

Quantum number identification of $\Omega_c(3000)^0$ baryon

Zalak Shah^{1,*}, Keval Gandhi¹, Juhi Oudichhya¹, and Ajay Kumar Rai¹

¹*Department of Physics, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, INDIA.*

Introduction

In the heavy-light quarks sector, many problems are still unresolved; the non-abelian character of QCD is still not understand fully in non-perturbative low-energy regime [1]. An ideal platform to understand the dynamics of QCD at low-energy is that to study the properties of hadrons containing one heavy-quark ((c) or (b)) [2, 3]. In 2017, the LHCb Collaboration observed five narrow excited Ω_c states such as $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3065)^0$, $\Omega_c(3090)^0$ and $\Omega_c(3120)^0$, in the $\Xi_c^+ K^-$ mass spectrum [6]. The Ω_c baryonic states containing one charm (c) quark and two strange (s) quarks, offers an excellent ground for testing the heavy-quark symmetry of the heavy-quark and the chiral symmetry of the light quarks [4, 5, 7, 8]. The quantum numbers of these excited Ω_c baryonic states are not assigned yet in PDG [9]. Our attempt is to assign a possible spin-parity to the recently observed $\Omega_c(3000)^0$ baryon [6, 10]. The PDG reported its world-average mass 3000.41 MeV, which is close to the theoretical predictions of 1P-wave states obtained in various potential models [3, 7, 11, 12]. Here we want to analyze the decay $\Omega_c(3000)^0 \rightarrow \Xi_c^+ K^-$ into each possible quantum state of 1P-wave. And, we try to compare the decay width of our calculation with the experimental value 4.5 ± 0.6 (stat) ± 0.3 (syst) MeV, measured with first statistical and second systematic uncertainties [6]. That can be used to confirm or reject the quantum number assignment of this newly observed $\Omega_c(3000)^0$ baryon.

Phenomenological Approach: HHChPT

The strong decays of excited charmed baryons are most conveniently described by HHChPT, into which heavy-quark symmetry and chiral symmetry are incorporated [13, 14]. The partial decay widths are derived from the Lagrangian terms [8]:

$$\Gamma(\Omega_{c1}^0(1/2^-) \rightarrow \Xi_c^+ K^-) = \frac{h_4^2}{4\pi f_\pi^2} \frac{m_{\Xi_c^+}}{m_{\Omega_{c1}^0}} E_K^2 p_K, \quad (1)$$

$$\Gamma(\Omega_{c1}^0(3/2^-) \rightarrow \Xi_c^+ K^-) = \frac{h_9^2}{9\pi f_\pi^2} \frac{m_{\Xi_c^+}}{m_{\Omega_{c1}^0}} p_K^5, \quad (2)$$

Here p_K is the center-of-mass momentum of the kaon, $f_\pi = 130.2$ MeV is the pion decay constant [9], and $E_K = \frac{m_{\Omega_{c1}^0}^2 - m_{\Xi_c^+}^2 + m_K^2}{2m_{\Omega_{c1}^0}}$. The coupling h_4 represent the s-wave transition between S and P-wave baryons and h_9 is for the d-wave transition between S and P-wave baryons [7, 8]. The decay of $\Omega_{c1}(1/2^-, 3/2^-)$ states into $\Xi_c K$ mode is prohibited in the heavy-quark limit but could be allowed when heavy-quark symmetry is broken. At the hadronic level, the chiral symmetry breaking correction $1/m_Q$ can be crudely estimated to be of the order $p_K/m_{\Omega_c^0} \approx 0.1$ [15].

Results and Discussion

Figs. [1] and [2] shows the decay behavior of $\Omega_c(3000)^0$ baryon as $\Omega_{c1}^0(1/2^-)$ and as $\Omega_{c1}^0(3/2^-)$, respectively; calculated with the help of Eqs. [1] and [2]. From the Fig. [1], an experimental observed decay width 4.5 ± 0.6 (stat) ± 0.3 (syst) MeV of $\Omega_c(3000)^0$ is obtained with coupling $h_4^2 \approx 0.16$, which is much smaller than the predictions of Refs. [16–19]. On the other hand Figure 2 shows that the

*Electronic address: zalak.physics@gmail.com

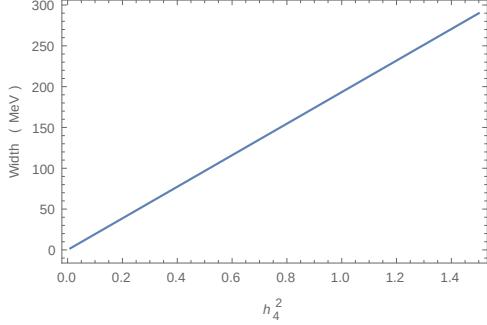


FIG. 1: The $\Omega_c(3000)^0$ as $\Omega_{c1}^0(1/2^-)$ decaying into $\Xi_c^+ K^-$, its decay widths is changing with respect to the square of the coupling h_4 .

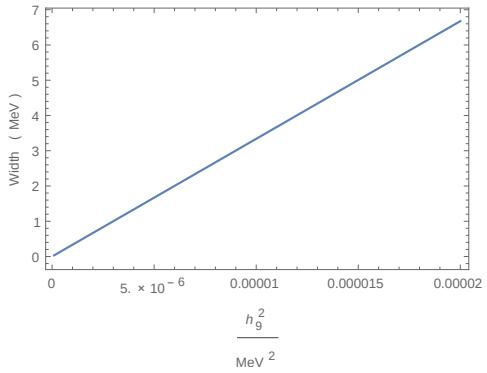


FIG. 2: The $\Omega_c(3000)^0$ as $\Omega_{c1}^0(3/2^-)$ decaying into $\Xi_c^+ K^-$, its decay widths is changing with respect to the square of the coupling h_9 .

decay width is obtained with coupling $h_9^2 \approx 0.13 \times 10^{-4} \text{ MeV}^{-2}$, it is in agreement with the result $\leq 0.13 \times 10^{-4} \text{ MeV}^{-2}$ of Refs. [16, 18]. Therefore, the $\Omega_c(3000)^0$ is more appropriate assigned as $\Omega_{c1}^0(3/2^-)$ quantum state rather than $\Omega_{c1}^0(1/2^-)$. We foresee to extend this scheme to analyze the strong decays of its ($\Omega_c(3000)^0$) experimentally observed sister states such as $\Omega_c(3050)^0$, $\Omega_c(3065)^0$, $\Omega_c(3090)^0$, and $\Omega_c(3120)^0$ [6, 10].

References

- [1] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu and S.-L. Zhu, Rep. Prog. Phys. **80** (2017) 7, 076201.
- [2] J. Oudichhya, K. Gandhi and A. K. Rai, Phys. Rev. D **103** (2021) 114030.
- [3] Z. Shah et al., Chin. Phys. C **40** (2016) 12, 123102; Eur. Phys. J. A **52** (2016) 10, 313; J. Phys. conf. Ser. **934** (2017) 012035.
- [4] Z. Shah et al., Universe (2021), 7, 337.
- [5] A. Kakadiya et al., *arxiv:2108.11062 [hep-ph]* (2021).
- [6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. **118** (2017) 18, 182001.
- [7] K. Gandhi et al., Eur. Phys. J. Plus **135** (2020) 2, 213; Int. J. Theo. Phys. **59** (2020) 1, 1129; Eur. Phys. J. Plus **133** (2018) 12, 512.
- [8] H.-Y. Cheng and C.-K. Chua, Phys. Rev. D **95** (2017) 9, 094018.
- [9] P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. **2020** (2020) 8, 083C01.
- [10] J. Yelton et al. (Belle Collaboration), Phys. Rev. D **97** (2018) 5, 051102.
- [11] E. Santopinto et al. Eur. Phys. J. C **79** (2019) 12, 1012.
- [12] D. Ebert, R.N. Faustov, and V.O. Galkin, Phys. Rev. D **84** (2011) 1, 014025.
- [13] T. M. Yan et al., Phys. Rev. D **46** (1992) 3, 1143.
- [14] M. B. Wise, Phys. Rev. D **45** (1992) 7, R2188.
- [15] Z.-G. Wang, Eur. Phys. J. C **75** (2015) 1, 25.
- [16] D. Pirjol and T.-M. Yan, Phys. Rev. D **56** (1997) 12, 5483.
- [17] H.-Y. Cheng and C.-K. Chua, Phys. Rev. D **75** (2007) 1, 014006.
- [18] H.-Y. Cheng, Front. of Phys. **75** (2015) 1, 014006.
- [19] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D **84** (2011) 1, 012003