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We propose an analog quantum simulation for studying the collapse and bounce of a star from infinity. 
In this spacetime, which encompasses both a black hole and a white hole, we place a massless scalar 
field that propagates at the speed of light, which is modified by the curvature. We simulate this system 
using an SQUID array, in which we can alter the propagation of light using an external magnetic field. 
We consider both infalling and outfalling radiation, giving rise to two different scenarios: downstream 
and upstream radiation. We compute the magnetic flux profile required by the simulation in both cases 
and find out that the former is more experimentally suitable.

Black holes are fascinating objects from both the fundamental and the phenomenological point of view. At 
classical general relativity level, they can be seen as the final result of stellar collapse, which gives rise to an 
event horizon and a singularity. A semiclassical description within the framework of Quantum Field Theory 
in curved spacetime (QFTCS)1 already modifies this static view, giving rise to black-hole thermodynamics and 
the celebrated prediction of Hawking radiation2. However, this evaporation process leads to the question of the 
final fate of the black hole, which can be problematic in terms of the information loss problem3. Ultimately this 
question cannot be fully answered in the absence of a full quantum theory of gravity, expected to govern the 
physics of a black hole shrank to Planck-scale sizes. For instance, in loop quantum gravity models, a resolution 
to the classical singularity and the information loss appears in the form of a bounce which transforms the black 
hole into a white hole after reaching a critical size4–7.

Due to the lack of the aforementioned full theory of quantum gravity and the practical impossibility of 
directly manipulating black holes, the use of Analogue Gravity8 systems appears as a resource of interest, both 
from the understanding of the experimental systems themselves, which are pushed to new regimes, and from 
the gravitational side, where the issues that arise in the experiments have an impact back in the simulated 
systems as well -for instance, issues on the robustness or the quantum nature of the Hawking radiation, as 
pointed out in9. Moreover, this research path has benefited in the last years from the parallel development of 
Quantum Simulators10, namely quantum-technological setups aimed to mimic the behavior of inaccessible 
physical systems. Indeed, it is in the intersection of the quantum simulation and analogue gravity avenues 
where the celebrated observations of laboratory analogues of black holes phenomena, such as effective horizons 
and analogue Hawking radiation, providing valuable experimental insight complementary to astrophysical 
observations of real black holes11–14. Other modern quantum setups such as superconducting circuits have 
been proposed as possible platforms for analogue black holes15–18. However, alternatives to the model of single 
black hole collapse are much less studied within the analogue gravity or quantum simulation communities. 
An exception is the work19 where the authors analyze the Hawking radiation generated in an analogue black 
hole including a bounce, by means of an SQUID terminated coplanar waveguide. They use the equivalency 
between black holes and accelerated boundary conditions and propose an implementation of the latter in a 
superconducting circuit setup similar to the one employed in the experimental observation of the Dynamical 
Casimir effect, where particles were generated out of the quantum vacuum precisely by the modification of 
boundary conditions at large speeds20. Thus, this scheme highlights the relation between Hawking radiation and 
the Dynamical Casimir effect. In the same spirit, there are works using the aforementioned setups for analogue 
simulations of quantum gravity21–24.

In this work, we focus instead in the simulation of the spacetime metric of a bouncing black hole and to 
this end we use a different superconducting-circuit setup, consisting of a dc-SQUID array embedded in a 
transmission line. In this eventual experimental setup, the speed of propagation of a quantum field could be 
modulated through an external magnetic field threading the SQUIDs, a fact that could be used to mimic the speed 
of propagation in a curved spacetime25–27 including black holes15,16. We apply these techniques to the spacetime 
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metric considered in5,6, where the standard Schwarzschild metric is modified to accommodate a bounce, namely 
a black hole to white hole transition. In this way, the same theoretical framework and experimental setup that is 
used to simulate black holes, which in principle gives rise to a horizon and a singularity, could be used as well to 
simulate a scenario in which the process stops and reverts at some point, enabling the possibility of analyzing for 
instance the robustness of Hawking radiation9,19.

Theoretical framework
The standard Schwarzschild metric -natural units G = c = 1 and Schwarzschild coordinates- of a stellar body 
is given by

	
ds2 = −

(
1 − 2M

r

)
dt2 + 1

1 − 2M
r

dr2 + r2dθ2 + r2 sin2 θdϕ2,� (1)

in the outside, while inside the collapsing star:
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dt2+
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where M is the mass of the star and r⋆ = r⋆(t) its radius.
We can switch to coordinates that result more convenient, those of Gullstrand-Painlevé28,29. This coordinate 

system is defined as the one associated to a freely falling observer from infinity, characterized by flat spatial 
sections and a time coordinate equal to the proper time of this observer.

In this new coordinate system, the metric takes the following form:

	 ds2 = −
(
c2 − v2)

dt2 − 2vdrdt + dr2 + r2dΩ2� (3)

with c = 1 and v = v(t, r) a piecewise function of the coordinates, defined differently in each collapse period.
In this work we consider a modification of the metric above to accommodate a period of collapse and a 

period of expansion of the star, centered at t = 0, separated by a bounce period that smoothly joins the two 
metrics with a duration tb, i.e., with t ∈ [−tb/2, tb/2]5,30.

For t < −tB/2, the value of v(t, r) is:

	
v =

{
−

√
2M

r
if r > r⋆(t)

−
√

2Mr2

r3
⋆(t) if 0 < r < r⋆(t) � (4)

Whereas for t > tB/2 it is given by the opposite:

	
v =

{ √
2M

r
if r > r⋆(t)√

2Mr2

r3
⋆(t) if 0 < r < r⋆(t) � (5)

For the time −tB/2 < t < tB/2, quantum gravity phenomena emerge, for which we do not yet have a theory, 
so we cannot predict the form of the metric in this interval. During this short period of time, a time-symmetric 
bounce occurs, interpolating between the collapse and expansion regions.

Since this is the collapse of a star without pressure in its interior, the radius of the star varies as if it were a 
particle in free fall. Since we are in Gullstrand-Painlevé coordinates, the rate at which the star’s surface falls is 
simply v evaluated at the boundary:

	
dr⋆

dt
= −

√
2M

r⋆
→ 2

3r3/2
⋆ = −

√
2Mt → r3

⋆ = 9M

2 t2� (6)

where integration constants have been adjusted so that r⋆ = 0 at time t = 0. The collapsing star becomes a black 
hole when r⋆ = 2M , i.e., at t = ± 4M

3c .
The effective speed of light in the radial direction as a function of the coordinates can be obtained by solving 

the quadratic equation ds2 = 0, leading to:

	
c̃ = dr

dt
=

2v ±
√

4v2 + 4 (c2 − v2)
2 = v ± c,� (7)

where different possibilities for the signs give rise to either motion in the direction of v or opposing it. In 
the pedagogically useful language of the river model of black holes31, this would correspond to light moving 
“downstream” or “upstream”, as we will see in more detail in the Section Simulation Proposal.
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Quantum simulation of curved spacetime in SQUID arrays
A superconducting quantum interference device (SQUID) consists of two Josephson junctions32 connected in 
parallel in a superconducting circuit, with a gap through which a magnetic field can be applied33.

A dc-SQUID array is a one-dimensional metamaterial formed by multiple dc-SQUIDs connected in series 
in a straight line. This array can be used as a waveguide for an electromagnetic field, whose propagation speed 
depends on the magnetic flux applied to each SQUID as follows34:

	
c(x) = 1√

CL(ϕ(x)) � (8)

where c(x) is the effective speed of light induced at each point of the SQUID array and C and L are the capacitance 
and inductance of the system per unit length, with:

	
L(ϕ(x)) = ϕ0

4πIc

∣∣cos
(
π ϕ(x)

ϕ0

)∣∣ cos ψ
� (9)

where ϕ(x) is the magnetic flux at each point of the SQUID array, ϕ0 is the magnetic flux quantum, given by 
ϕ0 = h/2e, Ic is the critical current of the Josephson junction, and ψ is the phase difference between each 
SQUID. In the linear regime, we assume cos ψ ≈ 1. More simply, the speed of light is:

	
c2(x) = c2

0

∣∣∣∣cos
(

π
ϕ(x)
ϕ0

)∣∣∣∣� (10)

where:

	
c0 = c(ϕ = 0) = ℓ

√
4πIc

ϕ0C
� (11)

with ℓ being the length of the SQUID array.
The experimental setup on which we base our model consists of a one-dimensional array of SQUIDs in 

which we can induce an effective speed of light at each point, which can be varied in time during the experiment, 
therefore inducing an effective speed of light at each point of a 1+1 dimensional spacetime. This is analogous to 
what happens in General Relativity, where the effective speed of light is different at each point in spacetime due 
to the curvature encoded in the metric. Therefore, we can understand this setup as an effective 1+1 D curved 
spacetime with an effective speed of light c̃(x), as long as the magnetic flux obeys27:

	

πϕAC

ϕ0
= arccos

(
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(
πϕDC

ϕ0

)
c̃2

)
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ϕ0
� (12)

where:
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∣∣∣∣sec
(

πϕDC

ϕ0

)∣∣∣∣
∣∣∣∣cos

(
πϕ

ϕ0

)∣∣∣∣ ,� (13)

and the flux has been split into DC and AC parts ϕ = ϕAC + ϕDC .

Simulation proposal
Let us consider both the negative and positive signs of c = ±1. The negative sign corresponds to light falling 
radially, while the positive sign corresponds to light moving away from the star. When v and c have opposite 
signs -black hole and moving away / white hole and infalling-, the light travels upstream, while if v and c have the 
same sign -black hole and falling / white hole and outward motion-, the light travels downstream.

When substituting into Eq. (12), we must consider that the arccosine function has a domain in the interval 
[−1, 1], so it is necessary to introduce a constant magnetic flux ϕDC  to avoid superluminal speeds in the 
laboratory -which of course cannot be generated- when we want to simulate that v and c go in the same direction, 
or when we are too close to the black hole singularity. The effect of ϕDC  is to effectively reduce the speed of light 
of vacuum in the simulated spacetime27.

For the metric before the bounce and with the light moving away from the star, the AC magnetic flux needed 
to simulate the speed of light c̃ = v + c is:

	
ϕAC = ϕ0

π
arccos

(
cos

(
π

ϕ0
ϕDC

)
(v + c)2

)
− ϕDC � (14)

Then, for r > r⋆, the total flux ϕ is:
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and, for r < r⋆:
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As we have explained, since the arccosine function has a domain between -1 and 1, it is necessary to adjust ϕDC  
so that the argument does not fall outside its domain. However, we cannot do this for all points in the (t, r) plane, 
as the argument of function (15) diverges when (t, r) → (0, 0). Nevertheless, we can exclude from this study 
the points where quantum gravity processes emerge, between −tB/2 and tB/2, as we do not really know the 
metric in this region, and calculate the value of ϕDC  so that the arccosine is well defined outside this region. The 
value of ϕDC  that meets this requirement can be calculated so that, exactly at the boundary, with t = ±tB/2, 
and r = r⋆ (±tB/2) = 1

2
3
√

9Mt2
B , the argument inside the arccosine equals exactly 1:
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Substituting these values in (15) for r > r⋆ gives:
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and, in (16), for r < r⋆:

	

π

ϕ0
ϕAC = arccos





 1 −

√
4r2

9t2

1 − 2 3
√

M
3tB




2


− arccos


 1(

1 − 2 3
√

M
3tB

)2




� (19)

Again, since arccosine is defined only up to 1, in the last term it must be 3tB < M  or, reconstructing the 
units, 3tBG < Mc3. In principle, this is not a fundamental limit but a criterion for being able to compute the 
magnetic flux at any point in the simulated spacetime, except within a small region during the bounce, which 
was already excluded from the simulation. However, for the mass values expected for these processes, i.e. for 
black holes with Planck mass, this computational limit translates to the physically meaningful conclusion of the 
bounce time having to be at most one-third of the Planck time.

Now, for the metric after the bounce, and with light approaching the star, the magnetic flux needed to 
simulate the speed of light c̃ = v − c, with ϕDC = 0, is the same as in the previous cases, only with v and c 
having opposite signs. However, since the function is squared, this sign change does not alter it, so the magnetic 
flux needed to simulate the system is exactly the same as in the previous case, described by Eqs. (18) and (19), 
and represented in Fig. 1.

For the metric before the bounce and with light approaching the star, the alternating current magnetic flux 
needed to simulate the speed of light c̃ = v − c is:
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Then, considering the total flux ϕ = ϕAC + ϕDC , we have for r > r⋆:

	
ϕ = ϕ0

π
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and, for r < r⋆:
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Similarly to what we did in the previous case, we calculate the direct current magnetic field needed to simulate 
the entire region outside the zone −tB/2 < t < tB/2 as:

	

cos
(

π

ϕ0
ϕDC

) (
−

√
4M

3
√

9Mt2
B

− 1

)2

= 1 −→

ϕDC = ϕ0

π
arccos


 1(

1 + 2 3
√

M
3tB

)2




� (23)

Substituting these values in (21) for r > r⋆:
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
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and, in (16), for r < r⋆:

Fig. 1.  Applied magnetic flux, in units of ℏ/e, needed to induce a propagation speed that simulates the speed 
of light upstream in a Schwarzschild spacetime, with the metric of Eqs. (4) and (5), as a function of r and t, in 
units of M. The solid black line represents r⋆(t). The horizontal dashed lines represent ±tB/2. The vertical 
dashed line represents the black hole event horizon.
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For the same reason as before, for the metric after the bounce and with the light moving away from the star, the 
alternating current magnetic flux required to simulate the speed of light c̃ = v + c is the same as in the previous 
cases, described by Eqs. (24) and (25), and represented in Fig.2.

In general, the effect of the simulated curved geometry translates into a modification of the equations of 
motion of the propagating field, which thus acquires a particular phase shift. These phase shifts can be measured 
with state-of-the-art superconducting circuit technology25,35.

Discussion
For upstream light, we find maximum applied magnetic fluxes to simulate the system at r = 2M  outside the 
collapsing body and at r = 3

2 t inside it, as long as the black hole has already formed, i.e., with r⋆ smaller than 
the Schwarzschild radius. If the black hole had not yet formed or had disintegrated after the bounce, we would 
only find a single maximum of the applied magnetic flux on the surface of the star, at r = r⋆(t). At the points 
(r, t) =

(
2M, ± 4M

3

)
 where the star becomes a black hole, these three maxima coincide.

For downstream light, we only find the minima of the magnetic flux -maxima of the absolute value- on the 
surface of the collapsing body r = r⋆(t), regardless of whether it has become a black hole or not.

At these points, we have ϕ = ±ϕ0/2 -which means c̃ = 0 and infinite inductance. Therefore, with these 
critical values, quantum fluctuations would appear because of the very high impedance of the electromagnetic 
environment. If a large region of the array is close to this limit, this could lead to large fluctuations in the 
superconducting phase ψ, breaking our approximation cos ψ ≃ 1 and preventing the system from being in the 
superconducting phase36–38. Therefore, we should try to avoid it by keeping as few SQUIDs as possible close 
to this limit, ideally a single SQUID. Note that in a potential experimental implementation, these would be 
points of great interest, as photon pairs would be produced on them in the SQUID array39,40, analogous to the 
production of Hawking radiation in high-gravity environments15. In Fig.1 we see that the flux should be close 
to the critical value in almost all spacetime outside the horizon, while in Fig. 2 we see that the flux gets close to 
the critical value only inside the horizon in a small spacetime region around the boundary. This suggests that the 
latter scheme -downstream light- might be more feasible to realize in an experiment: the quantum fluctuations 
of the phase could be contained in a small region of the array while the system remains in the superconducting 
phase regime.

Summary and conclusions
We propose an in-principle analog quantum simulation of a spacetime inspired in loop quantum gravity 
models4–7: the collapse and bounce of a star from infinity, or in other words, a black hole which bounces and 
transforms into a white hole after reaching a critical Planck-scale size, therefore avoiding the singularity and 
the information loss problem. In this spacetime, we consider a massless scalar field, whose propagation speed is 
modified by the curvature. We can simulate a radial section of this system by using a one-dimensional SQUID 
array, in which we can modify the speed of propagation of a quantum electromagnetic field by means of an 
external magnetic field threading the SQUIDs. We consider both infalling and outfalling radiation, giving rise 

Fig. 2.  Applied magnetic flux, in units of ℏ/e, needed to induce a propagation speed that simulates the speed 
of light downstream in a Schwarzschild spacetime, with the metric of Eqs. 4 and 5, as a function of r and t, in 
units of M. The solid black line represents r⋆(t). The horizontal dashed lines represent ±tB/2. The vertical 
dashed line represents the black hole event horizon.
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to two different scenarios: downstream and upstream radiation. We compute the magnetic flux profile required 
by the simulation in both cases and find that the former is more experimentally suitable, since critical values of 
the magnetic flux appear only in small regions of the simulated spacetime, suggesting that the corresponding 
quantum fluctuations of the superconducting phase can be contained in a small region of the array without 
leaving the superconducting regime in the whole array. Indeed, these quantum fluctuations can be interpreted as 
quantum corrections to the classical spacetime and therefore as an analogue to quantum backreaction. Moreover, 
a future experimental realization of this system, when the technology is capable to realize this proposal, could 
allow us to explore the dynamics of quantum fields inside black holes, a problem that remains open today and 
whose study could lead to a deeper understanding of fundamental problems such as the information loss.
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