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1 Introduction

Since the early works of [1, 2], Wilson loop operators have played a central role in the
development of the AdS/CFT correspondence [3]. In N = 4 super Yang-Mills theory they
are defined as

WR[C] = TrRP exp
(∮

C
dτ
(
Aµẋ

µ + |ẋ|nIϕI
))

, (1.1)

where C labels a closed curve parametrized by xµ(τ) ∈ R4 and nI(τ) ∈ R6, R is a representa-
tion of the SU(N) gauge group, and the symbol P denotes path ordering along the loop. Of
particular interest to us is the one-parameter family of operators given by [4, 5]

xµ(τ) = (cos τ, sin τ, 0, 0) , nI(τ) = (0, 0, 0, sin θ0 cos τ, sin θ0 sin τ, cos θ0) , (1.2)

with
0 ≤ θ0 ≤

π

2 . (1.3)

These so-called latitude Wilson loops preserve a U(1)× SO(3)× SO(3) ⊂ SO(2, 4)× SO(6)
bosonic symmetry as well as 8 of the 32 supercharges of N = 4 super Yang-Mills, thus forming
the supergroup SU(2|2) ⊂ SU(2, 2|4). In the θ0 → 0 limit the symmetries are enhanced to
SL(2;R)×SO(3)×SO(5) ⊂ OSp(4∗|4) and we recover the well-known 1

2 -BPS circular Wilson
loop [6, 7]. At the other end of the interpolation we get a special case of the Zarembo loops
constructed in [8]. For related work see [9–11].
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Latitude Wilson loops have served as fertile ground for precision tests of AdS/CFT [12–
17], mainly due to the existence of exact results. The expectation value of these operators
was conjectured [5, 10, 11] to be the same as that of the circular loop with the proviso that

λ→ λ′ = λ cos2 θ0 , (1.4)

where λ = g2YMN is the ’t Hooft coupling. This was later proven using localization in [18, 19].
For the fundamental representation of SU(N) the Gaussian matrix model yields [6, 7]

⟨W□(θ0)⟩ =
1
N
L1
N−1

(
− λ′

4N

)
e

λ′
8N −→

N→∞

2√
λ′
I1
(√

λ′
)

−→
λ→∞

e
√
λ′
. (1.5)

In the k-symmetric representation the result is [20]

⟨WSk
(θ0)⟩ −→

N,k,λ→∞
e
2N

(
κ′
√
1 + κ′2 + arcsinhκ′

)
, κ′ = k

√
λ′

4N , (1.6)

whereas for the k-antisymmetric representation of SU(N) the expectation value reads [20, 21]

⟨WAk
(θ0)⟩ −→

N,k,λ→∞
e
2N

√
λ′

3π sin3 θk , kπ

N
= θk − cos θk sin θk . (1.7)

The limits are taken in the order N → ∞ and k → ∞ with k/N fixed, and then λ → ∞,
with κ fixed in the case of Sk. The representation Ak is defined for k ≤ N and exhibits
the symmetry k → N − k.

At strong coupling Wilson loops have a holographic description in terms of macroscopic
strings and D-branes. The dictionary was spelled out in [22, 23] and states that a Wilson loop
in the fundamental representation of SU(N) is dual to a fundamental string in AdS5 × S5,
whereas the k-symmetric and k-antisymmetric representations at k ∼ N are captured by probe
D3- and D5-branes, respectively, carrying k units of string charge. For larger representations
of rank k ∼ N2 the gravitational description is realized in terms of fully back-reacted bubbling
geometries [24–26]. The F1 and D3-brane solutions dual to the 1

4 -BPS latitude Wilson loops
appeared in the literature long ago [5, 27]. However, to the best of our knowledge, the
analogous D5-brane configuration is yet to be found. Our goal in this note is to construct
such solution.

The paper is organized as follows. In section 2 we review the AdS5 × S5 background in
suitable coordinates. Section 3 is devoted to writing an appropriate ansatz for the D5-brane
and then finding and solving the BPS equations. In section 4 we compute the string charge
and on-shell action. We conclude in section 5 with a brief discussion of our results.

2 Supergravity background

Let us begin by reviewing the background supergravity fields. We work in Euclidean signature
(see appendix A for our notation and conventions). The target space metric is that of
AdS5 × S5 with equal radii, namely,

ds2 = L2
(
ds2AdS5 + dΩ2

5

)
, L =

(
4πgsα′2N

) 1
4 . (2.1)

– 2 –
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It is supported by the self-dual Ramond-Ramond field strength

F(5) = 4L4
(
−i vol (AdS5) + vol

(
S5
))

, ∗F(5) = −iF(5) . (2.2)

Here α′ is the string slope parameter, gs is the string coupling constant and N is the number
of background D3-branes which source the 5-form flux. Indeed,

i

2κ210

∮
S5

∗F(5) = NTD3 , 2κ210 = (2π)7α′4g2s , TD3 =
1

(2π)3α′2gs
, (2.3)

where κ10 is related to the 10-dimensional Newton’s constant and TD3 is the D3-brane tension
(charge). The AdS/CFT dictionary identifies N with the rank of the SU(N) gauge group
and 4πgs = g2YM . Equivalently, L2 = α′√λ.

It is convenient to write the AdS5 metric as a foliation over AdS2 × S2, that is,

ds2AdS5 = du2 + cosh2 u
(
dρ2 + sinh2 ρ dτ2

)
+ sinh2 u

(
dη2 + sin2 η dξ2

)
, (2.4)

with
u ≥ 0 , ρ ≥ 0 , τ ∼ τ + 2π , 0 ≤ η ≤ π , ξ ∼ ξ + 2π . (2.5)

This makes the SO(1, 2)× SO(3) ⊂ SO(1, 5) isometries manifest. For the 5-sphere we use

dΩ2
5 = dΘ2 + sin2Θ

(
dα2 + cos2 αdψ2 + sin2 α

(
dϑ2 + sin2 ϑ dφ2

))
, (2.6)

with

0 ≤ Θ ≤ π , 0 ≤ α ≤ π

2 ψ ∼ ψ + 2π , 0 ≤ ϑ ≤ π , φ ∼ φ+ 2π . (2.7)

This is the usual foliation of S5 over S4, except that the 4-sphere is written as a foliation
over S1 × S2. Here the U(1) × SO(3) ⊂ SO(6) isometries are manifest. The embedding
coordinates X⃗ ∈ R1,5 and Y⃗ ∈ R6 that give rise to (2.4) and (2.6) are

X⃗ =



cosh u cosh ρ
cosh u sinh ρ cosψ
cosh u sinh ρ sinψ
sinh u sin η cos ξ
sinh u sin η cos ξ

sinh u cos η


, Y⃗ =



sinΘ sinα sinϑ sinφ
sinΘ sinα sinϑ cosφ

sinΘ sinα cosϑ
sinΘ cosα cosψ
sinΘ cosα sinψ

cosΘ


. (2.8)

Finally, the 4-form potential reads

C(4) = 4L4
(
− if1(u)vol

(
AdS2 × S2

)
+ f2(Θ)vol

(
S4
) )

, (2.9)

where

f1(u) = −u8 + 1
32 sinh(4u) , f2(Θ) = 3Θ

8 − 1
4 sin(2Θ) + 1

32 sin(4Θ) . (2.10)

We set L = 1 henceforth.
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3 D5-brane solution

The dynamics of a probe D5-brane in AdS5 × S5 is governed by the action

SD5 = TD5

∫
d6σ

√
det (g + 2πα′F )− iTD5

∫
2πα′F ∧ P [C(4)] , (3.1)

where σa, a = 1, . . . , 6 are worldvolume coordinates, P [ ] denotes the pullback from the
target space to the worldvolume, gab = P [G]ab is the induced metric on the brane, and
Fab = ∂aAb − ∂bAa is the field strength of the worldvolume gauge field. The D5-brane
tension is

TD5 =
1

(2π)5α′3gs
= N

√
λ

8π4 . (3.2)

From now on we will absorb the factor of 2πα′ in the definition of Fab.

3.1 Ansatz

We will work in a static gauge where the worldvolume coordinates are σa = (ρ, τ, α, ψ, ϑ, φ).
As required by the holographic dictionary, this choice implies that the D5-brane pinches the
circle parametrized by τ at the boundary ρ→ ∞ of AdS5. The most general electric ansatz
consistent with the U(1)× SO(3)× SO(3) symmetries of the 1

4 -BPS latitude Wilson loop is

u = 0 , Θ = Θ(ρ, α,∆) , Fab = Fab(ρ, α,∆) , Faϑ = 0 , Faφ = 0 , (3.3)

with
∆ ≡ τ − ψ . (3.4)

Indeed, the S2 ⊂ AdS5 collapses at the origin of the base space, thus preserving the full
SO(3) symmetry of the sphere. An additional SO(3) factor arises from the fact that nothing
depends on the coordinates (ϑ, φ), so the worldvolume geometry inherits the isometry of
S2 ⊂ S4. This also requires turning off the gauge field components along dϑ and dφ; a
term proportional to sinϑ dϑ ∧ dφ is allowed by the SO(3) symmetry but would source a
magnetic charge. Finally, since the fields depend on τ and ψ only through the difference
∆, the U(1) invariance is realized by a simultaneous shift of both angles.1 Recall that the
1
2 -BPS solution [21] corresponds to

Θ = θk , F = −i cos θk sinh ρ dρ ∧ dτ , (3.5)

where 0 ≤ θk ≤ π is a constant related to the electric charge k that sources the gauge field by

k = N

π
(θk − cos θk sin θk) . (3.6)

In this case the worldvolume geometry is AdS2×S4. We should recover this in the θ0 → 0 limit.
1As we will see below, this dependence is also required by supersymmetry.
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The ansatz described above is too general to be useful so we will make some simplifying
assumptions. Following the AdS/CFT dictionary, we consider the most straightforward
extension of the vector of scalar couplings (1.2) into the bulk, namely,

N⃗ =



0
0
0

sin θ cos τ
sin θ sin τ

cos θ


, (3.7)

where θ = θ(ρ) is an undetermined function such that

θ −→
ρ→∞

θ0 . (3.8)

In terms of the embedding coordinates (2.8), and motivated by the 1
2 -BPS solution (3.5),

we will look for configurations satisfying2

Y⃗ · N⃗ = cos θk . (3.9)

In other words, the D5-brane wraps an S4 ⊂ S5 given by a constant latitude angle measured
with respect to the axis N⃗ , which itself depends on ρ and τ . The precise relation between
the angle θk and the string charge k must be determined via Gauss’s Law, although we
anticipate that (3.6) remains true even for θ0 ̸= 0.

Condition (3.9) translates into an implicit equation for Θ(ρ, α,∆), namely,

cos θ cosΘ + sin θ sinΘ cosα cos∆ = cos θk . (3.10)

From here we can compute the derivatives

∂ρΘ = −sin θ cosΘ− cos θ sinΘ cosα cos∆
cos θ sinΘ− sin θ cosΘ cosα cos∆ ∂ρθ ,

∂αΘ = − sin θ sinΘ sinα cos∆
cos θ sinΘ− sin θ cosΘ cosα cos∆ ,

∂∆Θ = − sin θ sinΘ cosα sin∆
cos θ sinΘ− sin θ cosΘ cosα cos∆ .

(3.11)

(3.12)

(3.13)

For the gauge field we adopt a potential of the form

A = Aρdρ+Aτdτ . (3.14)

In particular, this sets Fαψ = 0. Unlike the D3-brane case, the radial component Aρ cannot
be gauged away because it depends on the worldvolume coordinates α and ∆. Notice that
this restricted ansatz is still invariant under the U(1) × SO(3) × SO(3) symmetry.

2Admittedly, this condition is not obvious a priori. It can be arrived at from the general ansatz by
looking at the supersymmetry equations, solving for ∂aΘ, and demanding that the integrability conditions
∂a∂bΘ = ∂b∂aΘ be satisfied. Here we have chosen to impose it from the beginning in order to simplify the
presentation of the paper.
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Since the embedding of the D5-brane in AdS5 × S5 is determined by a single function
Θ(ρ, α,∆), the induced metric on the worldvolume can be written as

gab = hab + ∂aΘ∂bΘ , (3.15)

with

hab ≡



1 0 0 0 0 0
0 sinh2 ρ 0 0 0 0
0 0 sin2Θ 0 0 0
0 0 0 sin2Θcos2 α 0 0
0 0 0 0 sin2Θsin2 α 0
0 0 0 0 0 sin2Θsin2 α sin2 ϑ


. (3.16)

From now on indices will be raised and lowered with the metric hab and its inverse hab. After
some algebra the expansion of the determinant in the Dirac-Born-Infeld action becomes3

det (g + F ) = det (h)L , (3.17)

where
L = 1 + ||dΘ||2 + ||F ||2 + ||dΘ ∧ F ||2 + 1

2! ||F ∧ F ||2 . (3.18)

Here we have abbreviated

w = 1
p!wa1...apdσ

a1 ∧ · · · ∧ dσap , ||w||2 = 1
p!w

a1...apwa1...ap . (3.19)

The explicit form of the DBI Lagrangian (3.18) can be found in appendix C. On the other
hand, the Wess-Zumino term reads

F ∧ P [C(4)] = 4Fρτf2(Θ) sin2 α cosα sinϑ d6σ . (3.20)

The function f2(Θ) is given in (2.10).

3.2 Supersymmetry

The second-order equations derived from the DBI and WZ actions are difficult to solve.
Instead of dealing with them directly we will require that the D5-brane configuration preserve
the same 8 supercharges as its F1 and D3-brane counterparts. This will lead to a set of
first order equations which are easier to integrate. On general grounds we expect that any
solution to the BPS equations is also a solution of the Euler-Lagrange equations.

3The matrix Ma
b = ∂aΘ∂bΘ + F a

b is effectively 4 × 4. One then has

det (1 + M) = 1 + Tr M + 1
2!
(
Tr2M − Tr M2)+ 1

3!
(
Tr3M − 3 Tr M Tr M2 + 2 Tr M3)

+ 1
4!
(
Tr4M − 6 Tr2M Tr M2 + 8 Tr M Tr M3 + 3 Tr2M2 − 6 Tr M4) .

– 6 –



J
H
E
P
0
7
(
2
0
2
4
)
1
3
1

A given D5-brane configuration will preserve some amount of supersymmetry if there
exist target space Killing spinors satisfying (see appendix A for our spinor conventions)

ΓD5ϵ = ϵ , (3.21)

where the κ-symmetry projector is [28] (adapted to Euclidean signature)

ΓD5 =
ϵabcdefσ2√
det (g + F )

( 1
6!Γabcdefσ3 −

1
2 · 4!FabΓcdef +

1
8 · 2!FabFcdΓefσ3 −

1
48FabFcdFef

)
.

(3.22)
Here Γa = ∂ax

mΓm is the pullback of the 10-dimensional Dirac matrices, σi are Pauli matrices,
and ϵρταψϑφ = 1. In order to write this projector explicitly it is useful to introduce gamma
matrices associated to the metric hab, namely,

γρ = Γ1 , γτ = sinh ρΓ2 , γα = sinΘΓ6 ,

γψ = sinΘ cosαΓ7 , γϑ = sinΘ sinαΓ8 , γφ = sinΘ sinα sinϑΓ9 . (3.23)

Then
Γa = γa + ∂aΘΓ5 , (3.24)

and after some algebra we arrive at4

ΓD5 =
γσ2√
L

((
1 + γa∂aΘΓ5

)
σ3 +

1
2Fab

(
γab + γabc∂cΘΓ5

)
+ 1

8FabFcdγ
abcdσ3

)
, (3.25)

with

γ ≡ ϵabcdef

6!
√
det (h)

γabcdef . (3.26)

The last term in (3.22) vanishes since the gauge field effectively lives in 4 dimensions. In
appendix C we write the expanded form of the projector ΓD5.

Now, the dependence of the AdS5×S5 Killing spinors (A.3) on the relevant coordinates is

ϵ = e−
i
2ρΓ∗Γ1e−

i
2ΘΓ∗Γ5e

1
2αΓ56e

1
2(τΓ12+ψΓ57)Mϵ0 , M = e

1
2ηΓ03e

1
2 ξΓ34e

1
2ϑΓ68e

1
2φΓ89 , (3.27)

where ϵ0 is a doublet of constant Weyl spinors. Borrowing from the supersymmetry analysis
of the string solution (see appendix B) we impose the constraints

Γ1257ϵ0 = ϵ0 , iΓ12e
θ0Γ27σ3ϵ0 = ϵ0 , (3.28)

each of which reduces the number of preserved supercharges by half. Since the matrices Γ1257
and iΓ12e

θ0Γ27σ3 commute with M (and with each other), the spinors ϵ0 and Mϵ0 satisfy
the same constraints. This preserves the SO(3) × SO(3) symmetry of the ansatz, as the
dependence on the S2 ⊂ AdS5 and S2 ⊂ S4 coordinates carried by the matrix M drops out

4The following identities are useful:

ϵabcdef

5!
√

det(h)
γbcdef =γaγ,

ϵabcdef

4!
√

det(h)
γcdef =−γabγ,

ϵabcdef

3!
√

det(h)
γdef =−γabcγ,

ϵabcdef

2!
√

det(h)
γef =γabcdγ.

– 7 –
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from the projection (3.21). Similarly, the first condition in (3.28) implies that the Killing
spinor (3.27) depends on the difference ∆ = τ − ψ, which is required by the U(1) symmetry.

Using the explicit form of the Killing spinors the BPS equation may be rewritten as

U−1ΓD5UMϵ0 =Mϵ0 , U = e−
i
2ρΓ∗Γ1e−

i
2ΘΓ∗Γ5e

1
2αΓ56e

1
2∆Γ12 . (3.29)

The matrix U−1ΓD5U can now be expanded in the basis of totally antisymmetric products of
Dirac matrices tensored with the 2× 2 matrices σi (we include σ0 = 12×2), that is,

U−1ΓD5U = ci 132×32 σi + c(m,i) Γm σi + c(mn,i) Γmn σi + c(mnp,i) Γ
mnp σi + · · · . (3.30)

In principle there are 210 × 4 = 4096 terms in the expansion, but the constraints (3.28) and
the Weyl condition Γ11ϵ0 = ϵ0 reduce the number of independent matrices down to 512.
Since we do not want to impose any further constraints on ϵ0, all 512 coefficients but c0
must vanish. In turn, the coefficients can be computed by multiplying U−1ΓD5U by the
corresponding basis element and taking the trace. Using Maple and Mathematica we find
that only 16 coefficients are non-zero, leading to the set of equations

132×32 σ0 −→ eq0 =
√
L ,

Γ12 σ0 −→ eq1 = 0 ,
Γ16 σ0 −→ eq2 = 0 ,
Γ17 σ0 −→ eq3 = 0 ,
Γ26 σ0 −→ eq4 = 0 ,
Γ27 σ0 −→ eq5 = 0 ,
Γ67 σ0 −→ eq6 = 0 ,

Γ0134 σ2 −→ eq7 = 0 ,

(3.31a)
(3.31b)
(3.31c)
(3.31d)
(3.31e)
(3.31f)
(3.31g)
(3.31h)

Γ0234 σ2 −→ eq8 = 0 ,
Γ0346 σ2 −→ eq9 = 0 ,
Γ0347 σ2 −→ eq10 = 0 ,
Γ1267 σ0 −→ eq11 = 0 ,

Γ012346 σ2 −→ eq12 = 0 ,
Γ012347 σ2 −→ eq13 = 0 ,
Γ013467 σ2 −→ eq14 = 0 ,
Γ023467 σ2 −→ eq15 = 0 .

(3.31i)
(3.31j)
(3.31k)
(3.31l)

(3.31m)
(3.31n)
(3.31o)
(3.31p)

The expressions for (eq0, eq1, . . . , eq15) are collected in appendix C. To arrive at these we
have chosen to eliminate the matrices Γ5, σ1 and σ3 using the constraints (3.28). Similarly,
the Weyl condition allowed us to replace Γ89 in favor of Γ01234567 → Γ0346.

3.3 Solution

The BPS conditions derived above form a set of 16 algebraic equations for the 6 variables

∂ρθ , Fρτ , Fρα , Fρψ , Fτα , Fτψ . (3.32)

These equations are consistent with each other and, despite being quadratic, have a unique and
remarkably simple solution. Indeed, using Maple we can eliminate the gauge field and solve for

∂ρθ = −cos θ0 sin θ cosh ρ− sin θ0 cos θ sinh ρ
cos θ0 cos θ sinh ρ+ sin θ0 sin θ cosh ρ

. (3.33)

To our surprise, this is the same equation that appears for the string configuration dual to
the latitude Wilson loop in the fundamental representation of SU(N) (cf. (B.12)–(B.14)).

– 8 –
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Demanding that θ → 0 at the center of the AdS2 disk,5 as required by regularity of the
induced geometry (more on this below), the solution to (3.33) is

sin θ = sin θ0 sinh ρ
cosh ρ+ cos θ0

, cos θ = cos θ0 cosh ρ+ 1
cosh ρ+ cos θ0

, 0 ≤ θ ≤ θ0 . (3.34)

The field strength then simplifies to

Fρτ = i∂ρ (cosΘ− cos θk cosh ρ) + i∂τ (sinΘ cosα sin∆) ∂ρθ ,
Fρα = i∂α (sinΘ cosα sin∆) ∂ρθ ,
Fρψ = i∂ψ (sinΘ cosα sin∆) ∂ρθ ,
Fτα = −i∂α (cosΘ− cos θk cosh ρ) ,
Fτψ = −i∂ψ (cosΘ− cos θk cosh ρ) .

(3.35)
(3.36)
(3.37)
(3.38)
(3.39)

Recall that the derivatives ∂aΘ are give in (3.11)–(3.13). Happily, these expressions satisfy
the Bianchi identity dF = 0 and can be derived from the potential

A = −i sinΘ cosα sin∆ dθ + i (cosΘ− cos θk cosh ρ) dτ . (3.40)

This configuration correctly reproduces the 1
2 -BPS case (3.5) in the θ0 → 0 limit. We have

also checked that it satisfies the second order Euler-Lagrange equations.
To study the regularity of the solution we invoke the implicit function theorem. Define

β ≡ cos θ cosΘ + sin θ sinΘ cosα cos∆ . (3.41)

When evaluated on the surface (3.10) we find that

∂mβ∂mβ =
[
(sin θ cosΘ− cos θ sinΘ cosα cos∆)2 + sin2Θcos2 α sin2∆

]
(∂ρθ)2 + sin2 θk .

(3.42)
This is manifestly positive, so the geometry is smooth. Notice, however, that the static
gauge coordinates σa = (ρ, τ, α, ψ, ϑ, φ) do not cover the entire manifold, as they fail to
include points where

∂Θβ = 0 ⇒ cos θ sinΘ− sin θ cosΘ cosα cos∆ = 0 ⇒ cos θ = cos θk cosΘ .

(3.43)
If θ0 lies inside the range

min (θk, π − θk) < θ0 < max (θk, π − θk) , (3.44)

then the coordinates can become singular and one must choose a different parametrization
for the surface β = cos θk. Still, the induced metric is regular everywhere. Regarding the
gauge field, the 1-forms dρ, dτ and ρ dτ are ill-defined at ρ = 0, so we need to study the

5As for the F1 and D3-brane, there is a second (unstable) solution given by

sin θ = sin θ0 sinh ρ

cosh ρ − cos θ0
, cos θ = cos θ0 cosh ρ − 1

cosh ρ − cos θ0
, θ0 ≤ θ ≤ π .

We do not explore this possibility here.
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behavior of the solution near the center of the AdS2 disk. We can solve equation (3.10)
perturbatively in ρ to find6

Θ = θk +
sin θ0 cosα cos∆

1 + cos θ0
ρ− cot θk sin2 θ0

(
1− cos2 α cos2∆

)
2 (1 + cos θ0)2

ρ2 +O
(
ρ3
)
. (3.45)

The induced metric (3.15) and the gauge field (3.40) then read

ds2 = dρ2 + ρ2dτ2 + sin2 θ0 cos2 α
(1 + cos θ0)2

(cos∆ dρ− ρ sin∆ dτ)2 + · · · ,

A = − i sin θk sin θ0 cosα1 + cos θ0
(sin∆ dρ+ ρ cos∆ dτ) + · · · .

(3.46)

(3.47)

The dots represent terms that are regular as ρ→ 0 (e.g. ρ dρ, ρ2dτ). Switching to cartesian
coordinates (x, y) = (ρ cos τ, ρ sin τ) this becomes

ds2 = dx2 + dy2 + sin2 θ0 cos2 α
(1 + cos θ0)2

(cosψ dx+ sinψ dy)2 + · · · ,

A = − i sin θk sin θ0 cosα1 + cos θ0
(− sinψ dx+ cosψ dy) + · · · .

(3.48)

(3.49)

Both fields are manifestly regular at ρ = 0 in these coordinates. Of course, A can become
singular after a gauge transformation, but the curvature F will remain smooth.

4 String charge and on-shell action

Having found the solution to the BPS equations we now compute the on-shell action and
the string charge carried by the D5-brane. To this purpose we first point out that the DBI
Lagrangian (3.18) simplifies to

L = sin2Θ
(
sin2 θk − sin2Θsin2 α (∂ρθ)2

)2
(cos θ − cos θk cosΘ)2

. (4.1)

As usual in supersymmetric setups, this is a perfect square. Other useful simplifications are

∂L
∂Fρτ

= − 2i
sinh ρ

cos θk sin2Θ
(
sin2 θk − sin2Θsin2 α (∂ρθ)2

)
(cos θ − cos θk cosΘ)2

, (4.2)

and

Fρτ = −i sinh ρ
(
cos θk −

cosΘ sin2Θsin2 α (∂ρθ)2

cos θ − cos θk cosΘ

)
. (4.3)

We anticipate, however, that we have been unable to perform the next calculations exactly
in θ0, so we proceed perturbatively using the series solution

Θ = θk +
sinh ρ cosα cos∆

cosh ρ+ 1 θ0 −
cot θk sinh2 ρ

(
1− cos2 α cos2∆

)
2 (cosh ρ+ 1)2

θ20 + · · · . (4.4)

6For small enough ρ condition (3.43) is never satisfied, so the coordinates are regular.
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Higher order terms are easily obtained from (3.10) using Maple or Mathematica. In what
follows we only present the details to order θ20, but we have actually done the calculations
up to O(θ100 ).

The string charge dissolved on the D5-brane is equal to the electric charge that sources the
gauge field Fab. It can be computed using Gauss’s Law, which in our coordinates takes the form

k = 2πα′i

∫
ρ→∞

dαdψdϑdφΠA , ΠA = δSD5
δFρτ

. (4.5)

Here we have reinstated the factor of 2πα′ that was previously absorbed in Fab. The i is due
to the Euclidean continuation. Using (4.1) and (4.2) the string charge simplifies to

k = N

π2

∫
ρ→∞

dαd∆ sin2 α cosα
(

cos θk sin5Θ
cos θ0 − cos θk cosΘ

+ 3Θ
2 − sin(2Θ) + 1

8 sin(4Θ)
)
,

(4.6)
and plugging in the perturbative solution (4.4) this becomes

k = N

π2

∫
ρ→∞

dαd∆ sin2 α cosα
[3
2 (θk − cos θk sin θk) + 4 sin2 θk cosα cos∆ θ0

+3
2 cos θk sin θk

(
5 cos2 α cos2∆− 1

)
θ20 + · · ·

]
. (4.7)

The second term clearly vanishes after integration. What is not so obvious is that the third
term also vanishes. In fact, we have checked using Maple that the integral (4.6) gives

k = N

π
(θk − cos θk sin θk) +O

(
θ100

)
, (4.8)

leading us to conjecture that it is independent of θ0. Thus, the relation between the integration
constant θk and the string charge k is the same as in the 1

2 -BPS case.
The calculation of the on-shell action (3.1) is more subtle since it is divergent. Indeed,

from (4.1) and (4.3) one obtains

SD5 =
N
√
λ

π2

∫
dρdαd∆ sinh ρ sin2 α cosα

[
sin5Θ

(
sin2 θk − sin2Θsin2 α (∂ρθ)2

)
cos θ − cos θk cosΘ

−
(
cos θk −

cosΘ sin2Θsin2 α (∂ρθ)2

cos θ − cos θk cosΘ

)(3Θ
2 − sin(2Θ) + 1

8 sin(4Θ)
)]

= N
√
λ

π

(
cos θk (θk − cos θk sin θk)−

2
3 sin3 θk

)(
−1
2e

ρc + 1 + 3
10θ

2
0 + · · ·

)
, (4.9)

where 0 < ρ < ρc → ∞ is a large cutoff. The main points to highlight are that the result
factorizes as shown above, the divergent piece is independent of θ0, and odd powers in the
expansion vanish after integration, at least to order O(θ100 ). Now, the standard prescription
to renormalize the action is to perform Legendre transforms on some of the worldvolume
fields [21, 27, 29, 30]. Concretely, we first add the boundary term

Sbdry
A = −

∫
ρ=ρc

dτdαdψdϑdφΠAAτ , (4.10)
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which, from the variational point of view, fixes the total electric charge on the brane as
opposed to the value of the potential at the boundary. This is natural in our context since
the AdS/CFT dictionary maps k to the rank of the representation Ak of SU(N). Using
the perturbative solution we find

Sbdry
A = N

√
λ

π2

∫
ρ=ρc

dαd∆ sin2 α cosα
(

cos θk sin5Θ
cos θ0 − cos θk cosΘ

+ 3Θ
2 − sin(2Θ) + 1

8 sin(4Θ)
)

× (cos θk cosh ρ− cosΘ)

= N
√
λ

π

[
cos θk (θk − cos θk sin θk)

(1
2e

ρc − 1− 3
10θ

2
0

)
+ 8

15 sin3 θkθ20 + · · ·
]
. (4.11)

Again, odd powers vanish and the divergence is θ0-independent. The second part of the
renormalization prescription is to perform a Legendre transform on the z coordinate of the
D5-brane embedding in the Poincaré patch of AdS5, which requires adding the term

Sbdry
z = −

∫
ρ=ρc

dτdαdψdϑdφΠzz , Πz =
δSD5
δz′

. (4.12)

This was justified in [29, 30] in terms of the Neumann boundary conditions satisfied by open
strings in the directions parallel to the D3-branes that backreact to the AdS5 × S5 geometry.
Given that z ≈ e−2ρ close to the boundary, the above is equivalent to

Sbdry
z = −

∫
ρ=ρc

dτdαdψdϑdφΠρ , Πρ =
δSD5
δρ′

. (4.13)

To compute the momentum conjugate to ρ we must undo the static gauge-fixing and introduce
a new worldvolume coordinate σ such that ρ = ρ(σ). This amounts to replacing the
first component of the metric hab in (3.16) by hρρ = 1 → hσσ = ρ′2 and defining the
Lagrangian (3.18) using this new metric (see appendix C). After computing Πρ we can set
ρ′ = 1. With the help of Maple we get

Sbdry
z = −N

√
λ

π

∫
ρ=ρc

dαd∆ sinh ρ sin2 α cosα sin5Θ
cos θ − cos θk cosΘ

= −N
√
λ

3π sin3 θk eρc +O
(
θ100

)
. (4.14)

As we can see, this term does not contribute with a finite piece and is independent of θ0,
at least to the order shown above. Putting all the ingredients together, we find that the
renormalized action for the 1

4 -BPS D5-brane is

SD5 + Sbdry
z + Sbdry

A = −2N
√
λ

3π sin3 θk
(
1− 1

2θ
2
0 + · · ·

)
. (4.15)

This is finite. Moreover, we have checked to order O
(
θ100
)

that

SD5 + Sbdry
z + Sbdry

A = −2N
√
λ

3π sin3 θk cos θ0 , (4.16)

which coincides with the gauge theory prediction (1.7) according to the holographic dictionary.
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5 Conclusions

In this paper we have found the D5-brane configuration dual to the 1
4 -BPS latitude Wilson

loops in the k-antisymmetric representation of SU(N), thus completing a missing entry in
the AdS/CFT dictionary. Our solution is exact in the latitude parameter θ0 and correctly
reproduces the 1

2 -BPS limit. Unfortunately, we only managed to compute the string charge
and on-shell action perturbatively. We found full agreement with the gauge theory result
to order O

(
θ100
)
.

Referring to the coordinate system (2.4)–(2.7), the D5-brane spans the AdS2 ⊂ AdS5
disk located at u = 0 while wrapping an S4 ⊂ S5 corresponding to a constant polar angle
0 ≤ θk ≤ π measured with respect to the axis N⃗ ∈ R6 given in (3.7) and (3.34). This is
represented in figure 1. It is important to emphasize that because the axis depends on the
worldvolume coordinates (ρ, τ), the D5-brane wraps a different 4-sphere at each point in
AdS2. On the other hand, the value of the angle θk is determined by the string charge k
dissolved on the brane according to formula (4.8). Even though we computed this relation
perturbatively, we conjecture it to be independent of the latitude parameter θ0 and therefore
identical to the 1

2 -BPS version (3.6). In turn, the electric charge k sources the worldvolume
gauge field (3.35)–(3.39), derivable from the potential (3.40). Notice that, unlike the D3-brane
solution, which only carries an electric field Fρτ , the D5-brane also has magnetic components.

As expected, the calculation of the D5-brane on-shell action (4.16) required the regular-
ization of divergences and their corresponding renormalization. The standard prescription
of performing Legendre transforms on some of the worldvolume fields rendered the correct
the result, as it did for the F1 and D3-brane configurations in [21, 27, 30]. A slight technical
deviation from previous works, however, is that we implemented the transform of the electric
component of the gauge field using the boundary term (4.10), as opposed to a bulk integral
involving Fρτ . This emphasizes the role that regularity plays in the evaluation of the on-shell
action. Indeed, our method only works in a gauge in which Aτ is smooth at ρ = 0. Otherwise,
one must incise a disk of radius ϵ≪ 1 from the center of AdS2 and include additional boundary
terms at ρ = ϵ. Of course, this is not an issue when working with Fρτ since it is always regular.

An interesting difference between the D5-brane solution and its F1 and D3-brane coun-
terparts lies in the interpretation of the vector N⃗ , which is an extension into the bulk of
the scalar couplings (1.2) that define the latitude Wilson loop. For the F1 and D3-brane
configurations one identifies N⃗ = Y⃗ , where Y⃗ are embedding coordinates for S5 ⊂ R6.
Instead, for the D5-brane, N⃗ is interpreted as an axis such that N⃗ · Y⃗ = cos θk. Regardless
of the interpretation, the SO(3) symmetry preserved by the three solutions corresponds
to the subgroup of SO(6) that leaves N⃗ invariant for all values of ρ and τ . In the case of
the D5-brane, this is realized as isometries that act on the S2 ⊂ S4 coordinates (ϑ, φ), not
touching (α,ψ). The F1 and D3-brane both sit at α = 0, so the 2-sphere shrinks to zero
size. Another difference worth pointing out is the way in which the U(1) symmetry manifests
itself. Again referring to (2.4)–(2.7), the angular dependence drops out from the F1 and
D3-brane solutions because they have τ = ψ, whereas the D5-brane embedding does depend
on these angles but only through the difference ∆ = τ − ψ. In particular, this means that
the preserved Killing spinors (3.27)–(3.28) carry this dependence.
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Y6

~Y

~N

θkθ

(a) The 1
4 -BPS D5-brane satisfies Y⃗ · N⃗ = cos θk.

Y6

~Y

θk

(b) The θ0 → 0 limit reproduces the 1
2 -BPS case.

Figure 1. Viewed in embedding coordinates Y⃗ ∈ R6, the D5-brane wraps an S4 ⊂ S5 corresponding
to a fixed polar angle θk measured with respect to the axis N⃗ , which itself depends on the AdS2
coordinates (ρ, τ). The axis starts at the north pole of the 5-sphere for ρ = 0 and reaches θ = θ0 at
the boundary ρ→ ∞; as τ varies it rotates around the north pole. The angle θk is determined by the
value of the string charge k carried by the D5-brane.

Remarkably, the function θ(ρ) that determines the orientation of N⃗ is the same in the
F1 and D5-brane cases. This is reminiscent of [31], where it was shown that any string
solution that sits at a fixed point in S5 can be extended to a D5-brane configuration with
the same embedding in AdS5 while wrapping a fixed S4 ⊂ S5. Our results suggests that it
might be possible to generalize this to string worldsheets that have a non-trivial profile in S5.
Perhaps, this can be interpreted in terms of the Myers effect [32], whereby the worldsheet
of k coincident strings expands into additional directions.

The spectrum of fluctuations of the 1
4 -BPS string dual to the latitude Wilson loop was

computed in [12, 33] and later fit into supermultiplets of SU(2|2) [13]. The same was done
for the 1

2 -BPS configurations in [34, 35], where they organized the excitations in terms of
representations of OSp(4∗|4). It would be interesting to repeat this exercise for the 1

4 -BPS
D3- and D5-brane solutions, perhaps allowing for the computation of 1/N corrections to the
expectation value of latitude Wilson loops as in [36]. This would also open up another setup
where to study correlation functions of insertions in 1-dimensional defects and AdS2/dCFT1
in higher representations, along the lines of [37]. Another follow up work is to apply the
technology of calibration forms [38–41] to compute the on-shell action exactly in θ0. Finally,
it remains to elucidate the role of the unstable D5-brane solution. All these are interesting
avenues to pursue in the future.
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A Conventions

We work in Euclidean signature. Target space indices are labeled by m,n, . . .. Worldvolume
indices are a, b, . . .. Tangent space indices are underlined. The background metric is Gmn.
Our spinor conventions follow [28]. In particular, type IIB fermions are grouped into a
doublet of Weyl spinors of positive chirality, namely,7

ϵ =
(
ϵ1
ϵ2

)
, Γ11ϵ1 = ϵ1 , Γ11ϵ2 = ϵ2 , Γ11 ≡ −iΓ0123456789 . (A.1)

The AdS5 × S5 Killing spinors satisfy(
∇m + i

2LΓ∗Γm
)
ϵ = 0 , Γ∗ ≡ −iΓ01234σ2 . (A.2)

In the coordinate system (2.4)–(2.6) the solution reads (with the obvious vielbein and spin
connection)

ϵ = e−
i
2uΓ∗Γ0e−

i
2ρΓ∗Γ1e

1
2 τΓ12e

1
2ηΓ03e

1
2 ξΓ34e−

i
2ΘΓ∗Γ5e

1
2αΓ56e

1
2ψΓ57e

1
2ϑΓ68e

1
2φΓ89ϵ0 , (A.3)

where ϵ0 is a doublet of constant Weyl spinors.

B String solution

In this appendix we derive and solve the BPS equations for the string configuration dual
to the latitude Wilson loop in the fundamental representation of SU(N). We work in a
static gauge in which the worldsheet coordinates are σa = (ρ, τ). The simplest ansatz that
respects the U(1) × SO(3) × SO(3) symmetry is

u = 0 , Θ = θ(ρ) , α = 0 , ψ = τ , (B.1)

with θ(ρ→ ∞) = θ0. For simplicity we also set η = ξ = ϑ = φ = 0, although the final result
does not depend on this choice. The condition for supersymmetry reads

ΓF1ϵ = ϵ , (B.2)

7In Lorentzian signature type IIB spinors are Majorana-Weyl. It then makes sense to define the singlet
ϵ = ϵ1 − iϵ2 and its charge conjugate ϵc = ϵ1 + iϵ2. However, since the Majorana condition is lost in Euclidean
signature, we prefer to maintain the doublet notation.
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where the κ-symmetry projector for a fundamental string is [42]

ΓF1 ≡
iϵabΓabσ3
2!
√
det (g)

. (B.3)

In this case we find

ΓF1 =
i
(
sinh ρ

(
Γ12 − ∂ρθ Γ25

)
+ sin θ

(
Γ17 + ∂ρθ Γ57

))
σ3√

(1 + (∂ρθ)2)
(
sinh2 ρ+ sin2 θ

) . (B.4)

Notice that (B.4) does not depend on τ . Also, it does not commute with Γ12 and Γ57. This
forces us to remove the τ -dependence from the Killing spinor (A.3) by imposing(

Γ12 + Γ57
)
ϵ0 = 0 ⇔ Γ1257ϵ0 = ϵ0 . (B.5)

The supersymmetry condition then becomes

U−1ΓF1Uϵ0 = ϵ0 , U = e−
i
2ρΓ∗Γ1e−

i
2ΘΓ∗Γ5 . (B.6)

Some algebra shows that

U−1ΓF1U =
i
(
sinh ρ cos θ

(
Γ12 − ∂ρθ Γ25

)
+ cosh ρ sin θ

(
Γ17 + ∂ρθ Γ57

))
σ3√

(1 + (∂ρθ)2)
(
sinh2 ρ+ sin2 θ

)
+
i sinh ρ sin θΓ∗

(
Γ125 + ∂ρθ Γ2 + Γ7 + ∂ρθ Γ157

)
σ3√

(1 + (∂ρθ)2)
(
sinh2 ρ+ sin2 θ

) . (B.7)

It is easy to see that the second line vanishes after imposing the constraint (B.5). The
projection then simplifies to

i∂ρ
(
cosh ρ cos θ Γ12 + sinh ρ sin θ Γ17

)
σ3√

(1 + (∂ρθ)2)
(
sinh2 ρ+ sin2 θ

) ϵ0 = ϵ0 . (B.8)

Taking ρ → ∞ we get a second condition on ϵ0, namely,

i
(
cos θ0Γ12 + sin θ0Γ17

)
σ3ϵ0 = ϵ0 ⇔ iΓ12e

θ0Γ27σ3ϵ0 = ϵ0 , (B.9)

where we have assumed that ∂ρθ vanishes at the boundary. Importantly, [iΓ12e
θ0Γ27σ3,Γ1257] =

0, so the two constraints are compatible with each other, reducing the preserved supercharges
from 32 down to 8. Inserting this back into (B.8) we get

∂ρ
(
cosh ρ cos θ − sinh ρ sin θ Γ27

)
eθ0Γ27√

(1 + (∂ρθ)2)
(
sinh2 ρ+ sin2 θ

) ϵ0 = ϵ0 . (B.10)

Expanding the exponential we obtain a term proportional to the identity matrix and another
term proportional to Γ27. They lead to the pair of equations

∂ρ (cos θ0 cosh ρ cos θ + sin θ0 sinh ρ sin θ)√
(1 + (∂ρθ)2)

(
sinh2 ρ+ sin2 θ

) = 1 ,

∂ρ (sin θ0 cosh ρ cos θ − cos θ0 sinh ρ sin θ) = 0 .

(B.11)

(B.12)
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These are consistent with each other and imply

cosh ρ cos θ sin θ0 − sinh ρ sin θ cos θ0 = ± sin θ0 . (B.13)

The integration constant on the right hand side is fixed by looking at ρ→ 0 and demanding
that sin θ → 0, as required by regularity of the induced geometry. One can in fact solve
for θ(ρ) to find

sin θ = sin θ0 sinh ρ
cosh ρ± cos θ0

, cos θ = cos θ0 cosh ρ± 1
cosh ρ± cos θ0

. (B.14)

For the upper/lower sign the string wraps the northern/southern hemisphere of the S2 ⊂ S5.
Assuming that 0 ≤ θ0 ≤ π

2 , the stable solution corresponds to the + sign.

C Explicit expressions

Here we collect some explicit expressions omitted in the body of the paper. First, using a
worldvolume coordinate σ such that ρ = ρ(σ), the DBI Lagrangian (3.18) reads

L = 1 + (∂σΘ)2

ρ′2
+ (∂τΘ)2

sinh2 ρ
+ (∂αΘ)2

sin2Θ
+ (∂ψΘ)2

sin2Θcos2 α
+ F 2

στ

ρ′2 sinh2 ρ
+ F 2

σα

ρ′2 sin2Θ

+
F 2
σψ

ρ′2 sin2Θcos2 α
+ F 2

τα

sinh2 ρ sin2Θ
+

F 2
τψ

sinh2 ρ sin2Θcos2 α
+

F 2
αψ

sin4Θcos2 α

+ (∂σΘFτα + ∂αΘFστ − ∂τΘFσα)2

ρ′2 sinh2 ρ sin2Θ
+ (∂σΘFτψ + ∂ψΘFστ − ∂τΘFσψ)2

ρ′2 sinh2 ρ sin2Θcos2 α

+ (∂σΘFαψ + ∂ψΘFσα − ∂αΘFσψ)2

ρ′2 sin4Θcos2 α
+ (∂τΘFαψ + ∂ψΘFτα − ∂αΘFτψ)2

sinh2 ρ sin4Θcos2 α

+ (FστFαψ − FσαFτψ + FσψFτα)2

ρ′2 sinh2 ρ sin4Θcos2 α
. (C.1)

Secondly, the D5-brane κ-symmetry projector (3.26) yields (setting ρ = σ)

ΓD5 =
Γ126789σ2√

L

[(
1 + ∂ρΘΓ15 +

∂τΘΓ25
sinh ρ +

∂αΘΓ65
sinΘ +

∂ψΘΓ75
sinΘ cosα

)
σ3

+
FρτΓ12
sinh ρ +

FραΓ16
sinΘ +

FρψΓ17
sinΘ cosα +

FταΓ26
sinh ρ sinΘ +

FτψΓ27
sinh ρ sinΘ cosα +

FαψΓ67
sin2Θcosα

+
(Fρτ∂αΘ+ Fτα∂ρΘ− Fρα∂τΘ)Γ1265

sinh ρ sinΘ +
(Fρτ∂ψΘ+ Fτψ∂ρΘ− Fρψ∂τΘ)Γ1275

sinh ρ sinΘ cosα

+
(Fρα∂ψΘ− Fρψ∂αΘ+ Fαψ∂ρΘ)Γ1675

sin2Θcosα
+

(Fτα∂ψΘ− Fτψ∂αΘ+ Fαψ∂τΘ)Γ2675
sinh ρ sin2Θcosα

+
(FρτFαψ − FραFτψ + FρψFτα) Γ1267σ3

sinh ρ sin2Θcosα

]
. (C.2)

Lastly, the expressions involved in the 1
4 -BPS equations (3.31a)–(3.31p) are

eq0=cosθ0 sinΘ+sinθ0 sinΘcosαcos∆∂ρΘ−sinθ0 cothρsinΘcosαsin∆∂τΘ
+ isinhρcotΘFρψ+isinhρcsc2Θtanα(∂ρΘFαψ+∂ψΘFρα−∂αΘFρψ)
−cosθ0 cothρcscΘtanα(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.3)
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eq1=−sinθ0 sinΘcosαsin∆∂ρΘ−(cosθ0 cosΘ+sinθ0 cothρsinΘcosαcos∆)∂τΘ
− icschρ(∂ρΘFτψ+∂ψΘFρτ −∂τΘFρψ) , (C.4)

eq2=−cosθ0 sinΘsinαcos∆∂ρΘ+cosθ0 cothρsinΘsinαsin∆∂τΘ
+ icoshρcosαsin∆Fρα+icschρcosαcos∆Fτα+isinhρcsc2Θsecαcos∆Fαψ
+cscΘ(sinθ0 cothρ+cosθ0 cotΘsecαcos∆)(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.5)

eq3=cosθ0 sinΘcosαsin∆∂ρΘ−(sinθ0 cosΘ−cosθ0 cothρsinΘcosαcos∆)∂τΘ
− icoshρsinαcos∆Fρα+icoshρsecαsin∆Fρψ+icschρsinαsin∆Fτα
+ icschρsecαcos∆Fτψ , (C.6)

eq4=−cosθ0 sinΘsinαsin∆∂ρΘ−cosθ0 cothρsinΘsinαcos∆∂τΘ
− icoshρcosαcos∆Fρα+icschρcosαsin∆Fτα+isinhρcsc2Θsecαsin∆Fαψ
+cosθ0 cotΘcscΘsecαsin∆(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.7)

eq5=sinθ0 sinΘ−cosθ0 sinΘcosαcos∆∂ρΘ+cosθ0 cothρsinΘcosαsin∆∂τΘ
− icoshρsinαsin∆Fτα−icoshρsecαcos∆Fρψ
−sinθ0 cothρcscΘtanα(Fρτ Fαψ−FραFτψ+FρψFτα)
− icschρsinαcos∆Fτα+icschρsecαsin∆Fτψ, (C.8)

eq6=sinθ0 sinΘsinαsin∆∂ρΘ+sinθ0 cothρsinΘsinαcos∆∂τΘ
−sinθ0 cscΘcotΘsecαsin∆(Fρτ Fαψ−FραFτψ+FρψFτα)− isinhρcotΘFρα
+ icschρtanα(∂ρΘFτψ−∂τΘFρψ+∂ψΘFρτ ) , (C.9)

eq7=−cosθ0 cosΘsin∆∂ρΘ−(cosθ0 cothρcosΘcos∆+sinθ0 sinΘcosα)∂τΘ
−sinθ0 cscΘsecα∂ψΘ−icoshρcotΘsin∆Fρψ−icschρcotΘcos∆Fτψ
+ icoshρcsc2Θtanαsin∆(∂ρΘFαψ+∂ψΘFρα−∂αΘFρψ)
+ icschρcsc2Θtanαcos∆(∂τΘFαψ+∂ψΘFτα−∂αΘFτψ)
−cosθ0 cscΘtanαsin∆(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.10)

eq8=−sinθ0 cosΘcosα+cosθ0 cosΘcos∆∂ρΘ−cosθ0 cothρcosΘsin∆∂τΘ
−sinθ0 cscΘsinα∂αΘ+icoshρcotΘcos∆Fρψ−icschρcotΘsin∆Fτψ
− icoshρcsc2Θtanαcos∆(∂ρΘFαψ+∂ψΘFρα−∂αΘFρψ)
+ icschρcsc2Θtanαsin∆(∂τΘFαψ+∂ψΘFτα−∂αΘFτψ)
+cosθ0 cscΘtanαcos∆(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.11)

eq9=cosθ0 sinΘsinα∂τΘ+isinhρcosαFρα
+sinθ0 cscΘsin∆(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.12)

eq10=cosθ0 cosΘcosα+sinθ0 cosΘcos∆∂ρΘ−sinθ0 cothρcosΘsin∆∂τΘ
+sinθ0 cscΘtanαcos∆(Fρτ Fαψ−FραFτψ+FρψFτα)+cosθ0 cscΘsinα∂αΘ
− icschρcotΘsinα(∂ρΘFτα+∂αΘFρτ −∂τΘFρα)− icschρcosαFρτ
+ isinhρsecαFρψ , (C.13)

eq11=sinθ0 sinΘsinαcos∆∂ρΘ−sinθ0 cothρsinΘsinαsin∆∂τΘ
− isinhρcotΘtanαFρψ−icschρ(∂ρΘFτα+∂αΘFρτ −∂τΘFρα)
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− isinhρcsc2Θ(∂ρΘFαψ+∂ψΘFρα−∂αΘFρψ)
+cscΘ(cosθ0 cothρ−sinθ0 cotΘsecαcos∆)(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.14)

eq12=−cosθ0 cosΘsinα+cosθ0 cscΘcosα∂αΘ+icschρsinαFρτ
+ icoshρcsc2ΘsecαFαψ−icschρcotΘcosα(∂ρΘFτα+∂αΘFρτ −∂τΘFρα)
+cscΘ(sinθ0 cos∆+cosθ0 cothρcotΘsecα)(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.15)

eq13=−sinθ0 cosΘsin∆∂ρΘ+(cosθ0 sinΘcosα−sinθ0 cothρcosΘcos∆)∂τΘ
−sinθ0 cscΘtanαsin∆(Fρτ Fαψ−FραFτψ+FρψFτα)+cosθ0 cscΘsecα∂ψΘ
− icschρcotΘsecα(∂ρΘFτψ+∂ψΘFρτ −∂τΘFρψ)− isinhρsinαFρα , (C.16)

eq14=sinθ0 cosΘsinα−sinθ0 cscΘcosα∂αΘ
− icoshρcotΘsin∆Fρα−icoshρcotΘtanαcos∆Fρψ−icschρcotΘcos∆Fτα
+ icschρcotΘtanαsin∆Fτψ−icoshρcsc2Θcos∆(∂ρΘFαψ+∂ψΘFρα−∂αΘFρψ)
+ icschρcsc2Θsin∆(∂τΘFαψ+∂ψΘFτα−∂αΘFτψ)
+cscΘ(cosθ0 cos∆−sinθ0 cothρcotΘsecα)(Fρτ Fαψ−FραFτψ+FρψFτα) , (C.17)

eq15=−sinθ0 sinΘsinα∂τΘ+icoshρcotΘcos∆Fρα−icoshρcotΘtanαsin∆Fρψ
− icschρcotΘsin∆Fτα−icschρcotΘtanαcos∆Fτψ
− icoshρcsc2Θsin∆(∂ρΘFαψ+∂ψΘFρα−∂αΘFρψ)
− icschρcsc2Θcos∆(∂τΘFαψ+∂ψΘFτα−∂αΘFτψ)
+cosθ0 cscΘsin∆(Fρτ Fαψ−FραFτψ+FρψFτα) . (C.18)
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