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Abstract. We study the QCD axion potential in hot and dense quark matter,
within an NJL-like model that includes the coupling of the axion to quarks.
Firstly we compute the effect of the chiral QCD crossover on the axion mass
and self-coupling. Then, we compute the axion potential and study the domain
walls. We find that the energy barrier between two adjacent vacuum states de-
creases in the chirally restored phase: this results in a lower surface tension of
the walls. Finally we comment on the possibility of abundant production of
walls in hot and dense quark matter.

1 Introduction

Axions are hypothetical particles whose existence was suggested by Peccei and Quinn to
solve the strong CP problem [1, 2]. The existence of this particle has not been either proven
or disproven, therefore it is still interesting to study them in extreme environments of large
density and high temperature matter. This is the purpose of the study presented here. Within
an NJL-like model [3–6] we study the coupling of axions to quarks in quark matter, like
the one that could be present in the dense interior of compact stars or that produced in the
very young universe before the QCD phase transition happened. In particular, we focus on
the determination of the axion potential and its response to the QCD phase transition at large
density and/or high temperature. Then, we comment on the possibility of production of axion
walls in these extreme conditions.

2 The model

We work in the grand canonical ensemble formalism, using T and µ as state variables, where
µ denotes the quark number chemical potential. We consider two flavor quark matter with
Lagrangian density given by

L = q̄ (i∂!/ + µ̂γ0 − m0) q + ē (i∂!/ + µeγ0) e +Lint, (1)

Here q denotes the quark field carrying Dirac, color and flavor indices,while e is the electron
field. m0 is the current quark mass, that we take to be equal for u and d quarks for simplicity.
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The quark chemical potential matrix is diagonal in flavor space, µ̂ = diag(µu, µd), with

µu = µ −
2
3
µe, µd = µ +

1
3
µe; (2)

µd = µu + µe in agreement with the requirement of β−equilibrium. The interaction term is

Lint = G1
[
(q̄τaq)(q̄τaq) + (q̄τaiγ5q)(q̄τaiγ5q)

]
+ 8G2

[
ei a

fa det(q̄RqL) + e−i a
fa det(q̄LqR)

]
. (3)

In the above equation τa are matrices in the flavor space with a = 0, . . . , 3; τ0 is the identity
and τi with i = 1, 2, 3 are the Pauli matrices, normalized as tr(τiτi) = δi j/2. The coupling
constant G1 governs the U(1)A−invariant interaction. Similarly, G2 regulates the strength of
the U(1)A−breaking term; the determinant in the latter is understood in the flavor space.

The thermodynamic potential at one loop has been discussed in the literature, see [3] and
references therein; it reads

Ω = Ωmf + Ω1−loop + Ωe. (4)

Here we have put

Ωmf = −G2(η2 − σ2) cos(a/ fa) +G1(η2 + σ2) − 2G2ση sin(a/ fa), (5)

that represents the mean field contribution to Ω, with σ = 〈q̄q〉, η = 〈η̄iγ5η〉. Moreover,

Ωe = −2T
4π
8π3

(
7π4

180
T 3 +

π2µ2
eT

6
+
µ4

e

12T

)
(6)

is the contribution of the free, massless electrons. Finally, Ω1−loop corresponds to the quark
loop contribution, given by

Ωq = −4Nc

∑
f=u,d

∫
d3 p

(2π)3

[
Ep

2
+

1
2β

log(1 + e−β(Ep−µ f ))(1 + e−β(Ep+µ f ))
]
, (7)

with β = 1/T . The dispersion laws of quarks are given by

Ep =

√
p2 + ∆2, ∆2 = (m0 + α0)2 + β2

0, (8)

with

α0 = −2
[
G1 +G2 cos(a/ fa)

]
σ + 2G2η sin(a/ fa), (9)

β0 = −2
[
G1 −G2 sin(a/ fa)

]
η + 2G2σ sin(a/ fa). (10)

The electron chemical potential is fixed for each value of the pair (µ, T ) by imposing the
electrical neutrality condition

∂Ω

∂µe
= 0. (11)

Moreover, the condensates are computed self-consistently by solving the gap equations

∂Ω

∂σ
= 0,

∂Ω

∂η
= 0, (12)

being sure that the solution σ = σ̄, η = η̄ corresponds to the global minimum ofΩ. We notice
that the first integral in the right hand side of Eq. (7) is ultraviolet divergent: we regulate this
divergence by cutting the integration at p = Λ and treat Λ as a parameter that we fix by the
value of the chiral condensate in the vacuum. The set of parameters we use is Λ = 590 MeV,
G0Λ

2 = 2.435, G1 = (1 − c)G0, G2 = cG0 with c = 0.2, m0 = 6 MeV [3].
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Figure 1. (σ/2)1/3 versus T for several values of µ in the neutral ground state.

3 Results

In Fig. 1 we plot (σ/2)1/3 = (〈ūu + d̄d〉/2)1/3 versus T for several values of µ. The chiral
condensate drops down in a narrow range of temperature, signaling the approximate restora-
tion of chiral symmetry. This allows us to define a pseudo-critical temperature, Tc, as the
temperature where σ has its largest variation. Tc drops as the chemical potential increases.
In addition to this, we notice that the variation of σ becomes sharper with µ: the smooth
crossover at µ = 0 becomes a sharp transition at at large µ.

The axion potential near the origin is characterized by the mass and the self-coupling,

m2
a =

d2Ω

da2

∣∣∣∣∣∣
a=0
, λa =

d4Ω

da4

∣∣∣∣∣∣
a=0
. (13)

At T = µ = 0 we find

ma fa = 6.38 × 103 MeV2, λa f 4
a = −(55.63 MeV)4, (14)

in agreement with previous estimates [3, 7]. In Fig. 2 we plot the axion mass (left panel)
and the self-coupling (right panel) versus T for several values of µ. In correspondence of
the QCD crossover the axion mass drops significantly. Moreover, increasing µ results in a
sharper drop of the axion mass, similarly to what happens to the chiral condensate.

The fact that λa < 0 means that the quartic interaction is attractive. We notice that in corre-
spondence of the chiral crossover, the quartic coupling experiences a kink that becomes more
pronounced when the crossover becomes sharper, namely when the critical endpoint is ap-
proached. Thus, despite the fact that λa tends to become smaller with T , the chiral crossover
enhances the axion self-coupling and this enhancement is very pronounced in proximity of
the critical endpoint.

Next we turn to the full axion potential (4). In the left panel of Fig. 3 we plot the axion
potential versus a/ fa for several values of µ and for T = 10 MeV; this has been computed
along the neutrality line (11). Increasing µ results in the lowering of the barrier between the
two degenerate vacua a = 0 and a/ fa = 2π.
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Figure 2. ma fa versus T (left panel) and λa f 4
a (right panel) for several values of µ. Solid lines correspond

to the calculations with electrical neutrality while dashed lines denote the results for µe = 0.

Figure 3. Axion potential T = 10 MeV (left panel), and surface tension of the axion walls versus T at
µ = 320 MeV (right panel).

The potential shown in Fig. 3 gives rise to domain walls that interpolate between two suc-
cessive vacua, because the potential is invariant under the discrete symmetry transformation
θ → θ+2πn with θ ≡ a/ fa and n ∈ Z, while this symmetry is broken spontaneously by choos-
ing one value of θ, for example θ = 0. Since the energy barrier between two adjacent vacua
decreases in the chirally restored phase, the energy stored in the domain walls also decreases
in this phase. The domain wall solution can be built up following well known procedure of
classical field theory, starting with the lagrangian density

L = 1
2
∂µa∂µa − V(a/ fa), V(θ) = Ω(θ) −Ω(0). (15)

We checked that in the chirally restored phase a good approximation to the potential is given
by

V(θ) = V0(1 − cos θ) = m2
a f 2

a (1 − cos θ); (16)
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We checked that in the chirally restored phase a good approximation to the potential is given
by

V(θ) = V0(1 − cos θ) = m2
a f 2

a (1 − cos θ); (16)

for this potential, the solution representing a domain wall at rest is

θ±(ξ) = 4 arctan exp (±max) . (17)

ma corresponds to the in-medium axion mass computed self-consistently within the NJL
model. In the chirally broken phase, the potential and the domain wall solutions have to
be computed numerically solving the equation of motion arising from the lagrangian den-
sity (15). The energy per unit of transverse area of the time-independent domain wall is

κ ≡ E
L2 =

∫ +∞
−∞

dx


1
2

(
da
dx

)2
+ V(a/ fa)

 . (18)

The surface tension versus temperature is shown for µ = 320 MeV in the right panel of Fig 3.
Around the phase transition, κ decreases as anticipated. It is useful to notice that the energy
cost of adding one axion wall to bulk quark matter is κL2. This has to be compared with the
free energy of the bulk quark matter. In the thermodynamic limit, L → ∞, the energy of the
background of quark matter is ∝ L3. Accordingly, the free energy cost of adding one of these
solitons to the bulk of quark matter is zero in this limit. Consequently, we expect an abundant
production of axion walls in dense/hot quark matter. The study of the properties of these
walls, as well as of their potential observable effects, will be the subject of future studies.

4 Conclusions

We studied the potential of axions on hot and/or dense quark matter, within an NJL-like
model; this model has a phase transition to a chirally restored phase at high temperature
and/or large density, hence it allows us to study the coupling of axions to quarks both in the
confinement and in the deconfinement phases, and the feedback of the QCD crossover on the
axion potential. We found that the potential is very sensitive to the crossover, in particular
for large values of µ where the crossover is sharp and eventually becomes a real second
order phase transition at the critical endpoint. We also analyzed the surface tension, κ, of the
axion walls in the hot/dense quark matter. We found that κ decreases in the chirally restored
phase. Moreover, we noticed that in the thermodynamic limit, adding a wall to the bulk of
quark matter has a zero energy cost, therefore we expect abundant walls production in this
environment.
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