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1 Introduction

Since the early works of [1, 2], Wilson loop operators have played a central role in the
development of the AdS/CFT correspondence [3]. In N' = 4 super Yang-Mills theory they
are defined as

Wg[C] = TrrP exp (f[i: dr (At + |i:yn1¢f)> : (1.1)

where C labels a closed curve parametrized by z#(7) € R* and ny(7) € RS, R is a representa-
tion of the SU(IV) gauge group, and the symbol P denotes path ordering along the loop. Of
particular interest to us is the one-parameter family of operators given by [4, 5]

x#(1) = (cosT,sinT,0,0) , nr(t) = (0,0,0,sin Oy cos T, sin § sin 7, cos O ) , (1.2)

with

0<8 < (1.3)

T
5
These so-called latitude Wilson loops preserve a U(1) x SO(3) x SO(3) € SO(2,4) x SO(6)
bosonic symmetry as well as 8 of the 32 supercharges of N' = 4 super Yang-Mills, thus forming
the supergroup SU(2|2) C SU(2,2/4). In the 6y — 0 limit the symmetries are enhanced to
SL(2;R) x SO(3) x SO(5) C OSp(4*|4) and we recover the well-known 1-BPS circular Wilson
loop [6, 7]. At the other end of the interpolation we get a special case of the Zarembo loops
constructed in [8]. For related work see [9-11].



Latitude Wilson loops have served as fertile ground for precision tests of AdS/CFT [12—
17], mainly due to the existence of exact results. The expectation value of these operators
was conjectured [5, 10, 11] to be the same as that of the circular loop with the proviso that

A= XN = Xcos? by, (1.4)

where A\ = g2,V is the 't Hooft coupling. This was later proven using localization in [18, 19].
For the fundamental representation of SU(N) the Gaussian matrix model yields [6, 7]

_ 1 1 N A 2 / VN

In the k-symmetric representation the result is [20]

2N (k'v/1 2 inh &’ kv
<Wsk(90)> . (m + K'¢ + arcsin K,) , W £7 (1.6)
N,k =00 AN

whereas for the k-antisymmetric representation of SU(V) the expectation value reads [20, 21]

2NVN 03 km
3 sin 0y, AT o . ‘ .
(W4, (00)) N,k,T—mo e , N 0;, — cos 0}, sin 6y, (1.7)

The limits are taken in the order N — oo and k — oo with k/N fixed, and then A — oo,
with x fixed in the case of S;. The representation Aj is defined for £k < N and exhibits
the symmetry £ — N — k.

At strong coupling Wilson loops have a holographic description in terms of macroscopic
strings and D-branes. The dictionary was spelled out in [22, 23] and states that a Wilson loop
in the fundamental representation of SU(N) is dual to a fundamental string in AdSs x S°,
whereas the k-symmetric and k-antisymmetric representations at k ~ N are captured by probe
D3- and D5-branes, respectively, carrying k units of string charge. For larger representations
of rank k ~ N? the gravitational description is realized in terms of fully back-reacted bubbling
geometries [24-26]. The F1 and D3-brane solutions dual to the %—BPS latitude Wilson loops
appeared in the literature long ago [5, 27]. However, to the best of our knowledge, the
analogous D5-brane configuration is yet to be found. Our goal in this note is to construct
such solution.

The paper is organized as follows. In section 2 we review the AdSs x S® background in
suitable coordinates. Section 3 is devoted to writing an appropriate ansatz for the D5-brane
and then finding and solving the BPS equations. In section 4 we compute the string charge
and on-shell action. We conclude in section 5 with a brief discussion of our results.

2 Supergravity background

Let us begin by reviewing the background supergravity fields. We work in Euclidean signature
(see appendix A for our notation and conventions). The target space metric is that of
AdSs x S° with equal radii, namely,

N

ds? = L? (ds%gs, +d92) , L= (4rgsaN)* . (2.1)



It is supported by the self-dual Ramond-Ramond field strength
Fis) = 4L* (=ivol (4dS5) +vol (S%)) ,  #F5) = —iF(5). (2.2)

Here o' is the string slope parameter, g, is the string coupling constant and N is the number
of background D3-branes which source the 5-form flux. Indeed,

1
(2m)3a’2g,

1
— %;5 *F(5y = NTps, 2/{%0 = (27T)7a'4g§ , Tps =

(2.3)
2k,

where k19 is related to the 10-dimensional Newton’s constant and Tps is the D3-brane tension
(charge). The AdS/CFT dictionary identifies N with the rank of the SU(V) gauge group
and 47gs = g%,;. Equivalently, L? = o/V/\.

It is convenient to write the AdSs metric as a foliation over AdSy x S2, that is,

d3,24d55 = du® + cosh®u (dp2 + sinh? pdTQ) + sinh? u (dn2 +sin?p d§2) , (2.4)
with
u>0, p>0, T ~T 427, 0<n<m, E~E+2m. (2.5)
This makes the SO(1,2) x SO(3) C SO(1,5) isometries manifest. For the 5-sphere we use

dQZ = de? +sin* 0 (da2 + cos® adyp? + sin® o (dﬁZ + sin? ¥ dg02)> , (2.6)

0<Oe<m, 0<a< Y~ + 21, 0<9<m, pr~p+27T. (2.7)

T
2
This is the usual foliation of S® over S, except that the 4-sphere is written as a foliation
over S* x S2. Here the U(1) x SO(3) C SO(6) isometries are manifest. The embedding
coordinates X € R and Y € RS that give rise to (2.4) and (2.6) are

cosh u cosh p sin © sin « sin ¥ sin @
cosh u sinh p cos ¥ sin © sin asin ¥ cos ¢
- co.shus1.nhpsm1/1 , v _ slln@smacosﬂ (2.8)
sinh u sin 7 cos £ sin © cos « cos ¥
sinh u sinn cos £ sin © cos asin ¢
sinh wcosn cos ©
Finally, the 4-form potential reads
Cay = 4L = ifi(u)vol (AdSy x %) + fo(@)vol (1) ), (2.9)
where
1 30 1 1
filu) = —g T ggsinh(du),  fo(O) = T — 1 sin(20) + - sin(46). (2.10)

We set L = 1 henceforth.



3 D5-brane solution

The dynamics of a probe D5-brane in AdSs x S° is governed by the action

SD5 = TD5 / d6a\/det (g + 27TO/F) — iTD5 / 27TO/F A P[C(4)] y (3.1)

where o?

,a =1,...,6 are worldvolume coordinates, P[] denotes the pullback from the
target space to the worldvolume, g, = P[G]q is the induced metric on the brane, and
Fy = 0,Ap — OpA, is the field strength of the worldvolume gauge field. The D5-brane

tension is

1 NV

(2m)Pags 8wt

Tps = (3.2)

From now on we will absorb the factor of 2w’ in the definition of Fj.

3.1 Ansatz

We will work in a static gauge where the worldvolume coordinates are 0% = (p, 7, a, ¥, 9, ).
As required by the holographic dictionary, this choice implies that the D5-brane pinches the
circle parametrized by 7 at the boundary p — oo of AdS5. The most general electric ansatz
consistent with the U(1) x SO(3) x SO(3) symmetries of the $-BPS latitude Wilson loop is

u=0, 0 =0(,a,A), Fup = Fop(p,a, A) F, =0, Fop =0, (3.3)

with
A=1—1. (3.4)

Indeed, the S? C AdSs collapses at the origin of the base space, thus preserving the full
SO(3) symmetry of the sphere. An additional SO(3) factor arises from the fact that nothing
depends on the coordinates (¢, ¢), so the worldvolume geometry inherits the isometry of
S2 c 8. This also requires turning off the gauge field components along d and dy; a
term proportional to sind d¥ A dy is allowed by the SO(3) symmetry but would source a
magnetic charge. Finally, since the fields depend on 7 and % only through the difference
A, the U(1) invariance is realized by a simultaneous shift of both angles.! Recall that the
3-BPS solution [21] corresponds to

O =0, F = —icosfsinh pdp A dr, (3.5)

where 0 < 0, < 7 is a constant related to the electric charge k that sources the gauge field by
N

k= — (0 — cosOsinby) . (3.6)
7

In this case the worldvolume geometry is AdSs x S*. We should recover this in the 6y — 0 limit.

!As we will see below, this dependence is also required by supersymmetry.



The ansatz described above is too general to be useful so we will make some simplifying
assumptions. Following the AdS/CFT dictionary, we consider the most straightforward
extension of the vector of scalar couplings (1.2) into the bulk, namely,

0
0
0

sin 6 cos T

2
I

(3.7)

sin@sin 7

cosf

where 6 = 6(p) is an undetermined function such that

pP—>00
In terms of the embedding coordinates (2.8), and motivated by the 3-BPS solution (3.5),
we will look for configurations satisfying?

Y - N =cosfy. (3.9)

In other words, the D5-brane wraps an S* C S° given by a constant latitude angle measured
with respect to the axis N , which itself depends on p and 7. The precise relation between
the angle 0, and the string charge & must be determined via Gauss’s Law, although we
anticipate that (3.6) remains true even for 6y # 0.

Condition (3.9) translates into an implicit equation for O(p, o, A), namely,

cos 6 cos © + sin fsin O cos o cos A = cos b, . (3.10)

From here we can compute the derivatives

sin 6 cos © — cos 0 sin © cos o cos A

%0 = _cosﬁsin.(a —'sinﬁ?os@cosacosA %0 (3:.11)
00 == cos 6 sn?r(i)e—Sl:u? GS:(;SQ (;ZZSAQ cos A’ (3.12)
020 =~ cos Siflu(i)g—&:ir? HC:(fsa(; ICI;SAO[ cos A’ (3:13)
For the gauge field we adopt a potential of the form
A= A,dp + Ardr. (3.14)

In particular, this sets Fi, = 0. Unlike the D3-brane case, the radial component A, cannot
be gauged away because it depends on the worldvolume coordinates o and A. Notice that
this restricted ansatz is still invariant under the U(1) x SO(3) x SO(3) symmetry.

2Admittedly, this condition is not obvious a priori. It can be arrived at from the general ansatz by
looking at the supersymmetry equations, solving for 0,0, and demanding that the integrability conditions
0a0p0 = 0,0,0 be satisfied. Here we have chosen to impose it from the beginning in order to simplify the
presentation of the paper.



Since the embedding of the D5-brane in AdS5 x S° is determined by a single function
O(p, o, A), the induced metric on the worldvolume can be written as

Jab = hap + OO , (3.15)
with
1 0 0 0 0 0
0sinh?p 0 0 0 0
0 0 sin?20 0 0 0
hop = 1
b 0 0 0 sin20@cos?a 0 0 (3.16)
0 0 0 0 sin? © sin? « 0
0 0 0 0 0 sin? © sin? o sin? ¥

From now on indices will be raised and lowered with the metric hgp, and its inverse h%. After

some algebra the expansion of the determinant in the Dirac-Born-Infeld action becomes®

det (¢ + F) =det (h) L, (3.17)
where )
L=1+|dOI[* +[|FI[* +[|dO A FI[* + 5 [[F A FIJ*. (3.18)
Here we have abbreviated
1 al a 2 1 ai...a
W= —Wa,..a,do™ A+ Ndo®™ [|w||* = ﬁw PWay...ap - (3.19)

The explicit form of the DBI Lagrangian (3.18) can be found in appendix C. On the other
hand, the Wess-Zumino term reads

F A P[C4)] = 4F, f2(©) sin® a cos avsin ¥ dc . (3.20)
The function f3(©) is given in (2.10).

3.2 Supersymmetry

The second-order equations derived from the DBI and WZ actions are difficult to solve.
Instead of dealing with them directly we will require that the D5-brane configuration preserve
the same 8 supercharges as its F1 and D3-brane counterparts. This will lead to a set of
first order equations which are easier to integrate. On general grounds we expect that any
solution to the BPS equations is also a solution of the Euler-Lagrange equations.

3The matrix M% = 0°©d,0 + F% is effectively 4 x 4. One then has

1 1
det (1 + M) =14 Tr M + o (Te*M = Te M) + o7 (TeM = 3Tr M Te M* + 2Tr M°)
+ % (Tr4M—6Tr2MTrM2 +8Tr M Tr M3 + 3Tr’* M? —6TrM4) .



A given D5-brane configuration will preserve some amount of supersymmetry if there
exist target space Killing spinors satisfying (see appendix A for our spinor conventions)

Ipse =€, (3.21)

where the k-symmetry projector is [28] (adapted to Euclidean signature)

r —ﬂ (11" 1 F.T " 1 PR T iF o )
D5 — det (g + F) 6' abcderS 2 ] 4' b cdef 8 ] 2' abL’ cd 6f0-3 48 abtcd ef .
(3.22)

Here I'y, = 0,2™T,, is the pullback of the 10-dimensional Dirac matrices, o; are Pauli matrices,
and e”7*¥Y = 1. In order to write this projector explicitly it is useful to introduce gamma
matrices associated to the metric hgy,, namely,

Yo =11, vr =sinhply, Yo =sinOT%,
Yy =sin@cosaly, 79 =sinOsinaly, Vo = sinOsinasiny 'y . (3.23)
Then
Iy =7+ 0,075, (3.24)

and after some algebra we arrive at?

o 1 1
I'ps = L\/ZZ ((1 +7%0,0T5) o3 + §Fab (’Yab + ’Yabcac@r§> + 8Fachd’YadeU3) ;o (3.25)

with
6abcde f

Y= 6! %det (h)lyabcdef .

The last term in (3.22) vanishes since the gauge field effectively lives in 4 dimensions. In

(3.26)

appendix C we write the expanded form of the projector I'ps.
Now, the dependence of the AdSs x S° Killing spinors (A.3) on the relevant coordinates is

3 ] 1 1 1 1 1 1
€= e*%PF*Q@*%@F*Féeaarﬁea(TFQWF@MEO 7 M = e2M0seatla130 s 3050 (3 97)

where ¢ is a doublet of constant Weyl spinors. Borrowing from the supersymmetry analysis
of the string solution (see appendix B) we impose the constraints

I'i957€0 = €0, ifgegorzazaﬁo =€, (3.28)

each of which reduces the number of preserved supercharges by half. Since the matrices I'1257
and iI‘QeGOFﬂag commute with M (and with each other), the spinors ¢y and Mey satisfy
the same constraints. This preserves the SO(3) x SO(3) symmetry of the ansatz, as the
dependence on the S? C AdSs and S? C S* coordinates carried by the matrix M drops out

4The following identities are useful:

Ea.bcdef eabcdef 6abcdef Eabcdef wbed

a ab abc
T ——"Tbedef =7 Vs T r—Tedef ==Y ¥y T —Vdef="7 ¥y T —Tef =" Y-
514/det(h) 41y /det(h) 3ly/det(h) 2!y /det(h)



from the projection (3.21). Similarly, the first condition in (3.28) implies that the Killing
spinor (3.27) depends on the difference A = 7 — 1), which is required by the U(1) symmetry.
Using the explicit form of the Killing spinors the BPS equation may be rewritten as

1 i 1 1
U lTpsUMey = Meg, U =e 2Pl T30 550l 56,54002 (3.29)

The matrix U~'T'psU can now be expanded in the basis of totally antisymmetric products of
Dirac matrices tensored with the 2 x 2 matrices o; (we include o¢p = 12x2), that is,

™% g5 4. . (3.30)

U71PD5U = ¢; I3ox300; + C(myi) IMog; + C(mn,i) Mo, + C(@ﬂ-)
In principle there are 2!0 x 4 = 4096 terms in the expansion, but the constraints (3.28) and
the Weyl condition I'11eg = €y reduce the number of independent matrices down to 512.
Since we do not want to impose any further constraints on ¢€g, all 512 coefficients but cg
must vanish. In turn, the coefficients can be computed by multiplying U~ 'T'psU by the
corresponding basis element and taking the trace. Using Maple and Mathematica we find
that only 16 coefficients are non-zero, leading to the set of equations

Isoxzp00 — equ=VL, (3.31a) Togga02 — eqg=0, (3.31i)
I'oop — eq =0, (3.31b) Fosag 02 —>  eqg=0, (3.31))

I'eogp — eqy=0, (3.31c) Fosar 02— eqyp =0, (3.31k)

I'irog — eq3 =0, (3.31d) I'ige700 —> eqy =0, (3.311)

Iygo0 — equ =0, (3.31e) LCoioga6 02 — eqip =0, (3.31m)

I'yr00 — eq; =0, (3.31f) Foiozar02  — eqi3 =0, (3.31n)

Ier00 — eqg=0, (3.31g) Coiza6702 — equ =0, (3.310)
Foiza090 — eq; =0, (3.31h) Loozaer 02— eq5 =0. (3.31p)

The expressions for (eqg,eqy,...,eq;s) are collected in appendix C. To arrive at these we

have chosen to eliminate the matrices I's, 01 and o3 using the constraints (3.28). Similarly,
the Weyl condition allowed us to replace I'sg in favor of I'p1234567 — L'0346-

3.3 Solution

The BPS conditions derived above form a set of 16 algebraic equations for the 6 variables
0,0, Fyr, Foo, Foy, Fra, Fry. (3.32)

These equations are consistent with each other and, despite being quadratic, have a unique and
remarkably simple solution. Indeed, using Maple we can eliminate the gauge field and solve for

cos 6 sin 6 cosh p — sin 6y cos 0 sinh p
0,0 = —

: 3.33
cos 0 cos 0 sinh p + sin 0y sin 6 cosh p ( )

To our surprise, this is the same equation that appears for the string configuration dual to
the latitude Wilson loop in the fundamental representation of SU(N) (cf. (B.12)—(B.14)).



Demanding that # — 0 at the center of the AdSy disk,” as required by regularity of the
induced geometry (more on this below), the solution to (3.33) is
sin fp sinh p cosfpcoshp+1

inf = ————"— 9 — <9<g ™
. cosh p + costp ’ cos cosh p + cosp 0<0<b (3-34)

The field strength then simplifies to

F,r =10, (cos © — cos §, cosh p) + i0; (sin © cos aesin A) 9,0 , (3.35)
Fpo =104 (sin © cos acsin A) 0,0, (3.36)
F,y =10y (sin© cos acsin A) 0,0 , (3.37)
Fro = —10, (cos © — cos O, cosh p) | (3.38)
Fry = —i0y (cos © — cos b, cosh p) . (3.39)

Recall that the derivatives 0,0 are give in (3.11)—(3.13). Happily, these expressions satisfy
the Bianchi identity dF' = 0 and can be derived from the potential

A= —isin®cosasin Adf +i(cos© — cos O, cosh p) dr . (3.40)

This configuration correctly reproduces the %-BPS case (3.5) in the 6y — 0 limit. We have
also checked that it satisfies the second order Euler-Lagrange equations.
To study the regularity of the solution we invoke the implicit function theorem. Define

B = cosfcosO + sinfsin © cosacos A . (3.41)
When evaluated on the surface (3.10) we find that

0" B0 = {(sin 0 cos © — cos O sin O cos av cos A)? + sin? O cos? o sin? A} (8,0)% + sin? 6, .
(3.42)
This is manifestly positive, so the geometry is smooth. Notice, however, that the static
gauge coordinates c% = (p, T, , 1,9, ¢) do not cover the entire manifold, as they fail to
include points where

OJef8 =0 = cosfsin® — sinf cos© cosacos A =0 = cosf = cos B cos O .
(3.43)
If 8y lies inside the range

min (g, ™ — ;) < 6y < max (0, 7 — 0Of) , (3.44)

then the coordinates can become singular and one must choose a different parametrization
for the surface § = cos . Still, the induced metric is regular everywhere. Regarding the
gauge field, the 1-forms dp, dr and pdr are ill-defined at p = 0, so we need to study the

5As for the F1 and D3-brane, there is a second (unstable) solution given by

sinf — sin O sinh p ’ COS&:COSGQCOShp—l’ By <0<
cosh p — cos cosh p — cos

We do not explore this possibility here.



behavior of the solution near the center of the AdSy disk. We can solve equation (3.10)
perturbatively in p to find®

sin @y cos a. cos A cot Oy sin? 0 (1 — cos® acos® A) 3
O =0+ - +0 . 3.45
¥ 1 + cos ty P 2(1 +cos€0)2 P (p ) (3:45)
The induced metric (3.15) and the gauge field (3.40) then read
ds® = dp” + p*dT* + ————5 (cos Adp — psin Adr)" +-- -, (3.46)
(14 cos )
A= _ isinfysin b cosa (sinAdp+ pcosAdr) +--- . (3.47)

1+ cos b

The dots represent terms that are regular as p — 0 (e.g. pdp, p*d7). Switching to cartesian
coordinates (z,y) = (pcosT,psinT) this becomes

sin2 0y cos? «

(14 cosfp)?

0 0h sin
_zsml;fzz)s(;sosa (—sing da + cosdy) + - . (3.49)

ds? = daz? + dy® + (cos ) da + sintp dy)> + - - (3.48)

A=

Both fields are manifestly regular at p = 0 in these coordinates. Of course, A can become
singular after a gauge transformation, but the curvature F' will remain smooth.

4 String charge and on-shell action

Having found the solution to the BPS equations we now compute the on-shell action and
the string charge carried by the D5-brane. To this purpose we first point out that the DBI
Lagrangian (3.18) simplifies to

o sin? © (sin? 6 — sin? O sin? (8p€)2)2

4.1
(cos O — cos O, cos ©)? #1)

As usual in supersymmetric setups, this is a perfect square. Other useful simplifications are

oL 20 cosOy sin? © (sin? 6 — sin® O sin? «a (9,0)?) (4.2)
OF,, sinh p (cos O — cos B, cos ©)? ’ .
and
cos O sin? O sin? a (0,0)?
Foo— isinh B P _ 4.
pT ¢S p (COS Or cos f — cos 8, cos © (4:3)

We anticipate, however, that we have been unable to perform the next calculations exactly
in 6y, so we proceed perturbatively using the series solution

sinh p cos a cos A cot O sinh? p (1 — cos? avcos® A)

O =0+
F coshp +1 0 2 (cosh p +1)?

02+, (4.4

5For small enough p condition (3.43) is never satisfied, so the coordinates are regular.

,10,



Higher order terms are easily obtained from (3.10) using Maple or Mathematica. In what
follows we only present the details to order 63, but we have actually done the calculations
up to O(63°).

The string charge dissolved on the D5-brane is equal to the electric charge that sources the
gauge field Fp. It can be computed using Gauss’s Law, which in our coordinates takes the form

~ 0Sps
© 6F,

k= 271'0/2'/% dadipddde Il 4, I (4.5)
p—00

Here we have reinstated the factor of 2ra/ that was previously absorbed in F;,. The ¢ is due
to the Euclidean continuation. Using (4.1) and (4.2) the string charge simplifies to

N cos 0, sin® © 30 1
k=— dadA sin® “— —sin(2 — sin(40
3 /p_mo adA sin” a cos o <cos I + 5 sin(20) + g sin( )) ,
(4.6)
and plugging in the perturbative solution (4.4) this becomes
k= —2/ dadA sin® o cos o B (0, — cos O sin 0,) + 4 sin” 6y, cos accos A O
™ Jp—o0

—i—g cos 0, sin 6y, (5 cos® avcos® A — 1) 02 + -- } . (4

The second term clearly vanishes after integration. What is not so obvious is that the third
term also vanishes. In fact, we have checked using Maple that the integral (4.6) gives

N
k= — (0 — cosOsinb) + O (96()) ) (4.8)
i

leading us to conjecture that it is independent of fy. Thus, the relation between the integration
constant 6 and the string charge k is the same as in the %—BPS case.

The calculation of the on-shell action (3.1) is more subtle since it is divergent. Indeed,
from (4.1) and (4.3) one obtains

sin® © (sin? Oy — sin? O sin? a (9,0)?)
cos ) — cos 8, cos ©

02 O win 2
— (cos O — cos Osin” Osin” a (9,6) ) (35 —sin(20) + ésin(ll@)) ]

cos f — cos 0, cos ©

N
Sps = 7:25\ /dpdadA sinh p sin? acosa[

= M (cos 01 (0, — cos Oy, sin 0,) — gsin?’ Hk) (—1epc +1+ i@g + .- ) ,  (4.9)

7r 3 2 10
where 0 < p < p. — o0 is a large cutoff. The main points to highlight are that the result
factorizes as shown above, the divergent piece is independent of 6y, and odd powers in the
expansion vanish after integration, at least to order O(6}"). Now, the standard prescription
to renormalize the action is to perform Legendre transforms on some of the worldvolume

fields [21, 27, 29, 30]. Concretely, we first add the boundary term

Shy _ / drdadpdddo LA, | (4.10)
P =Pc
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which, from the variational point of view, fixes the total electric charge on the brane as
opposed to the value of the potential at the boundary. This is natural in our context since
the AdS/CFT dictionary maps k to the rank of the representation A of SU(N). Using
the perturbative solution we find

cos 0, sin® ©

30 1
dadA sin® 29 a2 1
/ppc adA sin” a cos o (cos B0 — cos 0, c0s© + 5 sin(20) + 3 sin( 6))

dery - N\/X
A =

2
X (cos B cosh p — cos ©)

N 1
= f [cos 0 (0 — cos Oy, sin 6y,) <26pc —-1- 1?;)‘9(2)) + %Sing Ontp + - } - (411)

Again, odd powers vanish and the divergence is 0y-independent. The second part of the
renormalization prescription is to perform a Legendre transform on the z coordinate of the
Db5-brane embedding in the Poincaré patch of AdS5, which requires adding the term

~ 4Sps

5 (4.12)

@W:—/ drdadipdddeIl,z, 1L,
P =Pc

This was justified in [29, 30] in terms of the Neumann boundary conditions satisfied by open
strings in the directions parallel to the D3-branes that backreact to the AdSs x S° geometry.
Given that z ~ e~2” close to the boundary, the above is equivalent to

5
@m:_/ drdadypdddeTl, m:‘%?
P =Pc 5P

(4.13)
To compute the momentum conjugate to p we must undo the static gauge-fixing and introduce
a new worldvolume coordinate o such that p = p(c). This amounts to replacing the
first component of the metric hgp in (3.16) by h,y = 1 — hee = p/? and defining the
Lagrangian (3.18) using this new metric (see appendix C). After computing II, we can set
p' = 1. With the help of Maple we get

ghdry _ _ NV / dodA sinh psin? a cos asin® ©
T Jp=pc cos 0 — cos 0, cos ©

=— Ngﬁ sin® @y efe + O (9(1)0) . (4.14)

™

As we can see, this term does not contribute with a finite piece and is independent of 6y,
at least to the order shown above. Putting all the ingredients together, we find that the
renormalized action for the %—BPS D5-brane is

jNﬁ,
3T

1
Sps -+ Sgdry + Szdl“y — sin3 0 (1 _ 593 + .. > . (415)

This is finite. Moreover, we have checked to order O (6}°) that

Sps + SPAy 4 ghdry —

2NV A
—?)\f sin® 0, cos fp (4.16)
7r

which coincides with the gauge theory prediction (1.7) according to the holographic dictionary.
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5 Conclusions

In this paper we have found the D5-brane configuration dual to the i—BPS latitude Wilson
loops in the k-antisymmetric representation of SU(N), thus completing a missing entry in
the AdS/CFT dictionary. Our solution is exact in the latitude parameter 6y and correctly
reproduces the %-BPS limit. Unfortunately, we only managed to compute the string charge
and on-shell action perturbatively. We found full agreement with the gauge theory result

to order O (63°).

Referring to the coordinate system (2.4)—(2.7), the D5-brane spans the AdSs C AdSs
disk located at u = 0 while wrapping an S* C S° corresponding to a constant polar angle
0 < 6 < 7 measured with respect to the axis N € RS given in (3.7) and (3.34). This is
represented in figure 1. It is important to emphasize that because the axis depends on the
worldvolume coordinates (p,7), the D5-brane wraps a different 4-sphere at each point in
AdSs5. On the other hand, the value of the angle 0 is determined by the string charge k
dissolved on the brane according to formula (4.8). Even though we computed this relation
perturbatively, we conjecture it to be independent of the latitude parameter 6y and therefore
identical to the %—BPS version (3.6). In turn, the electric charge k sources the worldvolume
gauge field (3.35)—(3.39), derivable from the potential (3.40). Notice that, unlike the D3-brane
solution, which only carries an electric field F},-, the D5-brane also has magnetic components.

As expected, the calculation of the D5-brane on-shell action (4.16) required the regular-
ization of divergences and their corresponding renormalization. The standard prescription
of performing Legendre transforms on some of the worldvolume fields rendered the correct
the result, as it did for the F1 and D3-brane configurations in [21, 27, 30]. A slight technical
deviation from previous works, however, is that we implemented the transform of the electric
component of the gauge field using the boundary term (4.10), as opposed to a bulk integral
involving F,;. This emphasizes the role that regularity plays in the evaluation of the on-shell
action. Indeed, our method only works in a gauge in which A is smooth at p = 0. Otherwise,
one must incise a disk of radius € < 1 from the center of AdSy and include additional boundary
terms at p = €. Of course, this is not an issue when working with F),; since it is always regular.

An interesting difference between the D5-brane solution and its F'1 and D3-brane coun-
terparts lies in the interpretation of the vector N , which is an extension into the bulk of
the scalar couplings (1.2) that define the latitude Wilson loop. For the F1 and D3-brane
configurations one identifies N = Y, where Y are embedding coordinates for S° c RS.
Instead, for the D5-brane, N is interpreted as an axis such that N-Y = cos 0r. Regardless
of the interpretation, the SO(3) symmetry preserved by the three solutions corresponds
to the subgroup of SO(6) that leaves N invariant for all values of p and 7. In the case of
the D5-brane, this is realized as isometries that act on the S? C S* coordinates (19, ¢), not
touching («,1). The F1 and D3-brane both sit at o = 0, so the 2-sphere shrinks to zero
size. Another difference worth pointing out is the way in which the U(1) symmetry manifests
itself. Again referring to (2.4)—(2.7), the angular dependence drops out from the F1 and
D3-brane solutions because they have 7 = v, whereas the D5-brane embedding does depend
on these angles but only through the difference A = 7 — . In particular, this means that
the preserved Killing spinors (3.27)—(3.28) carry this dependence.

,13,
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(a) The +-BPS D5-brane satisfies Y - N = cos 0. (b) The 6 — 0 limit reproduces the 1-BPS case.

Figure 1. Viewed in embedding coordinates Y e RS, the D5-brane wraps an S* C S° corresponding
to a fixed polar angle 6, measured with respect to the axis N, which itself depends on the AdS,
coordinates (p, 7). The axis starts at the north pole of the 5-sphere for p = 0 and reaches 6 = 6, at
the boundary p — oo; as 7 varies it rotates around the north pole. The angle 6y, is determined by the
value of the string charge k carried by the D5-brane.

Remarkably, the function 6(p) that determines the orientation of N is the same in the
F1 and Db5-brane cases. This is reminiscent of [31], where it was shown that any string
solution that sits at a fixed point in S° can be extended to a D5-brane configuration with
the same embedding in AdSs while wrapping a fixed S* C S°. Our results suggests that it
might be possible to generalize this to string worldsheets that have a non-trivial profile in S°.
Perhaps, this can be interpreted in terms of the Myers effect [32], whereby the worldsheet
of k coincident strings expands into additional directions.

The spectrum of fluctuations of the %—BPS string dual to the latitude Wilson loop was
computed in [12, 33] and later fit into supermultiplets of SU(2|2) [13]. The same was done
for the %—BPS configurations in [34, 35], where they organized the excitations in terms of
representations of OSp(4*|4). It would be interesting to repeat this exercise for the %—BPS
D3- and D5-brane solutions, perhaps allowing for the computation of 1/N corrections to the
expectation value of latitude Wilson loops as in [36]. This would also open up another setup
where to study correlation functions of insertions in 1-dimensional defects and AdSs/dCFT;
in higher representations, along the lines of [37]. Another follow up work is to apply the
technology of calibration forms [38-41] to compute the on-shell action exactly in 6. Finally,
it remains to elucidate the role of the unstable D5-brane solution. All these are interesting
avenues to pursue in the future.
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A Conventions

We work in Euclidean signature. Target space indices are labeled by m,n,.... Worldvolume
indices are a,b,.... Tangent space indices are underlined. The background metric is G-
Our spinor conventions follow [28]. In particular, type IIB fermions are grouped into a
doublet of Weyl spinors of positive chirality, namely,”

€1 o
€ = (6 > y F11€1 = €1, F11€2 = €9, Fll = _ZFM' (Al)
2

The AdSs x S° Killing spinors satisfy

1 .
<Vm + 2LF*Fm> € = 0, F* = —ZP0123402 . (A2>
In the coordinate system (2.4)—(2.6) the solution reads (with the obvious vielbein and spin
connection)
¢ — e—gur*rge—gpr*rle%Trgeénrﬁeégrge—ger*rée%arﬁegwﬂe%ﬂr@e%@r@m (A.3)
, .

where €y is a doublet of constant Weyl spinors.

B String solution

In this appendix we derive and solve the BPS equations for the string configuration dual
to the latitude Wilson loop in the fundamental representation of SU(N). We work in a
static gauge in which the worldsheet coordinates are 0® = (p, 7). The simplest ansatz that
respects the U(1) x SO(3) x SO(3) symmetry is

u=0, O =10(p), a=0, V=T, (B.1)

with 8(p — o0) = 6. For simplicity we also set n = & = ¥ = ¢ = 0, although the final result
does not depend on this choice. The condition for supersymmetry reads

Ipie=¢, (B.2)

"In Lorentzian signature type IIB spinors are Majorana-Weyl. It then makes sense to define the singlet
€ = €1 — i€z and its charge conjugate € = €1 + ie2. However, since the Majorana condition is lost in Euclidean
signature, we prefer to maintain the doublet notation.
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where the k-symmetry projector for a fundamental string is [42]

- _ab
1€ p03
oy = € 1ab03 B.3
L= 91 /det (9) ()
In this case we find
Py — 0 (13— 0,0T55) +5in0 (P17 + 8,0 Tsz)) 03 (B.4)

\/(1 + (9,0)?) (sinh2 p + sin? 9)

Notice that (B.4) does not depend on 7. Also, it does not commute with I'13 and I'sy. This
forces us to remove the T-dependence from the Killing spinor (A.3) by imposing

(FQ + Fﬂ) e =20 = F@Go =€p. (B.5)
The supersymmetry condition then becomes
U_1FF1U€0 =€, U= 6_%/)F*Fl€_%G)F*Fé . (B.ﬁ)

Some algebra shows that
i (sinh pcos @ (I'1g — 9,0 g5) + cosh psin @ (T'17 + 9,0 's7)) o3
\/ (14 (9,0)2) (sinh? p + sin? 0)
N isinh psin 0T, (P15 + 0,0 T + 'z + 9,0 T'157) 03 .
\/ (14 (9,0)?) (sinh? p + sin? )

It is easy to see that the second line vanishes after imposing the constraint (B.5). The

U71FF1U =

(B.7)

projection then simplifies to

0, (cosh pcos@T'13 + sinh psin O T17) o3

€ = €. (B.8)
\/(1 + (0,0)?) (sinh2 p + sin? 0)
Taking p — oo we get a second condition on €y, namely,
) (COS Gorg + sin eorg) 03€0 = €p i=4 irgeeorﬂageo =€, (Bg)

where we have assumed that 9,0 vanishes at the boundary. Importantly, [iFQeHOFﬂog, Tigs7] =
0, so the two constraints are compatible with each other, reducing the preserved supercharges
from 32 down to 8. Inserting this back into (B.8) we get

9, (cosh p cos @ — sinh psin 6 I'yy) efol2r
\/(1 +(0,0)?) (sinh2 p + sin? 9)

Expanding the exponential we obtain a term proportional to the identity matrix and another

€0 = €0 - (B.lO)

term proportional to I'p7. They lead to the pair of equations

0, (cos Oy cosh p cos O + sin f sinh psin 0)
\/(1 + (0,0)?) (sinh2 p + sin? 9)
0, (sin Oy cosh p cos @ — cos p sinh psin ) = 0. (B.12)

=1, (B.11)
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These are consistent with each other and imply

cosh p cos 6 sin 6y — sinh psin 6 cos 6y = £ sin by . (B.13)

The integration constant on the right hand side is fixed by looking at p — 0 and demanding
that sinf — 0, as required by regularity of the induced geometry. One can in fact solve
for 6(p) to find

sin 6 sinh p g — o8 fpcoshp+1
cosf =

in = —m——— .
St cosh p £ cosby’ cosh p + cos 6

(B.14)

For the upper/lower sign the string wraps the northern/southern hemisphere of the S? C S°.
Assuming that 0 < 0y < 7, the stable solution corresponds to the + sign.
C Explicit expressions

Here we collect some explicit expressions omitted in the body of the paper. First, using a
worldvolume coordinate o such that p = p(o), the DBI Lagrangian (3.18) reads

(80@)2 + (879)2 + (804@)2 + (3w@)2 chr F02'a
p'? sinh?p = sin?©  sin?Ocos2a  p2sinh?p  p?sin? O
2 2 2
Fgy n FZ, n 2y n o
p?sin?©cos?a  sinh?psin?@®  sinh? psin? @ cos? ¢ sin* O cos?
(8@Eu+8®EW a@g@{%@@Fw+@@EW—@enw2

L=1+

2 sinh? psin? © 0’2 sinh? psin? © cos? a
(a@ﬂw+mﬂﬂm—aeaw (8,0 Fop + 840 Fro — 8,0 Frp)?
2 + 12 2
0’2 sin* © cos sinh” psin® © cos? «

(FJTFaw - FO'QFT’(/} + ngpFTa)2
p'2 sinh? psin? © cos? o

Secondly, the D5-brane k-symmetry projector (3.26) yields (setting p = o)

I'126789072 0:0l'95 0,015 0y OI'75
Fps = % Kl + 0,005 + smh; + sin @7 * sian cosa) g
n Forl'iy | Fpal'ie | Fpplaz Fral'ss Fryloz Foyl'sr
sinh p sin © sin®cosa  sinhpsin® = sinhpsin®cosa  sin’ O cos a
n (qu—aa@ + Fm8p€) — Fpa&@) F@ " (Fp73¢@ + Fwﬁp@ — praT@) F@
sinh psin © sinh psin © cos a
(Fpa&p@ Fwa O + F, 1/,8 @) F1675 (Fm&p@ F 1/,8 O + F, 1/,8 @) F2675
sin? © cos a sinh psin? © cos a
n (FprFoy — FpaFry + de)Fm> I'126703

sinh psin® © cos a

(C.2)

Lastly, the expressions involved in the 1-BPS equations (3.31a)-(3.31p) are

eqq = cosfysin © +sin fp sin © cos avcos A 9,0 —sin Oy coth psin © cos asin A 9,0
+isinh pcot © Fy +isinh pese? O tan a (9,0 Foy + 030 Foo — 000 Fyy)
—cosfpcothpescOtana (Fyr Fop — Fpa Fryp+ Fpp Fra) (C.3)
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eq, = —sinfysin © cosasin A 9,0 — (cos by cos © +sin by coth psin © cosavcos A) 0,0
—icschp (0,0 Fry+0y0 Fpr —0:0 Fpy)

eqy = — cosfysinOsinacos A 9,0 + cos fp coth psin O sinasin A 9,0
+icoshpcosasin A F,, +icschpcosacos A Frp +i Sinhpcsc:2@secacosAFaw
+csc O (sin by coth p+cos by cot Osecavcos A) (Fyr Fop — Fpo Frop+ Foy Fra)

eqs = cosfpsin © cos asin A 9,0 — (sinfy cos © — cos By coth psin O cosacos A) 9,0
—icoshpsinacos A Fq +icosh psecasin A Fjy, +icsch psinasin A Fr,
+icschpsecacos A Fry,

eqy = —cosfysin ©sin asin A 9,0 — cos fp coth psin O sin avcos A 9,0
—icoshpcosacos A Fl,, +icschpcosasin A Frq +i s.inh,ocsc2 Osecasin A Fy,
+cos by cot © cscOsecasin A (Fyr Foy — Fpo Fro+ Foyp Fra)

eqs = sinfysin © — cos 0 sin © cos avcos A 9,0 + cos Oy coth psin © cos asin A 0, ©
—icoshpsinasin A Fi,, —icoshpsecacos A Fy,
—sinfpcothpescOtana(Fyr Fop — Fpo Fro+ Fpyp Fra)
—1icschpsinacos A Fro +icsch psecasin A Firy,

eqg = sinfysin O sinasin A 9,0 +sin 6y coth psin O sinacos A 9,0
—sinfpcscO cot Osecasin A (Fyr Foy — Fpo Fry+ Fpy Fro) —isinhpcot © Fy,
+icschptana (0,0 Fry —0:0 Foy+0yO Fyr)

eq; = — cos b cos O sin A 9,0 — (cos by coth pcos © cos A +sin g sin © cos ar) 0O
—sinfpcscOsecady© —icosh pcot Osin A F,y, —icsch pcot © cos A Fry,
—i—z’coshpcch@tanasinA(ﬁp@ Foy+ 030 Fpo — 0,0 Fy)
+icschpcsc2@tanacosA(8T@ Fopy+0yp0O Fro — 0,0 Fry)
—cosfpcscOtanasin A (Fpr Foy — Fpo Fry+ Foyp Fra)

eqg = —sinfy cos © cos a4+ cos by cos © cos A 9,0 — cos by coth pcos O sin A 9,0
—sinfpcsc©sina 0,0 +icosh pcot © cos A F,y, —icschpcot Osin A Fry,
—icoshpesc? O tanacos A (9,0 Foy+0p0 Fpo — 0,0 F,y)
—l—icschpcch@tanasinA(aT@ Foy+0yp0O Fro — 0,0 Fry)
+cosbycscOtanacos A (Fyr Fop — Fpo Fryp+ Fpyp Fra)

eqg = cos fysin O sina 0,0 +isinh pcosa Flyq
+sinfycscOsin A (Fpr Foy — Fpo Fry+ Foyp Fra)

eqyo = cos g cos © cos a+sin by cos © cos A 9,0 —sin By coth pcos O sin A 9,0
+sinfpcscOtanacos A (Fyr Fop — Fpo Froyp+ Fpy Fra) +cosbycscOsina 0,0
—icschpcot©sina (0,0 Fro+ 0,0 Fr —0;0 F) —icschpcosa Fy,
+isinh pseca Fy,,
eqq1 =sinfysin ©sinacos A 9,0 —sinf coth psin O sinasin A 9,0

—isinh pcot @ tana F,y —icschp(0,0 Fro +0a0 Fyr —0;0 Fyq)
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€q12 =

€d13 =

€4 =

€15 =

—isinhpesc? © (9,0 Foyp+0p0 Fpo — 04O F,y)

+csc O (cos by coth p—sinfycot ©secacos A) (Fpr Fop — Fpo Fryp+ Fpy Fro), (C.14)
—cos By cos O sin a4+ cos fy csc © cos a0, O +-icsch psina Fyr

+icoshp0502®secaFaw —icschpcot©cosa (0,0 Fro+ 0,0 Fpr —0:0 Fp)

+csc O (sin by cos A+ cos by coth pcot O seca) (Fyr Fop — Fpo Fryy+ Fpy Fro) , (C.15)
—sinfycosOsin A 9,0 + (cos by sin © cos a —sin f coth pcos O cos A) 9,0
—sinfpcscOtanasin A (Fpr Foy — Fpo Fry+ Fpyp Fra) +cosbycsc O seca 0y, ©
—icschpcot ©seca (0,0 Fry +0y0 Fyr — 0:0 F,y) —isinh psina Fq (C.16)
sin Ay cos O sin o — sin Hy csc O cos a9, ©

—1icosh pcot ©sin A F,, —icosh pcot ©tanacos A F,y, —icschpcot © cos A Fr,
+icschpcot©tanasin A Fry, —icoshpesc? ©cos A (090 Foyp +0y0 Fpo — 00,0 Fpyp)
+icsch pesc? Osin A (0-O Fopy+0y0 Fro — 0,0 Fryp)

+csc O (cos by cos A —sinbg coth pcot Osecar) (Fpr Fopy — Fpo Fryp+ Fpy Fro), (C.17)
—sinfpsin O sin 9,0 +i cosh pcot © cos A F,, —icosh pcot O tanasin A Fy,
—1icschpcot ©sin A Fr, —icschpcot O tanacos A Fry,

—icoshpesc? ©sin A (09O Foyp +0p0 Fpo — 00O Fuy)

—icschpesc? ©cos A (9,0 Foy+0y0 Fro — 0,0 Fryp)

+coslycscOSINA (Fyr Fop — Fpo Fryp+ Fpyp Fra) - (C.18)
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