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Análisis Hamiltoniano de teoŕıas de Kalb-Ramond en 5 dimensiones con

una dimensión compacta

Tesis presentada al

Posgrado en ciencias

(F́ısica Aplicada)

como requisito parcial para la obtención del grado de

Doctor en Ciencias

(F́ısica Aplicada)

por
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T́ıtulo: Análisis Hamiltoniano de teoŕıas de Kalb-Ramond en 5 dimensiones con una dimensión

compacta

Estudiante: Alberto López Villanueva
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3. La teoŕıa de Kaluza-Klein 6

4. El algoritmo de Dirac-Bergmann estricto 11

4.1. Sistemas clásicos singulares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2. Restricciones primarias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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10.La acción de Stüeckelberg Kalb-Ramond en 5 dimensiones 67

10.1. El lagrangiano efectivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

10.2. Restricciones primarias y secundarias . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10.3. Grados de libertad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

10.4. Las transformaciones de norma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

10.5. Pseudo-Bosones de Goldstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10.6. Los corchetes de Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

11.Conclusiones 85



Caṕıtulo 1

Resumen

Se hace un análisis hamiltoniano de las teoŕıas de Kalb-Ramond, Proca Kalb-Ramond y Stüec-

kelberg Kalb-Ramond en 5D con una dimensión compacta. Mediante la compactación de la quinta

dimensión, se obtiene la lagrangiana efectiva cuadridimensional y esta se analiza aplicando el al-

goritmo de Dirac-Bergmann estricto. Se hallan todas las restricciones, se realiza el conteo de los

grados de libertad y se calculan los corchetes de Dirac de las teoŕıas. También se encuentra que

las teoŕıas de Kalb-Ramond y Stüeckelberg Kalb-Ramond 5-dimensionales son teoŕıas de norma

reducibles, y mediante una apropiada fijación de la norma, se halla la presencia de pseudo-bosones

de Goldstone. Respecto a la teoŕıa Proca Kalb-Ramond 5-dimensional se encuentra que no es una

teoŕıa de norma y que es irreducible.
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Caṕıtulo 2

Introducción

La posible existencia de dimensiones extra espaciales más allá de las cuatro que percibimos

ha estado bajo consideración desde principios del siglo XX. Uno de los primeros trabajos sobre

dimensiones extra en f́ısica fue realizado por Kaluza (en 1921) al intentar unificar las interaccio-

nes electromagnética y gravitacional mediante la introducción de una quinta dimensión espacial

compacta sumamente pequeña; del orden de la escala de Plack, lp ∼ 1,6 × 10−33cm. La idea de

dimensiones extra, después de aproximadamente medio siglo de permanecer practicamente olvida-

da (debido al desarrollo de la mecánica cuántica y a los avances en la teoŕıa cuántica de campos),

resurge en las teoŕıas de supergravedad, y posteriormente, en la teoŕıa de cuerdas, hoy en d́ıa in-

cluidas en la llamada teoŕıa M, en donde el intento ha consistido en unificar la gravitación con las

interacciones del modelo estándar (ME). A partir del surgimiento de la teoŕıa de cuerdas, la noción

de dimensiones extra quedó profundamente influenciada por esta, ya que además de introducir el

concepto de compactificación, introduce demás conceptos como la localización de campos del ME

empleando defectos topológicos o en puntos fijos en el espacio compacto, el concepto de branas,

entre otros [1].

Uno de los obstáculos para poner a prueba la existencia de dimensiones extra es su tamaño

sumamente pequeño. Estudios recientes, sin embargo, sugieren que algunas de las dimensiones

extra, si no es que todas, podŕıan ser mayores que lp. Esto ha motivado a preguntarse si los efectos

de las dimensiones extra pueden ser visibles ante los experimentos. La respuesta a esta pregunta

apunta a la posibilidad de que si bien pueden existir dimensiones extra tan grandes del orden de

miĺımetros, éstas puedan permanecer escondidas o no puedan ser detectadas por los experimentos.

Una propuesta para resolver este problema es que el mundo observable estuviera restringido a
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CAPÍTULO 2. INTRODUCCIÓN

vivir en una hipersuperficie cuadridimensional llamada brana dentro de un espacio de dimensión

superior, y que las interacciones del ME no puedan escapar de la brana sino solo la interacción

gravitacional, de modo que las dimensiones extra solo puedan ser probadas por esta última [2].

Otra pregunta que se ha hecho, es dónde y cómo las dimensiones extra se manifiestan en la na-

turaleza. Al respecto, se piensa que la existencia de dimensiones extra en la naturaleza debe tener

implicaciones fenomenológicas en nuestro mundo visible cuadridimensional o efectivo. Pero para

comprender esto, debe entenderse cómo una teoŕıa efectiva emerge de una teoŕıa de dimensiones

superiores. Con este fin, se expone el siguiente ejemplo. La gravedad, es una propiedad geométrica

del espacio, entonces, en un mundo de dimensión superior, donde se asume que la teoŕıa de la

relatividad de Einstein es válida, la constante de acoplamiento no necesariamente coincidirá con la

constante de Newton GN , que es la que se observa. Asumiendo que hay n dimensiones extra espa-

ciales compactificadas en ćırculos de radio R y definiendo a G∗ como la constante de acoplamiento

gravitacional fundamental, la acción gravitacional en dimensiones superiores se escribe como

Sgrav = − 1

16πG∗

∫
d4+nx

√
| g(4+n) |R(4+n),

con g(4+n) el tensor métrico (4 + n) dimensional con la signatura (+,−,−,−, ...), y ds2 =

gMNdx
MdxN , M,N = 0, 1, 2, ..., n + 3. La acción debe seguir siendo adimensional, por lo que

las dimensiones de longitud extra que provienen de la integración sobre las dimensiones ex-

tra debe equilibrarse con las dimensiones de la constante de acoplamiento G∗, y entonces,

[R(4+n)] = [longitud]−2 = [energia]2, por lo que [G∗] = [energia]−(n+2). Asumiendo que las

dimensiones extra son planas, la métrica toma la forma ds2 = gµν(x)dx
µdxν −δabdyadyb, en donde

gµν da la parte de la métrica dependiente de las coordenadas xµ, µ = 0, 1, 2, 3, y δabdy
adyb da el

elemento de ĺınea en el bulk, cuyas coordenadas son parametrizadas por ya; a = 1, ..., n. También

se ve que
√

| g(4+n) | =
√
| g(4) | y R(4+n) = R(4), por lo que integrando sobre las dimensiones

extra en la ecuación para Sgrav se obtiene la acción efectiva

Sgrav = − Vn
16πG∗

∫
d4x

√
| g(4) |R(4),

en donde Vn es el volumen del espacio extra. La ecuación anterior es precisamente la acción gravi-

tacional estándar en 4D si se hace la identificación

GN = G∗/Vn.

Aśı, GN es de hecho una cantidad efectiva, y notando que si G∗ fuera un acoplamiento grande,

podŕıa entenderse la pequeñez de GN v́ıa supresión volumétrica. Las dimensiones extra submi-

limétricas, sin embargo, no han podido ser probados ante la gravedad [2].
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CAPÍTULO 2. INTRODUCCIÓN

Además de la teoŕıa de cuerdas y de gran unificación, el estudio de modelos involucrando di-

mensiones extra hoy en d́ıa también tienen una actividad importante a fin de explicar y resolver

problemas en f́ısica teórica. Por ejemplo, el problema de la jerarqúıa de masa, la explicación de

la enerǵıa oscura, la materia oscura e inflación [3]. También hay motivaciones teóricas y fenome-

nológicas para cuantizar una teoŕıa de norma con dimensiones extra, por ejemplo, si existen las

dimensiones extras, entonces sus efectos deben poder ser probados con el actual colisionador LHC,

y en el Colisionador Lineal Internacional [4].

Por otro lado, uno de los tipos de campos de importancia relevante en f́ısica teórica son los

campos tensoriales antisimétricos. Los campos tensoriales antisimétricos se han usados para des-

cribir part́ıculas con masa cero sin esṕın, aśı como part́ıculas vectoriales [5]-[10]. En otros casos,

aparecen en algunas formulaciones de teoŕıas de supergravedad [11]-[13], y como una forma de nor-

mar la aparente supersimetŕıa interna de las interacciones débiles [14]. En teoŕıa de cuerdas, son

los mediadores de la interacción entre cuerdas abiertas y part́ıculas cargadas [15], y son también

un elemento fundamental para describir la unificación de las teoŕıas de Yang-Mills y supergrave-

dad [16]. Además, los campos tensoriales antisimétricos tienen un papel importante caracterizando

defectos en f́ısica de estado sólido [17].

Dado entonces el interés en el estudio de teoŕıas de campo con dimensiones extra junto con

la importancia de los campos tensoriales antisimétricos en la f́ısica teórica, en este trabajo se

estudian teoŕıas de campo involucrando campos tensoriales antisimétricos en el contexto de dimen-

siones extra. Las teoŕıas que se estudian son las teoŕıas 5D de Kalb-Ramond, Proca Kalb-Ramond,

y Stüeckelberg Kalb-Ramond [18] con una dimensión compacta. Previo al estudio de las teoŕıas

en cinco dimensiones, también se estudian las correspondientes teoŕıas en cuatro dimensiones. Se

analiza su dinámica hamiltoniana aplicando el algoritmo de Dirac-Bergmann estricto. El forma-

lismo de Dirac-Bergmann es esencialmente una extensión del formalismo hamiltoniano usual que

permite conocer de manera clara las simetŕıas relevantes que son manifiestas en una teoŕıa. De

hecho, muchos de los logros que se han dado en el entendimiento de la f́ısica de part́ıculas se debe

al análisis de Dirac, ya que da un entendimiento general de cómo es la evolución dinámica de los

grados de libertad, tanto a nivel clásico como a nivel cuántico, lo que lo hace una herramienta fun-

damental para entender la dinámica de sistemas singulares. En el formalismo de Dirac-Bergmann

estándar [19], se trabaja sobre un espacio fase reducido al considerar como variables dinámicas a

aquellas cuya derivada temporal aparezca en el lagrangiano. La desventaja de trabajar sobre un

espacio reducido es el no poder conocer de forma completa elementos como las restricciones, las

transformaciones de norma y el álgebra de restricciones de la teoŕıa [20]. En el formalismo estricto,

sin embargo, esto no sucede, ya que se trabaja sobre el espacio fase completo al considerar co-
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CAPÍTULO 2. INTRODUCCIÓN

mo variables dinámicas a todas las variables que definen la teoŕıa. El formalismo estricto permite

conocer, por ejemplo, la estructura correcta del hamiltoniano y la acción extendida, además de

ser la mejor gúıa para poder estudiar la formulación cuántica de la teoŕıa mediante una correcta

identificación de las restricciones [21]. Finalmente, debe mencionarse que este formalismo estricto

no se encuentra desarrollado en la literatura, por lo que su aplicación constituye una contribución

general del presente trabajo.

La organización de este trabajo es la siguiente. En el caṕıtulo 3 se expone a grandes rasgos la

teoŕıa de Kaluza Klein (KK) y se da la manera de obtener teoŕıas de campo efectivas a partir de

teoŕıas de campo con una dimensión extra compacta. En el caṕıtulo 4 se desarrolla el algoritmo

de Dirac-Bergmann estricto. En el caṕıtulo 5 se estudia la teoŕıa de Kalb-Ramond 4D, y en el

caṕıtulo 6 la teoŕıa de Kalb-Ramond 5D con una dimensión compacta. En el caṕıtulo 7, se estudia

la teoŕıa de Proca Kalb-Ramond 4D, y en el caṕıtulo 8, la teoŕıa de Proca Kalb-Ramond 5D con

una dimensión compacta. En el caṕıtulo 9, se estudia la teoŕıa de Stüeckelberg Kalb-Ramond 4D,

y en el caṕıtulo 10, la teoŕıa de Stüeckelberg Kalb-Ramond 5D con una dimensión compacta. El

caṕıtulo 11 es de conclusiones y prospectos.
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Caṕıtulo 3

La teoŕıa de Kaluza-Klein

En este caṕıtulo, se expone a grandes rasgos la teoŕıa de KK, la cual introduce una dimensión

extra espacial para unificar la gravedad, el magnetismo y un campo escalar. Seguido de esto, se

menciona cómo es el escenario en los mundos brana, en donde también se trabaja con dimensiones

extra, y se mencionan algunas dificultades que hay para estudiar teoŕıas de campo sin integrar las

dimensiones extra. Finalmente, se muestra cómo surge una teoŕıa de campo efectiva a partir de

una teoŕıa con dimensiones extra utilizando los modos KK.

La teoŕıa KK para el caso gravitacional [22, 23], es esencialmente una teoŕıa de la relativi-

dad general en 5 dimensiones sujeta a dos restricciones que tienen como objetivo justificar por

qué usualmente solo se perciben cuatro dimensiones y aparentemente no se percibe la quinta di-

mensión. La primera restricción, introducida por Kaluza, es la llamada condición ciĺındrica, la cual

consiste en que todas las derivadas parciales de cualquier cantidad respecto a la quinta coordenada

es cero. La segunda condición, introducida por Klein, es la llamada condición de compactación, la

cual consiste en asumir que la quinta dimensión no solo es microscópica sino que también tiene

una topológia cerrada; es decir, que se cierra sobre śı misma. Esta condición de compactación

será usada en este trabajo.

Como se sabe, el elemento fundamental en relatividad general es el tensor métrico gAB (A,B =

0, 1, 2, 3, 5) que en este caso 5-dimensional (5D) tendŕıa 15 entradas independientes. Análogamente,

se puede construir un tensor de Ricci 5D RAB y un escalar de Ricci 5D R, aśı como un tensor de

Einstein 5D; es decir,

GAB = RAB − gAB
R

2
. (3.1)

6



CAPÍTULO 3. LA TEORÍA DE KALUZA-KLEIN

Las ecuaciones de campo que pueden obtenerse son precisamente las ecuaciones de Einstein en

5D, ya que estas tendŕıan como caso particular, cuando A = 0, 1, 2, 3, a las ecuaciones de Einstein

usuales

GAB = kTAB , (3.2)

donde k es una constante de acoplamiento y TAB un tensor de enerǵıa-impulso 5D. En los trabajos

de Kaluza y Klein se trabaja considerando el vació, esto es GAB = 0, lo cual implica que

RAB = 0. (3.3)

Las 15 relaciones anteriores sirven para determinar las 15 entradas de gAB , pero en la práctica esto

es posible solo si se hace una suposición sobre gAB ; por ejemplo, en problemas gravitacionales se

asume que gAB = gAB(x), a esto se le llama elección de coordenadas. Kaluza estuvo interesado en

el electromagnetismo y relacionó a gAB con el 4-potencial Aα de la teoŕıa de Maxwell. Él postuló la

condición ciĺındrica y asumió que g55 es constante, pero en un caso más general gAB = gAB(x
α)

y g55 = −ϕ2(xα), donde ϕ es un campo escalar. Entonces, la elección general de la métrica y su

respectiva inversa son [23]

gAB =

 gαβ − k2ϕ2AαAβ −kϕ2Aα

−kϕ2Aβ −ϕ2

 , gAB =

 gαβ −kAβ

−kAα − 1
ϕ + k2A2

 , (3.4)

con gαβ el tensor métrico usual. En efecto, puede verse que gABgAC = δBC . Expĺıcitamente,

δBC =

 (gαβ − k2ϕ2AαAβ)g
αµ + k2ϕ2AβA

µ −(gαβ − k2ϕ2AαAβ)kA
β

−kϕ2Aαg
αµ + kϕ2Aµ k2ϕ2AβA

β − ϕ2
(
− 1

ϕ2 + k2A2
)  ,

=

 δβµ 0

0 1

 .

Si k = 1, la métrica y su respectiva inversa están dadas por

gAB =

 gαβ − ϕ2AαAβ −ϕ2Aα

−ϕ2Aβ −ϕ2

 , gAB =

 gαβ −Aβ

−Aα − 1
ϕ +A2

 . (3.5)

Usando estas relaciones, se obtiene que

det(gAB) = −gϕ2, (3.6)

con g ≡ det(gαβ), y el escalar de Ricci 5D está dado por [23]

R(5) = R(4) +
1

2ϕ2
(∂ϕ)2 − 1

ϕ
�ϕ+

1

4
FµνF

µνϕ, (3.7)

7



CAPÍTULO 3. LA TEORÍA DE KALUZA-KLEIN

con Fµν el tensor de Faraday usual. De este modo, la acción del sistema gravitacional está dada

por

S[gAB ] =

∫ √
−g

√
ϕ2R(5)d5x. (3.8)

Sustituyendo (3.7) en (3.8), se tiene que

S[Aµ, gαβ , ϕ] =

∫ √
−g

√
ϕ2

[
R(4) +

1

2ϕ2
(∂ϕ)2 − 1

ϕ
�ϕ+

1

4
FµνF

µνϕ

]
d5x. (3.9)

Imponiendo la condición
∫
dx5 = 1, se obtiene la acción efectiva

Se[Aµ, gαβ , ϕ] =

∫ √
−g

√
ϕ2

[
R(4) +

1

2ϕ2
(∂ϕ)2 − 1

ϕ
�ϕ+

1

4
FµνF

µνϕ

]
d4x. (3.10)

Considerando como variables dinámicas a ϕ , Aα y gαβ , se obtienen las ecuaciones de movimiento

[23]

Gαβ =
k2ϕ2

2
Tαβ − 1

ϕ
(∇α∇βϕ− gαβ�ϕ), (3.11)

∇αFαβ = −3
∇αϕ

ϕ
Fαβ , (3.12)

�ϕ = −k
2ϕ2

4
FαβF

αβ , (3.13)

con Gαβ el tensor usual de Einstein y Tαβ = −1
2

(
FαρF

ρ
β − 1

4gαβFµνF
µν
)
el tensor de enerǵıa–

momento de la teoŕıa electromagnética. Aśı, la teoŕıa KK unifica gravedad, electromagnetismo y un

campo escalar. Lo anterior es un caso muy general; en realidad, Kaluza consideró a g55 = −ϕ2 = −1

y k =
(
16πG
c4

)1/2
, con lo que se obtiene

gαβ =
8πG

c4
Tαβ , (3.14)

∇αFαβ = 0, (3.15)

k2

4
FαβF

αβ = 0 ⇒ FαβF
αβ = 0. (3.16)

En general, estas ecuaciones describen la propagación de un gravitón de esṕın 2, un fotón de sṕın

1 y una part́ıcula escalar de esṕın 0 [23].

Ahora se muestra cómo es el escenario en mundos brana, en donde también se trabaja con

dimensiones extra [2]. El escenario que se tiene en mente es que se vive en una superficie cuadridi-

mensional dentro de un espacio de dimensión superior llamada ”brana”. Esta hipersuperficie debe

estar localizada en un punto espećıfico del espacio extra en los puntos fijos de la variedad compacta.

A lo que se le ha llamado brana es en realidad una descripción de la teoŕıa efectiva, y pensamos

en ellas como defectos topológicos de anchura casi cero que pueden tener campos localizados en su

superficie. Por otro lado, en la teoŕıa de cuerdas también existen las D-branas (D de Dirichlet) y
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estas son superficies donde cuerdas abiertas pueden terminar sobre las branas dando lugar a todo

tipo de campos localizados en la brana, incluidos campos de norma. En la aproximación de super-

gravedad, las D-branas aparecen como solitones de las ecuaciones de movimiento gravitacionales.

Usualmente, las D-branas se caracterizan por el número de dimensiones espaciales en su superficie,

por tanto, una d-brana es descrita por un espacio tiempo plano con d coordenadas espaciales y una

coordenada temporal. El modelo más simple consiste en part́ıculas del modelo estándar viviendo

en una 3-brana. Entonces, se necesita describir teoŕıas que vivan en la brana (como el modelo

estándar) o en el bulk (como la gravedad), aśı como las interacciones entre estas dos teoŕıas, y para

esto, se usan las siguientes prescripciones de la teoŕıa de campos:

(i) Teoŕıas de bulk. Son descritas por una acción de dimensiones superiores, definida en términos

de una densidad lagrangiana de campos en el bulk, digamos ϕ(x, y⃗), evaluada sobre todas las

coordenadas del bulk, es decir

Sbulk[ϕ] =

∫
d4xdny

√
| g(4+n) |L(ϕ(x, y⃗)), (3.17)

donde x son las (3+1) coordenadas de la brana y y para las n dimensiones extra.

(ii) Teoŕıas de brana. Son descritas por la acción (3 + 1)D de los campos brana φ(x), que es

naturalmente promovida a una expresión de dimensión superior por el uso de una delta de

densidad

Sbrana[φ] =

∫
d4xdny

√
| g(4) |L(φ(x))δn(y⃗ − y⃗0), (3.18)

donde se supone que la brana está localizada en y⃗ = y⃗0 sobre las dimensiones extra, y g(4) es

la métrica (3 + 1)D usualmente plana inducida en la brana.

(iii) Finalmente, la acción puede tener acoplada campos de brana y de bulk, estas últimas locali-

zadas en el espacio, por lo que es natural que una delta de densidad esté involucrada∫
d4xdny

√
| g(4) |ϕ(x, y⃗)ψ̄(x)ψ(x)δn(y⃗ − y⃗0). (3.19)

La presencia de la función delta en las acciones anteriores no permite una interpretación clara ni

una lectura fácil de la teoŕıa dinámica. En este caso, es más útil trabajar con una teoŕıa efectiva

cuadridimensional que pueda obtenerse después de integrar sobre la dimensión extra. A este pro-

cedimiento se le llama reducción dimensional. Esto también ayuda a identificar el ĺımite de bajas

enerǵıas de la teoŕıa, en donde la dimensión extra no es visible.

Ahora se describe cómo surge una teoŕıa efectiva de una teoŕıa de dimensión mayor utilizando

los modos de KK, la cual es otra manera de estudiar teoŕıas con dimensiones extra, y será la

9
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manera como se estudiarán las teoŕıas con una dimensión extra en este trabajo. Se considera un

modelo 5-dimensional en donde la quinta dimensión está compactificada a un circulo de radio R.

Sea ϕ un campo escalar de bulk, para el cual la acción sobre un espacio-tiempo plano tiene la forma

S[ϕ] =
1

2

∫
d4xdy

(
∂Aϕ∂Aϕ−m2ϕ2

)
, (3.20)

en donde A = 0, 1, 2, 3, 5 y y denota la quinta dimensión. La compactación de la variedad interna

es reflejada en la periodicidad del campo ϕ(y) = ϕ(y + 2πR), lo que permite una expansión de

Fourier de la forma

ϕ(x, y) =
1√
2πR

ϕ0(x) +
∞∑

n=1

1√
πR

[
ϕn(x) cos

(ny
R

)
+ ϕ̂n(x) sin

(ny
R

)]
. (3.21)

El primer termino ϕ0 que no depende de la quinta dimensión es conocido como el modo cero,

mientras que los modos ϕn y ϕ̂n son llamados modos excitados o de KK [2]. Introduciendo esta

expansión en la acción e integrando sobre la dimensión extra, se obtiene

S[ϕ] =
1

2

∫
d4x

(
∂µϕ0(x)∂

µϕ0(x) +m2ϕ20(x)
)
+

1

2

∞∑
n=0

∫
d4x

(
∂µϕn∂µϕn −m2

nϕ
2
n

)
+
1

2

∞∑
n=0

∫
d4x

(
∂µϕ̂n∂µϕ̂n −m2

nϕ̂
2
n

)
, (3.22)

en donde la masa KK está dada por m2
n = m2 + n2

R2 . Entonces, en una teoŕıa efectiva el campo

de dimensión superior aparece como una torre de campos con masa mn con niveles de enerǵıa

degenerados. Los modos excitados son campos con el mismo esṕın y números cuánticos que ϕ y

que difieren solamente en el número KK, asociado con la quinta componente del momento, la

cual es discreta debido a la compactación. Compactaciones distintas llevan a modos distintos de

expansión de los campos, y debe ser elegida de acuerdo a la geometŕıa de la dimensión extra.

Condiciones de frontera extra asociados a propiedades topológicas espećıficas del espacio compacto

pueden ayudar en la selección de una base. Un ejemplo útil es el orbifold unidimensional, U(1)/Z2,

el cual está construido en un ćırculo. Operativamente, se requiere que la teoŕıa sea invariante bajo

una simetŕıa de paridad extra; es decir, ϕ(−y) = ±ϕ(y). Campos pares (impares) se expanden

solo en modos cosenos (senos), y el espectro KK tendŕıa solo la mitad de los modos. Campos

impares no contarán con un modo cero y no aparecerán en teoŕıas de bajas enerǵıas. Muchas de

las presentes ideas se irán aclarando a lo largo del trabajo.
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Caṕıtulo 4

El algoritmo de Dirac-Bergmann

estricto

Una de las caracteŕısticas de la mecánica clásica usual es que la evolución del sistema está de-

terminada completamente por las ecuaciones de movimiento; es decir, que basta dar las condiciones

iniciales en su solución para saber el estado del sistema en un instante posterior. Sin embargo, hay

sistemas para los cuales la solución de las ecuaciones de movimiento contiene funciones arbitrarias

dependientes del tiempo que no pueden determinarse, de modo que dadas las condiciones inicia-

les, el estado del sistema a un instante posterior no está determinado de manera única; es decir,

por las ecuaciones de movimiento. En este caso, es necesario hacer una generalización a la teoŕıa

que incluya a este tipo de sistemas. La teoŕıa que proporciona esta generalización es el llamado

Algoritmo de Dirac-Bergmann para sistemas singulares.

El algoritmo de Dirac-Bergmann para sistemas singulares es un método análogo al método de

multiplicadores de Lagrange, en donde las funciones arbitrarias en las ecuaciones de movimiento

son análogas a los multiplicadores y juegan el papel de forzadoras de restricciones sobre el sistema.

Si algunas de las funciones arbitrarias o multiplicadores no pueden determinarse, se dice que la

teoŕıa posee libertad de norma, y si no pueden determinarse, la teoŕıa corresponde a una teoŕıa de

norma.

El formalismo de Dirac-Bergmann que a continución se describe es el llamado estricto, el cual

posee ventajas importantes respecto al formalismo usual. El formalismo estricto, al considerar

el espacio fase completo (i.e., al considerar como variables dinámicas tanto a coordenadas como

11
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4.1. SISTEMAS CLÁSICOS SINGULARES

momentos), tiene la ventaja, entre otras cosas, de poder conocer de forma completa las restricciones,

las transformaciones de norma, y la acción y el hamiltoniano extendidos, a diferencia del formalismo

usual, en el que se trabaja sobre un espacio fase reducido (considerando como variables dinámicas

a aquellas cuya velocidad generalizada aparece en la acción). Además, el formalismo estricto posee

la ventaja de poderse aplicar a cualquier teoŕıa.

4.1. Sistemas clásicos singulares

Por simplicidad, la teoŕıa se desarrolla en un inicio para sistemas con grados de libertad finitos.

Se parte del principio de Hamilton, el cual dice que el movimiento del sistema entre el tiempo t1

y el tiempo t2 es tal que la acción

S =

∫ t2

t1

L (qn(t), q̇n(t)) dt

tiene un valor estacionario, con qi, q̇i = dqi/dt las coordenadas y las velocidades generalizadas,

i = 1, ..., N , y t un parámetro de evolución que puede identificarse con el tiempo, siendo las

condiciones de valor estacionario las ecuaciones de Euler-Lagrange

d

dt

(
∂L

∂q̇n

)
− ∂L

∂qn
= 0. (4.1)

Desarrollando estas ecuaciones, se obtiene

q̈n
′ ∂2L

∂q̇n′∂q̇n
=

∂L

∂qn
− ∂2L

∂qn′∂q̇n
q̇n

′
. (4.2)

De esta ecuación, si el determinante de la matriz (∂2L/∂q̇n
′
∂q̇n), llamada matriz Hessiana, es

distinto de cero, entonces es invertible y pueden conocerse todas las q̈n en términos de qn y q̇n.

Sin embargo, si el determinante es cero, la matriz no es invertible, y sólo se podrán obtener R

expresiones de la forma q̈j = q̈j
(
qi, q̇i, qa, q̇a, q̈a

)
, con R < N el rango de la matriz, y q̈a las

aceleraciones que no se pudieron despejar de (4.2), por lo que en general, de las q̈j , quedarán

indeterminadas qR+1, ..., qN funciones arbitrarias independientes y sus respectivas velocidades y

aceleraciones. El caso de interés es cuando el determinante de la matriz Hessiana es cero, y en

este caso se dice que la teoŕıa o el lagrangiano es singular, mientras que en caso contrario, que es

regular.
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4.2. Restricciones primarias

Si det(∂2L/∂q̇n
′
∂q̇n) = 0, esta es justamente la condición para que no todas las velocidades

generalizadas puedan despejarse en términos de las coordenadas y los momentos. Esto implica que

algunas de las ecuaciones que definen a los momentos, pn = ∂L/∂q̇n, se podrán escribir como

ϕm = ϕm(q, p) = 0, (4.3)

con m = 1, ...,M , llamadas restricciones primarias, con la caracteŕıstica de que al sustituirse en

la definición del momento se vuelven identidades, y de que para su obtención no se requiere de las

ecuaciones de movimiento. Las restricciones (4.3), obtenidas mediante la definición del momento, no

necesariamente son independientes. El número de restricciones primarias independientes M ′ ≤M

lo da la nulidad de la matriz Hessiana. El rango R = N −M ′ da el número de expresiones para las

velocidades generalizadas que pueden expresarse en términos de las coordenadas y los momentos.

Las restricciones primarias independientes se obtienen calculando los vectores nulos de la matriz

Hessiana. Aśı, si V µ son los vectores nulos, V µ
α sus componentes y ϕα las restricciones primarias

encontradas, las restricciones primarias independientes están dadas por

Φµ = V µ
α ϕ

α.

Por simplicidad, se asume que el rango de la matriz Hessiana, N −M ′, es constante en el espacio

(q, q̇), de modo que el número de restricciones primarias M ′ no vaŕıe, y que las ecuaciones (4.3)

definan una subvariedad en el espacio fase 2N −M ′ dimensional.

4.3. Ecuaciones débiles y fuertes

Ahora se define el concepto de igualdad débil, el cual se representa con el śımbolo ”≈”.

Definición: Una función F del espacio fase es débilmente igual a cero si

F |Σ1= 0,

donde Σ1 es la subvariedad definida por las restricciones primarias ϕm(q, p) = 0. Se dice que F es

fuertemente igual a cero si se satisfacen las condiciones

F |Σ1= 0,

(
∂F

∂qi
,
∂F

∂pi

)
|Σ1= 0, (4.4)

con (∂F/∂qi, ∂F/∂pi) |Σ1 el conjunto de las derivadas parciales de F respecto a las variables

canónicas evaluadas sobre Σ1. En particular, ϕm ≈ 0, y en general, puede mostrarse que una
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función G débilmente cero puede escribirse como una combinación lineal de las restricciones, es

decir, que G ≈ 0 ⇔ G = gmϕ
m, para alguna función del espacio fase gm. Si una ecuación se

satisface tanto en Σ1 como en todo el espacio fase se le llama fuerte, y se expresa utilizando el

śımbolo de igualdad usual.

4.4. La condición de regularidad

La subvariedad 2N −M ′ dimensional que definen las restricciones ϕm = 0 puede ser cubier-

ta por regiones abiertas, las cuales pueden dividirse (localmente) en restricciones independientes

ϕm
′
, (m′ = 1, ...M ′) cuya matriz jacobiana (∂ϕm

′
/∂(qn, pn)) es de rango M ′, y en restricciones

dependientes ϕm̂ = 0, (m̂ = M ′ + 1, ..,M) que son consecuencia de las otras. La condición de

regularidad sobre las restricciones ϕm
′
se establece imponiendo que el rango de la matriz jacobiana

(∂ϕm
′
∂(qj , pj)) sea constante, e igual a M ′. La condición de regularidad es la condición necesaria

para que la dimensión de la variedad formada por las restricciones ϕm sea constante e igual a M ′.

Aśı, por ejemplo, si las restricciones ϕm forman una variedad de dimensión M ′, las restricciones

(ϕm)2 no forman una variedad de dimensión M ′, lo cual puede mostrarse verificando que el rango

de la matriz jacobiana ya no es M ′. La condición de regularidad juega un papel importante en la

teoŕıa, como lo es en el paso al formalismo hamiltoniano.

4.5. El Hamiltoniano canónico

Si se define el hamiltoniano canónico de manera usual, Hc = q̇ipi − L (mediante una trans-

formada de Legendre), sucede que algunas velocidades no podrán expresarse como función de las

coordenadas y momentos, y además, debido a las ecuaciones de restricción ϕm(q, p) = 0, que las

coordenadas y los momentos ya no son independientes. Por esto último, el hamiltoniano canónico

sólo está bien definido sobre la subvariedad 2N −M ′ dimensional en el espacio fase. Además, si se

elige el hamiltoniano canónico como

Hc → Hc + umϕ
m, (4.5)

en donde um son funciones arbitrarias en el espacio fase, el formalismo debe permanecer sin cambio

(dado que cualquier combinación lineal de restricciones es débilmente cero). Con este hamiltoniano,

la acción está dada por

S =

∫ t2

t1

(
q̇ipi −Hc − umϕ

m
)
dt. (4.6)

14
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Entonces, calculando su variación, usando las ecuaciones de restricción y que δqi |t2t1= 0, las ecua-

ciones de movimiento están dadas por

q̇i =
∂Hc

∂pi
+ um

∂ϕm

∂pi
, ṗi = −∂Hc

∂qi
− um

∂ϕm

∂qi
. (4.7)

Debido a que las um o multiplicadores de Lagrange son funciones arbitrarias del espacio fase, las

ecuaciones de movimiento (4.7) no están determinadas de manera única. Si al final del proceso no

se pudieron determinar todos los multiplicadores, las ecuaciones de movimiento estarán indeter-

minadas por funciones arbitrarias. Esta indeterminación es lo que se conoce como la libertad de

norma de la teoŕıa, de la cual se hablará más adelante.

4.6. Hamiltoniano primario y restricciones secundarias

El hamiltoniano primario es el definido por (4.5),

H1 ≡ Hc + umϕ
m, (4.8)

el cual contiene, hasta el momento, toda la información del sistema. Las ecuaciones de movimiento

(4.7) pueden escribirse de forma compacta como

q̇i = {qi,Hc}+ um{qi, ϕm}, ṗi = {pi,Hc}+ um{pi, ϕm}, (4.9)

con {, } el paréntesis de Poisson. De hecho, para una función arbitraria del espacio fase g = g(q, p),

se tiene que

ġ = {g,Hc}+ um{g, ϕm}, (4.10)

o bien, usado las restricciones ϕm = 0, que

ġ = {g,Hc + umϕ
m} ≡ {g,H1}. (4.11)

Debido a que las restricciones (en general) de la teoŕıa no deben cambiar en el tiempo, a estas

se les impone la llamada condición de consistencia, la cual se expresa mediante

ϕ̇i = {ϕi, H1} = {ϕi,Hc}+ um{ϕi, ϕm} ≈ 0. (4.12)

La ecuación anterior se puede considerar como un sistema de ecuaciones lineales no ho-

mogéneo para los multiplicadores de Lagrange um. Definiendo el vector columna h con entradas
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hi ≡ {ϕi, Hc}, el vector u con entradas um y la matrizW de tamañoM ′×M ′ (hayM ′ restricciones

independientes ϕi) con entradas W im ≡ {ϕi, ϕm}, la última expresión se escribe como

h+ uW ≈ 0. (4.13)

La posibilidad de hallar los multiplicadores de Lagrange está en función de las caracteŕısticas de

estos objetos. Debido a que la obtención de los multiplicadores de Lagrange no son uno de los

objetivos espećıficos de este trabajo, no se describirán los posibles casos en los que destacan las

diferentes propiedades de h y W . Sin embargo, se describirá el caso en que caen las teoŕıas (como

las de norma) que se estudirán en los caṕıtulos siguientes. Este caso de interés es:

Caso h ̸= 0, detW = 0. Debido a que detW = 0, el rango de W , K, da el número de

multiplicadores de Lagrange que se podrán despejar, mientras que su nulidad M ′ − K los

multiplicadores que quedarán indeterminados, de modo que habrá funciones arbitrarias en las

ecuaciones de movimiento. Si V i son los vectores nulos de W (i = 1, ...,M ′−K) que por definición

satisfacen

WV i ≈ 0,

multiplicando (4.13) por V i, se tiene que

hV i ≈ 0, (4.14)

que en general son funciones del espacio fase independientes de los multiplicadores. Estas i relacio-

nes implican que la teoŕıa presenta i restricciones adicionales, a las cuales se les llama restricciones

secundarias. Este es, recalcando, el caso en el que caen las teoŕıas que se estudiarán (como lo son

las teoŕıas de norma).

Si al haber aplicado la condición de consistencia (4.12) a las restricciones primarias la teoŕıa

presenta restricciones secundarias, se tiene una situación similar a la de un inicio, i.e., un problema

de extremos con restricciones, solo que estas restricciones viven en el espacio fase. Entonces, se

construye, de manera análoga, el hamiltoniano secundario

H2 ≡ Hc + uiϕ
i,

en donde ϕi son todas las restricciones primarias y secundarias halladas hasta el momento, sien-

do ahora este hamiltoniano el que contiene toda la información del sistema. Las ecuaciones de

movimiento toman ahora la forma

ġ = {g,Hc + uiϕ
i} ≡ {g,H2},
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de lo cual, se pueden calcular las relaciones de consistencia sobre las restricciones secundarias. Si

después de realizado este proceso aparecen nuevas restricciones, llamadas terciarias, se repite el

mismo el proceso construyendo un hamiltoniano terciario, y calculando las relaciones de consisten-

cia sobre las restricciones, repitiéndose el proceso hasta que ya no haya restricciones. Al conjunto

de restricciones secundarias, terciarias, etc., también se les suele llamar secundarias, simplemente.

4.7. Caso reducible y no reducible

Si algunas de las restricciones ϕk pueden obtenerse mediante una transformación lineal; es

decir, que no son independientes, se dice que la teoŕıa es reducible. En caso contrario, se dice que

se la teoŕıa es irreducible. En el caso reducible se pueden omitir las restricciones no independientes,

puesto que siempre puede considerarse que localmente se está trabajando con el caso irreductible.

La identificación de las restricciones independientes, se menciona, no siempre es fácil de hacer,

incluso puede ser globalmente imposible debido a obstrucciones topológicas.

4.8. Funciones de primera y segunda clase

Definición. Una función F del espacio fase es de primera clase si su paréntesis de Poisson con

todas las restricciones es débilmente cero,

{F, ϕµ} ≈ 0,

en otro caso, es de segunda clase.

Nótese que si F es de primera clase, {F, ϕµ} debe ser fuertemente igual a una combinación

lineal de las restricciones ϕ, debido a que las ϕ’s son las únicas cantidades independientes que son

débilmente cero. Aśı , {F, ϕµ} = fµρϕ
ρ.

Teorema (útil). El paréntesis de Poisson entre dos funciones de primera clase, también es

de primera clase. (Este se prueba usando la identidad de Jacobi y la propiedad débilmente cero

de las ϕ’s.)
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4.9. Condiciones sobre los multiplicadores y hamiltoniano

total

Las condiciones de consistencia sobre todas las restricciones,

ϕ̇µ = {ϕµ,Hc}+ uν{ϕµ, ϕν} ≈ 0, (4.15)

representa un sistema de ecuaciones lineales para los multiplicadores uµ. Las condiciones sobre los

multiplicadores de las que se hablará, son las ecuaciones que satisfacen la parte de los multipli-

cadores que es solución particular del sistema (4.15), aśı como la parte que es solución al sistema

homogéneo (4.15). Estas diferentes ecuaciones, como se verá más adelante, equivalen a poder dis-

tinguir entre restricciones de segunda y primera clase. Por el momento, estas condiciones se tratan

para notar la presencia de funciones arbitrarias (relacionadas con la parte de los multiplicadores

que es solución al sistema homogéneo) que más tarde aparecerán en las ecuaciones de movimiento.

Si en total se tienen J restricciones ϕµ, µ = 1, ..., J , la solución general del sistema de ecuaciones

no homogéneo (4.15) es de la forma

uν = Uν + Vν , (4.16)

con Uν una solución particular al sistema no homogéneo y Vν la solución más general del sistema

homogéneo,

Vν{ϕµ, ϕν} ≈ 0. (4.17)

La solución general Vν puede expresarse como combinación lineal de soluciones independientes vi,

Vν = viV
i
ν , i = 1, ..., I, con I el número de soluciones independientes. Entonces, los multiplicadores

se escriben como

uν = Uν + viV
i
ν . (4.18)

Las funciones vi son funciones totalmente arbitrarias, de modo que las uν se han separado en

una parte que puede fijarse mediante las condiciones de consistencia, y otra que es completamente

arbitraria o indeterminada. Ahora, a fin de visualizar la presencia de estas funciones arbitrarias en

las ecuaciones de movimiento, se define primero el hamiltoniano que contiene todas las restricciones

y sus multiplicadores hasta el momento, llamado hamiltoniano total HT ,

HT ≡ Hc + uνϕ
ν . (4.19)

Sustituyendo (4.18) en (4.19):

HT = Hc +
(
Uν + viV

i
ν

)
ϕν = Hc + Uνϕ

ν + viϕ
i,
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CAPÍTULO 4. EL ALGORITMO DE DIRAC-BERGMANN ESTRICTO
4.9. CONDICIONES SOBRE LOS MULTIPLICADORES Y HAMILTONIANO TOTAL

en donde se ha definido

ϕi ≡ V i
νϕ

ν . (4.20)

Para una función cualquiera f = f(q, p), se puede calcular ḟ como ḟ = {f,HT }, esto es,

ḟ = {f,HT } = {f,Hc + Uνϕ
ν + viϕ

i} = {f,H ′ + viϕ
i}

= {f,H ′}+ {f, vi}ϕi + {f, ϕi}vi

= {f,H ′}+ vi{f, ϕi}, (4.21)

habiéndose usando que ϕi = V i
νϕ

ν ≈ 0, con

H ′ ≡ Hc + Uνϕ
ν . (4.22)

Las ecuaciones (4.21) contienen I funciones arbitrarias que, por construcción, equivalen a las

ecuaciones de Euler-Lagrange. Lo anterior es un punto muy importante porque marca una gran

diferencia con la mecánica clásica usual, en donde dadas las condiciones iniciales la evolución del

sistema es única, pero en este caso, dadas unas condiciones iniciales la evolución del sistema no es

única, sino que depende de la elección de las funciones arbitrarias vi.

Las cantidades ϕi son de hecho, como se mencionó al inicio de la sección, restricciones de primera

clase, y H ′ también es de primera clase. Esto se muestra usando la definición de una función de

primera clase;

{ϕi, ϕµ} = {V i
νϕ

ν , ϕµ} = {V i
ν , ϕ

µ}ϕν + V i
ν {ϕν , ϕµ} ≈ V i

ν {ϕν , ϕµ},

pero V i
ν es la solución general al sistema de ecuaciones homogéneo V i

ν {ϕν , ϕµ} ≈ 0, luego

{ϕi, ϕµ} ≈ V i
ν {ϕν , ϕµ} ≈ 0 ⇒ {ϕi, ϕµ} ≈ 0,

por lo que ϕi son de primera clase. Asimismo, se tiene que

{H ′, ϕµ} = {Hc + Uνϕ
ν , ϕµ} = {Hc, ϕ

µ}+ {Uν , ϕ
µ}ϕν + Uν{ϕν , ϕµ}

≈ {Hc, ϕ
µ}+ Uν{ϕν , ϕµ},

y sumando el cero débil vi{ϕi, ϕµ} ≈ 0,

{H ′, ϕµ} ≈ {Hc, ϕ
µ}+ Uν{ϕν , ϕµ}+ vi{ϕi, ϕµ} = {Hc + Uνϕ

ν + viϕ
i, ϕµ}

= {HT , ϕ
µ} = −{ϕµ,HT } ≈ 0,

habiéndose usado en la última igualdad débil la condición de consistencia de ϕµ. Cabe mencionar,

que la descomposición de HT en H ′ y ϕi no es única debido a que Uµ es cualquier solución

particular del sistema inhomogéneo (4.15). Esto significa que pueden renombrarse o proponerse

nuevas funciones vi sin alterar HT .
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CAPÍTULO 4. EL ALGORITMO DE DIRAC-BERGMANN ESTRICTO
4.10. RESTRICCIONES DE PRIMERA Y SEGUNDA CLASE

4.10. Restricciones de primera y segunda clase

Habiendo hallado todas las restricciones de la teoŕıa, ahora deben separarse en restricciones

de primera y de segundade clase. Es decir, debe identificarse los corchetes de Poisson entre todas

ellas que son o no débilmente cero. La manera sistemática para hacer dicha separación es la

siguiente. Si W ′ es la matriz J × J con entradas W
′αβ ≡ {ϕα, ϕβ}, en donde J es el número total

de restricciones, y tal que detW ′ ≈ 0, entonces, la nulidad de W ′, J −R′, con R′ el rango de W ′,

da el número de restricciones de primera clase.

Prueba. Si detW ′ ≈ 0, entonces R′ < J y su nulidad será J − R′ ̸= 0, entonces habrá J − R′

vectores nulos wj , j = 1, ..., J − R′, que por definición son vectores tales que wj
α{ϕα, ϕβ} = 0,

entonces {wi
αϕ

α, ϕβ} ≈ 0, ∀ϕβ ∈ Φ, con Φ = {ϕβ | ϕβ una restricción primaria o secundaria }. Aśı,

wi
αϕ

α ≡ γi es un conjunto de J −R′ restricciones de primera clase.

Además, el rango de W ′, R′, da el número de restricciones de segunda clase. Cabe mencio-

nar que el número de restricciones de segunda clase debe ser par1. Aqúı, debe notarse que los

vectores nulos de {ϕα, ϕβ} pueden verse como las soluciones del sistema wj
α{ϕα, ϕβ} = 0, el cual

es similar a viV
i
ν propuesto en (4.18). De hecho, puede asumirse que vi = wi.

4.11. Transformaciones de norma y restricciones de primera

clase

Para una función del espacio fase f = f(q, p) se obtuvo que

ḟ = {f,H ′}+ vi{f, ϕi}.

En particular, si f es q o p se obtienen las ecuaciones de movimiento, con el hecho relevante o no

usual de la presencia de funciones arbitrarias vi. A diferencia de lo que pasa en la mecánica clásica

usual, la presencia de las funciones arbitrarias vi significa que dadas las condiciones iniciales del

sistema la evolución del sistema no está determinada de manera única. La mecánica clásica, sin

embargo, es determinista, por lo que dos estados con diferente valor de las funciones arbitrarias vi

pero bajo las mismas condiciones iniciales deben ser f́ısicamente equivalentes, y se dice que estos

1Prueba. Sabiendo que C es antisimétrica y usando las propiedades del determinante, se tiene que detC =

det(Ct) = det(−C) = (−1)R
′
detC. Si se supone que R′ es impar, se tendŕıa que detC = −detC ⇒ detC = 0, lo que

contradice a que R′ sea el rango de W ′.
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sistemas son equivalentes de norma. También se dice que se trata de un sistema con libertad de

norma.

Considérense dos estados con las mismas condiciones iniciales al tiempo t0 y que su evolución

difiere en el valor de las funciones vi en las ecuaciones de movimiento. Utilizando el desarrollo en

serie de Taylor a primer orden para la variable canónica F = q o p en cada estado,

F (t) = F (t0) + Ḟ δt = F (t0) +
(
{F,H ′}+ vi{F, ϕi}

)
δt,

F ′(t) = F (t0) + Ḟ ′δt = F (t0) +
(
{F,H ′}+ v′i{F, ϕi}

)
δt,

y restando,

δF (t) = (vi − v′i){F, ϕi}δt ≡ δvi{F, ϕi}, (4.23)

con δvi ≡ (vi−v′i)δt. Por hipótesis, el estado f́ısico se mantiene inalterado, mientras que las variables

canónicas se transforman según lo anterior. Este cambio en las variables canónicas consiste en

aplicar una transformación de contacto infinitesimal con una función generadora δviϕ
i, por lo

que se conluye que las restricciones de primera clase son las generadoras de transformaciones

infinitesimales de contacto que corresponden a cambios en q y p que, por hipótesis, no alteran el

estado f́ısico del sistema. A estas transformaciones se les refiere simplemente como transformaciones

de norma.

4.12. Grados de libertad

Definición. Los grados de libertad de un sistema son el número de variables f́ısicas independien-

tes necesarias para describir al sistema.

En mecánica clásica, el número de grados de libertad de una teoŕıa se obtiene restando el número

de ecuaciones de restricción independientes al número de coordenadas generalizadas. Haciendo una

extrapolación de esto, se puede proponer que el número de grados de libertad es

GL =
1

2

 Número total de

variables canónicas

−

 Número de restricciones de

segunda clase originales


−2×

 Número de restricciones de

primera clase

 (4.24)

El 1/2 es para compensar el hecho de que usualmente los grados de libertad se refieren a las

coordenadas q, pero al considerar todas las variables canónicas también se está considerando a los
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momentos p. El 2 multiplicando a las restricciones de primera clase es debido a su doble carácter,

tanto de restricción como de generadora de transformaciones de norma. Es decir, la teoŕıa presenta

restricciones y transformaciones de norma que pueden verse como condiciones adicionales de la

teoŕıa.

4.13. El hamiltoniano y la acción extendidos

Como se ha visto, el hamiltoniano que contiene todas las restricciones de la teoŕıa es el hamil-

toniano total HT ≡ H ′ + viϕ
i, en donde, H ′ ≡ Hc +Uνϕ

ν y ϕi son de primera clase, sin embargo,

hasta el momento no se le ha hecho alguna distinción expĺıcita en cuanto a si las restricciones que

contiene son de primera o de segunda clase. Al hamiltoniano en el cual se hace esta distinción se

le llama extendido, y se suele denotar con γ a las restricciones de primera clase, y con χ a las de

segunda clase. Entonces, el hamiltoniano extendido se define como

HE ≡ Hc + Ujχ
j + vaγ

a = H ′ + vaγ
a, (4.25)

con H ′ ≡ Hc + Ujχ
j . La evolución del sistema está dada por este hamiltoniano mediante

Ḟ = {F,HE}. (4.26)

Para las variables dinámicas invariantes de norma, i.e., variables tales cuyo paréntesis de Poisson

con los generadores de norma γa es débilmente cero, la evolución dinámica dada por H1, H
′ y HE

es la misma. Para otra variable, es necesario usar HE , que considera toda la libertad de norma del

sistema. Debe notarse que las ecuaciones (4.26) y (4.1) son f́ısicamente equivalentes. La necesidad

de un hamiltoniano extendido no es algo que se deduzca de la formulación lagrangiana, pues el

hamiltoniano primario genera las ecuaciones de movimiento (4.7) que, por construcción, equivalen

a las ecuaciones de Lagrange (4.1), además de que HE contiene más funciones arbitrarias que las

que contiene H1. La introducción del hamiltoniano HE es entonces una nueva caracteŕıstica del

formalismo hamiltoniano que incluye de forma manifiesta la invariancia de norma.

Por otro lado, las ecuaciones de movimiento de la forma (4.26) deben provenir de una acción

de la forma (4.6). En efecto, estas ecuaciones se obtienen de la acción extendida

SE [q, p, v] =

∫
(q̇npn −H ′ − vaγ

a) dt =

∫
(q̇npn −HE) dt, (4.27)

la cual, al igual que HE , ya considera la separación de las restricciones entre primera y segunda

clase, i.e., contiene la libertad de norma, y da las ecuaciones de movimiento

Ḟ = {F,HE}, ϕa = γa ≈ 0. (4.28)
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4.14. Corchetes de Dirac y restricciones de segunda clase

El paréntesis o corchete de Dirac se define como

{F,G}D = {F,G} − {F, χα}Cαβ{χβ , G}, (4.29)

con {, } el paréntesis de Poisson y Cαβ la inversa de Cαβ ≡ {χα, χβ}, el cual satisface las propie-

dades

{F,G}D = −{G,F}D, (4.30)

{F,GH}D = {F,G}DH +G{F,H}D, (4.31)

{{F,G}D,H}D + {{H,F}D, G}D + {{G,H}D, F}D = 0, (4.32)

{χα, F}D = 0, ∀F (4.33)

{F,G}D ≈ {F,G}, G de primera clase y F arbitraria, (4.34)

{H, {F,G}D}D ≈ {H{F,G}}. (4.35)

De estas propiedades, HE es de primera clase, y por (4.34), las ecuaciones de movimiento (4.26)

pueden reescribirse como

Ḟ = {F,HE}D, (4.36)

y, por los mismos argumentos, el efecto de una transformación de norma puede escribirse como

{F, γa} ≈ {F, γa}D, ∀F. (4.37)

Nótese entonces que después de separar las restricciones de primera y segunda clase, el paréntesis

de Poisson se generaliza al paréntesis de Dirac, en términos del cual pueden escribirse las ecua-

ciones más relevantes del formalismo [como (4.36) y (4.37)]. Las restricciones de segunda clase se

convierten en identidades para algunas variables canónicas en terminos de otras. Además, es ahora

el paréntesis de Dirac el que, en analoǵıa con lo que se hace usualmente, se promueve a conmutador

a fin de cuantizar la teoŕıa.
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4.15. Observables

Una observable es, por definición, una función que es invariante de norma en la superficie de

restricciones. En otras palabras, una observable es una función O cuyo paréntesis de Dirac es

débilmente cero con las restricciones de primera clase,

{O, γa}D ≈ 0. (4.38)

Aunque se usa el término “observable”, debe mencionarse que no se está intentando dar un significa-

do experimental directo. Asimismo, cabe mencionar que las observables clásicas no necesariamente

lo son en el caso cuántico.
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Caṕıtulo 5

La acción de Kalb-Ramond

Es sabido que la teoŕıa de Kalb-Ramond es una teoŕıa de norma no masiva descrita por un

tensor antisimétrico de segundo rango Bµν = −Bνµ. Este campo de norma es un tensor análogo

al tensor de norma de Maxwell Aµ. En la teoŕıa de Maxwell, la intensidad de campo está dada

por Fµν = ∂µAν − ∂νAµ. Para Bµν , la intensidad del campo de Kalb-Ramond está dada por

Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν , la cual es completamente antisimétrica e invariante de norma.

El campo de Kalb-Ramond es de muchas maneras la generalización tensorial del campo de norma

de Maxwell. En teoŕıa de cuerdas, el campo de Kalb-Ramond se acopla a las cuerdas de manera

análoga a como el campo de Maxwell se acopla a las part́ıculas. Mientras las part́ıculas cargadas

son la fuente del campo de Maxwell, las cuerdas son la fuente del campo de Kalb-Ramond. Aśı,

el campo de Kalb-Ramond aparece en una especie de electrodinámica en teoŕıa de cuerdas. En el

caso gravitacional, por ejemplo, el campo Bµν se ha introducido para estudiar las soluciones de

las ecuaciones del campo gravitacional en presencia de torsión en el espacio-tiempo, siendo Bµν

el campo de fondo de torsión [24]. En otros casos, el campo Bµν se ha usado para preservar la

invariancia de norma U(1) del campo electromagnético en un fondo con torsión, siendo Bµν la

posible fuente de torsión [25]. En este caṕıtulo, se hace un análisis hamiltoniano de la teoŕıa de

Kalb-Ramond aplicando el algoritmo de Dirac-Bergmann estricto. Este análisis en sentido estricto

de la teoŕıa de Kalb-Ramond, es una contribución del presente trabajo, ya que no se encuentra en

la literatura. Se muestra que la teoŕıa es una teoŕıa de norma reducible, no masiva, cuyo campo

Bµν posee un solo grado de libertad. Se obtienen además, mediante el proceso de expansión del

espacio fase, los corchetes de Dirac de la teoŕıa.
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5.1. La acción de Kalb-Ramond

El lagrangiano de la teoŕıa de Kalb-Ramond (KB) está dado por

L =
1

2× 3!
HµνλH

µνλ, (5.1)

en dondeHµνλ ≡ ∂µBνλ+∂νBλµ+∂λBµν y Bµν son la intensidad de campo y el campo de KB. Para

mostrar que la teoŕıa descrita por (5.1) es singular y saber el número de restricciones primarias que

deben obtenerse, se obtiene la matriz Hessiana. Usando el hecho que Hµνλ = −Hνµλ = −Hµλν , se

tiene que

∂L
∂(∂0Bαβ)

=
1

3!
Hµνλ

(1
2
δ0µ(δ

α
ν δ

β
λ − δβν δ

α
λ ) +

1

2
δ0ν(δ

α
λδ

β
µ − δβλδ

α
µ ) +

1

2
δ0λ(δ

α
µδ

β
ν − δβµδ

α
ν )
)

=
1

2
H0αβ =

1

2
gαγgβδH0γδ, (5.2)

luego, considerando que H00λ = 0,

∂2L
∂(∂0Bλρ)∂(∂0Bαβ)

=
1

4
gαigβj(δλi δ

ρ
j − δλj δ

ρ
i ) =

1

4
(gαλgβρ − gαρgβλ) ≡Wαβλρ (5.3)

(i, j = 1, 2, 3). La inspección de (5.3) conduce a que las entradas distintas de cero de (Wαβλρ) son

3 (para α, β ̸= 0), lo que implica que su nulidad es 6− 3 = 3 (6 son las componetes independientes

de Bµν). La matriz Hessiana tiene determinante cero, por lo que la teoŕıa es singular, y además,

se tiene que 3 son las restricciones primarias independientes que deben obtenerse.

5.2. Restricciones primarias y secundarias

De la expresión (5.2), además de los momentos canónicos, se obtienen las restricciones primarias;

es decir, de la expresión (5.2) se tiene que

Παβ =
1

2
H0αβ (5.4)

⇒ Πij =
1

2
H0ij , Π0i = 0 (5.5)

⇒ ϕ0i ≡ Π0i ≈ 0, (5.6)

siendo, en efecto, 3 restricciones primarias independientes. Para obtener las restricciones secunda-

rias aplicando la condición de consistencia a las restricciones (5.6), debe obtenerse el hamiltoniano

asociado al lagrangiano (5.1). Con este fin, considerando que (5.1) es igual a

L =
1

4
H0ijH

0ij +
1

2× 3!
HijkH

ijk, (5.7)
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el hamiltoniano asociado está dado por

Hc =

∫
d3x

[
ḂµνΠ

µν − L
]

=

∫
d3x

[
(H0ij − ∂iBj0 − ∂jB0i)Π

ij −
(
ΠijΠ

ij +
1

2× 3!
HijkH

ijk
)]

=

∫
d3x

[
2B0i∂jΠ

ij +ΠijΠ
ij − 1

2× 3!
HijkH

ijk

]
(5.8)

Entonces, definiendo el hamiltoniano primario

H1 = Hc +

∫
d3xa0iϕ

0i, (5.9)

en donde a0i son los multiplicadores de Lagrange que fuerzan las restricciones ϕ0i, y usando los

corchetes de Poisson fundamentales

{Bαβ(x),Π
µν(y)} =

1

2
(δµαδ

ν
β − δµβδ

ν
α)δ

3(x− y) (5.10)

(tomadas al mismo tiempo), se tiene que

ϕ̇0i(x) = {ϕ0i(x),H1(y)} =

∫
d3y{Π0i(x), [2B0k∂jΠ

kj ](y)}

= −∂jΠij(x)

⇒ ψ0i ≡ ∂jΠ
ij ≈ 0, (5.11)

siendo 3 restricciones secundarias. Para hallar las posibles restricciones terciarias, se define el

hamiltoniano secundario

H2 = Hc +

∫
d3x

[
a0iϕ

0i + b0iψ
0i
]
, (5.12)

con b0i los multiplicadores de Lagrange que fuerzan las restricciones secundarias ψ0i. Aśı, se tiene

que

ψ̇0l(x) = {ψ0l(x),H2(y)} = − 1

3!

∫
d3yHijk(y){∂nΠln(x),Hijk(y)}

=
1

3!

∫
d3y

[(
Hiln(y)∂n∂i +Hnjl(y)∂n∂j +Hnlk(y)∂n∂k

)
δ3(x− y)

]
= 0, (5.13)

por lo que no hay restricciones terciarias. Las restricciones encontradas (5.6) y (5.11), es fácil

notar que son de primera clase, ya que en ellas solo aparecen momentos canónicos. De (5.11), sin

embargo, se obtiene que ∂i∂jΠ
ij ≈ 0, la cual no es independiente de (5.11), siendo, por tanto, una

condición de reductibilidad.

5.3. Grados de libertad

Halladas todas las restricciones y, en este caso, las relaciones de reductibilidad, puede llevarse

a cabo el conteo de los grados de libertad f́ısicos como sigue:
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Se tiene un total de 2(6) variables dinámicas (son 6 las componentes independientes de

Bµν) y (3 + 3− 1) restricciones de primera clase independientes.

Entonces, los grados de libertad f́ısicos para la teoŕıa KB son

GL =
1

2
[2(6)− 2(5)] = 1. (5.14)

(Los cuales, nótese, coinciden con los de una teoŕıa de campo escalar.)

5.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transformaciones de norma, y el generador

está dado por

G =

∫
d3x[ϵ0iϕ

0i + ϵiψ
0i], (5.15)

siendo las ϵ’s los parámetros de las correspondientes transformaciones. Recordando que la trans-

formación de norma para una variable dinámica F está dada por δF = {F,G}, se tiene que

δB0i(x) =

∫
d3y{B0i(x), [ϵ0jΠ

0j ](y)} =
1

2
ϵ0i(x) ≡

1

2
ϵ̇i(x), (5.16)

δBkl(x) =

∫
d3y{Bkl(x), [ϵi∂jΠ

ij ](y)} =
1

2

∫
d3yϵi(y)∂jδ

3(x− y)(δikδ
j
l − δjkδ

i
l )

=
1

2
[∂kϵl(x)− ∂lϵk(x)], (5.17)

por lo que las transformaciones de norma están dadas por

δB0i = ∂0ϵi, δBij = ∂iϵj − ∂jϵi. (5.18)

5.5. Los corchetes de Dirac

Para obtener los corchetes de Dirac en una teoŕıa con restricciones de primera clase, lo que

se hace es obtener un conjunto de restricciones de segunda clase irreducibles a partir de las de

primera clase fijando la norma. Si las restricciones de primera clase no son independientes (como

en el presente caso) se expande el espacio fase mediante la introducción de campos auxiliares.
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Haciendo esto, uno obtienen las restricciones de segunda clase irreducibles1

χ1 ≡ Π0i, χ2 ≡ B0i, χ3 ≡ 2∂jΠ
ij − ∂ip, χ4 ≡ ∂jBij + ∂iq, (5.19)

con q, p campos auxiliares satisfaciendo

{q(x), p(y)} = δ3(x− y). (5.20)

Aśı, los corchetes de Poisson distintos de cero entre estas restricciones son

{χ1(x), χ2(y)} = {Π0i(x), B0j(y)} = −1

2
δijδ

3(x− y),

{χ3(x), χ4(y)} = {2∂jΠij(x), ∂lBkl(y)} − {∂ip(x), ∂kq(y)} = −δik∂j∂jδ3(x− y), (5.21)

los cuales definen la matriz

(
Cαβ

)
=


0 −1

2δ
i
j 0 0

1
2δ

i
j 0 0 0

0 0 0 −δij∇2

0 0 δij∇2 0

 δ3(x− y),

y cuya inversa es

(Cαβ) =


0 2δij 0 0

−2δij 0 0 0

0 0 0
δji
∇2

0 0 − δji
∇2 0

 δ3(x− y).

Entonces, los corchetes de Dirac no triviales distintos de cero

{Bij(x),Π
kl(y)}D =

1

2
(δki δ

l
j − δliδ

k
j )δ

3(x− y)

−
∫
d3ud3v

[
{Bij(x), 2∂mΠrm(u))}[ δ

p
r

∇2
δ3(u− v)]{∂qBpq(v),Π

kl(y)}
]

=
1

2
(δki δ

l
j + δliδ

k
j )−

∫
d3ud3v

[
(δri δ

m
j − δmi δ

r
j )∂mδ

3(x− u)
δpr
∇2

δ3(u− v)

×1

2
(δkpδ

l
q − δlpδ

k
q )∂

qδ3(v − y)
]

=
1

2
[(δki δ

l
j + δliδ

k
j ) + (δri δ

m
j − δmi δ

r
j )
δpr
∇2

∂m∂
qδ3(x− y)(δkpδ

l
q − δlpδ

k
q )]

=
1

2
[δki δ

l
j − δliδ

k
j +

1

∇2
(δki ∂j∂

l − δli∂j∂
k − δkj ∂i∂

l + δlj∂i∂
k)]δ3(x− y).(5.22)

1En las ecuaciones (5.19), el factor 2 se ha introducido solo por conveniencia; para no multiplicar por 1/2 la

ecuación fundamental (5.20)
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Además, los corchetes de Dirac no triviales entre los campos auxiliares q y p con los campos

restantes son

{q(x), p(y)}D = δ3(x− y)−
∫
d3ud3v

[
{q(x),−∂ip(u))}[ δ

j
i

∇2
δ3(u− v)]{∂jq(v), p(y)}

]
= δ3(x− y) +

∫
d3ud3v

[
∂iδ3(x− u)

1

∇2
δ3(u− v)∂iδ

3(v − y)
]

= δ3(x− y)− 1

∇2
∂i∂iδ

3(x− y) = 0, (5.23)

{q(x),Πij(y)}D = −
∫
d3ud3v

[
{q(x),−∂kp(u))}[ δ

l
k

∇2
δ3(u− v)]{∂mBlm(v),Πij(y)}

]
=

∫
d3ud3v

[
∂kδ3(x− u)

δlk
∇2

δ3(u− v)
1

2
(δilδ

j
m − δjl δ

i
m)∂mδ3(v − y)

]
=

1

2∇2
[∂i∂j − ∂j∂i]δ3(x− y) = 0, (5.24)

{Bkl(x), p(y)}D = −
∫
d3ud3v

[
{Bkl(x), 2∂nΠ

mn(u))}[ δ
i
m

∇2
δ3(u− v)]{∂iq(v), p(y)}

]
= −

∫
d3ud3v

[
(δmk δ

n
l − δnk δ

m
l )∂nδ

3(x− u)
δim
∇2

δ3(u− v)∂iδ
3(v − y)

]
=

1

∇2
[∂l∂k − ∂k∂l]δ

3(x− y) = 0, (5.25)

mientras que trivialmente

{q(x), Bij(y)}D = 0, {Πij(x), p(y), }D = 0, (5.26)

lo que muestra que los campos auxiliares q y p son independientes del corchete de Dirac. Esta es

una condición necesaria, ya que como campos auxiliares no deben contribuir con resultados en la

teoŕıa.

En resumen, se ha mostrado que la teoŕıa de KR tiene 5 restricciones de primera clase indepen-

dientes de un total de 6. Esto la hace una teoŕıa de norma reducible. Se encontró que el campo no

masivo de KR Bµν posee un solo grado de libertad. Además, debido a que la teoŕıa solo presenta

restricciones de primera clase, se usó el proceso de expansión del espacio fase a fin de poder calcular

los corchetes de Dirac.
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Caṕıtulo 6

La acción de Kalb-Ramond en 5

dimensiones

Se ha visto que la teoŕıa de Kalb-Ramond 4D es una teoŕıa de norma reducible cuyo campo Bµν

posee un solo grado de libertad. Ahora se estudiará la dinámica hamiltoniana de la teoŕıa de Kalb-

Ramond con una dimensión extra compacta aplicando el formalismo de Dirac-Bergmann estricto.

Este análisis estricto de la teoŕıa constituye de hecho una contribución del presente trabajo, ya

que este formalismo no se encuentra en la literatura. En este caṕıtulo se encuentra, después de

compactar la quinta dimesión sobre un orbifol S1/Z2, que la teoŕıa efectiva de Kalb-Ramond es una

teoŕıa de norma reducible. Se muestra que el modo cero corresponde consistentemente a la teoŕıa de

norma Kalb-Ramond 4D, mas una torre de excitaciones de Kaluza-Klein de campos masivos B
(n)
µν

contribuyendo cada modo con tres grados de libertad. Esto último, después de haber fijado la norma

y haber identificado los campos B
(n)
µ5 como pseudo-bosones de Golstone. Además, debido a que hay

condiciones de reductibilidad tanto para el modo cero como para los estados excitados, se expande

el espacio fase para obtener los corchetes de Dirac de la teoŕıa. Los resultados correspondientes a

este caṕıtulo son una aportación que también puede consultarse en [34].

6.1. El lagrangiano efectivo

La notación que se usará es la siguiente: ı́ndices latinos mayúsculos M,N toman los valores

0, 1, 2, 3, 5, con 5 etiquetando la dimensión extra compacta, y pueden subirse o bajarse con la
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métrica plana η = (1,−1,−1,−1,−1); y representa la coordenada en la dimensión compacta; los

ı́ndices griegos µ, ν corren de 0 a 3, y xµ denotan las coordenadas etiquetando puntos de la variedad

cuadridimensional M4. Considérese entonces el lagrangiano de Kalb-Ramond (KR) 5D,

L =
1

2× 3!
HMNLH

MNL, (6.1)

en donde HMNL = ∂MBNL + ∂NBLM + ∂LBMN y BMN son la intensidad del campo y el campo

de KR 5D. La compactificación de la quinta dimension espacial en un orbifold S1/Z2 de radio R

impone sobre los campos BMN las condiciones de paridad y periodicidad

BMN (x, y) = BMN (x, y + 2πR),

Bµν(x,−y) = Bµν(x, y),

Bµ5(x,−y) = −Bµ5(x, y).

Estas condiciones permiten expresar BMN como el conjunto de armónicos sobre M4 × S1/Z2,

Bµν(x, y) =
1√
2πR

B(0)
µν (x) +

1√
πR

∞∑
n=1

B(n)
µν (x) cos

(ny
R

)
,

Bµ5(x, y) =
1√
πR

∞∑
n=1

B
(n)
µ5 (x) sin

(ny
R

)
, (6.2)

siendo B
(n)
µν , B

(n)
µ5 los modos de Kaluza-Klein (KK) dependientes solo de las coordenadas de espacio-

tiempo cuadridimensional, y a los cuales se les asocia con una torre infinita de part́ıculas. Expre-

sando (6.1) como

L =
1

2× 3!
HµνλH

µνλ +
1

4
H5µνH

5µν , (6.3)

sustituyendo (6.2) en (6.1) e integrando sobre la quinta dimensión compacta y de 0 a 2πR se

obtiene el lagrangiano efectivo (cuadridimensional)

Le =
1

2× 3!
H

(0)
µνλH

µνλ
(0) +

∞∑
n=1

[
1

2× 3!
H

(n)
µνλH

µνλ
(n)

+
1

4

(
∂µB

(n)
ν5 + ∂νB

(n)
5µ − n

R
B(n)

µν

)(
∂µBν5

(n) + ∂νB5µ
(n) −

n

R
Bµν

(n)

)]
, (6.4)

en donde H
(0)
µνλ y H

(n)
µνλ están definidos de manera similar que en (5.1). Nótese que el modo cero en

el lagrangiano efectivo (6.4) corresponde consistentemente a la teoŕıa KR 4D, y que los modos KK

están compuestos de un término tipo KR 4D mas un término que acopla los campos no masivos

B
(n)
µ5 con los campos B

(n)
µν con una masa (n/R) adquirida debido a la compactación. En adelante,

a fin de hacer más claro el anális de los resultados, se trunca la torre de excitaciones KK hasta

un número finito k, pudiéndose tomar el ĺımite k → ∞ al final de los cálculos, de modo que
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n = 1, 2, 3, ..., k − 1. El lagrangiano (6.4), es resultado no hallado antes en la literatura, y puede

ahora encontrarse en [34].

Para mostrar que la teoŕıa descrita por el lagrangiano efectivo (6.4) es singular y saber el número

de restricciones primarias independientes que uno debe obtener, se obtiene la matriz Hessiana. A

saber, por similitud con los resultados (5.2) y (5.3), para la matriz Hessiana asociada con B
(0)
µν se

tiene que

∂Le

∂(∂0B
(0)
αβ )

=
1

2
H0αβ

(0) =
1

2
gαγgβδH

(0)
0γδ, (6.5)

∂2Le

∂(∂0B
(0)
λρ )∂(∂0B

(0)
αβ )

=
1

4
gαigβj(δλi δ

ρ
j − δλj δ

ρ
i ) =

1

4
(gαλgβρ − gαρgβλ) ≡ (W )αβλρ(0) . (6.6)

Para obtener la matriz Hessiana asociada con B
(l)
LH , se tiene que

∂Le

∂(∂0B
(h)
LH)

= Hµνλ
(h)

1

3!
δLαδ

H
β

∂

∂(∂0B
(h)
αβ )

H
(h)
µνλ

+
1

2

(
∂µBν5

(h) + ∂νB5µ
(h) −

h

R
Bµν

(h)

)
δLαδ

H
5

∂

∂(∂0B
(h)
α5 )

(
∂µB

(n)
ν5 + ∂νB

(n)
5µ − h

R
B(n)

µν

)
=

1

2
δLαδ

H
β H

0αβ
(h) +

1

4
δLαδ

H
5

(
∂µBν5

(h) + ∂νB5µ
(h) −

h

R
Bµν

(h)

)(
δ0µδ

α
ν δ

5
5 − δ0νδ

α
µδ

5
5

)
=

1

2
δLαδ

H
β H

0αβ
(h) +

1

2
δLαδ

H
5

(
∂0Bα5

(h) + ∂αB50
(h) −

h

R
B0α

(h)

)
, (6.7)

luego, considerando que H00λ
(h) = 0,

∂2Le

∂(∂0B
(m)
KM )∂(∂0B

(h)
LH)

=
1

2
δLi δ

H
j g

ikgjmδKl δ
M
n

∂

∂(∂0B
(m)
ln )

H
(m)
0km

+
1

2
δLi δ

H
5 g

ilδKn δ
M
5

∂

∂(∂0B
(m)
n5 )

(
∂0B

(m)
l5 + ∂lB

(m)
50 − h

R
B

(m)
0l

)
=

1

4
δLi δ

H
j g

ikgjmδKl δ
M
n (δlkδ

n
m − δlmδ

n
k ) +

1

4
δLi δ

H
5 g

ilδKn δ
M
5 (δnl δ

5
5)

=
1

4
δLi δ

H
j δ

K
l δ

M
n (gilgjn − gingjl) +

1

4
δLi δ

H
5 δ

K
n δ

M
5 gin

=
1

4
(gLKgHM − gLMgHK) +

1

4
δH5 δ

M
5 gLK ≡W

′LHKM
(m) , (6.8)

en donde los ı́ndices latinos toman los valores 1, 2, 3. Inspeccionando (6.6) se obtiene que las en-

tradas distintas de cero de (Wαβλρ
(0) ) son 3 (aquellas con α, β ̸= 0), lo que implica que su nulidad

es 6 − 3 = 3 (6, son las componetes independientes de B
(0)
µν ). Asimismo, de (6.8), se obtiene que

las entradas distintas de cero de (WLHKM
(m) ) por parte del primer término son 3 (aquellas con

K,L,M,H ̸= 0, 5), y por parte del segundo término son 3 (aquellas con H,M = 5, y L,K ̸= 0, 5),

lo que implica que su nulidad es 10 − 6 = 4 (10, son las componentes independientes de B
(n)
LM ).

Esto muestra que la matriz Hessiana total tiene determinante cero, por lo que la teoŕıa descrita
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por (6.4) es singular, y además, que 3 + 4(k − 1) = 4k − 1 es el número de restricciones primarias

independientes que uno debe obtener. (Ver también este resultado en [34].).

6.2. Restricciones primarias y secundarias

De las expresiones (6.5) y (6.7), además de los momentos canónicos se obtienen las restricciones

primarias; es decir, de (6.5) se tiene que

Πµν
(0) =

1

2
H0µν

(0) (6.9)

⇒ Πij
(0) =

1

2
H0ij

(0) , Π0i
(0) = 0 (6.10)

⇒ ϕ0i(0) ≡ Π0i
(0) ≈ 0, (6.11)

y de la expresión (6.7),

ΠLH
(n) =

1

2
δLαδ

H
β H

0αβ
(n) +

1

2
δLαδ

H
5

(
∂0Bα5

(n) + ∂αB50
(n) −

n

R
B0α

(n)

)
(6.12)

⇒ Πi5
(n) =

1

2

(
∂0Bi5

(n) + ∂iB50
(n) −

n

R
B0i

(n)

)
, Πij

(n) =
1

2
H0ij

(n), Π0i
(n) = 0, Π05

(n) = 0 (6.13)

⇒ ϕ0i(n) ≡ Π0i
(n) ≈ 0, ϕ05(n) ≡ Π05

(n) ≈ 0, (6.14)

siendo, en efecto, 4k − 1 restricciones primarias. Para hallar las restricciones secundarias debe

obtenerse el hamiltoniano asociado con el lagrangiano efectivo (6.4). Por definición, el hamiltoniano

5D asociado con el lagrangiano 5D (6.1) es H = ḂNLΠ
NL − L. Sustituyendo las series (6.2) en

ḂNLΠ
NL = ḂµνΠ

µν + 2Ḃµ5Π
µ5 e integrando sobre y, se obtiene la expresion 4D, Ḃ

(0)
µν Π

µν
(0) +∑∞

n=1

(
Ḃ

(n)
µν Πµν

(n) + 2Ḃ
(n)
i5 Πi5

(n)

)
. Por tanto, el hamiltoniano asociado con el lagrangiano efectivo

(6.4) está dado por

Hc =

∫
d3x

[
Ḃ(0)

µν Π
µν
(0) +

∞∑
n=1

[
Ḃ(n)

µν Πµν
(n) ++2Ḃ

(n)
i5 Πi5

(n)

]
− Le

]
=

∫
d3x

[
(H

(0)
0ij − ∂iB

(0)
j0 − ∂jB

(0)
0i )Πij

(0) +
∞∑

n=1

[
(H

(n)
0ij − ∂iB

(n)
j0 − ∂jB

(n)
0i )Πij

(n)

+2(2Π
(n)
i5 − ∂iB

(n)
50 +

n

R
B

(n)
0i )Πi5

(n)

]
− Le

]
=

∫
d3x

[
B

(0)
0i (2∂jΠ

ij
(0)) + 2Π

(0)
ij Πij

(0) +

∞∑
n=1

[
B

(n)
0i (2∂jΠ

ij
(n)) + 2Π

(n)
ij Πij

(n)

+4Π
(n)
i5 Πi5

(n) +B
(n)
05 (2∂iΠ

5i
(n)) +

n

R
(2B

(n)
0i Πi5

(n))

]
− Le

]
. (6.15)

34
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En esta última expresion, usando que

Le =
1

4
H

(0)
0ijH

0ij
(0) +

1

2× 3!
H

(0)
ijkH

ijk
(0) +

∞∑
n=1

[
1

4
H

(n)
0ijH

0ij
(n) +

1

2× 3!
H

(n)
ijkH

ijk
(n)

+
1

2

(
∂0B

(n)
i5 + ∂iB

(n)
50 − n

R
B

(n)
0i

)(
∂0Bi5

(n) + ∂iB50
(n) −

n

R
B0i

(n)

)
+
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂iB5i
(n) −

n

R
Bij

(n)

)]
, (6.16)

uno obtiene el hamiltoniano canónico

Hc =

∫
d3x

[
B

(0)
0i (2∂jΠ

ij
(0)) + Π

(0)
ij Πij

(0) −
1

2× 3!
H

(0)
ijkH

ijk
(0) +

∞∑
n=1

[
B

(n)
0i (2∂jΠ

ij
(n))

+Π
(n)
ij Πij

(n) −
1

2× 3!
H

(n)
ijkH

ijk
(n) + 2Π

(n)
i5 Πi5

(n) +B
(n)
05 (2∂iΠ

5i
(n)) +

n

R
(2B

(n)
0i Πi5

(n))

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)]]
. (6.17)

Este hamiltoniano es también un resultado que no se hallaba antes en la literatura, y que ahora

puede encontrarse en [34]. Entonces, definiendo el hamiltoniano primario

H1 = Hc +

∫
d3x

[
a
(0)
0i ϕ

0i
(0) +

k−1∑
n=1

(
a
(n)
0i ϕ

0i
(n) + a

(n)
05 ϕ

05
(n)

)]
(6.18)

en donde a
(0)
0i , a

(n)
0i a

(n)
05 son los multiplicadores de Lagrange que fuerzan las restricciones primarias,

y usando las relaciones fundamentales

{B(0)
αβ (x),Π

µν
(0)(z)} =

1

2
(δµαδ

ν
β − δµβδ

ν
α)δ

3(x− z),

{B(l)
HL(x),Π

MN
(n) (z)} =

1

2
δln(δ

M
H δNL − δML δNH )δ3(x− z), (6.19)

las restricciones secundarias para el modo cero están dadas de acuerdo a

ϕ̇0i(0)(x) = {ϕ0i(0)(x),H1(z)} =

∫
d3z{Π0i

(0)(x), [B
(0)
0k (2∂jΠ

kj
(0))(z)} = −∂jΠij

(0)(x),

⇒ ψ0i
(0) ≡ ∂jΠ

ij
(0) ≈ 0, (6.20)

las cuales son 3, mientras que para los modos KK, las restricciones secundarias están dadas de

acuerdo a

ϕ̇0i(n)(x) = {ϕ0i(n)(x),H1(z)} =

∫
d3z{Π0i

(n)(x), [B
(n)
0k (2∂jΠ

kj
(n)) +

n

R
2B

(n)
0k Πk5

(n)](z)}

= −[∂jΠ
ij
(n) +

n

R
Πi5

(n)](x),

⇒ ψ0i
(n) ≡ ∂jΠ

ij
(n) +

n

R
Πi5

(n) ≈ 0, (6.21)

ϕ̇05(n)(x) = {ϕ05(n)(x), H1(z)} =

∫
d3z{Π05

(n)(x), [B
(n)
05 (2∂jΠ

5j
(n))](z)} = −2∂jΠ

5j
(n)(x),

⇒ ψ05
(n) ≡ ∂jΠ

5j
(n) ≈ 0, (6.22)

35
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las cuales son 4(k − 1). Para hallar las posibles restricciones terciarias, se define el hamiltoniano

secundario

H2 = Hc +

∫
d3x

[
a
(0)
0i ϕ

0i
(0) + b

(0)
0i ψ

0i
(0) +

k−1∑
n=1

(
a
(n)
0i ϕ

0i
(n) + a

(n)
05 ϕ

05
(n) + b

(n)
0i ψ

0i
(n) + b

(n)
05 ψ

05
(n)

)]
, (6.23)

en donde b
(0)
0i , b

(n)
0i , b

(n)
05 son los multiplicadores de Lagrange que fuerzan las restricciones secunda-

rias. Para las restricciones terciarias del modo cero, por similitud con el resultado (5.13), se tiene

que

ψ̇0l
(0)(x) = {ψ0l

(0)(x),H2(z)} = − 1

2× 3!

∫
d3z{2∂kΠlk

(0)(x), [H
(0)
ijkH

ijk
(0) ](z)} = 0. (6.24)

Para las restricciones tercearias de los modos KK, se tiene que

ψ̇0i
(n)(x) = {ψ0i

(n)(x),H2(z)} =

∫
d3z

[
{2∂kΠlk

(n)(x),−
1

2× 3!
[H

(n)
ijkH

ijk
(n) ](z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

+{ n
R
2Πi5

(n)(x),−
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

]
,

en donde, por similitud con el resultado (5.13),

− 1

2× 3!

∫
d3z{2∂kΠlk

(n)(x), [H
(n)
ijkH

ijk
(n) ](z)} = 0, (6.25)

luego,

ψ̇0i
(n)(x) =

∫
d3z

[
{2∂kΠlk

(n)(x),−
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

+{ n
R
2Πi5

(n)(x),−
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

]
,

=
n

R

∫
d3z

[((
∂lBj5

(n) + ∂jB5l
(n) −Blj

(n)

)
−

(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

))
∂jδ

3(x− z)

]
= 0.

(6.26)

Por último,

ψ̇05
(n)(x) = {ψ05

(n)(x),H2(z)}

=

∫
d3z

[
{2∂kΠ5k

(n)(x),−
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) +

n

R
Bij

(n)

)
(z)}

]
=

∫
d3z

[(
∂iBj5

(n) + ∂jB5i
(n) +

n

R
Bij

(n)

)
[∂j∂i − ∂i∂j ]δ

3(x− z)

]
= 0, (6.27)

por lo que no hay restricciones terciarias en la teoŕıa. Las restricciones encontradas,

ϕ0i(0) ≡ Π0i
(0) ≈ 0, ψ0i

(0) ≡ ∂jΠ
ij
(0) ≈ 0,

ϕ0i(n) ≡ Π0i
(n) ≈ 0, ϕ05(n) ≡ Π05

(n) ≈ 0, ψ0i
(n) ≡ ∂jΠ

ij
(n) +

n

R
Πi5

(n) ≈ 0, ψ05
(n) ≡ ∂jΠ

5j
(n) ≈ 0, (6.28)
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es fácil notar que son de primera clase, ya que solo aparecen momentos canónicos. Estas restric-

ciones, sin embargo, no son todas independientes, ya que se cumple que

∂iψ
0i
(0) = 0, ∂iψ

0i
(n) +

n

R
ψ05
(n) = 0, (6.29)

por lo que la teoŕıa representa un sistema reducible. Las restricciones (6.28) son resultados que no

se hallaban antes en la literatura, y ahora pueden hallarse en [34].

6.3. Grados de libertad

Habiendo obtenido todas las restricciones y, en este caso, las relaciones de reductibilidad de la

teoŕıa, puede hacerse el conteo de los grados de libertad f́ısicos como sigue:

Para el modo cero se tiene un total de 2(6) variables dinámicas (6 por parte de B
(0)
µν ), y 5

restricciones de primera clase independientes.

Para los modos KK se tienen, para cada k, un total de 2(10)(k − 1) variables dinámicas

(10(k − 1) por parte de B
(n)
LM ), y 7(k − 1) restricciones de primera clase independientes.

Entonces, el número de grados de libertad f́ısicos para la teoŕıa de KR 5D es

GL =
1

2
[12 + 20(k − 1)− 2(5)− 2(7(k − 1))] = 3k− 2. (6.30)

En particular, para el modo cero (i.e., k = 1) se tiene que GL = 1, lo cual corresponde consisten-

temente al número de grados de libertad f́ısicos para la teoŕıa KR 4D. Además, de acuerdo con

(6.30), cada valor de k contribuye con 3 grados de libertad. El conteo de los grados de libertad

(6.30), es también un resultado que no se hallaba en la literatura, y puede ahora encontrarse en

[34].

6.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transformaciones de norma, y el generador

está dado por

G =

∫
d3x

[
ϵ
(0)
0i ϕ

0i
(0) + ϵ

(0)
i ψ0i

(0) + ϵ
(n)
0i ϕ

0i
(n) + ϵ

(n)
i ψ0i

(n) + ϵ
(n)
05 ϕ

05
(n) + ϵ

(n)
5 ψ05

(n)

]
, (6.31)
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en donde las ϵ’s son los parámetros de las correspondientes transformaciones. Para los campos del

modo cero y por similitud con los resultados (5.16) y (5.17), se tiene que

δB
(0)
0i (x) =

1

2
ϵ
(0)
0i (x) ≡

1

2
ϵ̇
(0)
i (x), δB

(0)
kl (x) =

1

2
[∂kϵ

(0)
l − ∂lϵ

(0)
k ](x),

mientras que para los modos KK, por similitud con (5.16) y (5.17), se tiene

δB
(n)
0i (x) =

1

2
ϵ
(n)
0i (x) ≡ 1

2
ϵ̇
(n)
i (x), δB

(n)
kl (x) =

1

2
[∂kϵ

(n)
l − ∂lϵ

(n)
k ](x),

y

δB
(n)
05 (x) =

∫
d3z{B(n)

05 (x), [ϵ
(n)
05 Π05

(n)](z)} =
1

2
ϵ
(n)
05 (x) ≡ 1

2
ϵ̇
(n)
5 (x),

δB
(n)
l5 (x) =

∫
d3z{B(n)

l5 (x), [ϵ
(n)
i

n

R
Πi5

(n) + ϵ
(n)
5 ∂jΠ

5j
(n)](z)} =

n

2R
ϵ
(n)
l (x)

−1

2

∫
d3zϵ

(n)
5 (z)δjl ∂jδ

3(x− z) =
1

2
[
n

R
ϵ
(n)
l + ∂lϵ

(n)
5 ](x). (6.32)

Entonces, las transformaciones de norma de los campos son

δB
(0)
0i = ∂0ϵ

(0)
i , δB

(0)
ij = ∂iϵ

(0)
j − ∂jϵ

(0)
i , δB

(n)
0i = ∂0ϵ

(n)
i ,

δB
(n)
ij = ∂iϵ

(n)
j − ∂jϵ

(n)
i , δB

(n)
05 = ∂0ϵ

(n)
5 , δB

(n)
i5 =

n

R
ϵ
(n)
i + ∂iϵ

(n)
5 , (6.33)

las cuales pueden escribirse en forma compacta como

δB(0)
µν = ∂µϵ

(0)
ν − ∂νϵ

(0)
µ , δB(n)

µν = ∂µϵ
(n)
ν − ∂νϵ

(n)
µ , δB

(n)
µ5 =

n

R
ϵ(n)µ + ∂µϵ

(n)
5 (6.34)

con ϵ
(0)
0 = 0, ϵ

(n)
0 = 0. Estas tranformaciones de norma son resultados nuevos, ya que estas no se

hallaban en la literatura, y ahora también pueden consultarse en [34].

6.5. Pseudo-bosones de Goldstone

Los campos de norma no masivos B
(n)
µ5 no representan campos f́ısicos en el sentido de que

pueden ser eliminados de la teoŕıa bajo una apropiada elección de la norma. A saber, bajo la

elección de la norma

ϵ(n)µ = −R
n
(∂µϵ

(n)
5 +B

(n)
µ5 ), (6.35)

los campos B
(n)
µν se transforman como

δB(n)
µν = −∂µB(n)

ν5 + ∂νB
(n)
µ5 , (6.36)

y el lagrangiano efectivo (6.4) se vuelve

Le =
1

2× 3!
H

(0)
µνλH

µνλ
(0) +

∞∑
n=1

[
1

2× 3!
H

(n)
µνλH

µνλ
(n) +

1

4

( n
R

)2

B(n)
µν B

µν
(n)

]
. (6.37)
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Aqúı debe notarse lo siguiente. En el lagrangino no normado (6.4), se vió que el modo cero con-

tribuye con un grado de libertad, mientras que cada exitación KK contribuye con tres. Uno de

estos tres es debido a la parte tipo KR 4D, y los otros dos son debido a B
(n)
µ5 . La eliminación de

los campos no masivos B
(n)
µ5 en el lagrangiano normado (6.37) implica que los grados de libertad

debidos a B
(n)
µ5 han sido otorgados a B

(n)
µν , de modo que cada B

(n)
µν describe un campo con masa

M = (n/R) y tres grados de libertad. Estas caracteŕısticas por parte de los campos no f́ısicos

B
(n)
µ5 los hace similares a los pseudo-bosones de Goldstone, encontrados en el mecanismo de Higgs.

Estos pseudo-bosones de Goldstone son similares a los encontrados en la teoŕıa Maxwell 5D y en

teoŕıas de Stüeckelberg 5D [26]-[29], lo cual sugiere una estrecha relación entre las teoŕıas Maxwell

y Kalb-Ramond. La identificación de estos pseudo-bosones de Goldston es un resultado nuevo, que

ahora también puede consultarse en [34].

6.6. Los corchetes de Dirac

Para obtener los corchetes de Dirac en una teoŕıa con restricciones de primera clase, lo que se

hace (como en el caso KR 4D) es obtener un conjunto de restricciones de segunda clase irreducibles

a partir de las de primera clase fijando la norma. Si las restricciones de primera clase no son

independientes (como en el presente caso) se expande el espacio fase mediante la introducción de

campos auxiliares. Las restricciones de segunda clase irreducibles que a continuación se dan, tanto

para el modo cero como para los modos KK, se obtendrán de esta manera. Los corchetes de Dirac

que a continuación se hallan son resultados que antes no se encontraban en la literatura, y pueden

ahora también consultarse en [34].

Corchetes de Dirac del modo cero. De las restricciones de primera clase reducibles para

el modo cero uno obtiene el conjunto de restricciones de segunda clase irreducibles1

χ1
(0) ≡ Π0i

(0), χ2
(0) ≡ B

(0)
0i , χ3

(0) ≡ 2∂jΠ
ij
(0) − ∂ip(0), χ4

(0) ≡ ∂jB
(0)
ij + ∂iq

(0), (6.38)

con q(0), p(0) campos auxiliares cumpliendo

{q(0)(x), p(0)(z)} = δ3(x− z). (6.39)

Los corchetes de Poisson distintos de cero son

{χ1
(0)(x), χ

2
(0)(z)} = {Π0i

(0)(x), B
(0)
0j (z)} = −1

2
δijδ

3(x− z),

{χ3
(0)(x), χ

4
(0)(z)} = {2∂jΠij

(0)(x), ∂
lB

(0)
kl (z)} − {∂ip(0)(x), ∂kq(0)(z)} = −δik∂j∂jδ3(x− z), (6.40)

1El factor de 2 en las expresiones (6.38), como en el caso KR 4D, se introduce por conveniencia; para no multiplicar

las relaciones fundamentales (6.39) por 1/2.
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de lo cual se define la matriz

(
Cαβ

(0)

)
=


0 −1

2δ
i
j 0 0

1
2δ

i
j 0 0 0

0 0 0 −δij∇2

0 0 δij∇2 0

 δ3(x− z), (6.41)

y cuya inversa es

(
C

(0)
αβ

)
=


0 2δij 0 0

−2δij 0 0 0

0 0 0
δji
∇2

0 0 − δji
∇2 0

 δ3(x− z). (6.42)

Entonces, los corchetes de Dirac diferentes de cero, por similitud con los resultados KR 4D, son

{B(0)
ij (x),Πkl

(0)(z)}D =
1

2
(δki δ

l
j − δliδ

k
j )δ

3(x− z)

−
∫
d3ud3v{B(0)

ij (x), 2∂mΠrm
(0) (u))}[

δpr
∇2

δ3(u− v)]{∂qB(0)
pq (v),Π

kl
(0)(z)}

=
1

2
[δki δ

l
j − δliδ

k
j +

1

∇2
(δki ∂j∂

l − δli∂j∂
k − δkj ∂i∂

l + δlj∂i∂
k)]δ3(x− z)(6.43)

y, también por similitud con los resultados KR 4D, los corchetes de Dirac no triviales entre q(0) y

p(0) con los campos son

{q(0)(x), p(0)(z)}D = δ3(x− z)−
∫
d3ud3v{q(0)(x),−∂ip(0)(u))}[

δji
∇2

δ3(u− v)]{∂jq(0)(v), p(0)(z)}

= δ3(x− z)− 1

∇2
∂i∂iδ

3(x− z) = 0, (6.44)

{q(0)(x),Πij
(0)(z)}D = −

∫
d3ud3v{q(0)(x),−∂kp(0)(u))}[

δlk
∇2

δ3(u− v)]{∂mB(0)
lm (v),Πij

(0)(z)}

=
1

2∇2
[∂i∂j − ∂j∂i]δ3(x− z) = 0, (6.45)

{B(0)
kl (x), p(0)(z)}D = −

∫
d3ud3v{B(0)

kl (x), 2∂nΠ
mn
(0) (u))}[

δim
∇2

δ3(u− v)]{∂iq(0)(v), p(0)(z)}

=
1

∇2
[∂l∂k − ∂k∂l]δ

3(x− z) = 0, (6.46)

y trivialmente,

{q(0)(x), B(0)
ij (z)}D = 0 {Π(0)

ij (x), p(0)(z), }D = 0. (6.47)

Los corchetes de Dirac de los modos KK. De manera similar al modo cero, de las restricciones
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de primera clase para los modos KK uno obtiene las restricciones de segunda clase irreducibles2

χ1
(n) ≡ Π0i

(n), χ2
(n) ≡ B

(n)
0i , χ3

(n) ≡ Π05
(n), χ4

(n) ≡ B
(n)
05 , χ5

(n) ≡ 2∂jΠ
ij
(n) +

n

R
2Πi5

(n) − ∂ip(n),

χ6
(n) ≡ ∂jB

(n)
ij + ∂iq

(n) χ7
(n) ≡ 2∂jΠ

5j
(n), χ8

(n) ≡ ∂jB
(n)
5j , (6.48)

con q(n), p(n) campos auxiliares satisfaciendo

{q(n)(x), p(n)(z)} = δ3(x− z). (6.49)

Los corchetes de Poisson no cero entre estas restricciones son

{χ1
(n)(x), χ

2
(n)(z)} = {Π0i

(n)(x), B
(n)
0j (z)} = −1

2
δijδ

3(x− z),

{χ3
(n)(x), χ

4
(n)(z)} = {Π05

(n)(x), B
(n)
05 (z)} = −1

2
δ3(x− z),

{χ5
(n)(x), χ

6
(n)(z)} = {2∂jΠij

(n)(x), ∂
lB

(n)
kl (z)} − {∂ip(n)(x), ∂kq(n)(z)} = −δik∂j∂jδ3(x− z),

{χ5
(n)(x), χ

8
(n)(z)} = { n

R
2Πi5

(n)(x), ∂
lB

(n)
5l (z)} =

n

R
∂iδ3(x− z)

{χ7
(n)(x), χ

8
(n)(z)} = {2∂jΠ5j

(n)(x), ∂
lB

(n)
5l (z)} = −∂i∂iδ3(x− z), (6.50)

de lo cual se obtiene la matriz

(
Cαβ

(n)

)
=



0 − 1
2δ

i
j 0 0 0 0 0 0

1
2δ

i
j 0 0 0 0 0 0 0

0 0 0 −1
2 0 0 0 0

0 0 1
2 0 0 0 0 0

0 0 0 0 0 −δij∇2 0 n
R∂

i

0 0 0 0 δij∇2 0 0 0

0 0 0 0 0 0 0 −∇2

0 0 0 0 − n
R∂

i 0 ∇2 0



δ3(x− z).

y cuya inversa es

(
C

(n)
αβ

)
=



0 2δji 0 0 0 0 0 0

−2δji 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 0 0
δji
∇2 0 0

0 0 0 0 − δji
∇2 0 − n∂j

R(∇2)2 0

0 0 0 0 0 n∂j

R(∇2)2 0 1
∇2

0 0 0 0 0 0 − 1
∇2 0



δ3(x− z).

2El factor de 2 en las expresiones (6.48) se ha introducido por conveniencia; para no multiplicar la relación

fundamental (6.49) por 1/2.
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6.6. LOS CORCHETES DE DIRAC

Entonces, los corchetes de Dirac distintos de cero modos KK, por similitud con los resultados del

modo cero, son

{B(n)
ij (x),Πkl

(n)(z)}D =
1

2
(δki δ

l
j − δliδ

k
j )δ

3(x− z)

−
∫
d3ud3v{B(n)

ij (x), 2∂mΠrm
(n)(u))}[

δpr
∇2

δ3(u− v)]{∂qB(n)
pq (v),Πkl

(n)(z)}

=
1

2
[δki δ

l
j − δliδ

k
j +

1

∇2
(δki ∂j∂

l − δli∂j∂
k − δkj ∂i∂

l + δlj∂i∂
k)]δ3(x− z)(6.51)

y los corchetes de Dirac no triviales entre q(n) y p(n) con los campos,

{q(n)(x), p(n)(z)}D = δ3(x− z)−
∫
d3ud3v{q(n)(x),−∂ip(n)(u))}[

δji
∇2

δ3(u− v)]{∂jq(n)(v), p(n)(z)}

= δ3(x− z)− 1

∇2
∂i∂iδ

3(x− z) = 0, (6.52)

{q(n)(x),Πij
(n)(z)}D = −

∫
d3ud3v{q(n)(x),−∂kp(n)(u))}[

δlk
∇2

δ3(u− v)]{∂mB(n)
lm (v),Πij

(n)(z)}

=
1

2∇2
[∂i∂j − ∂j∂i]δ3(x− z) = 0, (6.53)

{B(n)
kl (x), p(n)(z)}D = −

∫
d3ud3v{B(n)

kl (x), 2∂nΠ
mn
(n) (u))}[

δim
∇2

δ3(u− v)]{∂iq(n)(v), p(n)(z)}

=
1

∇2
[∂l∂k − ∂k∂l]δ

3(x− z) = 0, (6.54)

y trivialmente,

{q(n)(x), B(n)
ij (z)}D = 0, {Π(n)

ij (x), p(n)(z), }D = 0. (6.55)

de modo que los campos auxiliares (q(0), p(0)) y (q(n), p(n)) son independientes del corchete

de Dirac. Condición que es necesaria, ya que como campos auxiliares no deben contribuir con

resultados en la teoŕıa. Nótese que ya no se consideran los corchetes de Dirac conteniendo los

campos B
(n)
µ5 (no f́ısicos), ya que éstos han sido eliminados de la teoŕıa.

En resumen, la teoŕıa KR 5D previamente estudiada es una teoŕıa de norma reducible, cuyo

modo cero corresponde consistentemente a la teoŕıa KR 4D, mas una torre de excitaciones KK de

campos masivos B
(n)
µν contribuyendo cada modo con tres grados de libertad. Esto último, después

de haber fijado la norma y haber identificado los campos B
(n)
µ5 como pseudo-bosones de Golstone.

Además, debido a la reductibilidad tanto en el modo cero como en los modos excitados, se usó el

proceso de expansión del espacio fase para calcular los corchetes de Dirac de la teoŕıa.
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Caṕıtulo 7

La acción de Proca-Kalb-Ramond

Como es sabido, la adición al lagrangiano de Maxwell de un término masivo dado por

LP = −1

4
FµνFµν +m2AµA

ν ,

que es la teoŕıa de Proca, rompe con la invariancia de norma de la teoŕıa. Mientras en la teoŕıa

de Maxwell la condición de Lorentz ∂µA
µ = 0 se obtiene de la libertad de norma, en la teoŕıa de

Proca tal condición es una restricción. En la teoŕıa de Maxwell, el fotón no masivo posee dos grados

de libertad f́ısicos, obtenibles de quitarle dos componentes al potencial Aµ debido a la condición

de Lorentz y a la invariancia de norma. En la teoŕıa de Proca, el fotón es masivo con tres grados

de libertad, obtenibles al quitarle (únicamente) una componente a Aµ debido la restricción de

Lorentz. En este caṕıtulo, de manera similar, se añade un término masivo a la teoŕıa de norma

de Kalb-Ramond, que será la teoŕıa de Proca Kalb-Ramond, y se hace un análisis hamiltoniano

aplicando el formalismo de Dirac-Bergmann estricto. Este análisis en sentido estricto de la teoŕıa

de Proca Kalb-Ramond es una contribución del presente trabajo, ya que no se encuentra en la

literatura. Se muestra que la teoŕıa Proca-Kalb-Ramond no es una teoŕıa de norma, que no es

reducible, y que el campo masivo que la describe, Bµν , posee tres grados de libertad, a diferencia

del campo libre de Kalb-Ramond, que posee uno. Se obtienen, además, los corchetes de Dirac de

la teoŕıa.
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CAPÍTULO 7. LA ACCIÓN DE PROCA-KALB-RAMOND
7.1. LA ACCIÓN DE PROCA KALB-RAMOND

7.1. La acción de Proca Kalb-Ramond

El lagrangiano de Proca Kalb-Ramond (PKR) está dado por

L =
1

2× 3!
HµνλH

µνλ − m2

4
BµνB

µν , (7.1)

en donde Hµνλ = ∂µBνλ+∂νBλµ+∂λBµν y Bµν son la intesidad de campo y el campo (masivo) de

Kalb-Ramond (KR). Se usará la métrica gµν = (1,−1,−1,−1). Para mostrar que la teoŕıa descrita

por el lagrangiano (7.1) es singular y saber el número de restricciones primarias que deberán

obtenerse, se obtiene la matriz Hessiana. Por similitud con los resultados (5.2) y (5.3), se tiene que

∂L
∂(∂0Bαβ)

=
1

2
H0αβ =

1

2
gαγgβδH0γδ, (7.2)

∂2L
∂(∂0Bλρ)∂(∂0Bαβ)

=
1

4
gαigβj(δλi δ

ρ
j − δλj δ

ρ
i ) =

1

4
(gαλgβρ − gαρgβλ) ≡Wαβλρ, (7.3)

con i, j = 1, 2, 3. La inspección de (7.3) da 3 entradas distintas de cero para (Wαβλρ) (aquellas con

α, β ̸= 0), lo que implica que su nulidad es 6−3 = 3 (6, son las componetes independientes de Bµν).

Esto muestra que la matriz Hessiana tiene determinante igual a cero, por lo que la teoŕıa descrita

por (7.1) es singular, y además, que hay a un total de 3 restricciones primarias independientes que

uno debe obtener.

7.2. Restricciones primarias y secundarias

De la expresión (7.2), además de los momentos canónicos, se obtienen las restricciones primarias;

es decir, de la expresión (7.2) se tiene que

Πij =
1

2
H0ij , (7.4)

⇒ Π0i = 0 (7.5)

⇒ ϕ0i ≡ Π0i ≈ 0, (7.6)

siendo en efecto 3 restricciones primarias. Para obtener las restricciones secundarias de la teoŕıa

aplicando la condición de consistencia a las restricciones (7.6), debe obtenerse el hamiltoniano

asociado al lagrangiano (7.1). Con este fin, considerando que

L =
1

4
H0ijH

0ij +
1

2× 3!
HijkH

ijk − 1

2
m2B0iB

0i − 1

4
m2BijB

ij (7.7)
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7.2. RESTRICCIONES PRIMARIAS Y SECUNDARIAS

el hamiltoniano canónico está dado por

Hc =

∫
d3x

[
ḂµνΠ

µν − L
]

=

∫
d3x

[
(H0ij − ∂iBj0 − ∂jB0i)Π

ij − L
]

=

∫
d3x

[
2B0i∂jΠ

ij +ΠijΠ
ij − 1

2× 3!
HijkH

ijk +
1

2
m2B0iB

0i +
1

4
m2BijB

ij

]
. (7.8)

Entonces, definiendo el hamiltoniano primario

H1 = Hc +

∫
d3x

[
a0iϕ

0i
]

(7.9)

en donde a0i son los multiplicadores de Lagrange que fuerzan las restricciones primarias, y usando

los corchetes de Poisson fundamentales

{Bαβ(x),Π
µν(y)} =

1

2
(δµαδ

ν
β − δµβδ

ν
α)δ

3(x− y) (7.10)

(tomadas a un mismo tiempo), se tiene que

ϕ̇0i(x) = {ϕ0i(x),H1(y)} =

∫
d3y

[
{Π0i(x), [2B0k∂jΠ

kj +
m2

2
B0kB

0k](y)}
]

= −1

2

∫
d3y

[
2∂jΠ

ij(y)δ3(y − x) +m2B0iδ3(y − x)

]
= −1

2
[2∂jΠ

ij +m2B0i](x)

⇒ ψ0i ≡ 2∂jΠ
ij +m2B0i ≈ 0, (7.11)

las cuales son 3. Para hallar las posibles restricciones tercearias, se define el hamiltoniano secundario

H2 = Hc +

∫
d3x

[
a0iϕ

0i + b0iψ
0i

]
, (7.12)

en donde b0i son los multiplicadores de Lagrange que fuerzan las restricciones secundarias. Enton-

ces, se tiene que

ψ̇0l(x) = {ψ0l(x),H2(y)} =

∫
d3y

[
− 1

3!
Hijk(y){2∂nΠln(x),Hijk(y)}

+
m2

2
{∂nΠln(x), BijB

ij(y)}+ {m2B0l(x), [a0kΠ
0k](y)}

]
.

Aqúı, por similitud con el resultado (5.13),

− 1

3!

∫
d3y

[
Hijk(y){2∂nΠln(x),Hijk(y)}

]
= 0. (7.13)

y para las demás integrales,

m2

2

∫
d3y{∂nΠln(x), BijB

ij(y)} = −m2

∫
d3yBln(y)∂nδ

3(x− y) = m2∂nB
ln(x),(7.14)
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7.3. GRADOS DE LIBERTAD

−
∫
d3y{m2B0l(x), a0k(y)Π

0k(y)} = −1

2
m2a0l(x), (7.15)

por lo que

ψ̇0i(x) = {ψ0l(x),H2(y)} = (∂jB
ij − 1

2
a0i)(x) ≈ 0, (7.16)

lo cual, resolviendo para a0i,

a0i(x) = −2∂jBij(x), (7.17)

de modo que ψ0i no genera restricciones terciarias. Todas las restricciones encontradas,

ϕ0i ≡ Π0i ≈ 0, ψ0i ≡ 2∂jΠ
ij +m2B0i ≈ 0, (7.18)

es fácil ver que son de segunda clase, ya que el corchete de Poisson entre ellas no es cero, y que

son independientes. Aśı, al ser todas las restricciones de segunda clase, la teoŕıa PKR no es una

teoŕıa de norma.

7.3. Grados de libertad

Obtenidas todas las restricciones de la teoŕıa junto con el hecho de no haber reductibilidad en

las restricciones, pueden contarse los grados de libertad f́ısicos como sigue:

Hay en total 2(6) variables dinámicas (6 debido a las componentes independientes de Bµν)

y 3 + 3 restricciones de segunda clase independientes.

Entonces, el número de grados de libertad f́ısicos para la teoŕıa PKR es

GL =
1

2
[2(6)− (3 + 3)] = 3. (7.19)

Es decir, Bµν es un campo masivo con tres grados de libertad.

7.4. Los corchetes de Dirac

Renombrando las restricciones de segunda clase (7.18) como

χ1 ≡ Π0i, χ2 ≡ 2∂jΠ
ij +m2B0i, (7.20)

46
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7.4. LOS CORCHETES DE DIRAC

se tiene

{χ1, χ2} = {Π0l(x),m2B0i(y)} =
1

2
m2δliδ3(x− y), (7.21)

y entonces, la matriz formada por los corchetes de Poisson entre las restricciones secundarias y su

inversa son

(
Cαβ

)
=

 0 1

−1 0

 1

2
m2δijδ3(x− y), (Cαβ) =

 0 −1

1 0

 2

m2
δijδ

3(x− y).

Entonces, los corchetes de Dirac distintos de cero son

{B0i(x), Bpq(y)}D =
2

m2

∫
d3ud3v

[
{B0i(x),Π

0k(u))}[δklδ3(u− v)]{2∂jΠlj(v), Bpq(y)}
]

=
1

m2

∫
d3ud3v

[
δilδ

3(x− u)δ3(u− v)∂jδ
3(v − y)(δlpδ

j
q − δlpδ

j
q)
]

=
1

m2
δil∂jδ

3(x− y)(δlpδ
j
q − δlpδ

j
q)

=
1

m2
(δipδ

j
q − δiqδ

j
p)∂jδ

3(x− y), (7.22)

con lo cual finaliza el análisis hamiltoniano.

En resumen, la teoŕıa de PKR es una teoŕıa con restricciones de segunda clase, unicamente. Esto

la hace una teoŕıa sin libertad de norma. Las restricciones de segunda clase son independientes,

por lo que la teoŕıa no es reducible. Se mostró que el campo masivo que la describe, Bµν , posee

tres grados de libertad, a diferencia del campo libre de KR, que posee uno. Se obtuvieron, además,

todos los corchetes de Dirac no triviales de la teoŕıa.
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Caṕıtulo 8

La acción de Proca Kalb-Ramond

en 5 dimensiones

Se ha visto que la teoŕıa Kalb-Ramond 5D es una teoŕıa de norma cuyo modo cero corresponde

consistentemente a la teoŕıa Kalb-Ramond 4D mas una torre de campos KK masivos. Se vió que

el modo cero B
(0)
µν contribuye consistentemente con un grado de libertad, mientras que los modos

masivos KK B
(n)
µν con tres, habiéndose absorbido los campos no masivos B

(n)
µ5 con caracteŕısticas de

pseudo-bosones de Golsdstone. Ahora se añade un término masivo a la teoŕıa Kalb-Ramond 5D y se

hace un anális hamiltoniano usando el formalismo de Dirac-Bergmann estricto. Este análisis estricto

de la teoŕıa representa de hecho una contribución del presente trabajo, ya que este formalismo no se

encuentra en la literatura. En este caṕıtulo se encuentra, después de compactar la quinta dimensión

sobre un orbifold S1/Z2, que la teoŕıa efectiva de Proca Kalb-Ramond no es una teoŕıa de norma,

y que el modo cero corresponde consistentemente a la teoŕıa de Proca Kalb-Ramond 4D, mas una

torre de campos KK masivos. Se muestra que el modo cero B
(0)
µν contribuye consistentemente con

tres grados de libertad, mientras que los modos masivos KK contribuyen con seis; tres para B
(n)
µν

y tres para B
(n)
µ5 . En esta teoŕıa, no se encuentra la presencia de pseudo-bosones de Goldstone.

Finalmente, se obtienen los corchetes de Dirac de la teoŕıa. Los resultados correspondientes a este

caṕıtulo son una aportación que también puede consultarse en [34].
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8.1. EL LAGRANGIANO EFECTIVO

8.1. El lagrangiano efectivo

La notación que se usará es la siguiente: ı́ndices latinos mayúsculos M,N toman los valo-

res 0, 1, 2, 3, 4, 5, donde 5 etiqueta la dimensión extra compacta, y los ı́ndices se suben o bajan

con la métrica η = (1,−1,−1,−1,−1); y representará la coordenada en la dimensión compacta,

µ, ν = 0, 1, 2, 3 son ı́ndices espaciales, xµ las coordenadas que etiquetan puntos de la variedad

cuadridimensional M4; además, se supone que la variedad compacta es un S1/Z2 orbifold cuyo

radio es R. Se estudia entonces el lagrangiano Proca Kalb-Ramond 5D (PKR 5D),

L =
1

2× 3!
HMNLH

MNL − 1

4
m2BMNB

MN , (8.1)

en donde HMNL = ∂MBNL + ∂NBLM + ∂LBMN y BMN son la intensidad del campo y el campo

(masivo) KR 5D. La compactación de la quinta dimensión sobre un orbifold S1/Z2 impone sobre

los campos BMN las condiciones de paridad y periodicidad

BMN (x, y) = BMN (x, y + 2πR),

Bµν(x,−y) = Bµν(x, y),

Bµ5(x,−y) = −Bµ5(x, y),

Estas condiciones permiten expresar los campos BMN como el conjunto de armónicos sobre M4 ×

S1/Z2,

Bµν(x, y) =
1√
2πR

B(0)
µν (x) +

1√
πR

∞∑
n=1

B(n)
µν (x) cos

(ny
R

)
,

Bµ5(x, y) =
1√
πR

∞∑
n=1

B
(n)
µ5 (x) sin

(ny
R

)
, (8.2)

siendo B
(n)
µν , B

(n)
µ5 los modos de Kaluza-Klein (KK) dependientes de las coordenadas del espacio-

tiempo cuadridimensional, a los cuales se les asocia con una torre infinita de part́ıculas. Expresando

el lagrangiano (8.1) como

L =
1

2× 3!
HµνλH

µνλ +
1

4
H5µνH

5µν − 1

4
m2BµνB

µν − 1

2
m2Bµ5B

µ5, (8.3)

sustituyendo (8.2) en (8.1) e integrando sobre la quinta dimensión y de 0 a 2πR se obtiene el

lagrangiano efectivo (cuadridimensional)

Le =
1

2× 3!
H

(0)
µνλH

µνλ
(0) − 1

4
m2B(0)

µν B
µν
(0) +

∞∑
n=1

[
1

2× 3!
H

(n)
µνλH

µνλ
(n) − 1

4
m2B(n)

µν B
µν
(n)

−1

2
m2B

(n)
µ5 B

µ5
(n) +

1

4

(
∂µB

(n)
ν5 + ∂νB

(n)
5µ − n

R
B(n)

µν

)(
∂µBν5

(n) + ∂νB5µ
(n) −

n

R
Bµν

(n)

)]
,(8.4)
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8.1. EL LAGRANGIANO EFECTIVO

con H
(0)
µνλ, H

(n)
µνλ definidos de manera similar que en (5.1). En el lagrangiano efectivo (8.4), el modo

cero corresponde consistentemente a la teoŕıa PKR 4D. El primer par de términos de los modos

KK son del tipo PKR 4D, y los dos últimos términos muestran un acoplamiento entre los campos

B
(n)
µ5 con B

(n)
µν , con una masa m para el campo B

(n)
µ5 y una masa m2

n = m2 + (n/R)2 para B
(n)
µν

debido a la compactación. En adelante, por simplicidad de anális, se trunca la torre de estados KK

hasta un número finito k, pudiéndose tomar el ĺımite k → ∞ al final de de cálculos, de modo que

n = 1, 2, 3, ..., k − 1. El lagrangiano (8.4), es un resultado que no se hallaba antes en la literatura,

y puede ahora encontrarse en [34].

Para mostrar que la teoŕıa descrita por (8.4) es singular, aśı como saber el número de restriccio-

nes primarias independientes que uno deberá obtener, se obtiene la matriz Hessiana. A saber, para

la matriz Hessiana asociada con los campos B
(0)
µν , por similitud con los resultados (5.2) y (5.3), se

tiene que

∂Le

∂(∂0B
(0)
αβ )

=
1

2
H0αβ

(0) =
1

2
gαγgβδH

(0)
0γδ, (8.5)

∂2Le

∂(∂0B
(0)
λρ )∂(∂0B

(0)
αβ )

=
1

4
gαigβj(δλi δ

ρ
j − δλj δ

ρ
i ) =

1

4
(gαλgβρ − gαρgβλ) ≡ (W )αβλρ(0) , (8.6)

y para la matriz Hessiana asociada con B
(l)
LH , por similitud con los resultados (6.7) y (6.8),

∂Le

∂(∂0B
(h)
LH)

=
1

2
δLαδ

H
β H

0αβ
(h) +

1

2
δLαδ

H
5

(
∂0Bα5

(h) + ∂αB50
(h) −

h

R
B0α

(h)

)
, (8.7)

∂2Le

∂(∂0B
(m)
KM )∂(∂0B

(h)
LH)

=
1

4
(gLKgHM − gLMgHK) +

1

4
δH5 δ

M
5 gLK ≡ (W )

′LHKM
(m) . (8.8)

La inspección de (8.6) conduce a que las entradas distintas de cero de (Wαβλρ
(0) ) son 3 (aquellas

con α, β ̸= 0), lo que implica que su nulidad es 6 − 3 = 3 (6, son las componetes independientes

de B
(0)
µν ). De la misma manera, de (8.8) se obtiene que las entradas distintas de cero de (WLHKM

(m) )

por parte del primer término son 3 (aquellas con K,L,M,H ̸= 0, 5), y por el segundo termino son

3 (aquellas con H,M = 5, y L,K ̸= 0, 5), lo que implica que su nulidad es 10 − 6 = 4 (10, son

las componentes independientes de B
(n)
LM ). Lo anterior muestra que el determinante total es cero,

lo que muestra que la teoŕıa descrita por (8.4) es singular, y además, que 3 + 4(k − 1) = 4k − 1

es el número de restricciones primarias independientes que uno debe obtener. (Ver este resultado

también en [34].)
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8.2. RESTRICCIONES PRIMARIAS Y SECUNDARIAS

8.2. Restricciones primarias y secundarias

De la expresión (8.5), además de los momentos canónicos para el modo cero, se obtienen las

restricciones primarias para el modo cero; es decir, de (8.5) se que

Πµν
(0) =

1

2
H0µν

(0) (8.9)

⇒ Π0i
(0) = 0, Πij

(0) =
1

2
H0ij

(0) (8.10)

⇒ ϕ0i(0) ≡ Π0i
(0) ≈ 0, (8.11)

y similarmente, de la expresión (8.7), que

ΠLH
(n) =

1

2
δLαδ

H
β H

0αβ
(n) +

1

2
δLαδ

H
5

(
∂0Bα5

(n) + ∂αB50
(n) −

n

R
B0α

(n)

)
(8.12)

⇒ Π0i
(n) = 0, Π05

(n) = 0, Πij
(n) =

1

2
H0ij

(n), Πi5
(n) =

1

2

(
∂0Bi5

(n) + ∂iB50
(n) −

n

R
B0i

(n)

)
(8.13)

⇒ ϕ0i(n) ≡ Π0i
(n) ≈ 0, ϕ05(n) ≡ Π05

(n) ≈ 0, (8.14)

siendo, en efecto, 4k − 1 restricciones primarias independientes. Para hallar las restricciones se-

cundarias aplicando la condición de consistencia a las restricciones (8.11) y (8.14), se requiere el

hamitoniano asociado con el lagrangiano efectivo (8.4). Por definición, el hamiltoniano 5D asociado

con el lagrangiano en 5D (8.1) es H = ḂNLΠ
NL − L, en donde ḂNLΠ

NL = ḂµνΠ
µν + 2Ḃµ5Π

µ5.

Sustituyendo las series (8.2) en esta última expresión e ntegrando en y de 0 a 2πR, uno obtie-

ne la expresión 4D, Ḃ
(0)
µν Π

µν
(0) +

∑∞
n=1[Ḃ

(n)
µν Πµν

(n) + 2Ḃ
(n)
i5 Πi5

(n)]. Entonces, el hamiltoniano canónico

asociado con el lagrangiano efectivo (8.4) está dado por

Hc =

∫
d3x

[
Ḃ(0)

µν Π
µν
(0) +

∞∑
n=1

[
Ḃ(n)

µν Πµν
(n) + 2Ḃ

(n)
i5 Πi5

(n)

]
− Le

]
=

∫
d3x

[
(H

(0)
0ij − ∂iB

(0)
j0 − ∂jB

(0)
0i )Πij

(0) +

∞∑
n=1

[
(H

(n)
0ij − ∂iB

(n)
j0 − ∂jB

(n)
0i )Πij

(n)

+2(2Π
(n)
i5 − ∂iB

(n)
50 +

n

R
B

(n)
0i )Πi5

(n)

]
− Le

]
=

∫
d3x

[
2B

(0)
0i ∂jΠ

ij
(0) + 2Π

(0)
ij Πij

(0) +
∞∑

n=1

[
2B

(n)
0i ∂jΠ

ij
(n) + 2Π

(n)
ij Πij

(n) + 4Π
(n)
i5 Πi5

(n)

+2B
(n)
05 ∂iΠ

5i
(n) +

n

R
2B

(n)
0i Πi5

(n)

]
− Le

]
. (8.15)
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En esta última expresión, usando que

Le =
1

4
H

(0)
0ijH

0ij
(0) +

1

2× 3!
H

(0)
ijkH

ijk
(0) − 1

2
m2B

(0)
0i B

0i
(0)

−1

4
m2B

(0)
ij B

ij
(0) +

∞∑
n=1

[
1

4
H

(n)
0ijH

0ij
(n) +

1

2× 3!
H

(n)
ijkH

ijk
(n)

−1

2
m2B

(n)
0i B

0i
(n) −

1

4
m2B

(n)
ij Bij

(n) −
1

2
m2B

(n)
05 B

05
(n) −

1

2
m2B

(n)
i5 Bi5

(n)

+
1

2

(
∂0B

(n)
i5 + ∂iB

(n)
50 − n

R
B

(n)
0i

)(
∂0Bi5

(n) + ∂iB50
(n) −

n

R
B0i

(n)

)
+
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂iB5i
(n) −

n

R
Bij

(n)

)]
, (8.16)

uno obtiene el hamiltoniano canónico

Hc =

∫
d3x

[
2B

(0)
0i ∂jΠ

ij
(0) +Π

(0)
ij Πij

(0) −
1

2× 3!
H

(0)
ijkH

ijk
(0) +

1

2
m2B

(0)
0i B

0i
(0) +

1

4
m2B

(0)
ij B

ij
(0)

+
∞∑

n=1

[
2B

(n)
0i ∂jΠ

ij
(n) +Π

(n)
ij Πij

(n) −
1

2× 3!
H

(n)
ijkH

ijk
(n) +

1

2
m2B

(0)
0i B

0i
(0) +

1

4
m2B

(n)
ij Bij

(n)

+
1

2
m2B

(n)
05 B

05
(n) +

1

2
m2B

(n)
i5 Bi5

(n) + 2Π
(n)
i5 Πi5

(n) + 2B
(n)
05 ∂iΠ

5i
(n) +

n

R
2B

(n)
0i Πi5

(n)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)]]
. (8.17)

Este resultado es también nuevo, que ahora puede consultarse en [34]. Entonces, definiendo el

hamiltoniano primario

H1 = Hc +

∫
d3x

[
a
(0)
0i ϕ

0i
(0) +

k−1∑
n=1

(
a
(n)
0i ϕ

0i
(n) + a

(n)
05 ϕ

05
(n)

)]
, (8.18)

en donde a
(0)
0i , a

(n)
0i , a

(n)
05 son los multiplicadores de Lagrange que fuerzan las restricciones primarias,

y usando los corchetes de Poisson fundamentales

{B(0)
αβ (x),Π

µν
(0)(z)} =

1

2
(δµαδ

ν
β − δµβδ

ν
α)δ

3(x− z),

{B(l)
HL(x),Π

MN
(n) (z)} =

1

2
δln(δ

M
H δNL − δML δNH )δ3(x− z) (8.19)

(tomadas a un mismo tiempo), para el modo cero se tiene que

ϕ̇0i(0)(x) = {ϕ0i(0)(x), H1(z)} =

∫
d3z{Π0i

(0)(x), [2B
(0)
0k ∂jΠ

kj
(0) +

m2

2
B

(n)
0k B

0k
(0)(z)}

= −1

2
(2∂jΠ

ij
(0) +m2B0k

(0))(x),

⇒ ψ0i
(0) ≡ 2∂jΠ

ij
(0) +m2B0i

(0) ≈ 0, (8.20)

las cuales son 3, mientras que para los modos KK,

ϕ̇0i(n)(x) = {ϕ0i(n)(x),H1(z)} =

∫
d3z{Π0i

(n)(x), [2B
(n)
0k ∂jΠ

kj
(n) +

m2

2
B

(n)
0k B

0k
(n) +

n

R
2B

(n)
0k Πk5

(n)](z)}

= −1

2
[2∂jΠ

ij
(n) +m2B0i

(n) +
n

R
2Πi5

(n)](x),

⇒ ψ0i
(n) ≡ 2∂jΠ

ij
(n) +m2B0i

(n) +
n

R
2Πi5

(n) ≈ 0, (8.21)
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ϕ̇05(n)(x) = {ϕ05(n)(x),H1(z)} =

∫
d3z{Π05

(n)(x), [B
(n)
05 2∂jΠ

5j
(n) +

1

2
m2B

(n)
05 B

05
(n)](z)}

= −1

2
(2∂jΠ

5j
(n) +m2B05

(n))(x).

⇒ ψ05
(n) ≡ 2∂jΠ

5j
(n) +m2B05

(n) ≈ 0, (8.22)

las cuales son 4(k − 1). Para obtener las posibles restricciones terciarias, se define el hamiltoniano

secundario

H2 = Hc +

∫
d3x

[
a
(0)
0i ϕ

0i
(0) + b

(0)
0i ψ

0i
(0) +

k−1∑
n=1

(
a
(n)
0i ϕ

0i
(n) + a

(n)
05 ϕ

05
(n) + b

(n)
0i ψ

0i
(n) + b

(n)
05 ψ

05
(n)

)]
, (8.23)

en donde b
(0)
0i , b

(n)
0i , b

(n)
05 son los multiplicadores de Lagrange que fuerzan las restricciones secunda-

rias. Entonces, para la relación de consistencia a las restricciones secundarias del modo cero, por

similitud con los resultados (7.13)-(7.15), se tiene que

ψ̇0l
(0)(x) = {ψ0l

(0)(x),H2(z)} = {[2∂nΠln
(0) +m2B0l

(0)](x),H2(z)}

=

∫
d3z

[
{2∂nΠln

(0)(x), [−
1

2× 3!
H

(0)
ijkH

ijk
(0) +

1

4
m2B

(0)
ij B

ij
(0)](z)}

+{m2B0l
(0)(x), [a

(0)
0k Π

0k
(0)](z)}

]
= m2∂nB

ln
(0)(x)−

1

2
m2a

(0)
0l (x), (8.24)

es decir, que

∂jB
ij
(0) −

1

2
a
(0)
0i ≈ 0, ⇒ a

(0)
0i = −2∂jB

(0)
ij . (8.25)

Para la relación de consistencia a las restricciones secundarias de los modos KK,

ψ̇0i
(n)(x) = {ψ0i

(n)(x), H2(y)} = {[2∂kΠik
(n) +m2B0i

(n) +
n

R
2Πi5

(n)](x),H2(z)}

=

∫
d3z

[
{2∂kΠlk

(n)(x), [−
1

2× 3!
H

(n)
ijkH

ijk
(n) +

1

4
m2B

(n)
ij Bij

(n)](z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

+m2{B0i
(n), [a

(0)
0k Π

0k
(0)](z)}+ { n

R
2Πi5

(n)(x),
1

2
m2B

(n)
i5 Bi5

(n)(z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

]
,
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y por similitud con el resultado (5.13),

ψ̇0l
(n)(x) =

∫
d3z

[
{2∂kΠlk

(n)(x),
1

4
m2B

(n)
ij Bij

(n)(z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

+m2{B0l
(n)(x), [a

(n)
0k Π0k

(n)](z)}+ { n
R
2Πl5

(n)(x),
1

2
m2B

(n)
i5 Bi5

(n)(z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

]
,

=
1

2
m2∂kB

lk
(n)(x)−

∫
d3z

[
n

R

(
∂lBj5

(n) + ∂jB5l
(n) −

n

R
Blj

(n)

)
∂jδ

3(x− z)

+
n

R
m2Bl5

(n)δ
3(x− z)− n

R

(
∂lBj5

(n) + ∂jB5l
(n) −

n

R
Blj

(n)

)
∂jδ

3(x− z)

]
− 1

2
m2a

(n)
0l (x)

=
1

2
m2

(
∂kB

lk
(n) −

n

R
2Bl5

(n) − a
(n)
0l

)
(x), (8.26)

es decir,

∂kB
ik
(n) −

n

R
2Bi5

(n) − a
(n)
0i ≈ 0 ⇒ a

(n)
0i = −∂kB(n)

ik +
n

R
2B

(n)
i5 . (8.27)

Por último,

ψ̇05
(n)(x) = {ψ05

(n)(x),H2(z)} = {[2∂kΠ5k
(n) +m2B05

(n)](x),H2(z)}

=

∫
d3z

[
{2∂kΠ5k

(n)(x),
1

2
m2B

(n)
i5 Bi5

(n)(z)−
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)
×
(
∂iBj5

(n) + ∂jB5i
(n) +

n

R
Bij

(n)

)
(z)}+ {m2B05

(n)(x), [a
(n)
05 Π05

(n)(z)]}
]

= −m2

∫
d3zBi5

(n)∂iδ
3(x− z)− 1

2
m2a

(n)
05 (x)

= m2∂iB
i5
(n)(x)−

1

2
m2a

(n)
05 (x), (8.28)

es decir,

∂iB
i5
(n) −

1

2
a
(n)
05 ≈ 0 ⇒ a

(n)
05 = −2∂iB

(n)
i5 , (8.29)

de modo que no hay restricciones terciarias para la teoŕıa. Las restricciones obtenidas,

ϕ0i(0) ≡ Π0i
(0) ≈ 0, ψ0i

(0) ≡ 2∂jΠ
ij
(0) +m2B0i

(0) ≈ 0,

ϕ0i(n) ≡ Π0i
(n) ≈ 0, ψ0i

(n) ≡ 2∂jΠ
ij
(n) +m2B0i

(n) +
n

R
2Πi5

(n) ≈ 0,

ϕ05(n) ≡ Π05
(n) ≈ 0, ψ05

(n) ≡ 2∂jΠ
5j
(n) +m2B05

(n) ≈ 0 (8.30)

es fácil notar que son de segunda clase, ya que los corchetes de Poisson entre todas ellas no son

nulos. Además, es fácil también observar que son independientes. Esto significa que la teoŕıa PKR

5D no es una teoŕıa con libertad de norma. Las restricciones obtenidas (8.30), cabe mencionar, son

también un resultado que no se encuentraba en la literatura, que ahora puede hallarse en [34].
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8.3. Grados de libertad

Habiendo hallado todas las restricciones de la teoŕıa aśı como observado su no reductibilidad,

pueden ahora contarse los grados de libertad f́ısicos como sigue:

Para el modo cero, se tiene un total de 2(6) variables dinámicas (6, son las componentes

independientes de B
(0)
µν ), y 6 restricciones de segunda clase independientes.

Para los modos KK, se tienen se tiene un total de 2(10)(k− 1) variables dinámicas (10(k− 1), son

las componentes independientes de B
(n)
LM ), y 8(k−1) restricciones de segunda clase independientes.

Entonces, los grados de libertad f́ısicos para la teoŕıa de PKR 5D son

GL =
1

2
[12 + 20(k − 1)− 6− 8(k − 1)] = 6k− 3. (8.31)

En particular, para el modo cero, i.e., k = 1, se tiene GL = 3, lo cual corresponde al número de

grados de libertad f́ısicos para la teoŕıa PKR 4D. Además, de acuerdo con (8.31), cada valor de

k contribuye con 6 grados de libertad. Entonces, en relación con el la grangiano efectivo (8.4),

mientras el modo cero, que es la teoŕıa PKR 4D, contribuye con 3 grados de libertad, los modos

KK contribuyen con 6. En los modos KK, los dos primeros términos tipo PKR 4D contribuyen con

3 grados de libertad, mientras que los 3 restantes son debidos a B
(n)
µ5 . Aśı, B

(0)
µν , B

(n)
µν y B

(n)
µ5 son

campos masivos con tres grados de libertad, en contraste con KR 5D, en donde B
(0)
µν y B

(n)
µν son no

masivos con uno y tres grados de libertad, siendo absorbido el campo no masivo B
(n)
µ5 . El conteo

de los grados de libertad anterior son también un resultado nuevo no hallado antes la literatura, y

puede ahora consultarse en [34].

8.4. Los corchetes de Dirac

Se renombran las restricciones (8.30) de la siguiente manera

χ1
(0) ≡ Π0i

(0), χ2
(0) ≡ 2∂jΠ

ij
(0) +m2B0i

(0), χ1
(n) ≡ Π0i

(n),

χ2
(n) ≡ 2∂jΠ

ij
(n) +m2B0i

(n) +
n

R
2Πi5

(n), χ3
(n) ≡ Π05

(n), χ4
(n) ≡ 2∂jΠ

5j
(n) +m2B05

(n).

Corchetes de Dirac para el modo cero. Para el modo cero, los corchetes de Poisson distintos de

cero entre las restricciones son

{χ1
(0)(x), χ

2
(0)(z)} = {Π0l

(0)(x),−m
2B

(0)
0i (z)} =

1

2
m2δliδ3(x− z), (8.32)
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por lo que la matriz formada por los corchetes de Poisson, y su inversa, son

(
Cαβ

(0)

)
=

 0 1

−1 0

 1

2
m2δijδ3(x− y),

(
C

(0)
αβ

)
=

 0 −1

1 0

 2

m2
δijδ

3(x− y).

Entonces, los corchetes de Dirac distintos de cero para el modo cero, por similitud con los resultados

(7.22), son

{B(0)
0i (x), B(0)

pq (z)}D =
2

m2

∫
d3ud3v{B(0)

0i (x),Π0k
(0)(u))}[δklδ

3(u− v)]{2∂jΠlj
(0)(v), B

(0)
pq (z)}

=
1

m2
(δipδ

j
q − δiqδ

j
p)∂jδ

3(x− z). (8.33)

Corchetes de Dirac para los modos KK. Para los modos KK, los corchetes de Poisson distintos

de cero son

{χ1
(n), χ

2
(n)} = {Π0l

(n),−m
2B

(n)
0i } =

1

2
m2δliδ3(x− z),

{χ3
(n), χ

4
(n)} = {Π05

(n),−m
2B

(n)
05 } =

1

2
m2δ3(x− z), (8.34)

por lo que la matriz formada por los corchetes de Poisson está dada por

(
Cαβ

(n)

)
=


0 δil 0 0

−δil 0 0 0

0 0 0 1

0 0 −1 0


1

2
m2δ3(x− z),

y cuya inversa es

(
C

(n)
αβ

)
=


0 −δil 0 0

δil 0 0 0

0 0 0 −1

0 0 1 0


2

m2
δ3(x− z).

Entonces, los corchetes de Dirac distintos de cero para los modos excitados, por similitud con los

resultados (7.22), son

{B(n)
0i (x), B(n)

pq (z)}D =
2

m2

∫
d3ud3v{B(n)

0i (x),Π0k
(n)(u))}[δklδ

3(u− v)]{2∂jΠlj
(n)(v), B

(n)
pq (z)}

=
1

m2
(δipδ

j
q − δiqδ

j
p)∂jδ

3(x− z), (8.35)

{B(n)
0i (x),Π0q

(n)(z)}D =
1

2
δqi δ

3(x− z)− 2

m2

∫
d3ud3v

×{B(n)
0i (x),Π0k

(n)(u))}[δklδ
3(u− v)]{−m2B

(n)
0l (v),Π0q(z)}

= δqi δ
3(x− z) (8.36)
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y además,

{B(n)
0i (x), B

(n)
q5 (z)}D =

2

m2

∫
d3ud3v{B(n)

0i (x),Π0k
(n)(u))}[δklδ

3(u− v)]{ n
R
2Πl5(v), Bq5(z)}

= − n

Rm2

∫
d3ud3vδilδ

3(x− u)δ3(u− v)δ3(v − z)δlq

= − n

Rm2
δiqδ

3(x− z), (8.37)

{B(n)
05 (x), B

(n)
5l (z)}D =

2

m2

∫
d3ud3v{B(n)

05 (x),Π05
(n)(u))}δ

3(u− v){2∂jΠ5j
(n)(v), B

(n)
5l (z)}

= − 1

m2
∂lδ

3(x− z). (8.38)

con lo cual finaliza el análisis hamiltoniano. Nótese en estos últimos corchetes la presencia del

término masivo extra (n/R), adquirido por B
(n)
µν como consecuencia de la compactación. Finalmen-

te, se menciona que los corchetes de Dirac anteriores son resultados nuevos, que pueden también

consultarse en [34].

En resumen, la teoŕıa de PKR 5D previamente estudiada es una teoŕıa con restricciones de se-

gunda clase solamente, y no reducibles. Esto la hace una teoŕıa sin libertad de norma. Se mostró que

el modo cero corresponde consistentemente a la teoŕıa de PKR 4D, mas una torre de campos KK

masivos. Se encontró que el campo masivo del modo cero B
(0)
µν contribuye consistentemente con

tres grados de libertad, mientras que los campos masivos KK contribuyen con seis; tres para B
(n)
µν

y tres para B
(n)
µ5 . En esta teoŕıa, no se encuentró la presencia de pseudo-bosones de Goldstone.

Finalmente, se obtuvieron los corchetes de Dirac de la teoŕıa.
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Caṕıtulo 9

La acción de Stüeckelberg

Kalb-Ramond

Como se ha visto, la adición al lagrangiano de Maxwell de un término masivo dado por

LP = −1

4
FµνFµν +m2AµA

ν ,

que es la teoŕıa de Proca, rompe con la invariancia de norma de la teoŕıa. En la teoŕıa de Maxwell,

la libertad de norma permite imponer la condición de Lorentz ∂µA
µ = 0, mientras que en la teoŕıa

de Proca esta condición es una restricción. En la teoŕıa de Maxwell, el fotón posee dos grados de

libertad f́ısicos, los cuales se obtienen de quitarle a Aµ una componente debido a la condición de

Lorentz, y otra debido y a la invariancia de norma. En la teoŕıa de Proca, sin embargo, el fotón

es masivo y con tres grados de libertad, ya que a Aµ se le quita solo una componente debido a la

restricción de Lorentz. El mecanismo mediante el cual una teoŕıa sin libertad de norma como la

de Proca la vuelve una teoŕıa de norma a pesar de un término masivo se llama el mecanismo de

Stüeckelberg, en honor a quien lo introdujo: Ernst C. G. Stüeckelberg (en 1938). El mecanismo de

Stüeckelberg aplicado a la teoŕıa de Proca consiste en la introducción de un campo escalar B tal

que

LS = −1

4
FµνFµν +

1

2
(mAµ + ∂µB)(mAµ + ∂µB).

La adición del campo B hace que la teoŕıa de Proca sea ahora invariante de norma. En esta teoŕıa

de Stüeckelberg-Proca, a los cinco grados de libertad debido a los campos Aµ y B se les resta

uno debido a la condición ∂µA
µ +mB = 0 obtenible de la libertad de norma, y otro debido a la
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invariancia de norma, de modo que Aµ describe un fotón masivo con dos grados de libertad (o un

boson masivo de norma), quedando asignado el otro grado de libertad a B, y resultando una teoŕıa

de norma masiva con tres grados de libertad. Aśı, además de la predicción de bosones masivos

de norma, la implementación del mecanismo de Stüeckelberg a una teoŕıa sin libertad de norma

(como la de Proca) tiene la caracteŕıstica de que el número de grados de libertad f́ısicos de la teoŕıa

antes y despúes de su aplicación es el mismo.1

El estudio de lagrangianos de Stüeckelberg ha sido de importancia relevante en varios contextos

de la f́ısica teórica. El acoplamiento de Stüeckelberg predice bosones masivos de norma en teoŕıa

de cuerdas y supergravedad [31]. También ha sido esencial para la formulación del compañero

antisimétrico del gravitón [15]. Además, el mecanismo de Stüeckelberg proveé una forma alterna-

tiva para el mecanismo de Higgs; el mecanismo de Stüeckelberg archiva lo que es rompimiento

espontáneo de simetŕıa sin afectar la renormalización [32].

Debido a lo explicado anteriormente, en este caṕıtulo se aplica el mecanismo de Stüeckelberg

a la teoŕıa de Proca Kalb-Ramond y se hace un anális hamiltoniano usando el formalismo de

Dirac-Bergmann estricto. Este análisis estricto de la teoŕıa constituye de hecho una contribución

del presente trabajo, ya que este formalismo no se encuentra en la literatura (cf. [18]). Se muestra

que la teoŕıa de Stüeckelberg Kalb-Ramon es una teoŕıa de norma masiva reducible con tres grados

de libertad, que es el mismo número de grados de libertad para Proca Kalb-Ramond. Se muestra

que el campo de norma masivo Bµν contribuye con un grado de libertad, a diferencia de la teoŕıa

Proca Kalb-Ramond, en donde posee tres, mientras que el campo vectorial de Stüeckelberg Φµ

contribuye con dos. Además, debido a que se tienen condiciones de reductibilidad, se expande el

espacio fase y se calculan los corchetes de Dirac de la teoŕıa.

9.1. La acción de Stüeckelberg Kalb-Ramond

El lagrangiano de Stüeckelberg Kalb-Ramond (SKR) está dado por

L =
1

2× 3!
HµνλH

µνλ − 1

4
(mBµν − Φµν)(mB

µν − Φµν), (9.1)

en donde Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν y Bµν son la intensidad del campo y el campo de KR,

y Φµν = ∂µΦν − ∂νΦµ, con Φµ el campo vectorial de Stüeckelberg. En adelante, se usa la métrica

1En el mecanismo de Stüeckelberg aplicado a la teoŕıa de Proca, el campo escalar B ha absorbido la polarización

lineal del fotón masivo Aµ, haciendo que este quede con dos grados de libertad. Esto lo hace f́ısicamente distinto

al mecanismo de Higgs, en donde los bosones de norma adquieren masa y un grado de libertad v́ıa la absorción de

pseudo-bosones de Goldstone. Para similitudes y diferencias, ver [30].
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gµν = (1,−1,−1,−1). Para mostrar que el lagrangiano (9.1) describe una teoŕıa singular, aśı como

el número de restricciones primarias que deben obtenerse, se obtiene la matriz Hessiana. Para la

matriz Hessiana asociada con el campo Φµ, se tiene que

∂L
∂(∂0Φα)

=
1

2
gµβgνγ(mBβγ − Φβγ)(δ

0
µδ

α
ν − δ0νδ

α
µ ) =

1

2
(g0βgαγ − gαβg0γ)(mBβγ − Φβγ), (9.2)

luego,

∂2L
∂(∂0Φρ)∂(∂0Φα)

= −1

2
(g0βgαγ − gαβg0γ)(δ0βδ

ρ
γ − δ0γδ

ρ
β) = (g0ρgα0 − gαρ) ≡W ρα. (9.3)

Para la matriz Hessiana asociada con Bµν , por similitud con los resultados (5.2) y (5.3), se tienen

∂L
∂(∂0Bαβ)

=
1

2
H0αβ =

1

2
gαγgβδH0γδ, (9.4)

∂2L
∂(∂0Bλρ)∂(∂0Bαβ)

=
1

4
(gαλgβρ − gαρgβλ) ≡W

′αβλρ. (9.5)

La inspección de (9.3) lleva a que las entradas distintas de cero de (W ρα) son 3 (aquellas con

α, ρ ̸= 0), lo que implica que su nulidad es 4−3 = 1 (son 4 las componentes independientes de Φµ).

De la misma manera, (9.5) lleva a que las entradas distintas de cero de (Wαβλρ) son 3 (aquellas

con α, β ̸= 0), lo que implica que su nulidad es 6 − 3 = 3 (6, son las componetes independientes

de Bµν). Esto muestra que la matriz Hessiana total tiene determinante cero, por lo que la teoŕıa

descrita por (9.1) es singular, y además, que hay 4 restricciones primarias independientes que uno

debe obtener.

9.2. Restricciones primarias y secundarias

De la expresión (9.2) que da los momentos canónicos, se obtienen las restricciones primarias;

es decir, de (9.2) se tiene que

Πµ = (mB0µ − Φ0µ) (9.6)

⇒ Πi = (mB0i − Φ0i), Π0 = 0 (9.7)

⇒ ϕ0 ≡ Π0 ≈ 0, (9.8)

y de las expresiones (9.4), que

Πµν =
1

2
H0µν , (9.9)

⇒ Πij =
1

2
H0ij , Π0i = 0 (9.10)

⇒ ϕ0i ≡ Π0i ≈ 0, (9.11)
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siendo, en efecto, 4 restricciones primarias. Para obtener las restricciones secundarias aplicando la

condición de consistencia a las restricciones primarias, se requiere el hamiltoniano asociado con el

lagrangiano (9.1). Con este fin, considerando que

L =
1

4
H0ijH

0ij +
1

2× 3!
HijkH

ijk − 1

2
(mB0i − Φ0i)(mB

0i − Φ0i)

−1

4
(mBij − Φij)(mB

ij − Φij), (9.12)

el hamiltoniano asociado está dado por

Hc =

∫
d3x

[
Φ̇µΠ

µ + ḂµνΠ
µν − L

]
=

∫
d3x

[
(mB0i −Πi)Π

i − Φ0∂iΠ
i + 2ΠijΠ

ij + 2Bj0∂iΠ
ij −

(
ΠijΠ

ij +
1

2× 3!
HijkH

ijk

−1

2
ΠiΠ

i − 1

4
(mBij − Φij)(mB

ij − Φij)
)]

=

∫
d3x

[
B0i(mΠi + 2∂jΠ

ij)− Φ0∂iΠ
i − 1

2
ΠiΠ

i +ΠijΠ
ij − 1

2× 3!
HijkH

ijk

+
1

4
(mBij − Φij)(mB

ij − Φij)

]
(9.13)

Entonces, definiendo el hamiltoniano primario

H1 = Hc +

∫
d3x[a0ϕ

0 + a0iϕ
0i], (9.14)

en donde a0 , a0i son los multiplicadores de Lagrange que fuerzan las restricciones primarias, y

usando los corchetes de Poisson fundamentales

{Φν(x),Π
µ(y)} = δµν δ

3(x− y), {Bαβ(x),Π
µν(y)} =

1

2
(δµαδ

ν
β − δµβδ

ν
α)δ

3(x− y) (9.15)

(tomadas a un mismo tiempo), se tiene que

ϕ̇0(x) = {ϕ0(x),H1(y)} =

∫
d3y{Π0(x),−[Φ0∂iΠ

i](y)} = ∂iΠ
i(x)

⇒ ψ0 ≡ ∂iΠ
i ≈ 0, (9.16)

ϕ̇0i(x) = {ϕ0i(x),H1(y)} =

∫
d3y{Π0i(x), [B0k(mΠk + 2∂jΠ

kj)](y)}

= −1

2
[mΠi + 2∂jΠ

ij ](x)

⇒ ψ0i ≡ mΠi + 2∂jΠ
ij ≈ 0, (9.17)

siendo 4 restriciones secundarias. Para hallar las posibles restricciones terciarias, se define el ha-

miltoniano secundario

H2 = Hc +

∫
d3x

[
a0ϕ

0 + a0iϕ
0i + b0ψ

0 + b0iψ
0i

]
. (9.18)
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en donde b0 , b0i son los multiplicadores de Lagrange que fuerzan las restricciones secundarias.

Entonces, aplicando la relación de consistencia a las restricciones secundarias se tiene que

ψ̇0(x) = {ψ0(x),H2(y)}

=

∫
d3y{∂kΠk(x),

1

4
[(mBij − Φij)(mB

ij − Φij)](y)}

=
1

2

∫
d3y

[
[mBij − Φij ](y)

(
∂j∂iδ

3(x− y)− ∂i∂jδ
3(x− y)

)]
= 0, (9.19)

ψ̇0l(x) = {ψ0l(x),H2(y)}

=

∫
d3y{mΠl(x),

1

4
[(mBij − Φij)(mB

ij − Φij)](y)}+∫
d3y

[
{2∂kΠlk(x), [− 1

2× 3!
HijkH

ijk +
1

4
(mBij − Φij)(mB

ij − Φij)](y)}
]
. (9.20)

Calculando separadamente estas integrales, se tiene que∫
d3y{mΠl(x),

1

4
[(mBij − Φij)(mB

ij − Φij)](y)}

=
m2

2

∫
d3y[Bij − Φij ](y)

(
δlj∂iδ

3(x− y)− δli∂jδ
3(x− y)

)
= m2

∫
d3y(Bil − Φil)(y)∂iδ

3(y − x) = −m2[∂iB
il − ∂iΦ

il](x), (9.21)

y por otro lado, por similitud con el resultado (5.13), que∫
d3y{2∂nΠln(x),− 1

2× 3!
[HijkH

ijk](y)} = 0, (9.22)

y además, ∫
d3y{2∂kΠlk(x),

1

4
[(mBij − Φij)(mB

ij − Φij)](y)}

= −m2

∫
d3y[Blk − Φlk](y)∂kδ

3(x− y) = m2[∂kB
kl − ∂kΦ

kl](x), (9.23)

por lo que

ψ̇0i(x) = 0, (9.24)

de modo que la teoŕıa no presenta restricciones terciarias. Las restricciones encontradas,

ϕ0 ≡ Π0 ≈ 0, ϕ0i ≡ Π0i ≈ 0, ψ0 ≡ ∂iΠ
i ≈ 0, ψ0i ≡ mΠi + 2∂jΠ

ij ≈ 0, (9.25)

es fácil ver que son de primera clase, ya que en ellas solo aparecen los momentos canónicos (i.e., su

corchete de Poisson es cero). Estas, sin embargo, son reducibles o dependientes, ya que se cumple

∂iψ
0i −mψ0 = 0, (9.26)

de modo que las restricciones (9.25) describen un sistema reducible.
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9.3. Grados de libertad

Habiendo encontrado las restricciones de la teoŕıa y las relaciones de reductibilidad, pueden

contarse los grados de libertad f́ısicos como sigue:

Se tiene un total de 2(4 + 6) variables dinámicas (4 por parte de Φµ y 6 por parte de

Bµν), y 7 restricciones de primera clase independientes.

Entonces, los grados de libertad f́ısicos para la teoŕıa de SKR son

GL =
1

2
[2(10)− 2(7)] = 3, (9.27)

los cuales son los mismos que en la teoŕıa PKR. Aqúı, nótese que un grado de libertad es debido

al término KR en el lagrangiano (9.1), mientras que los demás son debidos a Φµ. Aśı, Bµν con-

tribuye con un grado de libertad y Φµ con dos. (Esto es similar a la teoŕıa de Stüeckelberg-Proca

mencionada al inicio.)

9.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transformaciones de norma, y el generador

está dado por

G =

∫
dx3

[
ϵ0ϕ

0 + ϵ0iϕ
0i − ϵψ0 + ϵiψ

0i

]
, (9.28)

siendo las ϵ’s los parámetros de las correspondientes transformaciones. Para los campos Φ0 y Φi,

se tiene que

δΦ0(x) =

∫
d3y{Φ0(x), [ϵ0Π

0](y)} = ϵ0(x) ≡ ϵ̇(x), (9.29)

δΦi(x) =

∫
d3y{Φi(x), [−ϵ∂jΠj +mϵkΠ

k](y)}

=

∫
d3yϵ(y)∂jδ

3(x− y)δji +mδki ϵk(x) = ∂iϵ(x) +mϵi(x), (9.30)

mientras que para B0i y Bij , por similitud con los resultados (5.16) y (5.17), que

δB0i(x) =
1

2
ϵ0i(x) ≡

1

2
ϵ̇i(x), δBkl(x) = ∂kϵl(x)− ∂lϵk(x);

es decir, se tienen las transformaciones de norma

δΦ0 = ∂0ϵ, δΦi = ∂iϵ +mϵi, δB0i =
1

2
∂0ϵi, δBij = ∂iϵj − ∂jϵi, (9.31)
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las cuales pueden escribirse en forma compacta como

δΦµ = ∂µϵ +mϵµ, δBµν = ∂µϵν − ∂νϵµ, (9.32)

con ϵ0 = 0.

9.5. Los corchetes de Dirac

Para obtener los corchetes de Dirac, debe obtenerse un conjunto de restricciones de segunda

clase irreducibles a partir de las de primera clase fijando la norma. Además, debido a que las

restricciones de primera clase no son independientes se expande el espacio fase mediante la intro-

ducción de campos auxiliares. Haciendo lo anterior, uno obtienen las restricciones de segunda clase

irreducibles

χ1 ≡ Π0, χ2 ≡ Φ0, χ3 ≡ Π0i, χ4 ≡ B0i, χ5 ≡ ∂iΠ
i, χ6 ≡ ∂iΦi,

χ7 ≡ mΠi + 2∂jΠ
ij − ∂ip, χ8 ≡ ∂jBij + ∂iq, (9.33)

con q, p campos auxiliares cumpliendo

{q(x), p(y)} = δ3(x− y). (9.34)

Los corchetes de Poisson distintos de cero entre estas restricciones son

{χ1(x), χ2(y)} = {Π0(x),Φ0(y)} = −δ3(x− y),

{χ3(x), χ4(y)} = {Π0i(x), B0j(y)} = −1

2
δijδ

3(x− y),

{χ5(x), χ6(y)} = {∂iΠi(x), ∂jΦj(y)} = −∂i∂iδ3(x− y),

{χ6(x), χ7(y)} = {∂jΦj(x),mΠi(y)} = m∂iδ3(x− y),

{χ7(x), χ8(y)} = {2∂jΠij(x), ∂lBkl(y)} − {∂ip(x), ∂kq(y)} = −δik∂j∂jδ3(x− y), (9.35)

obteniéndose entonces la matriz

(
Cαβ

)
=



0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1
2δ

i
j 0 0 0 0

0 0 1
2δ

i
j 0 0 0 0 0

0 0 0 0 0 −∇2 0 0

0 0 0 0 ∇2 0 m∂i 0

0 0 0 0 0 −m∂i 0 −δij∇2

0 0 0 0 0 0 δij∇2 0



δ3(x− y),
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y cuya inversa es

(
Cαβ

)
=



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 2δij 0 0 0 0

0 0 −2δij 0 0 0 0 0

0 0 0 0 0 1
∇2 0 − m∂j

(∇2)2

0 0 0 0 − 1
∇2 0 0 0

0 0 0 0 0 0 0
δji
∇2

0 0 0 0 − m∂j

(∇2)2 0
δji
∇2 0



δ3(x− y).

Entonces, los corchetes de Dirac diferentes de cero son

{Φi(x),Π
j(y)}D = δji δ

3(x− y)

−
∫
d3ud3v

[
{Φi(x), ∂kΠ

k(u))}[ 1

∇2
δ3(u− v)]{∂lΦl(v),Π

j(y)}
]

= δji δ
3(x− y)−

∫
d3ud3v

[
δki ∂kδ

3(x− u)
1

∇2
δ3(u− v)∂lδ3(v − y)δjl

]
= δji δ

3(x− y) +
1

∇2
δjl δ

k
i ∂k∂

lδ3(x− y)

= [δji +
1

∇2
∂i∂

j ]δ3(x− y), (9.36)

{Φi(x),Π
jk(y)}D = −

∫
d3ud3v

[
{Φi(x), ∂lΠ

l(u))}[− m∂q

(∇2)2
δ3(u− v)]{∂pBqp(v),Π

jk(y)}
]

−
∫
d3ud3v

[
{Φi(x),mΠl(u))}[

δql
∇2

δ3(u− v)]{∂pBqp(v),Π
jk(y)}

]
=

m

2

∫
d3ud3v

[
∂iδ

3(x− u)
1

(∇2)2
∂qδ3(u− v)∂pδ3(v − y)(δjqδ

k
p − δkq δ

j
p)
]

−
∫
d3ud3v

[
mδliδ

3(x− u)
δql
∇2

δ3(u− v)
1

2
(δjqδ

k
p − δkq δ

j
p)∂

pδ3(v − y)
]

=
m

2

∫
d3ud3v

[
∂iδ

3(x− u)
1

(∇2)2

(
∂jδ3(u− v)∂kδ3(v − y)

−∂kδ3(u− v)∂jδ3(v − y)
)]

−mδli
δql
2∇2

[δjqδ
k
p − δkq δ

j
p]∂

pδ3(x− y)

=
m

2∇2
[δki ∂

j − δji ∂
k]δ3(x− y), (9.37)

y por similitud con los resultados (5.22),

{Bij(x),Π
kl(y)}D =

1

2
(δki δ

l
j − δliδ

k
j )δ

3(x− y)

−
∫
d3ud3v{Bij(x), 2∂mΠrm(u))}[ δ

p
r

∇2
δ3(u− v)]{∂qBpq(v),Π

kl(y)}

=
1

2
[δki δ

l
j − δliδ

k
j +

1

∇2
(δki ∂j∂

l − δli∂j∂
k − δkj ∂i∂

l + δlj∂i∂
k)]δ3(x− y) (9.38)
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Además, los corchetes de Dirac no triviales entre q y p con los campos, son

{Φi(x), p(y)}D = −
∫
d3ud3v

[
{Φi(x), ∂lΠ

l(u))}[−m∂
k

(∇2)2
δ3(u− v)]{∂kq(v), p(y)}

]
−
∫
d3ud3v

[
{Φi(x),mΠl(u))}[ δ

k
l

∇2
δ3(u− v)]{∂kq(v), p(y)}

]
= m

∫
d3ud3v

[
∂iδ

3(x− u)
1

(∇2)2
∂kδ3(u− v)∂kδ

3(v − y)
]

−m
∫
d3ud3v

[
δliδ

3(x− u)
δkl
∇2

δ3(u− v)∂kδ
3(v − y)

]
=

m

∇2
∂iδ

3(x− y)− m

∇2
∂iδ

3(x− y) = 0, (9.39)

y por similitud con los resultados (5.23)-(5.25),

{q(x), p(y)}D = δ3(x− y)−
∫
d3ud3v

[
{q(x),−∂ip(u))}[ δ

j
i

∇2
δ3(u− v)]{∂jq(v), p(y)}

]
= δ3(x− y)− 1

∇2
∂i∂iδ

3(x− y) = 0, (9.40)

{q(x),Πij(y)}D = −
∫
d3ud3v

[
{q(x),−∂kp(u))}[ δ

l
k

∇2
δ3(u− v)]{∂mBlm(v),Πij(y)}

]
=

1

2∇2
[∂i∂j − ∂j∂i]δ3(x− y) = 0, (9.41)

{Bkl(x), p(y)}D = −
∫
d3ud3v{Bkl(x), 2∂nΠ

mn(u))}[ δ
i
m

∇2
δ3(u− v)]{∂iq(v), p(y)}

=
1

∇2
[∂l∂k − ∂k∂l]δ

3(x− y) = 0, (9.42)

y trivialmente,

{q(x),Φi(y)}D = 0, {q(x), Bij(y)}D = 0, {q(x),Πi(y)}D = 0,

{Πi(x), p(y), }D = 0, {Πij(x), p(y), }D = 0, (9.43)

lo que muestra la independencia de los campos q y p del corchete de Dirac, condición que es

necesaria, ya que como campos auxiliares no deben contribuir con resultados en la teoŕıa. Con esto

se concluye el análisis hamiltoniano.

En resumen, se ha mostrado que la teoŕıa de SKR es una teoŕıa de norma masiva reducible con

tres grados de libertad, que es el mismo número de grados de libertad que en PKR. Se mostró que

el campo de norma masivo Bµν contribuye con un grado de libertad, a diferencia de la teoŕıa de

PKR, en donde este posee tres, y que el campo vectorial de Stüeckelberg Φµ contribuye con dos.

Además, debido a que se tienen condiciones de reductibilidad, se usó el proceso de expansión del

espacio fase y se calcularon los corchetes de Dirac de la teoŕıa.
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Caṕıtulo 10

La acción de Stüeckelberg

Kalb-Ramond en 5 dimensiones

Se ha visto que la teoŕıa Proca Kalb-Ramond 5D no es una teoŕıa de norma, y que el modo

cero corresponde consistentemente a la teoŕıa Proca Kalb-Ramond 4D mas una torre de campos

KK masivos. Se vió que el modo cero B
(0)
µν contribuye consistentemente con tres grados de libertad,

mientras que los modos KK contribuyen con seis; tres debidos a B
(n)
µν y tres debidos a B

(n)
µ5 . Ahora

se aplica el mecanismo de Stüeckelberg a la teoŕıa Proca Kalb-Ramond 5D y se hace un anális

hamiltoniano usando el formalismo de Dirac-Bergmann estricto. Este análisis estricto de la teoŕıa

constituye una contribución de este trabajo, ya que este formalismo no se encuentra en la literatura.

En este caṕıtulo se encuentra, después de compactar la quinta dimensión sobre un orbifold S1/Z2,

que la teoŕıa efectiva de Stüeckelberg Kalb-Ramond es una teoŕıa de norma reducible cuyo modo

cero corresponde consistentemente a la teoŕıa Stüeckelberg Kalb-Ramond 4D, mas una torre de

campos masivos KK. Se muestra que el modo cero contribuye consistentemente con tres grados

de libertad (igual que en PKR 4D); uno debido a B
(0)
µν y dos debidos a Φ

(0)
µ , mientras que los

modos KK contribuyen con seis (igual que en PKR 5D); tres debidos a B
(n)
µν y tres debidos a

Φ
(n)
µ , habiéndose absorbido los campos con caracteŕısticas de pseudo-bosones de Goldstone B

(n)
µ5

y Φ
(n)
5 . Además, debido a que hay condiciones de reductibilidad en el modo cero y en los modos

excitados, se extiende el espacio fase para obtener los corchetes de Dirac de la teoŕıa. Los resultados

correspondientes a este caṕıtulo son una aportación que también puede consultarse en [34].
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10.1. El lagrangiano efectivo

La notación que se usará es la siguiente: Índices latinos mayúsculos M,N toman los valores

0, 1, 2, 3, 5, con 5 etiquetando la dimensión extra compacta, bajándose o subiéndose con la métrica

plana η = (1,−1,−1,−1,−1); y representa la coordenada en la dimensión compacta; los ı́ndices

griegos µ, ν toman los valores 0, 1, 2, 3, y xµ denotan las coordenadas etiquetando puntos de la

variedad cuadridimensionalM4. Considérese entonces el lagrangiano de Stüeckelberg Kalb-Ramond

5D (SKR 5D),

L =
1

2× 3!
HMNLH

MNL − 1

4
(mBMN − ΦMN )(mBMN − ΦMN ), (10.1)

en donde HMNL = ∂MBNL + ∂NBLM + ∂LBMN y ΦMN = ∂MΦN − ∂NΦM son las intensidades

de campo de Kalb-Ramond y Stüeckelberg 5D, y BMN y ΦN los campos de Kalb-Ramond y de

Stüeckelberg 5D. La compactificación de la quinta dimensión sobre un orbifold S1/Z2 impone sobre

los campos ΦN y BMN las condiciones de paridad y periodicidad

ΦM (x, y) = ϕM (x, y + 2πR),

Φµ(x,−y) = ϕµ(x, y),

Φ5(x,−y) = −ϕ5(x, y),

BMN (x, y) = BMN (x, y + 2πR),

Bµν(x,−y) = Bµν(x, y),

Bµ5(x,−y) = −Bµ5(x, y).

Estas condiciones permiten expresar los campos ΦN y BMN como el conjunto de armónicos sobre

M4 × S1/Z2,

Φµ(x, y) =
1√
2πR

Φ(0)
µ (x) +

1√
πR

∞∑
n=1

Φ(n)
µ (x) cos

(ny
R

)
,

Φ5(x, y) =
1√
πR

∞∑
n=1

Φ(n)
µ (x) sin

(ny
R

)
,

Bµν(x, y) =
1√
2πR

B(0)
µν (x) +

1√
πR

∞∑
n=1

B(n)
µν (x) cos

(ny
R

)
,

Bµ5(x, y) =
1√
πR

∞∑
n=1

B
(n)
µ5 (x) sin

(ny
R

)
, (10.2)
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siendo Φ
(n)
µ , B

(n)
µν , B

(n)
µ5 los modos de Kaluza-Klein (KK) dependientes solo de las coordenadas del

espaciotiempo cuadridimensional. Expresando el lagrangiano (10.1) como

L =
1

2× 3!
HµνλH

µνλ +
1

4
H5µνH

5µν − 1

4
(mBµν − Φµν)(mB

µν − Φµν)

−1

2
(mBµ5 − Φµ5)(mB

µ5 − Φµ5), (10.3)

sustituyendo las series (10.2) en (10.1) e integrando sobre la quinta dimensión y de 0 a 2πR, se

obtiene el lagrangiano efectivo (cuadridimensional)

Le =
1

2× 3!
H

(0)
µνλH

µνλ
(0) − 1

4
(mB(0)

µν − Φ(0)
µν )(mB

µν
(0) − Φµν

(0))

+
∞∑

n=1

[
1

2× 3!
H

(n)
µνλH

µνλ
(n) − 1

4
(mB(n)

µν − Φ(n)
µν )(mB

µν
(n) − Φµν

(n))

−1

2

(
mB

(n)
µ5 − ∂µΦ

(n)
5 − n

R
Φ(n)

µ

)(
mBµ5

(n) − ∂µΦ5
(n) −

n

R
Φµ

(n)

)
+
1

4

(
∂µB

(n)
ν5 + ∂νB

(n)
5µ − n

R
B(n)

µν

)(
∂µBν5

(n) + ∂νB5µ
(n) −

n

R
Bµν

(n)

)]
, (10.4)

con H
(0)
µνλ, H

(n)
µνλ, Φ

(0)
µν y Φ

(n)
µν definidos de manera similar que en (5.1). Nótese que el modo cero

corresponde consistentemente a la teoŕıa SKR 4D, y que los modos KK están compuestos de un

término tipo SKR 4D, mas un término que acopla Φ
(n)
µ con B

(n)
µ5 y Φ

(n)
5 , y otro que acopla B

(n)
µν

con B
(n)
µ5 . Nótese también que B

(n)
µν y Φ

(n)
µ tienen, respectivamente, masas m2

n = m2 + (n/R)2 y

m′
n = (n/R) debido a la compactación, y que B

(n)
µ5 tiene masa m, mientras que Φ

(n)
5 es no masivo.

En adelante, a fin de hacer más claro el anális de los resultados, se trunca la torre de exitaciones

KK hasta un número finito k, pudiéndose tomar el ĺımite k → ∞ al final de de cálculos, de modo

que n = 1, 2, 3, ..., k − 1. El lagrangiano efectivo (10.4) es un resultado que no se hallaba antes en

la literatura, y que ahora puede consultarse en [34].

Para mostrar que la teoŕıa descrita por (10.4) es singular, aśı como saber el número de restric-

ciones primarias independientes que uno deberá obtener, se obtiene la matriz Hessiana de la teoŕıa.

A saber, para la matriz Hessiana asociada con Φ
(0)
µ , por similitud con (9.2) y (9.3), se tiene que

∂Le

∂(∂0Φ
(0)
α )

=
1

2
(g0βgαγ − gαβg0γ)(mB

(0)
βγ − Φ

(0)
βγ ), (10.5)

∂2Le

∂(∂0Φ
(0)
ρ )∂(∂0Φ

(0)
α )

= (g0ρgα0 − gαρ) ≡W ρα
(0) . (10.6)

Para la matriz Hessiana a sociada con B
(0)
µν , por similitud con (5.2) y (5.3), se tiene

∂Le

∂(∂0B
(0)
αβ )

=
1

2
H0αβ

(0) =
1

2
gαγgβδH

(0)
0γδ, (10.7)
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∂2Le

∂(∂0B
(0)
λρ )∂(∂0B

(0)
αβ )

=
1

4
gαigβj(δλi δ

ρ
j − δλj δ

ρ
i ) =

1

4
(gαλgβρ − gαρgβλ) ≡Wαβλρ

(0) . (10.8)

Ahora, para obtener la matriz Hessiana asociada con ϕ
(n)
L ,

∂Le

∂(∂0Φ
(l)
L )

= −1

2
(mBµν

(l) − Φµν
(l))δ

L
α

∂

∂(∂0Φ
(l)
α )

(mB(l)
µν − Φ(l)

µν)

−
(
mBµ5

(l) − ∂µΦ5
(l) −

l

R
Φµ

(n)

)
δ0αδ

L
5

∂

∂(∂αΦ
(l)
5 )

(
mB

(l)
µ5 − ∂µΦ

(l)
5 − l

R
Φ(l)

µ

)
=

1

2
δLαg

µβgνγ(mB
(l)
βγ − Φ

(l)
βγ)(δ

0
µδ

α
ν − δ0νδ

α
µ ) + δ0αδ

L
5

(
mBα5

(l) − ∂αΦ5
(l) −

l

R
Φα

(n)

)
=

1

2
δLα(g

0βgαγ − gαβg0γ)(mB
(l)
βγ − Φ

(l)
βγ)− δ0αδ

L
5 g

αµ
(
mB

(l)
µ5 − ∂µΦ

(l)
5 +

l

R
Φ(l)

µ

)
, (10.9)

entonces

∂2Le

∂(∂0Φ
(l)
M )∂(∂0Φ

(l)
L )

= −1

2
δLα(g

0βgαγ − gαβg0γ)(δ0βδ
M
γ − δ0γδ

M
β ) + δ0αδ

L
5 g

αµδ0µδ
M
5

= δLα(g
αM − gα0g0M ) + δL5 δ

M
5 = (gL0g0M − gLM ) + δM5 δL5 ≡WML

(n) .(10.10)

Por último, para la matriz Hessiana asociada con B
(l)
LH , usando los resultados (6.7) y (6.8),

∂Le

∂(∂0B
(h)
LH)

=
1

2
δLαδ

H
β H

0αβ
(h) +

1

2
δLαδ

H
5

(
∂0Bα5

(h) + ∂αB50
(h) −

h

R
B0α

(h)

)
, (10.11)

∂2Le

∂(∂0B
(m)
KM )∂(∂0B

(h)
LH)

=
1

4
δLi δ

H
j δ

K
l δ

M
n (gilgjn − gingjl) +

1

4
δLi δ

H
5 δ

K
n δ

M
5 gin

=
1

4
(gLKgHM − gLMgHK) +

1

4
δH5 δ

M
5 gLK ≡WLHKM

(m) . (10.12)

La inspección de (10.6) lleva a que las entradas diferentes de cero de (W ρα
(0)) son 3 (aquellas con

α, ρ ̸= 0), lo que implica que su nulidad es 4 − 3 = 1 (4, son las componentes independientes de

Φ
(0)
µ ). Asimismo, de (10.8) se obtiene que las entradas diferentes de cero de (Wαβλρ

(0) ) son 3 (aquellas

con α, β ̸= 0), lo que implica que su nulidad es 6 − 3 = 3 (6, son las componetes independientes

de B
(0)
µν ). De la misma manera, de (10.10) se obtiene que las entradas distintas de cero de (WML

(n) )

son 4 (aquellas con L,M, ̸= 0), lo que implica que su nulidad es 5− 4 = 1 (5, son las componentes

independientes de Φ
(n)
L ). Finalmente, del resultado (10.12) se obtiene que las entradas distintas

de cero de (WLHKM
(m) ) por parte del primer término son 3 (aquellas con K,L,M,H ̸= 0, 5), y por

el segundo término son 3 (aquellas con H,M = 5, y L,K ̸= 0, 5), lo que implica que su nulidad es

10 − 6 = 4 (10, son las componentes independientes de B
(n)
LM ). Lo anterior muestra que la matriz

Hessiana total tiene entradas cero, lo que significa que la teoŕıa descrita por (10.4) es singular, y

además, 4+5(k− 1) = 5k− 1 es el número de restricciones primarias independientes que uno debe

obtener. (Ver tamb́ıen este resultado en [34].)
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10.2. Restricciones primarias y secundarias

De las expresiones (10.5) y (10.7), además de los momentos canónicos, se obtienen restricciones

primarias; es decir, de (10.5) y (10.7) se tiene que

Πµ
(0) = mB0µ

(0) − Φ0µ
(0), Πµν

(0) =
1

2
H0µν

(0) , (10.13)

⇒ Π0
(0) = 0, Π0i

(0) = 0 Πi
(0) = mB0i

(0) − Φ0i
(0), Πij

(0) =
1

2
H0ij

(0) (10.14)

⇒ ϕ0(0) ≡ Π0
(0) ≈ 0, ϕ0i(0) ≡ Π0i

(0) ≈ 0. (10.15)

Similarmente, de (10.9), se tiene

ΠL
(n) = δLµ (mB

0µ
(n) − Φ0µ

(n)) + δL5 (mB
05
(n) − ∂0Φ5

(n) −
n

R
Φ0

(n)), (10.16)

⇒ Π0
(n) = 0, Πi

(n) = mB0i
(n) − Φ0i

(n), Π5
(n) = mB05

(n) − ∂0Φ5
(n) −

n

R
Φ0

(n) (10.17)

⇒ ϕ0(n) ≡ Π0
(n) ≈ 0, (10.18)

y de (10.11), que

ΠLH
(n) =

1

2
δLαδ

H
β H

0αβ
(n) +

1

2
δLαδ

H
5

(
∂0Bα5

(n) + ∂αB50
(n) −

n

R
B0α

(n)

)
, (10.19)

⇒ Π0i
(n) = 0, Π05

(n) = 0, Πij
(n) =

1

2
H0ij

(n), Πi5
(n) =

1

2

(
∂0Bi5

(n) + ∂iB50
(n) −

n

R
B0i

(n)

)
(10.20)

⇒ ϕ0i(n) ≡ Π0i
(n) ≈ 0, ϕ05(n) ≡ Π05

(n) ≈ 0, (10.21)

siendo, en efecto, 5k − 1 restricciones primarias independientes. Para hallar las restricciones se-

cundarias debe obtenerse el hamitoniano asociado con el lagrangiano efectivo (10.4). Por de-

finición, el hamiltoniano asociado con el lagrangiano (10.1) es H = Φ̇NΠL + ḂNLΠ
NL − L,

en donde Φ̇NΠL + ḂNLΠ
NL = Φ̇µΠ

µ + Φ̇5Π
5 + ḂµνΠ

µν + 2Ḃµ5Π
µ5. Sustituyendo las se-

ries (10.2) en esta expresión e ntegrando en y de 0 a 2πR, uno obtiene la expresión 4D

Φ̇
(0)
µ Πµ

(0) + Ḃ
(0)
µν Π

µν
(0) +

∑∞
n=1[Φ̇

(n)
µ Πµ

(n) + Ḃ
(n)
µν Πµν

(n) + Φ̇
(n)
5 Π5

(n) + 2Ḃ
(n)
i5 Πi5

(n)]. Por tanto, el hamil-
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CAPÍTULO 10. LA ACCIÓN DE STÜECKELBERG KALB-RAMOND EN 5
DIMENSIONES

10.2. RESTRICCIONES PRIMARIAS Y SECUNDARIAS

toniano asociado con el lagrangiano efectivo (10.4) está dado por

Hc =

∫
d3x

[
Φ̇(0)

µ Πµ
(0) + Ḃ(0)

µν Π
µν
(0) +

∞∑
n=1

[
Φ̇(n)

µ Πµ
(n) + Ḃ(n)

µν Πµν
(n) + Φ̇

(n)
5 Π5

(n) + 2Ḃ
(n)
i5 Πi5

(n)

]
− Le

]
=

∫
d3x

[
(Φ

(0)
0i + ∂iΦ

(0)
0 )Πi

(0) + (H
(0)
0ij − ∂iB

(0)
j0 − ∂jB

(0)
0i )Πij

(0) +
∞∑

n=1

[
(Φ

(n)
0i + ∂iΦ

(n)
0 )Πi

(n)

+(H
(n)
0ij − ∂iB

(n)
j0 − ∂jB

(n)
0i )Πij

(n) + (mB
(n)
05 −Π

(n)
5 − n

R
Φ

(n)
0 )Π5

(n)

+2(2Π
(n)
i5 − ∂iB

(n)
50 +

n

R
B

(n)
0i )Πi5

(n)

]
− Le

]
=

∫
d3x

[
B

(0)
0i (mΠi

(0) + 2∂jΠ
ij
(0))− Φ

(0)
0 ∂iΠ

i
(0) −Π

(0)
i Πi

(0) + 2Π
(0)
ij Πij

(0)

+

∞∑
n=1

[
B

(n)
0i (mΠi

(n) + 2∂jΠ
ij
(n))− Φ

(n)
0 ∂iΠ

i
(n) −Π

(n)
i Πi

(n) + 2Π
(n)
ij Πij

(n) −Π
(n)
5 Π5

(n)

+4Π
(n)
i5 Πi5

(n) +B
(n)
05 (mΠ5

(n) + 2∂iΠ
5i
(n)) +

n

R
(2B

(n)
0i Πi5

(n) − Φ
(n)
0 Π5

(n))

]
− Le

]
. (10.22)

En esta última expresión, usando que

Le =
1

4
H

(0)
0ijH

0ij
(0) +

1

2× 3!
H

(0)
ijkH

ijk
(0) − 1

2
(mB

(0)
0i − Φ

(0)
0i )(mB

0i
(0) − Φ0i

(0))

−1

4
(mB

(0)
ij − Φ

(0)
ij )(mBij

(0) − Φij
(0)) +

∞∑
n=1

[
1

4
H

(n)
0ijH

0ij
(n) +

1

2× 3!
H

(n)
ijkH

ijk
(n)

−1

2
(mB

(n)
0i − Φ

(n)
0i )(mB0i

(n) − Φ0i
(n))−

1

4
(mB

(n)
ij − Φ

(n)
ij )(mBij

(n) − Φij
(n))

−1

2

(
mB

(n)
05 − ∂0Φ

(n)
5 − n

R
Φ

(n)
0

)(
mB05

(n) − ∂0Φ5
(n) −

n

R
Φ0

(n)

)
−1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
+
1

2

(
∂0B

(n)
i5 + ∂iB

(n)
50 − n

R
B

(n)
0i

)(
∂0Bi5

(n) + ∂iB50
(n) −

n

R
B0i

(n)

)
+
1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂iB5i
(n) −

n

R
Bij

(n)

)]
, (10.23)

uno obtiene el hamiltoniano canónico

Hc =

∫
d3x

[
B

(0)
0i (mΠi

(0) + 2∂jΠ
ij
(0))− Φ

(0)
0 ∂iΠ

i
(0) −

1

2
Π

(0)
i Πi

(0) +Π
(0)
ij Πij

(0) −
1

2× 3!
H

(0)
ijkH

ijk
(0)

+
1

4
(mB

(0)
ij − Φ

(0)
ij )(mBij

(0) − Φij
(0)) +

∞∑
n=1

[
B

(n)
0i (mΠi

(n) + 2∂jΠ
ij
(n))− Φ

(n)
0 ∂iΠ

i
(n)

−1

2
Π

(n)
i Πi

(n) +Π
(n)
ij Πij

(n) −
1

2× 3!
H

(n)
ijkH

ijk
(n) +

1

4
(mB

(n)
ij − Φ

(n)
ij )(mBij

(n) − Φij
(n))

−1

2
Π

(n)
5 Π5

(n) + 2Π
(n)
i5 Πi5

(n) +B
(n)
05 (mΠ5

(n) + 2∂iΠ
5i
(n)) +

n

R
(2B

(n)
0i Πi5

(n) − Φ
(n)
0 Π5

(n))

+
1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)]]
. (10.24)
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El hamiltoniano anterior es un resultado nuevo, el cual puede ahora encontrarse en [34]. Entonces,

definiendo el hamiltoniano primario

H1 = Hc +

∫
d3x

[
a
(0)
0 ϕ0(0) + a

(0)
0i ϕ

0i
(0) +

k−1∑
n=1

(
a
(n)
0 ϕ0(n) + a

(n)
0i ϕ

0i
(n) + a

(n)
05 ϕ

05
(n)

)]
, (10.25)

en donde a
(0)
0 , a

(0)
0i , a

(n)
0 , a

(n)
0i , a

(n)
05 son los multiplicadores de Lagrange que fuerzan las restricciones

primarias, y usando los corchetes de Poisson fundamentales

{Φ(0)
ν (x),Πµ

(0)(z)} = δµν δ
3(x− z), {B(0)

αβ (x),Π
µν
(0)(z)} =

1

2
(δµαδ

ν
β − δµβδ

ν
α)δ

3(x− z), (10.26)

{Φ(l)
H (x),ΠL

(n)(z)} = δlnδ
L
Hδ

3(x− z), {B(l)
HL(x),Π

MN
(n) (z)} =

1

2
δln(δ

M
H δNL − δML δNH )δ3(x− z)

(tomadas a un mismo tiempo), para las condiciones de consistencia sobre las restricciones del

modo cero se tiene que

ϕ̇0(0)(x) = {ϕ0(0)(x), H1(z)} = −
∫
d3z{Π0

(0)(x), [Φ
(0)
0 ∂iΠ

i
(0)](z)} = ∂iΠ

i
(0)(x),

⇒ ψ0
(0) ≡ ∂iΠ

i
(0) ≈ 0, (10.27)

ϕ̇0i(0)(x) = {ϕ0i(0)(x), H1(z)} =

∫
d3z{Π0i

(0)(x), [B
(0)
0k (mΠk

(0) + 2∂jΠ
kj
(0))](z)}

= −1

2
[mΠi

(0) + 2∂jΠ
ij
(0)](x),

⇒ ψ0i
(0) ≡ mΠi

(0) + 2∂jΠ
ij
(0) ≈ 0, (10.28)

las cuales son 4, mientras que para las restricciones de los modos KK,

ϕ̇0(n)(x) = {ϕ0(n)(x),H1(z)} = −
∫
d3z{Π0

(n)(x), [Φ
(n)
0 (∂iΠ

i
(n) +

n

R
Π5

(n))](z)}

= [∂iΠ
i
(n) +

n

R
Π5

(n)](x)

⇒ ψ0
(n) ≡ ∂iΠ

i
(n) +

n

R
Π5

(n) ≈ 0 (10.29)

ϕ̇0i(n)(x) = {ϕ0i(n)(x),H1(z)} =

∫
d3z

[
{Π0i

(n)(x), [B
(n)
0k (mΠk

(n) + 2∂jΠ
kj
(n)) +

n

R
2B

(n)
0k Πk5

(n)](z)}
]

= −1

2
[mΠi

(n) + 2∂jΠ
ij
(n) +

n

R
2Πi5

(n)](x),

⇒ ψ0i
(n) ≡ mΠi

(n) + 2∂jΠ
ij
(n) +

n

R
2Πi5

(n) ≈ 0 (10.30)

ϕ̇05(n)(x) = {ϕ05(n)(x),H1(z)} =

∫
d3z

[
{Π05

(n)(x), [B
(n)
05 (mΠ5

(n) + 2∂jΠ
5j
(n))](z)}

]
= −[mΠ5

(n) + 2∂jΠ
5j
(n)](x),

⇒ ψ05
(n) ≡ mΠ5

(n) + 2∂jΠ
5j
(n) ≈ 0, (10.31)
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las cuales son 5(k − 1). Para hallar las posibles restricciones terciarias, se define el hamiltoniano

secundario

H2 = Hc +

∫
d3x

[
a
(0)
0 ϕ0(0) + a

(0)
0i ϕ

0i
(0) + b

(0)
0 ψ0

(0) + b
(0)
0i ψ

0i
(0)

+
k−1∑
n=1

(
a
(n)
0 ϕ0(n) + a

(n)
0i ϕ

0i
(n) + a

(n)
05 ϕ

05
(n) + b

(n)
0 ψ0

(n) + b
(n)
0i ψ

0i
(n) + b

(n)
05 ψ

05
(n)

)]
, (10.32)

en donde b
(0)
0 , b

(0)
0i , b

(n)
0 , b

(n)
0i , b

(n)
05 son los demás multiplicadores de Lagrange que fuerzan las

restricciones secundarias. Entonces, por condición de consistencia a las restricciones secundarias

del modo cero, y por similitud con los resultados (9.19) y (9.21)-(9.23), se tiene que

ψ̇0
(0)(x) = {ψ0

(0)(x),H2(z)} =

∫
d3z{∂kΠk

(0)(x),
1

4
[(mB

(0)
ij − Φ

(0)
ij )(mBij

(0) − Φij
(0))](z)} = 0,

(10.33)

ψ̇0l
(0)(x) = {ψ0l

(0)(x),H2(z)} =

∫
d3z

[
{mΠl

(0)(x),
1

4
[(mB

(0)
ij − Φ

(0)
ij )(mBij

(0) − Φij
(0))](z)}

+{2∂kΠlk
(0)(x), [−

1

2× 3!
H

(0)
ijkH

ijk
(0) +

1

4
(mB

(0)
ij − Φ

(0)
ij )(mBij

(0) − Φij
(0))](z)}

]
= 0,

(10.34)

mientras que para las restricciones secundarias de los modos KK,

ψ̇0
(n)(x) = {ψ0

(n)(x),H2(z)} =

∫
d3z

[
1

2
[mBij

(n) − Φij
(n)](z){∂kΠ

k
(n)(x),−Φ

(n)
ij (z)}

+
n

R

(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(z){∂kΠk

(n)(x),−Φ
(n)
i )(z)}

+
n

R

(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(z){Π5

(n)(x),−∂iΦ
(n)
5 (z)}

]
=

1

2

∫
d3z

[
[mBij

(n) − Φij
(n)](z)[∂j∂i − ∂i∂j ]δ

3(x− z)

]
+
n

R
∂i

(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(x)− n

R
∂i

(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(x) = 0.

(10.35)
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En cuanto a la relación de consistencia

ψ̇0i
(n)(x) = {ψ0i

(n)(x),H2(z)}

=

∫
d3z

[
{mΠi

(n)(x),
1

4
[(mB

(n)
ij − Φ

(n)
ij )(mBij

(n) − Φij
(n))](z)

+
1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(z)}

+{2∂kΠlk
(n)(x), [−

1

2× 3!
H

(n)
ijkH

ijk
(n) +

1

4
(mB

(n)
ij − Φ

(n)
ij )(mBij

(n) − Φij
(n))](z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

+{ n
R
2Πi5

(n)(x),
1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(l) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

]
.

Para calcular esta integral, por similitud con (9.19) y los resultados (9.21)-(9.23), se tiene que∫
d3z

[
{mΠi

(n)(x),
1

4
[(mB

(n)
ij − Φ

(n)
ij )(mBij

(n) − Φij
(n))](z)}

+{2∂kΠlk
(n)(x), [−

1

2× 3!
H

(n)
ijkH

ijk
(n) +

1

4
(mB

(n)
ij − Φ

(n)
ij )(mBij

(n) − Φij
(n))](z)}

]
= 0, (10.36)

entonces,

ψ̇0i
(n)(x) =

∫
d3z

[
{mΠi

(n)(x),
1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(z)}

+{2∂kΠlk
(n)(x),−

1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

+{ n
R
2Πi5

(n)(x),
1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(l) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
(z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
(z)}

]
,

=

∫
d3z

[
m
n

R

(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
δ3(x− z)

+
n

R

(
∂lBj5

(n) + ∂jB5l
(n) −

n

R
Blj

(n)

)
∂jδ

3(x− z)−m
n

R

(
mBi5

(n) − ∂iΦ5
(n) −

n

R
Φi

(n)

)
×δ3(x− z)− n

R

(
∂iBj5

(n) + ∂jB5i
(n) −

n

R
Bij

(n)

)
∂jδ

3(x− z)

]
= 0. (10.37)
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Por último,

ψ̇05
(n)(x) = {ψ05

(n)(x),H2(z)} = {[mΠ5
(n) + 2∂kΠ

5k
(n)](x),H2(z)}

=

∫
d3z

[
{mΠ5

(n)(x),
1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(n) − ∂iΦ5
(n) +

n

R
Φi

(n)

)
(z)}

+{2∂kΠ5k
(n)(x),

1

2

(
mB

(n)
i5 − ∂iΦ

(n)
5 − n

R
Φ

(n)
i

)(
mBi5

(n) − ∂iΦ5
(n) +

n

R
Φi

(n)

)
(z)

−1

4

(
∂iB

(n)
j5 + ∂jB

(n)
5i − n

R
B

(n)
ij

)(
∂iBj5

(n) + ∂jB5i
(n) +

n

R
Bij

(n)

)
(z)}(z)

]
=

∫
d3z

[
m
(
mBi5

(n) − ∂iΦ5
(n) +

n

R
Φi

(n)

)
(z)∂iδ

3(x− z)

−m
(
mBi5

(n) − ∂iΦ5
(n) +

n

R
Φi

(n)

)
(z)∂iδ

3(x− z)

]
= 0. (10.38)

Por tanto, la teoŕıa no presenta restricciones terciarias. Las restricciones halladas,

ϕ0(0) ≡ Π0
(0) ≈ 0, ϕ0i(0) ≡ Π0i

(0) ≈ 0, ψ0
(0) ≡ ∂iΠ

i
(0) ≈ 0, ψ0i

(0) ≡ mΠi
(0) + 2∂jΠ

ij
(0) ≈ 0, (10.39)

ϕ0(n) ≡ Π0
(n) ≈ 0, ϕ0i(n) ≡ Π0i

(n) ≈ 0, ϕ05(n) ≡ Π05
(n) ≈ 0, ψ0

(n) ≡ ∂iΠ
i
(n) +

n

R
Π5

(n) ≈ 0,

ψ0i
(n) ≡ mΠi

(n) + 2∂jΠ
ij
(n) +

n

R
2Πi5

(n) ≈ 0, ψ05
(n) ≡ mΠ5

(n) + 2∂jΠ
5j
(n) ≈ 0, (10.40)

es fácil ver que son de primera clase, ya que en ellas sólo aparecen los momentos canónicos (i.e.,

los corchetes de Poisson entre ellas son nulos). Estas restricciones, sin embargo, son reducibles o

dependientes, ya que se cumple que

∂iψ
0i
(0) −mψ0

(0) = 0, ∂iψ
0i
(n) −mψ0

(n) +
n

R
ψ05
(n) = 0, (10.41)

por lo que las restricciones (10.39) y (10.40) describen un sistema reducible. La teoŕıa SKR 5D

es entonces una teoŕıa de norma reducible. Las restricciones anteriores, debe mencionarse, son un

resultado que no se hallaba antes en la literatura, y puede ahora consultarse en [34].

10.3. Grados de libertad

Habiendo encontrado todas las restricciones de la teoŕıa y las relaciones de reductibilidad,

pueden contarse los grados de libertad f́ısicos como sigue:

Para el modo cero, se tiene un total de 2(4 + 6) variables dinámicas (4 por parte de Φ
(0)
µ

y 6 por parte de B
(0)
µν ), y 7 restricciones de primera clase independientes.

Para los modos KK, se tiene un total de 2(5 + 10)(k − 1) variables dinámicas (5(k − 1)
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por parte de Φ
(n)
L y 10(k − 1) por parte de B

(n)
LM ), y 9(k − 1) restricciones de primera clase

independientes.

Entonces, los grados de libertad f́ısicos para la teoŕıa de SKR 5D son

GL =
1

2
[8 + 12 + (10 + 20)(k − 1)− 2(7)− 2(9(k − 1))] = 6k− 3. (10.42)

En particular, para el modo cero, i.e., k = 1, se tiene GL = 3, lo cual corresponde al número de

grados de libertad f́ısicos para SKR 4D. Además, de acuerdo con (10.42), cada valor de k contribuye

con 6 grados de libertad. El anterior conteo de los grados de libertad, es también un resultado que

no se halla en la literatura.

10.4. Las transformaciones de norma

Las restricciones de primera clase son generadoras de transfromaciones de norma, y el generador

está dado por

G =

∫
dx3

[
ϵ
(0)
0 ϕ0(0) + ϵ

(0)
0i ϕ

0i
(0) − ϵ(0)ψ0

(0) + ϵ
(0)
i ψ0i

(0) + ϵ
(n)
0 ϕ0(n)

+ϵ
(n)
0i ϕ

0i
(n) − ϵ(n)ψ0

(n) + ϵ
(n)
i ψ0i

(n) + ϵ
(n)
05 ϕ

05
(n) + ϵ

(n)
5 ψ05

(n)

]
, (10.43)

siendo las ϵ’s los parámetros de las correspondientes transformaciones. Para los campos del modo

cero, por similitud con los resultados (9.29), (9.30) y (5.16), (5.17), se tiene que

δΦ
(0)
0 (x) = ϵ

(0)
0 (x) ≡ ϵ̇,(0) (x), δΦ

(0)
i (x) = ∂iϵ

(0)(x) +mϵ
(0)
i (x),

δB
(0)
0i (x) =

1

2
ϵ
(0)
0i (x) ≡

1

2
ϵ̇
(0)
i (x), δB

(0)
kl (x) = ∂kϵ

(0)
l (x)− ∂lϵ

(0)
k (x),

y por procedimientos completamente similares a los anteriores, para los campos de los modos KK

Φ
(n)
0 , Φ

(n)
i , B

(n)
0i y B

(n)
kl , se tiene

δΦ
(n)
0 (x) = ϵ

(n)
0 (x) ≡ ϵ̇,(n) (x), δΦ

(n)
i (x) = ∂iϵ

(n)(x) +mϵ
(n)
i (x),

δB
(n)
0i (x) =

1

2
ϵ
(n)
0i (x) ≡ 1

2
ϵ̇
(n)
i (x), δB

(n)
kl (x) = ∂kϵ

(n)
l (x)− ∂lϵ

(n)
k (x),

mientras que para Φ
(n)
5 , B

(n)
05 y B

(n)
l5 ,

δΦ
(n)
5 (x) =

∫
d3z{Φ(n)

5 (x), [− n

R
ϵ(n)Π5

(n) +mϵ
(n)
5 Π5

(n)](z)} = − n

R
ϵ(n)(x) +mϵ

(n)
5 (x),
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δB
(n)
05 (x) =

∫
d3z{B(n)

05 (x), [ϵ
(n)
05 Π05

(n)](z)} =
1

2
ϵ
(n)
05 (x) ≡ 1

2
ϵ̇
(n)
5 (x),

δB
(n)
l5 (x) =

∫
d3z{B(n)

l5 (x), [ϵ
(n)
i 2

n

R
Πi5

(n) + 2∂jΠ
5j
(n)](z)}

=
n

R
ϵ
(n)
l (x)−

∫
d3zϵ

(n)
5 (z)∂jδ

3(x− z)δjl =
n

R
ϵ
(n)
l (x) + ∂lϵ

(n)
5 (x);

es decir, se tienen las transformaciones de norma

δΦ
(0)
0 = ∂0ϵ

(0), δΦ
(0)
i = ∂iϵ

(0) +mϵ
(0)
i , δB

(0)
0i = ∂0ϵ

(0)
i , δB

(0)
ij = ∂iϵ

(0)
j − ∂jϵ

(0)
i , (10.44)

δΦ
(n)
0 = ∂0ϵ

(n), δΦ
(n)
i = ∂iϵ

(n) +mϵ
(n)
i , δΦ

(n)
5 = − n

R
ϵ(n) +mϵ

(n)
5 ,

δB
(n)
0i = ∂0ϵ

(n)
i , δB

(n)
ij = ∂iϵ

(n)
j − ∂jϵ

(n)
i , δB

(n)
05 = ∂0ϵ

(n)
5 , δB

(n)
i5 =

n

R
ϵ
(n)
i + ∂iϵ

(n)
5 , (10.45)

las cuales pueden escribirse en forma compacta como

δΦ(0)
µ = ∂µϵ

(0) +mϵ(0)µ , δΦ(n)
µ = ∂µϵ

(n) +mϵ(n)µ , δΦ
(n)
5 = − n

R
ϵ(n) +mϵ

(n)
5 ,

δB(0)
µν = ∂µϵ

(0)
ν − ∂νϵ

(0)
µ , δB(n)

µν = ∂µϵ
(n)
ν − ∂νϵ

(n)
µ , δB

(n)
µ5 =

n

R
ϵ(n)µ + ∂µϵ

(n)
5 , (10.46)

con ϵ
(0)
0 = 0 y ϵ

(n)
0 = 0. Estas transformaciones de norma son un resultado nuevo, que ahora

también puede encontrarse en [34].

10.5. Pseudo-Bosones de Goldstone

Los campos de norma Φ
(n)
5 y B

(n)
µ5 no representan campos f́ısicos en el sentido de estos pueden

ser eliminados de la teoŕıa fijando la norma apropiadamente. A saber, bajo la elección de la norma

ϵ(n) =
R

n
(mϵ

(n)
5 +Φ

(n)
5 ), ϵ(n)µ = −R

n
(∂µϵ

(n)
5 +B

(n)
µ5 ), (10.47)

los campos δΦ
(n)
µ y B

(n)
µν se transforman como

δΦ(n)
µ =

R

n
∂µΦ5 −mB

(n)
µ5 , δB(n)

µν = −∂µB(n)
ν5 + ∂νB

(n)
µ5 , (10.48)

y el lagrangiano efectivo (10.4) se vuelve

Le =
1

2× 3!
H

(0)
µνλH

µνλ
(0) − 1

4
(mB(0)

µν − Φ(0)
µν )(mB

µν
(0) − Φµν

(0)) +

∞∑
n=1

[
1

2× 3!
H

(n)
µνλH

µνλ
(n)

−1

4
(mB(n)

µν − Φ(n)
µν )(mB

µν
(n) − Φµν

(n))−
1

2

( n
R

)2

Φ(n)
µ Φµ

(n) +
1

4

( n
R

)2

B(n)
µν B

µν
(n)

]
. (10.49)

Aqúı se nota lo siguiente. En el lagrangino no normado (10.4), el modo cero contribuye con tres

grados de libertad, mientras que cada excitación KK contribuye con seis. Tres de estos seis son
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debido a la parte tipo SKR 4D; uno para B
(n)
µν y dos para Φ

(n)
µ (caṕıtulo anterior), y los otros tres

son debidos a B
(n)
µ5 y Φ

(n)
5 , de modo que B

(n)
µ5 contribuye con dos, y Φ

(n)
5 con uno. La eliminación

de los campos B
(n)
µ5 y Φ

(n)
5 en el lagrangiano normado (10.49) implica que sus grados de libertad

han sido otorgados a B
(n)
µν y Φ

(n)
µ , de modo que B

(n)
µν y Φ

(n)
µ son campos teniendo tres grados de

libertad. Estas caracteŕısticas por parte de los campos no f́ısicos B
(n)
µ5 y Φ

(n)
5 los hace similares

a los pseudo-bosones de Goldstone, encontrados en el mecanismo de Higgs. La presencia de estos

pseudo-bosones de Goldstone son similares a los encontrados en la teoŕıa de Stüeckelberg 5D [29].

La identificación de estos pseudo-bosones de Goldstone constituyen un resultado nuevo, que ahora

tambien puede consultarse en [34].

10.6. Los corchetes de Dirac

Para obtener los corchetes de Dirac, lo que se hace (como en el caso SKR 4D) es obtener un

conjunto de restricciones de segunda clase irreducibles a partir de las de primera clase fijando

la norma, y debido a que las restricciones de primera clase no son independientes se expande el

espacio fase mediante la introducción de campos auxiliares. Las restricciones de segunda clase

irreducibles que a continuación se dan, tanto para el modo cero como para los modos KK, se

obtendrán de esta manera. Los siguientes corchetes de Dirac son un resultado no hallado antes en

la literatura, y pueden también consultarse en [34].

Corchetes de Dirac del modo cero. De las restricciones de primera clase reducibles del

modo cero uno obtiene el conjunto de restricciones de segunda clase irreducibles

χ1
(0) ≡ Π0

(0), χ2
(0) ≡ Φ

(0)
0 , χ3

(0) ≡ Π0i
(0), χ4

(0) ≡ B
(0)
0i , χ5

(0) ≡ ∂iΠ
i
(0), χ6

(0) ≡ ∂iΦ
(0)
i ,

χ7
(0) ≡ mΠi

(0) + 2∂jΠ
ij
(0) − ∂ip(0), χ8

(0) ≡ ∂jB
(0)
ij + ∂iq(0), (10.50)

con q(0), p(0) campos auxiliares cumpliendo

{q(0)(x), p(0)(z)} = δ3(x− z). (10.51)

Los corchetes de Poisson no cero entre estas restricciones son

{χ1
(0)(x), χ

2
(0)(z)} = {Π0

(0)(x),Φ
(0)
0 (z)} = −δ3(x− z),

{χ3
(0)(x), χ

4
(0)(z)} = {Π0i

(0)(x), B
(0)
0j (z)} = −1

2
δijδ

3(x− z),

{χ5
(0)(x), χ

6
(0)(z)} = {∂iΠi

(0)(x), ∂
jΦ

(0)
j (z)} = −∂i∂iδ3(x− z), (10.52)

{χ6
(0)(x), χ

7
(0)(z)} = {∂jΦ(0)

j (x),mΠi
(0)(z)} = m∂iδ3(x− z),

{χ7
(0)(x), χ

8
(0)(z)} = {2∂jΠij

(0)(x), ∂
lB

(0)
kl (z)} − {∂ip(0)(x), ∂kq(0)(z)} = −δik∂j∂jδ3(x− z),
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por lo que la matriz formada por los corchetes de Poisson entre las restricciones (10.50) es

(
Cαβ

(0)

)
=



0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1
2δ

i
j 0 0 0 0

0 0 1
2δ

i
j 0 0 0 0 0

0 0 0 0 0 −∇2 0 0

0 0 0 0 ∇2 0 m∂i 0

0 0 0 0 0 −m∂i 0 −δij∇2

0 0 0 0 0 0 δij∇2 0



δ3(x− z),

siendo su inversa la matriz

(
C

(0)
αβ

)
=



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 2δij 0 0 0 0

0 0 −2δij 0 0 0 0 0

0 0 0 0 0 1
∇2 0 − m∂j

(∇2)2

0 0 0 0 − 1
∇2 0 0 0

0 0 0 0 0 0 0
δji
∇2

0 0 0 0 m∂j

(∇2)2 0 − δji
∇2 0



δ3(x− z).

Entonces, los corchetes de Dirac diferentes de cero, por similitud con los resultados (9.38), son

{Φ(0)
i (x),Πj

(0)(z)}D = δji δ
3(x− z)

−
∫
d3ud3v{Φ(0)

i (x), ∂kΠ
k
(0)(u))}[

1

∇2
δ3(u− v)]{∂lΦ(0)

l (v),Πj
(0)(z)}

= [δji +
1

∇2
∂i∂

j ]δ3(x− z). (10.53)

{Φ(0)
i (x),Πjk

(0)(z)}D = −
∫
d3ud3v{Φ(0)

i (x), ∂lΠ
l
(0)(u))}[

−m∂q

(∇2)2
δ3(u− v)]{∂pB(0)

qp (v),Πjk
(0)(z)}

−
∫
d3ud3v{Φ(0)

i (x),mΠl
(0)(u))}[

δql
∇2

δ3(u− v)]{∂pB(0)
qp (v),Πjk

(0)(z)}

=
m

2∇2
[δki ∂

j − δji ∂
k]δ3(x− z). (10.54)

{B(0)
ij (x),Πkl

(0)(z)}D =
1

2
(δki δ

l
j − δliδ

k
j )δ

3(x− z)

−
∫
d3ud3v{B(0)

ij (x), 2∂mΠrm
(0) (u))}[

δpr
∇2

δ3(u− v)]{∂qB(0)
pq (v),Π

kl
(0)(z)}

=
1

2
[δki δ

l
j − δliδ

k
j +

1

∇2
(δki ∂j∂

l − δli∂j∂
k − δkj ∂i∂

l + δlj∂i∂
k)]δ3(x− z).(10.55)
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y los corchetes de Dirac no triviales entre q(0) y p(0) con los campos, por similitud con los resultados

(9.39) y (5.23)-(5.25), son

{q(0)(x), p(0)(z)}D = δ3(x− z)−
∫
d3ud3v{q(0)(x),−∂ip(0)(u))}[

δji
∇2

δ3(u− v)]{∂jq(0)(v), p(0)(z)}

= δ3(x− z)− 1

∇2
∂i∂iδ

3(x− z) = 0, (10.56)

{Φ(0)
i (x), p(0)(z)}D = −

∫
d3ud3v{Φ(0)

i (x), ∂lΠ
l
(0)(u))}[

−m∂k

(∇2)2
δ3(u− v)]{∂kq(0)(v), p(0)(z)}

+

∫
d3ud3v{Φ(0)

i (x),mΠl
(0)(u))}[

δkl
∇2

δ3(u− v)]{∂kq(0)(v), p(0)(z)}

= − m

∇2
∂iδ

3(x− z) +
m

∇2
∂iδ

3(x− z) = 0, (10.57)

{q(0)(x),Πij
(0)(z)}D = −

∫
d3ud3v{q(0)(x),−∂kp(0)(u))}[

δlk
∇2

δ3(u− v)]{∂mB(0)
lm (v),Πij

(0)(z)}

=
1

2∇2
[∂i∂j − ∂j∂i]δ3(x− z) = 0. (10.58)

{B(0)
kl (x), p(0)(z)}D = −

∫
d3ud3v{B(0)

kl (x), 2∂nΠ
mn
(0) (u))}[

δim
∇2

δ3(u− v)]{∂iq(0)(v), p(0)(z)}

=
1

∇2
[∂l∂k − ∂k∂l]δ

3(x− z) = 0, (10.59)

y trivialmente,

{q(0)(x),Φ(0)
i (z)}D = 0, {q(0)(x), B(0)

ij (z)}D = 0, {q(0)(x),Π(0)
i (z)}D = 0,

{Π(0)
i (x), p(0)(z)}D = 0, {Π(0)

ij (x), p(0)(z), }D = 0. (10.60)

lo que muestra que los campos auxilires q(0) y p(0) son independientes del corchete de Dirac.

Corchetes de Dirac de los modos KK. De las restricciones de primera clase reducibles

para los modos KK uno obtiene las restricciones de segunda clase irreducibles

χ1
(n) ≡ Π

(n)
0 , χ2

(n) ≡ Φ0
(n), χ3

(n) ≡ Π0i
(n), χ4

(n) ≡ B
(n)
0i , χ5

(n) ≡ Π05
(n), χ6

(n) ≡ B
(n)
05 ,

χ7
(n) ≡ ∂iΠ

i
(n) +

n

R
Π5

(n), χ8
(n) ≡ ∂iΦ

(n)
i , χ9

(n) ≡ mΠi
(n) + 2∂jΠ

ij
(n) +

n

R
2Πi5

(n) − ∂ip(n),

χ10
(n) ≡ ∂jB

(n)
ij + ∂iq

(n), χ11
(n) ≡ mΠ5

(n) + 2∂jΠ
5j
(n), χ12

(n) ≡ ∂jB
(n)
5j , (10.61)

con q(n), p(n) campos auxiliares satisfaciendo

{q(n)(x), p(n)(z)} = δ3(x− z). (10.62)
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Los corchetes de Poisson distintos de cero entre estas restricciones son

{χ1
(n)(x), χ

2
(n)(z)} ≡ {Π0

(n)(x),Φ
(n)
0 (z)} = −δ3(x− z),

{χ3
(n)(x), χ

4
(n)(z)} ≡ {Π0i

(n)(x), B
(n)
0j (z)} = −1

2
δijδ

3(x− z),

{χ5
(n)(x), χ

6
(n)(z)} ≡ {Π05

(n)(x), B
(n)
05 (z)} = −1

2
δ3(x− z),

{χ7
(n)(x), χ

8
(n)(z)} ≡ {∂iΠi

(n)(x), ∂
jΦ

(n)
j (z)} = −∂i∂iδ3(x− z),

{χ8
(n)(x), χ

9
(n)(z)} = {∂jΦ(n)

j (x),mΠi
(n)(z)} = m∂iδ3(x− z),

{χ9
(n)(x), χ

10
(n)(z)} = {2∂jΠij

(n)(x), ∂
lB

(n)
kl (z)} − {∂ip(n)(x), ∂kq(n)(z)} = −δik∂j∂jδ3(x− z),

{χ9
(n)(x), χ

12
(n)(z)} = { n

R
2Πi5

(n)(x), ∂
lB

(n)
5l (z)} =

n

R
∂iδ3(x− z)

{χ11
(n)(x), χ

12
(n)(z)} = {2∂jΠ5j

(n)(x), ∂
lB

(n)
5l (z)} = −δij∂i∂jδ3(x− z) = −∂i∂iδ3(x− z), (10.63)

de lo cual se obtiene la matriz

(
Cαβ

(n)

)
=



0 −1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1
2δ

i
j 0 0 0 0 0 0 0 0

0 0 1
2δ

i
j 0 0 0 0 0 0 0 0 0

0 0 0 0 0 − 1
2 0 0 0 0 0 0

0 0 0 0 1
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −∇2 0 0 0 0

0 0 0 0 0 0 ∇2 0 m∂i 0 0 0

0 0 0 0 0 0 0 −m∂i 0 −δij∇2 0 n
R∂

i

0 0 0 0 0 0 0 0 δij∇2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −∇2

0 0 0 0 0 0 0 0 − n
R∂

i 0 ∇2 0



δ3(x− z).
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y cuya inversa es

(
C

(n)
αβ

)
=



0 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2δji 0 0 0 0 0 0 0 0

0 0 −2δji 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
∇2 0 − m∂j

(∇2)2 0 0

0 0 0 0 0 0 − 1
∇2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
δji
∇2 0 0

0 0 0 0 0 0 m∂j

(∇2)2 0 − δji
∇2 0 − n∂j

R(∇2)2 0

0 0 0 0 0 0 0 0 0 n∂j

R(∇2)2 0 1
∇2

0 0 0 0 0 0 0 0 0 0 − 1
∇2 0



δ3(x− z).

Entonces, los corchetes de Dirac distintos de cero que no contienen a los campos Φ
(n)
5 o B

(n)
µ5 , por

similitud con los resultados del modo cero, son

{Φ(n)
i (x),Πj

(n)(z)}D = δji δ
3(x− z)

−
∫
d3ud3v{Φ(n)

i (x), ∂kΠ
k
(n)(u))}[

1

∇2
δ3(u− v)]{∂lΦ(n)

l (v),Πj
(n)(z)}

= [δji +
1

∇2
∂i∂

j ]δ3(x− z), (10.64)

{Φ(n)
i (x),Πjk

(n)(z)}D = −
∫
d3ud3v{Φ(n)

i (x), ∂lΠ
l
(n)(u))}[

−m∂q

(∇2)2
δ3(u− v)]{∂pB(n)

qp (v),Πjk
(n)(z)}

−
∫
d3ud3v{Φ(n)

i (x),mΠl
(n)(u))}[

δql
∇2

δ3(u− v)]{∂pB(n)
qp (v),Πjk

(n)(z)}

=
m

2∇2
[δki ∂

j − δji ∂
k]δ3(x− z), (10.65)

{B(n)
ij (x),Πkl

(n)(z)}D =
1

2
(δki δ

l
j − δliδ

k
j )δ

3(x− z)

−
∫
d3ud3v{B(n)

ij (x), 2∂mΠrm
(n)(u))}[

δpr
∇2

δ3(u− v)]{∂qB(n)
pq (v),Πkl

(n)(z)}

=
1

2
[δki δ

l
j − δliδ

k
j +

1

∇2
(δki ∂j∂

l − δli∂j∂
k − δkj ∂i∂

l + δlj∂i∂
k)]δ3(x− z),

(10.66)

y ademas, los corchetes de Dirac no triviales entre q(n) y p(n) con los campos son

{q(n)(x), p(n)(z)}D = δ3(x− z)−
∫
d3ud3v{q(n)(x),−∂ip(n)(u))}[

δji
∇2

δ3(u− v)]

×{∂jq(n)(v), p(n)(z)} = δ3(x− z)− 1

∇2
∂i∂iδ

3(x− z) = 0, (10.67)
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10.6. LOS CORCHETES DE DIRAC

{q(n)(x),Πij
(n)(z)}D = −

∫
d3ud3v{q(n)(x),−∂kp(n)(u))}[

δlk
∇2

δ3(u− v)]{∂mB(n)
lm (v),Πij

(n)(z)}

=
1

2∇2
[∂i∂j − ∂j∂i]δ3(x− z) = 0, (10.68)

{Φ(n)
i (x), p(n)(z)}D = −

∫
d3ud3v{Φ(n)

i (x), ∂lΠ
l
(n)(u))}[

−m∂k

(∇2)2
δ3(u− v)]{∂kq(n)(v), p(n)(z)}

+

∫
d3ud3v{Φ(n)

i (x),mΠl
(n)(u))}[

δkl
∇2

δ3(u− v)]{∂kq(n)(v), p(n)(z)}

= − m

∇2
∂iδ

3(x− z) +
m

∇2
∂iδ

3(x− z) = 0, (10.69)

{B(n)
kl (x), p(n)(z)}D = −

∫
d3ud3v{B(n)

kl (x), 2∂nΠ
mn
(n) (u))}[

δim
∇2

δ3(u− v)]{∂iq(n)(v), p(n)(z)}

=
1

∇2
[∂l∂k − ∂k∂l]δ

3(x− z) = 0, (10.70)

y trivialmente,

{q(n)(x),Φ(n)
i (z)}D = 0, {q(n)(x), B(n)

ij (z)}D = 0, {q(n)(x),Π(n)
i (z)}D = 0,

{Π(n)
i (x), p(n)(z), }D = 0, {Π(n)

ij (x), p(n)(z)}D = 0, (10.71)

por lo que q(n) y p(n) (al igual que q
(0) y p(0)) son independientes del corchete de Dirac. Finalmente,

puede mostrarse que los corchetes de Dirac entre los campos auxiliares q(n) y p(n) con los campos

no f́ısicos Φ
(n)
5 y B

(n)
µ5 también son cero. Por otro lado, uno puede obtener corchetes de Dirac

distintos de cero en los cuales participe alguno de los campos Φ
(n)
5 o B

(n)
µ5 . Sin embargo, con la

fijación de la norma (10.47), todos estos corchetes pueden eliminarse de los cálculos.

En resumen, se mostró que la teoŕıa SKR 5D previamente estudiada es una teoŕıa de norma

reducible, cuyo modo cero corresponde consistentemente a la teoŕıa SKR 4D, mas una torre de

campos masivos KK. Se muestró que el modo cero contribuye consistentemente con tres grados

de libertad (igual que en PKR 4D); uno debido a B
(0)
µν y dos debidos a Φ

(0)
µ , mientras que los

modos KK contribuyen con seis (igual que en PKR 5D); tres debidos a B
(n)
µν y tres debidos a Φ

(n)
µ .

Esto último, después de haberse absorbido los campos con caracteŕısticas de pseudo-bosones de

Goldstone B
(n)
µ5 y Φ

(n)
5 . Además, debido a que hubo condiciones de reductibilidad tanto en el modo

cero como en los modos excitados, se usó el proceso de extensión del espacio fase para obtener los

corchetes de Dirac de la teoŕıa.
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Conclusiones

En este trabajo, se hizo un análisis hamiltoniano de las teoŕıas Kalb-Ramond, Proca-Kalb-

Ramond y Süeckelberg Kalb-Ramond con una dimensión extra compacta. Previo al análisis de las

teoŕıas en cinco dimensiones, se estudiaron las correspondientes teoŕıas en cuatro dimensiones. El

análisis se hizo aplicando el algoritmo de Dirac-Bergmann estricto, el cual considera a todas las

variables dinámicas que describen al sistema. Se mostró que la teoŕıa Kalb-Ramond 4D es una

teoŕıa de norma reducible con un grado de libertad, además de obtenerse los corchetes de Dirac de

la teoŕıa. El análisis de Dirac estricto de esta teoŕıa fue una contribución de este trabajo, ya que

no se encuentra en la literatura. En la teoŕıa de Kalb-Ramond 5D, después de compactar la quinta

dimensión sobre un S1/Z2 orbifold, se encontró que el modo cero de la teoŕıa efectiva corresponde

consistentemente a la teoŕıa de Kalb-Ramond 4D mas una torre de excitaciones Kaluza-Klein. Se

hallaron todas las restricciones de la teoŕıa y se encontró que son de primera clase y reducibles,

tanto para el modo cero como para los modos exitados de Kaluza-Klein. Mediante una apropiada

elección de los parámetros de norma, se identificó una torre de campos masivos, mientras que los

campos B
(n)
5µ fueron identificados como pseudo-bosones de Goldstone. Además, mediante el proceso

de extensión del espacio fase, se obtuvo un conjunto de restricciones de segunda clase irreducibles

y se obtuvieron los corchetes de Dirac, tanto para el modo cero como para los modos excitados de

Kaluza-Klein. En esta teoŕıa de Kalb-Ramond 5D, el análisis de Dirac estricto fue una contribución

de este trabajo, aśı como los resultados encontrados, los cuales ahora se encuentran en [34].

Por otra parte, se mostró que la teoŕıa Proca Kalb-Ramond 4D es una teoŕıa que no es de norma,

que es irreducible, y con tres grados de libertad, además de obtenerse los corchetes de Dirac de la

teoŕıa. El anális estricto de Dirac de esta teoŕıa fue una contribución del presente trabajo, ya que
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no se encuentra en la literatura. En la teoŕıa de Proca Kalb-Ramond 5D, después de compactar la

quinta dimensión sobre un S1/Z2 orbifold, se encontró que la teoŕıa efectiva no es una teoŕıa de

norma. Se obtuvo que el modo cero de la teoŕıa efectiva corresponde consistentemente a la teoŕıa

Proca Kalb-Ramond 4D mas una torre de excitaciones masivas de Kaluza-Klein. Se mostró, tanto

para el modo cero como para las excitaciones masivas Kaluza-Klein, que esta teoŕıa tiene solamente

restricciones de segunda clase irreducibles, y que no hay presentes pseudo-bosones de Goldstone.

Además, se obtuvieron los corchetes de Dirac, tanto para el modo cero como para las excitaciones

de Kaluza-Klein. En esta teoŕıa de Proca Kalb-Ramond 5D, el análisis de Dirac estricto fue una

contribución de este trabajo, aśı como los resultados encontrados, los cuales ahora se hallan en

[34].

En adición, se mostró que la teoŕıa de Stüeckelberg Kalb-Ramond 4D es una teoŕıa de norma

(masiva) reducible con tres grados de libertad, además de obtenerse los corchetes de Dirac de la

teoŕıa. El análisis de Dirac de esta teoŕıa fue una contribución de este trabajo, ya que no se encuen-

tra en la literatura. En la teoŕıa de Stüeckelberg Kalb-Ramond 5D, después de compactar la quinta

dimensión sobre un S1/Z2 orbifold, se encontró que el modo cero de la teoŕıa efectiva corresponde

consistentemente a la teoŕıa Stüeckelberg Kalb-Ramond 4D mas una torre de excitaciones Kaluza-

Klein. Se encontró que la teoŕıa tiene solamente restricciones de primera clase y reducibles, tanto

para el modo cero como para los modos excitados Kaluza-Klein. Mediante una apropiada fijación

de los parámetros de norma, los campos Φ
(n)
5 y B

(n)
µ5 fueron identificados como pseudo-bosones de

Goldstone, de modo que la teoŕıa describe un campo Stüeckelberg Kalb-Ramond 4D mas una torre

de excitaciones masivas Kaluza-Klein. Además, mediante el proceso de extensión del espacio fase,

se obtuvo un conjunto de restricciones de segunda clase irreducibles y se obtuvieron los corchetes

de Dirac, tanto para el modo cero como para los modos excitados Kaluza-Klein. En esta teoŕıa de

Stüeckelberg Kalb-Ramond 5D, el análisis de Dirac estricto fue una contribución de este trabajo,

y asimismo los resultados encontrados, los cuales pueden hallarse en [34].

De este modo, uno tiene todas las herramientas para poder cuantizar las teoŕıas. De hecho,

con los corchetes de Dirac obtenidos puede hacerse una completa identificación de observables, y

pueden calcularse los propagadores de los campos f́ısicos. Al mismo respecto, la cuantización de

las teoŕıas bajo estudio usando los resultados de este trabajo y el método simpléctico está ya en

proceso, y todas estas ideas serán objeto de estudio en trabajos posteriores [33].
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