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On the Anomalous Dimension in QCD

Koichi Yamawaki

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University,

Nagoya 464-8602, Japan; yamawaki@kmi.nagoya-u.ac.jp

Abstract: The anomalous dimension γm = 1 in the infrared region near the conformal edge in the bro-

ken phase of the large N f QCD has been shown by the ladder Schwinger–Dyson equation and also by

the lattice simulation for N f = 8 and for Nc = 3. Recently, Zwicky made another independent argu-

ment (without referring to explicit dynamics) for the same result, γm = 1, by comparing the pion ma-

trix element of the trace of the energy-momentum tensor
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

=
〈

π(p2)|θµ
µ |π(p1)

〉

= 2M2
π (up to trace anomaly) with the estimate of

〈

π(p2)|2 · ∑
Nf

i=1 m f ψ̄iψi|π(p1)
〉

=

2M2
π through the Feynman–Hellmann theorem combined with an assumption M2

π ∼ m f characteristic

of the broken phase. We show that this is not justified by the explicit evaluation of each matrix element

based on the dilaton chiral perturbation theory (dChPT) :
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

= 2M2
π +

[(1 − γm)M2
π · 2/(1 + γm)] = 2M2

π · 2/(1 + γm) ̸= 2M2
π in contradiction with his estimate, which

is compared with
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

= (1 + γm)M2
π + [(1 − γm)M2

π ] = 2M2
π

(both up to trace anomaly), where the terms in [ ] are from the σ (pseudo-dilaton) pole contribution.

Thus, there is no constraint on γm when the σ pole contribution is treated consistently for both. We

further show that the Feynman–Hellmann theorem is applied to the inside of the conformal window

where dChPT is invalid and the σ pole contribution is absent, and with M2
π ∼ m

2/(1+γm)
f instead of

M2
π ∼ m f , we have the same result as ours in the broken phase. A further comment related to dChPT

is made on the decay width of f0(500) to ππ for N f = 2. It is shown to be consistent with the reality,

when f0(500) is regarded as a pseudo-NG boson with the non-perturbative trace anomaly dominance.

Keywords: non-perturbative anomalous dimension; QCD; σ pole; pseudo-dilaton; dilaton chiral

perturbation theory; trace of energy-momentum tensor; non-perturbative trace anomaly; infrared

fixed point; Feynman–Hellmann theorem; hyperscaling

1. Introduction

The anomalous dimension γm = 1 together with the pseudo-dilaton σ as a candidate
for the composite Higgs in the gauge theory with the spontaneously broken chiral/scale
symmetry is an essence of the walking technicolor [1,2] (walking technicolor was also
advocated in [3–5] without the notion of the anomalous dimension and the scale symme-
try/dilaton). Such a theory is realized by the asymptotically free QCD-like SU(Nc) gauge
theories with a large number of flavors N f (≫ Nc) (“large N f QCD”) in the spontaneous
chiral symmetry breaking phase [6]. It is inspired by the near scale-invariant/conformal
structure around the Caswell–Banks–Zaks (CBZ) infrared (IR) fixed point α∗ in the two-loop
beta function at large N f (8 ≤ N f ≤ 16 for Nc = 3) [7,8], where the coupling α(µ) ≃ α∗
in the infrared region µ < ΛQCD stays almost constant (“walking”), which must be larger
than the critical coupling αcr for the spontaneous symmetry breaking to occur. In fact,
γm ≃ 1 in the broken phase for the walking coupling has been shown by explicit dynamical
calculations, the ladder Schwinger–Dyson equation [9] (and references therein) and also by
the lattice simulation for QCD with N f = 8 through an (approximate) hyperscaling fit [10]
(and references therein) [11,12].

The ladder SD equation in such a theory, with almost constant coupling α(µ) ≃ α ≳ αcr

for µ < ΛQCD (with the intrinsic scale ΛQCD acting as the UV cutoff Λ), which gives
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in the chiral limit the scale-dependence of the chiral condensate characterized by the
dynamical mass of the fermion mD ≪ ΛQCD: ⟨ψ̄ψ⟩mD

∼ m3
D and ⟨ψ̄ψ⟩ΛQCD

= Z−1
m ·

⟨ψ̄ψ⟩mD
∼ ΛQCDm2

D with Z−1
m = (ΛQCD/µ)γm(α(µ)) [13]; thus, the anomalous dimension

γm(α(µ)) ≃ 1 for α(µ) ≃ α in the infrared region mD < µ < ΛQCD (the perturbative IR
fixed point α∗ is washed out due to mD ̸= 0, since the fermions with mD get decoupled from
the loop at µ < mD). The chiral condensate also breaks the scale symmetry not only sponta-
neously but also explicitly due to the new scale mD ̸= 0, giving rise to the non-perturbative
trace anomaly, which produces a pseudo-NG boson and a pseudo-dilaton σ, with the
mass mσ = O(mD) ̸= 0 even in the chiral limit [9].This is contrasted to the UV region
µ > ΛQCD of the same theory where the perturbative coupling runs asymptotically free in
units of the intrinsic scale ΛQCD, which originated from the scale symmetry violation due
to regularization (perturbative trace anomaly), with the perturbative anomalous dimension
vanishing logarithmically: γm(µ) ∼ α(µ) ∼ 1/ ln(µ2/Λ2

QCD) → 0 for µ ≫ ΛQCD.
As for the lattice studies of N f = 8 QCD, with the data in the region away from the

chiral limit, the measured mass of all hadrons (except for π and σ) is dominated by the
explicit chiral symmetry breaking, MH/2 ∼ mR

f (µ = mR), which obeys the hyperscaling

MH/2 ∼ mR
f = Z−1

m · m0
f ∼ (m0

f )
1/(1+γm) [14,15], with γm ≃ 1, where mR

f = mR
f (µ = mR)

is the renormalized mass of the fermion at µ = mR and m0
f is the bare mass (input mass)

in the lattice action, and both are related as mR
f = Z−1

m m0
f , with Z−1

m = (Λ/mR
f )

γm and Λ

regarded as the inverse lattice spacing.
Recently, Roman Zwicky [16] presented another independent argument (without

referring to explicit dynamics) for the same result, γm = 1, near the conformal edge in the
broken phase of the large N f QCD. He evaluated

< π(p2)|2 ·
N f

∑
i=1

m f ψ̄iψi|π(p1) >= 2M2
π (1)

through the Feynman–Hellmann theorem combined with an additional assumption, M2
π ∼ m f .

He further showed that the result coincides with the double use of the soft pion theorem.
This was then compared with the standard generic evaluation of the matrix element
〈

π(p2)|(1+ γm) · ∑
Nf

i=1 m f ψ̄iψi|π(p1)
〉

=
〈

π(p2)|β(α)/(4α) · G2
µν + (1+ γm)∑

Nf

i=1 m f ψ̄iψi|
π(p1)⟩ =

〈

π(p2)|θµ
µ |π(p1)

〉

= 2M2
π, with an additional assumption of the IR fixed point

(even in the broken phase and M2
π ̸= 0) of ignoring the trace anomaly contribution. He then

concluded that
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

=
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

,

i.e., γm = 1 (=γ∗ under his assumption of an IR fixed point with vanishing trace anomaly).
In this paper, we show that the explicit evaluation of each matrix element based on

the nonlinear realization Lagrangian of scale and chiral symmetries, namely the dilaton
chiral perturbation theory (dChPT) [17,18], gives:

< π(p2)|2 ·
N f

∑
i=1

m f ψ̄iψi|π(p1) >= 2M2
π +

[

2

1 + γm
· (1 − γm)M2

π

]

=
2

1 + γm
· 2M2

π , (2)

< π(p2)|(1 + γm) ·
N f

∑
i=1

m f ψ̄iψi|π(p1) >= (1 + γm)M2
π +

[

(1 − γm)M2
π

]

= 2M2
π , (3)

(both up to trace anomaly), where the terms in [ ] are from the σ pole contribution. Note
that Equation (3) is consistent with the well-known generic result < π(p2)|θµ

µ |π(p1) >=

2M2
π based on the form-factor argument only when including the σ pole contribution. Thus,

including (or ignoring) the σ pole contribution for both matrix elements consistently, there
is no constraint on γm in contrast to Zwicky’s result [16]. Even including the trace anomaly,
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we will show that the result keeps the relation
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

=

(1+ γm)/2 ·
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

, which is consistent with Equations (2) and (3).

The same result is also obtained based on the Feynman–Hellmann theorem, within the
conformal window where dChPT is invalid and no σ pole contribution exists, with π now

as a non-pseudo-NG boson having the mass to obey the hyperscaling, M2
π ∼ m

2/(1+γm)
f ,

instead of the pseudo-NG boson case M2
π ∼ m f in the broken phase:

< π(p2)|2 ·
N f

∑
i=1

m f ψ̄iψi|π(p1) > = 2
∂

∂ ln m f
< π(p2)|H|π(p1) >

=
∂

∂ ln m f
2E2

π =
2

1 + γm
2M2

π ̸= 2M2
π , (4)

< π(p2)|(1 + γm) ·
N f

∑
i=1

m f ψ̄iψi|π(p1) > = (1 + γm)
∂

∂ ln m f
< π(p2)|H|π(p1) >

=
∂

∂ ln m f
(1 + γm)E2

π = 2M2
π , (5)

which is the same as Equations (2) and (3) in the broken phase (up to the trace anomaly term).
Thus, the result is independent of the phases, broken or conformal, as it should be. Actually,
the Feynman–Hellmann theorem is insensitive to the spontaneous symmetry breaking,
giving the same kinetic term form in M2

π independently of the phase, and the combined
use of M2

π ∼ m f characteristic to the broken phase is not justified, as it would result in

< π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1) >= 2M2
π and < π(p2)|(1 + γm) · ∑

N f

i=1 m f ψ̄iψi|π(p1) >=

(1 + γm)M2
π , which is the same as the wrong results neglecting the σ pole contribution in

Equations (2) and (3), still keeping the inequality between the two anyway. If the theorem
were to be used in the broken phase, then all of the hadron masses including Mπ should be

regarded as a simple Coulombic bound state MH ∼ 2m
(R)
f ∼ m

1/(1+γm)
f as in the conformal

phase, in which case the result would coincide with the correct one.
Incidentally, Zwicky unjustifiably identifies M2

π ∼ m f in the broken phase as the
hyperscaling with γm = 1 in the generic broken phase (including the deeply broken phase
like N f = 2) [16]. In fact, it was shown on the lattice [10] that for N f = 4, generic hadron
spectra (including Fπ) other than Mπ (and Mσ) do not obey the hyperscaling at all, and
hence M2

π ∼ m f cannot be understood as hyperscaling. For N f = 8 near the conformal
window, on the other hand, spectra other than Mπ (and Mσ) do obey the hyperscaling
with γm ≃ 1, while Mπ (Mσ as well) does only non-universally with γm ∼ 0.6 due to
m f -dependence away from the chiral limit as a pseudo-NG boson, which is different from
the others obeying hyperscaling.

As to the double soft pion theorem for < π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1) >, which
he claims [16] gives an equivalent result to that from the Feynman–Hellmann theorem
combined with his assumption M2

π ∼ m f , it ignores the σ pole contribution, i.e., the
term in [ ] of Equation (2). Actually, the same double soft pion theorem applied consis-

tently for both matrix elements would give
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

= 2M2
π and

〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi| π(p1)⟩ = (1 + γm)M2
π ; thus, again there is no constraint

on the value of γm (or γ∗). Inclusion of the σ pole contribution for both gives the correct

results (up to the trace anomaly):
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

= 2M2
π + [(1 − γm)M2

π ·

2/(1 + γm)] = 2M2
π · 2/(1 + γm) ̸= 2M2

π , while
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

=

(1 + γm)M2
π + [(1 − γm)M2

π ] = 2M2
π , to be consistent with the generic form-factor ar-

gument, where the term in [ ] of each result is from the σ (pseudo-dilaton) pole contri-
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bution. Thus, there is no constraint on γm when the σ pole contribution is consistently
included/ignored for both.

Also, we shall make a comment related to dChPT on the decay width of f0(500) to
ππ for N f = 2, where the spontaneously broken scale symmetry is also broken explicitly
by the non-perturbative trace anomaly and the quark mass. It is shown to be consistent
with the reality, when both π and f0(500) are regarded as pseudo-NG bosons, based on this
dChPT, with the non-perturbative trace anomaly dominance. This is contrasted with the
decay width evaluated by the low-energy theorem for the scale symmetry, which regards
f0(500) as a pseudo-NG boson but π as a matter field and not as a pseudo-NG boson and
is 50 times smaller than the real data, which is a long-standing problem and has long been
a puzzle when f0(500) is regarded as a pseudo-dilaton σ.

2. Nonlinear Realization of the Chiral and Scale Symmetries

Let us start with the basic formula based on the Ward–Takahashi (WT) identity for N f

QCD (with the same mass m f for N f flavors) for θ
µ
µ [9]:

θ
µ
µ = ∂µDµ =

β(NP)(α)

4α
G2

µν + (1 + γm)

N f

∑
i=1

m f ψ̄iψi, (6)

with ψi for a single flavor within the degenerate N f flavors, and where
β(NP)

4α G2
µν is the

non-perturbative trace anomaly,

〈

0| β(NP)(α)
4α G2

µν|0
〉

= −O(Λ4
IR) (up to factor N f Nc), due

to the dynamically generated IR mass scale ΛIR (or dynamical quark mass mD ∼ Mρ/2 ∼
MN/3) in the chirally broken phase with ⟨0|(ψ̄ψ)R|0)⟩ = −O(Λ3

IR). Here, the perturbative

trace anomaly <
β(perturbative)

4α G2
µν >= −O(Λ4

QCD) due to the regularization, with the UV
scale ΛQCD characterizing the asymptotically-free running of the perturbative coupling, is
irrelevant to the IR physics and is thus subtracted out from Equation (6).

A concrete picture of this is given in the ladder SD equation, in the broken phase
near the conformal window with α∗ ≳ αcr, where αcr is the critical coupling for the
condensate to be generated. The dynamically generated fermion mass mD takes the form
of the essential singularity [13] of BKT (Berezinsky–Kosterlitz–Thouless) type: mD ∼
Λ · exp[−a/(α − αcr)r] → 0 (a, r > 0), for α(≲ α∗) ↘ αcr, where Λ is the UV scale to be
identified with the intrinsic scale ΛQCD. Due to mD ̸= 0, the perturbative IR fixed point
α∗ is washed out in contradiction to Zwicky’s assumption. The coupling for α > αcr runs
non-perturbatively due to this mass generation, with β(NP)(α) now having a UV fixed point
at αcr instead of an IR fixed point: the ladder SD equation gives a = π, r = 1/2, αcr = π/4

for Nc = 3 near the conformal window α∗ ≳ αcr and β(NP)(α) = ∂α(Λ)
∂ ln Λ

= − 2αcr
π

(

α
αcr

− 1
)3/2

,

which vanishes at α ↘ αcr, while
〈

0|G2
µν|0

〉

∼
(

α
αcr

− 1
)−3/2

m4
D blows up, to precisely

cancel the vanishing β(NP)(α), resulting in < 0| β(NP)(α)
4α G2

µν|0 >= −O(m4
D). See, e.g.,

Ref. [9].
From the pole-dominated WT identity for Equation (6) we have:

M2
σF2

σ = iF .T . ⟨0|T
(

∂µDµ(x) · ∂µDµ(0)
)

|0⟩
∣

∣

qµ→0
= ⟨0|[−iQD, ∂µDµ(0)]|0⟩

= ⟨0| − δ(∂µDµ(0))]|0⟩

= 4 · ⟨0| − β(NP)(α)

4α
G2

µν|0⟩+ (3 − γm) · ⟨0| − (1 + γm)

N f

∑
i=1

m f ψ̄iψi|0⟩, (7)



Symmetry 2024, 16, 2 5 of 13

with the scale dimension dG2
µν

= 4, dψ̄ψ = 3 − γm. Similarly, the pole-dominated WT

identity for the non-singlet axial-vector current Aα
µ(α = 1, 2, 3) for each doublet ψi(i = 1, 2)

gives the Gell–Mann–Oakes–Renner (GMOR) relation:

F2
π M2

π · δαβ = ⟨0|[−iQα
5 , ∂µ A

β
µ(0)]|0⟩ = ⟨0| −

2

∑
i=1

m f ψ̄iψi|0⟩ · δαβ, (8)

i.e., ⟨0| −
N f

∑
i=1

m f ψ̄iψi|0⟩ =
N f

2
F2

π M2
π . (9)

Equations (7) and (8) (usually derived using the soft pion theorem in the broken phase) are
simply based on the pole dominance, and hence valid in both the broken and the conformal
phases. Then, we have [17]:

M2
σ = m2

σ + (3 − γm)(1 + γm)

N f

2 F2
π M2

π

F2
σ

, m2
σ ≡ 1

F2
σ
⟨0
∣

∣− β(NP)(α)

α
G2

µν

∣

∣0⟩, (10)

independently of the phases. Any effective theory should reproduce Equation (10) for the
σ mass M2

σ.
As such, in the broken phase we use the dilaton ChPT (dChPT) Lagrangian [17]

corresponding to Equation (6):

L = Linv + Lhard + Lsoft , (11)

Linv =
F2

σ

2
(∂µχ)2 +

F2
π

4
χ2tr[∂µU†∂µU], (12)

Lhard = − F2
σ

4
m2

σχ4

(

ln
χ

S
− 1

4

)

, (13)

Lsoft = L(1)
soft + L(2)

soft,

L(1)
soft =

F2
π

4

(χ

S

)3−γm · S4tr[M†U + U†M],

L(2)
soft = − (3 − γm)F2

π

8
χ4 · trM , (14)

where U = e2iπ/Fπ , χ = eσ/Fσ , and M and S are spurion fields introduced so as to incorpo-
rate the explicit breaking effects of the chiral and scale symmetry, respectively. Under the
chiral SU(N f )L × SU(N f )R symmetry, these building blocks transform as U → gL · U · g†

R,

M → gL ·M · g†
R, χ → χ and S → S with gL,R ∈ SU(N f )L,R, while under the scale sym-

metry, they are infinitesimally transformed as δU(x) = xν∂νU(x), δM(x) = xν∂νM(x),
δχ(x) = (1 + xν∂ν)χ(x), and δS = (1 + xν∂ν)S(x), with the vacuum expectation values of
the spurion fields M and S, ⟨M⟩ = M2

π × 1N f ×N f
and ⟨S⟩ = 1.

This effective Lagrangian is the same as that of Ref. [18] except for Equation (13),

Lhard = − 1

16
F2

σ m2
σ −

1

2
m2

σσ2 + · · · , (15)

which is absent in Ref. [18] and gives the σ mass in the chiral limit due to the trace anomaly:

Fσm2
σ = < 0|θµ

µ |m f =0|σ >=< 0| β(NP)(α)

4α
G2

µν|σ >=< 0| − δLhard|σ >=< 0|F2
σ m2

σχ4 ln χ|σ >

=
4

Fσ
< 0| − θ

µ
µ |m f =0|0 >=

1

Fσ
< 0| − β(NP)(α)

α
G2

µν|0 >=
16

Fσ
< 0|Lhard|0 >, (16)
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to be compared with Equation (10). On the other hand, Lsoft has two terms: L(1)
soft corre-

sponds to the fermion mass term [18]:

N f

∑
i=1

m f ψ̄iψi = −L(1)
soft = − F2

π

4
(χ)3−γm · tr[M†U + U†M]

=

[

1 + (3 − γm)
σ

Fσ
+

1

2
(3 − γm)

2 σ2

F2
σ

](

−
N f

2
F2

π M2
π +

M2
π

2
πaπa

)

+ · · · , (17)

which correctly reproduces the π mass term as in the standard ChPT, M2
π

2 πaπa, and the
GMOR relation Equation (8), but would imply that σ is a tachyon that can destabilize the

vacuum (in the case of m2
σ = 0): M2

σ = −(3 − γm)2 N f

2 F2
π M2

π/F2
σ < 0. Then, L(2)

soft was
introduced in Ref. [18] to prevent σ from being a tachyon:

−L(2)
soft =

(3 − γm)F2
π

8
χ4 · trM =

3 − γm

4

(

1 + 4
σ

Fσ
+ 8

σ2

F2
σ

)

N f

2
F2

π M2
π + · · · , (18)

which is essential for the correct σ mass term −M2
σσ2/2 (in addition to −m2

σσ2/2 in
Equation (15)) given as a combination of the two terms of Lsoft:

M2
σ = m2

σ +
[

−(3 − γm)
2 + 4(3 − γm)

]

N f

2 F2
π M2

π

F2
σ

= m2
σ + (3 − γm)(1 + γm)

N f

2 F2
π M2

π

F2
σ

, (19)

thus correctly reproducing the σ mass formula derived using the WT identity Equation (10).
The same mass formula is also obtained through the trace of the energy-momentum

tensor < 0|θµ
µ |σ >= M2

σFσ, with θ
µ
µ = −δL:

(M2
σ − m2

σ)Fσ = < 0|(1 + γm)

N f

∑
i=1

m f ψ̄iψi|σ >= (1 + γm) < 0| − δ(

N f

∑
i=1

m f ψ̄iψi)|0 >

= < 0| − δLsoft|σ >= (1 + γm) · (3 − γm)

N f

2 Fπ M2
π

F2
σ

, (20)

where < 0| − δ(∑
N f

i=1 m f ψ̄iψi)|0 >= (3 − γm) < 0| − ∑
N f

i=1 m f ψ̄iψi)|0 > with Equation (9),
while:

−δLsoft = −(δL(1)
soft + δL(2)

soft)

= (3 − γm)χ
3−γm

[

−
N f

2
F2

π M2
π +

M2
π

2
πaπa

]

+ (3 − γm)χ
4

N f

2
F2

π M2
π + · · ·

= (3 − γm)[−(3 − γm) + 4]
N f

2
F2

π M2
π

σ

Fσ
+ (3 − γm)

M2
π

2
πaπa + · · · , (21)

both lines in Equation (20) thus giving the same result. This is compared with ∑
N f

i=1 m f ψ̄iψi

in Equation (17) having no contribution of L(2)
soft:

< 0|2 ·
N f

∑
i=1

m f ψ̄iψi|σ > = 2· < 0| − δ(

N f

∑
i=1

m f ψ̄iψi)|0 >
1

Fσ
= 2· < 0|δL(1)

soft|0 >
1

Fσ

= 2 · (3 − γm)

N f

2 F2
π M2

π

Fσ
=

2

1 + γm
· (M2

σ − m2
σ)Fσ. (22)

Equations (20) and (22) are crucial to later compare the σ pole contribution to the < π|(1+ γm)

· ∑
N f

i=1 m f ψ̄iψi|π >and < π|2 · ∑
N f

i=1 m f ψ̄iψi|π >, respectively.



Symmetry 2024, 16, 2 7 of 13

The result of Equations (19) and (20) coincides with that of Ref. [18] for m2
σ = 0 (thus,

Ref. [18] implicitly assumes that
β(α)
4α G2

µν = 0, or m2
σ = 0, in the broken phase, which

is in contradiction to their own calculation by the ladder SD equation, which shows no
massless dilaton in the chiral limit; see also Ref. [9]). Zwicky also assumes m2

σ = 0. He

evaluated
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

through the form-factor argument on
〈

π(p2)|θµ
µ |π(p1)

〉

=
〈

π(p2)| β(α)
4α G2

µν + (1 + γm)∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

, which is known to

give 2M2
π at q2 = (p1 − p2)

2 → 0. Then, he needed the assumption of the existence of the
IR fixed point (in the broken phase with M2

π ̸= 0) in order to drop out the contribution of
〈

π(p2)| β(α)
4α G2

µν|π(p1)
〉

(∝ m2
σ) to conclude

〈

π(p2)|(1+ γm) · ∑
Nf

i=1 m f ψ̄iψi|π(p1)
〉

= 2M2
π.

However, this term is actually irrelevant to the discussion here to directly compute
〈

π(p2)|(1+ γm) · ∑
Nf

i=1 m f ψ̄iψi|π(p1)
〉

using dChPT without referring to
〈

π(p2)|θµ
µ |π(p1)

〉

,

and then compare it with
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

computed on the same footing

based on the dChPT. At any rate, our result with Equations (20) and (22) obviously shows
the same conclusion even including the trace anomaly, m2

σ ̸= 0. Hence, the following discus-

sion is irrelevant to Zwicky’s assumption that there exists the IR fixed point,
β(α)
4α G2

µν = 0,
even in the broken phase with the condensate ⟨ψ̄ψ⟩|m f =0 ̸= 0 (its mass scale is the explicit

as well as spontaneous breaking of the scale symmetry) and M2
π ̸= 0 (the explicit breaking

of the scale symmetry as well as chiral symmetry). At any rate, such an assumption itself
has been shown to be in contradiction with the explicit calculation in the ladder SD equation
(see the second paragraph in Section 2).

3. Evaluation of Matrix Element between Pion States on the Mass Shell

Before evaluation by the dChPT Lagrangian, we first see the generic argument for

⟨π(p2)|θµν(xµ = 0)|π(p1)⟩ based on the form factor:

⟨π(p2)|θµν|π(p1)⟩ = 2PµPνF(q2) + (gµνq2 − qµqν)G(q2),

Pµ = (p
µ
1 + p

µ
2 )/2, qµ = p

µ
2 − p

µ
1 , F(0) = 1, G(q2)|M2

σ ̸=0 regular at q2 → 0
(23)

〈

π(p2)|θµ
µ |π(p1)

〉

= 2M2
π F(q2) + q2

[

3G(q2)− F(q2)/2
]

→ 2M2
π at q2 → 0.

(24)

It should be noted that in this formula, the σ pole contribution is invisible at q2 → 0 and the
result is valid independently of the phases, either the broken phase or the conformal phase.

Now, we evaluate the same quantity through the dChPT Lagrangian Equation (11) for
the broken phase [18]:

〈

π(p2)|θµ
µ |π(p1)

〉

= 4M2
π − 2p1 · p2 +

〈

0|θµ
µ |σ(q)

〉

1
M2

σ−q2 Gσππ(q2, M2
π , M2

π)

= 2M2
π + q2 + q2

M2
σ−q2

[

(1 − γm)M2
π + q2

]

,

(25)

where
〈

0|θµ
µ |σ(q)

〉

= Fσq2 and

FσGσππ(q
2, M2

π , M2
π) = (3 − γm)M2

π − 2p1 · p2 = (1 − γm)M2
π + q2, (26)

with the σ−π −π vertex Gσππ(q2, M2
π , M2

π) given by FσGσππ(q2, M2
π , M2

π) = (1− γm)M2
π

+ q2 as a sum of (3 − γm)M2
π from the explicit breaking term in Equation (14) and −2p1 ·

p2 = q2 − 2M2
π from the pion kinetic term in Equation (12) (Equation (26) was also obtained
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in Ref. [19] in a different context). Equation (25) is consistent with the form-factor argument
Equation (24):

〈

π(p2)|θµ
µ |π(p1)

〉

→ 2M2
π at q2 → 0, (27)

again with the σ pole contribution being invisible at q2 → 0. Note that this implies that

the trace anomaly term giving m2
σ ̸= 0 does not contribute to

〈

π(p2)|θµ
µ |π(p1)

〉

at q2 → 0,

even without the assumption of the IR fixed point.
On the other hand, we have:

〈

π(p2)|(1 + γm) ·
N f

∑
i=1

m f ψ̄iψi|π(p1)

〉

= ⟨π(p2)| − δLinv − δLsoft|π(p1)⟩

= [4 − (3 − γm)]M
2
π+ < 0| − δLsoft|σ >

1

M2
σ − q2

Gσππ

= (1 + γm)M2
π +

M2
σ − m2

σ

M2
σ − q2

[

(1 − γm)M2
π + q2

]

=

[

2M2
π + q2 +

q2

M2
σ − q2

[

(1 − γm)M2
π + q2

]

]

− m2
σ

M2
σ − q2

[

(1 − γm)M2
π + q2

]

, (28)

where use has been made of Equations (20), (21) and (26). Note that the σ pole term of
Equation (28) is from the pole of σ in the scalar density ψ̄ψ coupled to two π’s, with the
σ − π − π coupling FσGσππ(q2, M2

π , M2
π) in Equation (26). Equation (28) is identical to

Equation (25), with the last term being precisely the same as the σ pole contribution to the
trace anomaly, Equation (16):

< π(p2)|
β(NP)(α)

4α
G2

µν|π(p1) > =
< 0| β(NP)(α)

4α G2
µν|σ >

M2
σ − q2

Gσππ(q
2, M2

π , M2
π)

=
m2

σ

M2
σ − q2

[

(1 − γm)M2
π + q2

]

, (29)

to be cancelled by each other for < π(p2)|θµ
µ |π(p1) > in Equation (25). At q2 → 0 we have:

< π(p2)|(1 + γm) ·
N f

∑
i=1

m f ψ̄iψi|π(p1) >= 2M2
π − m2

σ

M2
σ
(1 − γm)M2

π at q2 → 0 . (30)

Now to the matrix element < π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1) >. From Equation (22),
we have:

< π(p2)|2 ·
N f

∑
i=1

m f ψ̄iψi|π(p1) > = 2· < π(p2)| − L(1)
soft|π(p1) >

= 2M2
π + 2 < 0|δL(1)

soft|0 >
1

M2
σ − q2

Gσππ

= 2M2
π +

2

1 + γm

M2
σ − m2

σ

M2
σ − q2

[

(1 − γm)M2
π + q2

]

−→q2→0

2

1 + γm
· 2M2

π − 2

1 + γm

m2
σ

M2
σ
(1 − γm)M2

π , (31)

where Equation (22) was used. By contrast, if we used the conventional non-scale-invariant
ChPT Lagrangian with Equation (17) replaced by one ignoring the σ terms, then the RHS
would be just 2M2

π , which is also obtained by the double soft pion theorem as claimed by
Zwicky. See also the later discussion.
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From Equations (30) and (31), we conclude:

< π(p2)|2 ·
N f

∑
i=1

m f ψ̄iψi|π(p1) > =
2

1 + γm
< π(p2)|(1 + γm) ·

N f

∑
i=1

m f ψ̄iψi|π(p1) >,

̸= < π(p2)|(1 + γm) ·
N f

∑
i=1

m f ψ̄iψi|π(p1) >, (32)

and thus there is no constraint on γm, in contradiction to Zwicky’s claim [16], even including
the trace anomaly m2

σ ̸= 0, and hence it is independent of the IR fixed point argument.
The crucial point of the results is the contribution of the pole of σ, (1 − γm)M2

π and

21−γm
1+γm

M2
π, without which we would erroneously conclude that

〈

π(p2)|(1+ γm) · ∑
Nf

i=1 m f ψ̄iψi|

π(p1)⟩ = (1+ γm)M2
π (as emphasized in Ref. [18]) and

〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

=

2M2
π , compared with the correct ones, 2M2

π and 2
1+γm

· 2M2
π , respectively (up to the trace

anomaly m2
σ term). This implies that Zwicky’s argument corresponds to the inclusion of

the σ pole for the former, while neglecting the latter.
In fact, Zwicky’s arguments (assuming m2

σ = 0) are equivalent to the neglect of the

σ pole contribution in Equation (31) to arrive at
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

= 2M2
π ,

which he in fact showed to be equivalent to the double use of the soft pion theorem
(unjustifiably removing the σ pole contribution). Actually, if we use the soft pion theorem
〈

π(p2)|2 ·∑
Nf

i=1 m f ψ̄iψi|π(p1)
〉

|p2
1=M2

π,p2→0 =
〈

0|
[

iQa
5, 2 ·∑

Nf

i=1 m f ψ̄iψi

]

|π(p1)
〉

|p2
1=M2

π,p2→0/Fπ,

the resultant expression removes the σ pole contribution, since σ is a chiral singlet, [iQa
5, σ] =

0 (the dilaton σ is different from the “sigma” (σ̂) in the linear sigma model, which is a chiral
partner of π̂a, with the correspondence to σ as [20]: σ̂2 + (π̂a)2 = (Fπ · χ)2 = F2

π · e2σ/Fπ ).

On the other hand, for
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

, he equated it with the

generic result Equation (25) (where σ pole is invisible at q2 → 0), although the same

result
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi |π(p1)⟩ = 2M2
π through the direct computation is

obtained only when including the σ pole, as shown in Equation (30). Equating the two results
dealing with the σ pole differently, he concluded that 2 = 1 + γm, i.e., γm = 1.

Putting it differently, we may consistently use the same double soft pion theorem on

both
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

and
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

(though

both π’s are not on the mass shell in contrast to the main stream of the present discussion),
which implies neglecting the σ pole for both. By this we would obtain:

< π(p2)|(1 + γm) ·
N f

∑
i=1

m f ψ̄iψi|π(p1) > |p1,p2→0 = (1 + γm)· < 0| −
2

∑
i=1

m f ψ̄iψi|0 > /F2
π

= (1 + γm)M2
π , ,

< π(p2)|2 ·
N f

∑
i=1

m f ψ̄iψi|π(p1) > |p1,p2→0 = 2· < 0| −
2

∑
i=1

m f ψ̄iψi|0 > /F2
π

= 2M2
π (33)

which coincides with the result neglecting the σ pole contributions in Equations (28) and (31),

where the GMOR relation M2
π = −

〈

0|∑
2
i=1 m f ψ̄iψi|0

〉

/F2
π , Equation (8), was used. It

should be noted that the GMOR relation is based on the single use of the soft pion theorem
for the axial-vector current which has no pole of σ, while the flavor-singlet scalar density
ψ̄ψ has the same quantum number as σ and both (1 + γm)ψ̄ψ and 2ψ̄ψ equally have a σ
pole with the coupling to two π’s given in Equation (26). Differently from GMOR, the
double use of the soft pion theorem for ψ̄ψ ignoring the σ pole contribution is not justified).
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Thus, again, < π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1) > ̸=< π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1) >,
namely, there is no constraint on the value of γm (or γ∗) in contradiction to Zwicky’s
argument claiming both sides equally to be 2M2

π .

Of course, the inequality is trivially true, with the same matrix element
〈

π(p2)|∑
N f

i=1 m f

ψ̄iψi|π(p1)⟩|p1,p2→0 evaluated by the same method being simply multiplied by the different
numerical factor 1 + γm vs. 2. However, the message of this trivial game is as follows: the
double use of the soft pion theorem for the scalar density (coupled to σ) simply misses

the (massive) σ pole contribution (1 − γm)M2
π for

〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

,

the inclusion of which gives the correct results, 2M2
π , which are consistent with the

form-factor argument as shown in Equation (30), while including the σ pole also in
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

would no longer keep 2M2
π , but rather 2/(1 + γm) · 2M2

π ,

thus again arriving at inequality, when the σ pole is included in both consistently, i.e., the
equality 1 + γm = 2 is lost anyway.

More strikingly, the double use of the soft pion theorem also implies that
〈

π(p2)|θµ
µ |

π(p1)⟩|p1,p2→0 =
〈

π(p2)|(1 + γm)∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

|p1,p2→0, since the trace anomaly

term β(α)/(4α)G2
µν is a chiral singlet,

[

iQa
5, β(α)/(4α)G2

µν

]

= 0, and the soft pion theorem

makes its contribution zero, independently of Zwicky’s assumption of the IR fixed point. Hence,

we would obtain
〈

π(p2)|θµ
µ |π(p1)

〉

|p1,p2→0 = (1 + γm)M2
π ̸= 2M2

π , in contradiction to the

form-factor argument that Zwicky’s arguments are crucially based on.
So far, we presented the dChPT result. We now comment on Zwicky’s argument based

on the Feynman–Hellmann theorem, Equation (2.20) in Ref. [16]:

〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

= 2 ∂
∂ ln m f

⟨π(p2)|H|π(p1)⟩ = ∂
∂ ln m f

(2Eπ · Eπ)

= ∂
∂ ln m f

2M2
π = 2M2

π ,
(34)

up to the order of m2
f . The last equation depends crucially on his assumption of the combined

use of M2
π ∼ m f , which is characteristic of the pion as a pseudo-NG boson in the broken

phase. However, if we used the same theorem for
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

=

(1 + γm)
∂

∂ ln m f
⟨π(p2)|H|π(p1)⟩ with the same assumption M2

π ∼ m f , then we would

obtain
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

= (1 + γm)M2
π ̸= 2M2

π in contradiction

with the generic result in Equation (24). The theorem is insensitive to the spontaneous
symmetry breaking, giving the same form in M2

π before taking derivative ∂
∂ ln m f

for both

the broken phase and conformal phase.
Actually, if we apply the same theorem to the conformal phase where dChPT is

invalid and without the σ pole contribution, we may use the hyperscaling Mπ ∼ m
1/(1+γm)
f

to obtain:

〈

π(p2)|2 ·
N f

∑
i=1

m f ψ̄iψi|π(p1)

〉

= 2
∂

∂ ln m f
⟨π(p2)|H|π(p1)⟩

=
∂

∂ ln m f
2E2

π =
2

1 + γm
· 2M2

π ,

〈

π(p2)|(1 + γm) ·
N f

∑
i=1

m f ψ̄iψi|π(p1)

〉

= (1 + γm)
∂

∂ ln m f
⟨π(p2)|H|π(p1)⟩

=
∂

∂ ln m f
(1 + γm)E2

π = 2M2
π , (35)
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with the latter now being consistent with the generic phase-independent result in Equation (24),
as it should be. Equation (35) is the same result as in the broken phase through the dChPT,
up to the trace anomaly term m2

σ ̸= 0 (which is the pole term). It is curious that the
combined use of the Feynman–Hellmann theorem and M2

π ∼ m f coincides with the wrong
result of the double-soft pion theorem Equation (33) ignoring the σ pole contribution, while
the combined use of the hyperscaling (followed by the simple Coulombic bound state) even
for the pion in the broken phase gives the correct result phase-independently.

4. Additional Comments

(1) σ − π − π vertex in Equation (26)
One might be concerned about the σ−π−π vertex in Equation (26). It is different from

the well-known low-energy theorem of the scale symmetry [20] (and references therein),

FσGσππ(q
2, M2

π , M2
π) = 2M2

π , q2 → 0, (36)

which is also obtained by the dispersion representation,
〈

π(p2)|θµ
µ |π(p1)

〉

= M2
σ/(M2

σ −
q2) · FσGσππ(q2, M2

π , M2
π), compared with the form-factor argument Equation (24). Both

are valid for σ as a pseudo-dilaton but not for π as a non-NG boson (massive matter field)
like the ρ meson.

On the other hand, Equation (26) is the result for the case of both σ and π being pseudo-
NG bosons, since it is a sum of (3 − γm)M2

π from the explicit breaking term Equation (14)
and −2p1 · p2 = q2 − 2M2

π from the pion kinetic term Equation (12), which are both
characteristic of the spontaneously broken scale and chiral symmetries for σ and π. At
q2 = 0, it reads FσGσππ(0, M2

π , M2
π) = (1 − γm)M2

π , which is obviously different from the
low-energy theorem of the scale symmetry.

(2) f0(500) meson for N f = 2 as a massive dilaton

John Ellis [19] obtained the same result as Equation (26): FσGσππ(q2, M2
π , M2

π) =
−λM2

π − 2p1 · p2 = (1 − γm)M2
π + q2, with λ = −(3 − γm). He instead focused on

the on-shell σ coupling FσGσππ(M2
σ, M2

π , M2
π) = (1 − γm)M2

π + M2
σ, but with the M2

σ

free parameter.
This is compared with our case, where Mσ is not a free parameter but is constrained

as [17]:
M2

σ = m2
σ + (3 − γm)(1 + γm)(N f /2)(F2

π/F2
σ) · M2

π , (37)

which is derived not only through the dChPT Lagrangian Equation (11) valid in the broken
phase, Equation (19), but also more generally through the WT identity, Equation (10), and
hence is valid both for the broken phase and the conformal phases. Were it not for m2

σ =

−
〈

0|β(α)/(α)G2
µν|0

〉

/F2
σ as in Zwicky’s case, we would have M2

σ = O(M2
π) for (3 − γm)

(1 + γm) · (Nf /2)(F2
π/F2

σ) = O(1), and hence FσGσππ(M2
σ, M2

π, M2
π) = O(M2

π), which is

roughly the same as the low-energy theorem for σ: FσGσππ(0, M2
π, M2

π) = 2M2
π. In fact, Nf =

8 LatKMI data [10] read M2
σ ≃ M2

π ≫ m2
σ and hence FσGσππ(M2

σ, M2
π, M2

π) ≃ M2
σ ≃ M2

π.
On the other hand, for the real Nf = 2 QCD in the deep broken phase near the chiral limit,

the σ mass should be mainly due to the trace anomaly m2
σ = −

〈

0|β(α)/(α)G2
µν|0

〉

/F2
σ ≫ M2

π,

such that M2
σ ≃ m2

σ ≫ M2
π , suggesting the identification of σ as f0(500). Then, thanks to the

trace anomaly dominance in the mass formula above, the formula Equation (26) definitely
predicts σ − π − π coupling for the σ on the mass shell q2 = M2

σ (≫ (1 − γm)M2
π):

Gσππ(M2
σ, M2

π , M2
π) ≃ M2

σ/Fσ ≃ M2
σ/Fπ ≫ 2M2

π/Fπ , (38)

with Fσ ≃ Fπ . If it is the case, the width of f0(500) will be enhanced by [M2
σ/(2M2

π)]
2tobe ∼

50 times larger than the low theorem value in Equation (36), in rough agreement with the
reality, and f0(500) may be regarded as a pseudo-NG boson and pseudo-dilaton (though
very massive and far from the invariant limit). The crucial point is that in addition to
the dominance of the non-perturbative trace anomaly for M2

σ, the formula Equation (26) for
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the Gσππ(M2
σ, M2

π , M2
π) is valid only when both σ and π are treated as pseudo-NG bosons in

contrast to the low-energy theorem Equation (36) treating π as a matter field and not as a
pseudo-NG boson (or if we use the low-energy theorem, we should regard π as a matter
field, not a pseudo-NG boson, i.e, put M2

π ∼ M2
ρ as a typical matter field, in which case the

width would also give a result roughly consistent with the reality, although M2
π is far from

the reality).

5. Summary and Discussion

The anomalous dimension in the infrared region γm(µ = ΛIR < ΛQCD) in QCD is
determined by the non-perturbative dynamics, both in the broken and conformal phases,
in contrast to the perturbative one at the asymptotically-free UV region γm(µ > ΛUV =
ΛQCD) ∼ 1/ ln(µ/ΛQCD) ≃ 0 determined by the perturbative dynamics. The present
paper shows that the value of γm(µ = ΛIR) is not determined without explicit dynamical
calculations such as the ladder SD equation and lattice calculations. This was contrasted
to the recent claim of Ref. [16] without explicit dynamical calculations, which is based on
the inconsistent treatment of the σ (pseudo-dilaton) pole contribution to the pion matrix el-

ements
〈

π(p2)|2 · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

and
〈

π(p2)|(1 + γm) · ∑
N f

i=1 m f ψ̄iψi|π(p1)
〉

in the

broken phase, where both π and σ are pseudo-NG bosons.
In fact , as mentioned in the Introduction, the ladder SD equation and lattice cal-

culations for N f = 8 QCD near the conformal window both give γm(µ < ΛQCD) ≃ 1
(as well as a light scalar σ pseudo-dilaton), which is crucial to the walking technicolor
model that is expected to have such a large anomalous dimension in the infrared region
µ < ΛTC ≃ ΛETC [1] to suppress the flavor-changing neutral currents (FCNC), where ΛTC

is the intrinsic UV scale of the walking technicolor, and is an analogue of the ΛQCD, which
is relevant to the asymptotically-free perturbative running coupling in the UV region, while
ΛETC is the scale where the technicolor group is unified into a large gauge group, the
Extended Technicolor.

Incidentally, both the explicit dynamical calculations in the SD equation [21] and the
lattice calculations [22] for N f = 12 to be inside the conformal window show γm ≃ 0.4–0.5
near the IR fixed point α(µ) ≃ α∗ ≫ 0, which is also large compared to the perturbative
one. While the ladder SD equation in the conformal phase is at a leading order, with
γm = 1 −

√
1 − α/αcr ∼ 0.8 at α = α∗, including non-leading terms for the large mass and

finite size, it gives γm ∼ 0.5 – 0.6 when fitted by a simple hyperscaling form as in the lattice
analyses. Moreover, it was found on the lattice for N f = 12 [23] that Mσ is even smaller
than the Mπ for a non-zero quark mass, indicating that the scale symmetry is spontaneously
(as well as explicitly) broken due to the gluon condensate generated by the non-zero quark
mass [14]; thus, σ is a pseudo-NG boson in contrast to π, which is not a pseudo-NG boson
since the chiral symmetry is broken only explicitly.

Further explicit dynamical calculations of the non-perturbative anomalous dimension
in the IR region as well as a light pseudo-dilaton σ in the QCD are highly desired in the
future, for many choices of Nc and N f , including not only the broken phase but also the
conformal phase.
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