Benemérita Universidad Autéonoma de Puebla

Facultad de Ciencias Fisico-Matematicas

Analisis Hamiltoniano de teorias de Kalb-Ramond en 5 dimensiones con

una dimensién compacta

Tesis presentada al

Posgrado en ciencias

(Fisica Aplicada)
como requisito parcial para la obtencion del grado de

Doctor en Ciencias

(Fisica Aplicada)
por
Alberto Lopez Villanueva

asesorado por
Dr. Alberto Escalante Hernandez
(IFUAP)

Puebla, Pue.
Diciembre 2014



SEREMER),

Benemérita Universidad Autonoma de Puebla

Facultad de Ciencias Fisico-Matematicas

Andlisis Hamiltoniano de teorias de Kalb-Ramond en 5 dimensiones con

una dimension compacta

Tesis presentada al

Posgrado en ciencias

(Fisica Aplicada)
como requisito parcial para la obtencion del grado de

Doctor en Ciencias

(Fisica Aplicada)
por
Alberto Lépez Villanueva

asesorado por
Dr. Alberto Escalante Hernandez
(IFUAP)

Puebla, Pue.
Diciembre 2014



Titulo: Andlisis Hamiltoniano de teorias de Kalb-Ramond en 5 dimensiones con una dimension
compacta

Estudiante: ALBERTO LOPEZ VILLANUEVA

COMITE

Dr. Cupatitzio Ramirez Romero
Presidente

Dr. Gilberto Tavares Velasco
Secretario

Dr. Roberto Cartas Fuentevilla
Vocal

Dr. Alfredo Herrera Aguilar
Vocal

Dr. Alfonso Rosado Sanchez
Vocal

Dr. J. Jestis Toscano Chéavez
Suplente

Dr. Alberto Escalante Herndndez

(IFUAP)
Asesor









Indice general

1. Resumen
2. Introduccion
3. La teoria de Kaluza-Klein

4. El algoritmo de Dirac-Bergmann estricto
4.1. Sistemas clasicos singulares . . . . . . .. L. Lo
4.2. Restricciones primarias . . . . . . . . ... L Lo
4.3. Ecuaciones débiles y fuertes . . . . . . . ... L
4.4. La condicién de regularidad . . . . . . .. ... oo
4.5. El Hamiltoniano canénico . . . . . . . . . .. ... L
4.6. Hamiltoniano primario y restricciones secundarias . . . . . . . .. . ... ... ..
4.7. Caso reducible y noreducible . . . . . . . ... L
4.8. Funciones de primera y segunda clase . . . . . . . . .. .. ... L.
4.9. Condiciones sobre los multiplicadores y hamiltoniano total . . . . . . .. ... ...
4.10. Restricciones de primera y segunda clase . . . . . . .. .. ... L oo
4.11. Transformaciones de norma y restricciones de primera clase . . . . .. .. ... ..

4.12. Grados de libertad . . . . . . . .. e



INDICE GENERAL

4.13. El hamiltoniano y la accién extendidos . . . . . . . .. ... ..o Lo
4.14. Corchetes de Dirac y restricciones de segunda clase . . . . . . . .. ... ... ...

4.15. Observables . . . . . . . . e e e e e e

5. La accién de Kalb-Ramond
5.1. La accién de Kalb-Ramond . . . . . . .. ... . o oo
5.2. Restricciones primarias y secundarias . . . . . . . . ... Lo
5.3. Grados de libertad . . . . . . ... L
5.4. Las transformaciones de norma . . . . . . . . ... ..o

5.5. Los corchetes de Dirac . . . . . . . . . . . e

6. La accién de Kalb-Ramond en 5 dimensiones
6.1. El lagrangiano efectivo . . . . . . . . ... Lo o
6.2. Restricciones primarias y secundarias . . . . . . . . ... Lo
6.3. Grados de libertad . . . . . . ...
6.4. Las transformaciones de norma . . . . . . .. ... oL
6.5. Pseudo-bosones de Goldstone . . . . . .. ... . L Lo L

6.6. Los corchetesde Dirac . . . . . . . . . . . ..

7. La accién de Proca-Kalb-Ramond
7.1. La accién de Proca Kalb-Ramond . . . . . . . ... ... ... ... ... ... .
7.2. Restricciones primarias y secundarias . . . . . . . ... ..o L.
7.3. Grados de libertad . . . . . . . ... L

7.4. Los corchetes de Dirac . . . . . . . .

8. La accién de Proca Kalb-Ramond en 5 dimensiones

11

22

23

24

25

26

26

27

28

28

31

31

34

37

37

38

39

43

44

44

46

46

48



INDICE GENERAL

8.1. El lagrangiano efectivo

8.2. Restricciones primarias y secundarias . . . . . . .. ... .. oL

8.3. Grados de libertad . .

8.4. Los corchetes de Dirac

9. La accion de Stiieckelberg Kalb-Ramond

9.1. La accién de Stiieckelberg Kalb-Ramond . . . . . . . ... .. ... ... ... ...

9.2. Restricciones primarias y secundarias . . . . . . . .. ...

9.3. Grados de libertad . .

9.4. Las transformaciones denorma . . . . . . . . ... ..o

9.5. Los corchetes de Dirac

10.La accién de Stiieckelberg Kalb-Ramond en 5 dimensiones

10.1. El lagrangiano efectivo

10.2. Restricciones primarias y secundarias . . . . . . . . . . .. ...

10.3. Grados de libertad . .

10.4. Las transformaciones de norma . . . . . . . . . . 0 i e e e e e e e e e

10.5. Pseudo-Bosones de Goldstone . . . . . . . . . . ..

10.6. Los corchetes de Dirac

11.Conclusiones

111

49

o1

55

55

58

59

60

63

63

64

67

68

71

76

7

78

79

85



Capitulo 1

Resumen

Se hace un andlisis hamiltoniano de las teorias de Kalb-Ramond, Proca Kalb-Ramond y Stiiec-
kelberg Kalb-Ramond en 5D con una dimension compacta. Mediante la compactacién de la quinta
dimensién, se obtiene la lagrangiana efectiva cuadridimensional y esta se analiza aplicando el al-
goritmo de Dirac-Bergmann estricto. Se hallan todas las restricciones, se realiza el conteo de los
grados de libertad y se calculan los corchetes de Dirac de las teorfas. También se encuentra que
las teorias de Kalb-Ramond y Stiieckelberg Kalb-Ramond 5-dimensionales son teorias de norma
reducibles, y mediante una apropiada fijaciéon de la norma, se halla la presencia de pseudo-bosones
de Goldstone. Respecto a la teoria Proca Kalb-Ramond 5-dimensional se encuentra que no es una

teoria de norma y que es irreducible.



Capitulo 2

Introduccion

La posible existencia de dimensiones extra espaciales més alld de las cuatro que percibimos
ha estado bajo consideracién desde principios del siglo XX. Uno de los primeros trabajos sobre
dimensiones extra en fisica fue realizado por Kaluza (en 1921) al intentar unificar las interaccio-
nes electromagnética y gravitacional mediante la introduccién de una quinta dimensién espacial
compacta sumamente pequefia; del orden de la escala de Plack, I, ~ 1,6 x 10733¢m. La idea de
dimensiones extra, después de aproximadamente medio siglo de permanecer practicamente olvida-
da (debido al desarrollo de la mecdnica cudntica y a los avances en la teoria cudntica de campos),
resurge en las teorias de supergravedad, y posteriormente, en la teoria de cuerdas, hoy en dia in-
cluidas en la llamada teorfa M, en donde el intento ha consistido en unificar la gravitacion con las
interacciones del modelo estdndar (ME). A partir del surgimiento de la teoria de cuerdas, la nocién
de dimensiones extra quedé profundamente influenciada por esta, ya que ademads de introducir el
concepto de compactificacién, introduce deméas conceptos como la localizaciéon de campos del ME
empleando defectos topoldgicos o en puntos fijos en el espacio compacto, el concepto de branas,

entre otros [1].

Uno de los obstdculos para poner a prueba la existencia de dimensiones extra es su tamano
sumamente pequeno. Estudios recientes, sin embargo, sugieren que algunas de las dimensiones
extra, si no es que todas, podrian ser mayores que [,. Esto ha motivado a preguntarse si los efectos
de las dimensiones extra pueden ser visibles ante los experimentos. La respuesta a esta pregunta
apunta a la posibilidad de que si bien pueden existir dimensiones extra tan grandes del orden de
milimetros, éstas puedan permanecer escondidas o no puedan ser detectadas por los experimentos.

Una propuesta para resolver este problema es que el mundo observable estuviera restringido a
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vivir en una hipersuperficie cuadridimensional llamada brana dentro de un espacio de dimensién
superior, y que las interacciones del ME no puedan escapar de la brana sino solo la interaccién

gravitacional, de modo que las dimensiones extra solo puedan ser probadas por esta dltima [2].

Otra pregunta que se ha hecho, es dénde y como las dimensiones extra se manifiestan en la na-
turaleza. Al respecto, se piensa que la existencia de dimensiones extra en la naturaleza debe tener
implicaciones fenomenoldgicas en nuestro mundo visible cuadridimensional o efectivo. Pero para
comprender esto, debe entenderse como una teoria efectiva emerge de una teoria de dimensiones
superiores. Con este fin, se expone el siguiente ejemplo. La gravedad, es una propiedad geométrica
del espacio, entonces, en un mundo de dimensién superior, donde se asume que la teoria de la
relatividad de Einstein es vélida, la constante de acoplamiento no necesariamente coincidira con la
constante de Newton G, que es la que se observa. Asumiendo que hay n dimensiones extra espa-
ciales compactificadas en circulos de radio R y definiendo a G, como la constante de acoplamiento

gravitacional fundamental, la accién gravitacional en dimensiones superiores se escribe como

1 n
Sorav = 167G, / A2 ] gasn) [Rasn,

con g44n) €l tensor métrico (4 4+ n) dimensional con la signatura (+,—,—,—,...), y ds? =

gundzMdzN, M,N = 0,1,2,....,n + 3. La accién debe seguir siendo adimensional, por lo que
las dimensiones de longitud extra que provienen de la integraciéon sobre las dimensiones ex-
tra debe equilibrarse con las dimensiones de la constante de acoplamiento G,., y entonces,

=2 = [energia)?, por lo que [G.] = [energia)~("*?). Asumiendo que las

[Riaqn)] = [longitud
dimensiones extra son planas, la métrica toma la forma ds? = G (x)datda” — Sapdy®dy®, en donde
guv da la parte de la métrica dependiente de las coordenadas x*, u = 0,1,2,3, y Sapdy®dy® da el

elemento de linea en el bulk, cuyas coordenadas son parametrizadas por y*; a = 1,...,n. También

se ve que \/| G(atn) | = \/| 9y | Y Rsn) = R4y, por lo que integrando sobre las dimensiones

extra en la ecuacién para Sgrq. se obtiene la accién efectiva

Vn 4
Sgrcw = 7167TG* /d Ly/ | g4) |R(4)7

en donde V,, es el volumen del espacio extra. La ecuacion anterior es precisamente la accién gravi-

tacional estandar en 4D si se hace la identificacion
Gy =G,/ V,.

Asi, Gy es de hecho una cantidad efectiva, y notando que si G, fuera un acoplamiento grande,
podria entenderse la pequenez de G via supresiéon volumétrica. Las dimensiones extra submi-

limétricas, sin embargo, no han podido ser probados ante la gravedad [2].
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Ademas de la teoria de cuerdas y de gran unificacién, el estudio de modelos involucrando di-
mensiones extra hoy en dia también tienen una actividad importante a fin de explicar y resolver
problemas en fisica tedrica. Por ejemplo, el problema de la jerarquia de masa, la explicacién de
la energfa oscura, la materia oscura e inflacién [3]. También hay motivaciones tedricas y fenome-
nolégicas para cuantizar una teoria de norma con dimensiones extra, por ejemplo, si existen las
dimensiones extras, entonces sus efectos deben poder ser probados con el actual colisionador LHC,

y en el Colisionador Lineal Internacional [4].

Por otro lado, uno de los tipos de campos de importancia relevante en fisica tedrica son los
campos tensoriales antisimétricos. Los campos tensoriales antisimétricos se han usados para des-
cribir particulas con masa cero sin espin, asi como particulas vectoriales [5]-[10]. En otros casos,
aparecen en algunas formulaciones de teorfas de supergravedad [11]-[13], y como una forma de nor-
mar la aparente supersimetria interna de las interacciones débiles [14]. En teorfa de cuerdas, son
los mediadores de la interaccién entre cuerdas abiertas y particulas cargadas [15], y son también
un elemento fundamental para describir la unificacion de las teorias de Yang-Mills y supergrave-
dad [16]. Ademds, los campos tensoriales antisimétricos tienen un papel importante caracterizando

defectos en fisica de estado sélido [17].

Dado entonces el interés en el estudio de teorias de campo con dimensiones extra junto con
la importancia de los campos tensoriales antisimétricos en la fisica tedrica, en este trabajo se
estudian teorias de campo involucrando campos tensoriales antisimétricos en el contexto de dimen-
siones extra. Las teorias que se estudian son las teorias 5D de Kalb-Ramond, Proca Kalb-Ramond,
y Stieckelberg Kalb-Ramond [18] con una dimensién compacta. Previo al estudio de las teorfas
en cinco dimensiones, también se estudian las correspondientes teorias en cuatro dimensiones. Se
analiza su dindmica hamiltoniana aplicando el algoritmo de Dirac-Bergmann estricto. El forma-
lismo de Dirac-Bergmann es esencialmente una extension del formalismo hamiltoniano usual que
permite conocer de manera clara las simetrias relevantes que son manifiestas en una teoria. De
hecho, muchos de los logros que se han dado en el entendimiento de la fisica de particulas se debe
al andlisis de Dirac, ya que da un entendimiento general de cémo es la evolucién dindmica de los
grados de libertad, tanto a nivel clasico como a nivel cuantico, lo que lo hace una herramienta fun-
damental para entender la dindmica de sistemas singulares. En el formalismo de Dirac-Bergmann
estdndar [19], se trabaja sobre un espacio fase reducido al considerar como variables dindmicas a
aquellas cuya derivada temporal aparezca en el lagrangiano. La desventaja de trabajar sobre un
espacio reducido es el no poder conocer de forma completa elementos como las restricciones, las
transformaciones de norma y el dlgebra de restricciones de la teoria [20]. En el formalismo estricto,

sin embargo, esto no sucede, ya que se trabaja sobre el espacio fase completo al considerar co-
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mo variables dindmicas a todas las variables que definen la teoria. El formalismo estricto permite
conocer, por ejemplo, la estructura correcta del hamiltoniano y la accién extendida, ademds de
ser la mejor gufa para poder estudiar la formulacién cuantica de la teorfa mediante una correcta
identificacién de las restricciones [21]. Finalmente, debe mencionarse que este formalismo estricto
no se encuentra desarrollado en la literatura, por lo que su aplicacién constituye una contribucién

general del presente trabajo.

La organizacién de este trabajo es la siguiente. En el capitulo 3 se expone a grandes rasgos la
teorfa de Kaluza Klein (KK) y se da la manera de obtener teorfas de campo efectivas a partir de
teorfas de campo con una dimensién extra compacta. En el capitulo 4 se desarrolla el algoritmo
de Dirac-Bergmann estricto. En el capitulo 5 se estudia la teoria de Kalb-Ramond 4D, y en el
capitulo 6 la teoria de Kalb-Ramond 5D con una dimensién compacta. En el capitulo 7, se estudia
la teoria de Proca Kalb-Ramond 4D, y en el capitulo 8, la teoria de Proca Kalb-Ramond 5D con
una dimensién compacta. En el capitulo 9, se estudia la teoria de Stiieckelberg Kalb-Ramond 4D,
y en el capitulo 10, la teoria de Stiieckelberg Kalb-Ramond 5D con una dimensiéon compacta. El

capitulo 11 es de conclusiones y prospectos.




Capitulo 3

La teoria de Kaluza-Klein

En este capitulo, se expone a grandes rasgos la teoria de KK, la cual introduce una dimensiéon
extra espacial para unificar la gravedad, el magnetismo y un campo escalar. Seguido de esto, se
menciona cémo es el escenario en los mundos brana, en donde también se trabaja con dimensiones
extra, y se mencionan algunas dificultades que hay para estudiar teorias de campo sin integrar las
dimensiones extra. Finalmente, se muestra cémo surge una teoria de campo efectiva a partir de

una teoria con dimensiones extra utilizando los modos KK.

La teorfa KK para el caso gravitacional [22, 23], es esencialmente una teorfa de la relativi-
dad general en 5 dimensiones sujeta a dos restricciones que tienen como objetivo justificar por
qué usualmente solo se perciben cuatro dimensiones y aparentemente no se percibe la quinta di-
mension. La primera restriccion, introducida por Kaluza, es la llamada condicion cilindrica, la cual
consiste en que todas las derivadas parciales de cualquier cantidad respecto a la quinta coordenada
es cero. La segunda condicién, introducida por Klein, es la llamada condicion de compactacion, la
cual consiste en asumir que la quinta dimensién no solo es microscépica sino que también tiene
una topoldgia cerrada; es decir, que se cierra sobre si misma. Esta condicién de compactacién

sera usada en este trabajo.

Como se sabe, el elemento fundamental en relatividad general es el tensor métrico gap (A4, B =
0,1,2,3,5) que en este caso 5-dimensional (5D) tendria 15 entradas independientes. Andlogamente,
se puede construir un tensor de Ricci 5D R4p y un escalar de Ricci 5D R, asi como un tensor de

Einstein 5D; es decir,

Gap = Rap —9aB (3.1)

5.
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Las ecuaciones de campo que pueden obtenerse son precisamente las ecuaciones de Einstein en
5D, ya que estas tendrian como caso particular, cuando A = 0,1,2, 3, a las ecuaciones de Einstein

usuales
Gap = kIap, (3.2)

donde k es una constante de acoplamiento y T4 g un tensor de energia-impulso 5D. En los trabajos

de Kaluza y Klein se trabaja considerando el vacid, esto es Gap = 0, lo cual implica que
Rag =0. (3.3)

Las 15 relaciones anteriores sirven para determinar las 15 entradas de g4, pero en la practica esto
es posible solo si se hace una suposicién sobre g4p; por ejemplo, en problemas gravitacionales se
asume que gap = gap(x), a esto se le llama eleccién de coordenadas. Kaluza estuvo interesado en
el electromagnetismo y relacioné a gap con el 4-potencial A, de la teoria de Maxwell. El postulé la
condicién cilindrica y asumié que gs5 es constante, pero en un caso mas general gap = gan(z®)
y 955 = —¢*(2®), donde ¢ es un campo escalar. Entonces, la eleccién general de la métrica y su
respectiva inversa son [23]
Jop — K202 AnAp  —ko?A, g*P —kAP

AB
gAB = B g = ’ (34)
_k(bQAB _¢2 —kA“ —é-}-k‘ZAQ

con gqp el tensor métrico usual. En efecto, puede verse que g4 Bgac = 55 . Explicitamente,

5B (Gap — k2¢2AaA[3)gom + k2¢2AﬁA# —(gap — k2¢2AaAﬁ)kAB
‘ —k§2Angot + kAP K22 A5 A% - 7 (~ s + k2A%)
(a0
0 1

Si k =1, la métrica y su respectiva inversa estan dadas por

gap = o — ¢2Aa‘45 _¢2Aa gAB _ gaﬂ —AP . (35)
7¢2A,3 7¢2 —A™ 7%+A2

Usando estas relaciones, se obtiene que
det(gap) = —g9°, (3.6)
con g = det(gag), y €l escalar de Ricci 5D estd dado por [23]

1 1 1
G p@ L a2 _ L 1o o
RO = RY + 555(00)° = 200+ 1Fu 6, (3.7)
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con Iy, el tensor de Faraday usual. De este modo, la accién del sistema gravitacional estd dada

por

Slgas] = / V=gV FRO . (3.8)

Sustituyendo (3.7) en (3.8), se tiene que

Slusanssd] = [ VNG RO+ 00 = 206 + 1P| s (39)

Imponiendo la condicién [ dz® = 1, se obtiene la accién efectiva

1 1
SelAps Gap, @) = /\/ gV ¢? {R(“ + ﬁ (0¢)* — 5Dgﬂ 4FWF‘“’¢} d*z. (3.10)
Considerando como variables dindmicas a ¢ , Ay ¥ gag, se obtienen las ecuaciones de movimiento

[23]

Gap = @Taﬁ - %(vavm - 9ap9), (3.11)

VeFhp = —S%Faﬁ, (3.12)

O¢ = —k24¢2 FopFoP, (3.13)

con Gqg el tensor usual de Einstein y Tz = f% (Faprﬂ — %gaﬁFWF‘“’) el tensor de energia—

momento de la teoria electromagnética. Asi, la teoria KK unifica gravedad, electromagnetismo y un

campo escalar. Lo anterior es un caso muy general; en realidad, Kaluza consideré a gss = —¢? = —1

y k= (IGCZG)UQ, con lo que se obtiene

831G
GaB = A TO¢57 (314)
VeF.; = 0, (3.15)
k2
T wsF? = 0 = F,pF*¥ =0. (3.16)

En general, estas ecuaciones describen la propagacién de un gravitén de espin 2, un fotén de spin

1 y una particula escalar de espin 0 [23].

Ahora se muestra como es el escenario en mundos brana, en donde también se trabaja con
dimensiones extra [2]. El escenario que se tiene en mente es que se vive en una superficie cuadridi-
mensional dentro de un espacio de dimensién superior llamada ”brana”. Esta hipersuperficie debe
estar localizada en un punto especifico del espacio extra en los puntos fijos de la variedad compacta.
A lo que se le ha llamado brana es en realidad una descripcién de la teoria efectiva, y pensamos
en ellas como defectos topoldgicos de anchura casi cero que pueden tener campos localizados en su

superficie. Por otro lado, en la teoria de cuerdas también existen las D-branas (D de Dirichlet) y
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estas son superficies donde cuerdas abiertas pueden terminar sobre las branas dando lugar a todo
tipo de campos localizados en la brana, incluidos campos de norma. En la aproximaciéon de super-
gravedad, las D-branas aparecen como solitones de las ecuaciones de movimiento gravitacionales.
Usualmente, las D-branas se caracterizan por el nimero de dimensiones espaciales en su superficie,
por tanto, una d-brana es descrita por un espacio tiempo plano con d coordenadas espaciales y una
coordenada temporal. El modelo mas simple consiste en particulas del modelo estandar viviendo
en una 3-brana. Entonces, se necesita describir teorias que vivan en la brana (como el modelo
estandar) o en el bulk (como la gravedad), asi como las interacciones entre estas dos teorias, y para

esto, se usan las siguientes prescripciones de la teoria de campos:

(i) Teorfas de bulk. Son descritas por una accién de dimensiones superiores, definida en términos
)

de una densidad lagrangiana de campos en el bulk, digamos ¢(z, i), evaluada sobre todas las

coordenadas del bulk, es decir

Sputeld] = / dzd"y\ /| garm |L(0(, 7)), (3.17)

donde z son las (3+1) coordenadas de la brana y y para las n dimensiones extra.

(ii) Teorfas de brana. Son descritas por la accién (3 4+ 1)D de los campos brana ¢(x), que es
naturalmente promovida a una expresiéon de dimensién superior por el uso de una delta de

densidad

Sbrana[(p] = /d4xdny\/ | 9(4) |L(<P(33))5n(17— :‘jO)a (318)

donde se supone que la brana estd localizada en § = ¢y sobre las dimensiones extra, y g4 es

la métrica (3 + 1)D usualmente plana inducida en la brana.

(iii) Finalmente, la accién puede tener acoplada campos de brana y de bulk, estas iltimas locali-

zadas en el espacio, por lo que es natural que una delta de densidad esté involucrada
[ dtad ol gs) ot @)@ 7 - ) (3.19)

La presencia de la funcion delta en las acciones anteriores no permite una interpretacién clara ni
una lectura facil de la teoria dindmica. En este caso, es mas 1til trabajar con una teoria efectiva
cuadridimensional que pueda obtenerse después de integrar sobre la dimensién extra. A este pro-
cedimiento se le llama reduccion dimensional. Esto también ayuda a identificar el limite de bajas

energias de la teoria, en donde la dimensién extra no es visible.

Ahora se describe como surge una teoria efectiva de una teoria de dimensién mayor utilizando

los modos de KK, la cual es otra manera de estudiar teorias con dimensiones extra, y sera la
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manera como se estudiardn las teorfas con una dimensién extra en este trabajo. Se considera un
modelo 5-dimensional en donde la quinta dimensién estd compactificada a un circulo de radio R.

Sea ¢ un campo escalar de bulk, para el cual la accién sobre un espacio-tiempo plano tiene la forma
1
Slo) = 5 [ dtady (8460.0 — m?e?). (3.20)

en donde A =0,1,2,3,5 y y denota la quinta dimensién. La compactacion de la variedad interna
es reflejada en la periodicidad del campo ¢(y) = ¢(y + 27 R), lo que permite una expansiéon de

Fourier de la forma

olz,y) = ﬁw) " i % [6ne)cos (%2) + dae)sin (2] (3.21)

El primer termino ¢y que no depende de la quinta dimensién es conocido como el modo cero,
mientras que los modos ¢, y ¢, son llamados modos excitados o de KK [2]. Introduciendo esta

expansion en la accion e integrando sobre la dimensién extra, se obtiene

sl = 3 / A2 (000(2)0" b0(x) + m2¢h(x)) + 5 > / 04 (0% By — m22)
n=0

1 < 4 ; 2 2 72
+5 2. / dhe (aﬂqsnamn - mn¢>n) , (3.22)
n=0
en donde la masa KK estd dada por m2 = m? + %22. Entonces, en una teoria efectiva el campo

de dimensién superior aparece como una torre de campos con masa m, con niveles de energia
degenerados. Los modos excitados son campos con el mismo espin y niimeros cuanticos que ¢ y
que difieren solamente en el numero KK, asociado con la quinta componente del momento, la
cual es discreta debido a la compactacién. Compactaciones distintas llevan a modos distintos de
expansion de los campos, y debe ser elegida de acuerdo a la geometria de la dimensién extra.
Condiciones de frontera extra asociados a propiedades topoldgicas especificas del espacio compacto
pueden ayudar en la seleccién de una base. Un ejemplo 1til es el orbifold unidimensional, U(1)/Z5,
el cual estd construido en un circulo. Operativamente, se requiere que la teoria sea invariante bajo
una simetria de paridad extra; es decir, ¢(—y) = +¢(y). Campos pares (impares) se expanden
solo en modos cosenos (senos), y el espectro KK tendria solo la mitad de los modos. Campos
impares no contardan con un modo cero y no apareceran en teorias de bajas energias. Muchas de

las presentes ideas se iran aclarando a lo largo del trabajo.
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Capitulo 4

El algoritmo de Dirac-Bergmann

estricto

Una de las caracteristicas de la mecdnica clasica usual es que la evolucién del sistema esté de-
terminada completamente por las ecuaciones de movimiento; es decir, que basta dar las condiciones
iniciales en su solucién para saber el estado del sistema en un instante posterior. Sin embargo, hay
sistemas para los cuales la solucién de las ecuaciones de movimiento contiene funciones arbitrarias
dependientes del tiempo que no pueden determinarse, de modo que dadas las condiciones inicia-
les, el estado del sistema a un instante posterior no estd determinado de manera tinica; es decir,
por las ecuaciones de movimiento. En este caso, es necesario hacer una generalizacién a la teoria
que incluya a este tipo de sistemas. La teoria que proporciona esta generalizacién es el llamado

Algoritmo de Dirac-Bergmann para sistemas singulares.

El algoritmo de Dirac-Bergmann para sistemas singulares es un método analogo al método de
multiplicadores de Lagrange, en donde las funciones arbitrarias en las ecuaciones de movimiento
son analogas a los multiplicadores y juegan el papel de forzadoras de restricciones sobre el sistema.
Si algunas de las funciones arbitrarias o multiplicadores no pueden determinarse, se dice que la
teoria posee libertad de norma, y si no pueden determinarse, la teoria corresponde a una teoria de

normea.

El formalismo de Dirac-Bergmann que a continucion se describe es el llamado estricto, el cual
posee ventajas importantes respecto al formalismo usual. El formalismo estricto, al considerar

el espacio fase completo (i.e., al considerar como variables dindmicas tanto a coordenadas como
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CAPITULO 4. EL ALGORITMO DE DIRAC-BERGMANN ESTRICTO
4.1. SISTEMAS CLASICOS SINGULARES

momentos), tiene la ventaja, entre otras cosas, de poder conocer de forma completa las restricciones,
las transformaciones de norma, y la accién y el hamiltoniano extendidos, a diferencia del formalismo
usual, en el que se trabaja sobre un espacio fase reducido (considerando como variables dindmicas
a aquellas cuya velocidad generalizada aparece en la accién). Ademas, el formalismo estricto posee

la ventaja de poderse aplicar a cualquier teoria.

4.1. Sistemas clasicos singulares

Por simplicidad, la teoria se desarrolla en un inicio para sistemas con grados de libertad finitos.
Se parte del principio de Hamilton, el cual dice que el movimiento del sistema entre el tiempo 1
y el tiempo to es tal que la accién
to
S= [ L(q¢"(t),q"(t))dt
t1
tiene un valor estacionario, con ¢', ¢ = dq’/dt las coordenadas y las velocidades generalizadas,

i = 1,..,N, y t un pardmetro de evolucion que puede identificarse con el tiempo, siendo las

condiciones de valor estacionario las ecuaciones de Euler-Lagrange

d (9L oL
e _9L . 4.1
dt(@cj”) g™ 0 (4.1)

Desarrollando estas ecuaciones, se obtiene

. 8L L L .
9L s 4.2
dgn ~ 9gv o (4.2)

" oo
De esta ecuacidn, si el determinante de la matriz (62L/6q”’aq”), llamada matriz Hessiana, es
distinto de cero, entonces es invertible y pueden conocerse todas las ¢ en términos de ¢ y ¢".
Sin embargo, si el determinante es cero, la matriz no es invertible, y sélo se podran obtener R
expresiones de la forma ¢/ = ¢/ (¢*, 4%, ¢, 4%, §*), con R < N el rango de la matriz, y ¢ las
aceleraciones que no se pudieron despejar de (4.2), por lo que en general, de las ¢/, quedardn
indeterminadas ¢**1, ..., ¢~ funciones arbitrarias independientes y sus respectivas velocidades y
aceleraciones. El caso de interés es cuando el determinante de la matriz Hessiana es cero, y en
este caso se dice que la teoria o el lagrangiano es singular, mientras que en caso contrario, que es

regular.
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4.2. RESTRICCIONES PRIMARIAS

4.2. Restricciones primarias

Si det(0%L/ aqn’aqn) = 0, esta es justamente la condicién para que no todas las velocidades
generalizadas puedan despejarse en términos de las coordenadas y los momentos. Esto implica que

algunas de las ecuaciones que definen a los momentos, p, = dL/9¢™, se podran escribir como

9" =¢"(q,p) =0, (4.3)

con m = 1,..., M, llamadas restricciones primarias, con la caracteristica de que al sustituirse en
la definicién del momento se vuelven identidades, y de que para su obtencién no se requiere de las
ecuaciones de movimiento. Las restricciones (4.3), obtenidas mediante la definicién del momento, no
necesariamente son independientes. El niimero de restricciones primarias independientes M’ < M
lo da la nulidad de la matriz Hessiana. El rango R = N — M’ da el ntiimero de expresiones para las
velocidades generalizadas que pueden expresarse en términos de las coordenadas y los momentos.
Las restricciones primarias independientes se obtienen calculando los vectores nulos de la matriz
Hessiana. Asi, si V# son los vectores nulos, V# sus componentes y ¢ las restricciones primarias

encontradas, las restricciones primarias independientes estan dadas por
B H
oF = Vg™,

Por simplicidad, se asume que el rango de la matriz Hessiana, N — M’, es constante en el espacio
(¢,q), de modo que el ndmero de restricciones primarias M’ no varfe, y que las ecuaciones (4.3)

definan una subvariedad en el espacio fase 2N — M’ dimensional.

4.3. Ecuaciones débiles y fuertes
Ahora se define el concepto de igualdad débil, el cual se representa con el simbolo ”~”.

Definicién: Una funcién F' del espacio fase es débilmente igual a cero si
Fls,=0,

donde ¥ es la subvariedad definida por las restricciones primarias ¢ (g, p) = 0. Se dice que F es

fuertemente igual a cero si se satisfacen las condiciones

oF OF
Fl|g,=0 —, =0 4.4
m=0 (o i) =0 (1.4

con (OF/0q',0F/0p;) |s, el conjunto de las derivadas parciales de F' respecto a las variables

candnicas evaluadas sobre ;. En particular, ¢™ ~ 0, y en general, puede mostrarse que una
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CAPITULO 4. EL ALGORITMO DE DIRAC-BERGMANN ESTRICTO
4.4. LA CONDICION DE REGULARIDAD

funcién G débilmente cero puede escribirse como una combinacién lineal de las restricciones, es
decir, que G =~ 0 & G = ¢,¢", para alguna funcién del espacio fase g,,. Si una ecuacion se
satisface tanto en 3; como en todo el espacio fase se le llama fuerte, y se expresa utilizando el

simbolo de igualdad usual.

4.4. La condicién de regularidad

La subvariedad 2N — M’ dimensional que definen las restricciones ¢™ = 0 puede ser cubier-
ta por regiones abiertas, las cuales pueden dividirse (localmente) en restricciones independientes
¢™, (m’ = 1,..M’) cuya matriz jacobiana (8¢™ /8(¢",p,)) es de rango M’, y en restricciones
dependientes ¢z = 0, (. = M’ + 1,.., M) que son consecuencia de las otras. La condicién de
regularidad sobre las restricciones (bm/ se establece imponiendo que el rango de la matriz jacobiana
(8¢"‘18(qj,pj)) sea constante, e igual a M’. La condicidén de reqularidad es la condicién necesaria
para que la dimensién de la variedad formada por las restricciones ¢™ sea constante e igual a M’.
Asi, por ejemplo, si las restricciones ¢™ forman una variedad de dimensién M’, las restricciones
(¢™)? no forman una variedad de dimensién M’, lo cual puede mostrarse verificando que el rango
de la matriz jacobiana ya no es M’. La condicién de regularidad juega un papel importante en la

teoria, como lo es en el paso al formalismo hamiltoniano.

4.5. El Hamiltoniano canodnico

Si se define el hamiltoniano canénico de manera usual, H. = ¢'p; — L (mediante una trans-
formada de Legendre), sucede que algunas velocidades no podran expresarse como funcién de las
coordenadas y momentos, y ademds, debido a las ecuaciones de restriccién ¢™(q,p) = 0, que las
coordenadas y los momentos ya no son independientes. Por esto tltimo, el hamiltoniano canénico
s6lo estd bien definido sobre la subvariedad 2N — M’ dimensional en el espacio fase. Ademds, si se

elige el hamiltoniano canénico como
He = He+umo™, (4.5)

en donde u,, son funciones arbitrarias en el espacio fase, el formalismo debe permanecer sin cambio
(dado que cualquier combinacién lineal de restricciones es débilmente cero). Con este hamiltoniano,

la accién esta dada por

to
S = (¢'pi — He — upm@™) dt. (4.6)

t1
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Entonces, calculando su variacién, usando las ecuaciones de restriccién y que ¢ |§f: 0, las ecua-

ciones de movimiento estdan dadas por

dH, dp™ ) 0H, o™
= + um [
3]%

-7

q

, = Z—u —,
Ipi pi og " og

(4.7)

Debido a que las u,, o multiplicadores de Lagrange son funciones arbitrarias del espacio fase, las
ecuaciones de movimiento (4.7) no estan determinadas de manera tnica. Si al final del proceso no
se pudieron determinar todos los multiplicadores, las ecuaciones de movimiento estardn indeter-
minadas por funciones arbitrarias. Esta indeterminacién es lo que se conoce como la libertad de

norma de la teoria, de la cual se hablara mas adelante.

4.6. Hamiltoniano primario y restricciones secundarias

El hamiltoniano primario es el definido por (4.5),
Hi=H.+ u,¢o™, (4.8)

el cual contiene, hasta el momento, toda la informacién del sistema. Las ecuaciones de movimiento

(4.7) pueden escribirse de forma compacta como

qi = {qi7Hc}+um{qi7¢m}a pi = {plaHC}+um{pZ’¢m}7 (49)

con {, } el paréntesis de Poisson. De hecho, para una funcién arbitraria del espacio fase g = g(q,p),

se tiene que

g= {gch}+um{g7¢m}a (410)

o bien, usado las restricciones ¢™ = 0, que

g={g9,He +um¢™} ={g,H1}. (4.11)

Debido a que las restricciones (en general) de la teoria no deben cambiar en el tiempo, a estas

se les impone la llamada condicion de consistencia, la cual se expresa mediante

¢' = {¢', Hi} = {¢', He} +um{d’, 0™} 0. (4.12)

La ecuaciéon anterior se puede considerar como un sistema de ecuaciones lineales no ho-

mogéneo para los multiplicadores de Lagrange u,,. Definiendo el vector columna h con entradas
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ht = {¢', H.}, el vector u con entradas u,, y la matriz W de tamafio M’ x M’ (hay M’ restricciones

independientes ¢') con entradas W™ = {¢%, ™}, la ltima expresién se escribe como
h+uW = 0. (4.13)

La posibilidad de hallar los multiplicadores de Lagrange esta en funcién de las caracteristicas de
estos objetos. Debido a que la obtencién de los multiplicadores de Lagrange no son uno de los
objetivos especificos de este trabajo, no se describiran los posibles casos en los que destacan las
diferentes propiedades de h y W. Sin embargo, se describira el caso en que caen las teorfas (como

las de norma) que se estudirdn en los capitulos siguientes. Este caso de interés es:

Caso h # 0, detW = 0. Debido a que detW = 0, el rango de W, K, da el numero de
multiplicadores de Lagrange que se podréan despejar, mientras que su nulidad M’ — K los
multiplicadores que quedaran indeterminados, de modo que habrd funciones arbitrarias en las
ecuaciones de movimiento. Si V¥ son los vectores nulos de W (i = 1, ..., M’ — K) que por definicién

satisfacen

multiplicando (4.13) por V¥, se tiene que
hVi =0, (4.14)

que en general son funciones del espacio fase independientes de los multiplicadores. Estas i relacio-
nes implican que la teoria presenta ¢ restricciones adicionales, a las cuales se les llama restricciones
secundarias. Este es, recalcando, el caso en el que caen las teorias que se estudiardn (como lo son

las teorfas de norma).

Si al haber aplicado la condicién de consistencia (4.12) a las restricciones primarias la teorfa
presenta restricciones secundarias, se tiene una situacion similar a la de un inicio, i.e., un problema
de extremos con restricciones, solo que estas restricciones viven en el espacio fase. Entonces, se

construye, de manera analoga, el hamiltoniano secundario
_ i
Hs = H. + u;¢",

en donde ¢" son todas las restricciones primarias y secundarias halladas hasta el momento, sien-
do ahora este hamiltoniano el que contiene toda la informacién del sistema. Las ecuaciones de

movimiento toman ahora la forma

g = {g7Hc + ul(bz} = {g7H2};
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de lo cual, se pueden calcular las relaciones de consistencia sobre las restricciones secundarias. Si
después de realizado este proceso aparecen nuevas restricciones, llamadas terciarias, se repite el
mismo el proceso construyendo un hamiltoniano terciario, y calculando las relaciones de consisten-
cia sobre las restricciones, repitiéndose el proceso hasta que ya no haya restricciones. Al conjunto

de restricciones secundarias, terciarias, etc., también se les suele llamar secundarias, simplemente.

4.7. Caso reducible y no reducible

Si algunas de las restricciones ¢* pueden obtenerse mediante una transformacién lineal; es
decir, que no son independientes, se dice que la teoria es reducible. En caso contrario, se dice que
se la teoria es irreducible. En el caso reducible se pueden omitir las restricciones no independientes,
puesto que siempre puede considerarse que localmente se estd trabajando con el caso irreductible.
La identificacién de las restricciones independientes, se menciona, no siempre es facil de hacer,

incluso puede ser globalmente imposible debido a obstrucciones topoldgicas.

4.8. Funciones de primera y segunda clase

Definicién. Una funcién F' del espacio fase es de primera clase si su paréntesis de Poisson con

todas las restricciones es débilmente cero,
{F,¢'} =0,
en otro caso, es de segunda clase.
Notese que si F' es de primera clase, {F,¢"} debe ser fuertemente igual a una combinacién

lineal de las restricciones ¢, debido a que las ¢’s son las tinicas cantidades independientes que son

débilmente cero. Asi, {F, ¢!} = fH ¢P.

Teorema (1til). El paréntesis de Poisson entre dos funciones de primera clase, también es
de primera clase. (Este se prueba usando la identidad de Jacobi y la propiedad débilmente cero

de las ¢’s.)
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4.9. Condiciones sobre los multiplicadores y hamiltoniano

total

Las condiciones de consistencia sobre todas las restricciones,

¢ = {¢", He} + u {o", 6"} =0, (4.15)

representa un sistema de ecuaciones lineales para los multiplicadores u,,. Las condiciones sobre los
multiplicadores de las que se hablard, son las ecuaciones que satisfacen la parte de los multipli-
cadores que es solucién particular del sistema (4.15), as{ como la parte que es solucién al sistema
homogéneo (4.15). Estas diferentes ecuaciones, como se verd mds adelante, equivalen a poder dis-
tinguir entre restricciones de segunda y primera clase. Por el momento, estas condiciones se tratan
para notar la presencia de funciones arbitrarias (relacionadas con la parte de los multiplicadores

que es solucién al sistema homogéneo) que més tarde aparecerdn en las ecuaciones de movimiento.

Si en total se tienen J restricciones ¢*, ;= 1, ..., J, la solucién general del sistema de ecuaciones

no homogéneo (4.15) es de la forma
u, = U, +V,, (4.16)

con U, una solucién particular al sistema no homogéneo y V,, la solucién mas general del sistema

homogéneo,
Vi{e", 4"} ~ 0. (4.17)

La solucién general V,, puede expresarse como combinacién lineal de soluciones independientes v;,
V, =v; Vi i=1,..,1, con I el ntimero de soluciones independientes. Entonces, los multiplicadores

se escriben como
u, = U, +v; V5 (4.18)

Las funciones v; son funciones totalmente arbitrarias, de modo que las u, se han separado en
una parte que puede fijarse mediante las condiciones de consistencia, y otra que es completamente
arbitraria o indeterminada. Ahora, a fin de visualizar la presencia de estas funciones arbitrarias en
las ecuaciones de movimiento, se define primero el hamiltoniano que contiene todas las restricciones

y sus multiplicadores hasta el momento, llamado hamiltoniano total Hr,
Hpr = H. + u,¢”. (4.19)
Sustituyendo (4.18) en (4.19):

Hy = H.+ (U, +vV)) ¢" = H. + U, ¢" + 09",
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en donde se ha definido
P =VipY. (4.20)
Para una funcién cualquiera f = f(q,p), se puede calcular f como f = {f, Hr}, esto es,
fo= {fHr}y={fHe+U,¢" +vi¢'} = {f, H' +v:¢'}
= {fH'}+{f,vi}¢' +{f ¢ }vi
= {f,H}+v{f,¢'}, (4.21)
habiéndose usando que ¢ = V¢ ~ 0, con
H =H.+U,¢". (4.22)
Las ecuaciones (4.21) contienen I funciones arbitrarias que, por construccién, equivalen a las
ecuaciones de Euler-Lagrange. Lo anterior es un punto muy importante porque marca una gran
diferencia con la mecénica cldsica usual, en donde dadas las condiciones iniciales la evolucién del

sistema es tnica, pero en este caso, dadas unas condiciones iniciales la evolucién del sistema no es

Unica, sino que depende de la eleccién de las funciones arbitrarias v;.

Las cantidades ¢ son de hecho, como se mencioné al inicio de la seccién, restricciones de primera
clase, y H' también es de primera clase. Esto se muestra usando la definicién de una funcién de

primera clase;
{8, 01} = {V0e", 0"} = {V/, ¢"}¢" + Vo{o", ¢} = V{9, 6"},
pero V;! es la solucién general al sistema de ecuaciones homogéneo V,/{¢", ¢*} ~ 0, luego
{0, 0" =V {¢". 0"} =0 = {¢',¢"} =0,
por lo que ¢’ son de primera clase. Asimismo, se tiene que

{H', ¢"}

{He +Uuo", 0"} = {He, ¢} +{Uy, " }¢" + Un{9”, ¢"'}
{He, "} + U {¢", 9"},

%

y sumando el cero débil v;{¢?, p"} =~ 0,

{H/aﬁbu} ~ {Hca(bu} +Uu{¢ua¢u} +’Ui{¢i7¢u} = {Hc+ UV¢V +Ui¢ia¢u}
= {HTaqSM} = _{quvHT} %07

habiéndose usado en la dltima igualdad débil la condicion de consistencia de ¢*. Cabe mencionar,
que la descomposicién de Hr en H' y ¢' no es tnica debido a que U, es cualquier solucién
particular del sistema inhomogéneo (4.15). Esto significa que pueden renombrarse o proponerse

nuevas funciones v; sin alterar Hrp.
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4.10. Restricciones de primera y segunda clase

Habiendo hallado todas las restricciones de la teoria, ahora deben separarse en restricciones
de primera y de segundade clase. Es decir, debe identificarse los corchetes de Poisson entre todas
ellas que son o no débilmente cero. La manera sistemética para hacer dicha separacién es la
siguiente. Si W’ es la matriz J x J con entradas W 5 = {¢*, ¢°}, en donde J es el nimero total
de restricciones, y tal que detW’ =~ 0, entonces, la nulidad de W’, J — R’, con R’ el rango de W',

da el ntimero de restricciones de primera clase.

Prueba. Si detW’ ~ 0, entonces R’ < J y su nulidad serd J — R’ # 0, entonces habrd J — R’
vectores nulos w?, j = 1,....,J — R', que por definicién son vectores tales que w’, {¢®, ¢*} = 0,
entonces {w! ¢, ¢?} =~ 0,V¢”® € @, con & = {¢” | ¢° una restriccién primaria o secundaria }. Asi,

wt,¢® =~ es un conjunto de J — R’ restricciones de primera clase.

Ademss, el rango de W’, R/, da el nimero de restricciones de segunda clase. Cabe mencio-
nar que el ntiimero de restricciones de segunda clase debe ser par'. Aqui, debe notarse que los
vectores nulos de {¢®, ¢} pueden verse como las soluciones del sistema w? {¢®, ¢°} = 0, el cual

es similar a v;V;! propuesto en (4.18). De hecho, puede asumirse que v; = w’.

4.11. Transformaciones de norma y restricciones de primera

clase

Para una funcién del espacio fase f = f(q,p) se obtuvo que
f={f 1Y +vilf¢'}.

En particular, si f es ¢ o p se obtienen las ecuaciones de movimiento, con el hecho relevante o no
usual de la presencia de funciones arbitrarias v;. A diferencia de lo que pasa en la mecanica cldsica
usual, la presencia de las funciones arbitrarias v; significa que dadas las condiciones iniciales del
sistema la evolucién del sistema no estd determinada de manera tnica. La mecanica clésica, sin
embargo, es determinista, por lo que dos estados con diferente valor de las funciones arbitrarias v;

pero bajo las mismas condiciones iniciales deben ser fisicamente equivalentes, y se dice que estos

1Prueba. Sabiendo que C es antisimétrica y usando las propiedades del determinante, se tiene que detC' =
det(C?) = det(—C) = (—1)R/detC. Si se supone que R’ es impar, se tendria que detC = —detC = detC = 0, lo que

contradice a que R’ sea el rango de W’'.
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sistemas son equivalentes de norma. También se dice que se trata de un sistema con libertad de

norma.

Considérense dos estados con las mismas condiciones iniciales al tiempo ty y que su evolucién
difiere en el valor de las funciones v; en las ecuaciones de movimiento. Utilizando el desarrollo en

serie de Taylor a primer orden para la variable canénica F' = q o p en cada estado,

F(t) = F(to) + F6t = F(to) + ({F, H'} + v;{F, ¢'}) dt,

F'(t) = F(to) + F'dt = F(to) + ({F, H'} + v}[{F, ¢'}) ot,
y restando,
SF(t) = (v; — v){F, ¢'}5t = 6v;{F, ¢'}, (4.23)

con ov; = (v;—v})ot. Por hipétesis, el estado fisico se mantiene inalterado, mientras que las variables
candnicas se transforman segtin lo anterior. Este cambio en las variables candnicas consiste en
aplicar una transformacién de contacto infinitesimal con una funcién generadora dv;¢’, por lo
que se conluye que las restricciones de primera clase son las generadoras de transformaciones
infinitesimales de contacto que corresponden a cambios en ¢ y p que, por hipétesis, no alteran el
estado fisico del sistema. A estas transformaciones se les refiere simplemente como transformaciones

de norma.

4.12. Grados de libertad

Definicion. Los grados de libertad de un sistema son el niimero de variables fisicas independien-

tes necesarias para describir al sistema.

En mecénica clasica, el nimero de grados de libertad de una teoria se obtiene restando el nimero
de ecuaciones de restriccion independientes al niimero de coordenadas generalizadas. Haciendo una

extrapolacién de esto, se puede proponer que el niimero de grados de libertad es

oL 1 Numero total de Numero de restricciones de
2 variables canénicas segunda clase originales

Numero de restricciones de
-2 X (4.24)
primera clase

El 1/2 es para compensar el hecho de que usualmente los grados de libertad se refieren a las

coordenadas ¢, pero al considerar todas las variables candnicas también se estd considerando a los
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momentos p. El 2 multiplicando a las restricciones de primera clase es debido a su doble caracter,
tanto de restriccién como de generadora de transformaciones de norma. Es decir, la teoria presenta
restricciones y transformaciones de norma que pueden verse como condiciones adicionales de la

teoria.

4.13. El hamiltoniano y la acciéon extendidos

Como se ha visto, el hamiltoniano que contiene todas las restricciones de la teoria es el hamil-
toniano total Hy = H' 4+ v;¢', en donde, H' = H, + U,¢" y ¢' son de primera clase, sin embargo,
hasta el momento no se le ha hecho alguna distincién explicita en cuanto a si las restricciones que
contiene son de primera o de segunda clase. Al hamiltoniano en el cual se hace esta distincién se
le llama extendido, y se suele denotar con y a las restricciones de primera clase, y con x a las de

segunda clase. Entonces, el hamiltoniano extendido se define como
Hp=H.+ U\’ +v,7" = H +v,7", (4.25)
con H' = H.+ U;x’. La evolucién del sistema estd dada por este hamiltoniano mediante
F={F Hg}. (4.26)

Para las variables dindmicas invariantes de norma, i.e., variables tales cuyo paréntesis de Poisson
con los generadores de norma v es débilmente cero, la evolucién dindmica dada por Hy, H' y Hg
es la misma. Para otra variable, es necesario usar Hg, que considera toda la libertad de norma del
sistema. Debe notarse que las ecuaciones (4.26) y (4.1) son fisicamente equivalentes. La necesidad
de un hamiltoniano extendido no es algo que se deduzca de la formulaciéon lagrangiana, pues el
hamiltoniano primario genera las ecuaciones de movimiento (4.7) que, por construccién, equivalen
a las ecuaciones de Lagrange (4.1), ademés de que Hg contiene mds funciones arbitrarias que las
que contiene H;. La introduccién del hamiltoniano Hg es entonces una nueva caracteristica del

formalismo hamiltoniano que incluye de forma manifiesta la invariancia de norma.

Por otro lado, las ecuaciones de movimiento de la forma (4.26) deben provenir de una accién

de la forma (4.6). En efecto, estas ecuaciones se obtienen de la accidn extendida

Selg,p,v] = / (¢"pn — H' — vey®) dt = /(d”pn — Hg) dt, (4.27)

la cual, al igual que Hg, ya considera la separacion de las restricciones entre primera y segunda

clase, i.e., contiene la libertad de norma, y da las ecuaciones de movimiento

F={F Hg}, ¢*=~"~0. (4.28)
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4.14. Corchetes de Dirac y restricciones de segunda clase

El paréntesis o corchete de Dirac se define como
{F.G}p = {F.G} — {F,x"}Cas{x", G}, (4.29)

con {, } el paréntesis de Poisson y C,s la inversa de C*% = {x“, x?}, el cual satisface las propie-

dades

{F.G}p=—{G.F}p, (4.30)

{(F,GH}p = {F,G}pH + G{F,H}p, (4.31)
{F.G}p, H}p +{{H.F}p.G}p + {{G,H}p,F}p =0, (4.32)
{(x*,F}p = 0,YF (4.33)

{F,G}p ~ {F,G}, G de primera clase y F arbitraria, (4.34)
{H,{F,G}p}p ~ {H{F,G}}. (4.35)

De estas propiedades, Hg es de primera clase, y por (4.34), las ecuaciones de movimiento (4.26)

pueden reescribirse como
F={F Hg}p, (4.36)
y, por los mismos argumentos, el efecto de una transformacion de norma puede escribirse como
{F,7*} = {F,7"}p,VF. (4.37)

Notese entonces que después de separar las restricciones de primera y segunda clase, el paréntesis
de Poisson se generaliza al paréntesis de Dirac, en términos del cual pueden escribirse las ecua-
ciones mds relevantes del formalismo [como (4.36) y (4.37)]. Las restricciones de segunda clase se
convierten en identidades para algunas variables candénicas en terminos de otras. Ademds, es ahora
el paréntesis de Dirac el que, en analogia con lo que se hace usualmente, se promueve a conmutador

a fin de cuantizar la teoria.

23



CAPITULO 4. EL ALGORITMO DE DIRAC-BERGMANN ESTRICTO
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4.15. Observables

Una observable es, por definicién, una funcién que es invariante de norma en la superficie de
restricciones. En otras palabras, una observable es una funcién O cuyo paréntesis de Dirac es

débilmente cero con las restricciones de primera clase,
{0,7*}p = 0. (4.38)

Aunque se usa el término “observable”, debe mencionarse que no se estéd intentando dar un significa-
do experimental directo. Asimismo, cabe mencionar que las observables cldsicas no necesariamente

lo son en el caso cudntico.
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Capitulo 5

La accion de Kalb-Ramond

Es sabido que la teoria de Kalb-Ramond es una teoria de norma no masiva descrita por un
tensor antisimétrico de segundo rango B,, = —B,,,. Este campo de norma es un tensor anilogo
al tensor de norma de Maxwell A,. En la teorfa de Maxwell, la intensidad de campo esta dada
por F,, = 0,A, — 0,A,. Para B,,, la intensidad del campo de Kalb-Ramond estd dada por
Hun = 0uByx + 0,Byx, + 0xBy, la cual es completamente antisimétrica e invariante de norma.
El campo de Kalb-Ramond es de muchas maneras la generalizacion tensorial del campo de norma
de Maxwell. En teoria de cuerdas, el campo de Kalb-Ramond se acopla a las cuerdas de manera
analoga a como el campo de Maxwell se acopla a las particulas. Mientras las particulas cargadas
son la fuente del campo de Maxwell, las cuerdas son la fuente del campo de Kalb-Ramond. Asi,
el campo de Kalb-Ramond aparece en una especie de electrodindmica en teoria de cuerdas. En el
caso gravitacional, por ejemplo, el campo B, se ha introducido para estudiar las soluciones de
las ecuaciones del campo gravitacional en presencia de torsién en el espacio-tiempo, siendo B,
el campo de fondo de torsién [24]. En otros casos, el campo By, se ha usado para preservar la
invariancia de norma U(1) del campo electromagnético en un fondo con torsién, siendo B, la
posible fuente de torsién [25]. En este capitulo, se hace un andlisis hamiltoniano de la teoria de
Kalb-Ramond aplicando el algoritmo de Dirac-Bergmann estricto. Este analisis en sentido estricto
de la teoria de Kalb-Ramond, es una contribucion del presente trabajo, ya que no se encuentra en
la literatura. Se muestra que la teoria es una teoria de norma reducible, no masiva, cuyo campo
B,,, posee un solo grado de libertad. Se obtienen ademds, mediante el proceso de expansién del

espacio fase, los corchetes de Dirac de la teoria.
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CAPITULO 5. LA ACCION DE KALB-RAMOND
5.1. LA ACCION DE KALB-RAMOND

5.1. La accion de Kalb-Ramond

El lagrangiano de la teorfa de Kalb-Ramond (KB) estd dado por

1

L=533

H, H", (5.1)

en donde H,,x = 0,B,2+0,B),+0\B,, y By, son la intensidad de campo y el campo de KB. Para

mostrar que la teorfa descrita por (5.1) es singular y saber el nimero de restricciones primarias que

deben obtenerse, se obtiene la matriz Hessiana. Usando el hecho que H,,x = —H,;» = —H ., se
tiene que
oL _1 1/)\10046 B sa 1Oaﬁ B ca 10(16 B ca
sans — al (5000505 — 026%) + 502(6305 — 3303) + 5036526 — 3552
1 « 1 (03
= §H0 B = 59 ’YgﬁéHO,w;, (52)

luego, considerando que H,,, = 0,

0L 1 . 4. 1
— 0t Bi (5 P _S5A5P) = Z (g™ Bp _ jap BAy — afp
(@oB,,)0(@B,,) 177 (3705 — 0307) = 1 (9°*g"" — g™ g™) =W (5.3)

(i,7 = 1,2,3). La inspeccién de (5.3) conduce a que las entradas distintas de cero de (W*5*?) son
3 (para «, 8 # 0), lo que implica que su nulidad es 6 —3 = 3 (6 son las componetes independientes
de B, ). La matriz Hessiana tiene determinante cero, por lo que la teoria es singular, y ademas,

se tiene que 3 son las restricciones primarias independientes que deben obtenerse.

5.2. Restricciones primarias y secundarias

De la expresién (5.2), ademds de los momentos candnicos, se obtienen las restricciones primarias;

es decir, de la expresién (5.2) se tiene que

1

n*? = §H°aﬁ (5.4)

D .
= IV = §H0”, % = 0 (5.5)
= % =T1"% ~ 0, (5.6)

siendo, en efecto, 3 restricciones primarias independientes. Para obtener las restricciones secunda-
rias aplicando la condicién de consistencia a las restricciones (5.6), debe obtenerse el hamiltoniano

asociado al lagrangiano (5.1). Con este fin, considerando que (5.1) es igual a

1 ..
L= ZHOinOZ] +

5% 3,Hiijijk, (5.7)
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el hamiltoniano asociado esta dado por

H, = / x| B, " — L

/dgac

g g 1 g
(Hoij — 0iBjo — 0;Bo; )11 — (Hz‘jH” o x S,Hiij”k):|

[ ij ij 1 ijk
= /dsl‘ 2BOi6jH] +Hin] T 9% 3!Hiijj :| (5.8)
Entonces, definiendo el hamiltoniano primario
H, =H, + /d%amm, (5.9)

en donde ag; son los multiplicadores de Lagrange que fuerzan las restricciones ¢, y usando los

corchetes de Poisson fundamentales
v 1 14 v
{Bag(2), I (y)} = (0605 — 8500)0% (x — y) (5.10)
(tomadas al mismo tiempo), se tiene que
¢ (x) = {¢%(x), Hi(y)} = /d3y{HOi($), [2Bor0;11¥)(y) }
= —ajHij(x)
= % = 91 =0, (5.11)

siendo 3 restricciones secundarias. Para hallar las posibles restricciones terciarias, se define el

hamiltoniano secundario

Hy =H.+ /d?’x[aoﬂbm + boip"'], (5.12)
con by; los multiplicadores de Lagrange que fuerzan las restricciones secundarias . Asi, se tiene
que

. 1 .
W) = (@) Ha)h = - [ )00 @), Hin )

3!

por lo que no hay restricciones terciarias. Las restricciones encontradas (5.6) y (5.11), es ficil

-1 d%[(H”"(y)@,ﬁi + H"'(y)0,0; + H"lk(y)anak)63(a: - y)} =0, (5.13)

notar que son de primera clase, ya que en ellas solo aparecen momentos canénicos. De (5.11), sin
embargo, se obtiene que 9;09;I1% ~ 0, la cual no es independiente de (5.11), siendo, por tanto, una

condicién de reductibilidad.

5.3. Grados de libertad

Halladas todas las restricciones y, en este caso, las relaciones de reductibilidad, puede llevarse

a cabo el conteo de los grados de libertad fisicos como sigue:
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5.4. LAS TRANSFORMACIONES DE NORMA

Se tiene un total de 2(6) variables dindmicas (son 6 las componentes independientes de

B,,) y (3+3—1) restricciones de primera clase independientes.

Entonces, los grados de libertad fisicos para la teoria KB son

GL = %[2(6) —2(5)] = 1. (5.14)

(Los cuales, nétese, coinciden con los de una teorfa de campo escalar.)

5.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transformaciones de norma, y el generador

esta dado por
0= [ aleyd” + ™, (.15

siendo las €’s los parametros de las correspondientes transformaciones. Recordando que la trans-

formacién de norma para una variable dindmica F estd dada por dF = {F, G}, se tiene que

SBui(e) = [ @y{Bo(a), o 1w} = yeon(o) = 3é0) (5.16)
SBu(e) = [ @ulBy@) (1w} = 5 [ dvewds - s - 55)
= SOk (a) — Orey (@), (5.17)

por lo que las transformaciones de norma estdn dadas por

dBy; = D€y, 5B¢j = O;¢; — Oje,. (5.18)

J

5.5. Los corchetes de Dirac

Para obtener los corchetes de Dirac en una teoria con restricciones de primera clase, lo que
se hace es obtener un conjunto de restricciones de segunda clase irreducibles a partir de las de
primera clase fijando la norma. Si las restricciones de primera clase no son independientes (como

en el presente caso) se expande el espacio fase mediante la introduccién de campos auxiliares.
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Haciendo esto, uno obtienen las restricciones de segunda clase irreducibles!
1 _ 170é 2 _ 3 — 99 .17 i 4 _ a5
con ¢, p campos auxiliares satisfaciendo
{a(@),p(y)} = 0°(x — y). (5.20)

Asi, los corchetes de Poisson distintos de cero entre estas restricciones son

@AW = (1), Byy(y)) = —356% —v),
@AWY = T ),0Bu(y)) — 10(), da(v)} = ~50,05° @ — ), (521)

los cuales definen la matriz

0 —36 0 0
Lyt 0 0 0
=1’ R EXCE)
0 0 0 —5}V2
0 0 &V: 0
y cuya inversa es
0 25 0 0
-26; O 0 0 3
(Cas) = M T
0 0 0 oz
57
0 0 - o0
Entonces, los corchetes de Dirac no triviales distintos de cero
1
(By@). M )kn = 5658, ~ 51605 — y)
m 65
= [ o[ (B ), 20,1 @)} g0 (0 — 00" Byy (). 11 1)
1 T S m ST 571")
= (k) + olok) - /d%d% [(&- 57" = 07"85)06” (& — w) 58 (u — v)

1 .
x5 (350h — 0,05) 06 (v — )|

]' ™ S m ST 55
= (6765 + 8107) + (767" — 07"07) 5 Om0*0° (w — y) (5,0, — 5,05)]
1 1
= 5[555; — olo + ﬁ(csfajal — 019;0% — 650;0' + 60,0)]6° (x — y).(5.22)

IEn las ecuaciones (5.19), el factor 2 se ha introducido solo por conveniencia; para no multiplicar por 1/2 la

ecuacién fundamental (5.20)
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Ademas, los corchetes de Dirac no triviales entre los campos auxiliares ¢ y p con los campos

restantes son

{g(x),p(y)}p = *(x—y) - /d3ud3v [{q(w% —3iP(U))}[%53(u - v)]{ajq(v),p(y)}]

= 8z —vy)+ /d3ud3v [61(53(:1: - u)%&g(u —0)0;0% (v — y)}

= Bz —y) - %ai&-é?’(x —y)=0, (5.23)
g st g
(@@ MW = ~ [ duds[{a@), -8 = 0" By (). ()]
- / dBud®v [a’“53(x - u)é—%a?’(u - u)%((s;‘ag;@ — 5161 )om 83 (v — y)}
L igi _ gigi _
= Q—W[aa — 979683 (x —y) =0, (5.24)
(Bul@)p@n = — [ dEudo[{Bu(), 20,0 ()} 0w~ {0 (). p(v))]

_ / dPudo | (5757 — 707" ,0%(x u)év—";(Ss(u )36 (v — )

1
ﬁ[alak - 8k61]63(:c — y) = 0, (5.25)

mientras que trivialmente

{Q('I), Bz](y)}D =0, {Hij(‘r)vp(y)a }D =0, (526)

lo que muestra que los campos auxiliares ¢ y p son independientes del corchete de Dirac. Esta es
una condicién necesaria, ya que como campos auxiliares no deben contribuir con resultados en la

teoria.

En resumen, se ha mostrado que la teoria de KR tiene 5 restricciones de primera clase indepen-
dientes de un total de 6. Esto la hace una teoria de norma reducible. Se encontré que el campo no
masivo de KR B,,,, posee un solo grado de libertad. Ademads, debido a que la teorfa solo presenta
restricciones de primera clase, se uso el proceso de expansién del espacio fase a fin de poder calcular

los corchetes de Dirac.
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Capitulo 6

La accion de Kalb-Ramond en 5

dimensiones

Se ha visto que la teoria de Kalb-Ramond 4D es una teorfa de norma reducible cuyo campo B,
posee un solo grado de libertad. Ahora se estudiara la dindmica hamiltoniana de la teoria de Kalb-
Ramond con una dimensién extra compacta aplicando el formalismo de Dirac-Bergmann estricto.
Este anadlisis estricto de la teoria constituye de hecho una contribucion del presente trabajo, ya
que este formalismo no se encuentra en la literatura. En este capitulo se encuentra, después de
compactar la quinta dimesién sobre un orbifol S! /Zs, que la teorfa efectiva de Kalb-Ramond es una
teoria de norma reducible. Se muestra que el modo cero corresponde consistentemente a la teoria de
norma Kalb-Ramond 4D, mas una torre de excitaciones de Kaluza-Klein de campos masivos B,(fi)
contribuyendo cada modo con tres grados de libertad. Esto tltimo, después de haber fijado la norma
y haber identificado los campos Bffé) como pseudo-bosones de Golstone. Ademas, debido a que hay
condiciones de reductibilidad tanto para el modo cero como para los estados excitados, se expande

el espacio fase para obtener los corchetes de Dirac de la teoria. Los resultados correspondientes a

este capitulo son una aportacién que también puede consultarse en [34].

6.1. El lagrangiano efectivo

La notacién que se usara es la siguiente: indices latinos maytsculos M, N toman los valores

0,1,2,3,5, con 5 etiquetando la dimensién extra compacta, y pueden subirse o bajarse con la
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métrica plana n = (1,—1,—1,—1,—1); y representa la coordenada en la dimensién compacta; los
indices griegos u, v corren de 0 a 3, y = denotan las coordenadas etiquetando puntos de la variedad

cuadridimensional M. Considérese entonces el lagrangiano de Kalb-Ramond (KR) 5D,

_ 1 MNL
L= mHMNLH s (61)

en donde Hynr = Oy Byp + OnvBry + 0By ¥y By son la intensidad del campo y el campo
de KR 5D. La compactificacién de la quinta dimension espacial en un orbifold S!/Zy de radio R

impone sobre los campos B,y las condiciones de paridad y periodicidad

Bun(z,y) = Bun(2,y + 27R),
By (2, —y) = By (z,y),

B#S(xv _y) = _BNB(‘T‘.’ y)

Estas condiciones permiten expresar By, n como el conjunto de arménicos sobre My x S* /22,
B (x,y) = ;B(O) Z B(") ) cos ( y)’
a V2t R W 7TR R

Bus(z,y) Z B x) sin ( ;ﬁ;), (6.2)

siendo B,(ff,), B, (”) los modos de Kaluza-Klein (KK) dependientes solo de las coordenadas de espacio-
tiempo cuadridimensional, y a los cuales se les asocia con una torre infinita de particulas. Expre-

sando (6.1) como

1 v 1 v
L = mHMV)\HH A + 1H5HVH5M ) (63)

sustituyendo (6.2) en (6.1) e integrando sobre la quinta dimensién compacta y de 0 a 27 R se

obtiene el lagrangiano efectivo (cuadridimensional)

— 1 (0) ILVA ,uu)\
Le = 5 3untg +Z 2><3' Hy\HE
1 (n) (n) (n) “w v 5u Nz
+Z(6MBV5 +0,B{" EBW ) (0Bi3 + 0 BY, ~ RB(n)) (6.4)
en donde H L?/)A yH, (") estdn definidos de manera similar que en (5.1). Nétese que el modo cero en

el lagrangiano efectivo (6.4) corresponde consistentemente a la teorfa KR 4D, y que los modos KK
estan compuestos de un término tipo KR 4D mas un término que acopla los campos no masivos
ij? con los campos Bfﬁ,) con una masa (n/R) adquirida debido a la compactacién. En adelante,
a fin de hacer mas claro el andlis de los resultados, se trunca la torre de excitaciones KK hasta

un ndmero finito k, pudiéndose tomar el limite ¥ — oo al final de los céalculos, de modo que
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n=1,2,3,...,k — 1. El lagrangiano (6.4), es resultado no hallado antes en la literatura, y puede

ahora encontrarse en [34].

Para mostrar que la teorfa descrita por el lagrangiano efectivo (6.4) es singular y saber el niimero

de restricciones primarias independientes que uno debe obtener, se obtiene la matriz Hessiana. A

saber, por similitud con los resultados (5.2) y (5.3), para la matriz Hessiana asociada con B;(LOV) se

tiene que

0Le 1 00 1 o0y 55,00

0’L 1 . 5. 1
e _ ai  Bi(SASP AP\ aX _Bp ap  BA) — afp
= g% g™ (0;0] — 6;07) = ~(9™"g"" — g™ g"") = (W), " (6.6)
DB (@pBY)) 4 T

(0)

. . . l .
Para obtener la matriz Hessiana asociada con B(Ll)q, se tiene que

oL N ) .
_Yme . gmA_gsgLgH Y (h)
h a®p LU
d(80BYY) "3 3(5()3&}2) /
.- (aﬂB(“,f) + "B~ ﬁBg‘h”))aLagf 9 (a; B +0,BM — ﬁB<">)
[ h L=y v " 2%
2 R 3(303((15)) R
_ lerempoes | lopon v5 | avpin o\ (s05ass  <Osass
= SOLoy H + Jokal <6”B(h) + "B~ EB(h)) (mu 52 — 5V5M55)
_ Yerenm0as | L oncn (50 pas 50 Moo
= JOkONH{ + Jokell (9°BE) + 0"BY) — 5B ). (6.7)
luego, considerando que H (OI%A =0,
9L, _ lépéﬂgikgjmdlf(dzvf 9 (m)
i Yj n y m
O(DoBily)0(ABLy) 2 dB")

9
8B
1

o 1 .
= 4555%1'“9”55(5%(525% — 61,01) + 15555921555?(5?5?)

= ORISR (g — gmgt) + L0 5K 8 g

1 . h
o oLsH g5k 51! (0B +aBly - ZB5")

R

4

1 1 /
— (gLKgHM*gLMgHK)JrZ(sé{(séVIgLK:W(nL@})LIKM, (68)

en donde los indices latinos toman los valores 1,2, 3. Inspeccionando (6.6) se obtiene que las en-
tradas distintas de cero de (I/V(O(“f)3 AP ) son 3 (aquellas con «, 8 # 0), lo que implica que su nulidad
es 6 —3 = 3 (6, son las componetes independientes de Bfﬁ)). Asimismo, de (6.8), se obtiene que
las entradas distintas de cero de (W(I;nb)[KM ) por parte del primer término son 3 (aquellas con
K,L,M,H #0,5), y por parte del segundo término son 3 (aquellas con H,M =5,y L, K #0,5),

lo que implica que su nulidad es 10 — 6 = 4 (10, son las componentes independientes de B(LTJL\Z).

Esto muestra que la matriz Hessiana total tiene determinante cero, por lo que la teoria descrita
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por (6.4) es singular, y ademads, que 3 + 4(k — 1) = 4k — 1 es el ntimero de restricciones primarias

independientes que uno debe obtener. (Ver también este resultado en [34].).

6.2. Restricciones primarias y secundarias

De las expresiones (6.5) y (6.7), ademds de los momentos canénicos se obtienen las restricciones

primarias; es decir, de (6.5) se tiene que

Iy, = H?O';” (6.9)
= I = Hfgg, 1) =0 (6.10)
= ¢ =1, =0, (6.11)
y de la expresién (6.7),
i = 75L(sg HYY + laL (aOB +0°BYY) ~ RB(n)) (6.12)

5 0 % 0% 029
= lm=3 (3 B(n>+33<n> RB(n)), I, = 2H(n)’ 1,

(07— ~ = ~

=0, I =0(6.13)

siendo, en efecto, 4k — 1 restricciones primarias. Para hallar las restricciones secundarias debe
obtenerse el hamiltoniano asociado con el lagrangiano efectivo (6.4). Por definicién, el hamiltoniano
5D asociado con el lagrangiano 5D (6.1) es H = By IIN* — L. Sustituyendo las series (6.2) en
By IINL = B, TI* + 2B,511# ¢ integrando sobre y, se obtiene la expresion 4D, B,EI)H’(‘O”)
> (B(n)l_[‘(i V) + 2B(n)HE5)). Por tanto, el hamiltoniano asociado con el lagrangiano efectivo

(6.4) estd dado por
H = / &’z [ DT + Z[ AL ++2B§§)H§i)] —ce}

0 0 0) n n 17
/d31j |:(H(§’Lj) 6133(0) B(()z {)) + Z |: O’L] - BJ(O) - aJB(()i))H(Jn)

+2(211%) — 9B + RB&”)H(”)] z:}
- / d%[ng) (20,11%)) + 21T + Z {ng (20,117,)) + 2015117

+4H§g>n(n)+ng)(2aiH§;) R(2B61)H(n))} z} (6.15)
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En esta tltima expresion, usando que

L= GERIY ¢ M+ Y [+ il
% (aOB§§> +0,B — EB(()?)) (aOBg'g) +0'BY, — EB(n))
% (0.8 + 0,8 — ZBS") ('B73) + 0Bl RBgn))] , (6.16)
uno obtiene el hamiltoniano canénico
H. = / g [Bé?)(QajHEg)) + TG — X13| HHGS + Z [ (20,117,
HIGTIY, — ! s Hn Hi + 21T + Bi) (20113,)) + R(wgﬁ)n’(’i) )
(a B + 0,85 - ZB) (0B}, + 9B, RBE;))” (6.17)

Este hamiltoniano es también un resultado que no se hallaba antes en la literatura, y que ahora
puede encontrarse en [34]. Entonces, definiendo el hamiltoniano primario

k-1
Hy = H. +/ [ao?)¢ Z (ao7)¢(()fl + aps ¢(2))} (6.18)

n=1
0 . . . .
en donde a(() ), a(()?) a65) son los multiplicadores de Lagrange que fuerzan las restricciones primarias,

y usando las relaciones fundamentales

(0)
1
(Bl (@), TN (2)) = 500,030} — 0}/ o})8° w — 2), (6:19)

{Bw), T (2)} = 5 (6405 — 3562)9°(x — =),

las restricciones secundarias para el modo cero estan dadas de acuerdo a
Oy (@) = {600 (@), Hi(2)} = / a2 {110} (), (B (20,11)) (=)} = ~0;111 (),
= Uy = Il ~0, (6.20)

las cuales son 3, mientras que para los modos KK, las restricciones secundarias estan dadas de

acuerdo a

60 (@) = {602 (2), i (2)} = / d* {110}, (@), [BS (20,11)) + 2B 11 ) (=)}

= [811 )+RH(n)]()

= Y = 8H§il)+§H(n)xo, (6.21)
Smy (@) = {00y (2), Hi(2)} = / AT (x), (B (20,T103)))(2)} = —20,T17) (=),
= Y = I ~0, (6.22)
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las cuales son 4(k —

). Para hallar las posibles restricciones terciarias, se define el hamiltoniano
secundario

k—1
H2 H + /d3 |:a01 ¢OZ + b ’L/) Z (a’()z)(b(n) + CL ¢?7E;) + bé’;‘)wm

n=1
en donde bé?), bg;), b(n) son los multiplicadores de Lagrange que fuerzan las restricciones secunda-

rias. Para las restricciones terciarias del modo cero, por similitud con el resultado (5.13), se tiene
que

¢(o)( z)

1 0 1,
{vio) (@), Ha(2)} = =5~ / d°2{20411(5) (). [HG H{G1(2)} = 0. (6.24)
Para las restricciones tercearias de los modos KK, se tiene que

7 i 1 n
Pl (@) = () (2), Ha(2)} = / d3z[{2akni';)<x>,—M[Hfj,sz;’;K )
Lig pm (n) )\ (g gI° n i)
(0B + 0,88 — ZBY) (0B + BT - B ) ()}
" oy Lo g™ (n) 5 n g
+{E2H(n)(x),—1(8iBj5 +0,B{™ — EB )(aZBJ + & B — EB(fl))(z)} ,
en donde, por similitud con el resultado (5.13)
1 3 (n) ryijk
g [ 0L ), ) ~o (6.25)
luego,
1 n n n n i 15 j )
90 (@) / d%{{wm%(a:),—4(@3](.5) +0;BW — EB;))(angn) + B~ EB(; ))( )}
" o5 (n) (n) i 5 i 25i i
{20 (). — (a B'Y +0,BlY - EB )(a BJ® + 0By ~ RB(;))( )}]
- ﬁ/d?* alBﬂ5 v oI Bl ) (aUBJ5 + &' B~ ~BY ))35 (z—2)| =0
(n) = “(n) (n) R
(6.26)
Por 1ltimo,
Wiy (@)

{y{n)(x), Ha(2)}

]. n n n n
- /d z{{28kﬂ(n)( ), 71(ai355> +0,B — =B

YA 5
B ) (85, + ' )+RB(n))( )}}
/d?’z{(aiB{g) + & By + RBEi))[ajai —@‘3]‘]53(33—2)} =0,

por lo que no hay restricciones terciarias en la teoria. Las restricciones encontradas

(6.27)
07 — Oz _ l

0i _ 1708 05 _ - 0i _ o 17iJ Nogis %7 ~
Oy = 1oy =0, Gy :Hm) R0, Y = 0TI + R0y ~ 0, ¥ = ;11 =0, (6.28)
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es facil notar que son de primera clase, ya que solo aparecen momentos candnicos. Estas restric-

ciones, sin embargo, no son todas independientes, ya que se cumple que
0i _ 1,00 n 05 _

por lo que la teorfa representa un sistema reducible. Las restricciones (6.28) son resultados que no

se hallaban antes en la literatura, y ahora pueden hallarse en [34].

6.3. Grados de libertad

Habiendo obtenido todas las restricciones y, en este caso, las relaciones de reductibilidad de la

teoria, puede hacerse el conteo de los grados de libertad fisicos como sigue:

Para el modo cero se tiene un total de 2(6) variables dindmicas (6 por parte de Bfg)), y b

restricciones de primera clase independientes.

Para los modos KK se tienen, para cada k, un total de 2(10)(k — 1) variables dindmicas

(10(k — 1) por parte de B(erv)l,)7 y 7(k — 1) restricciones de primera clase independientes.

Entonces, el numero de grados de libertad fisicos para la teoria de KR 5D es
1
GL = 5[12 +20(k—1)—2(5) —2(7(k—1))] = 8k — 2. (6.30)

En particular, para el modo cero (i.e., k = 1) se tiene que GL = 1, lo cual corresponde consisten-
temente al numero de grados de libertad fisicos para la teoria KR 4D. Ademas, de acuerdo con
(6.30), cada valor de k contribuye con 3 grados de libertad. El conteo de los grados de libertad
(6.30), es también un resultado que no se hallaba en la literatura, y puede ahora encontrarse en

[34].

6.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transformaciones de norma, y el generador

esta dado por

g = / du el o) + el + 6ol + ol + ol + Ve | (631)
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en donde las €’s son los pardametros de las correspondientes transformaciones. Para los campos del

modo cero y por similitud con los resultados (5.16) y (5.17), se tiene que
1 . 1
6By () = seor (@) = 560 (@), 6B (@) = 5[0k - (@),

mientras que para los modos KK, por similitud con (5.16) y (5.17), se tiene

5B @) = e @) = 80w, OB @) = Sl — ae]@),
y
S5 (@) = [ (B @) kJWN(H S @) = e @),
0) = [ @B @47 R + “Wﬂ%un=£ﬁ“w
—§/d3ze5n (2)610,6% (@ — 2) = 5[3 €™ 4 9™ (). (6.32)
Entonces, las transformaciones de norma de los campos son
5B = 00, 589 = ,e” — 0,0, 5B = apel™,
6B = 0l — 9;e™, §B{ = apel”, SBY = %62@ e, (6.33)

las cuales pueden escribirse en forma compacta como
n n n n n n n
6B = 8,0 —9,eD, §B) = 8,6 —9,e, §BY = Few + 9uel™  (6.34)
con e((]o) =0, eén) = 0. Estas tranformaciones de norma son resultados nuevos, ya que estas no se

hallaban en la literatura, y ahora también pueden consultarse en [34].

6.5. Pseudo-bosones de Goldstone

Los campos de norma no masivos Bffg) no representan campos fisicos en el sentido de que

pueden ser eliminados de la teoria bajo una apropiada eleccién de la norma. A saber, bajo la

eleccién de la norma

(n)

los campos B,/ se transforman como

§BW = —9,Bl +0,B, (6.36)

y el lagrangiano efectivo (6.4) se vuelve

_ 1 (0) 0 (n) /u//\ 1/n (n) puv
Le = 2 x 3! “”)‘ z_:|:2><3| JI22N (n) +E(R) B, B(n) (6.37)
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Aqui debe notarse lo siguiente. En el lagrangino no normado (6.4), se vié que el modo cero con-
tribuye con un grado de libertad, mientras que cada exitaciéon KK contribuye con tres. Uno de
estos tres es debido a la parte tipo KR 4D, y los otros dos son debido a Bf]g). La eliminacién de
los campos no masivos Bl(g)) en el lagrangiano normado (6.37) implica que los grados de libertad
debidos a Bf]g) han sido otorgados a Bﬁ(f,i), de modo que cada B,(ﬁ) describe un campo con masa
M = (n/R) y tres grados de libertad. Estas caracteristicas por parte de los campos no fisicos
Bf:g) los hace similares a los pseudo-bosones de Goldstone, encontrados en el mecanismo de Higgs.
Estos pseudo-bosones de Goldstone son similares a los encontrados en la teorfa Maxwell 5D y en
teorfas de Stiieckelberg 5D [26]-[29], lo cual sugiere una estrecha relacién entre las teorias Maxwell

y Kalb-Ramond. La identificacién de estos pseudo-bosones de Goldston es un resultado nuevo, que

ahora también puede consultarse en [34].

6.6. Los corchetes de Dirac

Para obtener los corchetes de Dirac en una teoria con restricciones de primera clase, lo que se
hace (como en el caso KR 4D) es obtener un conjunto de restricciones de segunda clase irreducibles
a partir de las de primera clase fijando la norma. Si las restricciones de primera clase no son
independientes (como en el presente caso) se expande el espacio fase mediante la introduccién de
campos auxiliares. Las restricciones de segunda clase irreducibles que a continuacién se dan, tanto
para el modo cero como para los modos KK, se obtendran de esta manera. Los corchetes de Dirac
que a continuaciéon se hallan son resultados que antes no se encontraban en la literatura, y pueden

ahora también consultarse en [34].

Corchetes de Dirac del modo cero. De las restricciones de primera clase reducibles para

el modo cero uno obtiene el conjunto de restricciones de segunda clase irreducibles!

1= o 2 = pO 3 —99 117 _ g 4 =3 BY 1+ 0,¢, (6.38)

X(0) = 10y X(0) = Poi > X(0) = <% (0) P),  X(0o) = 9" 5ij AN
con ¢(o), p(oy campos auxiliares cumpliendo
{d” (@), p)(2)} = 0*(x — 2). (6.39)
Los corchetes de Poisson distintos de cero son
; 0 L
{xloy (@), X0y (2)} = {11 (@), BE) ()} = —5856°(@ — 2),

{0y (@), X0y (2)} = (20,11 (), 8" BYY (2)} — {0"p(o) (), Dg™ ()} = —610;076° (w — 2), (6.40)

LE] factor de 2 en las expresiones (6.38), como en el caso KR 4D, se introduce por conveniencia; para no multiplicar

las relaciones fundamentales (6.39) por 1/2.
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de lo cual se define la matriz

0 —308 0 0
160 0 0
(C’gf;) = %’ _ 83z — 2), (6.41)
0 0 0 —5;-V2
0 0 5§V2 0
y cuya inversa es
0 2045 0 0
—20;; 0 0 0
(CSB) - 7 o |62 (6.42)
0 0 0 oz
57
0 0 - O

Entonces, los corchetes de Dirac diferentes de cero, por similitud con los resultados KR 4D, son

1 .
{BY (@), ()} p = (688} — 8167)8%(x — 2)
- - 5?
- [ e (B (@), 20,175 ) g8 (0 - OB (), 18 ()
= SI5F0L — 618t oy (5030 — 50,0 — 50,0" +610:08)]8° (& — 2)6.)

y, también por similitud con los resultados KR 4D, los corchetes de Dirac no triviales entre ¢(9) y
P(0) con los campos son

J

{d9@)poy()tp = P*a@-2) - /d?’ud?’v{q(o)(w), ~9"p(o) (U))}[(LWP’(U —0)[{9;4" (v), p(0) (=)}

V2
: 1 7 _
= Br—2)— ﬁa 0;0%(x — 2) = 0, (6.44)
. l y
{¢O@) 103 ()} p = - / d3ud3v{q<0><x>,—akp<o><u>>}[%a3<u —)[{0" B{Y) (v), 11 ()}
1 i 9J J 9 _
= ﬁ[aa — 97963 (x — 2) = 0, | (6.45)
{BY @).p0(}p = ~ / Pud o B (), 20,1157 ()} 20 (u — )} {00 (), 7 (2)}
_ %[alak 0,08 — 2) = 0, (6.46)
y trivialmente,
{d9), B (2)}p =0 {11 (2), p)(2), }p =0. (6.47)

Los corchetes de Dirac de los modos KK. De manera similar al modo cero, de las restricciones
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de primera clase para los modos KK uno obtiene las restricciones de segunda clase irreducibles?

1 _ 170 2 _pn) 3 _ 105 4 _ pn) 5 _ i | Noris  qi
_ i n _ 57 _ i n
Xoy = OB + 0™ X[,y = 20,1100, xE,) =07 BY, (6.48)

CoN q(n), P(n) campos auxiliares satisfaciendo

{d" (@), p(n) (2)} = 8*(z — 2). (6.49)

Los corchetes de Poisson no cero entre estas restricciones son

i n 1 i
Dty @) xfoy ()} = {00 (@), B ()} = —5836%(x — 2),
" 1
Oy @) xty () = {02 (@), Big ()} = —58°( — 2),
(@)X ()} = {20,110,(2),8'BiY (2)} = {0p(ny (@), Dra ™ (2)} = ~6}0,076 (@ — ),
5 M o5 T LY
O @) xG ()} = {20 (). 0'By) ()} = 506w — 2)
X @) XEn (2)} = {20,117 (), 0' B (2)} = —0,0'6%(w — 2), (6.50)
de lo cual se obtiene la matriz
0 =38 0 0 0 0 0 0
36, 0 0 0 0 0 0 0
0 0 0 -4 0 0 0 0
N 0 0o I 0 0 0 0 0
(C(f)) - 2 | | B - 2.
0 0 0 0 0 —§ivZ 0 R
0 0 0 0 V2 0 0 0
0 0 0 0 0 0 0 -V
0 0 0 0 -2 0 V2 0
y cuya inversa es
0 2 0 0 0 0 0 0
-26/ 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 -20 0 0 0 0
(ng)) = 5 83 (z — 2).
0 0 0 0 © o 0 0
5f nd?
0 0 0 0 - 0 -z 0
o7
0 0 0 0 0 giop 0 o7
0 0 0 0 0 0 -0z 0

2El factor de 2 en las expresiones (6.48) se ha introducido por conveniencia; para no multiplicar la relacién

fundamental (6.49) por 1/2.
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Entonces, los corchetes de Dirac distintos de cero modos KK, por similitud con los resultados del

modo cero, son

n 1
(B (@) I (o = 5080} - 816))8° (@ - 2)
n rm 5713 n
— [ @ud o B @), 20, T ) Hig 8 (u = OB (o). 115 ()
1

1 ksl L sk
= Ik} — oo} + o

(070;0" — 610;0" — 6% 0;0" + 610;0%)]6%(x — 2)(6.51)

y los corchetes de Dirac no triviales entre ¢(™ y P(n) con los campos,

J

3z —z) = /d?’ud?’v{q(”)(w)» ~0"p(n) (U))}[i’fz”(u —0){0;4"™ (v), () (2)}

{q(n) (1[,’), Pn) (Z)}D

V2
: 1 i _
= Br—2)— ﬁﬁ ;0% (x — 2) = 0, (6.52)
{¢" (@), 0 ()}p = — / dPud*v{g™ (z), —a’fpm)(u))}[%a?’(u —v){O™ By (v), 11, ()}
L ioigi _ gigi _
= ﬁ[aa — 97963 (x — 2) = 0, | (6.53)
BE @@ = - [ Pudo( B (), 20,1175 () H g0 (o — 0)}{0ia ) (0), iy (2))
_ %[alak 040z — 2) = 0, (6.54)
y trivialmente,
{d™ (@), BS ()}p =0, {I (@), p((2), }p = 0. (6.55)

de modo que los campos auxiliares (q(o), P0)) ¥ (4(n), P(n)) son independientes del corchete
de Dirac. Condicién que es necesaria, ya que como campos auxiliares no deben contribuir con
resultados en la teoria. Notese que ya no se consideran los corchetes de Dirac conteniendo los

campos Bf:g) (no fisicos), ya que éstos han sido eliminados de la teorfa.

En resumen, la teoria KR 5D previamente estudiada es una teoria de norma reducible, cuyo

modo cero corresponde consistentemente a la teoria KR 4D, mas una torre de excitaciones KK de

)

campos masivos B,(f,i contribuyendo cada modo con tres grados de libertad. Esto 1ltimo, después

de haber fijado la norma y haber identificado los campos B,(fg) como pseudo-bosones de Golstone.
Ademas, debido a la reductibilidad tanto en el modo cero como en los modos excitados, se usé el

proceso de expansiéon del espacio fase para calcular los corchetes de Dirac de la teoria.
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Capitulo 7

La accion de Proca-Kalb-Ramond

Como es sabido, la adicién al lagrangiano de Maxwell de un término masivo dado por
Lp=—~pmE 2A,AY
P — _1 % +m o 9

que es la teoria de Proca, rompe con la invariancia de norma de la teoria. Mientras en la teoria
de Maxwell la condicién de Lorentz 9, A* = 0 se obtiene de la libertad de norma, en la teoria de
Proca tal condicion es una restriccion. En la teoria de Maxwell, el fotén no masivo posee dos grados
de libertad fisicos, obtenibles de quitarle dos componentes al potencial A* debido a la condicién
de Lorentz y a la invariancia de norma. En la teoria de Proca, el fotén es masivo con tres grados
de libertad, obtenibles al quitarle (inicamente) una componente a A* debido la restriccién de
Lorentz. En este capitulo, de manera similar, se anade un término masivo a la teoria de norma
de Kalb-Ramond, que sera la teoria de Proca Kalb-Ramond, y se hace un anélisis hamiltoniano
aplicando el formalismo de Dirac-Bergmann estricto. Este andlisis en sentido estricto de la teoria
de Proca Kalb-Ramond es una contribucion del presente trabajo, ya que no se encuentra en la
literatura. Se muestra que la teoria Proca-Kalb-Ramond no es una teoria de norma, que no es
reducible, y que el campo masivo que la describe, B,,,,, posee tres grados de libertad, a diferencia
del campo libre de Kalb-Ramond, que posee uno. Se obtienen, ademds, los corchetes de Dirac de

la teoria.
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7.1. LA ACCION DE PROCA KALB-RAMOND

7.1. La accion de Proca Kalb-Ramond

El lagrangiano de Proca Kalb-Ramond (PKR) esta dado por

1

L=533

2
17 m 17
Hy\H" — e B, B", (7.1)

en donde H,,,» = 0,Byx+0,Bx,+0xB,, y By son la intesidad de campo y el campo (masivo) de
Kalb-Ramond (KR). Se usara la métrica g,,, = (1, -1, —1, —1). Para mostrar que la teorfa descrita
por el lagrangiano (7.1) es singular y saber el nimero de restricciones primarias que deberdn

obtenerse, se obtiene la matriz Hessiana. Por similitud con los resultados (5.2) y (5.3), se tiene que

oL 1 on 1 o s
FonBay 2l =g e (72)
0L 1 . 4 1
2,08 BI(SASP _ SASPY — T (0 Bp _ jap BAY — p7aBAp

con i,j = 1,2,3. La inspeccién de (7.3) da 3 entradas distintas de cero para (W®#*?) (aquellas con
a, B # 0), lo que implica que su nulidad es 6—3 = 3 (6, son las componetes independientes de B;w)'
Esto muestra que la matriz Hessiana tiene determinante igual a cero, por lo que la teoria descrita
por (7.1) es singular, y ademads, que hay a un total de 3 restricciones primarias independientes que

uno debe obtener.

7.2. Restricciones primarias y secundarias

De la expresién (7.2), ademds de los momentos candnicos, se obtienen las restricciones primarias;

es decir, de la expresién (7.2) se tiene que

1 .

1 = 5HO”, (7.4)
= II%=0 (7.5)
= ¢Oi =%~ 0, (7.6)

siendo en efecto 3 restricciones primarias. Para obtener las restricciones secundarias de la teoria
aplicando la condicién de consistencia a las restricciones (7.6), debe obtenerse el hamiltoniano

asociado al lagrangiano (7.1). Con este fin, considerando que

1 ”
L = 1 0ij H +

- 1 1 -
H,j HI* — §m2BOiBOZ — —m?B;; BY (7.7)

1
2 x 3! 4
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el hamiltoniano candnico estd dado por

H. = / x| B, 1" — L

= /dBl‘ (HOij - (91‘Bj0 - 6jBOi)Hij - ,C:|

[ g g 1 g 1 co1 y
= /dsx QBOZ»GJ»H” + Hin” — 2 % 3'H‘ijij + §m2B0i301 + 1m2BijB” . (78)
Entonces, definiendo el hamiltoniano primario
Hy, = H.+ / d*x[agi¢"”] (7.9)

en donde aq; son los multiplicadores de Lagrange que fuerzan las restricciones primarias, y usando

los corchetes de Poisson fundamentales
(Bas (@), T1*(y)} = £ (345% — 8402)6°(x — ) (7.10)
(tomadas a un mismo tiempo), se tiene que
@) = 10 W) = [ [0, B0+ o B 0)]
_ _% / &y {28jﬂij(y)53(y — 2) + m2BYS (y — 33)}

1 .. .
= RO + w2 B ()

= % = 209,11 + m*B" ~ 0, (7.11)
las cuales son 3. Para hallar las posibles restricciones tercearias, se define el hamiltoniano secundario
Hy=H,+ / 3z |:a0i¢0i + b0i¢0i:| s (712)

en donde by; son los multiplicadores de Lagrange que fuerzan las restricciones secundarias. Enton-

ces, se tiene que
@) = O ) = [ @] - S H 0 @), ()
F (0,017 (@), By B () + (m? B (@), [aouI 1))
Aqui, por similitud con el resultado (5.13),
51 | |0, @) )| =0 (7.3

y para las demads integrales,

m2 ..
[ @t @) By B W) = —m? [ EyB )06 - ) = w20, B (@), (7.14)
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—/d3y{m2Bm(x),aok(y)HOk(y)} = —%m%ol(x), (7.15)
por lo que
9 (@) = (9 (@), o)} = (0B — Zaui)(z) =0, (7.16)

lo cual, resolviendo para ag;,
agi(w) = —20" B;; (), (7.17)
de modo que %% no genera restricciones terciarias. Todas las restricciones encontradas,
" =11" =0, ¢»=20,1" + m*B" ~0, (7.18)

es facil ver que son de segunda clase, ya que el corchete de Poisson entre ellas no es cero, y que
son independientes. Asi, al ser todas las restricciones de segunda clase, la teoria PKR no es una

teoria de morma.

7.3. Grados de libertad

Obtenidas todas las restricciones de la teoria junto con el hecho de no haber reductibilidad en

las restricciones, pueden contarse los grados de libertad fisicos como sigue:

Hay en total 2(6) variables dindmicas (6 debido a las componentes independientes de B, )

y 3 + 3 restricciones de segunda clase independientes.

Entonces, el numero de grados de libertad fisicos para la teoria PKR es
1
GL = 5[2(6) —(3+3)]=3. (7.19)

Es decir, By, es un campo masivo con tres grados de libertad.

7.4. Los corchetes de Dirac

Renombrando las restricciones de segunda clase (7.18) como

' =1 x*=20,11 + m*B", (7.20)
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se tiene
. 1 .
(X = {1 (), m*B% (y)} = 5m25“53(w - ), (7.21)

y entonces, la matriz formada por los corchetes de Poisson entre las restricciones secundarias y su

inversa son

o 0 1 1 i 0 -1 2
(CF) = L §m253(53(m—y)7 (Cap) = L ﬁéij(ss(w_y).
Entonces, los corchetes de Dirac distintos de cero son
2 3, 13 0k 3 lj
{Bu@) Byt = —5 [ d*ud® [{Byy(a), T (w) Hdwd® (u — ) {20,117 (v), By (1)}

1 . ,

= = / dBud®v [&153(@« — )83 (u — v)9;6% (v — ) (5167 — 5;5;)}
1 . .

— W(s“ajé?’(x — y) (6569 — L7
1 . )

= 500 = 0g03)9;0° (z — y), (7.22)

con lo cual finaliza el anélisis hamiltoniano.

En resumen, la teoria de PKR es una teoria con restricciones de segunda clase, unicamente. Esto
la hace una teoria sin libertad de norma. Las restricciones de segunda clase son independientes,
por lo que la teorfa no es reducible. Se mostré que el campo masivo que la describe, B,,,,, posee
tres grados de libertad, a diferencia del campo libre de KR, que posee uno. Se obtuvieron, ademas,

todos los corchetes de Dirac no triviales de la teoria.
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Capitulo 8

La accion de Proca Kalb-Ramond

en 5 dimensiones

Se ha visto que la teoria Kalb-Ramond 5D es una teoria de norma cuyo modo cero corresponde
consistentemente a la teoria Kalb-Ramond 4D mas una torre de campos KK masivos. Se vié que
el modo cero B,(g,) contribuye consistentemente con un grado de libertad, mientras que los modos

) con caracteristicas de

masivos KK Bfﬁ) con tres, habiéndose absorbido los campos no masivos B;(g
pseudo-bosones de Golsdstone. Ahora se anade un término masivo a la teoria Kalb-Ramond 5D y se
hace un analis hamiltoniano usando el formalismo de Dirac-Bergmann estricto. Este analisis estricto
de la teoria representa de hecho una contribucion del presente trabajo, ya que este formalismo no se
encuentra en la literatura. En este capitulo se encuentra, después de compactar la quinta dimensién
sobre un orbifold S*/Zs, que la teorfa efectiva de Proca Kalb-Ramond no es una teoria de norma,
y que el modo cero corresponde consistentemente a la teoria de Proca Kalb-Ramond 4D, mas una

. 0 . .
torre de campos KK masivos. Se muestra que el modo cero B,(“,) contribuye consistentemente con

tres grados de libertad, mientras que los modos masivos KK contribuyen con seis; tres para B,(fﬁ)
y tres para Bftg). En esta teoria, no se encuentra la presencia de pseudo-bosones de Goldstone.
Finalmente, se obtienen los corchetes de Dirac de la teoria. Los resultados correspondientes a este

capitulo son una aportacién que también puede consultarse en [34].
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8.1. El lagrangiano efectivo

La notaciéon que se usard es la siguiente: indices latinos maytsculos M, N toman los valo-
res 0,1,2,3,4,5, donde 5 etiqueta la dimensién extra compacta, y los indices se suben o bajan
con la métrica n = (1,—1,—1,—1,—1); y representard la coordenada en la dimensién compacta,
w,v = 0,1,2,3 son indices espaciales, z* las coordenadas que etiquetan puntos de la variedad
cuadridimensional My; ademas, se supone que la variedad compacta es un S'/Zs orbifold cuyo

radio es R. Se estudia entonces el lagrangiano Proca Kalb-Ramond 5D (PKR 5D),

1 1
L= 9 % 3!HMNLHMNL - Zm2BMNBMN, (81)

en donde Hynp = OBy + OnBry + 0, Byn vy By son la intensidad del campo y el campo
(masivo) KR 5D. La compactacién de la quinta dimensién sobre un orbifold S!/Zs impone sobre

los campos Bpsn las condiciones de paridad y periodicidad

Bun(z,y) = Bun(z,y + 27R),
Bﬁ“’(x’ 7y) = B#V(xvy)7
BH5(I'7_y) = _B,u5(xay)7

Estas condiciones permiten expresar los campos Bjsy como el conjunto de arménicos sobre My X

S1)Z,,

1 1 = n ny
BMV(x’y) = \/ﬁBfLOV)(x) + Z B,L(J,V)(x) COs (§>7

Bus(z,y) ZB ) sin Ey), (8.2)

siendo Bm), B( ") 1os modos de Kaluza-Klein (KK) dependientes de las coordenadas del espacio-
tiempo cuadridimensional, a los cuales se les asocia con una torre infinita de particulas. Expresando

el lagrangiano (8.1) como

1 1 1 1
L= mHuvAHW/\ T ZHS;WHSW N Zm2Bl“’BW - imQBuL’)BMS’ (83)

sustituyendo (8.2) en (8.1) e integrando sobre la quinta dimensién y de 0 a 27 R se obtiene el

lagrangiano efectivo (cuadridimensional)

o 1 (0) zruvA m2 (0) puv (n) rrpv m2 (n) puv
Le = gt — 4 Buw Bioy + Z 7% 3| Hpa iy = 4 B Bl
L 2p(n) pus (" (n) _n v 5K pv
m BB + (a By +0,8Y) — ZBW) (9" By +0"BY) RB(n))],(SA)
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con H ft?j)w H SZ)A definidos de manera similar que en (5.1). En el lagrangiano efectivo (8.4), el modo
cero corresponde consistentemente a la teoria PKR 4D. El primer par de términos de los modos
KK son del tipo PKR 4D, y los dos iltimos términos muestran un acoplamiento entre los campos
B,(;;) con B,(ﬁ,), con una masa m para el campo Bf;;) y una masa m2 = m? + (n/R)? para B,(fll,)
debido a la compactacién. En adelante, por simplicidad de andlis, se trunca la torre de estados KK
hasta un nimero finito k£, pudiéndose tomar el limite £ — oo al final de de célculos, de modo que
n=1,23,..,k— 1. El lagrangiano (8.4), es un resultado que no se hallaba antes en la literatura,

y puede ahora encontrarse en [34].

Para mostrar que la teorfa descrita por (8.4) es singular, asi como saber el nimero de restriccio-

nes primarias independientes que uno debera obtener, se obtiene la matriz Hessiana. A saber, para

la matriz Hessiana asociada con los campos BELOV), por similitud con los resultados (5.2) y (5.3), se

tiene que
oL, _ 1 008 _ 1 oy 35 77(0)
dae 2 2 o
8L, 1 . 5. 1
_ ai Bj(sAsP APy aX Bp ap B\ — aBip
=997 (0767 — 6;07) = (9™ 9" — g% g"") = (W)™ (8.6)
D0 BB 4 S @

y para la matriz Hessiana asociada con B(Lll)q, por similitud con los resultados (6.7) y (6.8),

9L, Lercmp0a8 | 1orcm (40 pas a 1250 R oa
LH
0L, _ l(gLKgHM _ M gHEY | l(sgéé\/]gLK _ (W)/LHKM. 65)
(0B, B)) 4 4 (m)

La inspeccién de (8.6) conduce a que las entradas distintas de cero de (W(((’)? A7) son 3 (aquellas

con «, 3 # 0), lo que implica que su nulidad es 6 — 3 = 3 (6, son las componetes independientes
de BP(LOV)). De la misma manera, de (8.8) se obtiene que las entradas distintas de cero de (W(erg KM
por parte del primer término son 3 (aquellas con K, L, M, H # 0,5), y por el segundo termino son
3 (aquellas con H,M =5,y L, K # 0,5), lo que implica que su nulidad es 10 — 6 = 4 (10, son
las componentes independientes de B(L") ). Lo anterior muestra que el determinante total es cero,
lo que muestra que la teorfa descrita por (8.4) es singular, y ademds, que 3 +4(k —1) =4k — 1
es el nimero de restricciones primarias independientes que uno debe obtener. (Ver este resultado

también en [34].)
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8.2. Restricciones primarias y secundarias

De la expresién (8.5), ademds de los momentos candnicos para el modo cero, se obtienen las

restricciones primarias para el modo cero; es decir, de (8.5) se que

M) = H(O(;‘)” (8.9)
= I =0, I = Hé”g (8.10)
= ¢ =1, =0, (8.11)
y similarmente, de la expresién (8.7), que
i = f(sL(s};fHOaﬁ + 5L5, (aOB |+ 0°BY, — RB(n)) (8.12)
- m¥% =0, 1P =0 H;n) Hgg, s = - (80 |+ 0'BY — ]’; ) (8.13)
= Py =1y ~0, o) = ~ 0, (8.14)

siendo, en efecto, 4k — 1 restricciones primarias independientes. Para hallar las restricciones se-
cundarias aplicando la condicién de consistencia a las restricciones (8.11) y (8.14), se requiere el
hamitoniano asociado con el lagrangiano efectivo (8.4). Por definicién, el hamiltoniano 5D asociado
con el lagrangiano en 5D (8.1) es H = BypINL — £ en donde By IIVL = B/WH‘“’ + 2BH5H“5.
Sustituyendo las series (8.2) en esta tultima expresién e ntegrando en y de 0 a 27 R, uno obtie-
ne la expresién 4D, BI(LOV)H(O) + >0 1[31(3)1_[”” + QB(n)Hzi)] Entonces, el hamiltoniano candnico

(n)
asociado con el lagrangiano efectivo (8.4) esta dado por

/ d?’[ BOTI + Z[ ”)H“”+2Bf§)ﬂfn)} L}

/ d%[(Hé?] 0;BY) — 0;BS I, +Z{ 5 — 0Bl — 0, BEIY,

H.

+2(2H§;)78¢Bé3)+§B(")) (n)} ,c}

3 © 5 17 O i (g () pi5
/dx[QBOiE)H(])—&—ZH I, 2[2302 I+ 200 T ) AT T

+2B o, + Rngy)H(n)} } (8.15)
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En esta tltima expresion, usando que

_ (0) fy0i3 O prigk _ 1 2p)
Le = 4H01JH(0) 2 x 3|HmkH(0) 2 m” By, B(O)
lsz B 4 Z HY 1 ) pidk
4 (0) 0w Hi) + 2w 31 ik ()
m2B(" Boi m2 <n> ij 2p(n) Lo pis
(n) pmn) T pn) 0 i  Hoi
+§<603i5 + 0,8 — B ) ("B, + "B - RB(n)>
1 (n) (n) _ T p(n) 5 i
+ (0:B% + 0, B, - =BS )(o'BE, + 0B, RB(;)) : (8.16)
uno obtiene el hamiltoniano candnico
3 (0) 5 1yid (0)yyis U @ ppisk 12500 2 1(0) pij
/d 42301. 0TI, + T T — o 3!H”,€H(O) + By Bl + 4m B} B,
] P P p—— Ly gk, 12 p00) 12 pm pis
+Z:1{2130i O + T — 2X3!Hiij(n)+ m?By; B(O)+ BB,

1 n ]- n n n
+= sz(()S)B(n) + szf5 'BS) o1 1B, + 2B o0 + §2Bgl s,

pn) p) _ T pn) i RJb j 254 ij
_Z(@Bﬂ"” +0,B\}) - =B} (0B + 0B - RB(H)>” (8.17)

Este resultado es también nuevo, que ahora puede consultarse en [34]. Entonces, definiendo el

hamiltoniano primario

Hy=H.+ /d3 {am )+ Z (al 00, +ali o )] (8.18)

0 o . . .
en donde a(()l), a(()?)7 aé?)) son los multiplicadores de Lagrange que fuerzan las restricciones primarias,

y usando los corchetes de Poisson fundamentales

174 1 L SV 17
(B (@), 11{5 (=)} = 5 (8405 — 862)0° (@ - 2),

1
{Biy (0). Y (2)} = 56,0307 — 61308 (e — 2) (8.19)
(tomadas a un mismo tiempo), para el modo cero se tiene que
3iy(w) = {0 (), Ih ()} = / =00 (), 20 0,105 + " B B ()

= Y = 2ajH§{))+m2ng) ~ 0, (8.20)

las cuales son 3, mientras que para los modos KK,

0 (@) = {602 (2), h (2)} = / & ={11%) (2), [235:?@-11?] + fBéZ)B?ff) + 286 ()}
]. i 2
= Y = 20,115, + mQB?ﬁ) + EQH% ~ 0, (8.21)
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3 @) = 1 (@) () = [ @1 (o), (B 20,11, + Sm BB (2)
1
= ”(Qa«nsﬁm?B(n))()

= Py = 28H )+m23 ) =~ 0, (8.22)

las cuales son 4(k — 1). Para obtener las posibles restricciones terciarias, se define el hamiltoniano

secundario

H, :Hc+/d3 {%2‘?01 +b(0) (0) Z (aé? (n) +a05)¢0" +b(”)w(n) (n)¢(n))]a (8.23)

n=1

en donde bég), bé?), b(n) son los multiplicadores de Lagrange que fuerzan las restricciones secunda-

rias. Entonces, para la relaciéon de consistencia a las restricciones secundarias del modo cero, por

similitud con los resultados (7.13)-(7.15), se tiene que

w(o)( z) = {¢)(2), Ha(2)} = {[20,11(5 +m23(0)](33)aH2(2)}

n 1 0 % k 0) i
/d32[{2anﬂl<o)(w),[—MHfﬂzH@ m* B B{))(2)}

1
+{m? B (@), [af T0)(2)} | = m*0, B (@) — Fm’ag) (2),  (8:24)

es decir, que

B — 5 L0 ~0, = = —20'B) (8.25)

Para la relacién de consistencia a las restricciones secundarias de los modos KK,

Wri)( r) = {7/1(()2)(55) 2(y )}—{[wknlk +m2B(n) EQH(n)](x)»HﬂZ)}
1 n 7, 1 n )
= [ oty o). g B + B B

Lo g () _ T p(m) (i g5 i
—1(0:B% + 0,B; fEB, ) (988 +8JB(n) ZB,) ()

+m2{ B, [ag) 1% 1(2)} + { = zn(m() 2Bf§>B<n><>

1
4

(0 088 587 (0525 + 0y~ )
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y por similitud con el resultado (5.13),
o) = [ @) oy @), B B,
1 ) (n) () (i pi5 . Ai psi ;
_Z(aiBjB +0;Bs;" — EBz" ) (8 Bjn + GJB(n) - EB(Z))( )}
+m? (Bl (2), laf 0 ()} + { 2116, (@), 5m* BE BE, (2)

1 (n) (n) (n) i Jd j P51 2]
(0B + 0,8 — 2B ) (0BT + 0BT - 1B ) ()

_ 1 2 Lk I 235 ly 3
- 5m OBIE () — /d z[ (aB + 8B RB(H))aja (z - 2)

n 1 n
R (n)és(xfz) (alBﬂ5 & By — 7 n>)863( )}27”2“(()1)(50)

1, Ik (n)
es decir,
ik n i5 (n) (n) _ Epn) | op(n)
akBZn) — RQBE )~ g A 0 = ay =-0"B;" + RQBZ.5 . (8.27)

Por 1ltimo,

W (@) = {w(n) (@), Ha2(2)} = {20,105 + m® B (), Ha(2)}
1 n n n n n
- /d3z[{28kﬂﬁﬁ)(x),2 2B B (2) — 1(@355@6]»35(,)_53;))
x(0'Bf3) + o' B + =B )(2)} + {m? Bl (), [ag?ngg)(z)]}}
3 L 5 (n)
= _m d’z B(n) ‘T_Z) §m Qo5 ( )
1 1 n
= mPO,B)(x) - gmiagy (2), (8.28)
es decir,
0:Bi5) — fag;? ~0 = oY =-20'BY, (8.29)

de modo que no hay restricciones terciarias para la teoria. Las restricciones obtenidas,

0i _ " 0i _ ij 2 p0i
‘?5(()5) = H(%i) =0, Yy =20 ‘Hz@}) + Bl + R =0,
05 _ 1105 . 05 _ 05
Omy =100 = 0, 9y = 20,11)) +m?Bly) ~ 0 (8.30)

es facil notar que son de segunda clase, ya que los corchetes de Poisson entre todas ellas no son
nulos. Ademas, es facil también observar que son independientes. Esto significa que la teoria PKR
5D no es una teoria con libertad de norma. Las restricciones obtenidas (8.30), cabe mencionar, son

también un resultado que no se encuentraba en la literatura, que ahora puede hallarse en [34].
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8.3. Grados de libertad

Habiendo hallado todas las restricciones de la teoria asi como observado su no reductibilidad,

pueden ahora contarse los grados de libertad fisicos como sigue:

Para el modo cero, se tiene un total de 2(6) variables dindmicas (6, son las componentes

independientes de BS,),)), y 6 restricciones de segunda clase independientes.

Para los modos KK, se tienen se tiene un total de 2(10)(k — 1) variables dindmicas (10(k — 1), son

las componentes independientes de B(LTR)[), y 8(k —1) restricciones de segunda clase independientes.

Entonces, los grados de libertad fisicos para la teoria de PKR 5D son
1
GL = 5[12 +20(k—1)—6—8(k—1)] =6k — 3. (8.31)

En particular, para el modo cero, i.e., k = 1, se tiene GL = 3, lo cual corresponde al nimero de
grados de libertad fisicos para la teoria PKR 4D. Ademds, de acuerdo con (8.31), cada valor de
k contribuye con 6 grados de libertad. Entonces, en relacién con el la grangiano efectivo (8.4),
mientras el modo cero, que es la teoria PKR 4D, contribuye con 3 grados de libertad, los modos
KK contribuyen con 6. En los modos KK, los dos primeros términos tipo PKR 4D contribuyen con
3 grados de libertad, mientras que los 3 restantes son debidos a B/(]g)' Asi, B,(f,)j)7 B,(ﬁ) y B,(fé) son
campos masivos con tres grados de libertad, en contraste con KR 5D, en donde B,(,,(,),) y B}(ﬁ,) son no
masivos con uno y tres grados de libertad, siendo absorbido el campo no masivo Bf[g). El conteo

de los grados de libertad anterior son también un resultado nuevo no hallado antes la literatura, y

puede ahora consultarse en [34].

8.4. Los corchetes de Dirac

Se renombran las restricciones (8.30) de la siguiente manera

1 _ 770i 2 _ oq 170 2 03 1 _ 70
X(o) = To)» X0y = 201y + 7By, Xiw) = s
2 _ on 174 2000 | o5 3 _ 1705 4 _ 59175 2 05
X(m) = 2011y +m°Be) + 226, Xy =Hiny, Xy = 2011, +m°B,).
Corchetes de Dirac para el modo cero. Para el modo cero, los corchetes de Poisson distintos de

cero entre las restricciones son

[l (): X () = {110 (), —m* B (2))} = gm?0"6%(a — 2), (8.32)
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por lo que la matriz formada por los corchetes de Poisson, y su inversa, son

0 1 1 | 0 -1 2
af _ S 02515 53 o (0) — 2553 _
(C(o)) Lo 2m 0Y6°(z — y), (Caﬁ) Lo m25zy5 (x —y).

Entonces, los corchetes de Dirac distintos de cero para el modo cero, por similitud con los resultados

(7.22), son
(B @) B = o [ dud o B (@), 10 @)~ 0]} 20,15 (0), B (2))
1 . .
= —5 (00 — 0iq0})0;0% (w — 2). (8.33)

Corchetes de Dirac para los modos KK. Para los modos KK, los corchetes de Poisson distintos

de cero son

Dby Xy} = T, ~m? B} = Sm5186% (=),
(s X b = {10 - QB““}f m2 (s ), (8:34)

por lo que la matriz formada por los corchetes de Poisson estd dada por

0 & 0 0
-t 0 0 0|1
(C’gbﬁ)) —m?83(x — 2),
0 0 0 1|2
0 0 -1 0
y cuya inversa es
0 —d; 0 0
0 0 0 0 2
n)\ _ il
(ca}g ) - =8 —2).

o
o
o
I
—

Entonces, los corchetes de Dirac distintos de cero para los modos excitados, por similitud con los

resultados (7.22), son

{(B§ (), B{ (2)}p = nf / dPud*o{ B (x), 1% (u)) } 810 (u — v) {20,117 (v), B{ ()}
= m(%‘sé — 61463)0;8% (& = 2), (8.35)
{B(()i (z), H?Z)( 2)}p = %5353@—2)— mi/d?’ud?’

< { BS (@), TI0F) () }008% (w — 0)[{ —m? B (v), 11%(2) }
= 6183z —2) (8.36)
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CAPITULO 8. LA ACCION DE PROCA KALB-RAMOND EN 5 DIMENSIONES
8.4. LOS CORCHETES DE DIRAC

y ademas,
BB = / dud®o{ B (@), 1105 (1))} 68" (u — v) {2211 (0), Bys(2)}
_ _37;2 / Pudv65% (@ — u)5%(u — v)6* (v — 2)d]
= —#5@53@ —2), (8.37)
(BE @B = o [ dud o BE @)1 )} - o) 20,1 (0), B (2))
- _%aﬂsf’(m —2). (8.38)

con lo cual finaliza el andlisis hamiltoniano. Notese en estos 1ltimos corchetes la presencia del

término masivo extra (n/R), adquirido por B/(ﬁ,) como consecuencia de la compactacién. Finalmen-
te, se menciona que los corchetes de Dirac anteriores son resultados nuevos, que pueden también

consultarse en [34].

En resumen, la teoria de PKR 5D previamente estudiada es una teoria con restricciones de se-
gunda clase solamente, y no reducibles. Esto la hace una teorfa sin libertad de norma. Se mostré que

el modo cero corresponde consistentemente a la teoria de PKR 4D, mas una torre de campos KK
ivos. S ; 1 sivo del mod B ib i

masivos. Se encontro que el campo masivo del modo cero Bj, contribuye consistentemente con

tres grados de libertad, mientras que los campos masivos KK contribuyen con seis; tres para B,(ff,)

(n

u5)' En esta teoria, no se encuentré la presencia de pseudo-bosones de Goldstone.

y tres para B

Finalmente, se obtuvieron los corchetes de Dirac de la teoria.
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Capitulo 9

La accion de Stueckelberg

Kalb-Ramond

Como se ha visto, la adicién al lagrangiano de Maxwell de un término masivo dado por
Lp=—~pwE 2A,AY
P — _1 Qv +m m )

que es la teoria de Proca, rompe con la invariancia de norma de la teoria. En la teoria de Maxwell,
la libertad de norma permite imponer la condicién de Lorentz d,,A* = 0, mientras que en la teoria
de Proca esta condicién es una restriccién. En la teoria de Maxwell, el fotén posee dos grados de
libertad fisicos, los cuales se obtienen de quitarle a A* una componente debido a la condicién de
Lorentz, y otra debido y a la invariancia de norma. En la teoria de Proca, sin embargo, el fotén
es masivo y con tres grados de libertad, ya que a A* se le quita solo una componente debido a la
restriccién de Lorentz. El mecanismo mediante el cual una teoria sin libertad de norma como la
de Proca la vuelve una teoria de norma a pesar de un término masivo se llama el mecanismo de
Stiieckelberg, en honor a quien lo introdujo: Ernst C. G. Stiieckelberg (en 1938). El mecanismo de
Stiieckelberg aplicado a la teoria de Proca consiste en la introduccién de un campo escalar B tal

que

1 1
Ls =~ F" Fuy + 5(mA, + 0,B)(mA" + 0"B).

La adicién del campo B hace que la teoria de Proca sea ahora invariante de norma. En esta teoria
de Stiieckelberg-Proca, a los cinco grados de libertad debido a los campos A* y B se les resta

uno debido a la condicién 9,A4* + mB = 0 obtenible de la libertad de norma, y otro debido a la

o8



CAPITULO 9. LA ACCION DE STUECKELBERG KALB-RAMOND
9.1. LA ACCION DE STUECKELBERG KALB-RAMOND

invariancia de norma, de modo que A* describe un fotén masivo con dos grados de libertad (o un
boson masivo de norma), quedando asignado el otro grado de libertad a B, y resultando una teorfa
de norma masiva con tres grados de libertad. Asi, ademds de la prediccién de bosones masivos
de norma, la implementacién del mecanismo de Stiieckelberg a una teoria sin libertad de norma
(como la de Proca) tiene la caracteristica de que el nimero de grados de libertad fisicos de la teoria

antes y despties de su aplicacién es el mismo.’

El estudio de lagrangianos de Stiieckelberg ha sido de importancia relevante en varios contextos
de la fisica tedrica. El acoplamiento de Stiieckelberg predice bosones masivos de norma en teoria
de cuerdas y supergravedad [31]. También ha sido esencial para la formulacién del compafiero
antisimétrico del gravitén [15]. Ademds, el mecanismo de Stiieckelberg proveé una forma alterna-
tiva para el mecanismo de Higgs; el mecanismo de Stiieckelberg archiva lo que es rompimiento

espontdneo de simetria sin afectar la renormalizacién [32].

Debido a lo explicado anteriormente, en este capitulo se aplica el mecanismo de Stiieckelberg
a la teoria de Proca Kalb-Ramond y se hace un andlis hamiltoniano usando el formalismo de
Dirac-Bergmann estricto. Este analisis estricto de la teoria constituye de hecho una contribucion
del presente trabajo, ya que este formalismo no se encuentra en la literatura (cf. [18]). Se muestra
que la teoria de Stiieckelberg Kalb-Ramon es una teoria de norma masiva reducible con tres grados
de libertad, que es el mismo numero de grados de libertad para Proca Kalb-Ramond. Se muestra

que el campo de norma masivo B, contribuye con un grado de libertad, a diferencia de la teoria

v
Proca Kalb-Ramond, en donde posee tres, mientras que el campo vectorial de Stueckelberg @,
contribuye con dos. Ademds, debido a que se tienen condiciones de reductibilidad, se expande el

espacio fase y se calculan los corchetes de Dirac de la teorfa.

9.1. La accion de Stiieckelberg Kalb-Ramond

El lagrangiano de Stiieckelberg Kalb-Ramond (SKR) estd dado por

1

L=53

1
HyH"™ — Z(mBW —®,,)(mB" — dM), (9.1)

en donde H,,,» = 0,Bux + 0,Bx, +0\B,, ¥y By, son la intensidad del campo y el campo de KR,

y @ = 0,2, —0,®,, con ®, el campo vectorial de Stiieckelberg. En adelante, se usa la métrica

1En el mecanismo de Stiieckelberg aplicado a la teorfa de Proca, el campo escalar B ha absorbido la polarizacién
lineal del fotén masivo A*, haciendo que este quede con dos grados de libertad. Esto lo hace fisicamente distinto
al mecanismo de Higgs, en donde los bosones de norma adquieren masa y un grado de libertad via la absorcién de

pseudo-bosones de Goldstone. Para similitudes y diferencias, ver [30].
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9.2. RESTRICCIONES PRIMARIAS Y SECUNDARIAS

g = (1,—1,—1,—1). Para mostrar que el lagrangiano (9.1) describe una teorfa singular, asi como
el nimero de restricciones primarias que deben obtenerse, se obtiene la matriz Hessiana. Para la

matriz Hessiana asociada con el campo ®,,, se tiene que

oL 1 ” N N 1 . .
BTN = §guﬂg T(mBg., — @57)(5251, - 585#) = 5(goﬂg T g ﬂgm)(mBM —d,), (9.2)
luego,
82£ ]- 08 ay af 0~ 0sp 0 cp 0p a0 apy — po
B0 Joge) ~ 2\ 9 — e — 8505) = (g™ ™) =Wt (93)
P @

Para la matriz Hessiana asociada con B,,,, por similitud con los resultados (5.2) y (5.3), se tienen

9L 1 oap 1 oy s
a(aOBaﬂ) - 2H - 29 g HO’y57 (94)

oL = Lgmrgse _ gongiy = yyas 9.5)
9(00B,,)0(@oB,;) 4 = ' '

La inspeccién de (9.3) lleva a que las entradas distintas de cero de (WW*%) son 3 (aquellas con
a, p # 0), lo que implica que su nulidad es 4—3 = 1 (son 4 las componentes independientes de ® u>'
De la misma manera, (9.5) lleva a que las entradas distintas de cero de (W*#*?) son 3 (aquellas
con «, 3 # 0), lo que implica que su nulidad es 6 — 3 = 3 (6, son las componetes independientes
de B;w)' Esto muestra que la matriz Hessiana total tiene determinante cero, por lo que la teoria
descrita por (9.1) es singular, y ademds, que hay 4 restricciones primarias independientes que uno

debe obtener.

9.2. Restricciones primarias y secundarias

De la expresién (9.2) que da los momentos canénicos, se obtienen las restricciones primarias;

es decir, de (9.2) se tiene que

I* = (mB — @) (9.6)
= II'=(mB" -a"), =0 (9.7)
= ¢'=T"=~0, (9.8)
y de las expresiones (9.4), que
v 1 Opv

H’u = §H H 3 (99)

. 1 . .
= 1Y = §H0U, % =0 (9.10)
= Y =0"=~0, (9.11)
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siendo, en efecto, 4 restricciones primarias. Para obtener las restricciones secundarias aplicando la
condicién de consistencia a las restricciones primarias, se requiere el hamiltoniano asociado con el

lagrangiano (9.1). Con este fin, considerando que

1 iy 1 . 1 . .
L = ZHOinOU + mHiijUk - i(mBOZ - <I>0i)(mB0l — (I)O’L)
1 g g
—Z(mBij - (I’ij)(mB” - (I)”), (912)

el hamiltoniano asociado esta dado por

H., = / Bz [d)MH” + B, II" — c}
= /d3$ |:(mB01 — HZ)HZ — <I>03iH’ + 2H7;jHU + 2Bj08iH” — (Hin” + 72 % 3!H¢ij”k
1 1 g g
751_.[1‘1_.[1 — 1(mB1J — @ij)(mB” — (I)U))
— /d% [BOi(mH’ + 20;117) — ®O, 11" — ininl + 11,119 — mHiij”k
1 - .
—i—z(mB” - @ij)(mB” - CI)IJ>:| (913)
Entonces, definiendo el hamiltoniano primario
H{=H,+ /d3$[a0¢0 + a0i¢0i]7 (914)

en donde ag , ag; son los multiplicadores de Lagrange que fuerzan las restricciones primarias, y

usando los corchetes de Poisson fundamentales
v 1 1% 17
{@,(2),I1"(y)} = 66 (x —y), {Bap(x), 1" (y)} = 50605 — 8404)8°(x — y) (9.15)
(tomadas a un mismo tiempo), se tiene que

¢°(x) = {¢°(x), Hu(y)} = /dBy{HO(w),*[éof)iHi](y)} = 0II' ()

= OII" = 0, (9.16)

¢% (x) = {¢" (x), Hi(y)} / d*y{11% (x), [Bor(mI1* + 20;11%)] (y) }
= —%[ml’[i + 20,11 (z)
= % = mIl' 429,117 ~0, (9.17)

siendo 4 restriciones secundarias. Para hallar las posibles restricciones terciarias, se define el ha-

miltoniano secundario

Hy=H.+ /dSI [aoébo + a0; % + bo® + by | (9.18)
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en donde by , bg; son los multiplicadores de Lagrange que fuerzan las restricciones secundarias.

Entonces, aplicando la relacién de consistencia a las restricciones secundarias se tiene que

(z) = {¢°(z), Ha(y)}
= /d?’y{akﬂk(x),

= %/d?ﬂ {[mBij — 9i|(y) (83'81-53(3: —y) — 0;0;6°(x — y))] =0, (9.19)

[(mBij - q’z’j)(mBij - <I>”)](y)}

| =

Pla) = @), Ha)
= [ @umi (@), {(mB,, - @) mB7 - () +
/d3y [{2(%11%(36)7 [—ﬁHiijijk + i(mBij - (I)ij)(mBij - Cplj)](y)}} -(9.20)

Calculando separadamente estas integrales, se tiene que

[yt @), 5B, - @) mB7 - &) ()

m? . ..
- /d?’y[B” — ®17)(y) (010:0% (& — ) — 810;6%(x )

=m? /d?’y(Bil — ) (1)0;6%(y — x) = —m?[9; B! — 9;0"(xz), (9.21)

y por otro lado, por similitud con el resultado (5.13), que

1

/d3y{26nHl”(a:), —m[Hiijijk](y)} =0, (9.22)
y ademss,
[ dvaat* @), JmB, - @,)mBY - 29)))
— 2 / By[B® — 3% ()06 (x — y) = m2 (0B — 9, 0M](z),  (9.23)
por 1o que
(@) =0, (9.24)

de modo que la teoria no presenta restricciones terciarias. Las restricciones encontradas,
P =1"~0, ¢"=1"=~0, P°=I'~0, ¢° =mlIl’+ 20,117 =0, (9.25)

es facil ver que son de primera clase, ya que en ellas solo aparecen los momentos canénicos (i.e., su

corchete de Poisson es cero). Estas, sin embargo, son reducibles o dependientes, ya que se cumple
9% — map® =0, (9.26)

de modo que las restricciones (9.25) describen un sistema reducible.
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9.3. Grados de libertad

Habiendo encontrado las restricciones de la teoria y las relaciones de reductibilidad, pueden

contarse los grados de libertad fisicos como sigue:

Se tiene un total de 2(4 + 6) variables dindmicas (4 por parte de ®, y 6 por parte de

BW), y 7 restricciones de primera clase independientes.

Entonces, los grados de libertad fisicos para la teoria de SKR son

GL = %[2(10) —2(7)] = 3, (9.27)

los cuales son los mismos que en la teorfa PKR. Aqui, nétese que un grado de libertad es debido
al término KR en el lagrangiano (9.1), mientras que los demds son debidos a ®,. Asi, B, con-
tribuye con un grado de libertad y @, con dos. (Esto es similar a la teorfa de Stiieckelberg-Proca

mencionada al inicio.)

9.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transformaciones de norma, y el generador

estd dado por
g = /de |:60¢0 + €0i¢0i — Gwo =+ €iw0i 5 (928)

siendo las €’s los pardmetros de las correspondientes transformaciones. Para los campos &, y ®,,

se tiene que

500(a) = [ Eyl@yla) Iw) = eole) = o) (9.29)
50,(a) = [ &y, [+ meI) )
= [ @rewd5 (@ - )8! + motey(w) = due(w) + me, ), (9.30)

mientras que para By; y By, por similitud con los resultados (5.16) y (5.17), que

0By (z) = 1501‘(37) =

B (), 0By (x) = Oke(z) — ey, ();

es decir, se tienen las transformaciones de norma

1
0Dy = Ope, 00, = 0ie + me;, 0By, = 58061-, 0B;; = Oje;

;= 05e,, (9.31)
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las cuales pueden escribirse en forma compacta como

6®, = due +me,, 0B, =06, — 0y, (9.32)

%

con ¢y = 0.

9.5. Los corchetes de Dirac

Para obtener los corchetes de Dirac, debe obtenerse un conjunto de restricciones de segunda
clase irreducibles a partir de las de primera clase fijando la norma. Ademds, debido a que las
restricciones de primera clase no son independientes se expande el espacio fase mediante la intro-
duccién de campos auxiliares. Haciendo lo anterior, uno obtienen las restricciones de segunda clase
irreducibles

=IO, N2 =a,, P =1% 4= B,, O = 90T, S =9,
X = mll* + 20;,11Y — 9'p, x® =& B;; + iq, (9.33)

con ¢, p campos auxiliares cumpliendo

{q(x),p(y)} = 6*(x —y). (9.34)

(@), ()} = {I°(x),P(y)} = —6%(z — ),

@AW = (1), By(y) = 308 —v),

{(X°(@),x°()} = {00'(x),®;(y)} = —0,0'0°(x — ),

(@), X" ()} = {&P;(x),mll'(y)} =md'6*(z —y),

@) xPw)} = {20,117 (2),0'B(y)} — {0'p(2),0ka(y)} = —6,0;08°(x — y), (9.35)

obteniéndose entonces la matriz

o -1 0 0 0 0 0 0
1 0o 0o 0 0 0 0 0
0 0 0 —38 0 0 0 0
(9 = 0 0 4% 0 0 0 0 0 By,
o0 0 0 0 -V 0 0
o0 0 0 VX 0 md 0
o0 0 0 0 -md 0 =GV
o0 0 0 0 0 &VE 0
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y cuya inversa es

0 1 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 O 0 2055 0 0 0 0
0 0 —26; O 0 0 0 0 3
(Cap) 1 NV R

0 0 0 0 0 vz 0 - ~voye
0 0 0 0 -9z 0 0 0

j
00 0 0 o 0 0 &

59 57
Entonces, los corchetes de Dirac diferentes de cero son
{®,(2), W (y)}p = 66°@x—y)
= [ @ udo[ (@), BT () Higry 8 - 001 0), T ()]

= §03(x—y) - /d?’ud?’v [5fak53(z - u)%és(u —0)9'63 (v — y)§lj}
= §Bx—y)+ ﬁzs;afakalﬁ(x —y)
= [&+ ﬁa,-aﬂ]a (z —y), (9.36)

- [ a0, A0 (1)} = 558 = WO By ). 9 )}

0,0 1)}
— [ o[, )} 007 By (0, 1 )]
m 1

5 /d?’ud?’v [3153(:6 —u) CAE

o7 . .
- / dBud®v [m5§53(x - u)v—l253(u - v)%(déd;f — 5561976 (v — y)}

975% (u — v)OP (v — y) (815" — 53;5;)}

(3353( — )83 (v — )

o 2V2

5} /d3ud3 [(“) 83 (x — u) (V
ak53( 0)d16% (v )}
Y),

= 5w 15507 — §79K16° (x —

)?
[676% — 6h 671076 (x — y)

(9.37)
y por similitud con los resultados (5.22),

Byl@). M Wn = 5658 — 01685 — )
— [ @ud ol B, (2), 20,1 () 6% (0 - V0B, (0). 10 ()}

- [5k51 — Lok + ﬁ((ska 9 — 510;0% — 650,0" + 650,0%)16% ( — y) (9.38)
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Ademas, los corchetes de Dirac no triviales entre ¢ y p con los campos, son
—mo* .
@ pwp = - [dude [(2:0), O () Yy 0% = ) {Oka (), (0]
k
= [ @[ (@, ) mit )58 - o). 00}

1
(V2)?

= m/d3ud3v {&53(33 —u) 9"6% (u — v)06° (v — y)}

k
—m/d3ud3v [6563(35 - u)%&i(u — 0)Op6% (v — y)}
m m

y por similitud con los resultados (5.23)-(5.25),

J

(a@ o) = 8-y~ [ Puds]{al), -0} w - ){0ja(0).p(0)}]

VQ
— Pla—y) - %aiaia?)(x —y) =0, (9.40)
LJ 3 3 k 6116 3 m ij
W W =~ [@ue]law), 0P 5w~ vl B, 0 1 W)
- T;[aiaj — 901]6%(z — ) = 0, (9.41)

(Bul@)pwn = — [ Eudo{Byle), 20,1 @)L ~ o) 0ra(0).p(0)}

1
ﬁ[alak — 8k81}53(x — y) = 0, (9.42)

y trivialmente,

{g(2),2;(y)}p =0, {q(x),B;;(y)}p =0, {q(x),U;(y)}p =0,

{Hi(l‘),p(y), }D = 07 {Hij (.’L‘),p(y), }D = 07 (943)

lo que muestra la independencia de los campos q y p del corchete de Dirac, condicién que es
necesaria, ya que como campos auxiliares no deben contribuir con resultados en la teoria. Con esto

se concluye el analisis hamiltoniano.

En resumen, se ha mostrado que la teoria de SKR es una teoria de norma masiva reducible con
tres grados de libertad, que es el mismo nimero de grados de libertad que en PKR. Se mostré que

el campo de norma masivo B, contribuye con un grado de libertad, a diferencia de la teorfa de

v
PKR, en donde este posee tres, y que el campo vectorial de Stiieckelberg ® . contribuye con dos.
Ademis, debido a que se tienen condiciones de reductibilidad, se usé6 el proceso de expansién del

espacio fase y se calcularon los corchetes de Dirac de la teoria.
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Capitulo 10

La accion de Stueckelberg

Kalb-Ramond en 5 dimensiones

Se ha visto que la teoria Proca Kalb-Ramond 5D no es una teoria de norma, y que el modo
cero corresponde consistentemente a la teoria Proca Kalb-Ramond 4D mas una torre de campos
KK masivos. Se vié que el modo cero BF(B,) contribuye consistentemente con tres grados de libertad,
mientras que los modos KK contribuyen con seis; tres debidos a Bfﬁ) y tres debidos a Bl(];). Ahora
se aplica el mecanismo de Stiieckelberg a la teoria Proca Kalb-Ramond 5D y se hace un anélis
hamiltoniano usando el formalismo de Dirac-Bergmann estricto. Este andlisis estricto de la teoria
constituye una contribucion de este trabajo, ya que este formalismo no se encuentra en la literatura.
En este capitulo se encuentra, después de compactar la quinta dimensién sobre un orbifold S!/Z,
que la teoria efectiva de Stiieckelberg Kalb-Ramond es una teoria de norma reducible cuyo modo
cero corresponde consistentemente a la teoria Stiieckelberg Kalb-Ramond 4D, mas una torre de
campos masivos KK. Se muestra que el modo cero contribuye consistentemente con tres grados
de libertad (igual que en PKR 4D); uno debido a Bfg,) y dos debidos a @LO), mientras que los
modos KK contribuyen con seis (igual que en PKR 5D); tres debidos a B,(],ﬁ) y tres debidos a
<I>,(Zl), habiéndose absorbido los campos con caracteristicas de pseudo-bosones de Goldstone B,(fg)

y <I>én). Ademis, debido a que hay condiciones de reductibilidad en el modo cero y en los modos
excitados, se extiende el espacio fase para obtener los corchetes de Dirac de la teoria. Los resultados

correspondientes a este capitulo son una aportacién que también puede consultarse en [34].
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CAPITULO 10. LA ACCION DE STUECKELBERG KALB-RAMOND EN 5
DIMENSIONES
10.1. EL LAGRANGIANO EFECTIVO

10.1. El lagrangiano efectivo

La notacién que se usara es la siguiente: Indices latinos mayusculos M, N toman los valores
0,1,2,3,5, con 5 etiquetando la dimensién extra compacta, bajandose o subiéndose con la métrica
plana n = (1,—1,—1,—1,—1); y representa la coordenada en la dimensién compacta; los indices
griegos u, v toman los valores 0,1,2,3, y z* denotan las coordenadas etiquetando puntos de la
variedad cuadridimensional My. Considérese entonces el lagrangiano de Stiieckelberg Kalb-Ramond

5D (SKR 5D),

1

L=533

1
HMNLHJWNL— Z(mBMN—CI)MN)(mBMN—CI)MN), (101)

en donde Hynp = OBy + OnBry +0Byun v Pun = O ®n — On Py son las intensidades
de campo de Kalb-Ramond y Stiieckelberg 5D, v By y ®n los campos de Kalb-Ramond y de
Stiieckelberg 5D. La compactificacién de la quinta dimensién sobre un orbifold S*/Zy impone sobre

los campos @ y By las condiciones de paridad y periodicidad

Oy (z,y) = o (w,y + 27 R),

P (2, —y) = du(,y),

®5(x, —y) = —¢s(z,y),
Bun(x,y) = Byn(z,y + 27R),
B (x, —y) = Bu(2,y),
Bys(x,—y) = —Bus(z,y).

Estas condiciones permiten expresar los campos ®5 y By como el conjunto de armoénicos sobre

M4 X Sl/ZZ,

n=1
1 1 =
BMV(*T7 y) = VorR P(B,)(CC) + ViR Z Bl(j’t’) (x) cos (7)7
n=1
1 (oo}

Bus(z,y) = —= Y BUY(2)sin (@) (10.2)
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siendo @L"), B,(ﬁ,), Bf;g) los modos de Kaluza-Klein (KK) dependientes solo de las coordenadas del

espaciotiempo cuadridimensional. Expresando el lagrangiano (10.1) como

1 1 . 1
L = mHHMH’“”\ + ZH5WH°’“’ - i(mBl“, —Q,,)(mB" — ")
1
—i(mBm —®,5)(mB" — &), (10.3)

sustituyendo las series (10.2) en (10.1) e integrando sobre la quinta dimensién y de 0 a 27R, se

obtiene el lagrangiano efectivo (cuadridimensional)

1 (O) NN 1 0 0 v v
Lo = o 3'HWH(O) - i(me(“’) o)) (mBly — ()

A (n) _ ) my mv
+ Z |:2 x 3l ,ul/)\ (n) 4(me,71i (P/XLL/ )(mB( ) (P(n)>

- (n) _ n _ ) M5 5 _ g
(mB Y — 0,20 - Zaf )( BS — 0", ~ RQ)W)
(n) (" n v 5 v
(a B™ + 8,8 EBEW )(omBt3 + 0B, RBgn))} (10.4)
con HIE?I)A, H S;)/\, <I>(O) y <I> ) definidos de manera similar que en (5.1). Nétese que el modo cero

corresponde consistentemente a la teorfa SKR 4D, y que los modos KK estan compuestos de un

término tipo SKR 4D, mas un término que acopla @L " con B(5) y <I>( ), y otro que acopla B( ")

con Bfg). Nétese también que Bfw) y @,(f) tienen, respectivamente, masas m2 = m? + (n/R)? y

m,, = (n/R) debido a la compactacién, y que Bffg) tiene masa m, mientras que (I’é")

€s no masivo.
En adelante, a fin de hacer mds claro el analis de los resultados, se trunca la torre de exitaciones
KK hasta un numero finito k, pudiéndose tomar el limite £k — oo al final de de célculos, de modo
que n =1,2,3,....,k — 1. El lagrangiano efectivo (10.4) es un resultado que no se hallaba antes en

la literatura, y que ahora puede consultarse en [34].

Para mostrar que la teorfa descrita por (10.4) es singular, as{ como saber el nimero de restric-

ciones primarias independientes que uno deberd obtener, se obtiene la matriz Hessiana de la teoria.

A saber, para la matriz Hessiana asociada con @LO), por similitud con (9.2) y (9.3), se tiene que

aﬁe 1 08 afB 0 (0) (0)
m = 5(9 9°7" =gy ’Y)(mBﬁfy - @57), (10.5)
82,68 — ( Op a0 _ ap ) Wpa (10 6)
p@eMa@e®) 7 o |

Para la matriz Hessiana a sociada con B,(L?,), por similitud con (5.2) y (5.3), se tiene

dL. [

a /35 (0)
e ~ggP O (10.7)
9(2yBY)) © 2 o8
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0L 1 . . 1
€ _ ai  B7(SASP ASPY aX Bp ap By — afp
= —g"g" (6765 — 6707) = —(9™"g"" — g*Fg"") = WP (10.8)
d(0oBL)D(BY) 4 i 4 (0)

Ahora, para obtener la matriz Hessiana asociada con <Z)(Ln),

oL 1 0
e - - By pHrysL 0 _ 0
o(90®})) 2B = B0 gty M B~ i)
l 0 l
— HS _ gugd oM 0 5L O (O Y0
(mBly - o"@f) — 2l ) 900! 56,27 (mB - 9,00 - Zoh)
Lop uB vy ) D\ 50 sa 0 s 0sL ab a s I o
= 50699 (mBY) — ))(5)57 — 6237 + 8% (mB(l) — 0" — - (n))
1 l l " l l l
= JOk(g"9™ =g g (mBE) — @) — shokg (mBf) - 9,08 + Lol ), (109)
entonces
82,66 _ 715L(90ﬁga7 o gaBQO'y)((SO(SM . 505M) + 505{59&”5055{,\4
(02}7) (D0 21) 2°° P e

= 5(g"M = g*0g"M) + 6503 = (¢"°g"M — ™M) + 83165 = Wil (10.10)

Por tltimo, para la matriz Hessiana asociada con B(Lll)q, usando los resultados (6.7) y (6.8),

9L 1LH0aﬁ L or cH (40 pas o 150 hOa

m - §5a5/3 Hpy + §5a55 (3 By + 0% By — EB(;L))v (10.11)
LH
P Le Lor el ek sM il jn in jl 1or el sk M in
8(603(771) )a(aOB(h)) = 151 5j 5l 5n (g gJ —g g] ) + 1(51 55 5,” 55 g
KM LH
1 1
_ Z(QLKgHM _ gLMgHK) n Z(sgaygLK = W(Lmb)IKM (10.12)

La inspeccién de (10.6) lleva a que las entradas diferentes de cero de (W(‘g))‘) son 3 (aquellas con

a,p # 0), lo que implica que su nulidad es 4 — 3 = 1 (4, son las componentes independientes de
@LO)). Asimismo, de (10.8) se obtiene que las entradas diferentes de cero de (W(%? ) son 3 (aquellas
con «, 3 # 0), lo que implica que su nulidad es 6 — 3 = 3 (6, son las componetes independientes
de BEL()V)). De la misma manera, de (10.10) se obtiene que las entradas distintas de cero de (W(%L )
son 4 (aquellas con L, M, # 0), lo que implica que su nulidad es 5 —4 =1 (5, son las componentes
independientes de <I>(L") ). Finalmente, del resultado (10.12) se obtiene que las entradas distintas
de cero de (W(egKM) por parte del primer término son 3 (aquellas con K, L, M,H # 0,5), y por
el segundo término son 3 (aquellas con H, M =5,y L, K # 0,5), lo que implica que su nulidad es
10 — 6 = 4 (10, son las componentes independientes de B](ﬁ\)/f) Lo anterior muestra que la matriz
Hessiana total tiene entradas cero, lo que significa que la teoria descrita por (10.4) es singular, y
ademds, 44 5(k — 1) = 5k — 1 es el nimero de restricciones primarias independientes que uno debe

obtener. (Ver tambien este resultado en [34].)
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10.2. Restricciones primarias y secundarias

De las expresiones (10.5) y (10.7), ademés de los momentos candnicos, se obtienen restricciones

primarias; es decir, de (10.5) y (10.7) se tiene que

nwoo_ Op Op uyo Opv
H(o) = mB(O) <I>(0), H(o) 2H(0) , (10.13)
. ) , 1
(N 07 __ i (013 07y
= H(o) =0, H(o) =0 H(o) = mB(O) <I>(0), H(o) 2H(0) (10.14)
= P = =0, ¢, =1, =0 (10.15)
Similarmente, de (10.9), se tiene
0 0 n
1, = 65 (mB “) o ) +§L(mB A E@?"))’ (10.16)
_ _ _ 0 " 50
0 — 710 ~
= ¢(7L) = H(n) ~ 0, (1018)

y de (10.11), que

L cH r70apB LsH ( 90 pab e’
i = 5 Lofmel + 5 6! (a B +0°BY) — =B(5)). (10.19)
iy 0ij 0 0 01
= IV =0, 1% =0, H(; ) H(n;, s, = (a B{ +9'BY, - EB(;)) (10.20)
= Py =10y =0, 6 =TI ~ 0, (10.21)

siendo, en efecto, 5k — 1 restricciones primarias independientes. Para hallar las restricciones se-
cundarias debe obtenerse el hamitoniano asociado con el lagrangiano efectivo (10.4). Por de-
finicién, el hamiltoniano asociado con el lagrangiano (10.1) es H = @NHL + BNLHNL - L,
en donde ®NITL + BypIINL = &,11* + &511° + B, I + 2B,511#°. Sustituyendo las se-
ries (10.2) en esta expresién e ntegrando en y de 0 a 2wR, uno obtiene la expresién 4D

<I>,(?) ( y T BLV)HW + > 1[@,(7) ) T B;SV)H’(‘:) @én)l_[?n) + 231-(;)1_[%5)] Por tanto, el hamil-
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toniano asociado con el lagrangiano efectivo (10.4) estd dado por

- 3 0) 1~ (0) W P (n) v
H = /dx[(I) I, + BIIL, Z[ 1y, + By

(n) (n) e
+o{T?, + 2B H(n)} c.|

0) 0 0) 0 7 n
- /d%[(cpgl + 0,0y, + (HY,) — 0, BYy) — ;B )H])+Z[ § + g 0fI,

+(HS ~

0ij 0; Bj(g) 8JB(S?))H”

m + (mBgg — 11§ — *‘I)(()n))n(n)

R
221y — 9,BSy) + RB(")) (n)} - Ee}

_ 3, O (0) (0) (0)pis
= /d [B (mITg) + 20,11 ) — o o1, — IV Iy + 211011,

+Z [Bgy (T}, + 20,117 ) — BV AT,y — TIVTIE,) + 20V — VI,

n=1
HAILPIES) + BSY (mII,) + 20,11% ) + R(ngj)H(n) WH(”))} c } (10.22)

En esta tltima expresion, usando que

Lo = HOH + o g HOHY — S(mB() — 8 (mBf) - ‘1)< ))
—mB) — om0l + 3 [ +
S mBS) — @) Bl — ®%) — {(mBY — 8 (mBl ~ @)
—%(mBg - 000" — 2o ) (mBfG) - 0°0f,) - 7 o0,))
—%(me — 900 — %@§”>)(mBg‘g) —op,, —% 2n>)
+%(8OB§§) + ;B — %B(" ) (8B, +0'BYS, ~ RB(n))
i(a By + 0By - 2B ) (0'B,) + "B, RBgn))] (10.23)
uno obtiene el hamiltoniano canénico
H. = / d%{Bg‘y (mITg) +20;117) — & BT}, — %HEO) (o + T TG — 5 i S!Hg,ggggf

1 0 0 ) 1) 7 n i
+Z(mB,§j) ) (mBl) — @) + Z[ § (mllE,) +20,11)) — fV 9,1,

L) (m)7yid L ooy gk Lo pm) _ gm) ij ij
— I Wy + TG — oo r By Hiy + (B — @7) (m B, — @)
lnem o, + B(”)(mn +20,11%) + = (2BS IR — ®{I1?,))
2 (n) (n) 05 R 01 (n) — %0 (n)
() () (n) i ;
(n) (n n) 35 i D5 i
—7(8 By + 0,85 - 2 Bj; )(8’B + B~ RB(R))” (10.24)
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El hamiltoniano anterior es un resultado nuevo, el cual puede ahora encontrarse en [34]. Entonces,

definiendo el hamiltoniano primario

H, = H, + /d%{ag%go) +al) ol + Z ( M0+ al ok + aly 6% )} (10.25)

en donde aéo), a((;z), aén) a((f;), aég) son los multiplicadores de Lagrange que fuerzan las restricciones

primarias, y usando los corchetes de Poisson fundamentales

L " v 1 L SV L CUV
{00 (2). 1) (2)} = 0L8° (v — =), (B (@), 1 ()} = 5 (04} — 0505)0%(w — 2), (10.26)

18 (), 11, ()} = 8h650% (@ — 2), (Bl (), T (2)) = 5oL (6} o — 810316 — 2)

(tomadas a un mismo tiempo), para las condiciones de consistencia sobre las restricciones del

modo cero se tiene que

(@) = el @l ()} = = [ (Tl (@), (8002} = Dullp (o).
= Y = 8~Hi)%0 (10.27)

9% () = (6% (x), Hi (=)} / a2 110, (), (B (miTly, + 20,115 ))(2)}

- 2[mn o) + 20,111 )(2),

= Y mlT{g) + 20,11 ~ 0, (10.28)

las cuales son 4, mientras que para las restricciones de los modos KK,

Oy (@) = {60 (2). Ha(2)} = / d* {110, (@), [@") (AT}, + Z117,))(2))
= [&»an)—i-ﬁl_[?n)](x)
= W = @‘H?nﬁ%ﬂ?nwo (10.29)
Hiylo) = {00y 0 )} = / 2| (% 0, 1B mit + 20,112 + 2B )}
= [mH(n) +20; H( )+ RZHEn)]( x),
= Yy = mll, + 20, H” R 200(;,) ~ 0 (10.30)

(@) = (@) = [ s % o) (B (it + 20,15 )|
= —[mIT},) + 20,11 | (),

— 57
= Yl = mll,) +20,I17) =0, (10.31)
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las cuales son 5(k — 1). Para hallar las posibles restricciones terciarias, se define el hamiltoniano

secundario
= HC+/ de { Y 8oy + agi 85y + b6 oy + by ¥
k—1
+Z(a6") n)+a02)¢(n)+a Dln +b”)w(n + o P + %?S))} (10.32)
n=1

(0) 2(0) z(n) z(n) 1(n) ‘ P
en donde by”, by,”, by, by;”, by; son los demds multiplicadores de Lagrange que fuerzan las
restricciones secundarias. Entonces, por condicién de consistencia a las restricciones secundarias

del modo cero, y por similitud con los resultados (9.19) y (9.21)-(9.23), se tiene que

h 1 7 7
Py (@) = {9 (), Ha(2)} = / d° {011y (@), 7 (B} — ) (mBl) — ®(F))(2)} =0,
(10.33)
1 1, ’L
P @) = () (x), Ha(2)} = / d3z[{mnéo)<x>,4[<m3§?’<I>§§-”>< mB(j — ®3)](2)}
1 1, 1 1,
OIS (2), [~ HVH + (B — ) (mBl) 817 ))(2)} | =0,
(10.34)
mientras que para las restricciones secundarias de los modos KK,
0@ = (U0 (@), Ha(2)} = / a2 [ MBI — 00 | (AL, (2), —0) (=)}
n n
5 (mBG) = 997, — Tl ) (NI, (@), —2(")(=)}
n % U (n)
o (mB) — 085, - 100, )T (o), -0 2]
— % / dSZ[[mBgﬂ) égi)](z)[ajai_aiaj](s?’(x—z)}
n i5 i &5 n i n i 55 n
(10.35)
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En cuanto a la relacién de consistencia

(@) = {¥(n)(2), Ha(2)}

i 1 n n 7
= /d?’z[{ml'[ n)(x)7z[(mB£j) —<I>(u))(mBJ

_HY
ij () — P

7 9(2)

+; (mBlg) 2,00 — R@E")) (mBis — 0P}, — %‘an)) (2)}

1 n ijk n n %, 2
+{25kﬂl(lfl) (@), [_2 » 3!Hi(jk)H(fL) +7 ( Bz'(j) - (I)Ej))(mB(]) B (I)(zl))]( ?)

1 (n) (n) _ M ) ( 4ipis | i ij
—7(aiBj5 + 0B - ZB; )(a BJ® + 0B} —EB(H)>( )}

%@E")><m 81<I>(n) ;Z(n))(z)

n ;i
+ &' B — =B, )>(z)}}

o, bt - 0
(n) (n) () ( 5i RI5

77(6 By +0,B - 2B ) (o8,

Para calcular esta integral, por similitud con (9.19) y los resultados (9.21)-(9.23), se tiene que

[ | ontt @) J1mB - 2 0mB, - 21

1 n 7, n n % 7
RO (@), [ HGLHES + 3mBS) = @) mB, — @7 )]z >}}=0, (10.36)

2 31 k) T
entonces,
. 1 ) ) n .
01 _ 71) (71) (TL) 5 T FHO 7
’lr/)(n) (1‘) - /d z |:{mH(n)( ) <m315 8 (b R(I)’L ) (mB(n) -0 (I)(n) - E (n)) (Z)}
n n n 7 n _ij
20,11 (2), — < (a B + 0,8 - 2B (a B, + 0Bl — =50, ()}
" 55 (n) (n) (n) i i
+{E2 (n) (z), 5 (mBiS — 0;%5 R(I)z ) ( -0 (n) R(I)(n)) (2)

1 () () _ 1 p)\ ( 5i gi® g
_Z(aiBjFJ +6jB5i _EB )(8 B(n) ajB(n) RB(n)>( )}

= /dgz{ R(mB 8Z(I> - %(I)in))(f’(x—z)

l )5 3 n i i n
+ (0B + 0B, (n>)5 0 (a = 2) = m (mB{S,) - '}, -

R ?m)
%@ —2) - % (51353) + 0B — RBZ; ))a 53z — z)] = 0. (10.37)

75



CAPITULO 10. LA ACCION DE STUECKELBERG KALB-RAMOND EN 5
DIMENSIONES
10.3. GRADOS DE LIBERTAD

Por 1ltimo,

¢?3)($) = {ul) (@), Ha(2)} = {[mII},) + 20,1135 ] (), Ha(2)}
=[x ity o). g (B - 0 - Fal) (mBE, - 008, + Fofy) ()
+{2aknﬁﬁ)(x),§(m3§;) — 90 — Ec1>§”>)( 500, + RCID(n))( 2)
i(aiBj»@ + 0,8 — ZBY) (9B + 07 BE, + 2B ) (- )}(z)]
_ / iz {m(mei) — 00, + 20, ) ()08 (@ - 2)
—m (mB 81<I>(n) + Ré(n))(z)8i63(x - z)] =0. (10.38)

Por tanto, la teoria no presenta restricciones terciarias. Las restricciones halladas,

0 _ 110 . 01 Oz ~ 0 — 9717 A~ 0i _ i ij
0 _ 10 0i — 7700 . 05 _ 1705 . i n
lJ i5 — 5 . ~
w(n = ny 1 20511 RQan) ~ 0, w(n) =mll, + 26311(”) ~ 0, (10.40)

es facil ver que son de primera clase, ya que en ellas s6lo aparecen los momentos candnicos (i.e.,
los corchetes de Poisson entre ellas son nulos). Estas restricciones, sin embargo, son reducibles o

dependientes, ya que se cumple que

por lo que las restricciones (10.39) y (10.40) describen un sistema reducible. La teorfa SKR 5D
es entonces una teoria de norma reducible. Las restricciones anteriores, debe mencionarse, son un

resultado que no se hallaba antes en la literatura, y puede ahora consultarse en [34].

10.3. Grados de libertad

Habiendo encontrado todas las restricciones de la teoria y las relaciones de reductibilidad,

pueden contarse los grados de libertad fisicos como sigue:

Para el modo cero, se tiene un total de 2(4 + 6) variables dindmicas (4 por parte de (ID,(P)

y 6 por parte de B,S(,),)), y 7 restricciones de primera clase independientes.

Para los modos KK, se tiene un total de 2(5 + 10)(k — 1) variables dindmicas (5(k — 1)
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por parte de <I>(L") y 10(k — 1) por parte de B(L%), y 9(k — 1) restricciones de primera clase

independientes.
Entonces, los grados de libertad fisicos para la teoria de SKR 5D son

GL = %[8 + 12+ (10+20)(k — 1) = 2(7) — 2(9(k — 1))] = 6k — 3. (10.42)

En particular, para el modo cero, i.e., k = 1, se tiene GL = 3, lo cual corresponde al nimero de
grados de libertad fisicos para SKR, 4D. Ademds, de acuerdo con (10.42), cada valor de k contribuye
con 6 grados de libertad. El anterior conteo de los grados de libertad, es también un resultado que

no se halla en la literatura.

10.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transfromaciones de norma, y el generador

esta dado por
G = [ e[ty + el — <Oty + 0ty + 47,
+e5P 000y — €Myl + eyl + el ol + Ml | (10.43)

siendo las €’s los pardmetros de las correspondientes transformaciones. Para los campos del modo

cero, por similitud con los resultados (9.29), (9.30) y (5.16), (5.17), se tiene que

60" (2) = & (x) = &0 (2), 50 (@) = 0O (@) + mel” (a),

0B (z) = e (x)

@) = 50, B (@) = 0 (@) — a1l (),

1
2
y por procedimientos completamente similares a los anteriores, para los campos de los modos KK

fI)g"), <I>Z(-n)7 Béi) ,gl), se tiene

60§ () = e (x) = ¢ (2), 50" (2) = 0, (@) + mel™ (@),

O85! () = 360 (@)

S = JEP@), B @) = kel () — 0l (2),

1
2

mientras que para Qén)y B(()g) y Bl(;)v

n n n n le n
@) = [ A8 @), [ e+ eI )(2)} = e () + el o)
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n B n n 1 n ]‘~71
B = [ @B @) €)= @) = 38 ),
B @) = [ @ABE @), (2 + 20,105 )(2))
n n n n n
= @) - [ @V (20,5 - 5] = e @) + 01l ()

es decir, se tienen las transformaciones de norma

50y = 9pe®, 60" = 9;c® +mel”, 6By = 9pe”, 6BY =0, —9;el”,  (10.44)

= 9pe™, 50 = e 4 me™ | sl = —%e(”) + me™,
IBSY = doel™, B = 0l — 9;e™, 0B{Y = dpel”, 0B = 2 ™ 4 ;e (10.45)

las cuales pueden escribirse en forma compacta como

5<I>(O =0, el ere(o) 5@(" =0, e ere(”) 5@;") = f% ) ereén),
uv

0B\Y) = 8,e?) — 0,eV, 6B =9l — 9, 6B = Regﬂ +0,el™, (10.46)

(0) (n)

con €5’ = 0y ¢ = 0. Estas transformaciones de norma son un resultado nuevo, que ahora

también puede encontrarse en [34].

10.5. Pseudo-Bosones de Goldstone

Los campos de norma <I>(") y B( ") no representan campos fisicos en el sentido de estos pueden

ser eliminados de la teoria fijando la norma apropiadamente. A saber, bajo la eleccién de la norma

R, (m) . (n R PP
e("):g(meé)—i—@é N, o) = = (Oue e +BY), (10.47)

n)

los campos 5<I>L”) y B(l, se transforman como

R n n
OBV = —0,P;5 — mBY, B =-8,B% +0,B\Y (10.48)

u5

y el lagrangiano efectivo (10.4) se vuelve

Le =

1 (0) MU (0) (0) [Ll/ ;41/ (n) MU
2 % 3IHW/\H(0) (mBW — v)(m B (I)(O) Z 2 % 3! MV/\H(”)

1 1 1 2
_,(mBl(ﬁ) (IJ("))(mB’W_(I)‘“’) 7(&) (I)(n)q)u 4= (ﬁ) B,([IL,)B“V

Aqui se nota lo siguiente. En el lagrangino no normado (10.4), el modo cero contribuye con tres

grados de libertad, mientras que cada excitacién KK contribuye con seis. Tres de estos seis son
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debido a la parte tipo SKR 4D; uno para BEW y dos para <I>(”) (capitulo anterior), y los otros tres
son debidos a BL5) y <I>é ), de modo que B(5 contribuye con dos, y @én) con uno. La eliminacién

de los campos Bp(fg) y <I>(n) en el lagrangiano normado (10.49) implica que sus grados de libertad
han sido otorgados a B y @4, de modo que B{Y y ®7"” son campos teniendo tres grados de
libertad. Estas caracteristicas por parte de los campos no fisicos Bl(fg) y @é") los hace similares
a los pseudo-bosones de Goldstone, encontrados en el mecanismo de Higgs. La presencia de estos
pseudo-bosones de Goldstone son similares a los encontrados en la teoria de Stiieckelberg 5D [29].

La identificacién de estos pseudo-bosones de Goldstone constituyen un resultado nuevo, que ahora

tambien puede consultarse en [34].

10.6. Los corchetes de Dirac

Para obtener los corchetes de Dirac, lo que se hace (como en el caso SKR 4D) es obtener un
conjunto de restricciones de segunda clase irreducibles a partir de las de primera clase fijando
la norma, y debido a que las restricciones de primera clase no son independientes se expande el
espacio fase mediante la introduccién de campos auxiliares. Las restricciones de segunda clase
irreducibles que a continuacién se dan, tanto para el modo cero como para los modos KK, se
obtendran de esta manera. Los siguientes corchetes de Dirac son un resultado no hallado antes en

la literatura, y pueden también consultarse en [34].

Corchetes de Dirac del modo cero. De las restricciones de primera clase reducibles del

modo cero uno obtiene el conjunto de restricciones de segunda clase irreducibles
Xy =1y, Xy =27 Xl =%, Xl =B Xy =0l xfy =0'2)”,
Xloy = millg) + 20,110 — 9'po),  Xo) = & B + diqo), (10.50)
con ¢(®, P(0) campos auxiliares cumpliendo
{d9 (@), po)(2)} = 6°(x — 2). (10.51)

Los corchetes de Poisson no cero entre estas restricciones son

Xy @)X ()} = {11y (2), 87 (2)} = =6 (x — 2),

(X @) Xl (=)} = {1%) (@), B (2 )}:—éa;agw—z),

(X)), x{y ()} = {0iTTg) (), 0701 ()} = —0:0"0° (w — 2), (10.52)
X0y (@), X[y ()} = {9701 (@), mIT) (2)} = md's® (x — ),

oy @)Xy (2)} = {20,118 (2),0' B (2)} — {0'p(o) (@), kg (2)} = —0}.0,06° (2 — 2),
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por lo que la matriz formada por los corchetes de Poisson entre las restricciones (10.50) es

0O -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 —38 0 0 0 0
0 0 45 0 0 0 0 0
(i) = i : =)
o0 0 0 0 -V 0 0
o0 0 0 V2 0 md 0
00 0 0 0 -md 0 —5iv?
o0 0 0 0 0 §&V: o0
siendo su inversa la matriz
o1 0 0 0 0 0 0
-1 0 0 0 0 0 © 0
0 0 0 25 0 0 0 0
(CS}Q) |00 =2 00 0 (1) 0 00]‘ 5z 2).
00 0 0 0 & 0 -
0 0 0 0 —-<z 0 0 0
000 0 0 0 0 0 g
000 0 0 & o0 -& 0

Entonces, los corchetes de Dirac diferentes de cero, por similitud con los resultados (9.38), son

(8 (2), 1y ()}p = 8/6%(z — 2)
_ / Fud oo (z), 11, (u))}[%ég(u —0)[{0'®{” (1), Ty, (=)}
= [o] + %8i8j]63(x —2). (10.53)
@@ = — [ dudo (@ @), oy ) gaee (- D HE B ). T )
- / Pud*o {2 (), mném(u))}[%as(u —){o" B (v), 115 (2)}
_ Tvg[élkaj - 553k]53($ —2). (10.54)
BY@. I = 5088 - s - 2)
- / Pud*o{BY (@), 2amnzs';<u>>}[%a3<u —)l{0" B (v), 115 ()}

1 1
= 5[555;. — 0L8% + ﬁ(55@61 — 010;0% — 670,0' + 6.0,0%)]6° (x — £)0.55)
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y los corchetes de Dirac no triviales entre ¢(©) y P(0) con los campos, por similitud con los resultados
(9.39) y (5.23)-(5.25), son

J

{4 @), poy()}p = @ -2) - /d3ud3v{q(°)($),—3ip<o>(U))}[ d *(u = 0){9;4'” (v), po) (2)}

V2
— 63(m—z)—%6i&'63($—z)=0, (10.56)
—modF
{0 @), poy()}p = - / d3ud%{<1>£°><x>,&Hém(u))}[(v;;l63<u—v)]{akq<°><v>,p<o><z>}
k
+ / Pudo{ @0 (2), mITly (1))} [y (u — ) {0k (0), o) (2))
- —%@53(1‘—2')—&—%81-63@—,2)=O, (10.57)
(0) ij _ 3, 13 (0) i 30, m 12(0) ij
{¢™ (@), 113, (=)} p dPud®viq® (x), ~0"p(o)(w)} gy 0 (u = )™ Biy) (v), 11 (2))
= 2V2 [0°07 — 979'6°(x — 2) = 0. (10.58)
(B @@l = - [ Eudo(B @), 20,10 (u DI~ )00 ). 0o (2))

1
= ﬁ[alak — OO0 (x — 2) = 0, (10.59)
y trivialmente,

{09(@),2”()}p =0, {¢),BY()}p =0, {¢*(),1"(z)}p =0,

(I (2), poy (2)}p = 0, {ILY (2), p0y ().} = 0. (10.60)

lo que muestra que los campos auxilires ¢(?) y P(0) son independientes del corchete de Dirac.

Corchetes de Dirac de los modos KK. De las restricciones de primera clase reducibles

para los modos KK uno obtiene las restricciones de segunda clase irreducibles

(n) (n) 5 _ 1705 (n)
X(ny = 10", X(n)*q’(n)’ Xiwy =100y Xiwy = Boi's Xty =100y, XCny = Bos s

n 7 7
E §2H(n) -0 Pn)>
Xt = 0 BS +0,4™, x{hy = mIl, 420,110 x{2) = 0B, (10.61)

— ATt — 9ign) — i R
Ny = 0Ty + 000, Xy =00 Xy =mll,) + 20,11, +

con ¢, P(n) campos auxiliares satisfaciendo

{g"(2),pny(2)} = 8°(x — 2). (10.62)
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Los corchetes de Poisson distintos de cero entre estas restricciones son

{X{n) (), X{oy (2)}

{X?n) (2), X‘(ln) ()}

{1, (@), @ ()} = =0*(x - 2),

{10 (2), B (2)) = —5016%( — 2),

{193, (2), B ()} = ~30%(w — 2),

{01}, (x), 7@\ (2)} = —8:0'6%(z - 2),
{970\ (2), mILl, ) (2)} = md'6*(z — 2),
{20,117, (2),0' B (2)} — {07p(m) (), Org™ (2)}
{H210) (@), 0By (2)} = 505 (@~ 2)

= —0610;0°8%(x — 2),

(20,1107, (2), 0" BS} (2)} = —010:076° (3 — 2) = —0,0'6*(w — 2), (10.63)

de lo cual se obtiene la matriz

(

|
—_

o

<n>) -

o O O O O O o o o o = o
o O O o o o o o o o o

o o o

N[ =
N

o O o o o o o o

0o 0 0 0 0 0 0 0 0
0o 0 0 0 0 0 0 0 0
-360 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0
0 0 -3 0 0 0 0 0 0
o 4+ 0 0 0 0 0 0 0 5o )
0o 0 0 0 =V 0 0 0 0
o 0 0 VvV 0 md 0 0 0
0 0 0 0 -md 0 =6V 0 2
o 0 0 0 0 &VE 0 0 0
o 0 0 0 0 0 0 0 —-Vv?
o 0 0 0 0 =% 0 V2 0
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y cuya inversa es

o1 0 0 00 0 0 0 0 0 0
-10 0 0 0 0 0O 0 0 0 0 0
00 0 2 0 0 0 0 0 0 0 0
00 -2/ 0 0 0 0 0 0 0 0 0
o0 0 0 0 2 0 0 0 0 0 0
(ijg))_ o0 0o 0 -20 0 0 0 0 0 0 (a2,
' 00 0 0 0 0 0 & 0 -—f&% 0 0
00 0 0 0 0 —gz 0 0 0 0 0
o0 0o 0o 00 0o o o & 0 0
000 0 0 0 0 @ o0 & 0 . o0
00 0 0 0 0 0 0 0 5y 0 <=
o0 0 0 0 0 0 0 0 0 -& 0

Entonces, los corchetes de Dirac distintos de cero que no contienen a los campos q)én) o) B/(jg), por

similitud con los resultados del modo cero, son

(@ (@), 1, (2)}p = 66%z—2)
— [ ool @), 0ttt () 50— 000 (0. 14, ()
i L g _

= [0 + 530:0")0°(x - 2), (10.64)
(@ (@), WS ()} = - / d3ud3v{¢>§"><x>,aznlm(u))}[(‘g;?ja%u—v)]{apBgzkvxnz‘:)(z)}

— [ P o{@l? (o), it ()} 8 — 0" B (0), T (2))
= %[6561—6{6’“}63(95—@, (10.65)

B @I = 5688~ o5 ( — 2)

— / d*ud*o{B (), 28mH€$(u))}[%53(u —0)[{07B (v), 11! (2)}

1 1
= 5[55@ — 0,67 + ﬁ((sj.fajal — 0,0;0" — 670;0" + 550,0")]6° (x — 2),
(10.66)
y ademas, los corchetes de Dirac no triviales entre ¢() y P(n) con los campos son
_ J
{d" (@), pm)(2)}p = (x—2) - /dBUdSU{q(")(I% —0'pn) ()} g50° (u —v)]

x{0;4"™ (v), pny (2)} = 03 (x — 2) — %61'8153(1: —2) =0, (10.67)
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. l
{g" (@), 11, (2)}p = - / dSud3v{q<"><x>,fa%(u))}[%a?'( {0 By (v), TTE, (2)}
- 2v2 (007 — 37063 (x — 2) = 0, (10.68)
(n) (n) —moF .
{®;" (@), pmy(2)}p = — / Pudo{®;" (x), 011, (u ))}[W&‘(ufv)]{ékq(m(v),p(n)(z)}
k
+ / dBudBv{<I>§”)(9c),mHln)(u))}[@2 % (u = v)[{0kg™ (), p(n) (2)}
- —%@53(1: —2)+ %81-53(3: ) =0, (10.69)
(n) _ 3, 13 (n) 5% 3 (n)
(B (@), pam)(2)}p = —/d udo{ By (), 20,1105 () G5 6 (w = v)[{0:4™ (v), ey (2)}
= %[8l8k: — 0,0)6%(x — 2) = 0, (10.70)

y trivialmente,

(g™ (@), @ (2)}p =0, {¢"(x),BL"(2)}p =0, {¢"(x), 1" (2)}p =0,

{1 (2), ey (2), }p = 0, {11 (2), iy (2)}p = 0, (10.71)

por lo que ¢\ y P(n) (al igual que ¢y P(0y) son independientes del corchete de Dirac. Finalmente,
puede mostrarse que los corchetes de Dirac entre los campos auxiliares ¢() y P(n) con los campos
no fisicos <I>é") y B( ") también son cero. Por otro lado, uno puede obtener corchetes de Dirac

n)

distintos de cero en los cuales participe alguno de los campos ‘bé o) Bus)- Sin embargo, con la

fijacién de la norma (10.47), todos estos corchetes pueden eliminarse de los célculos.

En resumen, se mostré que la teoria SKR 5D previamente estudiada es una teoria de norma
reducible, cuyo modo cero corresponde consistentemente a la teoria SKR 4D, mas una torre de
campos masivos KK. Se muestrd que el modo cero contribuye consistentemente con tres grados
de libertad (igual que en PKR 4D); uno debido a Bfg,) y dos debidos a <I>,(L0), mientras que los
modos KK contribuyen con seis (igual que en PKR 5D); tres debidos a B(,,) y tres debidos a <I>EL").
Esto ultimo, después de haberse absorbido los campos con caracteristicas de pseudo-bosones de
Goldstone B' 5) y <I>( ), Ademis, debido a que hubo condiciones de reductibilidad tanto en el modo
cero como en los modos excitados, se uso el proceso de extensién del espacio fase para obtener los

corchetes de Dirac de la teoria.
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Conclusiones

En este trabajo, se hizo un anélisis hamiltoniano de las teorias Kalb-Ramond, Proca-Kalb-
Ramond y Siieckelberg Kalb-Ramond con una dimensién extra compacta. Previo al analisis de las
teorfas en cinco dimensiones, se estudiaron las correspondientes teorias en cuatro dimensiones. El
analisis se hizo aplicando el algoritmo de Dirac-Bergmann estricto, el cual considera a todas las
variables dindmicas que describen al sistema. Se mostré que la teoria Kalb-Ramond 4D es una
teoria de norma reducible con un grado de libertad, ademés de obtenerse los corchetes de Dirac de
la teorfa. El andlisis de Dirac estricto de esta teoria fue una contribucién de este trabajo, ya que
no se encuentra en la literatura. En la teoria de Kalb-Ramond 5D, después de compactar la quinta
dimensién sobre un S'/Zs orbifold, se encontré que el modo cero de la teorfa efectiva corresponde
consistentemente a la teoria de Kalb-Ramond 4D mas una torre de excitaciones Kaluza-Klein. Se
hallaron todas las restricciones de la teoria y se encontré que son de primera clase y reducibles,
tanto para el modo cero como para los modos exitados de Kaluza-Klein. Mediante una apropiada
eleccién de los pardmetros de norma, se identificé una torre de campos masivos, mientras que los
campos Béz) fueron identificados como pseudo-bosones de Goldstone. Ademads, mediante el proceso
de extensién del espacio fase, se obtuvo un conjunto de restricciones de segunda clase irreducibles
y se obtuvieron los corchetes de Dirac, tanto para el modo cero como para los modos excitados de
Kaluza-Klein. En esta teoria de Kalb-Ramond 5D, el anélisis de Dirac estricto fue una contribucién

de este trabajo, asi como los resultados encontrados, los cuales ahora se encuentran en [34].

Por otra parte, se mostré que la teoria Proca Kalb-Ramond 4D es una teoria que no es de norma,
que es irreducible, y con tres grados de libertad, ademés de obtenerse los corchetes de Dirac de la

teoria. El andlis estricto de Dirac de esta teoria fue una contribucién del presente trabajo, ya que
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no se encuentra en la literatura. En la teoria de Proca Kalb-Ramond 5D, después de compactar la
quinta dimensién sobre un S!/Zs orbifold, se encontré que la teorfa efectiva no es una teorfa de
norma. Se obtuvo que el modo cero de la teoria efectiva corresponde consistentemente a la teoria
Proca Kalb-Ramond 4D mas una torre de excitaciones masivas de Kaluza-Klein. Se mostrd, tanto
para el modo cero como para las excitaciones masivas Kaluza-Klein, que esta teoria tiene solamente
restricciones de segunda clase irreducibles, y que no hay presentes pseudo-bosones de Goldstone.
Ademas, se obtuvieron los corchetes de Dirac, tanto para el modo cero como para las excitaciones
de Kaluza-Klein. En esta teoria de Proca Kalb-Ramond 5D, el anélisis de Dirac estricto fue una
contribucién de este trabajo, asi como los resultados encontrados, los cuales ahora se hallan en

[34).

En adicién, se mostrd que la teoria de Stiieckelberg Kalb-Ramond 4D es una teoria de norma
(masiva) reducible con tres grados de libertad, ademds de obtenerse los corchetes de Dirac de la
teoria. Kl analisis de Dirac de esta teoria fue una contribucién de este trabajo, ya que no se encuen-
tra en la literatura. En la teoria de Stiieckelberg Kalb-Ramond 5D, después de compactar la quinta
dimensién sobre un S!/Zs orbifold, se encontré que el modo cero de la teorfa efectiva corresponde
consistentemente a la teoria Stiieckelberg Kalb-Ramond 4D mas una torre de excitaciones Kaluza-
Klein. Se encontré que la teoria tiene solamente restricciones de primera clase y reducibles, tanto
para el modo cero como para los modos excitados Kaluza-Klein. Mediante una apropiada fijacién
de los pardmetros de norma, los campos @gn) y BELZ) fueron identificados como pseudo-bosones de
Goldstone, de modo que la teoria describe un campo Stiieckelberg Kalb-Ramond 4D mas una torre
de excitaciones masivas Kaluza-Klein. Ademds, mediante el proceso de extensién del espacio fase,
se obtuvo un conjunto de restricciones de segunda clase irreducibles y se obtuvieron los corchetes
de Dirac, tanto para el modo cero como para los modos excitados Kaluza-Klein. En esta teoria de

Stiieckelberg Kalb-Ramond 5D, el anélisis de Dirac estricto fue una contribucién de este trabajo,

y asimismo los resultados encontrados, los cuales pueden hallarse en [34].

De este modo, uno tiene todas las herramientas para poder cuantizar las teorias. De hecho,
con los corchetes de Dirac obtenidos puede hacerse una completa identificacion de observables, y
pueden calcularse los propagadores de los campos fisicos. Al mismo respecto, la cuantizacién de
las teorias bajo estudio usando los resultados de este trabajo y el método simpléctico estd ya en

proceso, y todas estas ideas seran objeto de estudio en trabajos posteriores [33].
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