratio. Our models are based
on an action angle formulation of the method of osculating geodesics (OG) for generic inspirals in Kerr
spacetime. For eccentric equatorial inspirals and spherical inspirals, the forcing terms are provided by
an efficient pseudo-spectral interpolation of the first order GSF in the outgoing radiation gauge. For
generic inspirals where sufficient GSF data is not available, we construct a toy model from the previous
two models. However, the OG method is slow to evaluate due to the dependence of the equations of
motion (EOM) on the orbital phases. Therefore, we apply a near-identity (averaging) transformation
(NIT) to eliminate all dependence of EOM on the orbital phases while maintaining all secular effects to
post-adiabatic order. This inspiral model can be evaluated in less than a second for any mass-ratio as
we no longer have to resolve all ~ 10° orbit cycles of a typical EMRI. This work marks the first time
this technique has been applied in Kerr spacetime for eccentric, spherical, and generic inspirals.

In the case of a non-rotating MBH, we compare eccentric inspirals evolved using GSF data computed
in the Lorenz and radiation gauges. We find that the two gauges produce differing inspirals with a
deviation of comparable magnitude to the conservative GSF correction. This emphasizes the need to
include the (currently unknown) second order GSF for gauge independent, post-adiabatic waveforms.

For spherical orbits, we perform a second averaging transformation to parametrise the averaged EOM
in terms of Boyer-Lindquist time instead of Mino time, which is much more convenient for LISA data
analysis. We also implement a two-timescale expansion of the EOM and find that both approaches yield
self-forced inspirals can be evolved to sub radian accuracy in less than a second. We further improve
our spherical inspiral model by incorporating high precision gravitational wave flux calculations and find
that without making this modification, the final waveform would be out of phase by as much as 10 — 10*
radians for typical LISA band EMRIs.

For generic inspirals, one can encounter transient orbital resonances where the standard NIT pro-
cedure breaks down. We use the standard NIT when far from these resonances and then we average
all phases apart from the resonant phase when in their vicinity. This results in the fastest model to
date which includes includes all resonant effects. Our preliminary results demonstrate that accurately
modelling only the two lowest order resonances costs 10s of seconds for a typical EMRI, but the resulting
waveforms are sufficiently accurate for LISA data science.
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Chapter 1

Introduction

1.1 Gravitational Waves

On the 14th of September 2015, the the LIGO-VIRGO Collaboration (LVC) made the first ever detection
of a gravitational wave and ushered in a new era of astronomy [2]. No longer would astronomers have
to rely on electromagnetism or neutrinos to probe the universe, but now they could use the ripples in the
fabric of spacetime itself. Albert Einstein's theory of General Relativity (GR) predicts that any object
with mass is capable of producing such rippIesE], which cause intervals in space to stretch and compress
as they pass by [3]. Due to the weakness of gravity compared to the other fundamental forces, only the
most violent gravitational events are detectable by the time they reach Earth, such as those produced
by the merging of celestial objects with masses of the same order of magnitude as our sun, like black
holes and neutron stars.

Now, seven years later, such observations are almost commonplace with the most recent observing
runs, O3A and O3B, reporting a new candidate roughly once a week. With 90 confirmed detections
catalogued thus far [4-6], we have obtained an unprecedented insight into the nature of compact binary
coalescences (CBCs) [7] and have performed the most rigorous tests of GR in the strong field to date [8].

Current ground based detectors like LIGO, VIRGO and Kagra, are only sensitive to gravitational waves
between 10Hz and 10kHz and future detectors like the Einstein Telescope [9] and Cosmic Explorer [10]
may be able to push this lower bound down to 1-5Hz. However, detecting lower frequency gravitational
waves with such detectors is difficult, largely due to the noise produced by the seismic activity of the
Earth. This is the motivation for space based gravitational wave detectors such as the Japanese Aerospace
Exploration Agency's (JAXA) DECIGO mission [11], the Chinese TianQin [12] and Teiji [13] missions
and the European Space Agency’s (ESA) Laser Interferometer Space Antenna (LISA) [14], all proposed
to be launched in the 2030s. The former will be sensitive to gravitational waves between 0.1 Hz and 10
Hz, while the latter three will be sensitive to gravitational waves between 0.1 mHz and 1 Hz. This will
allow us to detect gravitational waves from a variety of hitherto unseen sources such as the cosmological
background, binary stars within the Milky Way and binaries with a total mass in the range of millions of
solar masses [15].

Models of the gravitational waveforms from these sources will play a vital role in their detection, so
long as the models can meet three important requirements. Firstly, they should be accurate enough so
that systematic biases do not impact the scientific insights one draws form the data. Secondly, they
should cover the wide variety of possible configurations for the source i.e. be extensive in the source’s
parameter space. Finally, data analysis techniques require a large number of waveforms to be computed,

IMore specifically, the object must be accelerating in a way that is not spherically or rotationally symmetric. As such, the
object’s quadrupole moment and the second time derivative thereof must be non-zero for it to emit gravitational radiation.



(a) The shadow of a Sgr A* (b) The shadow of M87.

Figure 1.1: Latest images from the Event Horizon telescope of the shadows of Sgr A* and M87. (Credit:
EHT Collaboration)

either beforehand to produce a waveform template bank or on the fly, and so these models must be fast
to evaluate. The goal of this work is to meet the third requirement, without sacrificing the other two,
when modelling waveforms from one particular LISA source, extreme mass ratio inspirals.

1.2 Extreme Mass Ratio Inspirals

Extreme mass-ratio inspirals (EMRIs) are systems which consist of a stellar mass compact object of mass
b spiralling into a massive black hole of mass M. These systems are characterised by their extremely small
mass ratio, typically between 10~* and 10~7. Unlike the signals detected by ground-based detectors,
EMRIs will radiate in the LISA frequency band for up to hundreds of thousands of orbital cycles [16].
They are also expected to be eccentric and precessing, resulting in multi-year long waveforms with rich
and intricate morphologies [17].

1.2.1 Astrophysical Motivation

To motivate this work, let us consider how likely it is to find such a system in nature. One requires a
massive black hole (MBH) with a mass of order 10° — 108 times the mass of the sun (M) to act as
the primary. Observational evidence suggests that massive dark compact objects can be found at the
centre of most bright galaxies [18,[19]. This includes our own Milky Way, where the behaviour of stars
at the centre of our galaxy indicates the presence of a dark compact object, Sgr A*, with a mass of
4.4 x 105M, [20,21]. Moreover, as shown in Fig. the Event Horizon Telescope released images of
the shadows of Sgr A* and the compact object at the heart of galaxy M87; both of which are consistent
with the shadows cast by astrophysical black holes [22,123]. As such, we have strong evidence for the
existence of massive compact objects and have good reasons to accept the hypothesis that they can be
described using the black hole solutions of GR [24].



One also requires a secondary with a mass of ~ 1Mg — 100M;. While main sequence stars might
meet this criteria, such objects will be torn apart by tidal forces long before reaching the last stable
orbit [25]. However, compact objects such as white dwarfs, neutron stars and stellar black holes will
remain intact throughout the entire inspiral. There is an abundance of direct observational evidence
for white dwarfs and neutron stars, as well as indirect evidence for stellar mass black holes from x-ray
binaries [26] and gravitational wave observations [4-6].

Since we have good reason to believe that the ingredients to form an EMRI exist, how might they be
brought together? MBHs are often observed to be surrounded by a cluster of stars. Through multiple two
body interactions, this population becomes segregated by mass, with heavier objects “sinking” towards
the galactic centre faster than lighter ones. As such, compact objects should sink towards the galactic
centre where they may be perturbed onto highly eccentric orbits around the MBH. If one of these orbits
is in the “loss cone”, its point of closest approach (or periapsis) will be close enough to the MBH such
that the gravitational wave emission from the compact object passing by will release sufficient energy for
it to be captured and form an EMRI. This is expected to be the primary formation channel for EMRIs
meaning that we would expect most EMRIs to have significant residual eccentricity and be generically
inclined with respect to the MBH's equatorial plane i.e. “generic” inspirals.

Another plausible scenario is a compact binary pair coming too close to the MBH and becoming
tidally disrupted. One partner gets ejected from the galactic centre, while the other becomes captured
and forms an EMRI. We already have evidence of this same mechanism occurring with binary stars in
the Milky way, with one partner getting captured by Sgr A* while the other is ejected as a hypervelocity
star [27]. EMRIs from this formation channel are likely to have circularized by the time they enter the
LISA frequency band but still be generically inclined with respect to the MBH's equatorial plane and
thus likely to form “spherical” inspirals.

A third scenario comes from a star forming in the accretion disk of the MBH and collapsing into
a compact object at the end of its life. EMRIs formed this way will be aligned with the accretion
disk and thus equatorial plane of the MBH and are not expected to have any significant eccentricity,
thus forming equatorial, quasi-circular inspirals [15,[28,29]. Between all these formation channels, we
expect to observe anywhere between 1 - 1000 EMRIs over the course of the LISA mission, with the large
uncertainty coming primarily from the estimated event rate for EMRI capture [16}30].

1.2.2 Science implications

As we can see, the hypothesis that extreme mass ratios exist in the universe is in good standing, but
mere existence is not a sufficient motivation for modelling these systems with high precision. EMRIs will
undergo thousands of orbits while emitting gravitational waves in the LISA frequency band, precisely
mapping the spacetime of the MBH as it does so [30]. This would allow us to either confirm or refute
whether the exterior of astrophysical black holes are accurately described by the Kerr metric, test the
no-hair conjecture and rule out some exotic compact objects that might mimic black holes like boson
stars. Observation of EMRIs can also constrain the existence of effects only present in alternative theories
of gravity such as extra gravitational wave polarizations, gravitational parity violations, or the breaking
of Lorenz invariance [31,{32]. Moreover, EMRIs will allow for the most precise measurements of MBH
masses and spins yet and such information is vital to understanding the nature of galactic centres and
the evolution of galaxies [33]. Finally, the loudest and best localized EMRIs can be used as dark standard
sirens to provide an independent measurement of the expansion rate of the universe [34].

The large number of gravitational wave cycles promises to provide some incredibly important science,
but it is a double edged sword. As we will see, precisely modelling the relativistic two body problem over
such a long timescale will prove to be an arduous task.
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Figure 1.2: An illustration of the parameter space of the two body problem in GR with various approxi-
mation schemes overlaid onto their domains of validity. (Credit: By Maarten van de Meent - Own work,
CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42495018 )

1.3 Approaches to the Relativistic Two Body Problem

In Newtonian gravity, the two body problem can be easily solved and has exact, analytic solutions. This
is not the case for two black holes interacting in General Relativity, as the non-linearities of the theory
give rise to a much more dynamic system where one must solve not just for the positions of the two
bodies, but also the entire past and future of the spacetime including the gravitational waves. Instead
of the stable periodic orbits found in Newtonian gravity, the two black holes first slowly inspiral towards
each other, then merge to form a single body which then rings down, settling back to a stable black
hole solution, all while radiating gravitational waves. As a result, analytic solutions for these systems
do not exist and so one must employ approximate methods. Each of these approaches are best suited
to a different region of the parameter space, though there are regions of overlap which can be used to
synergise multiple approaches. Before discussing in depth the approach that is best suited to EMRIs, we
will first outline some of the other approaches most commonly practised today.

The oldest of these is post-Newtonian (PN) theory, arguably starting with Einstein's calculation of
the perihelion precession of Mercury [35]. In this approach, one performs a perturbative expansion in
powers of (v/c)?, where v is velocity and c is the speed of light [36]. As such, this approximation works
best for low velocities, which corresponds to large orbital separations i.e. the “weak field”, but is ill-suited
for modelling “strong field” dynamics such as the late inspiral, merger and ringdown phases. PN theory
has had many successes, most famously the prediction of the change in the orbital period of binary
pulsars like the Hulse-Taylor binary: PSR B1913+16 [37]. It is also invaluable for current gravitational
wave searches through informing, benchmarking and hybridising with other approaches [38]. In spite
of its age, PN theory is still a very active field of research, with state of the art calculations reaching
beyond 4th PN order and incorporating techniques from effective field theory [39,/40].

Post-Minkowskian (PM) theory is a similar approach, where one expands in powers of the deviation
of the metric from flat spacetime, often expressed as a power series in Newton's gravitational constant
G [41]. This expansion is valid for large velocities, making it ideal for modelling hyperbolic encounters



of two black holes [42]. However, like PN, it is ill-suited for the strong field dynamics one would expect
from EMRIs, but it can synergise with and improve other approaches. This approach has become a
very active subfield in recent years, due to the incorporation of techniques primarily used for calculating
scattering amplitudes of particles in quantum field theory [43-45].

Instead of analytic expansions, one could decompose the spacetime into a 3+1 dimensional split
and formulate the Einstein Field Equations into an initial value problem to be solved numerically on
a super-computer. This is the approach taken by Numerical Relativity (NR). Initially, NR could only
simulate single short lived two body problems like head on collisions [46,/47]. This all changed with a
series of landmark papers in the mid 2000s, which allowed for long term simulations of quasi-circular
black hole binaries [48-50]. Since then, catalogues of thousands of binaries have been computed, with
additional physics like orbital eccentricity, spin precession and unequal masses now being incorporated
into these simulations [51]. NR is best suited for capturing the strong field dynamics and can accurately
simulate late inspiral, merger and ringdown. While they could in principle simulate the early inspiral as
well, the computational cost of simulating long waveforms is unpractical as the number of orbital cycles
before coalescence increases with the initial orbital separation of the simulated system. For reference,
an NR waveform consisting a black hole binary with one twice as large as the other with moderate
spins lasting only 10 orbital cycles takes on the order of 100,000 CPU hours to simulate [52]. For this
reason, fast to evaluate surrogate models, which interpolate between NR simulations to cover more of
the parameter space, are used for GW data analysis [53,54]. Moreover, while recent work has tried to
extend NR to large mass ratios [55H57], NR struggles with the discrepancy in spacial scales resulting
from one body being much smaller than the other. For these two reasons NR is unsuitable for simulating
EMRIs. Despite this, NR and is the gold standard for strong field dynamics and thus can inform analytic
approaches, and continues to play a vital role GW data analysis.

The final approach takes inspiration from how one might simplify the Newtonian two problem by
recasting it as an effective one body (EOB) system. The EOB approach in GR treats the secondary
as following a geodesic in an effective spacetime characterised by a perturbed Hamiltonian [58]. The
form of this Hamiltonian has free parameters which are informed by resumming PN and PM expansions.
The resulting inspiral waveforms are then matched with analytic results for the ringdown, resulting in
complete waveforms which cover inspiral, merger and ringdown phases [59]. NR is then used to fine tune
the resuming to ensure greater accuracy [60]. In principle EOB can be used to generate full, accurate
waveforms anywhere in the two-body problem parameter space in less than a second, and so has played a
crucial role in LIGO-Virgo-Kagra (LVK) data analysis [61]. Even though it currently lacks the necessary
information from the extreme mass ratio limit to accurately model EMRIs, recent work promises to
rectify this in the near future [62,63]. While not a self-consistent theory in its own right, it is arguably
the most successful approach to date and its ability to incorporate new results as they become available
will only improve it further.

As we see from Fig. [1.2] the approach best suited to EMRIs has yet to be discussed. Due to the
central role this approach plays in this work, we will provide a more in depth discussion.

1.4 Gravitational Self-Force

The idea behind this approach is to first view the CO secondary as moving through the spacetime of
the MBH primary. If the secondary had no gravitational field of its own, it would simply move along a
time-like geodesic trajectory, just like a test body. Since this is not the case, the secondary will experience
a force which will move it away from geodesic motion due to the presence of its own gravitational field.
This is known as the “gravitational self-force” (GSF).

This force can be calculated perturbatively by expanding the metric of the binary around the metric
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Figure 1.3: An illustration of the difference between the dissipative and conservative effects of the
gravitational self force on the inspiral of a compact object around a Schwarzschild black hole. The
dissipative force causes a secular decay of energy and angular momentum, causing the orbit to shrink
and circularise. The conservative effects slow the rate of periapsis advance and causes small periodic
changes to the energy and angular momentum. Image credit: [70]

of the primary in powers of the small mass ratio e = /M, i.e., g = §W+Eh,(},,) +62h£21,) +... where g,
is the Kerr metric and the h(™ are the n-th order perturbations to the spacetime due to the presence of
the secondary. Using matched asymptotic expansions, one can then derive the interaction between these
metric perturbations and the motion of the secondary [64]. Unlike PN or PM expansions, there is no
assumption about the velocity of the secondary or the strength of the gravitational interaction, meaning
that this approach is valid for both weak and strong field dynamics. While this expansion works best for
EMRIs where € is extremely small, recent work comparing with NR has indicated that this approach can
even work remarkably well, even for mass ratios of 1:10. [65,66)].

How far one needs to go in this expansion will depend on the desired accuracy requirement in the
waveform phase. This was first formally derived using a two-timescale analysis in Ref. [67], where one
defines a fast time ¢ and a slow time 7T := et which are then treated as independent variables. They
found the orbital phase could be expanded in the following way

0= 6—1¢Adb + 6—1/2(PRes + (pPA + 0(6) (1-1)

A leading order adiabatic (Adb) waveform evolved for O(e~1) orbital cycles will accumulate a phase error
O(1) radians. Moreover, for inclined and eccentric inspirals into a rotating black hole, it is possible for the
inspiral to pass through an orbital resonance, and so one must accurately model the contribution to the
orbital phase caused by such an encounter RS, or be left with an additional phase error of O(e~1/2) [68].
A waveform model that includes these effects might be sufficient for detecting the presence of EMRIs in
LISA data, but will not be accurate enough to achieve the LISA data science goals listed in Sec. [1.2.2]
That will require waveforms which are accurate to roughly 1/p radians where p is the signal to noise
ratio (SNR) [30,167,/69]. As such, one must produce post-adiabatic (PA) waveforms whose phase error
should be O(e).

To understand what we need for a post-adiabatic waveforms, we must first note that the effects
of the self-force can be split into dissipative (time anti-symmetric) and conservative (time-symmetric)
contributions [71]. (This is true for first order GSF but is unclear if this split can be done uniquely
at second order as there are different definitions of conservative used for second-order GSF in the
literature [72[73]). The differences in conservative and dissipative effects are illustrated in Fig. [1.3]



The dissipative pieces of the self-force cause a loss in energy, angular momentum and Carter constant,
causing the orbit to shrink until the secondary plunges into the primary. It generally causes the orbit to
circularize, with the exception being just before the transition to plunge where the orbit gains eccentricity
[74-77]. It also causes the orbital inclination with respect to the equatorial plane of the secondary to
slightly increase over time [78-80]. The conservative pieces have more subtle effects on the inspiral,
such as altering the rate of periapsis advance, changing the orbital frequencies and moving the location
of the innermost stable circular orbit [81-87]. They can also cause the energy and angular momentum
to change periodically, but such changes average to zero over a single geodesic orbit.

It has been found that computing post-adiabatic waveforms will require knowledge of both the
dissipative and conservative pieces of the first-order self-force and the orbit average piece of the second-
order self-force |67]. As such, one must expand the metric to at least second-order in the mass ratio,
which has recently provided many important results for quasi-circular Schwarzschild inspirals [66,88-90].
While the groundwork is being laid to extend second-order GSF to Kerr inspirals [91,92], there are no
results available as of yet. As such, we restrict ourselves only to first-order in the mass ratio results,
even though this will result in less accurate inspirals.

At each instant, the self-force is a functional of the past history of the secondary which can make
it challenging to compute. One approach is to couple the field equations and the equations of motion
(EOM) and self-consistently solve both in a time-domain simulation. While this has been implemented
for a toy model of a particle carrying a scalar charge orbiting a Schwarzschild black hole [93], numerical
stability issues in the Lorenz gauge have so far stifled similar attempts for the gravitational case [94].
Moreover, this approach is computationally very expensive, making it impractical for generating large
numbers of templates. However, it does promise waveforms against which more efficient schemes could
be tested.

An alternative method is to compute the self-force for a body moving along fixed geodesics of
the background spacetime and then use that force to move to another geodesic at a later time-step.
The periodic nature of these geodesic orbits allows for calculations in frequency domain leading to
many efficient calculations of the first-order self-force in both Schwarzschild [95H98] and Kerr [99,/100]
spacetimes.

Solving the perturbation equations requires picking a gauge, and the resulting self-force is gauge
dependent [101]. The self-force was first computed in the Lorenz gauge where the procedure for obtaining
the regular metric perturbation part was best understood. Numerical calculations of the Lorenz gauge
self-force have been made in both the frequency- [97,98,[102] and time-domains [94-96] All these results
have been for motion in Schwarzschild spacetime, with one exception in Kerr [103].

Calculating perturbations of the Kerr spacetime is hampered by the lack of separability of the lin-
earized Einstein Field Equations on this background. This difficulty can be circumvented by using the
Teukolsky formalism for describing perturbations to the Weyl scalars [104], which is fully separable in the
frequency domain. From the Weyl scalars, the metric perturbation can be reconstructed in a radiation
gauge [105H107]. There has also been recent progress understanding how to reconstruct the metric in the
Lorenz gauge [108]. Regularization of the metric perturbation in radiation gauges is more subtle [109],
but self-force calculations in the radiation gauge are now routine [99,100,/110,111].

As successful as this method has been, it is worth noting that the “geodesic self-force” approach is
difficult to extend to second order in the mass ratio, as the source should now be on an inspiral trajectory
instead of a geodesic. A more promising approach involves taking the two-timescale analysis of Ref. [67]
and applying it to not only the equation of motion, but also to the Einstein Field Equations [112,[113].
This two-timescale framework is the current state of the art in GSF calculations and has been the only
approach to produce second-order GSF effects 88,89, post-adiabatic waveforms [66] and slow-time
derivatives of the metric perturbation [90].



1.5 Modelling Extreme Mass Ratio Inspirals

Before describing how we have used interpolated GSF models to produce fast and accurate EMRI
waveforms, we will first review the requirements for waveform models and the current attempts to meet
these requirements. The majority of EMRIs will have a very low instantaneous signal-to-noise ratio
(SNR), and so the data must be processed with matched filtering techniques which will allow for the
build up of the SNR over time [114]. Such techniques require the development of theoretical waveform
templates to compare against the data. To achieve LISA's science objectives, these templates need
their phase to be accurate to within O(1072) radians, even after hundreds of thousands of orbital cycles
[69]. They also need to be extensive across the large parameter space of possible EMRI configurations.
Moreover, since many template evaluations would be needed, they should also be fast to compute, ideally
in less than a second.

1.5.1 Kludge Models

To meet this challenge, several so-called “kludge” models have been developed, which are both extensive
and quick to compute [115-118]. These models come in two flavours; analytic and numeric.

Analytic models are the fastest to compute, taking only a matter of milliseconds to produce a
waveform. The trajectory is modelled as an eccentric Keplerian orbit with the relativistic features of
pericentre advance, Lense-Thiring precession and inspiral all approximated with an analytic formula. The
waveform is then generated from the trajectory using the Peters-Mathews formula [119] for quadrupole
radiation from two point masses on a Keplerian orbit. The “Analytic Kludge” (AK) was the first model
to adopt this approach [116]. This has since been improved upon by the “Augmented Analytic Kludge’
(AAK) which accurately maps to the Kerr geodesic orbital frequencies and uses updated evolution equa-
tions [118]. This results in significantly more accurate waveforms at almost no additional computational
cost, and so AAK is still in use today [120].

The second flavour is the “Numeric Kludge” (NK) [116]. This approach assumes the secondary is on a
geodesic in the Kerr background which then slowly loses energy, angular momentum, and Carter constant
which is described by analytic PN approximations. One has to numerically solve for the evolution of the
energy angular momentum and Carter constant from which one can then construct the trajectory. One
then makes the semi-relativistic approximation of mapping solutions for the Boyer-Lindquist coordinates
to flat-space coordinates and then using the flat-space quadrupole formula to generate the waveform
from the inspiral trajectory. While this is more accurate than the AK or AAK, NK waveforms can take
on the order of tens of seconds to compute.

While kludge models are fast and extensive in the parameter space, their use of non-relativistic
approximations cause them to fall well short of the subradian accuracy requirement. Despite their
shortcomings, these models may still have a role to play in detecting loud EMRI signals [121], and
have proven to be invaluable for testing data analysis techniques for LISA through the mock data
challenges [122-124].

1.5.2 Adiabatic Models

While fully relativistic, adiabatic waveforms would still not reach the subradian accuracy goal, one could
use them to robustly search for EMRIs in LISA data [125,]126]. This would only require knowledge of
the orbit averaged dissipative pieces of the first-order self-force. For energy and angular momentum
these can be related, via balance laws, to the fluxes of GWs to infinity and down the event horizon.
The same cannot be done for the rate of change of the Carter constant [126], but Ref. [127] found
that this can be related to the average action of the dissipative self-force on a geodesic. Adiabatic



inspirals are typically calculated using these calculations as they avoid having to regularize the metric
perturbation [125]/126,128,[129]. The fluxes are calculated from solutions to the Regge-Wheeler equation
in Schwarzschild [130] or the Teukolsky equation in Kerr [104], for perturbations sourced by a test mass
on a geodesic orbit. Adiabatic inspirals have been calculated for quasi-circular [131] and eccentric [74]
Schwarzschild inspirals, as well as quasi-circular [132,/133], eccentric [115], spherical [79,/80] and most
recently generic [134] Kerr inspirals. However, only a subsection of the generic Kerr parameter space was
explored, and so work remains to tile the rest of the parameter space with GW flux data. In particular
no model has interpolated over the spin of the primary. Such inspirals are fast to compute, typically
taking a few milliseconds, but they are not yet fully extensive in the parameter space.

As well as the fluxes, one also requires relativistic amplitudes from the Regge-Wheeler/ Teukolsky
equations to compute fully relativistic waveforms. Constructing these waveforms requires summing over
a large number of modes, which is very computationally expensive when this has to be repeated for every
time-step in a multi-year long EMRI inspiral. The FastEMRIWaveforms (FEW) package overcomes this
by employing neural networks and GPUs to speed up the waveform calculation, and can currently produce
fully relativistic waveforms for eccentric Schwarzschild inspirals in a matter of milliseconds [120]135].
While work needs to be done to extend this framework to Kerr inspirals, it is currently fastest and most
accurate approach available for EMRI waveforms.

It is worth noting that an adiabatic model for EMRIs that is extensive in the parameter space has
recently been made available [77]. This approach uses PN expansions of the solutions to the Teukolsky
equation to recover the gravitational wave amplitudes, the GW fluxes to 5PN order and even dissipative
resonant effects. While the model can in principle cover all of the generic Kerr parameter space, the
current implementation works best in the weak field but struggles with very small separations or very
large eccentricities, inclinations, or spins. However, it is a significant improvement over current kludge
models and is well suited for LISA data analysis studies.

1.5.3 Osculating Geodesics

In order to go beyond adiabatic waveforms, one must understand how the trajectory is effected by the
local GSF. One can do this using the geodesic equations with a forcing term on the right hand side,
resulting in a set of coupled second-order ordinary differential equations (ODEs) for the evolution of
the coordinates of the secondary. This can be recast into a series of first-order ODEs by using the
long standing method of osculating orbital elements (or variation of constants) from Newtonian celestial
mechanics. When applied to the curved spacetime around a black hole, this is known as the “method
of osculating geodesics” [136]. In this approach, the inspiral is described as a smooth evolution through
neighbouring geodesics that are instantaneously tangent to the true inspiral. Formally, one identifies a set
of constants of motion which uniquely identify a geodesic, known as “orbital elements”. These constants
are then promoted to functions of time which are governed by a set coupled first-order ODEs that are
derived from the “osculating conditions”. These new equations of motion are then solved numerically to
obtain the inspiral trajectory of the secondary. There are a number of equivalent formulations for these
ODEs which have been derived for both Schwarzschild [136] and Kerr [113,[137] inspirals. In this work,
we make use of a formulation based on action angles of the geodesic motion that was first sketched out
in Ref. [137].

This method does assume that the orbit is evolving slowly or “adiabatically”, and so this technique
is only applicable for the inspiral part of the EMRI and breaks down when the secondary goes beyond
the last stable orbit and plunges into the primary [138H142|. However, due to the EMRIs long time in
the LISA band, the inspiral is expected to make up the vast majority of the accumulated SNR.

Importantly, the method does not assume that the force is small, and so it can be used for forces
other than just the GSF. As such, this method has been used to model other effects on the binary such



as gas drag [137], the presence of a third body acting as external perturber [143] and the spin-curvature
force due to the spin of the secondary [144].

1.5.4 Self-Forced Inspirals

For this work, we are most interested in efficiently modelling the trajectory of an EMRI under the influence
of the GSF. However, GSF calculations can take dozens of CPU hours to compute for a single geodesic
orbit. As such, the prevailing approach has been to use precomputed GSF data across a section of the
geodesic orbit parameter space to inform a GSF model that can be rapidly evaluated.

The first such model in this vein was computed for the first-order Lorenz gauge GSF for eccentric
Schwarzschild inspirals [145]. The model decomposed each component of the force into a Fourier series
and modelled the Fourier coefficients using a global fit to a power series in the orbital elements using
least squares fitting. The resulting model was fast to compute, but used 1100 data points to achieve
had a fractional accuracy of < 1073 across the parameter space and was only valid for eccentricities
<0.2.

This model has since been surpassed by a model which also rapidly computes the first-order Lorenz
gauge GSF for eccentric Schwarzschild inspirals, but can cover eccentricities < 0.8 and much larger
orbital separations [70]. Moreover, it was able to achieve a fractional accuracy of < 107% for the
adiabatic pieces of the force and < 103 for the post-adiabatic pieces. This was achieved using local
Chebyshev interpolation for subdomains of the parameter space and incorporating GW flux data from
a high precision Regge-Wheeler code. However, it required 43875 data points from the flux code and
9602 data points from a Lorenz gauge self-force code.

While this is manageable for the two dimensional parameter space of eccentric Schwarzschild inspirals,
generic Kerr inspirals have four parameters to tile over: orbital separation, eccentricity, inclination and
spin of the primary. Using this same approach for generic Kerr inspirals would require O(10%) flux data
points and O(10%) GSF data points respectively. This becomes even more intractable when one considers
how much more computationally expensive Kerr GSF codes are compared to Schwarzschild codes.

For example, in this work we use the code of Ref. [99,100}/111] to produce gravitational self force
data for eccentric equatorial orbits and spherical orbits in Kerr spacetime. This code uses the Mano-
Suzuki-Takasugi methods [146-149] to compute the perturbations to the Weyl scalars in the frequency
domain. The metric is then reconstructed into an outgoing radiation gauge (including mass and angular
momentum perturbations [150,151] and gauge completion contributions [152]). The metric perturbation
is then projected onto a basis of spherical harmonics before regularization is carried out using the mode-
sum approach [109,(153].

Depending on the eccentricity or the inclination of the orbit, the code must compute the metric
perturbation by summing over thousands to tens of thousands of Fourier harmonic modes. With the
current Mathematica implementation, the self-force for a typical eccentric equatorial orbit, e.g., a =
0.9M,p = 3.375,e = 0.5 takes approximately 90 CPU hours to compute. As such, this code is much too
slow to utilize the same interpolation techniques used for Schwarzschild inspirals and this has motivated
us to find a more efficient interpolation method which will allow us to dramatically reduce the number
of points needed.

For this work, we will produce global fits to the gravitational self force using the pseudo-spectral
method of Chebyshev interpolation, instead of the many local fits which have been used previously [70].
This will allow us to produce the very first GSF models for eccentric and spherical Kerr inspirals, capable of
achieving the < 1073 fractional accuracy using only O(10?) GSF data points to cover a two dimensional
slice of the parameter space. If this method were naively extended to the full generic Kerr parameter
space, one would expect to need only O(10*) data points, which is far more feasible.

Using any of these GSF models along with the osculating geodesic equations allows one to compute
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self-forced inspirals. In the quasi-circular case, these inspiral calculations are rapid, as the evolution of the
orbital elements is decoupled from the evolution of the azimuthal phase due to the cylindrical symmetry
of the Kerr spacetime. However, if the orbit is eccentric and/or inclined, then the evolution of the orbital
elements is coupled with the evolution of the radial and/or polar phases. This results in the numerical
solver taking small step sizes to resolve the orbital timescale physics in order to accurately calculate the
long term secular evolution of the inspiral. This means that a single multi-year long EMRI inspiral can
take minutes or hours to compute, which would make data analysis with such inspirals intractable.

1.5.5 Near-ldentity Averaging Transformations

Following Ref. [154], we overcome this problem by applying a near-identity (averaging) transformation
(NIT) [155] to the self-forced equations of motion. These transformed EOM have two important proper-
ties: (i) they no longer depend on the orbital phase, and (ii) they capture the long-term secular evolution
of the original inspiral to the same order of approximation in the mass ratio as the original EOM. The
first property means the transformed equation of motion can be numerically solved for any mass ratio
in less than a second as the numerical integrator no longer needs to resolve the hundreds of thousands
of orbital timescale oscillations.

Ref. [154] laid out how this approach can be used for a generic EMRI system and was then imple-
mented for the case of eccentric self-forced inspirals in Schwarzschild [154]. This was further extended
to highly eccentric Schwarzschild inspirals, and the relationship between the NIT orbital phases and the
waveform “voices” was also established [156].

This work marks the first time this technique has been implemented for Kerr inspirals. Combined
with an interpolated model of first-order gravitational self-force data, these averaged equations of motion
allow us to efficiently compute equatorial and eccentric or spherical inspirals around a Kerr black hole
which include all first order in the mass ratio effects. Since these inspirals are fast to compute, this
approach can provide EMRI waveforms which could feasibly be used for practical data analysis when
coupled to a fast waveform generation scheme, e.g., the FEW framework [135].

At this point, we emphasize that the inspirals we present do not reach the sub-radian accuracy
required for EMRI data analysis as there are not yet any second-order self-force calculations in this
domain. To stress the importance of the second-order contribution we examine the effects of driving the
inspirals using first-order self-forces computed in two different gauges and demonstrate explicitly that
without the inclusion of the second-order self-force the inspiral phase is not gauge invariant. Nonetheless,
the framework we present can readily incorporate new self-force results as they become available.

Current implementations of the NIT EOM are not parametrised in terms of the Boyer-Lindquist time
coordinate, which can be related to the time measured at the detector. Thus, time domain waveform
calculations using these inspirals require an inconvenient, additional interpolation step. Following the
procedure detailed in Ref. [113], we lay out how one can perform an additional averaging transformation
to averaged EOM that are parametrized in terms of Boyer-Lindquist time.

A related framework for efficient inspiral calculations is the two-timescale expansion (TTE) [67}(155].
This also allows one to average over the orbital timescale physics while accurately capturing the long
term evolution of the system. This comes at the expense of doubling the number of ODEs one has to
solve compared to the NIT EOM, but the resulting solutions are valid for all values of the mass ratio €. It
is important to note that the TTE EOM can be directly related to the NIT EOM [113][155], as the TTE
is currently the framework employed for second-order GSF calculations [66,/90,/112,|113]. Following the
direction of Ref. [113], we perform a TTE on the NIT EOM and in order to investigate the practicalities
of these calculations for self-forced inspirals for the first time.
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1.5.6 Orbital Resonances

It is worth noting that for generic Kerr inspirals, near-identity transformations become ill-defined when
the radial and polar frequencies are in a small integer ratio to one another, i.e. at an orbital resonance.
While sustained resonances for EMRIs are highly unlikely [157], most EMRIs are expected to encounter
at least one transient resonance while in the LISA band which will have a significant effect on resulting
trajectory and waveform [158]. While passing through a resonance, the orbital elements evolve on a
timescale that is slower than the orbital timescale but faster than the radiation reaction timescale. The
gravitational wave flux can also be diminished or enhanced depending on the phase of the inspiral as
it enters resonance [159]. By the time the resonance has past, the orbital elements have changed by a
factor of @(e!/?), known as a resonance “jump”. Not accounting for these jumps can result in a phase
error O(e~1/?) as seen in Eq. [68].

Orbital resonances were first explored using the method of osculating geodesics along with a PN
inspired GSF model and comparing the OG inspirals to adiabatic inspirals [68]. This model was also
applied to an astrophysically motivated EMRI population and it was found that a failure to model
transient resonances could result in a loss of 4% of EMRI signals detected by LISA [160].

An effective resonance model has recently been developed, which modifies the numerical kludge with
resonant jumps whose magnitudes are left as free parameters [161]. Using this as a phenomenological
model, one can recover the size of the resonant jump from year long EMRI signal with SNR 20 with
a relative precision of 10%. Comparing the recovered values with those predicted by GR would be a
valuable test of fundamental physics, e.g. the Kerr hypothesis [24].

Recent work has also examined the impact of third body acting as an external tidal perturber, which
have been found to have a negligible impact on the EMRI's trajectory except when the radial, polar
and azimuthal frequencies are in a small integer ratio to each other i.e. a tidal resonance [143,(162].
Combining knowledge of the jumps induced by a tidal resonance with the effective resonance model has
resulted in a fast and accurate model for tidal resonances [163]. This same model can be extended to
model self-force transient resonances as soon as information for the first order generic Kerr GSF has
been calculated across the parameter space.

In this work, we explore the problem of transient resonances using a generic Kerr toy model informed
by the first-order self-force models for eccentric and spherical inspirals. We then modify the NIT to aver-
age out all phases except for the resonant phase in the vicinity of an orbital resonance. We demonstrate
how one can transition from the non-resonant NIT to the near-resonance NIT and back again in order
to efficiently evolve through multiple resonances for the first time.

1.6 Organisation of this thesis

The next four chapters serve as theoretical background for the rest of the thesis. Chapter [2| reviews
geodesic motion in Kerr spacetime. Chapter [3] reviews the method of osculating geodesics and contains
an original derivation of the action angle formulation which is then used throughout this work. Chapter
contains a review of near-identity averaging transformations, followed by a new derivation for a near-
identity averaging transformation in the vicinity of an orbital resonance. We also review how one can
perform additional averaging transformation such that the equations are parametrized in terms of the
Boyer-Lindquist time coordinate and connections to the two-timescale expansion which were already
covered in Ref. [113]. Chapter [5| contains a review of various waveform generation schemes for EMRIs
and techniques for comparing waveforms.

The next three chapters describe practical implementations and results which are all original work.
Chapter [6] focuses solely on eccentric, equatorial Kerr inspirals. We describe how we interpolated GSF
data to produce the first eccentric Kerr GSF model and how this can be combined with the OG equations
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to produce the first self-forced inspirals in Kerr spacetime. We then outline the practical steps involved
in our NIT implementation. We then present the results of this implementation including consistency
checks, tests the speed and accuracy of the NIT inspirals, an exploration impact of adiabatic and post-
adiabatic effects on the inspiral trajectory, and a comparison inspirals using self-force models calculated
in two different gauges. The results in this chapter have already been published in Ref. [1].

Chapter [7| concentrates on spherical Kerr inspirals. We describe how we interpolated GSF data to
produce the first spherical Kerr GSF model, and how this can be combined with the OG equations
to produce the first spherical Kerr self-forced inspirals. In this chapter, we make use of an additional
averaging transformation such that the resulting inspiral is parametrized in terms of Boyer-Lindquist
time and relate these new averaged EOM to the TTE EOM. We then outline the practical steps involved
in our NIT/ TTE implementation. Finally, we present the results of this implementation including tests
the speed and accuracy of the NIT and TTE inspirals, an assessment of the impact from incorporating
a high precision flux model on the inspiral trajectory and an exploration of the impact of the first-order
self-force for spherical inspirals. The results in this chapter not yet been published but will be soon.

Chapter [ deals with generic Kerr inspirals and orbital resonances. First we outline how we construct
a generic Kerr GSF toy model from the eccentric and spherical GSF models. Then we implement the
NIT far from resonances and test its speed and convergence. We then implement the near-resonant
NIT in the vicinity of a low order resonance and perform the same speed and convergence tests. We
follow this by outlining how one can transition from a non-resonant NIT to a near-resonant NIT and
back again. We then test the accuracy and speed of this approach using two test inspirals; one that
evolves through a single orbital resonance and one that evolves through two. This is gives us a promising
proof of concept for efficiently evolving through multiple orbital resonances. However, there is still a
considerable amount of work that needs to be done before the results in this chapter can be published.

We conclude with chapter [0, where we start by outlining the conclusions associated with chapters
[0} [7] and [8] We then discuss the limitations of this work and how it might be extended in the future.
Finally, since it does not fit within the narrative flow of the main text, we briefly discuss GSF corrections
to the periapsis advance in Kerr spacetime in Appendix [Al

Throughout this work we use the metric signature (— + ++) and work in geometrized units such
that the gravitational constant and the speed of light are equal to unity i.e. G =c=1.
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Chapter 2

Geodesic Motion

In this work, we wish to describe the motion of a non-spinning compact object of mass x moving in
the Kerr spacetime under the influence of some arbitrary force. This will eventually be taken to be
the self-force experienced by the secondary due to its interaction with its own metric perturbation.
We denote the mass of the primary by M and parametrize its spin by a = |J|/M where J is the
angular momentum of the black hole. The Kerr metric can then be written in modified Boyer-Lindquist
coordinates, x® = {t,r,z = cos b, ¢}, as

2M > >
ds® = — (1 - T> dt? + =dr? + dz?

b A 1— 22 (2.1)
P12 21— ) 4 se?)is - 4M“T(21 =) s
where
A(r) :==r* 4 a®> —2Mr, X(r,2):=r*+d%2?, w(r):= V2 + a2, (2.2a-c)
If a force acts upon the secondary its motion can be described by the forced geodesic equation
uPV gu® = a® (2.3)

where u®* = dz®/dr is the secondary’s four-velocity, V3 is the covariant derivative with respect to the
Kerr metric, and a® is the secondary’s four-acceleration. We seek to recast Eq. into a form useful
for applying the near-identity (averaging) transformations.

Before considering the forced equation it is useful to first examine the geodesic limit, which will be
the focus of this chapter. We will review geodesic motion and all of the analytic results that will be
useful for future chapters. Then, we will classify the different types of geodesic orbits and discuss their
properties. Finally, we will examine the case of resonant geodesic orbits.

2.1 Geodesic Motion around a Kerr black hole

2.1.1 Geodesic motion and orbital parametrization

In the absence of any perturbing force, the secondary will follow a geodesic, i.e.,

uPV gu® = 0, (2.4)

15



The symmetries of the Kerr spacetime allow for the identification of integrals of motion P = {€,L,K}
given by

E=—u, L=uy K= ICo‘Buau5, (2.5a-c)

where K is the Killing tensor, £ is the orbital energy per unit rest mass p, £ is the z-component of
the angular momentum divided by 1 and K is the Carter constant divided by 1% [164]. This definition
of the Carter constant is related to another common definition of the Carter Constant, O, by

Q=K —(L-a&) (2.6)
Using these integrals of motion, one can express the geodesic equations in first order form [165]:

(Z;) P A1k (2.72)

=(1- 52)(7‘1 —r)(r—ro)(r—rs)(r—ry) =V,

(dz>2=Q—z2 (B -2+ L+ Q)

dX (2.7b)
(- 22) (32— ) =V
2
j—i = %F —a*6(1 - 2% +aLl = t(O) (2.7¢)
do a L ' (0)

where F = Ew? —aLl, B = a®(1 — £?), r1 > ro > r3 > 1y are the roots of the radial potential V;,
z4 > z_ are the roots of the polar potential V., and X is Mino(-Carter) time that decouples the radial
and polar equations [128]. This time is related to the proper time of the particle, 7, by

dr = Sd. (2.8)

Rather than parametrize an orbit by the set J = {€,L,K} it is useful to instead use more geometric,
quasi-Keplerian constants P = {p,e,x}. Here p is the semi-latus rectum and e is the orbital eccentricity
which are both related to the radial roots r; and 75 via:

21119 1 — T2
=——— and e= . 2.9a-b
p M(rq +179) r1+ 1o ( )
We also use x which is a measure of the orbital inclination given by
T = co8binc = 1/1 — 22. (2.10)

The inclination angle ;¢ is related to Oy (the minimum value of 6 measured with respect to the
primary’s spin axis) by €inc = 7/2 — sgn(L)0min. These angles and their relationship to each other
are illustrated in Fig. There are other common choices for inclination in the literature such as the
inclination angle ¢ [78-80,/166] given by

L
Vg

However, we opt to use x as it smoothly parametrizes all inclinations between prograde equatorial motion

COS L =

(2.11)
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Figure 2.1: A illustration of the radial and polar motion present for generic Kerr orbits. The graph shows
how the motion fills a torus which is bounded by the radial roots ;1 and 7o and the value of the polar
root z_. This illustration was taken from [167] with minor alterations.

where x = 1 to retrograde equatorial motion where z = —1. Another advantage of using {p,e,x} is
that they are easily related to the radial and polar roots via
M M
ry = P , o= P . 2 =\1—2a2, (2.12a-c)
1—e 1+e

As we can see in Fig. [2.1] the radial motion is bounded between a maximum of 71 and a minimum of
ro, while the polar motion is bounded between z_ and —z_.

One can also determine J in terms of {ry, 7, 2_} and thus in terms of {p,e,z} [168]. First, we
define the following terms:

d(r) = X(r)A(r), (2.13a)

f(r) =r*+ad%(r(r +2)22 A(r)), (2.13b)

g(r) ==2ar, and (2.13¢)

h(r) =r(r—2)+ ngA(r). (2.13d)

We then combine them to obtain to following quantities:

a = d(r1)h(ry) — d(r2)h(r) (2.14a)

¢ =d(r1)g(r2) — d(r2)g(r1) (2.14b)

p = f(r1)h(rz) — f(r2)h(r1) (2.14¢)

§=f(ri)g(r2) — f(r2)g(r1) (2.14d)

v =g(r1)h(r2) — g(r2)h(r1) (2.14e)

From these, one can then express the integrals of motion J as
£ \/aP+2CU—2Sg“($)\/U (v(* + pla — §a?) (2.15a)
pt+4&v ’
r— —&g(r1) + Sg”(ﬂc)\/d(ﬁ)h:(“l))‘f’ E*(g(r1)? + f(r1)h(r1)) 7 (2.15b)
1
K=z (ﬁ—i-g) + (£ —a&)* (2.15¢)
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Finally, one can determine the remaining roots of the radial and polar potentials via

ppe Mt it M P a*Q (2.16a)
1—52 2 2 1—52 7'17“2(1—52)
a?Q

rirars(l — £2)’

by = \/m{;’j (2.16¢)

As such, given values for {p, e, z}, we can determine all of the other constants that appear in the geodesic
equations of motion.

It is worth noting that not all values of {p,e,x} correspond to bound geodesics and we denote the
value of p at the last stable orbit (LSO) by piso(a,e,x) [75,169]. This is also known in the literature
as the separatrix. When we come to discuss the special case of spherical orbits (i.e. e = 0), pLso
is equivalent to the the radius of the inner most stable spherical orbit (ISSO) risso. We also have
hyperbolic orbits when e > 1 [170,171].

We note that it is also common in the literature [172}|173] to express the radial and polar motion in
terms of quasi-Keplerian angles, ¥ and Y, via

(2.16b)

T4 =

M
r(y) = &m and z(x) = z_ cos x. (2.17a-b)
With this parametrization, the evolution equations for ¢ and x depend on 1) and x respectively i.e.,
dp M 2 7(0)
e V(=& ((p—p3) — elp+pacos)) ((p— pa) + e(p — pacos ) = 110 (¢), (2.18a)
dx _ 2 2 a2 v) — T(0)
D= @ - 522 cost ) = T ), (2:18)

where ps = r3(1 —e)/M and py = r4(1 4+ €)/M [174].

2.1.2 Analytic solutions for radial and polar motion

In the action angle prescription of the geodesic motion, the orbital phases ¢ = {¢;, ¢.} are such that the
geodesic equations can written in the form

apr; dgi _ (),
) =0 and I\ =1, (P), (2.19a-b)

where Tl(ﬁ) are the Mino time fundamental frequencies. For the radial and polar motion, these fre-
quencies are given explicitly by

TZ4

O = " 12y — — 1O — 2.20a-
» 2K(kzr)\/( E2)(ry —r3)(ra —74), and P TRk (2.20a-b)
where
_ _ 2
k?" _ (7’1 TQ)(TB 7’4)’ and kz — 6%7 (2213-b)
(ri1 —r3)(re —r4) z4

K is complete elliptic integral of the first kind given by K(m) = F(7/2|m) and F is the incomplete
elliptic integral of the first kind given by

(2.22)

F(¢|m) = /¢d9
' 0 \/1—msin26’.
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From geodesic equations of motion, the solutions for 15()\) and g;(\) are simply given by
Pj(\) =P;(0) and g =T V(B(0)A+ ¢/(0), (2.23a-b)
where P(0) and ¢;(0) are the initial values at A = 0. Using the expressions derived in Ref. [174] and

then simplified in Ref. [175], one can express the radial and polar coordinates of a test particle under
geodesic motion via

( ) B 7“3(7“1 — 7“2)5{12 <K(ﬂ"€7‘)qr’k‘r) — 7“2(7"1 — 7'3) (2 Y )
T s (B k) — ()
2(qz) = z—sn <K(kzz)2(qz7:_72r)|kz) , (2.24b)

where sn is Jacobi elliptic sine function given by sn(u|m) = sin(am(u|m)) and the Jacobi amplitude
am is the inverse function of the incomplete elliptic integral of the first kind F'i.e. if u = F(¢|m), then
¢ = am(u|m). Furthermore, we have adopted the convention that ¢, = 0 corresponds to the periapsis
of the radial motion (i.e. r =r3), and ¢, = 0 corresponds to the maximum value of the polar coordinate
z (i.e. z=2z).

2.1.3 Analytic solutions for Boyer-Lindquist time and azimuthal coordinates

One can also find analytic solutions for the Boyer-Lindquist time and azimuthal coordinates, however
these expressions are a bit more involved [174]. First, we need to define the locations of the inner horizon
r_ and the outer horizon r of the Kerr black hole which are given by

re =M+\M— a2 (2.25)
This allows us to then define the following quantities

T —T9 rys —Tr+

and hy = T (2.26a-b)

hy

L —Ts

We then also define the quantities %, and ¢, via

" ;:am<qu(’fr) k) and . am (2(qz+§) K (k)

s m

k) . (2.27a-b)

We note that the solutions to the geodesic equations ([2.7c) and ([2.7d)) have the form

tO) = TN+ telgy) + t(q2), (2.282)
6(\) = TN+ 6 (ar) + 62 (42, (2.28b)

where T}(€0) are the Mino-time fundamental frequencies associated with the time and azimuthal coordi-
nates and t,/¢, and t./¢. are oscillatory functions that depend solely on the radial and polar phases
respectively. These expressions are given in terms of elliptic integrals, including the incomplete elliptic

integral of the second kind
¢
E(¢|m) = / V1 —msin? 6d6, (2.29)
0
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the complete elliptic integral of second kind E(m) = E(7/2|m), the incomplete elliptic integral of the
third kind

do

1 — nsin? 9) 1 —msinZ6

¢
II(n; ¢lm) :—/0 ( , (2.30)

and the complete elliptic integral of the third kind II(n|m) = II(n;7/2|m). The radial oscillating terms
are given by

bor) = = @f_ ——— [4 (r2 = r3) (LI (hr k) = T (e k) )
B 4 (r2 — 7“3) (T’+ (4 — aﬁ/é’) - 2@2) (%H <h+|kr) - H(h+7¢r‘k7")) _ (+ o _)
Ty —T_ (ro —rq) (rs —r4) (2.31)
(2 = 1) (r1 + 72+ 7 70) (STl ) = T (s )

h, sin 4, cos Y,/1 — k, sin® (¢,

1 — h, sin® Uy

+(r1 = 19) (2 = 74) ( + 2B (k) - E(zzm))],

2a&
(ry = r-) /(1 =€) (r1 —r3) (r2 — 74)

X (r2 —13) (2rs — al/€) (LTI (hy|ky) — IT (hys rlky))
(ro —7y) (r3 —7r4)

Or (QT) =
(2.32)

_(+<_>_)]7

where we have adopted the shorthand (+ <> —) to indicate that one should repeat the previous term
but with all positive symbols replaced with negative symbols (e.g., 7+ > r_ etc.). The oscillating polar
terms are given by

ta) =20 (2 (64 3) B - Bk, (2.3%)
¢z@h)__‘_:i(i,(Qz+';>11(22|kz)-—II(Z2;¢sz)). (2.33b)

While the frequencies Tg)) have no dependence on the oscillating phases, they can be split up into
contributions from the radial motion and from the polar motion as

1O = 4l (2.34)
©) _ O | 40
T =0 4 ) (2.35)

(2.36)
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These have been found explicitly as

0
() _ 217"
t,?" 2
7T\/(1 - & )(7’1 —?”3) (7’2—?”4)

&
+ 5{(7“2 —r3) (r1 +ro+ 713 +1r4) I (he|ky)

26 M (r3K (k) + (12 — r3) I (he|ky))

+ (rg(ri+ro+r3) —rire) K (k) + (r1 —r3) (ro —rq) E (k:r)}
| ((” (EM" ~ L) ‘2a25M> (500 = 2200 ) -+ 0 —))],

ry —Tr— r3 —Tr4 ro — T4
(2.37)
28 (82 + )TV (K (k) — E (k.
TO _genr 1 (8% +£2) T2 (K (k) — E( ). (2.38)
’ m(1 — E2)x/Ba? + L2
(0) _ QGTrS’O)
Oy — ) /(L= E2) (ry —13) (r2 — 74) (2.39)

rp—Ts

" 26Mry —al
r3 —Tr4
r© _ 21y

2
b 67+1H (22 |k.) . (2.40)
™z T a2

2.1.4 Fundamental frequencies in other time parametrizations

(5 0 = 2211 0ulin)) - (0 -],

ro — T4

We note that the Mino-time fundamental frequencies {TEO),T,@,T@,TS)}, are not the frequencies
of the geodesic motion as observed by either an observer at infinity nor an observer co-moving with the
secondary. However, both of these can be derived from the Mino-time frequencies. The frequencies
observed at infinity are the Boyer-Lindquist fundamental frequencies and are given by

(0)

SR O N (2.41a-c)
TEO) @ YEO)

00 — -7 00 =

One can also derive frequencies with respect to the secondary’s proper time 7, but one first needs to
first define the linear increase of proper time with Mino time T(TO) [175]. Much like the linear increase
of Boyer-Lindquist time with Mino time Y4, this “frequency” has both a radial and a polar contribution

T’(FO) = T’T(,]'I‘ + TT?Z’ (242)
which are given by
1
TT?T = — [(7"2 — Tg) (7’1 +7ro+1r3+ 7’4) 11 (hr ’kr) + (7’1 — 7'3) (T‘Q — 7'4) FE (kr)]
2K (kr) (2.43)
r1(rg —ra) +r3(re+13)
+
2
22 E (k)
yo) — _F [ BRI 2.44
=5 (- 7)) 24
(2.45)
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(a) Circular, equatorial (b) Eccentric, equatorial

l

(c) Spherical (d) Generic

Figure 2.2: A collection of Kerr geodesic orbits, each with a = 0.9 and p = 4. The spherical and circular
orbits have ¢ = 0, while the eccentric and generic orbits have e = 0.5. The circular and eccentric
equatorial orbits have x = 1, while the spherical and generic orbits have x = 0.75. The spherical and
generic orbits are viewed from the front, but the equatorial orbits are viewed from above at an angle of
40° with respect to the equatorial plane.

With this in hand, one can straightforwardly derive the proper-time fundamental frequencies:

(0) (0) 1O
w0 = 1 ;W = Y , R " (2.46a-c)
TSO) T(TO) ¢ Tgo)

2.2 Classification of bound geodesic orbits

We will now briefly discuss the different cases of bound orbits around a Kerr black hole, that we make
reference to throughout this work as illustrated in Fig.

2.2.1 Circular and equatorial

The simplest orbits are circular orbits that lie in the equatorial plane and have e = 0 and x = +1, as
demonstrated in Fig. [2.2a] These orbits come in two flavours. Prograde orbits are where the secondary
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orbits in the same direction as the spin of primary and have z = 1. Retrograde are where the secondary
orbits in the opposite direction as the spin of primary and have x = —1. Circular equatorial orbits also
exist in the Schwarzschild limit when a — 0, but since there is no spin on the primary, they cannot be
classified as either prograde or retrograde.

The primary difference in each case is the location of the inner-most stable circular orbit (ISCO). For
Schwarzschild orbits, the ISCO is located at rsco = 6M. For prograde orbits around a fast spinning
black hole, the ISCO asymptotically approaches the outer horizon of the primary i.e. risco = r+ - M
as a — M. For retrograde orbits, the ISCO approaches 9M as a — M [176].

We note due to the cylindrical symmetry of Kerr spacetime, the equations of motion have no de-
pendence on the azimuthal phase ¢. This becomes particularly useful when modelling inspirals as a
continuous evolution through (quasi-)circular orbits. The slow secular evolution of the orbital radius is
naturally decoupled from the rapidly oscillating azimuthal phase, and so equations of motion for quasi-
circular inspirals can be rapidly solved numerically without the need to employ any sort of averaging
scheme. As such, this work will not focus on these orbits, and will focus instead to the three remaining
cases.

2.2.2 Eccentric and equatorial

Our first major focus of this work will be on eccentric and equatorial orbits with where e # 0 and
x = =£1, like the one illustrated in Fig. . As with the circular, equatorial orbits discussed above,
eccentric, equatorial orbits can be classified as either prograde (z = 1), retrograde (z = —1), or neither
in the Schwarzschild limit (e = 0,z = £1), which will effect the location of the last stable orbit (LSO).
In Schwarzschild, the LSO is given by the simple formula p .so = 6 + 2e, but one must solve for the
roots of a non-trivial quartic polynomial, which is given Ref. [177].

We note that the radius is no longer constant and evolves between a maximum value of r; and a
minimum of r5. We parametrize this evolution using a radial phase. Common choices for this phase are
the quasi-Keplerian angle 1/ as defined in Eq. or the action angle g, as defined in Eq.

Unlike eccentric orbits in Newtonian gravity, eccentric orbits around a Kerr black hole are not simple
ellipses. Instead the location of the periapsis will precess around the primary as there is a difference
between the radial and azimuthal frequencies. For highly eccentric orbits close to the primary, there exist
a class of “zoom-whirl” orbits just like the one Fig.[2.2b], where the secondary will “zoom” close to the
primary near the innermost bound circular orbit (IBCO) where £ = 1, and complete one or more rapid
rotations before “whirling” out to large orbital separations and starting the orbital cycle over again [178].

If one attempts to model an inspiral as an evolving series of eccentric orbits, the evolution equations
for the semilatus rectum p and the eccentricity e will depend on the rapidly oscillating radial phase,
unless one employs some sort of averaging scheme. Deriving and implementing such a scheme is the
focus of Chapter [0

2.2.3 Spherical (circular and inclined)

The second class of orbits that this work will focus on are circular and inclined orbits with where e = 0
but —1 <z <1, such as the example presented in Fig.[2.2b] These are often referred to as “spherical”
orbits, as highly inclined orbits almost fill out a sphere of constant Boyer-Lindquist radius centred on the
primary.

Inclined orbits in Schwarzschild spacetime will stay in their plane of inclination due to spherical
symmetry and so one can always rotate the coordinate system such that orbit lies in the equatorial
plane. As such, spherical orbits are a phenomenon exclusive to Kerr spacetime.
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The LSO for an inclined orbit in Schwarzschild is the same as in the circular case with piso =
rsco/M = 6. However, for Kerr orbits the LSO is a root of 12t" degree polynomial in a and p and a
4 polynomial in z? [169]. In the equatorial limit, the LSO recovers the results for the circular case.
For extremal black holes with a = M, the LSO approaches piso —+1asxz — 1, piso > 9asz — —1
and piso = 1+ V3 +V3+2V3=x5275as z — 0.

We note that the polar coordinate z is no longer constant and evolves between a maximum value of
Z_ to a minimum value of —z_. This polar motion is parametrized using a polar phase with common
choices being the quasi-Keplerian angle x as defined in Eq. or the action angle g, as defined in
Eq.[2.19

If one attempts to model an inspiral as an evolving series of spherical orbits, the evolution equations
for the semilatus rectum p and the inclination x will depend on the rapidly oscillating polar phase, unless
one employs some sort of averaging scheme. Deriving and implementing such a scheme is the focus of
Chapter. [7}

2.2.4 Generic (eccentric and inclined)

The final class of orbits we will focus on are eccentric and inclined orbits, or “generic” orbits where
0<e<1land —1 <z < 1. As one can see from Fig. these orbits have the richest structure out
of all the possible orbits in Kerr spacetime. These orbits simultaneously have the radial motion of an
eccentric orbit and the polar motion of a spherical orbit, and so we parametrize this motion using both
a radial and a polar phase. Just like spherical orbits, generic orbits are a phenomenon exclusive to Kerr
spacetime.

Similar to the spherical case, the LSO for generic Kerr orbits is a root of 12t degree polynomial in
a, p and e and a 4" polynomial in 2. The orbits can also exhibit the “zoom-whirl" behaviour, with
the inner radius bounded by the innermost bound spherical orbit (IBSO) which is the smallest spherical
orbit where £ = 1.

If one attempts to model an inspiral as an evolving series of generic orbits, the evolution equations
for p, e and x will depend on the rapidly oscillating radial and polar phases, and we focus on deriving
and implementing an average scheme for these orbits Chapter [8] However, there are a subset of generic
orbits which pose an issue for any averaging procedure, which we will now discuss in more depth.

2.3 Resonant Orbits

A resonant orbit occurs whenever the radial phase is related to the polar phase by a small number integer
ratio i.e., Ryes - YO = mrTgﬁO) + @TE,O) = 0 for K, k, € Z. We denote a specific orbital resonance using
the fraction T /T = |k.|/| k.

As illustrated in Figs. [2.3a] and [2.3b] if a generic orbit is allowed to evolve for infinitely many orbits,
it will eventually fill the entirety of the (7, z) space bounded between 71 and 72, and z_ and —z_. Such
an orbit is said to be ergodic in the phase space. This allows us to equate the infinite Mino-time average
for a geodesic with an integral over the 2-torus of the action angles ¢, and ¢., i.e.,

1 A 1 27 21
A) = lim / AN)dN = / / A(qr, q2)dgrdg, = Agy, 2.47

where A is the zeroth Fourier coefficient.

However, as seen in Figs. and [2.3f a resonant orbit does not fill the r, z space and instead
repeatedly traces out the same trajectory in this space. Moreover, the dissimilarity between these figures
demonstrates that the phase space trajectory is affected by the initial conditions for the phases i.e. g,
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Figure 2.3: Parametric plots of r vs z for a generic orbit and resonant orbits which all have a
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Figure 2.4: The locations of the resonant surfaces through (p, e) space for a = 0.9M and = = 0.8. We
also give the location of the last stable orbit (LSO) as a dashed black curve.

and g¢.o. Thus, one cannot equate the infinite Mino-time average for a resonant geodesic with the
2-torus average of the action angles and instead one gets [113]

I .
<A> — lim 7)\ /)\A()\/)d)\, — Z ANHT,NHZeZN(lirth"FHzQZ,O). (248)
- NeZ

As such, any averaging procedure done in the presence of an orbital resonance will have to account for
this new definition of orbit average.

Thankfully, sustained orbital resonances are very unlikely for EMRIs [157]. Moreover, the strength of
these resonances is inversely proportional to the order of the resonance i.e. k,.. Thus even though integers
are dense in the real numbers, meaning there are an infinite number of potential orbital resonances, one
only has to worry about resonances where k, < 5.

However, it is quite likely that an inspiral will pass through at least one of low order resonance while
in the LISA band [160]. This is due to the resonances forming a 3D hyper-surface in the 4D generic
Kerr orbit parameter space [179]. To get a flavour for where these resonances occur in the parameter
space, Fig. illustrates the location in (p,e) space in a 2D slice of the parameter space where we
fixed a = 0.9M and z = 0.8. As we can see, most low order resonances occur near the location of
the last stable orbit (LSO). Since our inspiral models start to break down in this region anyway, these
resonances are not the biggest concern. What is more concerning are the resonances that occur at a
significant distance from the last stable orbit, as the effect of inaccurately modelling these resonances
can accumulate over a large number of orbits. As such, the lowest order resonance of concern that we
would expect most EMRIs to pass through is the 2/3 resonance. Any averaging procedure employed to
efficiently model EMRI trajectories will have to carefully account for the presence of these resonances in
order to maintain subradian accuracy in the orbital phases.
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Chapter 3

Osculating Geodesics

3.1 The method of osculating geodesics

We now wish to describe the forced motion of a body obeying Eq. (2.3]). Writing this in terms of the
Christoffel symbols and the worldline of the secondary gives us:

2
dfm_}_ 3 @@:aa. (3.1)
dr? T dr dr
We first identify a set of orbital elements that uniquely identify a given geodesic, such as the integrals of
motion P along with the initial values of the orbital phases of the geodesic orbit ¢y and designate them as
a set of “orbital elements” I = {]3, do}. For accelerated orbits, these orbital elements are promoted from
constants to functions of Mino time. Note that now the orbital elements ¢p(A) are different quantities
from the values of ¢ evaluated at A = 0, i.e., ¢(0). Our goal is to transform the forced geodesic equation
into evolution equations for a set of orbital elements 7. While there is choice in the selection of orbital
elements, we require that the number of orbital elements is equal to the degrees of freedom on the
orbit. For instance, eccentric and spherical orbits only have 3 degrees of freedom and so one only needs
evolution equations for (p, e, gr0) or (p, x,qz,0) respectively, while generic orbits have 5 and so one needs
evolution equations for (p, e, z, g0, ¢20)-
We assume that the worldline and four-velocity of the secondary at each instant can be described as
the worldline and four-velocity of a test body on a tangent geodesic,

2°(r) = (14 (7), 7) (3.22)
dx® oz,
(1) =S £ ), 7), (3.2b)

where the partial derivative in the second equation implies that 4 is held fixed. These are known as
the “osculating conditions”. If we were to take the derivative of Eq. ([3.2a]) with respect to 7, one would

obtain:
dz® B dxd B oxg Oz dr4

dr dr or oIA dr (3.3)
Comparing this with Eq. (3.2b)) gives us the first osculating geodesic equation:
oxg, dr4
i A
oI dr (3.4)
Next we note that x¢, must satisfy the geodesic equation:
B
d*z, o dag dal, o (3.5)
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Thus if we subtract this from Eq. (3.1)), we obtain

d?z® o dxPdzy  d?xl o dacg dx/, o
—— = = (3.6)
dr? T dr dr dr? T dr dr
Using Eq. ([3.2b]), we can get rid of the Christoffel terms and the equation simplifies to
d?z® 0%l
— = e, 3.7
dr? or? ta (3.7)
If we now compare this to the 7 derivative of Eq. (3.2b):
d?z _ d ([ Oxg _ %z, . OA 0xg, ar (3.8)
dr?  dr \ Ot or?2 oI or ) dr
From this, we can infer the second osculating equation
oug drt
ort dar ~° (3.9)

where the geodesic four-velocity is given by 0z /07.

We prefer to work in terms of (Carter-)Mino time A as opposed to propertime 7. Using the chain
rule with Eq. and using the Kerr metric to lower the indices on the second osculating equation
, we can recast the osculating geodesic equations as

Oz, dI4 ou§ dI4
—_— S T = Z - 1 -
orA ax ~ M Bra ¢ (3.10a-b)

From these, evolution equations for each of the orbital elements can be calculated. This was first
demonstrated in Ref. [136] for Schwarzschild inspirals, and has been utilized many times for evolving orbits
in Schwarzschild [70,/145}/154,|156]. This was then extended to generic Kerr orbits in Ref. [137], which
lays out four different formulations of the equations. Three of these formulations use J = {€,L,K} as
the orbital elements and the quasi-Keplerian angles ¢ and x as the orbital phases, and two of these were
numerically implemented and shown to agree with each other. The “null tetrad” formulation which we
will briefly outline is the most numerically efficient of the different formulations and so is the primary
method for evolving orbits in Kerr spacetime [68}|143||160]. However, this formulation is not as suited to
deriving averaged equations of motion due to the use of use of ¥ and x as orbital phases. We instead
utilize a modified version of the action angle formulation for the first time where we use P= {p,e,z}
as the orbital elements and the geodesic actions angels ¢, and ¢, as the orbital phases.

3.2 Evolution equations of the orbital elements

3.2.1 Generic case

We first find the evolution equations for the integrals of motion P= {p,e,x}. In order to do so, we
must consider how a different set of integrals of motion J = {&, L, K} evolve in terms of the covariant
components of the particle’s 4-acceleration {a;, ar, a.,as}. Using the second osculating geodesic equa-
tion (3.10p) along with definitions of £ and L in Eq. , we can obtain the evolution equations for £
and L:

d&

ac
I —Ya¢, and = Yag. (3.11a-b)
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To find the the evolution of I, we note that the contravariant components of the Killing tensor can be
written as [137]
Kb = a1l 4 p2g08, (3.12)

where [ and n are null vectors with components

w2 A a

a

2
w
| — . d = —0; — —0, + —0j. .13a-b
Aat+8 +A6¢ and n 22& 228 +228¢ (3.13a-b)
Taking the derivative of K from Eq. (2.5c) with respect to proper time gives us
d
g = K%uqag. (3.14)

Expanding this out explicitly while making use of the orthogonality condition, go‘ﬂuaag = 0 and con-
verting to Mino time gives us:

dK — @z 4 2 Y s 2 2
X~ A (@*€ — aw’L) + A (a’L — aw’€) — 28 Auyay. (3.15)

Using the above equations, we can now express how the roots {71,732, 2_} evolve with Mino time by
exploiting the same trick as in Appendix A.2 and A.3 of Ref. [137]. First, we note that, using the chain
rule, we can express the rate of change of 1 or r5 as

d’f’172 . 67“172@

ac 2

e Onaddy (3.16)
We then find expressions for 0rq 2/0J; be differentiating V,.(r) with respect to J;.
3‘% oy = A= E2)(r1 —r2)(r1 —73)(r1 — 7“4)22,7 (3.172)
| =~ =l = )2 — ) 2 (317

We then note that the coefficients proceeding 0r12/0J; are also obtained by differentiating V;. with
respect to 7 and then evaluating at 712, i.e.,

BVT 87”1 2
_ : 1
A T A (3.18)
where we have defined
dv, 2
k(r) = - = AEF (r)r — 2rA(r) — 2(r — M) (r* + K), (3.19)
F(r) = w(r)’€ — aL. (3.20)

Combining equations ((3.16)) and ((3.18) and using the appropriate definition of V. from equation ({2.7al)
to calculate the partial derivatives gives us our evolution equations for r; and ra:

d7’172 B _2F(T172) ( )2§ _ a% 4 A(T’Lg) %
d\  K(r9) 0 dN d\ k(r12) dX°

(3.21)

We can use similar steps as above to find the evolution of z_. Again, the chain rule tells us that the

evolution of z_ follows
d _ 02 dJ;

F ol Ay (3.22)
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We then use g“% along with the second definition V. in equation ([2.7b|) to find an expression for %
oV, 62_
= —2z_(Bz% — 22 . 3.23

However, using the first definition of V, in terms of {&, L, Q} gives us the following explicit expressions
for

9% |- a“€z2 (1 —z22), A Lz2, and 50 - z2 (3.24a-c)
Combining the results from equations (3.22), (3.23)) and (3.24)) gives us
2z (24 —Bz_)dz_  dQ z% ac o dE
— =2 — + 2a —. 2
-2 o o * o T 2EE (3.25)

Since we have expressions for the evolution of {£, L, K}, we can derive and expression for the evolution
of Q by taking the derivative of equation ([2.6]) with respect to A:

dQ dKk ac dc‘:)

= —2AL—a 5)(60\ a’s (3.26)

Combing these two results and simplifying yields our final expression for the evolution of z_

dz— 1 % B - ng

where we've used Eq. ) to tidy up the final expression.

Now that we know how {ri,r9,2z_} evolve, determining the evolution of {p, e, x} is straightforward
since we can convert from one set to the other using the relations and (2.10). We can then take
the derivative of these equations with respect to A and use the chain rule to obtain

dp 2 odry odrs
AN M(r1 +12)2 ( 2y T dA) 2 (3.28a)
de 2 d?"l d?“g

_ L, 42 g 3.28b
A\ (r1 +12)?2 <T2 ax ! dA) (3.28b)
dx Z_dz_
N oy (3.28¢)

3.2.2 Spherical case

The above expressions for equations for F), and F, become numerically singular in the spherical limit
(i.e. when e = 0). These are not physical singularities, as one can derive alternative expressions which
are regular in this limit by considering the evolution of the integrals of motion J and then relating this
to the evolution of p.
We begin by using the chain rule on the rate of change of r which gives us
dr  Or dJ;
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To find the partial derivatives 0r/0.J;, make use of the value of radial potential V,. defined as
V,=F*—A(r*+K)
= —(1=EH(r—r)(r—r)(r—r3)(r—ry) (3.30)
= 201 = E%)(r —p)(r —r3)(r —1r4).

where 11,719, 73,74 are the roots of V,. and in the spherical case: 11 = ro = pM. We then define the
derivative of V,. with respect to r as

K ::(?/; =4EFr — 2Ar —2(r — M)(?“2 + K)
' (3.31)
=21 = ralr = 1)+ (= M) = )+ = pMr ).
If we take the derivative of k with respect to r and evaluate at » = pM, we obtain
dn = —=2(1 = &%) (pM — r3)(pM — 14). (3.32)
dr r=pM

However, if we now take the partial derivatives of k with respect to J and evaluate at r = pM we are
left with

on
07,

Subbing the above result into Eq. (3.29)), explicitly calculating 9x/0.J; using Eq. (3.31)), evaluating at
r = pM and simplifying gives us our final result

—4 E M(1 —
dp _ P ((F+w2€)d —a5%+7( p) dlC> =F,

or

or dk
=2(1 — &> (pM — M — —_—.
(1~ €2)(pM — rs) (PM — 1) -

r=pM 87% - %

(3.33)

d\  dk/dr

34
X X 20 dA (3.34)

e=0

By contrast, finding the evolution of the orbital eccentricity e in this limit is straightforward. It has been
well established that under radiation reaction we expect quasi-circular inspirals with e = 0 to remain

quasi-circular [180,|181], and so
de

5 e=0 o ¢
The evolution equation for the orbital inclination z is regular in the spherical limit. As such, we can
continue to use the generic expression of F.

= 0. 3.35
o (3.35)

3.3 Evolution of the orbital phases

We will now discuss how to evolve the orbital phases. Since we make use of two different formulations
of the osculating geodesic equations which differ by the choice of orbital phases, we will now outline the
evolution equations for each.

3.3.1 Evolution of quasi-Keplerian angles

The most computational efficient formulations of the osculating geodesic equations for Kerr inspirals
that have been implemented thus far employ the quasi-Keplerian angles 1 and x. Evolution equations
for these phases were derived in three different ways in Ref. [137]. By far the most convenient method
is the null tetrad formulation where one first derives the equations of motion in terms of components of
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the force aligned with the Kinnersley null tetrad. One then relates the null tetrad components back to

the Boyer-Lindquist components. The resulting evolution equations are finite at all points in the orbit,

including the turning points. A full derivation of this formulation can be found in Ref. [137], but it is

important to note that Ref. [137] makes use of different notation where z = cos? ) instead of cos @, z_

is equivalent to 22, and z, is equivalent to 52_2'_. We will only briefly summarize their findings here.
First define the following combinations of acceleration components [[}

—Qay
Ar=apg = ——— 3.36
N (3.362)
L _ %
Arr = —asinfa; e~ (3.36b)
aH U
= i - 3.36
Arrr 5 O 0t 5 gt (3.36¢)

where H = £ — a&Esin? . We also find the component of the secondary’s four-acceleration and four-
velocity that is aligned with the null vector n can be written in terms of the Boyer-Lindquist components
as

F A
_ _ _ 3.37
Un, o5 oy U ( a)
2 A
an, = “ a; — —a, + e (3.37b)

With these relations in hand, the evolution equation of the polar quasi-Keplerian angle x is given by

dx 10 (14 (1—22)XA;cosy cos x sin YHaA(Arrr — 2urayn) — cosxsin xGArr
oz 2 (22 — B22)sin0) 2(22 — B22)uy, 23 — B2

where G = w?Lcscl — a®z?Esinf. The evolution equation for the radial quasi-Keplerian angle 1 is
given by

, (3.38)

dy () CArrrsing DS AT _ aBsin@sin Ay
ax " 2(1+ecost)u,  2(1+ ecostp)?uy, 1+ ecos (3.30)
1% Yy Yo Fh '
b e (0P o) P 4 (1 0P s 22,
where P o
B= 1(1—e)(r+m)  Faf +€)(T+T2)7 (3.40)
R1 K92
e (3.41)
/{1 /{/2
A A
D= (1—6)2(1—cosw)ﬁ—l—i—(l—i—e)Q(l—i—cosw)f, (3.42)
1 2
and
Ql/g = — 2a£?”7“1/2 - a4€(7" + 7“1/2) + a3£(r + 7“1/2)
_ CL28(7’3 + 7‘27”‘1/2 + 7’;17)/2 + 7’7”1/2(7’1/2 — 2)) (3 43)

= Errya(rryse(r +r12) — 2(r* + TT1/2 + 7“%/2))
— a*(2a%€ — 2Er71 /9 + aL(r + 119 — 2)) cos? 6.

!Note that these expressions will not match those found in Ref. [137] as we have fixed a typo in these expressions.
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Deriving averaging transformations for these evolution equations for the quasi-Keplerian phases re-
quires a zeroth order term in the phase transformations to account for the fact that the leading order
rates of change depend on the phases i.e.T,,(@Z)) and Yz(x) as demonstrated in (2.18). While this is not
an insurmountable challenge as shown in Ref. [113], it is inconvenient to implement. Instead, we chose
to employ an action angle prescription of the geodesic motion and use the action angles ¢, and ¢, as
our radial and polar phases respectively. This allows us to avoid this zeroth order term in the averaging
transformations and allows us take advantage of analytic solutions to the geodesic equations outlined in
Chapter [2|

3.3.2 Evolution of action angles

We now look to derive evolution equations for the action angles ¢, and ¢,. The action angles will still
evolve with their respective Mino-time frequencies, but now pick up a correction due to the evolution of
the initial values. If we take the Mino time derivative of the solution for the orbital phases at geodesic

order given by Eq.(2.23)), one obtains:

dgi  ~(0) | dgip

(3.44)

To find the evolution equations for the initial values for the orbital phases, we can re-arrange the first
osculating condition ([3.10p) and exploit the fact that the evolution of r is independent of ¢, and the
evolution z is independent of g, to get

dgi o 1 oz, dP;
0 _ = fi, 3.45

where x4, is the geodesic expression for r or z given by Eqs. (2.24a)) and (2.24b) respectively.

Unfortunately, this expression is difficult to evaluate numerically at the orbital turning points where
8:0’&/8% goes to zero. This is not a physical singularity as we can derive an equivalent evolution equation
that is finite at turning points be following the procedure outlined in Ref. [137]. We start by considering
the definition of the geodesic potentials:

Vi(z!, P) = (‘fg)? (3.46)

If we add together the derivative of both sides of this expression with respect to P; and then multiply
both sides by P;, one obtains:

ov; (0z' . A [ OF" .
- | —P; —P; = 23! P;il. 3.47
oo (om )+ om, B =2 (5,5 (347)
Rearranging and plugging in Eq. (3.45) allows us to write
oV oz v . (Ot .
GV Ot =i p o4 P, 3.48
oai 0g; ™ " op; 0 T (apj J) (348)

We also note that taking the derivative of ([3.46)) with respect to Mino time X and rearranging yields

av;

1%
P':2.Z..Z_7z
—apj ’ At

it 4
i (3.49)
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Rearranging this and subbing into equation (|3.48]) and simplifying gives us

oV oz . 10V, o .
= 21 P —— | - | =P ). 3.50
d; 0g; 0 = 2 q 2(‘%4 <8Pj ]>> (3:50)
We note that the square bracket term will vanish for geodesics. For perturbed orbits this means that
this term will be proportional to the component of the four-acceleration a’ scaled by a factor of ¥? to

compensate for taking derivatives with respect to A instead of 7. When evaluating this expression, we
make use of the osculating conditions ([3.2)) which leads to the simplification

8%&% _ (9:(% (0)
dgi d\  0Og;

Combining these results with equation ([3.50)) gives us our final expression for the evolution of the initial

phases:
dgi o 2710 9 8:5G
= — L | ¥4 P i .52
a ~ ovijor, \ " \op, =/ (3.52)

This expression instead has a singularity whenever 9V;/9z%, = 0. Thus, for our numerical implementa-
tion, we use Eq. ([3.45) for the majority of the orbital cycle and switch to Eq. ([3.52)) in the vicinity of
turning points.

3.4 Equations of motion for self-forced generic Kerr inspirals

Finally, we also require evolution equations for “extrinsic quantities” that don't show up on the right
hand side of the equations of motion, but are necessary to compute the trajectory and the waveform.
These are the time and azimuthal coordinates of the secondary which, as a set, we denote by S = {t, ¢}.
Their evolution is given by the geodesic equations for ¢ and ¢, i.e., equations (2.7¢) and ( - Putting
it all together, the equations of motion take the form:

P; = Fy(P, ), (3.53a)
G =T (P) + fi( P, ), (3.53b)
Sy = 1P, ). (3.53¢)

These equations of motion are valid for generic inspirals under the influence of an unspecified per-
turbing force. However, we are interested in the case where the perturbing force is the GSF which scales
with the small mass ratio ¢ = u/M, meaning that the secondary’s four-acceleration can be expressed
as a% = ea( Tt €2 a(2) + O(€?). Factoring out this scaling, the equations of motion for generic Kerr
inspirals become

Py =eF V(P q)+62F (P, d), (3.54a)
g = T (P) + ef{V (P, ), (3.54b)
S = 1P, ). (3.54¢)

We find that the action angle implementation produces inspiral trajectories that are identical to
inspirals calculated using the null tetrad formulation with quasi-Keplerian angles. We have implemented
both the action angle and null tetrad osculating element equations into a Mathematica package that
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will be publicly available on the Black Hole Perturbation Toolkit [182]. We find numerically that the
null tetrad formulation is more computationally efficient as it does not have any singular equations that
necessitate switching between different evolution equations twice every orbital period. As such, for direct
comparisons between OG and NIT inspirals we make use of the null tetrad formulation, but use the action
angle formulation as the starting point for our averaging procedure.
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Chapter 4

Near Identity Transformations

Near identity (averaging) transformations (NITs) are well known technique in applied mathematics and
celestial mechanics [155]. This technique involves making small transformations to the equations of
motion, such that the short timescale physics is averaged out, while retaining information about the long
term evolution of a system.

In Ref. [154], these transformations were derived for a generic EMRI system which we review in
Sec.[4.1] However, such transformations become ill-behaved in the presence of an orbital resonance. For
this reason, we derive a version of the NIT that is valid in the vicinity of an orbital resonance in Sec. .

When we perform these transformations and solve the resulting averaged equitations of motion,
the solutions are parametrized in terms of Mino time A. It would be much more convenient for data
analysis if the final solutions were instead parametrized by the Boyer-Lindquist coordinate time ¢ as this
can be easily to the retarded time at the detector. Doing so either requires numerically interpolating
A(t) which could take minutes, or adding orbital timescale oscillations back into our NIT equations of
motion. However, it was noted in Ref . [113] that these oscillations can be averaged out if one performs
an additional averaging transformation. We outline this details of this procedure in Sec. [4.3]

Finally, in Sec. we briefly describe a mathematically equivalent averaging technique that makes
use of the natural separation of timescales in the EMRI problem, the two-timescale expansion.

4.1 A review of near-identity transformations for generic EMRI systems

4.1.1 Near ldentity Transformation

The NIT variables, ]53 G; and Sy, are related to the OG variables P;, ¢; and S}, via

]5-:P-+6Y(1( P+ Y (B, q) + o), (4.1a)
Gi=aq+ex V(P (j)+62X2)( P.q) + 0O, (4.1b)
Sk—Sk+Z (P q_)+eZ (P, ) + O(e?). (4.1c)

Here, the transformation functions Y™, X(n), and Z(n) are required to be smooth, periodic functions
of the orbital phases ¢. At leading order, Egs. are identity transformations for P, and ¢; but not

for Sy due to the presence of a zeroth order transformatlon term Z,g ). The inverse transformations can
be found for P and ¢; by requiring that their composition with the transformations in Egs.(4.1)) must
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give the identity transformation. Expanding order by order in ¢, this gives us

J
o B 2. WIVBDH g = (4.2a)
QY(Q)Pj— J v Y(l)P~_ J ’ X)P~ 3
€ J ( 7q) apk k ( 7@ 8q~k k ( 7&5 +O(€ )7
qi = q~z - EXZ'(I)(ﬁa 5)
2 aXVPH = aXVBE = - (4.2b)
2 X(Q) P.g) — i\ Y(l) P.g) — 7 ) X(l) P.a 3
€ ( 1 ( 7q) 8Pj ¥ ( ?q) a(jk k; ( 7Q) +O(6 )

4.1.2 Transformed Equations of Motion

By taking the time derivative of the NIT (4.1), substituting the EMRI equations of motion ([3.54) and
inverse NIT (4.2)), and expanding in powers of ¢ we obtain the NIT transformed equations of motions

dp;

ﬁ = eﬁj(l) (Pv 5) + 62]3}(2)(?), 5) + 0(63)’ (438)
OBy + x(B.3) + 0, (4.3b)
where
- o} ox ol
(1) 1) J (0) 1) 1) i (0) i 1)
Y =F T T =7 —T - —Y. 4. 4a-
J J + 0dq; (N i fz + 9§ k 8})] J ( a b)
and
. oy oy ) oy M oF oFY
(2) (2) J (0) i 1) J 1) J (1) J (1)
J J 8q¢ 7 a(h' fz 8Pk k 8Pk k 8% i ( )

Note that all functions on the right hand side are evaluated at P and (fand that we have adopted the
convention that all repeated roman indices are summed over.

4.1.3 Cancellation of oscillating terms at O(¢)

Since each of the functions on the right hand side of our equations of motion are 27 periodic in the orbital
phases, it will be useful to decompose these functions into Fourier series where we use the convention.

AP, = Y Ax(P)e™T, (4.6)
REZimax

where 72y is the number of orbital phases. Based on this, we can split the function into an averaged

—

piece (A) (P) given by

. . 1 .
(A) (P) = A§(P) = o—=7— / e /A(P,q)dql oo dgin (4.7)
(277 imx 7
and an oscillating piece given by
A(P,§) = A(P,q) — (A) (P) = ) Ag(P)e'™ 7. (4.8)
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Using this split, we can recast the expression for Fj(l) as

) - (1)
0o Y w9
_ /() (1) = Oy D) iRG '
= (FV)+ >0 (B +i(7- YO D) e
R£0

)

As such, we can cancel the oscillatory pieces of Fj(l by choosing the oscillatory part of Yj(l) to be

~.

F!

(1)
Yig = 0y~ Js

.]7,{

(P). (4.10)

Nz

S

R

Clearly, one can only make this choice so long as there is no Rres = {ky, k. } where k., k. € Z, such that

Rres - YO — kTTSnO) + szgO) = 0. While this is usually the case, this breaks down in the presence of
orbital resonances when the radial and polar frequencies become commensurate. We will deal with this
case in Sec. [4.2] but for now we will assume that we are far from any orbital resonances.

(1)
i

Using the above choice for }u/j(l), the equation for T,/ becomes

or® oxW
M _ s _ 9T v 90X )
CTR TR g

a1 i ox\ o S
= (1) - G (W) + (féé?— L iR 1) f”)
R#£0

op; \'’ fOR-TO op Y a

As a result, we can remove the oscillating pieces of Tgl) by choosing

1L om”
(R-T0)2 P Js

~—

v.(l) = : f(l) +

. (4.12)

P

4.1.4 Cancellation of oscillating terms at O(e?)

Using the above choice for }7‘(1), we can express the oscillatory part of the expression for Fj@)

J

- (2) (1) (1) (1)
g ) (00 )2

as

op, op, 'k

2) 9 <YJ’(1)> jad .a <FJ’(1)> Fi =
WE T 9B, R T TR, R7-YO

(1) (1) 1) VR —  f1) .
n Z < Fk,z—zf 8F{,ra Fj,ﬁ’ 3(/‘6/ ) T(O)) Ko fﬁ—z'F(1)>)€mq

(4.13)

#sz,fm) ob, R -TO 0B 7. T0) I
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where we introduced the additional notation {-} to denote the oscillatory part of a product of functions.

Thus we can remove the oscillatory part of F]-(Q) by choosing
, (1) (1) (1)
@) __ (2) o(v") M) o(1") F)
YS=—a |+ ——="F -~ = =
PE g0\ P, " 0P, R-Y0O)

(4.14)

+ <Z Fipw (OFe B o@-X¥O)\ #-7i Fu))
g-YO \ o, ®-TO 9B, = ) AR ) |

4.1.5 Freedom in the averaged pieces

With the oscillatory pieces of the NIT equations of motion removed, terms in the equations of motion
become

PO <F(1)>, TEI) _ <f¢(1)> _ Mfz@ <y,(1)>7 (4.15a-b)

and

J J aCji k k 8Pk

Note that we still have freedom to set the averaged pieces of the transformation functions <Yj(1)>,

<Yj(2)> and <Xi(1)> to be anything we choose. There are many valid and interesting choices that
one could make that are explored in Ref. [154]. For this work, we make use of the simplest choice:
<Yj(1)> = <Yj(2)> = <XZ-(1)> = 0, as this makes it easy to compare between OG and NIT inspirals. It
also has the benefit of drastically simplifying equations of motion to

oD _ /) O _ /@
Y = <Fj > ;T = <fz, > , (4.17a-b)
and
_ ov ov
@ _ /2 i) i )
I = <FJ >+< 9g; § >+< OP;, i (4.18)

4.1.6 Evolution of extrinsic quantities
Now we look to remove the oscillatory pieces of the evolution equations for the extrinsic quantities S:

dS

o =P (4.19)

By substituting for P and ¢ using the inverse transformation (4.2)) and re-expanding in € we can write

this as an equation involving only the NIT variables P and cf

ax

a5 _ 0 _ afzio)ym +3f;50)
b oP; 7 g "

X?1)> +0(?) (4.20)
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where all of the functions on the right hand side are now functions of P and ¢. In order to remove the

oscillatory pieces of the equations, we make use of a new set of extrinsic quantities S that are related
to the original quantities by Eq. . We note that since this transformation has a zeroth order in
mass ratio term Zk0 , it is not a near-identity transformation. Thus when we produce waveforms it will
be necessary to be able to calculate Z,go) explicitly.

We then take the time derivative of Eq. (4.1d), substitute the equations of motion for S and expand

order by order to obtain equations of motion for for S:

dsS,,

= YO 4 x4 o), (4.21)
where
0) _ £(0) 4 32( : © (4.22a)
™ T(l) " F( )+ %2k _x(0) _ W _ 4.22b
g 3% ! opP; 7 aq ' 6P i 3@11 ( )
We can now remove the oscillating pieces of the functions Tg)) by solving the equations
~(0)
[0 9% 0 _ (4.23a)
Tt 3(11
Z(O) 7(0) Z(l) (0)
0% v, 9%, A 4 0%y _ [Ny | of" oyl _ (4.23b)
0 OP; 9 opr; 7 9

for the oscillatory parts of the transformation Zvlgo) and Zlgl). The first of these is satisfied by using the

oscillating pieces for the analytic solutions for the geodesic motion of ¢ and ¢,

720 = —81.1(ar) — Skx(a). (4.24)
(1)

It is unclear whether the equation for Z;* would analytic solutions, but it can be solved numerically.
Since we only need to know the extrinsic quantities to O(e) to generate waveforms, we do not need to

be able to calculate this explicitly and it is sufficient to know that a solution exists.

Now the forcing functions only depend only on P and are given by

¥ = (1”) (4.252)
©) ©) " "
) _ o(2 >13(1)_8<fk ><Y<1>>_ of” o\ _ /0" v (4.25b)
k 5 1 5 i 5 Y s
oP; OP; OP; 94

Again, we have freedom in the average pieces of the transformation functions which we use to simplify
this problem further. As before, we chose the simplest option and set <Z,(€O)> = 0 which along with our

previous choices simplifies the expression for T,(:) to be

#(0)
(1) e v afy

T\ = — A Ve . 4.26
g <an 7 > <8ql Nl
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4.1.7 Summary of NIT Results

In summary, the equations of motion for the NIT variables ]5j, gi and S, now take the form

U5~ FO(B) + 2FP(B) + O(), (4.272)
% ~TOB) + eV (B) + 0e), (4.27b)
dS’ = 2

5= YO P) + exM(P) + O(). (4.27¢)

Crucially, these equations of motion are now independent of the orbital phases ¢.
We chose the average pieces of the transformation terms to be <Yj(1)> = <Yj(2)> = <Xi(1)> =

<Z,E,O)> = <Z,(€1)> = 0 and so the transformed forcing functions are related to the original functions by

~ (1 1 1) 1 0 0
FJ():<FJ»()>, 1 :<fi()>, T1§>:<f]§>>, (4.28a-c)
N o7 o "
@ _ /(@) i A O =)
= () { G )+ () 4250
=(0) #(0)
SOD RN Y (200
op; 7 94;

In deriving these equations of motion, we have constrained the oscillating pieces of the NIT transformation
functions to be

S (1) (1) iRg
Y, ._;E'fFj’ﬁe q (4.29)
R#0
y ’ 1 Y, o
x® ._ Lo _ L) giRd 4.30
l %<‘ff A on; 7 (-30)

After numerically solving the equations of motion, computing a waveform only requires knowledge of
the transformations in Eq. (4.1)) to zeroth order in the mass ratio so that the error is O(e) i.e.,

P; = Pj + O(e), (4.31a)
¢ = G; + O(e), (4.31b)
S = S, — Z0(B,§) + O(e). (4.31c)

where the zeroth order transformation term for the extrinsic quantities Z,go) is known analytically as it
related to the analytic solutions for the geodesic equations for ¢ and ¢ by

7O = — 8 (ar) — Sz (az). (4.32)

Furthermore, to be able to directly compare between OG and NIT inspirals, we will need to match their
initial conditions to sufficient accuracy. To maintain an overall phase difference of O(¢) in the course of
an inspiral, the initial values of the phases and extrinsic quantities need only be known to zeroth order
in €. However, we need to know the initial values of the orbital elements P to linear order in € and so
we use

P;(0) = P;(0) + e¥ " (P(0), 7(0)) + O(€2). (4.33)
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4.2 Near-resonant near identity transformations

As alluded to in the previous section, this technique will break down in the presence of orbital resonances
where the radial and polar frequencies become commensurate i.e. x,. Y, + x, T, = 0 where k., k, € Z.
As such, we will introduce a new averaging procedure which averages almost all dependence on the
orbital phases, except for the resonant phase ¢, ‘= k,q, + K,q,. This will mean that our equations
will oscillate, and so will be slower to solve than the off-resonance NIT equations of motion. However,
q1 oscillates on a timescale between that of the slow evolution of the orbital elements and the rapidly
oscillating orbital phases, and so can be thought of as a “semi-fast” variable.

4.2.1 Near ldentity Transformation

We will first focus on the evolution of the orbital elements and orbital phases and so we once again
introduce the transformation

Py = P+ eV (P, q) + &P (P.) + O(), (4.342)
Gi=qi+eX (P, q) + XD (B, q) + O(e¥), (4.34b)
qL=q1 +eWW(P,q) + EWD(P, ) + O(e%), (4.34c)

where we have implicitly imposed that none of the functions of the right hand side depend on the
resonant phase ¢, . This transformation has an inverse that is given by

L ovWEdH o= avW(EB) (4.35a)
_ 2 Y(Q) P, A J ’ Y(l) P, A J ’ X(l) P +0 3 ’
e | Y7 (P o6, Wk (P,q) aa. (P) (€%)
qi = (jz - GXi(l)(ﬁ’ 5)
2 axVBYH 2 OXVEED a2 - (4.35b)
— e[ xP(p g - Ly WP g - X V(P §) | + 0
€ ( i (Pq) 0B, (P,q) e, (P q) (%)
qL=qL — GWi(l)(JS7 q)
5 2 B 2 (4.35¢)

4.2.2 Transformed Equations of Motion

By taking the time derivative of the NIT (4.34]), substituting the EMRI equations of motion (3.54) and
inverse NIT (4.35)), and expanding in powers of € we obtain the NIT transformed equations of motions

dP;

- = eFWV(P,q,qL) + EFD (P, q1) + O(é%), (4.36a)
dgi =t = o

S =10(P) + 1V (PG, 01) + O, (4.36b)
dqg . =2 = . 2 =

=L = Fres - TO(P) 4 eires - TO(P,G.01) + O(E), (4.36¢)
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where

; oy} ox! orl”
O _ 0, Y 0 o, 9K o 9T ]
B = B it 0 = 104 S d - T (4.37a-b)
and
2) 1) (1) (1) (1) (1)
B A B A e O R B Il M (Ol B VTS
J J dq; g " op, F op, " 94q; 0q.1 '

1

4.2.3 Cancellation of oscillating terms at O(¢)

We note that we can decompose any 27 periodic function into its averaged, resonant oscillatory and
non-resonant oscillatory pieces using a Fourier expansion:

A(P,q,q1 + ) ANz (P)eNiE 43 " A (PR, (4.39)
N0 RER

where R is the set {K € Z%|R # NFRyes, VN € Z} of all non-resonant 2-tuples and kyes = (K, k) is such
that fres - T = 0.

_ oy ! oy !
Fj(l) :F]( ) 4+ T(O) FO 4 J 3~
8qZ E; 8 !
Q) ) o <) (4.40)
_ N 2(0) v/ iR-q
- <E7 > ]7N"'€res e + Z ( '_{ ( T ) }/}7’2 ) € !
N#0 RER
As such, we can cancel the non-resonant oscillatory pieces of F ( ) by choosing the oscillatory part of
Yj( ) to be
(1) L) B
Y = ' (P). 4.41
1,k Ei . T(O) 1,k ( ) ( )
for £ # NRyes and 0 when § = NR&es. Using the above choice for Y/j(l), the equation for Tgl) becomes
o ox
A N L T )
CER R g
(0)
_ /N _ 9T /) (1) NG
B <fi > oP, <YJ > +N%:0fi,zv%rese (4.42)
S S—"
iR F 3 D R T UK i,K €
RER ) (0) a'P]
As a result, we can remove the oscillating pieces of Tgl) by choosing
. (0)
S(1) i (1) 1 [ e
= - N — F. 4.43
LR 7Y fw + (R-Y©)2 9P ( )
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for K # NFKyes. Moreover, we can determine the transformation term W by examining the equation the
equation for K - T,

- AA0 1
7 10 _g. o 98T 0 OWD o)
8Pj J 8qk
(7 - T i
_(r.fON A 2 M) = A1) iNG,
<’i f > 8?] <}/J >+]Vz¢:0(l{’ f ) Rres € (444)
j 7. Y0
_(1 i O(E-TY) = RO ) iR
+Z< R T R CR L
RER J
As such, to remove the oscillating pieces of & - T(1), the oscillatory piece of W (1) must take the form
) 7. Y0 >
v . - F1) 1 ORE-TO) )y _ - 2
Wel=1 3 R = Fig=r- X 4.45
" R0 (R 0% + (7 -YO©)2 9P R =P ( )

for £ # NFRyes. Note that this derivation is consistent with the fact that since ¢, = < - cf then by

Eo. @30, WL = 7 X0

4.2.4 Cancellation of oscillating terms at O(¢?)
(1)

Using the above choice for Y] , We can express the non-resonant oscillatory part of the expression for

i(2)
Fj as
y (1)
2 oy oy W ay® a< 7 >
2) =2 i ~(0) i () f () i) o
FY =F" + Y+ —=— +<{{ 1 F _ N1 Iy
S 5 " 0B, " op, "
v o (FMY po)
= FJ.(?Jrz'(E.T(O))YJ(?JF < J > éli < J >4 L (4.46)
ReR\ ’ P OP, &Y
(1) (1) (1) oo L)
" <Z Porw (Ofw  Hin OR-TO)) R few F@) i
R/ER R-TO\ 0P, & -TO 9B, 7. T0) IR ’

where {-} is used to denote the non-resonant oscillatory part of a product of functions. Thus we can
7(2)

remove the oscillatory part of F; by choosing
) o Y-(l) 9 F.(l) F(l_).
g —— 7< 4 >F,§1E) —i < . ) b
P RLYO R 0Py ’ P, R-Y0O

(1) (1) M o S
+ vpw [(0Fp  Fe oF-TO)) A fiw
7Yoo\ ap,  ®.-YO 9B, = Y0 R )]

4.2.5 Freedom in the averaged pieces

With the non-resonant oscillatory pieces of the NIT equations of motion removed, terms in the equations
of motion become

Fj(l) _ <F](1)> 2 F](]\)[Hres ZNqL’ Tgl) — <fz(1)> + Nzﬂ]fig\)[greseiqu _

Q
iy
=

i

A <yj<1>>, (4.48a-b)
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and

(1)N " (4.49)
. 5<82k ) (F0) - 6<;k ) (0

Note that we still have freedom to set the averaged pieces of the transformation functions <Yj(1)>,
<Yj(2)>, <XZ-(1)>, and (W) to be anything we choose. As before, we make the simplest choice:

<Y-(1)> = <Yj(2)> = <X-(1)> = (WW) = 0, as this makes it easy to compare between OG and NIT

] (2
inspirals. It also has the benefit of drastically reducing the terms in our equations of motion to

F( < 1)> ]%;0 F}(lN,:@,ESeZNqL’ Tz(l) — <f7,(1)> + NZ?;O f(g\)h@,es quJ_, (4503-[))

and

. oy oy
7@ _ [ p® o ) i o)
Fy7 = < > é + <8qi fi > + <615k F, (4.51)

4.2.6 Evolution of extrinsic quantities

The last thing to add this formulation is the evolution of the extrinsic quantities. Thankfully, both the
t and ¢ geodesic equations are separable with respect to r and z and so

1O =37 10T =3 (o™ + ) (4.52)

ReZN N

This means that féo) have no dependence on ¢ and so any term in the NIT transformations or equations
of motion proportional to 1/ (ﬂres . T(O)) will be multiplied by 0 and so all of our terms remain finite.
As such, we can continue using the terms calculated in Sec. [4.1.6]

4.2.7 Summary of Near Resonant NIT

In summary, the equations of motion for the NIT variables ]5]-, g; and S), now take the form

dP; 1), = ~(2), 2

T; - EFJ(l)(Pv ~J_) + 62Fj(2)(P7 QJ-) + 0(63)7 (4'533)
% TPy + exM(Bq.) + Oe2), (4.53b)
C%k =T O(B) + YV (P) + O(2). (4.53c)

Crucially, these equations of motion only depend on the slowly evolving orbital elements P and the
semi-fast resonant phase ¢ but not on any of the other rapidly oscillating orbital phases §.
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J J
<Z]go)> = <Z,gl)> = <W(1)> = 0 and so the transformed forcing functions are related to the original

functions by

We chose the average pieces of the transformation terms to be <Y-(l)> = <Y»(2)> = <XZ(1)> =

D D S i /) NI CL
N N
) | e e
(2) _ (2) iNg. Jj 7 J ()
= e + ( ——f + —F , 4.54d
J ZN: . NRees® <8qz ¢ 0P, k ( )
6f(0) 5 af(o) 5
1= (g - (g, (4.54¢)
OPJ qi

In deriving these equations of motion, we have constrained the oscillating pieces of the NIT transformation
functions to be

y="3 L pgRd (4.55)
J —’.Y‘ Ik ’
rer
¢ . L) 1 oY) ira
X =% e TR ) R 4.56
' EeR(E-TfZ’F”+(/¥-T)2an o ) € (459)

where R is the set {7 € Z?|R # NFRyes, VN € Z} of all non-resonant 2-tuples and ries = (K, K2) is
such that kres - T(©) = 0. After numerically solving the equations of motion, computing a waveform only
requires knowledge of the transformations in Eq. (4.1]) to zeroth order in the mass ratio, i.e.,

P; = Pj+0O(e), (4.57a)
¢ = G + O(e), (4.57b)
S = S, — Z0(B,§) + O(e). (4.57¢)

)

where the zeroth order transformation term for the extrinsic quantities Z,go is unchanged in the presence

of a resonance and is still given by

29 = — 8y 1(gr) = Sh2(q2). (4.58)

Furthermore, to be able to directly compare between OG and NIT inspirals, we will need to match their
initial conditions to sufficient accuracy. To maintain an overall phase difference of O(e) in the course of
an inspiral, the initial values of the phases and extrinsic quantities need only be known to zeroth order
in €. However, we need to know the initial values of the orbital elements P to linear order in € and so
we use

B;(0) = P;(0) + ¥, (P(0), 7(0)) + O(e?). (4.59)

4.3 Averaging transformations for motion parametrized by Boyer-Lindquist
coordinate time

Solving the above equations will result in solutions for P, g and S as functions of Mino-time A. While
this would include t()), the transformation to A(t) is non-trivial, and in practice is done via interpolation
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which can be costly for long inspirals. It would be significantly more convenient for the solutions to be
functions of ¢ from the start so that one can produce time-domain waveforms for data analysis without
this post-processing step. This can be accomplished for the OG equations by simply using the chain
rule:

apr; 1 1), 5
cTt] = m (GFj (P)> 5 (4.60a)
dgi 1 5

A (Ti(P)+e

it~ 1959 ( (P)+efV(P i)) (4.60b)
dp 1 0), 3

a m (f¢ (R@) . (4.60c)

Notice that we have one less equation of motion to solve. However, using the same approach to the
NIT equations of motion results in

R O PN P

i g (eFj (P) + &F (P)), (4.61a)
dg; 1 =4 ),z

Y~ (ry(P)+exV(P)), .

d(;~5 B 1 = 1,2

&= g (T¢(P) +er! (P)). (4.61c)

As we can see, we have now re-introduced a dependence on the orbital phases ¢, defeating the purpose
of our original NIT. Thankfully, as outlined in Ref. [113], these oscillations can also be averaged out by
performing another transformation:

—

1)

Py = By + a1 (P,§) + TP (B, ) + O(e), (4.622)

(P.
00 = O + Apa + c®V(B.§) + O(e), (4.62b)

where § = {q, d)} Apy = Q(O)( )At(o) and Q( ) is the Boyer-Lindquist fundamental frequency of
the tangent geodesic.

To obtain the equations of motion for P; and ¢, we take the time derivative of Eq. , substitute
the expression for the NIT equations of motion, and then use the inverse transformation of Eq - ) to
ensure that all functions are expressed in terms of P and q 7 and the expand order by order in €. We then
chose the oscillatory functions At, @E ), 5-1) and Hg ) such that they cancel out any oscillatory terms
that appear at each order €. This results in averaged equations of motion that take the following form:

dP: i -
L= (P + 21D P) + 0, (4.63a)
dc% — 0O/(B) + Q)(P) + O(e2). (4.63b)

These equations of motion are related to the Mino time averaged equations of motion (4.27)) with the
adiabatic terms given by

1 _ 7 0) _
i =—- o= , (4.64a-b)
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and the post-adiabatic terms given by

@ _ 1 /=@, 0 9 /o O\ T (D)D)

= g (5 + 5 g, () = (10 S = 1), (#652)
1 _ 1y / OAp, o1 900 Bl

o — — (v 4 g —{(fOmy ey, 4.65b

[e% T§0)< «@ + j apj <ft k > 8Pk t 7 ) ( )

This constrains the oscillating pieces of our transformation to be

¥ )
At :% — "f(o) =7, (4.66a)
< (1) I W
I, :2;:6 Zﬁ_’f(o)r =—ZT5’, and (4.66b)
(0)
0Ap 1 ft 1)~ (0
o) __t a.f (1) & (1) (0)
R g.T(0)< oP; (O 7t

4.
ORI O O 00 _ 1) 40 005" (4609
‘f‘ﬁ/ia 1K - R_R! t,f{’—’_ jR—R' 873] o j,k’—ﬁ’ft,f{’ 8Pj

).

We are free to chose the averaged pieces of Hgl) and we make the simplification that <H§1)> = 0.

With this and the identity <ft(0)(f ft(o)dq")> = 0, we get the simplification <ft(0)H§1)> = 0. Thus the

expressions for FE.Z) and QS) simplify to

@ _ 1 (=22 ~Op0)

=5 (£ —1{"r), (4.672)
t
1

a _ L 1) A1) (0)

Q' = + (T& T,7af ) (4.67b)
t

Alternatively, one could derive the the above equations of motion in a more straightforward manner by
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using the chain rule and expanding in powers of €:

-1
dp;  dp; (di ,
at T dh <d)\> +0(€)

FO 4 2FO

_ 3
= —( 0) 0 + O(€)
T, + €Y, (4.68a)
1 1
K F( ) o XV o
10 T<o> j
_ EF( ) + 62F
1
d‘ﬁa . d% dt 2
d  dn <d>\> +0(€)
O+ extd
= o O
O 1 e (4.68b)
O (D (0)
:7&4_7 T&l)_¥ +O(62)
5 (-

=00 1 ) + O(e?)

What is most useful about these equations of motion is that their solutions P(t) and @(t) is exactly
what is required to feed into waveform generating schemes. We show the equivalence between F(t) and
the relationship derived in Ref. [156] between the solutions to the original NIT EOM and the waveform
“voices” @,y in Chapter. 5]

We note that in principle, one could also perform this transformation on the near-resonant NIT.
However, the right hand side of equations of motion will still depend on the resonant phase ¢, =
KrGr + K2{G.. While we have an analytic solution for wa(cf} to leading order, one must numerically find
the relationship ¢;(), making this approach impractical for inspiral calculations. This may be remedied
in future if an analytic solution for ¢;(Z) is found.

In fact, this additional averaging step could be avoided entirely if we could describe the geodesic
system directly in terms of action angles associated with Boyer-Lindquist frequencies, i.e. 4. This has
been done in the Schwarzschild case as an analytic expansion in eccentricity [183]. However, an analytic
expression for generic orbits in Kerr spacetime in terms of these has phases has yet to be found.

4.4 Two-timescale expansion

We note that there is an equivalent way of obtaining the above solutions via the two-timescale expansion
(TTE). We exploit the difference between the timescales of the system by defining T := et as the slow
time which governs the long term, secular behaviour of the system and defining ¢ as the fast time of the
system that governs the short term, orbital dynamics and treating these two times independent variables.
As such, we expand the transformed variables as

Pi(T.e) = POT) + eP(T) + O(e), (4.69a)
PalT,€) =~ [(T) + (7)) + O(e)). (4.69b)
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Applying this expansion to the ¢ parametrized NIT equations of motion, one finds that the equations of
motion for the two-timescale expanded variables takes the form:

P
9Py _ 1050 (4.702)
dpt) _ 00) 50 4.70b
dT _ro (P )a ( )
ap q or)

J_ _ @ /p0) (1) J (0)

a7 =T;7(PY) + Py ((977k P ] (4.70c)
dol) (1) (3(0) ) (098 5(0)

o=l + Y (G- ). (4.70d)

There is a trade-off for solving these equations of motion. We now have to solve a system of coupled
differential equations that is twice the size and thus is more expensive to solve numerically, but the
solutions are independent of ¢ and one can construct a solution that is valid for any value of € using
equations [4.69. Thus if one wants to compute multiple inspirals with varying mass ratios, the TTE can
be more efficient overall. However, there is also an issue where the inspiral will stop prematurely, as
the variables PJ(O) typically reach values which correspond to the ISSO before P; do. In this regime,
one should instead employ a transition to plunge as the this is where the adiabaticity assumptions of
the OG equations and two-timescale expansions is expected to break down. We will use both the NIT
and the TTE of motion to produce waveforms and compare them to waveforms generated using the
OG equations in Chapter [7] to assess which is the more practical framework for producing post-adiabatic
EMRI waveforms.
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Chapter 5

Waveforms

We wish to examine the effect of these averaging procedures on the final gravitational waveform. In order
to do this, we first must establish a relationship between the solutions for the inspiral quantities and the
waveform. We first examine how to do this with fully relativistic waveforms generated from solutions to
the Teukolsky equation, as implemented in FastEMRIWaveform package [120,135]. Unfortunately, this
implementation is not currently available for Kerr inspirals, and so we use “semi-relativistic” quadrupole
formula used by the numerical kludge models, which we discuss in depth. While such an approximation
may not be accurate enough for LISA data science, such waveforms still fair surprisingly well compared
to Teukolsky snapshot waveforms, even in the strong field regime [116]. What is most important for
this work, where we are testing different calculations of inspiral trajectories, is that all waveforms are
calculated using the same formula so that any difference in the waveforms is due to differences in the
inspiral trajectories. We then end this chapter with a brief discussion of the waveform analysis employed
in this work.

5.1 Waveform Generation

5.1.1 Teukolsky Based Waveforms

We start by assigning the origin of our coordinate scheme to be the position of the primary MBH. We
then set the Cartesian coordinates of our observer to be = (tyet, ¥). It is useful to express the observer’s
coordinates in terms of spherical coordinates (R, 6, ®), where R is the distance from the observer to
origin given by R? = - Z, © is the observer's latitude and ® is the observer’s azimuth. We assign the
Cartesian coordinates of the secondary, which we model as a point particle, to be z, = (tp, i”p). As such,
we can express the retarded time as measured by the observer in terms of Boyer-Lindquist coordinate
time t via tyer =t — |Z — Zp| =t — R in the limit where R is large. The complex waveform strain can
be decomposed onto a basis of spin-weighted spherical harmonics _5Y},, given by:

1
htrer) = hy —ihx = ZZ Hip(tret) —2Yim (O, @). (5.1)

If we assume the secondary is moving on a geodesic, the waveform modes Hj,,, exhibit a discrete frequency
spectrum and so can be Fourier decomposed into:

Hign(tree) = Y Apnie(P)e” 3t (5.2)

where the complex amplitudes A;,,z can be related to non-homogeneous Teukolsky amplitudes, which
can be precomputed for a given set of orbital elements P [134]. Such waveforms are known as “snapshot”
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waveforms, as they only capture a small section of the total waveform [17].

For a full EMRI waveform, one needs to account for the fact that the frequencies and the orbital
elements will slowly evolve with time, resulting in a continuous frequency spectrum. As such, this Fourier
mode decomposition becomes a “mulit-voice” decomposition [134]:

Hyp(tret) = D Amig(P(trer) e Pronlleed), (5.3)
R
where the waveform ‘“voices” &,,z E] are given by

t t t
b . =m / Qy(t)dt + iy / O, (t)dt + K, / Q. (t)dt. (5.4)
0 0 0

Let us recall the equations of motion for the orbital phases obtains after performing the NIT and the
additional transformation such that our solutions are in terms of Boyer-Linquist time (4.63]). When we
express this in integral form, one obtains

t

_ [ (00 4 o 2 dt — 2
%_/O (290) + (1) + O() at /O(Qa(t)+(9( )) dt (5.5)

As such, we can finally assign a physical meaning to these phases, as at leading order in ¢, they are
directly related to the waveform voices:

@m,ﬁ =My + KrPr + K20z + O(€> (56)

This is further supported by Ref. [156], where a relationship between the waveform phases and the NIT
phases ¢ was independently derived. When expressed in our notation with polar motion included, this
relationship is given by:

P = M + iy + ol + Q) + 7 20 + 100 (¢ =) + O(e) (57)

Using the relationship between ¢ and  given by Eq. (4.1d), the result for At given by Eq. (4.66a]), and
the relationship between the NIT action angles given by Eq. (4.62)), one can obtain:

Bt = () — Qp(t — 1)) + ki (Gr — Qe (t — ) + 12(G — Qu(t — 1)) + Ole)
= m(d — WZ) + k(@ — B Z) + ra(@ — 2:2) + O(e)
= m(p + QpAt) + K (Gr + QAL + k(G + QLAL) + O(e) (5.8)
= m(o+ Apg) + k(G + Apy) + K2 (G + Ap,) + O(e)
= mpgy + Krpr + K0, + O(e).

One can also freely replace the dependence of the evolving orbital elements P(t) with either P(t) or
73(t) as at leading order in € they are identical. As a result, we can now relate a solution to the EMRI's
inspiral trajectory to its associated Teukolsky based waveform.

The biggest obstacle to overcome when producing these waveforms is pre-computing the amplitudes
Aynz across the four dimensional generic Kerr parameter space. Moreover, once those are known, each
time one wishes to sample the waveform, one has to sum over a large number of both Fourier and spherical
harmonic modes. This can get very expensive when one has to sample a multi-year long waveform every
few seconds i.e. O(10°) times. The FastEMRIWaveforms package overcomes these challenges by using
a neural net to interpolate the amplitudes and GPUs to speed up the mode summation process [120].
However, thus far this package can only compute fully relativistic waveforms for eccentric Schwarzschild
EMRIs. As such, we make use of this package when we dealing with the Schwarzschild case and make
use of a semi-relativistic waveform scheme when we require waveforms in Kerr spacetime.

'These are not to be confused with the waveform's phase as the coefficients A;,,z are complex and thus make up part
of the overall waveform phase.
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5.1.2 Semi-Relativistic Quadrupole Waveforms

Since we make heavy use of the flat space-quadrupole waveform generation scheme, we will discuss it
in depth and follow the derivation given in Ref. [116]. We start by making the approximation that we
are in a weak field situation and so we can describe the spacetime as g, = 1., + hu where 1, is
the flat space (Minkowski) metric and h,,, is a perturbation. The trace reversed metric perturbation is
defined as h* = b — %nf“’h where h is the scalar one gets by contracting the perturbation with the
flat space metric h = n*”h,,,. We then impose the Lorenz gauge condition on the metric perturbation
i.e. hia' = 0 where semi-colon subscript denotes covariant derivative i.e. f.o = Vo f. This allows us to
write the the linearized Einstein field equations as

O = —167TH (5.9)
where [0 is the usual flat space wave operator and the effective energy momentum tensor 7+ satisfies:
T, =0, (5.10)

where a comma subscript denotes a partial derivative. The wave-equation ([5.9)) has the retarded time
solution:
Tt =17 =T, 7) o,

h treta _4
|7 — &

(5.11)

where the coordinate 7’ is the integration variable which goes over all space locations where the effective
stress energy tensor is non-zero. By repeatedly substituting into , dropping terms that are
sub-leading in 1/R and assuming that the stress energy tensor either has compact support or falls off as
R — oo fast enough to neglect the boundary terms, one can derive the Press formula which is valid for
extended and fast moving sources:

_ 2 42
hY (tret, T) = R;lt?/ [(7’00 — 27 %, + Tlmnmm) :v”ac”L/:t t 3z, (5.12)

where 7 is the unit vector given by 77 = Z/R [184]. If the source motion is only negligibly influenced by
gravity, we can approximate the effective stress energy with the energy-momentum tensor of the matter
source T},,,. Combining this with the slow motion limit of the Press formula recovers the quadrupole
formula:

. 2 d21%
Wt x) = =—— 1
where I is the source's mass quadrupole moment which is given by
It = /Toox'ix'jd3m/. (5.14)

We now specialize to the case of a point-particle of mass 1 moving along a worldline z,,(7), which means
that the energy momentum tensor is given by:

y . dx,“ dz'v
T ) = g / B8 S0 51 (at — at (7)),

dT da)! dCCZ’
53 — (¢
Ma “dr dr (@ = 7))

(5.15)
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where 7 is the particle's proper-time and is related to the coordinate time of the particle by dt,/dr =
14 O(v?*/c?), where the speed v is given by v* = |d},/di7|*. In the slow motion approximation, we
assume that v? << ¢? and so we can express the mass quadrupole moment as

g o dr dt. dt’. . |
7, _ 00,,.7¢ 3. PP i 3 = 3
I () = /T 2l d’r = /Mdt;, I dr "2 6% (7 — x;(t'))d x

(5.16)
~ ,U,/l'/il',jég(f/ o f;(t/))dgl'/ — /,L.Z'/iﬂf/j
We then make the semi-relativistic approximation that the flat-space Cartesian coordinates of the particle
¥) can be mapped onto the Boyer-Lindquist coordinates of Kerr spacetime via:
1. : 2, : . 3.

T, =rsinfcos¢, m,:=rsinfsing, x,:=rcosf (5.17)
where r is given by the radial geodesic solution (2.24a)), € is given by 6§ = arccos(z) where z is polar
geodesic solution ([2.24b)) and ¢ is given by the solution for azimuthal coordinate that one obtains for
the inspiral trajectory.

Moreover, in equation ([5.13]), we use the chain rule to replace the derivatives with respect to co-
ordinate time t with derivatives with respect to Mino-time A as we have analytic expressions for the
Mino-time derivatives of the coordinates (assuming that the trajecotry at a given instant is on a tangent

geodesic). We also neglect the rates of change of the orbital elements as these are of order O(e). As
such, we can express the Mino-time derivatives of the radial coordinate as

dr or d?r  O?*r 2
20 2 (0) 25 20 (0
D=0, V00 gn =50 (T©)" + 0. (5.18)

Similarly, the Mino-time derivatives of the polar coordinates can be expressed as

d_ -1 0 20 -1 (92 0z = 2
Do vizae - O e m<8q2+aqz1_z2>< O) +0(.  (519)

We also need to know the Mino-time derivatives of the rates of change the extrinsic quantities ¢ and ¢.

The first derivative of these with respect to Mino time are given by the geodesic expressions for ft(o) in

equation ([2.7d) and fqgo) in equation ([2.7d) respectively. To leading order in ¢, their second derivatives
can be expressed using the chain rule as:

2t of%dar  of d-

o, Lol 0
d\2 Or dA 0z dA

d\2 ~  Or d\ | 0z d\

+0(e), (5.20)

From this, we express the first derivative of the particle’s flat space Cartesian coordinates with respect
to Mino time as:

9&110 =7cos¢sinf +r (0 cos 0 cos ¢ — dsin B sin qb) ) (5.21a)
3312, =7rsin¢gsinf +r (0 cos fsin ¢ — dsin b cos qb) , (5.21b)
i'z — 7 cosf — rf sin 0, (5.21c)

where we have used overdots to denote derivatives with respect to A. Their second derivatives are
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expressed as:

#! =i sin @ cos ¢ + 2r (éCOSGCOS¢— ci)sin@sin(;ﬁ) ,

o . ) ) (5.22a)
—-r ((92 + ¢2> sin 6 cos ¢ 4+ 260¢ cos @ sin ¢ — 6 cos 6 cos ¢ + qbsin@singb) ,
dv'f, =7 sin  sin ¢ + 27 <6? cos fsin ¢ + ¢ sin 0 cos gb) -
+r (7 (9’2 n ¢2) sin fsin ¢ + 206 cos 6 cos ¢ — 6 cos fsin ¢ + {Zﬂsin&cosqb) : (5220)
jv'f) =i cosf —2rsinf —r (92 cosf + fsin 9) . (5.22¢)

The components of the metric perturbation 2% can then be expressed in terms of these derivatives
via: B

pii _ 2 @i 4+ i) + il 4+ i+ 28 5.93

=5 (3 Ty, + :Epl'p) + &pz), + T,% + 20,7, (5.23)

As such, we end up with a final expression for h%/ at a given instant ¢ which can be expressed analytically
so long as one supplies the solutions for (p(t), e(t), x(t), g-(t), q.(t), d(t)).

Since we assume that the observer is a large distance from the source, we are only concerned with
the transverse and traceless (TT) parts of h"/. As such we perform a TT projection of the quadrupole
formula onto an orthonormal spherical coordinate system given by:

9 . 1o . 1 9
‘h=3R ©~R3e “~ Renood (5.24)

Thus the waveform in transverse traceless gauge is given by

Wiy =5 | 0 hO° — hP? h®® : (5.25)
0 h@@ h@@ _ h<I><I’

where

ho® = cos?© (71,11 cos® ® + h'? sin 2® + h*? sin? <I>) + h33sin? © — sin 20 (7113 cos ® + h* sin <I>) ,
(5.26a)

h®® = % cos © (—l_zll sin 2® + 272 cos 2® + h?%sin 2<I>) + sin 20 (513 sin ® — h?3 cos @) . (5.26b)

h®® = h! sin 20 — h'? sin 2® + h?2 cos 2. (5.26¢)

We can then recover the plus and cross polarizations by noting that hy = h®® — h®® and h, = h®°,
and which allows us to express the complex waveform strain as

h=hy —ihy. (5.27)

5.2 Waveform Analysis

Now that we can calculate waveforms from our inspiral trajectories, we need to be able to quantitatively
compare them. Note that for this subsection, we make use of S| units as opposed to geometrized units.
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We imagine that we wish to compare two time-domain waveforms h; and hg which differ by an amount
0h = ho — hi. The noise weighted inner product of these two waveforms is given by

<h1|h2>=2/0 R (e (f;;le( I gy (5.28)

where h(f) denotes the Fourier transform of the time domain waveform h(t) and h* is the complex
conjugate of h. For our analysis is Chapter@ we take the power spectral density (PSD) of the detector
noise S,,(f) to be a flat noise curve. In subsequent chapters, we instead use an approximate LISA
sensitivity curve derived in Ref. [185] which is given by:

31?02 <P0Ms(f) + W) <1 + 3 (J{>2> (5.29)

where L = 2.5 x 10°m, f. = ¢/(2nL) = 19.09 mHz. The single-link optical metrology noise Powms is
taken to be Poms(f) = (1.5 x 107 m)2Hz ! and the single test mass acceleration noise Pic. is taken

Sn(f) =

2
to be Poms(f) = (3 x 107¥m s72)2 [ 1+ (%) Hz~!. On top of instrument noise, unresolved

galactic binaries will also be a source of effective noise. As such, we take the galactic confusion noise
S, to be

Se(f) = Af T3 HCsIC) (1 4 tanh(Cy(fy, — £))) Hz ™! (5.30)
with the parameters A = 9x 1074, C; = 1.38, Cy = —221 C3 = 521, Cy = 1680 and f, = 1.13x 1073

such that the confusion noise is consistent with a 4 year observation time. From this, one can define
the singal to noise ratio (SNR) p to be:

= (h[h) (5.31)
Similarly, the fractional waveform overlap O can be calculated as:

(h1|he) _ (halh)
(h1|h1)(halho) pip2

(5.32)

This overlap ranges from 1, when the two waveforms are identical, to 0, when the waveforms are perfectly
orthogonal. When dealing with waveform overlaps close to 1, it is often useful to talk in terms of the
fractional waveform mismatch M, which is simply M = 1 — O. In practice, we make use of the
WaveformMatch function from the SimulationTools package to calculate waveform overlaps [186)].

Now that we can compare waveforms, it is worth asking how high the fractional overlap should be
for LISA data science. One benchmark that is often quoted is a fractional overlap of O = 0.97. This
was first derived in Ref. [187] and corresponds to the minimum overlap needed to construct a template
bank that corresponds to a 90% -ideal observed event rate.

While we do reference this benchmark on occasion in this work, we prefer to make sense of the
mismatch in a different way. As outlined in Ref. [188], two waveforms are said to be “indistinguishable”
if the inner product of the waveform difference satisfies:

(5h|6h) < 1. (5.33)
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Following the analysis in Ref. [189], we relate this condition to the waveform mismatch:

(8h|5R) = (hy — halhy — ha)

= (hi|h1) + (ha|h2) — 2(h1|h2)
= T+ p — 2p1p2 + 2p1p2 — 2(h1|ha) (5.34)
hi|h
= (p1 — p2)* +2p1p2 (1 - <1|2>>
P1p2
= (p1 — p2)* — 2p1p2M
In the limit where p; = po, this simplifies further to
<(5h’5h> ~ 2p1p2M. (5.35)
As such, for a given mismatch M, the two waveforms are said to be indistinguishable for SNRs
P (5.36)
~V2M

Since the accumulated SNR for EMRIs is only expected to be as large as p ~ 50 [28], waveforms with
M <2 x 10~* will be indistinguishable for most EMRI signals.
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Chapter 6

Eccentric self-forced inspirals into a
rotating black hole

In this chapter, we specialize our formulation to eccentric orbits that lie in the equatorial plane of the
primary. We show how this affects the OG equations of motion in Sec. [6.I] We then introduce our
interpolated model for the gravitational self force in Sec. [6.2], which combined with the OG equations
of motion allows us calculate the very first self-forced inspirals in Kerr spacetime. To speed up these
inspiral calculations, we explicitly derive the averaged equations of motion for the case of eccentric Kerr
inspirals in Sec. [6.3] We describe our numerical implementation for calculating the various terms in the
NIT equations of motion in Sec. and present the results of this implementation in Sec. [6.5]

6.1 Osculating Geodesics

We now look to specialize the osculating geodesic equations of motion to the special case of eccentric
inspirals in the equatorial plane under the influence of the first-order ratio gravitational self force (GSF).
This corresponds to setting = +1 for prograde and retrograde orbits, respectively. Due to symmetry,
motion in the equatorial plane will stay in the equatorial plane, and thus £ = 0. As such, we only need
to track the evolution of P = {p,e}. Similarly, the equations of motion no longer depend on the polar
phase ¢., and so we only need to evolve the radial phase ¢ = {¢,}. As such, the system of equations
simplifies to

d

£ = 6F]§1)(a7p7 e, qr) + 62Fp(2)(a,p, €, qr), (6.1a)
;ii = eF(a,p,e,q,) + €FP (a,p, e, 0), (6.1b)
dqy

qu =T a,p,e) +efM(a,p, e, ), (6.1c)
ar 6.1d
d\ ft (a7p7evq’l‘)7 ( )
L)

d\ = f¢ (a,p, e, qr). (6.1e)

Moreover, since we only have access to first order in the mass ratio GSF results, we set FZ@ = Fe(2) =0.
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6.2 Interpolated GSF model

Driving inspirals requires a model for the self-force that can be rapidly evaluated at each instant during
the inspiral. To achieve this we tile the parameter space with GSF data which we can then interpolate.
This has been done in two different ways for eccentric Schwarzschild inspirals [70,(145]. However, both
of these works required computing the self-force at tens of thousands of points in the parameter space.
While this might not pose much of a problem for the 2D parameter space of eccentric, Schwarzschild
inspirals, these approaches would not scale well to the 4D parameter space for generic Kerr inspirals.
Motivated by this, as well as the computational expense of the eccentric Kerr self-force code, we build
an interpolation model based on Chebyshev polynomials that is accurate to percent level across a 2D
slice of the EMRI parameter space using only a few hundred points.

We start by fixing the value of the spin parameter of the primary, which we choose to be a = 0.9M
for Kerr inspirals or a = 0 for Schwarzschild inspirals and set the inclination = to be either 1 or —1 for
prograde orbits or retrograde orbits respectively. This reduces our parameter space to two parameters;
the semilatus rectum p and the eccentricity e. We then define a parameter y., using the p and the
position of the last stable equatorial orbit p sgg. For Kerr orbits, we chose y to be

PLseol\a, €,
YKerr = LoE ; ) (62)

With this parametrization we found that the accuracy of the Chebyshev interpolation is limited by the
appearance of cusps at the LSEO in the data. To ameliorate their impact we instead used a parameter

Yeq given by

~ puseo(0, aw))” ’ (6.3)

YSchwarz = 1— (1
b

for later runs in Schwarzschild spacetime. In either case, tiling the parameter space in y instead of p will
concentrate more points near the separatrix where the self force varies the most.

We let y range from ymin = 0 (0.01 for Schwarzschild) to ymax = 1 and e range from epin = 0 to
emax = 0.5 for Kerr and enmin = 0 to emax = 0.3 for Schwarzschild. We define parameters u and v which
cover this parameter space as they range from (—1,1)

= Yeq — (Ymin + Ymax) /2 and v = e — (emin + emax)/Q’
(ymin - ymax)/2 (emin - 6max)/2

(6.4a-b)

This parametrization is convenient when using Chebyshev polynomials of the first kind, where the order
n polynomial is defined by T, (cos ¢) := cos(ng). The Chebyshev nodes are the roots these polynomials,
and the location of the kth root of nth polynomial is given by

2k —1
N = cos < 5 71') (6.5)

n

We then calculate the GSF on a 15 x 7 grid of Chebyshev nodes, with the u values given by the roots of
the 15th order polynomial and the v values given by the roots of the 7th order polynomial. At each point
on our grid, we Fourier decompose each component of the force with respect to the radial action angle
¢r. We then multiply the data for each Fourier coefficient by a factor of (1 — ye,)/(1 — €?), as we find
empirically that this smooths the behaviour of the force near the separatrix and improves the accuracy
of our interpolation. Next, we use Chebyshev polynomials to interpolate each Fourier coefficient across
the (u,v) grid. We then resum the modes to reconstruct our interpolated gravitational self force model:
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1—e2

1_yeq

Ao =

ZA” ys€) cos(nar) + Bi(y, ) sin(ng,), (6.6)

where

Al (y, e ZZA””T Tj(v) and B ZZB””T Tj (v) (6.7)

=0 57=0 1=0 5=0

Using this procedure forces each component to become singular at the LSEO. While the GSF changes
rapidly as one approaches the last stable orbit, we do not expect the components of the self force to
diverge at the LSEQ. Understanding the analytic structure of the self-force in this region would likely
improve future interpolation models.

We note that the GSF should satisfy the orthogonality condition with the geodesic four-velocity, i.e.,
aqu® = 0. Interpolation will bring with it a certain amount of error which can cause this condition to
be violated. We find empirically that we can reduce this interpolation error by projecting the force so
that this condition is always satisfied, i.e.,

at = ao + agulu,. (6.8)

This procedure allows us to create a smooth, continuous model for the gravitational self force with
relative errors less than 5 x 1072 in the strong field — see Fig. . The variation in the accuracy of
the model is primarily a by-product of how close a given test point (green cross) is to the data points
(white dots) used to create the model. We note that this level of precision would not be sufficient
for production grade waveforms for LISA, as we would need the relative error of the orbit averaged
dissipative self-force to be less than ~ ¢, whereas the oscillatory pieces of the self-force only need to
be interpolated to an accuracy of a fraction of a percent [70]. These are somewhat crude estimates for
the accuracy requirements as the effect on parameter estimation has yet to be quantified. Our present
interpolation model already likely reaches the latter criteria and a future hybrid method that combines
flux and self-force data, similar to the one constructed in Ref. [70], can likely reach the overall accuracy
goal. Nonetheless, our present model is more than sufficient to test our averaging procedure and to
explore the effects of the GSF for eccentric Kerr inspirals. This will now be treated as the underlying
forcing model for both the OG and NIT inspirals.

6.3 Near Identity Transformations

We now apply the near identity averaging transformation procedure to the equations of motion for
equatorial Kerr inspirals to obtain:

% = FD(a,5.8) + EED (a,5.2), (6.92)
& = F(a5,0) + O (0,5,0), (6.9b)
Ur — O (a,5.8) + X0 (0,7,0), (6.9¢)
;lf\ = T(O)(a D, €) + eT( )( p, €), (6.9d)
Zf Tfﬁo)(a D, €) + eT( )(a,ﬁ, é). (6.9e)
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Figure 6.1: The relative error of the components of the interpolated gravitational self force model
for prograde equatorial orbits with @ = 0.9M. The white dots represent the data points that were
interpolated. The green crosses represent the data set that the model was tested against. The black
dashed line represents the location of the last stable equatorial orbit. The relative error was calculated
using the normalised L? error over a single orbital cycle.
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The leading order terms in each equation of motion are simply the original function averaged over a
single geodesic orbit, i.e.,

Y = <FI§1)>7 FO = <Fe(1)>7 T — <f1£1)>7 (6.10)

V= (5O Y = (Y, (6.11)

where Tgo) and T((;]) are the Mino-time ¢t and ¢ fundamental frequencies. The remaining terms are more
complicated and require Fourier decomposing the original functions and their derivatives with respect to
to the orbital elements (p,e). To express the result, we define the operator

oA, OA,, A, (ox© . ax©®
NA: n ~F(_) + ~Fe()n_ . iF(—)n—i_ i Fe(—)n
(4) 7%% T<o 2 ( o5 dé +O \ T3 ‘et g te
(6.12)

With this in hand, the remaining terms in the equations of motion are found to be

. ~ 1) (0) (1)
F® = <FI§2)> +N(FD), FO = <FZ§2)> +N<Fe(1)) .1l :N( ; ) T (f¢ )
(6.13)
Note that since we currently only have access to first order GSF effects, we set <F}§2)> = <Fe(2)> = 0.

6.4 Implementation

Combining the above model with our action angle formulation of the osculating geodesic equations
provides us with everything required to calculate the NIT equations of motion. We first evaluate and
interpolate the various terms in the NIT equations of motion across the parameter space. This offline
process is costly but it only needs needs to be completed once. By contrast, the online steps are
computationally cheap, which allows us to rapidly compute eccentric self-forced inspirals into a Kerr
black hole.

6.4.1 Offline Steps

To make the offline calculation we complete the following steps.

1. We start by selecting a grid to evaluate the NIT functions upon. We chose y values between 0.2
and 0.998 in 320 equally spaced steps and e values from 0.001 to 0.5 in 500 equally spaced steps
(160,000 points) in the case of Kerr, or use the same spacing in y., but only grid in e from 0.001
to 0.3 in 300 equally spaced steps (96,000 points) in SchwarzschiIdE]

2. For each point in the parameter space (a,yeq,€) We evaluate the functions F;li, 721) and ft({);
along with their derivatives with respect to p and e for 30 equally spaced values of g, from 0 to
2.

3. We then perform a fast Fourier transform on the output data to obtain the Fourier coefficients of
the forcing functions and their derivatives.

!Evaluating the NIT functions is computationally cheap so using a dense grid does not significantly increase the compu-
tational burden. Using a dense grid also allows us to use Mathematica's default Hermite polynomial interpolation method
for convenience of implementation. The grid spacing is chosen to be sufficiently dense that interpolation error is a negligible
source of error for our comparisons between the OG and NIT inspirals, though a less dense grid may also achieve this.
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4. With these, we then use Egs. (6.10)), (6.11]), (6.12)) and (/6.13)) to construct F&;z) and Tgl\i\qﬁ for
that point in the parameter space.

5. We also use Egs. (4.55)) and (4.56]) to construct the Fourier coefficients of the first-order transfor-
mation functions Yp(\le) and XT(1 )

6. We then repeat this procedure across the parameter space for each point in our grid.

7. Finally we interpolate the values for FIEQQ) and Tf}\i

\é along with the coefficients of V(1 and )2',(,1)
across this grid using Hermite interpolation and store the interpolants for future use.

p\e

We implemented the above algorithm in Mathematica 12.2 and find, parallelized across 20 CPU cores
takes, the calculation takes about one day to complete. This is a small price to pay, since these offline
steps need only be completed once.

6.4.2 Online Steps

The online steps are required for every inspiral calculation, but are comparatively inexpensive. The online
steps for computing an NIT inspiral are as follows.

1. We load in the interpolants for FU and v , define the NIT equations of motion.
p\e r\t\¢

2. In order to make comparisons between NIT and OG inspirals, we also load interpolants of the Fourier

coefficients of Y/p(/le) and X" and Eq. (4.1)) to construct first order near-identity transformations

3. We state the initial conditions of the inspiral (pg,€g,qr0) and use the NIT to leading order in
the mass ratio to transform these into initial conditions for the NIT equations of motion, i.e.,

(Po, €0, Gro)-

4. We then evolve the NIT equations of motion using an ODE solver (in this case Mathematica's
NDSolve).

As with the offline steps we implement the online steps in Mathematica. Note that steps (ii) and
(iii) are only necessary because we want to make direct comparisons between NIT and OG inspirals with
the same initial conditions. In general, the difference between the NIT and OG variables will always be
O(e), and so performing the NIT transformation or inverse transformation to greater than zeroth order
in mass ratio will not be necessary when producing waveforms to post adiabatic order, i.e. with phases
accurate to O(e).

6.5 Results

In this section we present the results from the NIT equations of motion. We first perform some consis-
tency checks in Sec. [6.5.1] We then show that our NIT and OG inspirals agree to the relevant order
in the mass ratio in Sec. [6.5.2] Here we also compute, for the first time, self-forced inspirals in Kerr
spacetime. With our fast NIT model we then explore the impact of the conservative effects of the
first-order GSF as calculated in radiation gauge for Kerr inspirals in Sec.[6.5.3] Finally, in Sec.[6.5.4] we
compare Schwarzschild inspirals calculated using a radiation gauge GSF model and a Lorenz gauge GSF
model.

2Note that while including )v(ﬁl) in the transformation is not strictly necessary, we do so anyway to further reduce the
initial difference between the two inspirals.
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6.5.1 Consistency checks

Before computing inspirals, we perform a series of consistency checks on the NIT equations of motion.
A useful feature of the NIT is how it separates adiabatic and post-adiabatic effects of the gravitational
self-force. At first order in the mass ratio, this corresponds to the dissipative and conservative pieces
respectively. We note that when we substitute a® — ag;,, we find that F(s) and T(l\i\d) are numerically
)

consistent with zero, while FOY vemains unchanged. Similarly, when we substitute a® — a& .,
\e cons p\e

and F(\) become consistent with zero, while T(\i\d) remain the same as before. The functions F; f)j only

becomes non-zero when both dissipative and conservative effects of the first order self-force are present.
From Fp(ii one can calculate the average rate of change of energy and angular momentum via the

following relation:
d& € o€ - o€ -
N (@) T e
() (a0 .

dLl € oL oL ~
a~ (1) ( )
<dt> = (apF + 9 ) (6.14b)

We compared these to the energy and angular momentum fluxes at infinity tabulated in the Black Hole
Perturbation Toolkit [182] and generated with a variant of the Gremlin code [79,[80] and found that
the balance laws were upheld up to relative errors < 1073 throughout the parameter space which is
consistent with the interpolation error of our self-force model.

From all of this, we can infer the significance of each of the terms in Eq. (7.12): 'I}(«O), Tgo) and

Tg)) capture the background geodesic motion, Fél) and Fe(l) capture the adiabatic effects due to the
first order dissipative self-force, T,(ﬂl), Tgl), and T((;) capture the post-adiabatic effects due to the first

order conservative self-force, and }7}52), }3’6(2) capture the interplay between the first order dissipative and
conservative self-force, as well as the effect of the orbit averaged contribution from the second order
self-force.

6.5.2 Comparison between OG and NIT inspirals

In order to test the accuracy of our implementation, we compare inspirals calculated using the OG
equations of motion found in Ref. [137] to those calculated using the near-identity transformed equations
of motion. To demonstrate these results, we choose a binary with a primary of mass M = 10°M, and a
secondary of mass y = 10M, for a typical EMRI mass ratio of € = 107°. To push our procedure to the
limit, we chose the initial conditions of our prograde inspiral to be deep in the strong field and highly
eccentric with pg = 7.1 and eg = 0.48 such that the resulting inspiral would take approximately 1 year
to plunge. We also set g, 0 = tog = ¢o = 0 for simplicity.

Figure[6.2]shows the evolution of p and e over time. The trajectories calculated with the OG equations
of motion have order € oscillations on the orbital timescale which requires the numerical integrator to
take small time steps to accurately resolve. The NIT trajectory does not have these oscillations so
the numerical integrator can take much larger steps and still faithfully track the averaged trajectory
throughout the entire inspiral. The inverse NIT given in Eq. through O(e€) can be used to add the
oscillations back on to the NIT trajectory. We find that while this is unnecessary for computing accurate
waveforms, it demonstrates that the NIT trajectory remains in phase with the OG trajectory — see the
insets of Fig. [6.2]

The accuracy of our NIT model is further demonstrated by Fig. which shows the absolute
difference in the orbital phase g, and the extrinsic quantities ¢ and ¢ between the NIT and OG evolutions.

Over the course of the year long inspiral, [t — (f — Z(O))| < 5x 1073 |¢ — (¢ Z(0 )| < 107 and

67



| — T T T T
0.5~ . : _ ]
L ! I
' b \ ,,l_—"l
] ! \ 4
] \\ A / )
f o~ -
1 hv) \ ~ |
~
L ' Y/ P v 4
\J -~ H
O 4 r ] \ ™\ - [
A\ - !
L T s o ]
' A o |
' R AN - vl
NS - v H
[ A e M\ o~ Y-
N A - |
[ R AN s 1
1 A% kY et 1
' -
- -
) -~ //'{‘
- =
- oy
- 'l
fﬁu’/
7
Py -7 i

o
w
T

\
\
\

Eccentricity (e)
o
)
T
\
A
\
\
A
A\
AY
A\
\
\\\
L

. P
0.1k = 7
L L)
I
! —— OG trajectory: (p,e) =---- Inverse NIT trajectory
I
00. ) NIT trajectory: (p,é) =---- Last Stable Orbit 1
4 5 6 7

3
Semilatus rectum (p)

Figure 6.2: The trajectory through (p,e) space for an inspiral with ¢ = 1075, @ = 0.9M, and initial
conditions (pg = 7.1, €9 = 0.48). We show the inspiral computed using the osculating geodesic equations,

the NIT equations of motion and the inverse NIT to first order in €. The insets zoom into the start
and end of the inspiral to reveal the small orbital timescale oscillations. The NIT averages through

these oscillations, and when using the inverse NIT to add the oscillations back on, we see that the NIT

trajectory remains almost perfectly in phase with the OG trajectory throughout the inspiral.
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Figure 6.3: The difference in the orbital phase and extrinsic quantities for a equatorial Kerr inspiral with
€ =107° and a = 0.9M calculated using the OG and NIT equations of motion with initial conditions
po = 7.1,e9 = 0.48. We find that the differences remain small throughout the inspiral, only becoming
large as the secondary approaches the last stable orbit where the adiabatic approximation breaks down.

|q- — G-| < 1073 with the differences only spiking to < 1072 just as the trajectories reach the separatrix
where the adiabatic approximation breaks down.

Finally, we test the effect the NIT procedure has on the waveform. In principle, we could use
our averaged equations of motion in conjunction with the FastEMRIWaveforms (FEW) framework to
rapidly compute waveforms with relativistic amplitudes. However, currently, the FEW framework only
has amplitude data for Schwarzschild inspirals. As such, we make use of the same procedure as the
Numerical Kludge by mapping the Boyer-Lindquist coordinates {t,r, 6, ¢} to flat space coordinates
and using the quadrupole formula to generate the waveform. The resulting waveforms are only an
approximation to the true waveforms, but since both inspiral trajectories are being fed through the same
waveform generation scheme this should not bias the results when finding the difference in the waveform
as a result of using the NIT trajectory instead of the OG trajectory.

From Fig. we can see that the waveforms generated by each evolution scheme,sampled every
t = 1M = 5s, are almost identical by eye. We can further quantify this by calculating the waveform
mismatch using the WaveformMatch function from the SimulationTools [186] Mathematica package
and assuming a flat noise curve. From Fig. . we see that the mlsmatch remains below 5 x 1078
throughout the inspiral. Using Eq.-, these two waveforms would be completely indistinguishable
for EMRIs with signal-to-noise ratio (SNR) of upto 1000v/10 ~ 3162.

Next, the difference between the OG and NIT quantities should scale linearly with the mass ratio.
This is illustrated in Fig. [6.6] where starting with initial conditions py = 4 and ey = 0.2 we evolved
the inspiral until it reached p = 3 for mass ratios ranging from 10~! to 10~5. While working with only
machine precision arithmetic we found that for smaller mass ratios the numerical error of the solver of
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Figure 6.4: Two snapshots of the dominant (I,m,m) = (2,2) mode of the quadrupole waveform for
our prograde, equatorial Kerr inspiral with (a, e, po,eq) = (0.9M,107°,7.1,0.48). These snapshots
correspond to the first and last hours of the inspiral. This shows that the waveform generated using the
NIT trajectory almost perfectly overlaps with the waveform generated using the OG trajectory. It also
demonstrates how dramatically an EMRI waveform evolves throughout the inspiral.
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Figure 6.5: The mismatch between the semi-relativistic quadrupole waveforms between inspirals cal-
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matched initial conditions, the adiabatic EOM calculated with matched initial frequencies, and the near-
identity transformed EOM. We also mark the mismatch that would be indistinguishable for signals with
SNR = 100.
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Figure 6.6: The absolute difference in the quantities of a prograde inspiral with a = 0.9M and ey = 0.2
after evolving from p = 4 to p = 3 using either the OG or NIT equations of motion. We observe that
all the differences follow the solid, black e reference curve, as expected.

the OG inspiral became dominant over the difference with the NIT. To rectify this, we increased the
working precision of our solver to 30 significant digits and found that the difference does, in fact, scale
linearly with the mass ratio. This requirement for higher precision only affected the OG solver, the NIT
equations of motion can be solved with machine precision arithmetic without introducing any significant
error.

Since the difference between OG and NIT quantities scales with the mass ratio, it is natural to
ask how large can the mass ratio be before the NIT and OG waveforms differ enough to affect data
analysis. Following the procedure outlined in Ref. [156], we used our fast NIT inspiral code along with
a root-finding algorithm to find the initial value of p that corresponds to a year long inspiral for a given
value of the mass ratio and initial eccentricity, and assuming a primary mass of 106M/,. We use these
initial conditions to calculate the overlap between year-long NIT and OG waveforms. This calculation is
repeated with mass ratios € = {1,3,5,7,9} x 1072 and initial eccentricities eq ranging from 0.05 to 0.45
in equally spaced steps of 0.05. The result of this analysis can be seen in Fig.[6.7] This demonstrates
that NIT and OG waveforms have overlaps larger than the benchmark of 0.97 [187] for mass ratios less
than ~ 3 x 1073, but these overlaps decrease substantially for mass ratios larger than this. We also
see that the overlap generally decreases as the initial eccentricity increases, though this effect is not as
strong as the effect demonstrated by a similar analysis in Ref. [156] for NITs applied to highly eccentric
inspirals in Schwarzschild. They also found that the mismatch between NIT and OG waveforms became
substantial for mass ratios larger than 2 x 10~%. These differences between the two analyses are most
likely the result of our inspirals being deeper in the strong field and driven by a self-force computed
in a different gauge (Ref. [156] uses the Lorenz gauge self-force). Such mismatches should not be an
issue for EMRI data analysis as EMRIs have mass ratios that range from 107 to 10~%. However, these
mismatches become significant for intermediate mass ratio inspirals, with mass ratios between 10™* to
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Figure 6.7: The overlap between OG and NIT waveforms for year-long, prograde, a = 0.9M, equatorial
Kerr inspirals as a function of the mass ratio and initial eccentricity. The difference between the two
waveforms is less than the accuracy benchmark of 0.97 for mass ratios < 3 x 1073, but not for mass
ratios larger than this. While increasing eccentricity does have an effect on the overlap, this effect is not
as strong as the effect observed in Fig. 9 of Ref. [156].
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€ OG Inspiral  NIT Inspiral Speed-up
102 44s 0.85s ~ 37
1073 6m 48s 0.78s ~ 491
1074 | 54m 12s 0.81s ~ 3782
1075 | 6hrs 16m 0.76s ~ 29655

Table 6.1: Computational time required to evolve an inspiral from its initial conditions of pg = 7.1 and
ep = 0.48 to the last stable orbit for different values of the mass ratio, as calculated in Mathematica
12.2 on an Intel Core i7 @ 2.2GHz. The computational time for the OG inspiral scales inversely with
the mass ratio, whereas the computational time for NIT inspirals is independent of the mass ratio. This
demonstrates how the smaller the mass ratio of the inspiral, the greater speed-up one obtains from using
the NIT equations of motion.

10~'. Since both the OG and NIT equations of motion are formally valid to the same order in the mass
ratio, it is not clear a priori which of the two would be closer to the true inspiral. When completed
at 1-post-adiabtatic (1PA) order the two sets of equations represent different resummations of the 1PA
equations of motion, differing only in their higher order (2+) PA terms. The fact that we are seeing a
significant difference between these two resummations for intermediate mass ratios suggests that such
higher order PA terms might become relevant. However, in this case it might just be signalling the
importance of the missing orbit-averaged dissipative self-force term at 1PA order.

Finally, we note that using the NIT equations of motion produces a substantial speed-up over using
the OG equations. From Table [6.I we see the typical computation time for an inspiral starting at
po = 7.1 and ey = 0.48 and evolved until the inspiral reaches the last stable orbit for different values of
the mass ratio. We see that as we decrease the mass ratio by an order of magnitude, the OG inspiral
takes roughly an order of magnitude longer to compute, as it would have to resolve an order of magnitude
more orbital cycles before reaching last stable orbit. The NIT inspirals all take roughly the same amount
of time to evolve to the last stable orbit, regardless of the mass ratio. Using our current Mathematica
implementation, the NIT inspirals can be computed in less than a second. This time could be further
reduced tens of milliseconds if one uses a compiled language such as C/C++, as was done in Paper
| [154]. We see that using the NIT equations of motion is most advantageous for long inspirals with
small mass ratios. Another benefit of using the NIT is that the inspiral requires taking fewer time steps,
which results in less numerical error, making it easier achieve a given target accuracy.

The only disadvantage of our formulation is that our final trajectory is parametrized in terms Mino
time A, whereas LISA data analysis applications will need waveforms parametrized Boyer-Lindquist re-
tarded time ¢. Since our formulation also outputs £(\), we can numerically invert this to get A(¢) which
allows us to resolve this issue at the cost of additional computation time. This was also a problem
with the NIT formulation in Schwarzschild where the final trajectory is outputted as a function of the
quasi-Keplerian angle x [154,156]. We have found that this problem can be circumvented entirely by
performing an additional transformation to our NIT equations of motion which would produce averaged
equations of motion parametrized by ¢ as outlined in Sec. [4.3] which we implement for spherical inspirals
in chapter [7]

Since we are now satisfied that our formulation can produce fast and accurate self-force driven
trajectories, we can now use this procedure to explore the phenomenology of eccentric, equatorial Kerr
inspirals.
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Figure 6.8: Sample trajectories through (p, €) space for prograde and retrograde equatorial Kerr inspirals
with ¢ = 107 and @ = 0.9M. From these plots, we see the familiar behaviour of EMRIs losing
eccentricity as the compact object approaches the primary and then gaining eccentricity just before
crossing the last stable equatorial orbit (dashed black line). The dashed orange curves are contours that
mark the number of radians g, o will evolve from a given point until plunge. The conservative self-force
for retrograde orbits has a similar effect to the non-spinning case as it causes g, to increase throughout
the inspiral. In the prograde case, ¢, decreases for most of the inspiral and then slightly increases
shortly before plunge.

6.5.3 Impact of adiabatic and post-adiabatic effects

With the ability to generate fast and accurate inspirals, we can survey the physics of equatorial Kerr
inspirals and examine how this differs from the Schwarzschild case. From Fig. [6.8a] we see the familiar
effect of gravitational radiation reaction on the semilatus rectum, p, and eccentricity, €, whereby p and
¢ both decrease over the inspiral with é growing a little as the last stable orbit is approached [75-77].
As the inspiral approaches the last stable equatorial orbit adiabaticity breaks down and the inspiral
undergoes a transition to plunge [138-140,/142]. As such, we stop our inspirals just before the LSEO.
Our results are the first inspirals to include conservative self-force corrections to the equations of motion
in Kerr spacetime. The initial phase ¢, only evolves secularly when conservative self-force corrections
are present and so we use this as a measure of the influence of these corrections [145]. This is illustrated
by the dashed orange curves in Fig. , which mark the number of radians g, will evolve from a
given pair of initial conditions (g, €p) until the last stable orbit. For retrograde Kerr (and Schwarzschild
orbits in Fig. [6.10), we find that G,o increases throughout the inspiral, whereas for prograde Kerr gy
decreases during the inspiral before increasing slightly just before plunge. This is consistent with the
change of sign in the correction to the rate of periapsis advance induced by the conservative self force
as a function of spin in the circular orbit limit [85] — see Appendix for further details.

As discussed in Sec. [6.5.1] one can readily calculate adiabatic inspirals using the NIT equations of
motion by simply neglecting the post-adiabatic terms. However, when trying to determine how post-
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Figure 6.9: Difference in ¢ as a function of ¢ between an adiabatic and a first order self-forced inspiral
when either matching initial conditions or matching the initial Boyer-Lindquist frequencies. The self-
forced inspiral has initial conditions (fo, &) = (7.1,0.48) with mass ratio ¢ = 10~°. Matching initial
conditions results in an error that grows linearly with ¢, while matching frequencies produces an error
that is initially constant and then grows quadratically with ¢.
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adiabatic corrections effect the inspiral, one must be mindful of how one matches up an adiabatic inspiral
with its post-adiabatic counterpart. Following the argument found in Refs. [145] and [70], matching the
initial conditions (po, €y) results in an error in the orbital phases that grows linearly in ¢ as the conservative
self-force changes the orbital frequencies [83]. Instead, one should instead match the Boyer-Lindquist
time fundamental frequencies €2, and €)y. For an adiabatic inspiral, these are directly related to the

Mino-time fundamental frequencies via Qf,(i)qﬁ = Tff&/TEO) [174]. To calculate these frequencies as

perturbed by the conservative self-force, one can either follow the method outlined in Ref. [70], or one
can calculate them directly from the NIT equations of motion:

TO L @ 1O ey

OSF = % +O(e?)  and QgF = H + O(é%). (6.15)
1,7 + €Y, 1,7 + €Y,

We find that both approaches give the same result up to an error that scales as ¢2. With this in hand,
we can now choose a value for our initial conditions (ﬁgF, égF) for our self-forced inspiral, and then root

find for initial conditions (549, &54) that satisfy the simultaneous equations
RFEE. ") - 4B, &) =0, (6.16a)
@ &) - 9 (00, e = 0. (6.16b)

Using this procedure to match the initial frequencies we find that the linear-in-t growth of the
difference in the orbital phases is removed and the phase difference grows quadratically in ¢ as expected

— see Fig. [6.9

6.5.4 Comparing inspirals driven using radiation gauge and Lorenz gauge self-force in
Schwarzschild spacetime

We now turn our attention to the special case of Schwarzschild (a = 0), where we now have interpolated
GSF models calculated in two different gauges. In addition to our outgoing radiation gauge self-force
model, we make use of an interpolated Lorenz gauge self-force from Ref. [145], which is valid in the
domain 6 < p < 12 and 0 < e < 0.2. We apply the same NIT procedure to inspirals driven by this
force model, and find agreement with inspirals calculated in Paper |, up to the precision of the numerical
solver.

To assess the accuracy of the dissipative self-force, we calculate the orbit averaged energy and angular
momentum fluxes, and find that they agree with values from the literature with a relative error less than
1073 for both models across the parameter space. To assess the accuracy of the conservative self-
force, we calculate the periapsis advance in the circular orbit limit as outlined in [82] using the formula
found in [85]. We find that both models show good agreement with the literature across the Lorenz
gauge model's domain of validity, with the Lorenz gauge model producing errors less than 1073 and the
radiation gauge model producing relative errors less than 1072

While we find good agreement between the two results for gauge invariant quantities, we see from
Fig.[6.10] that the inspirals experience dramatically different conservative effects, depending on the gauge
used. While in both cases, the conservative self-force acts against geodesic periapsis advance, we see
that the evolution of ¢, o depends heavily on the gauge involved, while the trajectories through p and e
space are less affected. This is to be expected as the leading order averaged rates of change of p and e
are related to the gauge invariant asymptotic fluxes, while the change in ¢, ¢ is induced entirely by the
(gauge dependent) conservative self-force [99)].

Just as when comparing adiabatic and self-forced inspirals it is important to match the initial fre-
quencies (rather than the initial (p,e) values). We note that for the Lorenz gauge model, we must
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Figure 6.10: Sample Schwarzschild trajectories through (p, €) space using either a radiation gauge or a
Lorenz gauge model, accompanied by contours denoting the change in G, (in radians) by the end of
the inspiral if the inspiral had started in that point of the parameter space. While there are only slight
differences in the (p, €) trajectories, there is a stark difference in the evolution of g, induced by each
model.
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account for the fact that the perturbed time coordinate, £, is not asymptotically flat [190]. We can
define an asymptotically flat time coordinate for Lorenz gauge inspirals via the following rescaling

t=(1+ea)t. (6.17)

where « is given by

1
a(p,e) = —ihg)(r — 00). (6.18)

We make use of a code provided to us by S. Akcay to numerically calculate this quantity for Lorenz
gauge values of p and e [97,/191]. Equation (6.17)) means the perturbed Boyer-Lindquist frequencies
must also be rescaled by:

T 4 er)

(LG) _ (1 _ r(LG) LG _ 1o $(LG)
Q, (1—ex) O () and (1—ex) O o) (6.19)
t Telyig t Tl

In the radiation gauge model, the corresponding subtleties have been dealt with by including the gauge
completion corrections, so the frequencies can be calculated using Eq. (6.15) as before. Thus, we can
choose a value for ﬁéLG) and é(()LG) in Lorenz gauge and root find for values of ﬁ(()RG) and é(()RG) in

radiation gauge that satisfy:

Q&RG) (]5(()RG)7 é(()RG)) . ngLG) (ﬁéLG), ééLG)) — 0, (6203)
G)  ~(RG) ~(RG G)  ~(LG) ~(LG
Q) (g ey — ol (5D ey = o. (6.20b)

This allows us to make comparisons between inspirals driven by self-force models calculated in different
gauges. We use an inspiral driven by the Lorenz-gauge force model with initial conditions (pg,ep) =
(11,0.18), mass ratio € = 107 as our reference inspiral which should last just over two and a half years
for a 10 M, primary.

In Fig. [6.11] we see the difference in the phase of the waveform ® as a function of time between the
Lorenz gauge NIT inspiral, and a number of reference models. We make use of the relations between
the NIT quantities and the waveform voices derived in Ref. [156] to find

0, =G — Q02" +0(e) and 05=6 -0 7" + 0(e). (6.21)

We then feed the solutions for {p(t),é(t), . (t), P4(t)} into the FastEMRIWaveforms package to
generate these eccentric Schwarzschild waveforms [135]. Finally, we make use of the SimulationTools
Mathematica package to calculate the mismatches and decompose the waveforms into a single evolving
amplitude A(t) and phase ®(¢). This allows us to find the difference in the waveform phase Ad(t)
between the Lorenz gauge inspiral and the other inspiral calculations. We use this as our point of
comparison as the waveform phase is an observable and thus a gauge invariant quantity.

We note that in each case, we see constant error which gives way to quadratic growth with ¢ just as
in Fig.[6.9] As we discussed in Sec. [6.5.3] this shows that the initial frequencies were correctly matched.
From the blue curve, we see that the NIT radiation gauge inspiral quickly goes out of phase with the
Lorenz gauge NIT inspiral, resulting in a very large mismatch of 0.93. We found that the largest source
of error here is due to interpolation error for in the adiabatic pieces of the NIT. Since these are related
to the gauge invariant fluxes, these pieces should be identical in both models. As such, we can rectify
this error by using the Lorenz gauge functions for the adiabatic pieces and continue to use the radiation
gauge functions for the conservative pieces of the NIT equations of motion. The improvement is evident
in the green curve, which shows much better agreement with the Lorenz gauge NIT inspiral, with the
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Figure 6.11: The difference in the waveform phase ® for various inspirals as a function of t when compared
to NIT inspiral driven by a Lorenz gauge self-force model, with initial conditions (a, po, e9) = (0,11, 0.18),
mass ratio € = 107°, viewing angles © = /4 and @ = 0, and sampled every At = 1M ~ 5s. We also
show the mismatch (MM) between the waveforms in each case. By matching the initial frequencies,
we compare an inspiral calculated using a radiation gauge self-force model, an adiabatic inspiral, an
inspiral with the adiabatic pieces of the Lorenz gauge model and conservative pieces from the radiation
gauge model, and a Lorenz gauge model with a 10 % relative error added to each conservative piece.
In all cases the difference grows quadratically in time. This plot suggests that post-adiabatic waveforms
calculated using only the first-order self-force differ significantly depending on the gauge used.
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mismatch falling to 0.83. However, it is only slightly better than matching an adiabatic inspiral (orange
curve) using Eq. resulting in a mismatch of 0.86. Both radiation gauge and adiabatic inspirals go
out of phase by almost 100 radians by the time they reach the last stable orbit.

In order to rule out the possibility of interpolation error of the conservative effects being the primary
cause of this difference, we repeat the Lorenz gauge inspiral, but this time we manually add a relative
error of § = 0.1 to all of the conservative pieces of both the NIT equation of motion and our matching

procedure for the initial conditions, e.g., (ﬁr = Tﬁo) + 6T7(~1) — T7§0) + € (T,(nl) + 5Tfnl)) etc. We note

that this is an order of magnitude larger than the 1072 error produced by the radiation gauge model
when calculating the gauge invariant quasi-circular periapsis advance. From the red curve, we see that
manually adding a constant 10% relative error results in phase difference and a mismatch (0.54) which is
significantly smaller than what we observe between the two self-forced inspirals. This gives us confidence
that this difference is not dominated by numerical error.

From these investigations, we infer that the trajectories driven using only the first order self-force
are gauge dependent, and thus, so too are their waveforms. Since post-adiabatic waveforms are an
observable quantity, this leads us to conclude that incorporating the orbit-averaged dissipative second-
order self-force will be necessary to obtain gauge invariant, post-adiabatic waveforms. Moreover, since
the difference between the Radiation and Lorenz gauge self-forced inspirals is of the same magnitude
as the difference with the adiabatic inspiral, we further conclude that the impact of the orbit-averaged
dissipative second-order self-force must be of a similar magnitude in at least one of the two gauges.
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Chapter 7

Spherical self-forced inspirals into a
rotating black hole

For this chapter, we look exclusively at the special case of spherical (circular and inclined) inspirals under
the influence of the first-order gravitational self-force. We show how this affects the OG equations of
motion in Sec. We then introduce our interpolated model for the energy and angular momentum
fluxes and gravitational self force in Sec.[7.2], which combined with the OG equations of motion allows us
calculate the very first spherical self-forced inspirals. To speed up these inspiral calculations, we explicitly
derive the averaged equations of motion for the case of spherical Kerr inspirals by employing near-identity
averaging transformations, an additional averaging transformation to parametrize our inspiral solutions
in terms of Boyer-Lindquist coordinate time, and the two timescale expansion in Sec. [7.3] We describe
our numerical implementation for calculating the various terms in the averaged equations of motion in
Sec. We present the results of this implementation in Sec. and test the accuracy and speed-up,
while also investigating the effect of using higher accuracy flux models and the impact of the first order
self-force on the resulting inspiral trajectories.

7.1 Spherical osculating geodesics

We now restrict ourselves to the special case of spherical inspirals which means setting e = 0. As stated
in Sec. when e = 0 the rate of change ¢ = 0, and so we no longer have any dependence on the
eccentricity. Thus we only need to track the evolution of P= {p,x}. Similarly, the equations of motion
no longer depend on the polar phase ¢, and so we only need to evolve the radial phase ¢ = {q.}. As
such, the equations of motion simplify to

% - ergl)(avpa ,q:) + EZFISZ) (a,p,z,q.), (7.1a)
% = cFN(a,p, 2, q:) + € FP(a,p,7,q2), (7.1b)
Cflq; = Tgo) (a,p,r) + €fz(1)(a,p,x, qz), (7.1c)
%\ = ft(o)(a,p,x,qz), (7.1d)
% = 13" (.0, 02). (7.1e)

Again, since we only have access to first order in the mass ratio GSF results, we set F2§2) = FQEQ) =0.
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7.2 Interpolated models

7.2.1 Interpolated gravitational wave fluxes for spherical Kerr inspirals

Using a similar interpolation procedure to that outlined in Sec. we will first interpolate the energy
and angular momentum fluxes for spherical orbits. Since flux calculations are significantly cheaper than
calculating the GSF, it is much more feasible to densely tile a large section of the parameter space with
flux data than GSF data, resulting in better interpolation of the leading-order adiabatic effects. It will
also allow us to carry out consistency checks on our GSF model.

We start by fixing the value of the spin parameter of the primary, which we choose to be a = 0.9M
and setting the eccentricity to zero. This reduces our parameter space to two parameters; the semilatus
rectum p and the inclination . We then define a parameter y,,;, using the p and the position of the
innermost stable spherical orbit 71550. We chose ¥, to be

T‘|SSO(CL,«T) . (72)

Ysph =
Sp p

Tiling the parameter space with y,;, instead of p will concentrate more points near the ISSO where the
fluxes and the GSF experience the most variation. We let y,,;, range from 0 to 1 and x range from
—1 to 1 thus covering all inclinations for both prograde and retrograde orbits. We then calculate the
GSF on a 18 x 19 grid of Chebyshev nodes, with the y,;, values given by the roots of the 18th order
polynomial and the x values given by the roots of the 19th order polynomial.

At each point on this grid, the energy and angular momentum flux both at infinity and at the event
horizon was calculated using a modified version of the code from Ref. [100] for spherical orbits. From
these fluxes, one can infer the leading order orbit averaged rate of change of the energy and angular
momentum of the secondary via the following balance laws:

<‘Cl§> —e(F&° + FH) + O(e?) (7.32)
(%) = eFE + 721+ 0 (7.3b)

We could interpolate the rates of change of energy and angular momentum, but we find it more
convenient to work with the orbital elements p and x. As such, we find their rates of change via the

chain rule: 5 5
dp p [/ dE p /dL
<dt> o€ < > o < > = Ty (7.42)
dx ox /dE ox /dL
i =N
<dt> 8g< >+aﬁ< > e (7.4b)

The partial derivatives can be found using the analytic expressions for £(p,z) and L(p, x) to construct
the Jacobian

e de
J = gﬁ flli ) (7.5)
dp dx
This can then be inverted to give
% L[
J = [‘ég ‘ff] [ dc d”’} (7.6)
% ﬁ det J ~dp
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To improve the accuracy of our interpolation, we rescale the data for I‘ﬁ,l) and Fg}) by a factor of
(1 — yspn) and p'/2(1 — 22) respectively. This scaling comes from the leading order PN term for
Fl()l) and 1“551), times a term that is zero for the limiting cases of either the separatrix or the equatorial
plane respectively. Finally, we take a discrete cosine transformation of the data on our Chebyshev grid to

obtain the Chebyshev polynomial coefficients C;]/x. Summing these coefficients together with Chebyshev

polynomials gives us the following approximate expressions for I‘;l) and Fg):

17 18
1 g
=~ CIT, (2y — 1) T (z), 7.7a
P p?’(l—ysph);; P 2y )Ti (@) ( )
17 18

0 = g D0 CIT 2y~ 1) T (2). (7.7)

= /2(] — 2
P20 —2?)

Using the largest coefficient for ¢ = 17 and j = 18 to estimate the relative error, we infer that
these interpolants should have a relative error of ~ 1075, This should also be verified against flux
data calculated from an independent code to more accurately determine the relative accuracy of the
interpolant.

7.2.2 Interpolated gravitational self-force model for spherical Kerr inspirals

We now use this same interpolation scheme to create a model for the gravitational self-force that
is continuous throughout the parameter space and fast to evaluate which can be used with the OG
equations to calculate spherical Kerr inspirals.

However, given the cost of our GSF code, we restrict ourselves to a 2D slice of the EMRI parameter
space using only a few hundred points. Once again, we restrict a = 0.9 and let y,;, range from ymin = 0.1
t0 Ymax = 1, but instead of x, we opt to tile in 22 =1 — 22 and let 22 . =0to 22 = 0.5. This
allows us to cover moderate inclination angles i, < 45° while excludiﬁg high inclinations, where the
mode sum regularization for the GSF becomes prohibitively expensive, in a manner that is convenient
for Chebyshev interpolation.

We define parameters u and v which cover this parameter space as they range from (—1,1)

= Ysph — (ymin + ymax)/2

and, 7.8a
(ymin - ymax)/2 ( )

Z% - (Z*,min + Z% max)/2
v = 5 I . (7.8b)
(Z—,min - Z*,max)/2

We then calculate the GSF on a 18 x 9 grid of Chebyshev nodes, with the u values given by the
roots of the 18th order polynomial and the v values given by the roots of the 9th order polynomial. At
each point on our grid, we Fourier decompose each component of the force with respect to the polar
action angle ¢.. We then multiply the data for each Fourier coefficient by a factor of (1 — ysph)2, as
we find that this smooths the behaviour of the force near the separatrix and improves the accuracy of
our interpolation. Next, we use Chebyshev polynomials to interpolate each Fourier coefficient across the

(u,v) grid. We then resum the modes to reconstruct our interpolated gravitational self force model:

24 m 2 m 2 :
CT (Ysph, 22) cos(mq) + D (Ysph, 22 ) sin(mq,
_2: /,L(yph ) ( Q) ,u(yph ) ( Q) (793)
m=0

ay = 9
g (1 - ysph)2
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17

8
Ci(y,e) = > CMT, (u) Ty (v), (7.9b)

i=0 j=0

17

8
D (yoe) = S0 57 DT (u) T (0). (7.90)

i=0 j=0

We note that this choice of rescaling causes each component to become singular at the I1SSO, and
while the components of the GSF change rapidly as one approaches the ISSO, we still expect them to
be finite at the ISSO. A greater understanding of the analytic structure of the GSF in this region would
greatly improve this and any future interpolated GSF models.

We note that the GSF should satisfy the orthogonality condition with the geodesic four-velocity, i.e.,
ayut = 0. Interpolation will bring with it a certain amount of error which can cause this condition to
be violated. Since the OG equations are derived assuming this condition to be true, we project the force
so that this condition is always satisfied, i.e.,

af; = a, + a,u”u,. (7.10)

To verify the accuracy of our interpolated model, we employ the flux balance laws to compare the
local energy and angular momentum lost by the secondary against the energy and angular momentum
fluxes radiated at infinity and down the horizon:

o,
<at > = (Feoo + Fe,H) (7.11a)

)= Froot+ Fem). (7.11b)

The relative error in the fluxes across the parameter space is shown in Fig. The white circles
indicate the points used to generate the interpolated GSF model, whereas the green crosses indicate the
points in the parameter space where the fluxes were calculated and thus where the comparisons were
made. We find that the relative error in the fluxes is less than 1072 across the parameter space and
is typically of the order 1073 — 10~* in most of the parameter space, with the ecxception being in a
region very close to the ISSO. This is comparable to previous methods which required tens of thousands
of points to achieve the same level of accuracy [70,145]. While this would not be sufficiently accurate
for LISA data analysis which would require fluxes accurate to ~ 1/¢, such an interpolating error may be
permissible for the post-adiabatic contributions of the first order GSF [70].

We can then use this model in conjunction with the OG equations of motion to calculate inspiral
trajectories. However, we find these trajectories take minutes to hours to compute due to the need to
resolve hundreds of thousands of orbital cycles. We will now look to leverage averaging transformations
which can remove the dependence of the orbital phases from the equations of motion while retaining
the accuracy required to produce post-adiabatic EMRI waveforms.
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Figure 7.1: The relative error in the rate of energy and angular momentum loss between the asymptotic
fluxes and the interpolated GSF model. The white dots indicate the locations of the data points the
model is interpolating. The green crosses indicate the locations of the flux calculations and thus where
the comparisons are made. The relative error is always < 1072 and is typically of the order ~ 1073 —107%.

7.3 Averaged equations of motion for spherical Kerr inspirals

When specialized to spherical Kerr inspirals, the NIT equations of motion, as parametrized by Mino time
A, take the form:

dd—i = eF{(a,p, %) + FP (a,, 7), (7.12a)
;l_i = eFV(a,p, &) + EFP (a, p, ), (7.12b)
= — YO (a0,5,3) + €T (a,5,), (7.12¢)
dt 0 . 1 .

ﬁ = Tg )(aapax) + €T§ )<aap7x)7 (712d)
6 _ vy 5 5 + 1V (0. 5. 2 (7.12)
a:T¢ (a,p,x)+eT¢ (a,p, T). :

The leading order terms in each equation of motion are simply the original function averaged over a
single geodesic orbit, i.e.,

fz(1)> , (7.13a-c)

T = () 1 = (1), (7.13d-e)

where Tﬁo) and T are the Mino-time ¢ and ¢ fundamental frequencies which are known analytically
[174]. The remaining terms are more complicated and require Fourier decomposing the original functions
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and their derivatives with respect to to the orbital elements (p,z). To express the result, we define the
operator

. . .
N(A)zzllAm ;}jm_@<aAmF<l> LA ) Am <8T£’Fm +arg>F(1) ))]

o T m\ op P or mTm @\ op rom T e e
(7.14)
With this in hand, the remaining terms in the equations of motion are found to be
o= (s, (e,
T = N (1O, T4 = N ().

Note that since we currently only have access to the first order GSF, we set <F1§2)> = <F£2)> = 0.

Combining these results with Egs. (4.63)) one can find the NIT equations of motion parametrized by
Boyer-Lindquist time ¢ for the phases ¢ = {¢., ¢4} as defined in Eq. (4.62b) and orbital elements

P = {pg;,x@} as defined in Eq. (4.62al)

dp

d7120 - GFZ(’I)(a’p‘p’ zp) + €2Fz(>2) (a,pp, ), (7.15a)
d

% = EFS)(@p@,x@) + 621—‘;2) (a,p@,x@), (7.15b)
dp,

;Ot = ng) (a7p4p7$<p) + ngl)(a,p¢,x¢), (7.15c)
d‘P 0 1
o = @pp w0) + €2 (0,0, 7). (7.15d)

The leading order terms in these equations are given by

T = FO O 1 = 5O ), (7.16a-b)
~ 0 ~(0 0 0
QO =@/, Q¥ — /). (7.16¢c-d)
The sub-leading terms are given by
1 ~
2) _ 2 Mpa
r® T(O)< @ -1, (7.17a)
t
1 ~
@) _ 2) D)
Iy TEO)( PR e b ) (7.17b)
1
1) _ 1) @) ()
Qz Tgo) (Tz Tt Qz )> (717C)
M _ 1 (@m0
Q W(T¢ —riVaf). (7.17d)
t

Finally, using the two timescale expansion equations of motion, as defined in Eq. [4.70, the adiabatic
equations of motion are given by

R0 2
=T =T, (7.18a-b)
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(0) do®
d;"; = QO j—,ﬁ =) (7.18c-d)

The post-adiabatic contributions to the equations of motion are given by

dgg =1 +p<(pl)f;§j mfol)zl;’;» (7.19a)
d:z;g) =1 + ) ZZ?:;)) +a) zgg; : (7.19b)
dgg) — o) 4+ p») 225;) + xgol)z:g)), (7.190)
d;pg =g+ )Zzg)) + ﬂc(wl)(z:g)) : (7.19d)

Solutions for post-adiabatic inspirals can be obtained by solving Egs. and simultaneously
and using Egs. along with a value for the mass ratio € to recover p,(t), z,(t), p.(t) and @, ().
With the averaged equations for spherical Kerr inspirals in hand, we will now outline our numerical
implementation for rapidly computing spherical self-forced inspirals.

7.4 Implementation

Combining the interpolated GSF model along with our action angle formulation of the OG equations
provides us with all the information required to calculate the NIT and TTE equations of motion. We
first evaluate and interpolate the various terms in the NIT and TTE equations of motion across the
parameter space. While this offline process can be expensive, it only need to be completed once. Once
completed, the online process of calculating self-forced inspirals can be completed in less than a second.

7.4.1 Offline Steps

The offline calculation consists of the following steps.

1. We start by selecting a grid which covers the parameter space. We chose y values between 0.099
and 0.999 in 451 equally spaced steps and 22 values from 0.002 to 0.5 in 250 equally spaced steps
(112,750 points)[]

2. For each point in the parameter space (a,ysph,zg) we evaluate the functions F&; f,gl) andft(\oqi
along with their derivatives with respect to p and x for 49 equally spaced values of ¢, from 0 to
27,

3. We then perform a fast Fourier transform on the output data to obtain the Fourier coefficients of
the forcing functions and their derivatives.

!Evaluating the NIT functions is computationally cheap so using a dense grid does not significantly increase the compu-
tational burden. Using an equally spaced grid also allows us to use Mathematica's default Hermite polynomial interpolation
method for convenience of implementation. The grid spacing is chosen to be sufficiently dense that interpolation error is a
negligible source of error for our comparisons between the OG, NIT and TTE inspirals, though a less dense grid may also
achieve this.
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4. With these, we then use Eqs. (7.13a-d), (7.13d-€)), (7.14) and ([7.14a-d) to construct F(\y),

F(1 ./ 0p, 8F /&r and T( )\¢ at a given point in the parameter space. Note that all other terms
needed for the NIT and TTE can be derived from these terms or are already known analytically.

5. We also use Egs. ) and ([4.56)) to construct the Fourier coefficients of the first order transfor-
1

mation functions Y(\) and X
6. We then repeat this procedure across the parameter space for each point in our grid.

7. Finally we interpolate the values for F’xf) /8p, 8F /ap, and TE\)W along with the

coefficients of );(\1; across this grid using Hermlte |nterpolat|on and store the interpolants for

future use.

We implemented the above algorithm in Mathematica 12.2 and find, parallelized across 20 CPU cores,
the calculation takes about 5 hours to complete. Since these offline steps need only be completed once,
this is a comparatively small price to pay.

7.4.2 Online Steps
The online steps are required for every inspiral calculation are, by contrast, computationally inexpensive
and are as follows:
1. We load in the interpolants for F(i\m, and TS)W’ and define the NIT equations of motion. For
TTE inspirals, one also needs to load in the interpolated derivatives OF( ../0p and 8F /8x then

define the TTE equations of motion.

2. In order to make comparisons between OG NIT, and TTE inspirals, we also load interpolants of the

Fourier coefficients of Y(/) and Egs. ), (4.62) and (4.66) to construct first order near-identity
transformations.

3. We state the initial conditions of the inspiral (p(0),z(0), ¢.(0)) and use the NIT to leading order
in the mass ratio to transform these into initial conditions for the NIT/TTE equations of motion,

e., (pp(0),2,(0),¢-(0)).

4. We then evolve the NIT or TTE equations of motion using an ODE solver (in our case Mathe-
matica’s NDSolve).

As with the offline steps we implement the online steps in Mathematica. Note that steps (ii) and
(iii) are only necessary because we want to make direct comparisons between NIT and OG inspirals with
the same initial conditions. In general, the difference between the NIT and OG variables will always be
O(e), and so performing the NIT transformation or inverse transformation to greater than zeroth order
in mass ratio will not be necessary when producing waveforms to post adiabatic order, i.e. with phases
accurate to O(e).

Using this procedure, one can compute year-long inspiral trajectories in less than a second. By
comparison, using the quasi-Keplerian OG equations with sufficiently high relative and absolute accuracy
requirements takes on the order of hours to compute the same trajectory. Since we do not yet have
interpolated Teukolsky amplitudes for Kerr inspirals, we use the semi-relativistic quadrupole formula
as outlined in to generate the waveform strain for the NIT, TTE and OG inspiral trajectories,
sampled at 10s intervals. In order to quantify the effect that using each of these methods has on the
resulting waveform, we calculate calculate the fractional overlap O(h1, ho) between two waveform strains
hi1 and hy we using WaveformMatch function from the SimulationTools package [186] and use the
approximate LISA sensitivity curve as our noise curve from Eq. [185].
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Figure 7.2: The trajectory through (r,6inc) space for an inspiral with ¢ = 1072, @ = 0.9, and initial
conditions (pg = 7.75,x9 = 0.75). We use such a large mass ratio to show off the orbital timescale
oscillations one encounters when using the OG equations. Using the NIT or TTE equations of motion
averages out these oscillations and results in almost identical inspirals. We also see that the TTE
equations of motion break down further from the ISSO than the OG or NIT equations of motion.

7.5 Results
7.5.1 OG vs NIT and TTE inspirals

To test the accuracy of our NIT and TTE implementations, we compare inspirals calculated using the
OG equations of motion against inspirals calculated using the NIT or TTE equations of motion. We
chose a case study of a typical system EMRI with a 10, primary and initial conditions for inclination
of x = 0.75 and semilatus rectum of p = 7.75. This highly inclined, strong field inspiral should provide
a strenuous test of our numerical implementations. We also set the initial phases ¢.(0) = ¢(0) = 0 for
simplicity.

Fig. shows the trajectories produced by each method. We have purposely chosen an unusually
large mass ratio for an EMRI of ¢ = 1072 so that the orbital timescale oscillations are clearly visible on
the plot. We see that for each trajectory the orbital separation decreases substantially, while the orbit
becomes slightly more inclined. However, the OG trajectory oscillates on the orbital timescale, while
the NIT and TTE trajectories faithfully capture the average evolution of the trajectory. While the NIT
and TTE trajectories may appear at first glance to be identical, it is important to note that the TTE
equations of motion break down sooner than the NIT equations of motion. This is due to the evolution
of pfpo) and :1:500) reaching the location of the ISSO sooner than p, and x,. This is not as important of
an issue as one might expect, as this close to the ISSO one should swap over to a “transition to plunge”
scheme [138-141].

Fig. [7.3| shows the difference in the phases between the OG trajectory and the NIT and TTE trajec-
tories for a year long inspiral with a mass ratio of ¢ = 107°. In both cases, we find that the difference in
the phases stays below 1072 throughout the inspiral, spiking only when the inspiral approaches the ISSO
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Figure 7.3: The difference in the orbital phases for a spherical Kerr inspiral with € = 107 and a = 0.9M
when using the OG equations verse the NIT or TTE equations of motion. In both cases, the difference
stays small throughout the inspiral, only becoming large as the secondary approaches the ISSO when
the adiabatic assumption breaks down.

where we expect the adiabatic assumption implicit in the OG, NIT, and TTE equations of motion to start
to break down. Even then, the difference in the phases is substantially lower than subradian accuracy
requirement needed for LISA data analysis. We have also found that the growth in the error over time
is most closely correlated with the interpolation error for the terms in the NIT and TTE equations of
motion, and so interpolating on a denser grid should reduce this error even more.

We then use the flat semi-relativistic approximation to produce quadrupole waveforms which can be
seen in Figs. and These figures show the first and last 3 and a half hours of the waveforms
produced by the OG and NIT trajectories respectively. From the plots it is clear that the two waveforms
overlap heavily, with the differences between them being miniscule, as demonstrated by the green curve.
The waveform mismatch between the OG waveforms and both the NIT and TTE waveforms only ~
2.5 x 107®. This means that they meet the indistinguishability criteria from the OG waveforms for
signal-to-noise ratios (SNRs) of up to ~ 4500 according to (5.36)).

We note that formally both the NIT and the TTE should induce an error in both the phases and the
orbital elements that scales linearly with the mass ratio. To ensure that our implementation is converging
correctly, we evolve inspirals from initial conditions p(0) = 5 and x(0) = 0.75 until they reach p = 4
with different values of the mass ratios and find the largest error between the OG and NIT/TTE phases
and orbital elements found during the last 3 orbital cycles of the inspirals. The results of this test can be
seen in Fig. We see that for larger mass ratios the errors converge linearly as expected. However,
for mass ratios smaller than 1073, the formal error in the NIT and TTE is no longer the dominant source
of error for the evolution of the phases. Instead the error is dominated by either interpolation error or
the error in the ODE solver. While both of these sources can be further suppressed at the cost of more
expensive offline and online steps respectively, we find this to be unnecessary for producing trajectories
accurate enough for LISA data science.

Intuitively, one would expect the error in our averaging procedure to scale with the size of the
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Figure 7.4: The “semi-relativistic’ quadrupole waveform strains for an ERMI with e = 107°, p(0) = 7.75
and z(0) = 0.75 as viewed from edge on sampled once every 10s. The blue curve is the waveform
generated from the OG inspiral, the dashed yellow curve is the waveform generated from the NIT
inspiral, and the purple dotted curve is the waveform generated from the TTE inspiral.
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follow the black € curve and so converge linearly with the mass ratio until we reach mass ratios < 1073
where the error in the phases becomes dominated by interpolation and numerical error.
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Figure 7.6: The mismatch between year long OG and NIT/TTE waveforms as a function of orbital
inclination and mass ratio. We do not see a substantial difference in accuracy between using either NIT
or TTE waveforms. We also see that the mismatch remains smaller than 0.03 for mass ratios as large
€~ 0.5.
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€ 0G NIT | Speedup | TTE Speedup

1072 247s | 048 | ~b51 | 22ms | ~ 1.1 x 10
1073 | 4m 20s | 0.17s | ~ 1530 | 39ms | ~ 6.7 x 106
1074 | 43m 19s | 0.43s | ~ 6044 | 27ms | ~ 9.6 x 107
107° | 7hrs 42m | 0.49s | ~ 54380 | 22ms | ~ 1.2 x 10

Table 7.1: Computational time required to evolve an inspiral from its initial conditions of pg = 7.75 and
2o = 0.75 to the last stable orbit for different values of the mass ratio, as calculated in Mathematica
13 on an Intel Core i7 @ 2.2GHz. The computational time for the OG inspiral scales inversely with the
mass ratio, whereas the computational time for NIT inspirals is independent of the mass ratio. The
computation for the TTE inspiral was 0.53s, which is slightly longer than any of the NIT inspirals.
However, if we consider the TTE calculation as an offline step, one can then immediately recover the
solution for any value of € in a matter of milliseconds.

orbital timescale oscillations which themselves scale with the mass ratio and the orbital inclination.
As such, we wish to determine the section of the parameter space where the difference in the wave-
forms between the OG and the NIT/TTE inspirals would be small enough for LISA data science. To
do this, we first fix the mass of the primary to be 1060/ and created a function which uses adi-
abatic inspirals and root-finding to numerically compute the initial orbital separation for an inspiral
which will take one year to reach the ISSO for a given inclination and mass ratio. We then create
a grid of mass ratios e = {1,1071/2,10-1,107%/2,1072,107°/2,1073,10~7/2,10~*} and inclinations
x = {0.74,0.79,0.84,0.89,0.94,0.99}. For each point on this grid, we calculate a year long inspiral
using the OG equations of motion, the NIT equations of motion, and the TTE equations of motion and
then generate a waveform from each.

The waveform mismatch between the OG and NIT or TTE waveforms is displayed in Fig.[7.6] From
these plots we see that there does not seem to be a substantial difference in terms of accuracy from using
either the NIT or TTE equations of motion. While there may be some correlation between mismatch and
inclination, this does not appear to be a strong effect at least for 8;,c < 45°. The strongest effect on the
waveform mismatch comes from the mass ratio. It is worth noting that 3 x 1072 is a commonly chosen
maximum mismatch for a waveform template bank that corresponds to a 90 %-ideal observed event
rate [187]. Our results suggests that one could in principle produce such a template bank of spherical
inspirals using NIT or TTE waveforms even for mass ratios as large as € =~ 0.5. In practice however, we
are still missing important post-adiabatic contributions such as second-order effects and contributions
from the spin of the secondary, and so such a template bank would have substantial systematic biases.

Now that we have established the accuracy of our averaging procedure, we now demonstrate the
speed up that one enjoys from using either the NIT or TTE equations of motion instead of using the
OG equations of motion in Table. . For each of these calculations, the initial conditions are set to
p(0) = 7.75 and z(0) = 0.75 the inspirals are evolved to the ISSO. All calculations were done using
machine precision numbers and an accuracy goal of 7 for Mathematica's NDSolve function. We find that
using the OG inspiral calculation takes longer as the mass ratio gets smaller since the solver will have to
resolve more orbital cycles before the inspiral reaches the ISSO. However, we find that the NIT inspiral
takes roughly the same amount of time regardless of the mass ratio. The TTE inspiral takes longer
than any NIT inspiral, which is to be expected as one has to simultaneously solve for twice as many
equations. However, one only has to solve this system once and then one can reconstruct the solution
for any mass ratio thereafter. As a result, if one needs to compute multiple inspirals with varying mass
ratios, the TTE equations of motion are significantly more computationally efficient.
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Figure 7.7: The absolute difference in 4 for a NIT inspiral evolved from a point in the parameter space
to the ISSO with a typical EMRI mass ratio of ¢ = 1075, depending on whether one incorporates high
precision fluxes or not. Using the high precision fluxes results in a more faithful inspiral, with phase
differences ranging from ~ 10 — 10* radians.

7.5.2 Using Higher Precision Fluxes

Now that we can compute fast and accurate inspirals, it is worth recalling that the relative accuracy
of our interpolated GSF model is currently too low for production level waveforms. This is primarily
due to the stringent relative accuracy requirements for the adiabatic pieces of < e x 1072 for subradian
accuracy in the phases. This can be improved by incorporating information from the asymptotic fluxes,
which can be interpolated to a much higher accuracy across the parameter space due to the much
cheaper cost of flux calculations compared to GSF calculations. This is why our interpolated flux model
is accurate to ~ 106 while our interpolated GSF model is only accurate to ~ 10~3. Such information
can be incorporated into the GSF model itself to improve the accuracy of the OG inspirals as well as the
resulting NIT and TTE inspirals [70]. But since the NIT and TTE equations of motion are naturally split
into adiabatic and post-adiabatic pieces, one can calculate b directly from the fluxes via equations
and ([7.4), interpolate them to higher precision than the GSF model, and then substitute these
improved adiabatic terms into the averaged equations of motion.

To test the difference this would make to the overall accuracy of our post-adiabatic inspirals, we
looked at the final error in the ¢, phase when evolved from one point in the parameter space to the
ISSO when using the flux+GSF model verses using only the GSF model for inspirals with ¢ = 107°.
From Fig. [7.7] we see that improving the adiabatic pieces results in a phase difference that can range
for from tens to tens of thousands of radians for multi-year long inspirals and this difference gets larger
as one moves away from the ISSO. As such, using high precision fluxes for the adiabatic contributions
to the equations of motion is vital for obtaining accurate adiabatic and post-adiabatic inspirals.
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Figure 7.8: The blue curves show the adiabatic trajectories through {r,0i,c} space, while the orange

contours denote the final value of cpg}) when evolved from that point in the parameter space to the ISSO.

7.5.3 Impact of the self-force on spherical inspirals

Since this is the first time the first-order GSF has been computed for spherical Kerr inspirals, we examine
the impact that the adiabatic and (a subset of) the post-adiabatic contributions have on the inspiral
in Fig. [7.8] It is worth recalling that without second-order contributions to the 1PA inspiral, this is
not a gauge invariant measurement, as we demonstrated in Chapter [6] and so these results are only
representative of the outgoing radiation gauge. The blue curves show typical adiabatic trajectories
through {r, 6i,c} space. From this we see that the self-force causes the orbital radius to decrease over
time, but also cause the inclination angle to increase slightly throughout the inspiral. This is consistent
with previous work on adiabatic spherical inspirals [78,80]. The post-adiabatic contributions to solutions
for r and 6, do not change this trend in any significant way since these contributions to the orbital
elements is O(¢e). However, the post-adiabatic contribution to the orbital phases is O(1) and is thus very
significant. This is demonstrated by the dashed contours on Fig. [7.8] which indicate the final value of
the post-adiabatic piece of the azimuthal phase go((;), when evolved from a given point in the parameter
space to the ISSO. Since the azimuthal phase most strongly impacts the final waveform phase, this gives
a good estimate of how many radians one can expect the waveform to be out of phase in the absence of
post-adiabatic contributions without having to specify the mass ratio of the binary. It is worth restating

that this does not include the second-order GSF contributions to goé)l) as these are not currently known.
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Chapter 8

Fast generic inspirals into a rotating
black hole

We now look to apply near-identity averaging transformations to the case of generic Kerr inspirals, while
incorporating the phenomenon of orbital resonances. We start by restating the form of the osculating
geodesics equations for generic Kerr inspirals in Sec. [8.1] We then outline the construction of a toy GSF
model using information from our equatorial and spherical interpolated GSF models in Sec. 8.2

In Sec. we apply near-identity averaging transformations to generic Kerr inspirals in the absence
of any low order orbital resonances and test how the accuracy and speed up converge with the mass
ratio. We perform a similar analysis in Sec. [8.4] but this time for the near-resonant NIT in the vicinity
of the |k;|/|kr| = 2/3 resonance.

Having confirmed that these two averaging procedures are performing as expected, we then prescribe
how to transition from the non-resonant NIT to the near-resonant NIT and back again in Sec. [8.5
We test this transition procedure on two year long EMRIs, one which evolves through a single order
resonance in Sec. and one which evolves through two low order resonances in Sec. [8.5.2] While
this implementation must be tested and optimised further before it could be recommenced for data
analysis applications, these tests confirm that the overall strategy of combing non-resonant and near-
resonant NIT equations of motion can accurately capture resonance crossings while drastically speeding
up EMRI trajectory calculations.
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8.1 Generic Kerr Osculating Geodesics

For generic Kerr orbits with both eccentricity and inclination, the osculating geodesic equations from

Eq. (3.53) take the form

%9 = cFV(a,p, e,2,4r,4:) + EFP (a,p,e,2,0r,0), (8.1a)
;Li = eFM(a,p.e,0,qr,0:) + EFP (ap,e, 0,00, 02), (8.1b)
% = cF{(a,p,e,7,qr,¢:) + F P (a,p, e, 7,4, ¢z), (8.1¢)
Ccllq)r =T, p,e,x) +efD(a,p, e, 2, qr,q.), (8.1d)
Cg{f = Tgo)(%P, e,x)+ 6fél)(a,p, €T, qryqz), (8.1e)
C% = 1, p, e, 2,4, 0.), (8.1f)
% = 13 (a,p, e, 7,47, 0-). (8.1g)

These equations of motion are valid everywhere, including through orbital resonances, and accurately
capture the effects of transient resonances on the inspiral trajectory. The same is true of the quasi-
Keplerian version of these equations, which we use in practice to calculate the OG inspirals as it is more
numerically efficient than the action angle version. Even still, these equations are slow to evaluate due to
the need to resolve orbital timescale oscillations. As such, we treat inspirals using the OG equations as if
they are the “true” inspiral, and use them as the point of comparison as we implement more numerically
efficient methods of evolving generic Kerr inspirals.

8.2 Generic Kerr GSF toy model

In order to start calculating inspirals, we first need a model for the secondary’s four-acceleration. Un-
fortunately, creating an interpolated GSF model for generic Kerr inspirals is computationally unfeasible
at this time, due to the cost of computing the generic Kerr self-force for a single point in the parameter
space and the need to tile in three dimensions instead of two dimensions required for the equatorial
and spherical cases. Instead we construct a self-force inspired toy model for generic orbits by combining
our interpolated self-force models for eccentric and spherical orbits in such a way that we have radial
and polar cross terms in the Fourier expansion of the force components which will give rise to resonant
effects.
We first recall that our first order eccentric orbit self-force model takes the form:

15
al(}) = A2 + Z Aj, cos(ngy) + By, sin(ng;), (8.2)
n=1

where we have absorbed the rescaling factor of (1 —e?)/(1 —ye,) into the coefficients A}, and B);. Note
that we truncate the series at n = 15 as this provides sufficient accuracy. Furthermore, our first order
spherical orbit self-force model takes the form:

24
all) = C+ " 7 cos(mg.) + Dy sin(mq.) (8.3)
m=1
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where again we have absorbed the rescaling factor of 1/(1 — y¢,)? into the coefficients C)' and D"

While it would be easier to combine these terms together to get cross terms if the Fourier series was
expressed as a complex exponential series instead of a sin and cos series, it is possible to derive a Fourier
series for a real valued 2D function my making use of trig identities and simplifying:

)(gr, q2) Z Z AL cos (ngy) cos (mg.)

n=0m=0

+ Z Z BZ’” cos (ng,) sin (mgq)

n=0m=0

+ Z Z C;‘m sin (ng,) cos (mq.)

n=0m=0

o oo
+ Z Z D} sin (ngy) sin (mg;)

n=0m=0

In our toy model, we calculate the cross terms using an outer product, meaning that the coefficients
nm nm nm nm H .
AR, By™ €™, and D™ are given by:

A = AnCT (8.5a)
B = ADT (8.5b)
crm = BT (8.5¢)
D™ = Brpm (8.5d)

from our equatorial and spherical GSF models. Using what we know from the n = 0 and m = 0 cases,
we express our generic orbit force components as:

a (g, q:) = A5 + C9

15 24
+ Z Aj; cos(ngy) + B sin(ng,) + Z C)' cos(mg,) + D} sin(mg.)
n=1 m=1
15 15
+ Z Z A C) cos (ngy) cos (mg:) + Z Z A} Dyt cos (ngy) sin (mg:)
n=1m=1 n=1m=1
15 15
+ Z Z B, C))" sin (ng;) cos (mq,) + Z Z B, D)} sin (ngy) sin (mqy)
n=1m=1 n=1m=1

Note that all of the inclined orbit terms will vanish in the equatorial limit except for CO and all the
eccentric orbit terms will vanish in the circular limit except for AO We wish to welght these orbit
averaged terms so that we can recover the two limit cases accurately

To do this, we note that our equatorial model covers eccentricities ranging from 0 < e < 0.5. Our
spherical model is tiled in terms of a parameter v where v = 22 = 1 — 22 such that our model covers
0 < v < 0.5. This similarity will come in handy. We want the weighting factors to be smooth, recover
the two limit factors, and we make the choice that when e = v that the weighting factors are both 0.5
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so that the orbit averaged piece will be the mean of the equatorial and spherical contributions. As such,
we chose following weighting functions:

e < v <
ale,v) =40 SV gy ={Ew O (8.7)
1—6_,_—1) e>v 1—% e >

Despite their piecewise definition, these functions are smooth and continuous everywhere except for the
point (e,v) = (0,0). We can now write our generic force components as

1 _ 0 0
all(¢r,q.) =aAS + BCY

15 24
+ Z Aj, cos(ngy) + By sin(ngy) + Z C}' cos(mg;) + D))" sin(mg.)
n=1 m=1
+ Z Z AL C" cos (ngy) cos (mqs) + Z Z A Dy} cos (ngy) sin (mg;)
n=1m=1 n=1m=1
+ Z Z BjC)" sin (ng,) cos (mq.) + Z Z B}, D)} sin (ngy) sin (mg.) .
n=1m=1 n=1m=1

Before now, we only ever needed the orbit averaged contribution from the second order self-force, which
in the absence of any results for Kerr inspirals, we simply set to zero. However, when evolving near an
orbital resonance, Egs. show that the oscillatory part of the second order self-force also contributes
at post adiabatic order. Since we are already using a toy model for the first order self-force, we also
choose to create a toy model for the second order self-force a,(?). However, we do not have any data for
generic Kerr inspirals that can help inform such a model. As such, we have opted to use this first order

toy model to inform the second order toy model, which we take to be:

(1)
@ __ % 8.9
a’# ’)"2 /71 — Z27 ( : )

where the factor of 1/r2 is used to ensure that the second order self-force corresponds to the correct
post-Newtonian order and the factor 1/4/1 — 22 prescribes the effect of the inclination, and implicitly
spin of the primary, on the second order self-force. With these both of these terms, we express the

self-force as a,, = a&l) + eaf).

Finally, in order for this toy model to work with the method of osculating geodesics, we require that
it must satisfy the orthogonality condition with the geodesic four velocity, i.e., a,u* = 0. To enforce
this relationship we project off any parts of the force that violate this condition using the following
relationship:

alf = a, + a,u”uy,. (8.10)
Using the projected force components with our osculating geodesic equations of motion we find inspi-
rals that have qualitatively correct p, e, and z evolution for an EMRI under the effect of the gravitational

self-force as well as strong resonant effects.
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8.3 Non-Resonant NIT

8.3.1 Non-resonant NIT equations of motion

In the absence of orbital resonances, one can use near identity averaging transformations to derive
equations of motion which have no dependence on the orbital phases:

dp . -

£ = eFV(a,,, %) + P (a, 5, 7), (8.11a)
dé . .

£ = eFV(a,p,é,7) + EFP(a, p, &, &), (8.11b)
dF . .

= = FV(ap,88) + EF (a,p.2,2), (8.11c)
Ur 0 0,,,7) + X0 0,7, 7). (8.11d)
e Y O05,68) + XD (a,5,6.7), (8.11¢)
dt R .

o =10 d) + e (a,p.2,3), (8.119)
do _ YO (a,p,67) + XYW (a,p, 6, 7) (8.11g)
d)\ - (z) 7p7 ) ¢ 7p7 b N

The leading order terms in each equation of motion are simply the original function averaged over a
single geodesic orbit, i.e.,

Y = <Fz§1)>7 PO = <Fe(1)>’ P <F£1)>7 (8.12)
T = <fr(”>, T = <f§1)>, (8.13)
TO~ (1), 10 = (1), 014

The remaining terms are more complicated and require Fourier decomposing the original functions and
their derivatives with respect to to the orbital elements (p,e,x). To express the result, we define the
operator

N(A) = T(O)—:—T(O) iAnm (n 751_),1_7” + mfz(,}lnv_m) +
(n;m)#(0,0) WA T L2
aAn,m F(l) + 614ﬂ1_7,(1) n aAn,m F(l) _ An,m «
aﬁ p,—n,—m oe e,—n,—m % Tr,—n,—m n,rgo) N ngO)

) 0) (0) ) (0) )
( (nzm L.t ) YU (narr L ,0ne ) U (nem L ,,0nt > P

ap b e 9é 07 o7

With this in hand, the remaining terms in the equations of motion are found to be
D = (D) + N (ED), FD = (FP)+ N (FD), B = (FP)+ N (FD)  (8.162)

) = /\/( t“”) C 1P =N (f;”) . (8.16b)
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8.3.2 Implementation

Combining the toy generic GSF model along with our action angle formulation of the OG equations
gives us all the information required to calculate the NIT equations of motion. We first evaluate and
interpolate the various terms in the NIT equations of motion across the parameter space. While this
offline process can be expensive, it only needs to be completed once. By contrast, the online process of
calculating self-forced inspirals can be run in less than a second.

8.3.3 Offline Steps

The offline calculation consists of the following steps.

1. We start by selecting a grid which covers the parameter space. We fix the spin of the primary to
be a = 0.9M chose an equally spaced gird of P= (p, e, x) values on which to evaluate the terms
in the NIT equations of motion. To ensure that we are not in the vicinity of a low order resonance,
we only tile a small patch of the parameter space where no such resonances are present. As such,
we allow p to range from 9 to 10.1 in steps of 0.1, e to range from 0.25 to 0.41 in steps of 0.01,
and x range from 0.79 to 0.81 in steps of 0.005 for a total of 1020 grid points.

2. For each of these grid points we evaluate the functions Fp(ig)c\e,FKi\e, ffii and !)"t(\o(})S along with
their derivatives with respect to p,e, and x for 21 equally spaced values of both ¢, and ¢, ranging
from 0 to 27 each for a total of 441 evaluations for each function.

3. We then perform a fast Fourier transform on the output data to obtain the Fourier coefficients of
the forcing functions and their derivatives.

4. With these, we then use Egs. (8.12)), (8.13]), (8.15]) and (8.14]) to construct Fxé\zi and Tiil\df

5. We also use Egs. (4.55)) and ({4.56]) to construct the Fourier coefficients of the first order transfor-
mation functions Y;,(\le)\x and Xr(il

6. We then repeat this procedure across the parameter space for each point in our grid.
: : (1\2) (1) ; - (1)
7. Finally we interpolate the values for Fp\e\l, and Tt\z\(b along with the coefficients of Yp\e\x and

X&l across this grid using Hermite interpolation and store the interpolants for future use.

We implemented the above algorithm in Mathematica 13 and find, parallelized across 40 CPU cores
takes, the calculation takes about 12 hours to complete.

8.3.4 Online Steps

The computationally inexpensive online steps needed for every inspiral calculation are as follows
1. We load in the interpolants for F(l\Q), and TV , and define the NIT equations of motion.
p\e\z t\r\z\¢

2. In order to make comparisons between OG and NIT inspirals we also load interpolants of the

Fourier coefficients of Y(l) )
p\e\z

3. We then state the initial conditions of the inspiral (p(0), e(0), 2(0), ¢,(0), ¢-(0)) and use Eq. (4.33)
to ensure that the initial conditions are matched to linear order in the mass ratio.
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Figure 8.1: The absolute difference in the quantities of an inspiral with ¢ = 0.9M and initial conditions
(eo, o) = (0.38,0.8) and evolved from p = 9.5 to p = 9 for difference values of the mass ratio when
calculated using either the OG or NIT equations of motion. As expected, the differences scale linearly
with the mass ratio.

4. We then evolve the NIT equations of motion using an ODE solver (in our case Mathematica's
NDSolve).

As with the offline steps we implement the online steps in Mathematica. Note that steps (2) and
(3) are only necessary because we want to make direct comparisons between NIT and OG inspirals with
the same initial conditions. In general, the difference between the NIT and OG variables will always be
O(e), and so performing the NIT transformation or inverse transformation to greater than zeroth order
in mass ratio will not be necessary when producing waveforms to post adiabatic order, i.e. with phases
accurate to O(e).

8.3.5 Results

In order to test that we have implemented the NIT equations of motion correctly, we wish to examine
how the differences between the OG and NIT inspiral quantities vary with the mass ratio. If implemented
correctly, the difference between the two should scale linearly with the mass ratio, and so any deviation
from this would indicate either a bug in our code, a large interpolation error for the terms in our NIT
equations of motion, or error in the numerical solver. As such, we start an inspiral at (p(0),e(0),z(0)) =
(9.5,0.4,0.8) and evolve the inspiral until p = 9 using both the OG and NIT equations of motion and
varying the mass ratio from 10~! to 107%. These initial conditions were specifically chosen to avoid
encountering any low order resonances during the inspiral.

The results of this test are shown in Fig. [8.1I] The figure demonstrates that the differences between
the OG and NIT orbital elements, the phases, and the extrinsic values all scale linearly with the mass
ratio. This indicates that in the absence of low order orbital resonances, the standard NIT formulation
is valid for generic Kerr inspirals.

Table. displays the speed up one obtains from using the NIT equations of motion instead of
the OG equations. We see that as the mass ratio decreases, the longer it takes for the OG inspirals to
compute the solver now has to resolve more orbital timescale oscillations. By contrast, the runtime of
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€ OG Inspiral NIT Inspiral Speed-up
101 9.33s 0.127s ~ 735
10-15 13.2s 0.099s ~ 133
1072 29.7s 0.088s ~ 338
10725 88.3s 0.103s ~ 857
1073 281s 0.117s ~ 2402
10735 860s 0.14s ~ 6143
1074 2697s 0.254s ~ 10,618

Table 8.1: Computational time required to evolve an inspiral from its initial conditions of (po, g, xo) =
(9.5,0.38,0.8) to p = 9 for different values of the mass ratio. These inspirals were calculated numerically
using NDSolve with an accuracy goal of 8 as implemented in Mathematica 13 on an Intel Core i7 @
2.2GHz. As before, the computational time for the OG inspiral scales inversely with the mass ratio,
whereas the computational time for NIT inspirals is independent of the mass ratio. This demonstrates
how the smaller the mass ratio of the inspiral, the greater speed-up one obtains from using the NIT
equations of motion.

the NIT inspirals is independent of the mass ratio as there are no orbital oscillations to resolve. As a
result, the NIT works best, in terms of both accuracy and relative speed-up, for inspirals with very small
mass ratios.

8.4 Near-resonant NIT

While we have shown that the NIT can be applied for generic orbits away from resonances, we expect most
EMRIs to evolve through at least one low order resonance while in the LISA band [160]. In the presence

of one of these low order resonances, F}EQ\W 'I"?(nl\)z Y(\le)\m and Xﬁll all exhibit singular behaviour. As
such, we adopt a near-resonant NIT formulation when in the vicinity of an orbital resonance. While the
resulting inspirals won't be as quick to compute, the resulting inspiral quantities should still be accurate

to the OG inspiral to linear order in mass ratio.
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8.4.1 Near -resonant NIT equations of motion

Assuming that we are in the vicinity of an orbital resonance where Ry - Y0 = /{TT,(ﬂO) + /QZT,(ZO) =0
we make use of the following partially averaged equations of motion

d~ a o > i~ ~ ~ ~ ~ ~

£ =€ p(l)(CLJpae T,q1 )+€2F( )< ,p,e,x,qj_)j (8173)
de - N

o= eFV(a,p6,&,q.) + EFP (,5.6, 7,41, (8.17b)
i -

ﬁ = eF M (a,p,6,2,41) + EFP (a,p,6,7,41), (8.17¢)
Cclqu =T\(a,5,6,%) + TV (a, 5,8 &,q0), (8.17d)
dd. o S

dq)\ - TE'O) ((l,p, e,fL’) + €T,(zl) (aapa €, T, l)a (8176)
dt

o =1 h,8.3) + XV (0.5,6,3), (8.17f)
I V(a,p, (8.17g)
5:T¢ (a’p’e’x)+6T¢ (a,p,e,fﬁ), Arg

where now the equations of motion depend only on the slowly evolving orbital elements (p, €, ) and the
resonant phase ¢, = k,q, + K.q.. The leading order terms in each equation of motion are given by only
the resonant modes of the Fourier sum of the corresponding OG term i.e.,

1 iN (1 (1) iN = 1) N
FY = ZF,Nkr,Nkz W FD =3 F N v €N B =) F oy v @, (8.18)
N N

Z fr Nk, Nk, € ZN(M’ Tgl) = Z fz(f’ljzfﬁr’]v,ﬂz eiNaL, (8.19)
N

The remaining terms are more compllcated and require Fourier decomposing the original functions and
their derivatives with respect to to the orbital elements (p,e,x). To express the result, we define the
operator

Nres(A) = SR A
es (an)ER nT(O) 4 mT(O)

aAAn,m F(l) + a/1n,m F(l) + a1471,171 F(l) An ,m
8]5 D,—N,—m e e,—n,—m O T,—n,—m nT(O) I mT(O)

or®  arO\ Joxy” | ox® ) coxy” o\ )
<(n op o op Fpnom + 9c " e Feonom+ oz "oz e onm ||

(8.20)

where R is the set {(n,m) € Z?|(n,m) # N(k;,k,),YN € Z}. Armed with this operator, we can
express the remaining terms in the equations of motion as

A (0t ) +

Z sty i, @ N (Fél)) (8.21a)
F? = z:Ff,@zsz,«,NlczeiNqL + Nres (Fe(l)> (8.21b)
Z z NkT,Nk NI 4 Nres (Fx(l)) (8.21c)
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Due to the separability of the rates of change of the extrinsic quantities ft(l) and fqgl), we can continue
to use the same equations averaged equations of motion as in the non-resonant case:

V= <ft(0)>7 T = <f¢ > (8.22a)
T =N (1), T =N (1) (8.22b)

8.4.2 Implementation
The offline calculation consists of the following steps.

1. We start by selecting a grid which covers the parameter space. We fix the spin of the primary to
be a = 0.9M chose an equally spaced gird of P= (p, e, ) values on which to evaluate the terms
in the NIT equations of motion. We now wish to cover much more of the parameter space and so
we allow p to range from 3.75 to 7.25 in steps of 0.05, e to range from 0.25 to 0.41 in steps of
0.01, and x range from 0.79 to 0.81 in steps of 0.005 for a total of 1020 grid points.

2. For each of these grid points we evaluate the functions Fp(\i\x FKi\x ., and ft \é along with
their derivatives with respect to p,e,and x for 21 equally spaced values of oth ¢, and ¢, ranging

from 0 to 27 each for a total of 441 evaluations for each function.

3. We then perform a fast Fourier transform on the output data to obtain the Fourier coefficients of
the forcing functions and their derivatives.

4. We repeat this across the parameter space and save the values of each of these Fourier coefficients.

5. We then interpolate the coefficients of FISQ@C and fﬁii using Hermite polynomials. This allows

(1)

us to construct not only the transformation terms Y\ \e and X(i), but will also allow us to

(1\2) lNQJ_

quickly evaluate the semi-oscillating terms in the equations of motion > F P\e\e, Nk Nr

quJ_
and ZN r\z Nk, Nk, € .

6. Using the rest of the stored Fourier coefficients, one can then use the definition near-resonance
N:es operator given by Eq. (8.20) to construct the remaining parts of ng\x at each grid point,

which are then interpolated using Hermite polynomials and stored for future use.

7. The above step can be repeated if we wish to interpolate these functions for a different orbital
resonance in the parameter space, or use the non-resonant NIT expressions in the absence of any
orbital resonances.

We implemented the above algorithm in Mathematica 13.0 and find that when parallelized across 40

CPU cores, the calculation takes about 7 hours to calculate the Fourier coefficients, about an 30 minutes

to interpolate Fourier coefficients of F(i\\Q) and fr(ii and then about an hour to interpolate the the near-

resonant NIT terms for a single resonance.

8.4.3 Online Steps

The computationally inexpensive online steps needed for every inspiral calculation are as follows

1. We load in the interpolants for the near-resonant F(\\\i and TE\)\ \¢" and define the near-resonant
NIT equations of motion.
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Figure 8.2: The absolute difference in the quantities of an inspiral with ¢ = 0.9M and initial conditions
(eo, o) = (0.36,0.8) and evolved from p = 6.5 to p = 5.8 for difference values of the mass ratio when
calculated using either the OG or near-resonant NIT equations of motion. As expected, the differences
scale linearly with the mass ratio, though these differences in the phases and extrinsic quantities oscillate
due to the dependence of the near-resonance NIT equations of motion on the resonant phase ¢, .

2. In order to make comparisons between OG and NIT inspirals we also load interpolants of the

Fourier coefficients of Féii\z so that can construct the term Y(l)

p\e\z’
3. We then state the initial conditions of the inspiral (p(0), €(0), z(0), ¢-(0),¢-(0)) and use Eq. (4.33))
to ensure that the initial conditions are matched to linear order in the mass ratio.

4. We then evolve the NIT equations of motion using an ODE solver (in our case Mathematica's
NDSolve).

8.4.4 Results

As before, we now test the implementation of the near-resonance NIT by investigating how the differences
between the OG and NIT inspiral quantities vary with the mass ratio. Again, if implemented correctly, we
expect the differences to scale linearly with the mass ratio. We start each inspiral at (p(0),e(0),z(0)) =
(6.5,0.36,0.8) and evolve the system until p = 5.8 while varying the mass ratio from 10~! to 1074,
which ensures that the inspirals always pass through the |k, |/|x,| = 2/3 orbital resonance.

The differences between using the OG and near-resonant NIT equations of motion are displayed in
Fig. We see that the difference in the orbital elements scales linearly with the mass ratio, as shown
in Fig. [8.2a] The differences in the orbital phases and extrinsic quantities still scale linearly with the
mass ratio but also tend to oscillate more than in the non-resonant case. This is due to these quantities
being more sensitive than the orbital elements to the dependence on the near-resonant NIT equations of
motion on the resonant phase ¢, . Overall, this test demonstrates that the differences scale as expected
and assures us that we have implemented the near-resonant NIT correctly.

In Table. shows the runtime for each of these inspirals. As before, we see that the runtime
of the OG inspirals scales inversely with the mass ratio. However, we also see that the runtime of
the near-resonant NIT inspirals depends on the mass ratio, since the near-resonant NIT depends on
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€ OG Inspiral  NIT Inspiral Speed-up

1071 3.44s 0.724s ~ 4.75
10~12 7.21s 0.72s ~ 10

1072 18.7s 0.817s ~ 22.9
10725 48.7s 1.36s ~ 35.8
1073 160s 2.41s ~ 66.4
10735 5165 5.08s ~ 102
1074 1611s 14.35s ~ 112

Table 8.2: Computational time required to evolve an inspiral from its initial conditions of (py, g, xo) =
(6.5,0.38,0.8) to p = 5.8 for different values of the mass ratio. These inspirals were calculated numeri-
cally using NDSolve with accuracy and precision goals both set to 13.5 as implemented in Mathematica
13 on an Intel Core i7 @ 2.2GHz. As before, the computational time for the OG inspiral scales inversely
with the mass ratio, but now the computational time for near-resonant NIT inspirals also scales with
the mass ratio due to the dependence on ¢, . The end result that one does not obtain the same level of
speed-up as in the non-resonant case, but using the near-resonant NIT still provides substantial speed-up
over using the OG equations.

the orbital phase and thus has to resolve more orbital cycles, just like the OG inspirals. However, the
near-resonant NIT inspirals do not have to resolve as many oscillations as the OG inspirals, resulting in
considerable speed-up. While this is helpful, near-resonant NIT inspirals require seconds to minutes to
evolve in Mathematica which is substantially slower than the sub-second calculation times achieved in
the non-resonant case.

8.5 Resonance Transition

While we can now accurately evolve inspirals in the vicinity of an orbital resonance in a way that is
an order of magnitude faster than using the OG equations, this is still not fast enough for LISA data
analysis. One way this can be sped-up further is by using the non-resonant NIT equations when far away
from a resonance and then switching to the near-resonant NIT equations of motion when in the vicinity
of the resonance.

Where this transition should take place to minimise the time using the near-resonant NIT while
retaining subradian phase accuracy was investigated in Ref. [192] using an error budget analysis. It
found that assuming one could evaluate the second order self-force at the point of resonance, but not
its derivatives with respect to the orbital elements, and assuming an error in the phase accuracy no
greater than 0(61/2), the transition should take place when /ﬁrﬁ(ﬂo) + ﬁngo) o €'/, We leave verifying
this choice of condition and how the phase error scales with the mass ratio as future work and assume
that this analysis is correct. Furthermore, the analysis only gives the scaling with the mass ratio and
no bounds for the leading coefficient. Empirically, we take this coefficient to be a constant of 2 for all
resonances, and so we assume the near-resonance condition to be

ki Xy + 1, Y, = 264, (8.23)

Investigating this factor and optimising the near-resonance condition further is also left as future work.

One must note that when transitioning from the non-resonant NIT to the near-resonant NIT, we
must apply a small jump to the orbital elements and orbital phases in order to capture the change in the
near-identity transformations. While normally we do need the explicit expressions of the transformation
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terms Yj(l) and XZ.(I) when evolving inspirals, unless we are comparing inspirals calculated using the OG
equations, we find that including jumps in terms of these transformation has a noticeable impact on
the accuracy of our inspiral calculations that require a resonance transition. As such, when entering the

near-resonance region:

o 1 i

Py = Pj—e> YN, n €t +0(&) (8.242)
N

g — gi — € Z Xz'(,lzx)/m,z\mz,@iql +0(e). (8.24b)
N

Similarly, when exiting the near-resonance region, we also apply the jump condition:

L , i
By = B+ ey YN,y +0() (8.25)
N
g — qgit+€ Z Xi(,lzx)/m,aneiql +0(e). (8.25b)
N

Using this prescription, we wish to demonstrate that transitioning from the non-resonant NIT to the
near-resonant NIT equations of motion and back again can speed up the runtime for a semi-realistic
EMRI system while introducing no significant error, and that we can use these transitions to account for
multiple resonance crossings. To this end, we examine two year long ERMIs; one which passes through
a single low order resonance and one which passes through two.

8.5.1 Transitioning through a single resonance

We now examine the case of a canonical EMRI consisting of a 1050, primary and a 10M, secondary for
a mass ratio of € = 107°. The inspiral has initial conditions (po, eg, o) = (7.045,0.45,0.8) and evolved
until the semilatus rectum reaches the value p = 4.74. These values were chosen so that the inspiral
would last a little over one year, and so that the inspiral passes through the low-order |k.|/|k, = 2/3
resonance. It is worth noting that the inspiral crosses through many other resonances which, in order
of appearance, are the 7/10, 2/3, 5/8, 3/5, and 4/7 resonances. Technically, there are infinitely many
resonance crossings since natural numbers are dense in the reals. However, we only list resonances who's
highest value is less than 10 since we truncate our Fourier expansions after the 10th coefficient. Thus, in
our numerical implementation, the terms in the NIT and averaged equations of motion are not directly
effected by any resonance with a value larger than 10. Moreover, the lowest order resonance is the 2/3
resonance and so we expect that to have the largest effect on the inspiral. As such, we only use the
near-resonance NIT to account for the 2/3 resonance and neglect all others in order to understand the
effect this will have on the accuracy of our inspiral calculations.

We first compute the year long inspiral using the OG equations using NDSolve with accuracy and
precision goals set to 13.5 which took just over two days to compute on a single core of an Intel Xeon
E5-2698V4 @ 2.20GHz. Using this as our point of comparison, we evolved inspirals with equivalent initial
conditions and accuracy and precision goals utilizing the near-resonance equations of motion and using
Eq. to transition from the non-resonant NIT to the near-resonant NIT and back again.

We also evolved an adiabatic inspiral in order to subtract this contribution away from the post-
adiabatic inspirals to show the effect of the resonance crossing on p,e and x which can be seen in
Fig. . While the inspiral also crosses through other resonances, Fig. makes it clear that the 2/3
resonance has by far the largest effect on the orbital elements, with the effects of the other resonance
crossings being far too small to resolve. Furthermore, this figure demonstrates how the near-resonance
NIT and the NIT with a resonance transition both capture the “resonance jump” experienced by the OG
inspiral while including far fewer orbital oscillations.
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Figure 8.3: The difference between the evolution of orbital elements 6P = P — Pag, where P = (p, e, z),
as a function of Mino time X for a year long inspiral with a = 0.9M, ¢ = 107> and initial conditions
(po, €0, o) = (7.045,0.45,0.8). One can see that all three methods for evolving the inspiral accurately
capture the effect of the 2/3 orbital resonance, but the near-resonance NIT does so without resolving

as many oscillations.
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Figure 8.4: The absolute difference in the phases and extrinsic quantities between the OG and NIT
equations of motion for a year long inspiral with a = 0.9M, € = 10~° and initial conditions (po, eg, 7¢) =
(7.045,0.45,0.8). We observe that there is no difference in accuracy between using the near-resonance
NIT for the entire inspiral and using the NIT away from resonances and transitioning to the resonant
NIT in the vicinity of the resonance. q; .

We also examine the effect that including a resonance transition has on the accuracy of the orbital
phases and extrinsic quantities which is displayed in Fig. We see a natural growth in the phase
error over time, which may be due to accumulating numerical error due to the numerical solver, but
may also be due to neglecting the effects of the other resonance crossings besides the 2/3 resonance.
Importantly, we see no difference in accuracy when using either the near-resonant NIT or using the NIT
with a transition. Moreover, the end of a year long inspiral the difference in the phases is < 2 x 1072 and
the difference in t/M is less than 1, which should be accurate enough produce post-adiabatic waveforms
fit for LISA data science.

This is confirmed by Table. [8.3] We see the runtime required to calculate inspirals using either
the non-resonant NIT, the near-resonant NIT or the NIT with resonance transition. The table also
lists the mismatch between the semi-relativistic quadrupole waveforms generated from these inspirals
when compared to that produced by the OG inspiral. We find the non-resonant NIT to be the most
computationally efficient but the resulting inspirals are far too inaccurate to be useful. However, the
near-resonant NIT produces inspirals and waveforms that are accurate enough for LISA data science even
when neglecting all other resonance crossings. Unfortunately, with a single inspiral taking 2097s or 35
minutes to compute, the near-resonance NIT is substantially faster than the OG inspiral but still much
too slow for practical waveform generation for data analysis. Finally, we note that transitioning from
the non-resonant NIT to the near-resonant NIT and back again provides the best of both approaches,
producing inspirals and waveforms just as accurately as the near-resonant NIT while only taking 58.7s
to compute an inspiral. This is still slower than the sub-second computation time that one would need
for data analysis, but this can be reduced further by optimising the resonance condition and using more
efficient numerical methods.

In conclusion, this test case has demonstrated two important insights. First, one does not need
to account for every orbital resonance to produce waveforms that are sufficiently accurate for LISA
science, only the lowest order ones. Second, using a combination of non-resonant and near-resonant
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Inspiral Runtime | Mismatch

Non-resonant NIT 4.02s 0.376
Near-resonant NIT 2097s 3.86 x 10~*
NIT w/ transition 58.7s | 3.84 x 1074

Table 8.3: A table of the time taken to compute a year long inspiral with mass ratio 10~° and initial
conditions (po, e, o) = (7.045,0.45,0.8) using different equations of motion as calculated numerically
using NDSolve with accuracy and precision goals both set to 13.5 as implemented in Mathematica 13 on
an Intel Core i7 @ 2.2GHz. For reference, using the OG equations to compute the same inspiral took over
two days to compute on a single core of an Intel Xeon E5-2698V4 @ 2.20GHz. The mismatch between the
semi-relativistic quadrupole waveforms generated from these inspirals and the OG inspiral is also listed.
We see that using the non-resonant NIT produces inspirals that are fast, but the resulting waveforms are
completely inadequate. Taking into account the 2/3 resonance using the near-resonance NIT produces
significantly more accurate waveforms, but the inspiral calculation is much too slow for data analysis.
Finally, using a transition between non-resonant and near-resonant NIT equations of motion retains all
of the accuracy of just using the near-resonant NIT and is significantly faster to compute.

NIT equations of motion is the best strategy so far for accurately capturing resonant behaviour while
reducing the computation time for calculating post-adiabatic inspiral trajectories.

8.5.2 Transitioning through multiple resonances

Armed with these two insights, we now look to a case where there is more than one low-order resonance
crossing. We wish to see if one can produce sufficiently accurate waveforms if one only employs a
resonance transition for the 2/3 resonance or if one needs to account for both resonances. Again, we
pick a canonical EMRI mass ratio of e = 107, and chose initial conditions (pg, €g, 79) = (6.8,0.45,0.8)
and evolve until p = 3.75 such that the resulting inspiral lasts for just over 1 year. This time, however,
the inspiral passes through the following of orbital resonances: 2/3,5/8,3/5,4/7,5/9,1/2, and 4/9.
With the results of our last test in mind, we neglect all of the resonance crossings bar the 2/3 and 1/2
resonances. Using this inspiral, we wish to investigate if we can accurately transition through more than
one resonance, and how much accuracy is lost if one accounts for the 2/3 resonance but neglects the
1/2 resonance.

We first compute the year long inspiral using the quasi-Keplerian OG equations using NDSolve with
accuracy and precision goals set to 13.5 which took just over three days to compute on a single core of
an Intel Xeon E5-2698V4 @ 2.20GHz. Using this as our point of comparison, we evolved inspirals with
equivalent initial conditions and accuracy and precision goals utilizing the non-resonant NIT equations of
motion with either a single near-resonance transition for the 2/3 resonance, or with two near-resonance
transitions for the 2/3 and 1/2 resonances.

To demonstrate the effect of the two resonances on the evolution of the semilatus rectum p, we
match an adiabatic inspiral to the OG inspiral after the 2/3 resonance but before the 1/2 resonance and
evolve it both forward and backwards in time. We then subtract the adiabatic solution for the semilatus
rectum pag from the post-adiabatic inspirals solutions to illustrate the effects of both the 2/3 and 1/2
resonances as seen in Fig. The figure shows how the 2/3 has a significantly larger effect on the
evolution of p than the 1/2 resonance, and that while there is an error induced by neglecting the 1/2
resonance, it is comparably small.

This is further supported when we look at the differences in the orbital phases and extrinsic quantities
in Fig. . We see that neglecting the 1/2 resonance induces a small but noticeable error in the orbital
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This demonstrates importance of capturing the 2/3 resonance and that the effect of neglecting the 1/2

is minor by comparison.
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Figure 8.6: The absolute difference in the phases and extrinsic quantities between the OG and NIT
equations of motion for a year long inspiral with a = 0.9M, ¢ = 10~ and initial conditions (po, €g, T0) =
(6.8,0.45,0.8). One can clearly see the effect of neglecting the 1/2 resonance.

phases and extrinsic quantities towards the end of the inspiral. Since the inspiral terminates shortly after
the 1/2 resonance crossing, this error remains small. However, if the inspiral were to be evolved for
longer, this error will accumulate and may become substantial. This suggests that while incorporating
the 1/2 resonance may not provide a significant increase in accuracy for this particular inspiral, in general
one may still need to account for it.

This is somewhat complicated by Table. [8.4) which shows the runtime and the waveform mismatch
of each inspiral as compared with the waveform generated by the OG inspiral. We see that neglecting
the 2/3 resonance produces a waveform which agrees very poorly with the OG waveform. Including the
transition through the 2/3 resonance produces a waveform with a mismatch of only 2.67 x 10~% which is
significantly smaller than the 3 x 1073 requirement to produce a waveform bank that can capture 90%
of signals. Furthermore, including the transition through the 1/2 resonance reduces this mismatch even
further to 2.58 x 10™%, but this minor improvement may not be worth more than doubling the runtime
from 66s to 163s.

In conclusion, both this and the previous test indicate that of the resonance crossings that we have
examined, the most important to account for is the 2/3 resonance. One may also need to account
for other low order resonances such at the 1/2 and 1/3 resonances, but our preliminary results suggest
that the 2/3 resonance might be the only resonance that one must include to produce post-adiabatic
waveforms accurate enough for LISA science. However, a more robust study of inspirals throughout
more of the parameter space is needed before such a strong conclusion can be drawn.
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Inspiral Runtime | Mismatch

No resonance transition 6.31s 0.648
Single resonance transition 66.2s | 2.67 x 1074
Double resonance transition 163.3s | 2.58 x 1074

Table 8.4: A table of the time taken to compute a year long inspiral with mass ratio 10~° and initial
conditions (pg, ep, z9) = (6.8,0.45,0.8) using NIT equations of motion with different numbers of res-
onant transitions as calculated using NDSolve with accuracy and precision goals both set to 13.5 and
implemented in Mathematica 13 on an Intel Core i7 @ 2.2GHz. For reference, using the OG equations
to compute the same inspiral took just over three days to compute on a single core of an Intel Xeon
E5-2698V4 @ 2.20GHz. The mismatch between the semi-relativistic quadrupole waveforms generated
from these inspirals and the OG inspiral is also listed. Each resonance transition adds more computation
time to the overall calculation, but it also increases the accuracy. The biggest increase in accuracy comes
from doing a single resonance transition for the 2/3 resonance. While accounting for the 1/2 resonance
does decrease the waveform mismatch, it only does so by a miniscule amount at the cost of more than
doubling the computation time.
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Chapter 9

Conclusion

The goal of this work was to develop a procedure that allowed for the rapid calculation of post-adiabatic
EMRI trajectories with a spinning primary in a way that was both accurate and fast enough for LISA
data science.

To this end, we first reviewed geodesic motion in Kerr spacetime. Using the analytic solutions to
the geodesic motion in terms of action angles, we were able to implement an action angle formulation
of the osculating geodesic equations for forced motion around a Kerr black hole. Inspirals evolved using
these equations of motion were identical to those evolved using the null tetrad formulation derived and
implemented in Ref. [137]. We plan to release a Mathematica package containing both versions of the
osculating geodesics equations for both of these formulations which we be made available as part of the
Black Hole Perturbation Toolkit [182].

Using the action angle osculating geodesics as a foundation, we reviewed the technique of near-
identity averaging transformations for calculating self-forced inspirals. These transformations remove
the dependence on the rapidly oscillating orbital phases, resulting in equations of motion that can be
solved in less than a second. However, this technique had two weaknesses.

Firstly, the transformation ill-behaved in the presence of orbital resonances. We ameliorate this by
deriving a near-resonance NIT which removes all oscillations apart from the resonant phase. While
this means the equations of motion are slower to solve than using the original NIT, it still provides a
substantial speed-up over using the OG equations while accurately capturing the resonant behaviour.

Secondly, the resulting solutions were not parametrized in terms of Boyer-Lindquist coordinate time,
which is inconvenient for waveform production and data analysis. This was resolved by following the
procedure outlined in Ref. [113] which involves applying an additional averaging transformation. Finally,
while connections between NIT and the two-timescale expansion TTE were already well known [113}/155],
we explicitly show how one can recover the TTE equations of motion from the NIT equations of motion.

We now wish to investigate the effect of using these averaged equations of motion over the OG
equations on the final waveform. and so we review various methods for calculating waveforms from an
inspiral trajectory. In particular, we make heavy use of the semi-relativistic quadrupole formula as other
methods have yet to be extended to Kerr inspirals. We also review various methods for comparing two
different waveforms and benchmarks for waveform accuracy.

Up until this point, NITs had only ever been applied to self-forced inspirals in Schwarzschild spacetime
[154,/156]. This work marks the first application of NITs to Kerr self-forced inspirals and investigated
three important regions of the parameter space; eccentric and equatorial, circular and inclined (spherical),
and generic with orbital resonances. We now present the conclusions from each of these investigations.
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9.1 Eccentric Self-forced inspirals into a rotating black hole

In Chapter [ we present the first self-forced inspirals in Kerr spacetime. We computed the self-force in
the radiation gauge using the code of Ref. [99] and interpolated it over a region of the parameter space
of eccentric, equatorial orbits using Chebyshev interpolation. Our model achieves sub-percent accuracy
for the self-force across the two dimensional parameter space using only 105 points. This is a substantial
improvement previous methods require O(10%) points to achieve a comparable level of accuracy.

So far we have applied our method to strong-field regions of the parameter space for three values of
the primary’s spin (a = 0,40.9M). It remains as future work to interpolate over the spin of the primary,
however, the Chebyshev interpolation method appears to be a promising approach to tiling data from
expensive gravitational self-force codes across the 4-dimensional generic Kerr parameter space. This
method could be further improved with the aid of a detailed of the study of the analytic structure of the
GSF near the last stable orbit.

Combining this model with the OG equations allows us to produce the very first self-forced Kerr
inspirals, but numerically calculating even a single inspiral can take minutes to hours. To overcome this,
we combined the action angle OG formulation with the NIT and this method to the case of eccentric,
equatorial inspirals, allowing us to calculate inspirals in less than a second.

We showed that our NIT quantities remain close to the original evolution variables throughout the
inspiral at the expected order in the mass-ratio. When the mass ratio is less than 1 : 300, we find the
difference between year-long NIT and OG inspirals becomes significant for data analysis, reinforcing the
findings of Ref. [156]. Note, however, that a priori it is not known which (the NIT or OG inspiral) is
closer to the true inspiral, since both are accurate to the same order in the mass-ratio.

With our efficient NIT model of eccentric, equatorial inspirals we explored the effects of the gravita-
tional self force. We find that prograde inspirals around a rapidly rotating black hole generally experience
an additional periastron advance on top of the periastron advance induced by geodesic motion. This is in
contrast to the “periastron retreat” experienced by retrograde inspirals and inspirals around non-rotating
black holes [193].

The NIT equations of motion make it convenient to compare inspirals both with and without post-
adiabatic effects included and we confirmed that without post-adiabatic effects, the orbital phases of a
typical EMRI will incur an error of order O(€?).

Moreover, by comparing inspirals under the influence of self-force models calculated in different
gauges, we find that the resulting trajectories are gauge dependent. This difference due to gauge causes
a de-phasing that is comparable in magnitude to not including any post-adiabatic effects. This suggests
that in order to obtain gauge invariant post-adiabatic waveforms, one must also include second order
self-force results.

9.2 Spherical self-forced inspirals into a rotating black hole

In Chapter [7} we present the very first calculations of the first order gravitational self-force in the
radiation gauge for spherical orbits in Kerr spacetime by utilizing a modified version of the code found
in refs [99,/100].

We then interpolated this data using Fourier decomposition and Chebyshev interpolation to produce
a continuous model that for inclinations upto 0° < 6;,c < 45° with sub-percent accuracy using only 162
points. This same method also allowed us to interpolate orbit averaged rate of change of energy and
angular momentum from the asymptotic fluxes for all inclinations (both prograde and retrograde) with
an accuracy of ~ 1076 using only 342 points. This is a significant improvement over other interpolation
methods found in the literature which require at least an order of magnitude more points to achieve a
comparable level of accuracy [70,|145].
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This could be further improved with a better choice when rescaling the data before interpolation,
ideally choosing a function informed by the leading order PN contributions in the weak fields and /or the
analytic structure of the GSF near the ISSO. So far this model is only valid for orbits where the primary's
spin is @ = 0.9M and so interpolating over the other values of spin is left for future work. However
the work in this chapter, along with Chapter. [6] show that the Chebyshev interpolation methods are
a promising approach for interpolating information from expensive GSF and flux codes across the vast
4-dimensional parameter space of generic Kerr inspirals.

Using our interpolated GSF model along with the osculating geodesics (OG) formulation specialised
to the spherical case, as derived in Sec. [3.2.2] allows us to calculate the first ever spherical self-forced
inspirals around a Kerr black hole. However numerically evolving these inspirals can take minutes to
hours due to the need to resolve the ~ 1/e orbital oscillations.

Once again, we overcome this by employing the technique of near-identity averaging transformations
(NITs), which produce equations of motion that capture the correct long-term secular evolution of
the binary but can also be rapidly numerically solved. Following the methodology of Ref. [113], we
improve upon this formulation by employing a second averaging transformation such that the solutions
to our equations of motion are parametrized by Boyer-linquist coordinate time instead of Mino time.
Since Boyer-linquist time can be related to the time at the detector, this improved NIT procedure is
much more convenient for generating waveforms and for data analysis. We also employ a two-timescale
expansion (TTE) of the NIT equations of motion which factors out the dependence of the mass ratio,
at the cost of doubling the number of equations to be solved.

We found that quantities calculated from either the NIT or TTE equations of motion remained
close to the original evolution variables throughout the inspiral to the expected order in the mass-ratio.
This technique works particularly well for spherical inspirals as we find the mismatch between waveforms
calculated from NIT or TTE inspirals and waveforms calculated from OG inspirals is < 10~ even binaries
with € ~ 1071,

Using our efficient inspiral trajectories, we investigate the effect of first order self-force on inspirals
across the spherical Kerr parameter space. We find that the orbital separation decreases with time while
the orbit becomes more inclined over time, which is consistent with the findings of adiabatic evolutions
of spherical Kerr inspirals. We also find that neglecting the conservative effects can result in an O(1)
radian de-phasing in the azimuthal phase, with this effect becoming larger with the inclination angle of
the orbit.

Finally, we note that both NIT and TTE equations of motion allow us to further improve the accuracy
of our waveforms by replacing the adiabatic terms with higher accuracy interpolants calculated from the
asymptotic fluxes. Making this improvement can result in phase differences ranging from tens to tens of
thousands of radians for multi-year long EMRIs. This highlights the necessity of efficient gravitational
wave flux codes for both adiabatic and post-adiabatic EMRI waveforms [134].

9.3 Fast generic inspirals into a rotating black hole

In Chapter [8] we present the first application of near-identity averaging transformations to generic Kerr
inspirals both far from and in the vicinity of low order orbital resonances. Generic Kerr GSF codes
are too computational expensive to feasibly create an interpolated self-force model as was done in the
previous two chapters. However, by combining the interpolated models for the eccentric equatorial GSF
and the spherical GSF, we created a toy model for the generic GSF which is quick to evaluate and
qualitatively has the behaviours one would expect of the generic GSF. It is this toy model, along with
the OG equations, that we use to drive our generic Kerr inspirals.

We then use near-identity averaging transformations to speed up these calculations. We investigate
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how the accuracy and speed-up scales with the mass ratio and confirm that this technique works as
expected, so long as one is not in the presence of a low order orbital resonance. Since the NIT becomes
singular in the event of an orbital resonance, we implement a near-resonance NIT for the first time
and test the scaling of the accuracy and speed-up with the mass ratio in the presence of the (3,—2)
resonance. From this, we find that while the difference between the near-resonance NIT and OG inspirals
scale linearly with the mass ratio as we would expect, we find that the near-resonance NIT to be about
an order of magnitude faster than the OG inspiral, but could still take seconds to minutes to compute
a single inspiral.

We note that this could be reduced further by utilizing the non-resonant NIT when far from a
resonance and then transitioning to the near-resonance NIT when in the vicinity of a resonance. We
test this procedure using two different year long EMRI trajectories; one which only evolves through the
2/3 resonance, and one which also evolves through the 1/2 resonance. From these tests, we confirm
that one can use the transition procedure with no apparent loss of accuracy compared to only using the
near-resonance NIT. Moreover, one can safely neglect higher order resonances without any significant
loss of accuracy. Our results even suggest that one might be able to ignore all resonances bar the 2/3
resonance since it has by far the largest impact on the inspiral, though further investigation is needed to
ensure that this is really the case across the parameter space.

However, even with the speed-up from utilising both the non-resonant and near-resonant NITs, our
current implementation still takes 1-2 minutes to compute a year long EMRI evolving through a single
resonance, which, while a drastic improvement over the days required by the OG equations, is still not
fast enough for LISA data analysis. This can be reduced further by investigating and optimising the
condition for what is considered “near-resonance”, or by implementing the above procedure in a compiled
language such as C/C++, though this still may not be fast enough. It is possible that a NIT model with
an empirically fitted resonant “jump” derived from the near-resonant NIT (similar to that used for tidal
resonances [163]) could account for resonances while minimising runtime, but this will be left as future
work.

9.4 Future Work

Currently our first order self-force models are only valid in a small slice of the EMRI parameter space.
In particular, it will be important to interpolate over different values of the primary spin and investigate
how this effects the GSF. We are currently limited by expensive codes and so future flux and GSF codes
will need to become more efficient for the practical production of fast and extensive EMRI waveforms.

We also note that our work thus far only incorporates first order GSF results. Post-adiabatic wave-
forms will require second order results to not only reach O(1) accuracy in the phases [67], but also
to produce gauge invariant waveforms, as was noted in Chapter [6 Thus, the inspirals and waveforms
produced here are only representative of the gauge in which the self-force was calculated, which in our
case is the out-going radiation gauge. While second order results are not currently available for Kerr
orbits, our framework can accommodate them when they become available. However, since second order
results are calculated in the two-timescale framework, some translation may be needed.

We are also missing any post-adiabatic contributions due to the spin of the secondary [194-199].
Incorporating the linear in spin contribution to the energy and angular momentum fluxes into our averaged
equations should be straightforward once they become available for generic orbits. Similarly, now that
spin perturbed frequencies due to conservative effects from the Mathisson-Papapetrou-Dixon equations
are available for generic Kerr orbits [198}/199], it should be possible to fold these effects into our
framework, which will be the subject of a future project.

Currently, we terminate our inspiral just before the last stable orbit before plunge, as after this the
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adiabaticity assumption of the method of osculating geodesics breaks down. While the final section
of EMRI would make up a small fraction of the total SNR, for completeness one could also attach a
“transition to plunge” procedure [138-141], especially if one wishes to generalise this approach to IMRIs
or comparable mass binaries, though this would make the overall model more expensive.

Moreover, we are assuming that the EMRI is not subject to any environmental effects which may
have an effect on the inspiral, such as the presence of matter [200] or an accretion disk [201]. If such
environmental effects can be expressed in terms of the secondary’s four-acceleration, then it should be
possible to incorporate effects into our efficient inspiral calculations and understand their impact on
EMRI trajectories and waveforms. This sort of investigation has already been done in the case of an
external third body perturbing an EMRI system [162], and it was found to only have a noticeable effect
at “tidal resonances” when all three orbital frequencies are related by a small number ratio [143]. These
tidal resonance effects have now been modelled [163] and can in principal be incorporated into our
framework.

We note we have used the semi-relativistic quadrupole formula to generate the waveforms from the
OG, NIT and TTE inspirals. This is sufficient for this work as we only wish to compare the difference
in the waveforms caused by different inspiral calculations. However LISA data analysis will require fully-
relativistic waveform amplitudes such as those currently in the FastEMRIWaveforms (FEW) package for
Schwarzschild inspirals [135]. Currently FEW only uses adiabatic inspirals, but this can be improved
by employing either our NIT or TTE equations of motion. Once the waveform amplitudes have been
interpolated for Kerr inspirals, they can be combined immediately with the implementation presented in
this work.

Interfacing with FEW will also necessitate reimplementing the procedures outlined in this work into
a compiled language such as C/C++ with a Python wrapper, as opposed to our current implementation
which is in Wolfram Mathematica. Not only would this make efficient EMRI inspiral calculations more
accessible to the data analysis community, but it will also come with an order of magnitude worth of
speed-up. This should make our inspiral calculations efficient enough for Bayesian parameter estimation
to be feasible, which will allow us to more rigorously investigate the systematic biases introduced by
adding or neglecting certain effects on the inspiral [120}201}202].

While there is still more work that needs to be done, the work presented in this thesis stands as an
important step towards bridging the gap between the modelling of extreme mass ratio inspirals and LISA
data science.
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Appendix A

Self-force corrections to the periapsis
advance around a spinning black hole

The periapsis advance is a observable quantity that has been used to compare models of compact binary
dynamics [193]. The effect of the gravitational self-force on this observable for quasi-circular EMRIs
around a rotating primary was explored in Ref. [85]. One important insight, that is present in the
supplemental material of that work, is the effect that the spin of the primary and orbital radius has on
the self-force correction to the rate of periapsis advance. For completeness, we highlight this result in
this appendix.

For quasi-circular inspirals the relation between the dimensionless quantity W = Q%/Qi and Q((z)o)
is an important benchmark for comparing between different calculational approaches to the two-body

problem. [85,|193,1203|. The linear in mass ratio correction to the quantity is defined via
0 0 0
W(e;a,0) = W(0;0,9) + ep(a, @) + O(e?), (A1)

where W(O;a,QéO)) is the background value for the periapsis advance, and p(a, Q((z)o)) is the correction
induced by the first-order gravitational self-force.

Fig.[A.I|demonstrates how p varies as a function of orbital radius r and the spin of the primary a. We
plot the ratio 715co /7, where risco is the radius of the innermost stable circular orbit (ISCO). This ratio
is convenient for plotting the results as goes from 1 at the ISCO for all spin values and asymptotically
approaches zero as r grows large. As one would expect, the plot demonstrates that this correction grows
larger as the radius of the inspiral approaches the ISCO. This correction is positive for all retrograde
orbits and in the strong field for prograde orbits. This means that self-force typically acts against the
periapsis advance caused by the background geodesic motion, resulting in a reduction of the observed
periapsis advance of the binary. However, for positive spins and at large radii, there is a region of the
parameter space (in blue) where this correction is negative, meaning that the self-force increases the
observed rate of periapsis advance compared to the background geodesic motion. The larger the spin,
the smaller the radii at which this effect occurs. As such, this effect is most prominent for prograde
orbits around rapidly rotating black holes.

We find that the effect of the conservative self-force on the orbital phase for eccentric inspirals is
consistent with the sign of the self-force induced rate of periastron advance, p, in the quasi-circular limit

— see Sec. [6.5.3]
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Figure A.1: The linear in mass ratio correction, p, to the periapsis advance, W, as a function of distance
from the innermost stable circular orbit (ISCO) 7sco/r and the spin of the primary, a. The contours
show that p grows larger as the radius of the inspiral approaches the ISCO. p is positive for most of
the parameter space, including for all retrograde orbits, implying that in these regions the self-force acts
against the geodesic periapsis advance. However, for all prograde orbits, there is a region (in blue)
where this correction is negative meaning the self-force instead increases the rate of periapsis advance.
The region where this occurs grows larger as a increases The black crosses mark the location of the
underlying data from Ref. used to calculate the contour plot.
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