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We review some recent results in two dimensional Rational Conformal Field Theory. 

We discuss these theories as a generalization of group theory. The relation to a three di­

mensional topological theory is explained and the particular example of the Chern-Simons­

Witten theory is analyzed in detail. This study leads to a natural conjecture regarding the 

classification of all RCFT's. 
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1. Introduction - a trip to the Zoo 

The fundamental principles of string theory are not yet known. Since conformal field 

theory /1] plays a crucial role in string theory, many researches believe that a detailed study 

of conformal field theory will bring us closer to the concepts underlying string theory. It 

is hoped that a better understanding of the mathematical foundations of conformal field 

theory will lead to interesting and relevant generalizations of CFT, which might in turn lead 

to progress in string theory. There are other good reasons to study CFT, on the one hand, 

the study of CFT m.ight eventually be useful in identifying 2D critical phenomena in nature 

and on the other it has lead to beautiful results and applications in pure mathematics, and 

promises to lead to more. 

Motivated by the desire to understand better the mathematical structure of conformal 

field theories one turns to the problem of classifying theories. We are not so much interested 

in the final list of theories as we are in the techniques used to obtain such a list, and the 

mathematical structures characteristic of members on that list. 

General conformal field theories have not yet been attacked in any meaningful way, 

but the study of an interesting subclass of theories has been very successful in the past 

two years. In order to motivate and define these theories let us recall that some theories 

have the beautiful properties that their correlation functions, partition functions etc. have 

very simple analyticity properties in the moduli. The prototype of such behavior is the 

holomorphic factorization of determinants on Riemann surfaces: 

which plays a key role in the Belavin-Knizhnik theorem of string theory. Should we focus on 

this criterion? No: the theories which have this property are too simple-they are basically 

free theories ( on the world sheet!). Holomorphic factorization admits a generalization which 

leads to a very rich class of conformal field theories, namely, the rational conformal field 

theories (RCFT). These may be characterized by saying that all correlation functions, 

partition functions, etc. can be expressed in terms of finite sums of analytic times anti-
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analytic functions: 
N<oo 

(¢, ... </,) ~ L l.1"il 2 

i=l 

More formally, RCFT's are distinguished amongst the set of all conformal field theories by 

the existence of a holomorphic (and anti-holomorphic) monodromy-free subalgebra A (and 

A) of the operator product algebra such that the physical Hilbert space can be decomposed 

into a finite sum of A x A representations: 

In fact, known theories satisfying this criterion comprise a veritable zoo. 

Let us collect some specimens from this zoo. The oldest and most venerable are surely 

the current algebras - also known as Wess-Zumino-Witten [2] theories. These current 

algebras have various extended algebras (a notion we explain below). So far, all known 

extended algebras are related to orbifolds [3] of WZW theories by a subgroup of the center. 

Another venerable example of rational theories are the minimal models of BPZ [1] and FQS 

[4] (and their N=l and N=2 generalizations). These are based on the chiral algebra of the 

(N=l,or N=2 super-) Virasoro algebra itself, and these have rather nontrivial extensions 

known as W-algebras and their generalizations, H'n-algebras [5]. In addition there are 

various species of parafermions [6]. Between 1984 and 1986 it was realized [7] [8] [9] 

that parafermions and the various discrete series could be obtained by the GKO coset 

construction [10]. Indeed, any coset construction based on two rational chiral algebras will 

define a rational conformal field theory. Finally whenever the chiral algebra has a discrete 

symmetry we can form an orbifold [3] theory [11]. 

Clearly, this zoo should be organized. By trying to formulate all these theories in a 

unified way, we are led to conjecture: a.II RCFT's are related to certain deformations of 

groups, this deformation can be described axiomatically or in terms of 3D Chern-Simons­

Witten (CSW) gauge theory and is closely related to certain quantum groups. A cynical 

version of this conjecture would state that nothing new has been found since 1986, so we 

must be done. 

The purpose of these lectures is to make a case that the conjecture is not cynical but 
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based on the insight that RCFT is closely related to group theory, and in fact must be 

defined by axioms closely related to those defining groups. 

These lectures are not meant to be a review of the subject of RCFT. Many groups 

have contributed to this subject from various points of view. In particular, a completely 

independent line of development, beginning with the classic papers of Doplicher, Haag, and 

Roberts, and using the conceptual framework of algebraic quantum field theory has led to 

similar results [12]. For the most part we will review our own work on the subject [13] [14] 

[15] [16] [17] and wil! pre-"ent it from the point of view developed in these references. 

We will assume the reader has some familiarity with conformal field theory, e.g. we 

will assume familiarity with the material covered in standard review lectures [18]. We have 

included many exercises, hoping they will help the reader study the subject. It is a good 

idea to try to work out at least some of them in order to practice the formalism in the 

text. The answers to most of these exercises can be found in standard CFT reviews or in 

our papers [13]-[17]. 

In the next section we give several different definitions of chiral vertex operators. 

These allow us to have an operator formalism for calculations of conformal blocks and lead 

to the definition of the duality matrices. In the third section we examine the consistency 

conditions these matrices have to satisfy. The complete set of independent identities of 

these matrices is found in section 4. In the fifth section we describe the Tannaka-Krein 

approach to group theory which is similar to the structure we found in sections 2 - 4. This 

leads us to the conclusion that RCFT is a generalization of group theory. In section 6 we 

combine the left moving and right moving conformal blocks into a consistent conformal 

field theory. Section 7 is devoted to a general discussion about the relation between 

two dimensional duality ( as described in the previous sections) and three dimensional 

general covariance. This general discussion is made more explicit in sections 8 - 10. In 

the eighth section we have some comments about quantum groups and the relation of 

quantum groups to knot invariants and RCFT. In sections 9 - 10 we consider an explicit 

example of a topological three dimensional field theory. This is the Chern-Simons-Witten 

(CSW) theory. We first discuss the canonical quantization of the theory (section 9) and 

explain the connection between the theory and two dimensional conformal field theory. 
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We then consider different gauge groups in three dimensions (section 10) and show that all 

known RCFT can be obtained by an appropriate gauge group in three dimensions. Our . 
conclusions a.re summarized in section 11 where we also present some conjectures about 

the classification of RCFT. 
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2. Chiral Vertex Operators and Duality Matrices 

We need a formalism for manipulating holomorphic parts of vertex operators. Vertex 

operators will be replaced by objects known as chiral vertex operators (CVO's) [19J [20} 

[13][14}[15] the distinction being that chiral vertex operators a.re purely holomorphic and 

keep track of the various internal states and couplings used to form a conformal block. 

Rather tha.n give the definition immediately, let us build up to it. 

Consider the minimal Virasoro models. For every triplet i,i, le of Virasoro represen­

tations and /3 E 1i; we define 

by its matrix elements. 

First, consider /3 to be a highest weight vector /3 = Ii >. For the primaries in 7-li and 

1i1c we have 

where 6 is the conformal dimension of field. We can compute matrix elements between 

descendants using the Virasoro algebra and the rule 

This only defines 4> on Verma modules. Demanding that 4> is defined on the irreducible 

quotients forces some of the constants II 4>{1 II to vanish. 

• Exercise 2.1 Null vector.s at work. 

a.) Suppose </, has a nonvanishing weight. Show that if IO) is the al{2) invaria.nt 

vacuum then the null vector L-110) implies that ll4>toll = 0. 

b.) Consider the Ising model with primary fields l,tp,u of dimensions 0,1/2,1/16. 

Use the null vector 

to show that ll4>:..,,11 = O. 
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We initially define the fusion rule N]1e = 0, 1 according to whether II t II must be zero 

or not. Having defined t1f for highest weight states, we can define it for descendants 

f3 = L-1 I:} > ( and their linear combinations) by contour integrals: 

For simplicity we will often restrict ourselves to the minimal models. However, we will 

occasionally point out new elements that arise in more genera.I RCFT's. For example, we 

define chiral vertex operators for affine Lie algebras g. Each g representation 'H, contains 

a ground state representation lri C 'Hi for the finite dimensional algebra g. We first define 

tff ( z) for /j E M'; • By commutation with the generators of g it suffices to define the 

matrix elements between o: E H-1, ; E tt·1c 

where t~,.. E Inv (Wi ® Wj g. ff k) is an invariant tensor. Other matrix elements and the 

definition for /3 a descendent can be carried out exactly a.s before. Again the null vectors 

will only allow one to define <I> consistently starting with a 1ub1pace of lnv(Wi@Jl'i ® U'1c). 

This subspace of good couplings 

is called the space of 3-point couplings and Njie = dim V/1e are the fusion rules .. Notice 

that in this case, unlike the discrete series, the integers N,~ are not all zero and one - in 

some cases there exists more than one invariant coupling. Also, the representations are 

not all self conjugate. In other words, N/0 = 6/ but Nt = DiJ where, is the conjugate of 

i. In more genera.I theories there are CVO's which vanish for three primary fields but do 

not vanish for the descendants. 

CVO's give an operator formalism for computing conformal blocks. For example, the 

conformal blocks of the 4-point function for 4 primaries in the minimal models are . 

~--} I _...___I~ l. (2.1) 
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where the rhs of the a.hove equation illustrates a. useful pictorial notation for conformal 

blocks. 

The physical correlation function is given (in the diagonal theory) by 

(<lil¢-i(z2)4'k(zs)l</Jt) = L d,1.r,12 

p 

where d,, are constants independent of z a.nd z. This correlator looks like it depends on 

many choices. Duality states that many of those choices don't affect the above final result. 

More precisely, part of duality states that the physical correlators are independent of the 

choice of basis of conformal blocks. In particular, the order of tf,i qi on the lhs is irrelevant 

so one could also have used the blocks 

(2.2) 

But these blocks must give the same correlation function. 

• Exercise 2.2 Trivial fact of life. Show that if {/i}, {g,}, { hi}, { k,} are four sets of 

linearly independent analytic functions such that 

N M 

Lli9i = I:hJ:, 
i=l i=l 

then N = M, and f = Ah g= (A- 1 )tf for some invertible matrix A. 

From the above exercise it follows that the two sets of blocks (2.1) and (2.2) are 

linearly related, and in fact, by considering descendants we have a.n operator identity: 

(2.3) 

where that the coefficients B are the same for the primaries and all the descendants. 

If one thinks carefully about the above argument he will note that we must choose 

cuts since the .r's are not globally defined and have monodromy. So we choose the cut: 

z 1 - z2 E IR+. In order to compare (2.1) and (2.2) we must use analytic continuation, 
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and we can only compare these functions on their common domain of definition. In the z2 

plane we find that (2.1) and (2.2) are defined on the following regions: 

I I I I I i~I // I 
I 

I I I 
I I I I / 

I 
I 

/ 

~ i!'3 I / 

I I I 
/I I /// I 

// I ,I 
I 

/ 

hence the overlap consists of two components and there are in principle two distinct B 

matrices. We define B( +) by (2.3) for Im(z1 - z2) > 0. For Im(z1 - z2) < 0 we have, in 

general a different matrix B( ). If the sign is omitted, we refer to B( + ). 

• Exercise 2.3 Relation to BPZ. Compare the above discussion with section four of [1] 

and show that the definition of conformal blocks as matrix elements of 4> corresponds with 

that of BPZ. 

All of this has been derived in the simplified notation appropriate for the minimal 

models, but these considerations apply to arbitrary RCFT's. In the general case, when 

the space of three•point couplings i '/,e is a vector space of dimension larger than one we 

have linear transformations 

The other part of the algebra of the + opera.tors follows from the operator product 

expansion. We have 

+{p(zi)+;i{z2) = L Fp9 [{ ; ] 
9 

Summarise• the 
repre1e.11tation- Uaeoretic 
conteat of &he operator 

8 
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• Exercise 2.4 Defining the F Matriz. Prove that the operator product expansion of 

two 4> operators has the form 

.z.;,,(z1 ).z>t,.(z2) L Fpk [~ !] L .z.tK (z2)(Kj-l>~;(z1 - z2)lj} 
k KE'H1c 

(Hint: Write out the operator product expansion with arbitrary coefficients. Use trans­

lation and scaling invariance to determine some of the structure of the coefficients. Now 

take the operator product expansion with a third operator 4> and demand consistency with 

braiding.) 

Now going back to our blocks :F;ikl. we see that we can insert the operator product 

expansion and define a new basis of conformal blocks, which we may denote pictorially: 

J le 

I 
p 

In the general case we have a linear transformation 

F. [
i k] . vi TTJI vi vq 

pq i l • 111 ® ., •1 -+ 91 ® ;1r: 

The F, B tra.nsformations are the basic duality transformations. The reader may well ask 

why these objects are of interest. We may answer with two immediate consequences of 

these considerations. 

Fir at point: Already the ezi,tence of B, F have interesting consequences. Since they are 

defined by a change of basis, the transformation 
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is an isomorphism. Therefore, matching dimensions, we have 

L. NJ,N:l = L N!,Njl . 
p p 

This defines Verlinde's fusion rule algebra: [21] 

• Exercise 2.5 Fu,ion Rule Algebra. Using the fact that B and F define isomorphisms 

show that the matrices 

form a commutative associative algebra. This algebra is known as Verlinde's fusion rule 

algebra. 

• Exercise 2.6. Ezample, of Fu,ion Rule Algebra,. 

a.) Show that the fusion rule algebra for the rational torus (see section 10) is Z/NlL. 

b. )Write out the algebra for the Ising model. Try to determine all physically acceptable 

fusion rule algebras with three self ~conjugate primaries. 

c.) Show that the FRA for the WZW model SU(2h (the subscript denotes the level) 

is generated by elements <f>l, l = 0, 1/2, ... , k/2 with 

min(l1 +l2 ,le-( l1 +l2 )) 

¢l1 <Pl2 = L ¢l 
ll1 -l2 I 

by considering the null vector J~12H 1 jl;l). (See, e.g. [22J.) 

d.) Consider the WZW model SU(3)2. Show that the fusion rule algebra for the six 

integrable representations 1, 3, s•, 6, 6*, 8 can be determined purely from the known group 

theoretic decompositions and consistency conditions on the FRA. Note in particular that 

Naaa = 1 whereas in group theory it is equal to two. 

Second point: Next, the matrix B 2 is not an identity matrix, precisely because of the cuts. 

In fact, B 2 is exactly the monodromy matrix for the analytic· continuation of z1 around z2 

for the vector of blocks Ff,ilet(z1,z2 ). That is, if7(1) is the following curve: 
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A curve in z1 plane surrounding z2 

Then one can compute the monodromy as in 

• Exercise 2. 7 Monodromy of the block.s. Show carefully that upon analytic continua­

tion we have: 

Now, the monodromies of conformal field theory are related to the mutual locality 

factors and therefore to the conformal weights. Thus, the primitive hope is that nontrivial 

identities on B, F matrices are so restrictive that one can solve them and thus classify 

RCFT's. This is too naive, but it is on the right track. At any rate, with this hope in 

mind it is clearly wise to get better acquainted with B as in the following exercise: 

• Exercise 2.8 B and F with the unit operator. By setting various external represen­

tations in the four-point function to be the identity we obtain a computable three-point 

function. Use this observation to evaluate the F and B matrices in the special cases that 

one of the fields is the identity. Notice that 

de.fines a. linear map 
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which may be interpreted as the square-root of a mutual locality factor ( compare the 

previous exercise). Show that 

Therefore 

where { = ± 1. In simple RCFT 's like the discrete series { is always + 1. In other theories 

{ can be -1. For example, in SU(2) KM, the sign { corresponds to the symmetry or 

antisymmetry of the tensor coupling the representations. Show that in this example 

where the representations are labeled by their spin (which is integer or half integer). For 

simplicity, we will limit ourselves in some of the formulae below to the case { 1. 

From this discussion it is clear that we need to understand the identities on B, F. 

A number of questions arise: How can we obtain nontrivial identities? What is the full 

set? What is the minimal set of independent relations? To understand these identities 

we should understand better what a CVO is. Therefore, let us broaden our viewpoint 

on chiral vertex operators so that we see more clearly the S3 symmetry of three-point 

couplings which is fundamental to duality. Instead of choosing the state /3 to define t we 

should consider a aingle linear operator 

that commutes with contour deformation of the chiral algebra. We would like to give this 

operator a geometrical interpretation. Namely, suppose we have representation spaces on 

three circles as in the following picture: 
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. 
'1 

le 

three-holed sphere with rep spaces on the three holes 

Placing one of the holes about the point at oo we can define the Virasoro generators 

acting on the Hilbert space 7-(,i at oo by: 

But, since T is analytic, these can be deformed to generators around zero and z 

(2 .. 5) 

The chiral vertex operators commute with contour deformation, so we look for oper­

ators that satisfy: 

for any states /3,;. This equation can be interpreted as follows. Think of L11(z) as a set 

of Virasoro operators acting on a Hilbert space at z, 1-lz• Then L11(z) ® Lm(O) acts on the 

Hilbert space 1-lz ® ?-lo. The operators L11(00) act on the tensor product 1-lz ® 1i0. They 

satisfy the Virasoro algebra with the ,ame value of the central charge as L11(z). Therefore, 

equation (2.5) defines a map l::,. 11 from the Virasoro algebra, A to A® A 
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This "comultiplication" allows us to take tensor products of Virasoro modules with given 

central charge. Then CV O's are "intertwining operators" for this notion of tensor product. 

(More on this below.) The above considerations generalize to arbitrary chiral algebras. 

We must specify the z-dependence of these operators completely and this leads to the 

condition that 

d(i) (i) d 'k (,8 ® ,) = 'le (L_ifJ ® ,) 
z J z J z 

(2.7) 

In RCFT's there is a finite-dimensional space, V/1c of operators satisfying (2.6) and (2. 7) 

and we take these equations as our final definition of the CVO's. The connection to our 

previous description is that 

• Exercise 2.9 Prove the equivalence of these two definitions. 

The superiority of our final definition is evident since we can now understand more 

clearly in terms of the formula (2.6) the statement that the CVO is an operator associated 

to a 3-holed sphere. Furthermore, it suggests a natural generalization, since we can consider 

more complicated situations - say, a 4-holed sphere. There will be a finite dimensional 

vector space V/.,,_t of operators 

which commute with contour deformation on the surface: 

R. 

k . 
l 

. 
J 

4-holed sphere with representations at each hole 
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The space of these operators is the sa.me as the space of conformal blocks. This must 

be true since they are determined by the same equations ( which follow from contour de­

formation arguments) used in more standard descriptions of conformal field theory [1][23}. 

The new spaces V/H can be understood in terms of the simpler spaces of 3-point couplings. 

Geometrically, we can represent the 4-holed sphere as sewn 3-holed spheres. Analytically, 

we can use completeness of states to write operators in V/1cl as compositions of CVO's. 

Each sewing has a corresponding composition of CVO's and a corresponding decom­

position of V/kl into simpler spaces: 

i k 

l I 
r 

. 
k r 

k 

,. 
f r 
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k ' k 

1. 
___ .,__ ____ 7 

Note that each of the sewings corresponds to a different asymptotic region of Te­

ichmiiller space. The general construction is the following - any ¢3 diagram can be thick­

ened to give a surface - we can put FN length/twist coordinates on that surface and the 

region with small lengths corresponds to a region in Teichmuller space. In the asymptotic 

regions of Teichmuller space where the length coordinate goes to infinity the Riemann 

surface looks like a ¢3-diagram. In this limit the amplitudes of the conformal field theory 

and the conformal blocks have poles. The leading singularity corresponds to keeping only 

one intermediate state in the corresponding channel. 

Thus different sewings simply correspond to different bases for V/,.t· The braid­

ing/fusing isomorphisms express the relationships between these sewings. They are com­

puted from the projectively flat connection on moduli space - according to the picture of 

the Friedan-Shenker modular geometry [24]. 

Finally we need the following remark - The compositions· described so far only give us 

g = 0 surfaces. For CV O's of type i I; i we can sew to get: 
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~ ' .. ·-· 

one holed torus obtained by sewing 

The space of such conformal blocks with channel i will be the space V/i, and the space 

of all one-point blocks is €Bi Vk In formulas, if we put a state /3 at a puncture on the torus 

we may form 

(2.8) 

Here z is a point on the complex plane, but the trace essentially identifies z ~ qz so that 

we actually compute a torus amplitude. If /3 is a Virasoro primary these blocks form a 

representation of the modular group with the matrix: 

(2.9) 

In terms of sewings we are relating the following two diagrams 

sewings for S 

All these remarks generalize. As first emphasized by Friedan and Shenker [24], to every 

Riemann surface E we associate a vector space of conformal blocks ?i(E). This space is 
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intrinsic but can be expressed in terms of the V/1,: m many ways. Each such expression 

may be associated with a dual diagram. (Which, by its associated pants decomposition is 

correlated with an asymptotic region of Teichmiiller space). Different decompositions of 

the ,ame vector space must be related by isomorphisms. The specific isomorphisms follow 

from the existence of a projectively flat connection on moduli space. These isomorphisms 

are known as duality transformations. 

An important point is that, in RCFT, all duality transformations can be expressed in 

terms of a finite number of basic duality transformations. Thus, we need only deal with a 

finite amount of data. This statement is intuitively obvious. It can be proved [25) that all 

sewings can be obtained from one another by the two basic moves 

< 

moves on four holed sphere and 1 holed torus 

From this, taking into account twists around tubes one sees that all duality transfor­

mations can be written in terms of F ,B,S and e2wic/24 . 

• Exercise 2.10 Simple Move&. Decompose the following move {"S for the two-point 

function") into steps of simple moves: 
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3. Duality Identities 

The transformations F, B, S satisfy a large number of nontrivial identities. These 

identities can be understood in three ways: 

a.) The algebra of operators ~ must be consistent. 

b.) The monodromies of conformal blocks form representations of the modular group 

( duality groupoid). 

c.) Different paths of the basic transformations F, B, S relate the same basis of blocks. 

Thus the identities are intimately connected with the geometry of moduli space. 

The simplest example of an identity is the Yang-Baxter relation because it follows 

immediately from the exchange algebra of the ~ operators. Consider the following sewings 

for the 5-point function: 
, le 

I 
k 

. 
l } 

( I I 
\ 

7 i I< I< d' 7 

I I I I 

\ l 
. . 

} , k c} K 
. 

1 

l -> I I I 
hexagon 

implying an equation of the form BBB= BBB (see below). 

• Exercise 3.1 Yang-Bazter Equation. Derive the Yang-Baxter equation for the B­

matrix by considering the product of three chiral vertex operators and demanding consis­

tency of the braiding algebra. 
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It is very useful to introduce another pictorial formalism for deriving relations be­

tween braiding/fusing matrices. We imagine the the braiding and fusing matrices are 

like amplitudes between conformal blocks with "time" flowing upward as in the following 

picture: k:. 
1 

1 

1 l 

J.. 

Other pictures for B, F 

(In the 3 dimensional point of view we will see that this interpretation of time can be taken 

quite literally.) Then we can picture the Yang-Ba.xter relations as follows: 

usual picture for Yang-Baxter 

Another such identity is the braiding/fusing or pentagon identity which, in terms of 

duality diagrams may be represented as: 
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" I< 

" I 
6 

1 I :,, 

F /· 

l I t<. 

l I r F 

B ~ . 
k k 1 j 1 ;-

\ 
B 

I I I ~ 

pentagon of dual diagrams 

or in the other pictorial notation may be represented as: 

braiding/fusing 

Clearly, by looking a.t more and more complicated graphs we will obtain more and 

more complicated identities. These identities can be neatly characterized as follows. Form 

a. simplicial complex whose different vertices represent different q,3 decompositions of con-

22 
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formal blocks. Join two vertices, if they are related by a simple move B or F. Every loop 

on the resulting one-complex gives a relation on duality matrices. 

• Exercise 3.2 The duality complez. Write out the simplicial complex for the five-point 

function. Keep initial and final representations fixed in all moves. (Wa.rning: This takes 

some time.) 

These identities, and their graphical relations a.re a great deal of fun to play with -

but there are a large number of indices and one can only understand them once he has 

worked them out for himself. Therefore we urge the reader to work through the following 

exercise. 

• Exercise 3.3 Sy.!tematic Derivation of Equation.!. Consider the 4-point function 

complex. Show that the closed loop of moves: 
k 

6 
1 l 

J 
I ' k 

'l I J.. 

leads to the equation 

"'B , [j kl (E)F., [le jl = F. [j kl e-i,r~(A.+A;-A.,) 
L- "" • I " 9 • I " 9 • I , I I I ,, 

(3.1) 

The E denotes the sense of the braiding. Note that this identity shows that the eigenvalues 

of B are the square roots of mutual locality factors. Interpret (3.1) graphically: 
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,. 7 

p r 

Write similar equations involving p- 1
, B- 1 . Now consider the braiding/fusing iden-

tity: 

Ii )3 ilf h 
Write the corresponding equation: 

(3.2) 

Now specialize this equation by putting j 5 = O, the identity representation, and derive: 

(3.3) 
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Now use the relation (draw the picture!): 

(3.4) 

to derive the following two consequences. First 

[j kl [' /cl 4 Fpp' i l Fp'q i j = 6P,t 
p 

(3.5) 

and next 

Interpret (3.5) graphically as a relation following from a closed loop of dual diagrams 

on the duality complex: 

, 

1 

I t)Q. \ I F ~, 
k. . .A. S'2 lb I 

l . ~ I l <- . 
) 1 k 1 

Note that the closed loop is a hexagon.· 

Note that the determinant of (3.6) gives an interesting constraint on the weights of a 

rational conformal :field theory [26]. 
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Now substitute (3.3) back into (3.1) to get 

I:B,,.[~ ~l(E)ei",~•B•q[:{](E) = ei",~,B,,9 [: ~l(E)ei1r,~,e-2
'"

1 ~i (3.7) 
• 

Write (3. 7) in terms of F and interpret in terms of dual diagrams via the hexagon identities 

as follows: 

. 
1 

F" l 
j I IK 

J. 

I 11>$?. \ 

, 

j I 
" 

l. 

S2E>' 
-) 

F 
-> 

. 
,. ft 

. 
I ( ~ , 

~ l .e 

l 
J 

1 I< 

1 

We have thus found three hexagon identities. Show that any one of these hexagons 

can be deduced from the other two, so there are only two independent hexagons. We will 

adopt the last two we have just derived. 

Now use the equation for Bin terms of F to rewrite the braiding/fusing identity: 

(3.8) 

Interpret this identity as a pentagonal loop of dual diagrams·. 

Finally, write out the equation corresponding to the figure: 
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J11-

pictorial representation of the Yang-Baxter equation 

giving the Yang-Baxter equation: 

. 
J7 

. 
J L 

(3.9) 

Show that by putting j 1 0 or j 5 0 we recover the two hexagon identities. Show 

moreover that the full Yang-Baxter equation may be deduced from the pentagon and 

hexagon identities. (Hint: Bring all the B matrices to one side of the equation. Insert 

FF-1 = I and use the braiding/fusing identity repeatedly.} 

The two hexagons and the pentagon are the fundamental genus zero identities. 

• Exercise 3.4 Gauge Choice,. Note that we did not specify the normalizations ll+}A:11 
in the definition of the chiral vertex operators. How do the F, B matrices change under 

a rescaling by Ah? We refer to such a change as a change of gauge. Show that the 

polynomial equations of the pervious exercise are gauge invariant. 
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• Exercise 3.5 Sym"!'efriea of the F matriz. Show, in the case of the discrete 1eries 

that the matrices satisfy: 

[j 1c] r i '] F,,,,, i l = F,,,,, Li le 

[ l i l = F,,,,, le j 

Show that these symmetries are gauge invariant. Interpret these symmetries pictorially. In 

theories other than the minimal models these symmetries typically hold only up to signs. 

(These signs are described precisely in [15].) When a special choice of gauge is made these 

matrices sometimes have much more symmetry, simila.r to the tetrahedral symmetries of 

Racah coefficients ( see below). 

If we move on to higher genus we get new identities on duality matrices. For example 

from the one-point block we obtain, as described above, Sw(j). As is well-known, when the 

torus is represented as the quotient of the plane by a lattice the square of the transformation 

Sis a 180 degree rotation around the puncture at z, so logz --+ -logz and we have (in the 

case where all the representations are self conjugate) 

(3.10) 

where C is the conjugation matrix on representations and the sign is very similar to the 

quantity e discussed above, a)ld again arises from the symmetry or antisymmetry of a 

coupling. Similarly we have 

(ST)1' = S2 (3.11) 

where T;1c = e2tri(li1-"/i >6;1c- Moving on to several punctures on the torus a new element 

appears. We may al.ways fix one operator at the standard basepoint, but then there is 

nontrivial. monodromy under the diffeomorphisms which move each of the points around 

the nontrivial homology cycles of the surface, and around each other. 

For a famous example we have for the 2-point function. 
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two points on a torus with a, b curves 

As indicated before, each of these monodromies may be expressed in terms of F, B, S. 

Then the relations of the modular group of the n-holed torus imply identities on duality 

matrices. For example denoting the monodromies of conformal blocks obtained by dragging 

one operator around the a., b cycles by the same letters a., b we have 

Sa s-1 = b. 

The a, b monodromies can be expressed in terms of F, B matrices. Thus, the above equation 

implies a new identity relating F, B, S. Clearly, these considerations extend to any number 

of punctures at any genus. 

Below we'll begin to bring some order to this chaos of identities. But first let us show 

that some of these identities can lead to very nice consequences indeed. 

For example, the relation Sas-1 = b leads to a proof of Verlinde's formula {21]: 

(Here S = S(O), i.e. the transformation matrix on vacuum characters.) To prove this one 

looks at the blocks: 
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k 

blocks for two points on the torus in one basis 

and computes the a, b monodromies for 

0 

, z 
J 

c. 
d 

transformation of these blocks 

Then using the fact that S converts a to b monodromies gives the result. Details are 

left to the following exercise: 

• Exercise 3.6 Proof of Verlinde ,., Formula. 

Verlinde conjectured that the matrix S = S(O) diagonalizes the fusion rule algebra in 

[21]. There are now, superficially, three different proofs of this statement [13), [27) [28) but 

all are really equivalent. We will return to a version of Witten's proof later. For now, we 

proceed with the least elegant, but most straightforward approach. 

Consider the discrete series for simplicity. Show that Verlinde's formula 

S;,;S;1c = LN;,1,;1S1; 
So; 1 

follows from the modular relation Sas- 1 = b by considering. the subma.trix element illus­

trated below: 
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k 

p 
k.v ,______._ __ 

1 

restrict to: 

k. 

0 

L C.. 
J 

J 

submatrix needed for a proof of Verlinde's formula 

Relate the above basis of blocks to the basis 

k 
k 

. , 

k 

0 ---- ,cV 

., 

a different basis for the two point function on the torus 

Show that the a. monodromy in this basis is just e271'i(A;-A.,). Use the identity 

r i i J [le il [i il F1co Li j Fo; lei = Foo ii = Fi 
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to simplify the b-monodromy in the original ha.sis a.nd obtain: 

From this derive Verlinde's formula, and show also that 

( B [~ 1e] B [~ ']) 
S·1e ,1e ,1e 
_1_ = 00 

Soo F1cF, 

Note especially the formula for j 0. An argument analogous to the above holds for an 

arbitrary RCFT. 

From Verlinde's formula we can deduce many interesting things. As a simple example 

we can describe the fusion rules for Kac-Moody algebras in a rather elegant way [21]: 

• Exercise 3.7 Geometry of the Kac-Moody Fu3ion Rule3. From Verlinde's formula and 

the formula for the matrix S of the Weyl-Kac characters show that the one-climensional 

representations of the fusion rule algebra: 

<l>m<PI = L N!iz<Pi 
i 

in the level k WZW theory are just given by 

Here chm is the character in the representation m, Pi is the highest weight of the repre­

sentation j, p ia the Weyl vector, i.e., half the sum of the positive roots, and h is the dual 

Coxeter number. 

Using this result characterize the fusion rule algebra. for the level le WZW theory in 

terms of reflections in the hyperplane ~ • VJ = k + 1, where 'f/, is the highest root. 

• Exercise 3.8 Verlinde ', Dimen,ion Formula. 
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a.) Go to the dual ha.sis for the vacuum characters of the form 

A circle with mirrors emanating from it. 

and use Verlinde 's formula to show that the dimension of the Friedan-Shenker vector bundle 

is [21] 

dim1i('E
9

) = I:(-1 )2
(g-i) 

Sop p 

b.) Go to the dual basis for the n-point functions of the form 

. 
,__..__,_ ___ _,1 __ 1" 

to show that the formula for the case with punctures in representations i 1 , .•. , in is given 

by 

d• '1..J('t"' (P • ) (P. • )) '°'( 1 )2cg-1) si1p si.,.p 
imri ""'g; 1,t1 , ... n,tn = L....,, s s· .. s 

p Op Op Op 

c.) Verify that S 2 = C guarantees the dimensions behave a.s expected under sewing. 

d.) Substitute the Rae-Peterson formula for Si; into the formula of part (a) to show 

that for level k WZW theory with simple and simply connected group G we have [29]: 

Here h is the dual Coxeter number, Art is the root lattice, ~ is the set of roots, the sum 

runs over weight vectors ,\ defining level k integrable highest weight representations of 

the current algebra, and 9,. = 2,r ;!f is the conjugacy class canonically associated to the 

Kac-Moody integrable representation .\. Verlinde has conjectured that this formula can 

be derived as a fixed point theorem, but such an interpretation has not yet been given. 
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e.) Write the formula explicitly for SU(2)1e and show that, as k -+ oo, we have 

dim?-t(I;) ~ k3,-3 • T~s behavior is very natural from the Chern~Simons gauge theory 

viewpoint explained below. 
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4. Completeness 

In the previous section we said that all duality transformations are expressed in terms 

of a finite amount of data: F, B, S. However, there seemed to be a proliferation of identities. 

The completeness theorem states that, in fact the number of independent identities is finite. 

From the exercises you know that a special case of the B-matrix is 

ni . yi v;i 
jlr: • j/e - Jr:j 

a pictorial representation of n 
Its eigenvalues are just the square roots of mutual locality factors. 

The basic genus zero identities are 

1) The pentagon 

2) The two hexagons 

3) At g = 1 there are 3-more identities: 

S2(j) = ±ce-i,r.O.; 

(ST)3 = S2 

Sas-1 = b 
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Using these identities we can check all the relations on F, B, S following from duality on 

al1 surfaces. One would like to present the equations in the most economical possible way. 

In fa.ct, the last torus equation Sas- 1 = b, which is rather complicated when written out 

with all its indices, contains a great deal of redundant information. Some of the equations 

implied by Sas- 1 = b can be used to solve for S(p) in terms of the braiding and fusing 

matrices and the normalization term So0 (0). In the case of the discrete series, the explicit 

formula one finds is 

-i1rtl Fio [~ ~] '°"' [i jl [j i] Si;(p) = Soo(0)e r F. F. [i i] F. [i i] L., B,,~ .. (-)B~ .. ( - ) 
P PO • • pO .. l J l J J J , ' r 

(4.3) 

and a similar formula holds for an arbitrary RCFT. (The only complication in the general 

case are some signs measuring the antisymmetry of certain couplings.) This expression 

is a generalization to arbitrary p of the expression in [13][14]. A nontrivial computation 

( outlined in section seven below) shows tha.t once this expression is substituted into the 

remaining equations implied by S as- 1 b one finds no new conditions on F, B. Hence, in 

specifying the fundamental equations, the above three torus equations can be replaced by 

the definition ( 4.3) together with the constraint of the first two torus equations, determining 

that S define a representation of the modula.r group. 

• Exercise 4.1 Ezample of the laing model. Check (4.3) in the Ising model. In this 

case we have three representations 1, V:,, er with the famous fusion rule algebra: 

'lpXtT=tT (4.4) 

tT X er= 1 +VJ 

choose a gauge by demanding that: 

(4.5) 

Then show, either by solving the polynomial equations, or by using explicit conformal 

36 



blocks that we have 

Fr::] =1 

F[;:] =-1 

F [er er] __ 1 ( 1 1 ) 
er er - y'2 1 -1 

(4.6) 

B[; ;](-) = e:;:8 (! ~) 
And substitute these into ( 4.3) . Note, in particular that for the one-point function of t/J 

the block 17(T)(dz)1! 2 gives S(,/J) = e-i1r/4 , as predicted by (4.3). 

Strictly speaking - only the following cases have been carefully checked in all details: 

(g 0, n holes), (g = 1, n holes), (g, n = 0). We have no doubt that the remaining cases 

will also work (an argument is given in [15]), but what is needed is a better understanding 

of why the result should be true which will lead to a more conceptual proof, which should 

handle all cases simultaneously. 

Here we will describe part of the g = 0 case in detail. To begin recall the generators 

and relations for the modular group of the sphere with n holes. The generators are: Firstly, 

R; = a Dehn twist around the i th, hole. Equivalently, this is a transformation on a local 

choice of coordinate dz --+ e271''dz. Secondly, w, = interchange holes i and i + 1 The action 

of the generators Wi may be pictured as follows: 

0 

IDustrations of one of the generating modular transformations. 

The idea of the proof is the following. Recall the simplicial complex from section 3 

which is built by declaring that: 

vertices - dual dia.gr&ms 

edges - simple moves 
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Define a 2-complex by filling in all faces corresponding to pentagons/hexagons and -

in the high genus case - the torus relations. There are no new relations, if the resulting 

complex is simply connected. 

The question can be reduced - in a way which will be indicated below to checking the 

relations of the modular group. So let's worry about these. The relations we must check 

are: 

A. 

B. 

C. 
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\ 
-

..... 

D. 

Now checking these relations is quite easy. We use the basis of blocks: 

. . . 
f1 i-2. J3 J~-· > " 

I I I . . . 

I I 0 0 
J ' f'1- P3 J" 

multiperiphera.l basis 
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So the representation is just: 

Relation (A) is obviously satisfied. One easily checks that (B) follows from the Yang­

Baxter relations. To check (C) we use braiding fusing: 

Finally we check (D) similarly. 

• Exercise 4.2 The barber pole. Use the braiding/fusing identity and induction to 

verify the barber pole relation: 

With considerably more work we can go on to check the modular relations at high 

genus. An example of a rather tractable one is: 

• Exercise 4.3 A Simple High- Genu., Relation. 

a.), Rewrite the equation (ST)3 = S2 as the equation a/Jo. = {Jo:{J where o.J3 are 

Dehn-twists around the a,b cycles, respectively. (Hint: Show that o. = r-1 and /J = TST.) 

b.) Verify geometrically the relation a/Jo. = {Jo:{J in the· modular group at any genus 

from the configuration of curves shown below: 
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(Hint: Show that the product of Dehn twists a{3a- 1 is a single Dehn twist around 

the image under a of the curve {3.) 

c.) Why is this not a new high genus relation on duality matrices? 

One should still prove that it is enough to check the relations of the modular group. On 

the sphere, the argument is inductive in the number of external lines. The basic idea in the 

proof is to use the pentagon to show that there are no new identities from a set of duality 

transformations starting and ending in the multiperipheral basis. Then, it follows that 

every closed loop of transformations in the duality complex is homotopically equivalent to 

a closed loop of transformations in the multiperipheral basis. These transformations form 

the modular group. Since all the relations in this group are satisfied in this basis, there 

are no new identities. 

The completeness theorem strongly suggests that the equations come close to defining 

RCFT. Specifically, what it does show is that a solution to the equations allows one to 

define transition functions for a compatible family of Friedan-Shenker vector bundles on 

all moduli spaces. This statement can be reformulated in a language currently much in 

vogue, which we now explain. 

In Friedan-Shenker modular geometry the existence of a projectively flat vector bundle 

means that the data defining the bundle is essentially topological, involving (projective) 
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representations of the Teichmiiller modular group. Graeme Segal abstracted the concept, 

implicitly used from the earliest days of dual model theory and somewhat more precisely 

described in [1)!24](21][13] to the notion of a modular functor. A modular functor may be 

specified by the following data and axioms: 

Axioms for a Modular Functor 

Data: 

1. Representation labels: A finite set I of labels (i.e. the representations of the chiral 

algebra) with a distinguished element O E / and an involution i-+ i- such that O • = O. 

2. Conformal blocks: A map 

from oriented surfaces with punctures, each puncture Pr being equipped with a direction 

Vr and a label ir, to vector spaces. 

3. Duality transformations: A linear transformation 1t(/) : 1t(E1) -+ 1t(E2 ) associ­

ated to an automorphism I: 1 - I: 2 (and similarly for punctures). 

ConditionJ: 

1. Functoriality: 1t(/) depends only on the isotopy class of f. Thus the mapping 

class group acts on 1t(I:), (and similarly for punctures). 

2. Involution: If bar denotes reversal of orientation and application of the involution 

to the representations then 1t(t) ~ 1t(:Et 

3. Multiplica.tivity: 1t(E1 U E2) ~ 1t(E1) ® ?-l(E2 ). 

4. Gluing: Pinching (E, (i1, vi, Pi), ... ( in, Vn, Pn)) along a cycle to obtain a surface 

(possibly connected or disconnected) (E, (i1, V1, Pi), ... (in,Vn, Pn), (j,11,P), (r, 11,P)) with 

a pair of identified punctures P, P defines vector spaces related by 

5. Normalization. 'H(S2 ;(j,P)) 3:' 6;,o •C. 
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The all-important gluing axiom may be illustrated by the figure: 

c... 

EB u J 

je.I 

The directions Vr at the punctures are needed to keep track of the nontrivial 

effects of Dehn twists around the punctures. Geometrically they are needed since 

conformal blocks should be thought of as differentials on the surface I::, i.e., :F ~ 
f(z1, ... Zn, .. . )(dz1 )~ 1 • • • (dzn)~ ... This subtlety, which shows up in the three-dimensional 

point of view in the need for framings of links, was first emphasized in [26]. 

In an obvious way one can change the definitions to define a modular functor which 

is projective, unitary, and so forth. In this language the completeness theorem states 

that from a finite amount of data F, B, S satisfying a finite number of conditions one can 

construct a projective modular functor. 

The idea of a modular functor is truly beautiful and allows us to ask many interesting 

questions in a succinct way. For example we may ask to what extent a modular functor 

characterizes a rational conformal field theory. Since there are nontrivial theories with 
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trivial modular functors this is a serious question. Or, we may &Sk if every modular 

functor arises in some conformal field theory. Simply defining the bundles is not enough 

for defining physical correlation functions. Whether these bundles have reasonable sections 

which correspond to blocks in a CFT is another matter which remains undecided. However 1 

there is a closely related problem in mathematics where the answer is known to be in the 

affirmative in a suitably defined sense, namely the Tannaka.Krein approach to group theory 

- so we discuss this next. 
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5. Tannaka-Krein theory and Modular Tensor Categories 

Let us switch our attention momentarily to an apparently different problem - we want 

to characterize the sets: 

Rep(G) = {VJV is finite dimensional representation of G} 

For example, let us consider G to be a compact Lie group, then there are the most 

important elements 

Moreover, we can decompose 

with 

Ri = irreducible representations 

n k times 
'J 

a-, l rlt ,o_ R = ok •ij 16' k 

The spaces i,:; are characterized as the space of a certain kind of intertwiner. Recall that if 

n·1 ,P 1 and H"2 ,p. are two representations (that is, p1 ; G - End(ffi) is a homomorphism. 

etc.) Then an intertwiner T: ff1 -- n·2 is a group - equivariant map, i.e. 

T 
--+ 

(5.1) 

T 
--+ 

commutes for all g E G. In this language v:, = { intertwiners : R1c - Ri ® Rj} e.g. m 

SU(2) the space of intertwiners is always zero or one-dimensional and is spanned by 

where < mij1 m2h IM J > are Clebsch-Gordon coefficients. 

Now we will examine some nontrivial properties satisfied by these vector spaces, these 

follow from rather obvious isomorphisms of representations.- First, we have the evident 

isomorphism {l: Ri ® Rj 3:: Rj ® Ri since the map z ® y - y ® z is an intertwiner. 
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Therefore, if we decompose the above tensor products of representations we learn that: 

n . yk ~ lrk 
• ij == ji 

When manipulating these spaces of intertwiners it is good to develop a pictorial notation. 

Denote 

Then 

Note well that an obvious consequence of the fact that the transformation n squares to 

one is that 

n2 1 

as a transformation on i/. Thus, ·when i = j we can diagonalize n, the eigenvalues are 

± 1 depending on the symmetry of the coupling. 

Now consider the second evident isomorphism: 

F: R;1 ® (Rj2 0 Rj3) ~ (R;1 0 Rj2) 0 R;3 

.x®(y®z)---. (.x®y)®z 

When decomposing in terms of irreducible representations we meet compositions of inter-

twiners, for example we find: 

( i ) ( P ) : Rh® Rj2 ® Rh ---. Ri 
i1P J2J3 

Carrying our pictorial notation further we denote the tensor product of a spaces of inter­

twiners by 

r 
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If we have a direct sum of these spaces over "intermediate" representations, then we 

denote the resulting vector space by 

1 

f 

Thus, decomposing the second isomorphism in terms of irreducible representations we 

learn that there must be a transformation: 

-[ J. \- 1 1 

picture for F 

Or, in formulas: 

In the physics literature the intertwiners are known as Clebsch-Gordan coefficients (3j 

symbols) and the F's are known as 6j or Racah coefficients. Moreover, the fact that F is 

an isomorphism implies that nf; defines a commutative associative algebra which is, in 

fact, the character ring of the group. 

Now the two isomorphisms of representations n and F satisfy simple compatibility 
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conditions. The first is the pentagon relation: 

l 1 ®F l F® 1 

F -
for representations R1, ... , R.1 . The second is the hexagon relation: 

R1 ® (R2 ® R3) 
F 

(R1 ® R2) ® R3 
n 

R3 ® (R1 ® R2) - -
l l C? Sl lF (5.3) 

R1~((R30R2) 
F 

(R1 ® R3) ® R2 
0©1 

(Ra 0 R1) 0 R2 .--, -
Decomposing these relations in terms of irreducible representations we learn that F, f1 

satisfy two corresponding compatibility conditions 

( 5.4) 

(5.5) 

In the case of SU(2), these relations are known in the physics literature as the Bieden­

harn sum-rule and Racah's sum-rule. 

In category theory there is a theorem, called the MacLane coherence theorem that 

states that the above two identities are the full set of independent identities on F, n. 
Let us describe the idea of the proof: 

Define a simplicial complex where vertices correspond to dual diagrams and edges 

correspond to simple moves between diagrams. Label these edges by F, n etc. Fill in the 

pentagons and hexagons to get a two-complex, and show that the resulting two-complex 

is simply connected. There are two kinds of loops, those involving only the F move and 

those involving F, n. Define the following composite move: 
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d' 

I 

'F 

Q l. 

B from F and n 
By the pentagon and hexagon we can deform all loops to those involving only multi­

peripheral diagrams: 

'"l j J- 1 

I I I I 

multiperipheral diagrams 

Then we need only check that B satisfies the relations of the symmetric group. 

There is a clear analogy here with rational conformal field theory, and we have now 

arrived at the point we were at with RCFT. In the case of group theory it turns out one 

ca.n go further and state a partial converse to the above results. We would like to know if 

all solutions to the above axioms in fact come from group theory. It turns out there are 

solutions to the previous equations that do not come from groups, but we can eliminate 

these by adding two more axioms. 

The first axiom corresponds to the existence of the trivial representation Ri=O = C. 

Note that we have: 
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Every representation has a conjugate representation: 

and Ri ® Rj contains the singlet only if j :::;:: i", so 

The second axiom that we must add, which is due to Deligne, [30J involves the specia 

fusion coefficient (for the case ni, == 1) 

0 

Namely consider the composition 

We have a map of a one-dimensional vector space to itself, which is, canonically, a com 

plex number. One can compute the value of this number by decomposing in terms o 

intertwiners, and one finds the answer ;. . 

• Exercise 5.1 Deligne '., condition in term" of F1. By considering the sequence 

and decomposing the tensor products into irreducible representations, show that 

• Exercise 5.2 Another proof of Deligne '" Condition in term.! of Fi. Consider th 

"group theoretic one-loop two-point function": 
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Group theoretic two point function 

Consider the "monodromy'' under /32 -+ Ph (g )/32 , Where (/,J denote intertwiners. 

Using the basis of tensors: 

Jc 

f ,...---- k,,. 

show that the monodromy is just: 

I<: k 

0 

. 
"l J 

J 

51 



Take the limit g - 1. Show that the other terms vanish and deduce that 

and hence 

The nontrivial result is that these axioms now characterize group theory. This is due 

to Deligne [30] and, in a slightly different form to Doplicher and Roberts [31] [32]. More 

precisely, suppose we are given the following: 

Axioms for a Tannakian Category 

Data: 

I 

1. An index set I with a distinguished element O and a bijection of I to itself written 

2. Vector spaces: V]k i,j,k EI, with dimV/k = N]k < oc 

3. Isomorphisms: 

Condition.!: 

1. ( i ·) • = i and O • O. 

2. v:; ::: 6i;C Vi~ ::: 6i;;C 

a. n}1ni; = 1 . 

4. The identities: 

( Tri r ~ l'' y jlc = ;1t· 

F(fl ® 1 )F = (1 ® fl)F(l ® fl) 

F23F12F23 = P23F13F12 

5. The normalization condition: 

52 

(5.6) 



From such a set of axioms we can reconstruct a group for which V/1c are the intertwin• 

ers, F, the Racah coefficients, etc. 

The proof of this result is rather involved, but it would probably be worthwhile to 

sketch the main ideas of reconstruction which proceeds as follows: 

a) Define vector spaces R1 =en,, obviously. (In category theory these correspond to 

simple objects which we must realize with honest vector spaces.) 

b) Define the space of intert winers (morphisms) to be: 

H om(Ri --+ Ri) = C 

Hom(Ri--+ R;) = 0 i -:f. j 

and extend by linearity to Hom( €BR --+ €BR). 

c) Define tensor products: Rigs Rj ~ EBi,:; ® R1c. That is, i,:, is a set of intertwiners. 

Now we define the set Rep {all sums, products, quotients, duals of the Ri}. 

d) Finally define the set of families of linear transformations: 

Q = {(>.z)zEReplV:z:,>.z: :r--. ;z: is an invertible linear tran8formation. 

A:r:®y = ).z ~· Ay 

T: ;r-+ y an intertwiner => T>.z = >. 11 T} 

Q is a group: This is the group we want! One might naturally wonder whether, had one 

started with a group G, produced the objects F, 0 etc. and formed the group Aut, one 

would have recovered the same group G. This is settled in the following exercise: 

• Exercise 5.3 On Recon1truction [30]133]. Suppose one begins with a compact group 

G and constructs the spaces V/1c as above. We will indicate why the reconstructed group 

Q defined by the abstract procedure given here is exactly the original group G. 

a.) Note first that G C Q. Note that every g E G defines a family {>.x }XERep via 

.\x(g):::;: px(g), where PX is the representation defined by X. 

b.) Show that if ii EX is fixed by all of G, i.e., if 

V g E G : p x (g )v = v 
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then it is fixed by all of Q, i.e., 

for any family satisfying the defining axioms of Q. (Hint: Show that ).Ro = 1, a.nd that 

z -+ zv is an intertwiner (' -+ X.) If G is a continuous Lie group we conclude that there 

are no "broken" generators in 9 / G and hence that Q = G. 

c.) More generally suppose that G C (} is a proper subgroup. Then there is some 

.\x E End(X) which is not in the set {Px(g)lg E G} c End(X). Use the fact that G 

is compact to show that there must exist a polynomial P on End(X) which vanishes on 

{Px(g)lg E G}, but not at .\x. Show that the space S of polynomials of degree :S deg(P) 

on End(X) is a representation of G. Note that PE S violates (b ), to conclude that Q = G. 

In the above characterization of a Tannakian category we have worked directly with 

the data l'/1r. etc. Alternatively ,•ve could have defined the category more directly in terms 

of objects, with a tensor product of objects satisfying pentagon and hexagon conditions 

identical to (5.2) and (5.3) , and with some axioms relating to the unit object and dual 

objects. This is the definition one finds in the literature. 

The situation arising in RCFT is more complicated than the one we have described 

for the Tannakian categories. In RCFT the index set I is finite. Moreover 11 2 # 1. This is 

crucial: it is the characteristic that leads to interesting monodromy and hence interesting 

braid representations. The pentagon relation remains but there are two hexagon relations 

involving n and n- 1 . The category so defined ( equivalently, the category defined by axioms 

on objects and morphisms of objects) is closely related to what is known as a "compact 

braided monoidal category" which was studied in [34]. Different definitions differ slightly 

on such details as whether - is involutive, or whether the set I should be finite or not. 

Thus, roughly speaking, the duality properties of RCFT's on the plane are characterized 

by "compact braided monoidal categories.'' Well defined RCFT's have more structure and 

must be defined on all Riemann surfaces. By the completeness theorem it suffices to define 

S(p) : EB v;i --1- EE) v;i according to ( 4.3) and impose the relations of the modular group. \Ve 

will ca.II the category defined by these axioms a modular tenaor category. More precisely 

we have 
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Axioms for a Modular Tensor Category 

Data: 

1. A finite index set I with a distinguished element O and a bijection of I to itself 

written i ...... i •. 

2. Vector spaces: "V/k i,j, k E I, with dim FA = N]k < oo 

3. Isomorphisms: 

4. A constant Soo(O). 

Condition3; 

1. (i·r= i, o·= o. 

ni v•i " v·i 
Hjk : jk = kj 

2 1,·i ~c: C t.'O~c C t·i ~1../1: (1:i'r~TTi 
• • Oj = Oij I' ij = Oif ' • j/c = I' ji • j/c) = I' fie. 

3. OhOi; E End(\"A) is multiplication by a phase. 

4.The identities: 

for f = ±1. 

5. The identities 

(ST)3 = S2 

where S(p) E End(t0V;1) is defined by 

-i1r.O. Fio [! ~] ~ [i jl [j il S1;(p) = Soo(O)e " r;, c- [ii] r;, [ii] L- Bpr •• ( )Bro .. (-) 
r nI' nO • , I'p ,o · · 1 J 'I, ) 

r r JJ It r 

(5. 7) 

C represents the action or, the numbers ±e-1"''°'" may be deduced from n, and T : V/1 ---+ 

Vf, is scalar multiplication by e21d(.O.; -c/24 ) for a constant c. (For more details see 115].) 

55 



Just as for Tannakian categories we could define modular tensor categories more 

directly in terms of objects and axioms on the tensor products of objects. In these terms 

one must define the analog of ( 4.3) . This may be done in terms of a generating set of 

simple objects Ri by defining a single morphism S of the object EBiRi ® R,· to itself as 

follows: 

EBiRi 0 Ri - EBi,;Ri ® R; ® R;. ® Ri 

11'©1©1 • • 
- 67i,i Ri ® R; ® R; ® Ri ® 

n- 1 ©O 
- EBi,i R; ® Ri ® Ri ® R 3 ·0 

(5.8) 

Similarly one may use n to define the data ±ei1rA, as a morphism R; -+ R; and from 

this define Ton EBRi ® R,- and impose a relation on S2 (relating it to 0) and the relation 

(ST) 3 = 5 2
. 

The name modular ten.,or category was suggested by Igor Frenkel and we will adopt 

it. We thank him for discussions on this subject and for urging us to express the definition 

of S, (4.3), in terms of simple objects, along the lines of (5.8). 

As we have mentioned, the above axioms are sufficient for establishing the relation 

Sa = bS. Thus we may summarize the main result of [13][15] in the statement that a 

modular tensor category (henceforth MTC) is equivalent to a modular functor. As in 

section four we may ask whether all :MTC's are associated to some RCFT, and to what 

extent an MTC characterizes the original RCFT. 

From the analogy of Tannakian categories and MTC's one naturally wonders whether 

there is a reconstruction theorem for MTC's analogous to Deligne's theorem. This is not 

known at present, but there is some good evidence that such a statement exists. First, 

there is an analog of the integrality condition in RCFT. From the proof of Verlinde's 

formula one finds 

We have already noted that classically the quantity on the LHS is related to the dimen­

sion. The quantity on the RHS has been interpreted as the "relative dimension" of the 
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representation spaces. Note that [35] 

"dimHi,'' frH· qLo-c/24 Soi 
----=lim • = 
"dimHo" q-1 frHo qLo-c/24 Soo 

All this strongly suggests that some axioms additional to the above polynomial equations 

in fact characterize RCFT's - and that classifying solutions to these equations is the same 

as classifying RCFT's. 

The relation between the axioms of RCFT as discussed above and the Tannaka-Krein 

approach to group theory becomes more complete in a certain limit of RCFT. Some RCFT's 

are labeled by a parameter k such that they simplify considerably in the k - oo limit. In 

this limit the conformal dimensions of all the primary fields approach zero. More generally, 

there is a subset of the primary fields with a closed fusion rule algebra (namely, if i and j 

are in the subset then Nfi -:f. 0 only for l in the set) whose conformal dimensions approach 

an integer in the k - oo limit. We define this limit as the cla.uical limit of the RCFT. 

Examining our axioms at genus zero in this limit we see that they simplify. In particular, 

since the relevant ~ 's are integers, 

n2 = 1 . (5.9) 

Therefore, there are no monodromies in the classical theory and the two hexagons are the 

same equation. In this limit the axioms of a RCFT are identical to those of group theory 

in the Tannaka-Krein approach. Since classical RCFT is the same as group theory, it is 

natural to conjecture that quantum RCFT i~ a generalization of group theory. We'll return 

to this conjecture below. For the moment we note the following correspondences between 

group theory and conformal field theory: 

Group 

Representations 

Clebsch-Gordan coefficients /Intertwiners 

Invariant tensors 

Symmetry of couplings 

Ra.cab coefficients ( 6j symbols) 

Chiral algebra 

Representations 

Chiral vertex operators 

Conformal blocks 

n 
Fusion matrix 

It is also interesting to examine a larger class of CFT's .. We refer to them as "quasir­

ational CFT's." In these theories the chiral algebra has an infinite number of irreducible 
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representations . However, the fusion rules are finite, i.e. for given i,j, N[; is non zerc 

only for a finite number of representations k. Because of this condition, the forma1isn 

of the CVO and the duality matrices on the plane is still applicable. Consequently, the 

polynomial equations on the plane (the pentagon and the two hexagons) are satisfied. Oni 

can stil1 define S(p) by ( 4.3) but since the number of irreducible representations is infinite 

the torus polynomial equations are not obviously present. The category of representatior 

spaces of the chiral algebra of a quasirational conformal field theory is also a genera1izatior 

of a tensor category. A well known example of such a theory is the Gaussian model at ar 

irrational value of the square of the radius. 

Finally, we must not lose sight of the fact that many interesting irrational (non 

quasirationa1) CFT's exist and that the challenge to understand their structure remain: 

unanswered. 
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6. Combining leftmovers with rightmovers. 

CFT is not just the study of chiral algebras and their representations. In order to 

have a consistent conformal field theory, we need to put together left and right-movers to 

obtain correlation functions with no monodromy. 

The left and right chiral algebras A, and A are the algebras of purely holomorphic 

and anti-holomorphic fields. We can decompose the total Hilbert space of the theory into 

irreducible representations: H.,. 0 H-;, so t he partition function is: 

TrH qLo-c/24 qLo-c/24 = L hrrXr(q);n(q). 
r,r 

The nonnegative integers h.,.,:. characterize the field content of the theory. 

We can write the physical conformal fields in terms of the chiral vertex operators as 

(6.1) 

VVe assume for simplicity that there is only one field with representation (i,z) in the theory. 

Below we'll show that this assumption is always satisfied. 

Now the physical correlation function must be independent of the choice of blocks, 

so there are certain conditions on the d-coefficients. For example, from invariance of the 

partition functions under T : 7" ...... 7" + 1, we see that hii = 0 unless Ai - A, E Z Proceeding 

more systematically we could have deduced this from an analysis of 2 and 3 point functions. 

Moving on to the four-point function, we must have the same correlator from either 

basis of blocks: 

) 

. 
1 

k 

I t 
0, ~ R. 

s and t channel blocks relevant for the four point function 
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this implies 

(6.2) 

• Exercise 6.1 Monodromy invariance. 

a.) Write out the conditions on d following from locality of the three-point function. 

b.) Show that the invariance of the physical correlator under Bis guaranteed by the 

condition of part (a) together with the equation for F (6.2). 

By using the operator product expansion for chiral vertex operators together with 

(6.2) we may deduce that 

q;J,m;j,m.(z,z)<plc,n;k,n(z,z) = I: ai;;~;~k) L q;p',P';p',P'(w,w) 

p' .f, 1 PE 'H. 11 ,P' E 'H.
11

, (6.3) 

Again there is a nice analog of this equation in group theory. 

Recall that for a compact group the Hilbert space of L 2 functions on the group has an 

orthonormal basis given by the matrix elements n:i- in the irreducible representations R. 

The operator U(D:i-) on L2(G) given by multiplication of functions may be represented 

in terms of intertwiners as 

(6.4) 

Where we sum over a basis of intertwiners and a· is a basis dual to a. The algebra of 

functions on the group manifold is given by 

Thus we see that in the k - oo limit of WZW models the operator product expansion of 

the fields with A - 0 becomes the algebra of functions on the group G, thus providing an 

explicit example of an old idea of Dan Friedan's for the reconstruction of manifolds from 
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the operator product expansion of CFT. In fact, as described later, in the specific example 

of current algebra the above ope for finite k is closely related to the algebra of functions 

on a quantum group. For further discussion of these and related ideas see [36}. 

We now show how the above equations can be used to deduce some general theorems 

about the operator content of rational conformal field theories. 

• Exercise 6.2 No repreuntation appear$ more than once. Consider a RCFT where 

some representations occur more than once ( either hrr > I or both hrr and hrr' are non 

zero for r =I- r'). 

a. Add indices in equation (6.1) to describe this situation. 

b. Rewrite equation (6.2) for this case. 

c. Study the four point function of { </)(/)(p' ¢1
} where¢ and ¢ 1 transform the same under 

A ( the representation r) but they are different conformal fields ( they might or might not 

transform the same under A) and assume for simplicity that all the representations are 

self conjugate. Use (3.5) to bring F to the other side of the equation and study it for the 

case where the intermediate representation is O on both sides. Simplify the equation by 

using the fact that the A (A) includes all the holomorphic (antiholomorphic) fields i.e. the 

identity operator is the only primary field under A® A which is holomorphic. The ope of 

qup contains the identity operator and ¢¢1 does not contain the identity operator. Use this 

fact to show that one side of the equation vanishes. The other side is proportional to Fr 

and does not vanish. Therefore, we are led to a contradiction and no representation can 

appear more than once. 

Notice that in proving this result one uses only the equations on the plane and not 

the equations on the torus. Hence, this result applies not only in RCFT but also in 

quasira.tiona.l theories. On the other hand, this result is not true in theories which a.re not 

quasirationa.l [11]. A Z2 orbifold of the Gaussian model at an irrational value of the square 

of the radius is not qua.sirational - the ope of two twist fields includes all the untwisted 

representations. Since the previous proof does not apply, we are not surprised to see the 

same representation appearing more than once in the spectrum. 
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Similarly there is an equation for the d's following from the modular invariance of the 

g = 1, one-point functions. 

• Exercise 6.3 Equation for d from genu.5 one. Write the equation for invariance under 

S(p) for every p. Remember that the characters of the one point function on the torus are 

defined as differential forms i.e. they have a z-dependence ~ ( dz/ z ).O.(p) ( otherwise they 

are not invariant). Therefore, there is a phase relating S of the left-movers to S of the 

right-movers. 

At this point one may wonder whether there will be further constraints on the d 

coefficients from duality im•ariance of correlation functions on other Riemann surfaces. 

The answer is no. Since duality matrices defining an MTC allow us to define duality 

matrices on all surfaces we know that the conformal blocks are duality covariant. To check 

invariance of left-right combinations of blocks we merely have to check invariance under 

the generators of duality transformations. Since an MTC defines a modular functor, the 

generators can be taken to be those duality transformations represented by F, B, S. Thus 

the above duality invariance conditions suffice to guarantee invariance on all surfaces. A 

similar conclusion was reached independently in [37]. 

• Exercise 6.4 Every repre.sentation of A occur., in the .5pectrum. Show that S(O) is 

unitary. Use this to show that one of the equations of the previous exercise can be written 

as 

L hi;S,k = L Si;h;k (6.5) 
J ; 

Use h0 ;, = h;o = Oio, i.e. A (A) includes all the holomorphlc (antiholomorphic) fields, to 

show that there is no r such that hr; = 0 for every j. Hence, no representation can be 

omitted. 

From the last exercises we conclude: If the chiral algebras, A and .A are maximally 

extended, h,.,,. must be a permutation matrix. We are now ready to tackle 
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• Exercise 6.5 The left mover., are paired with the right mover., by an automorphi.,m 

of the fu,ion rule algebra. Use Verlinde's formula relating the fusion rules to S and (6.5) 

to prove this. 

We conclude that F RA(A) = F RA(A) and the pairing of the left movers and the 

right movers is a.n automorphism of the fusion rule algebra: 

where 

The main point here is that the classification of RCFT 1s is a two-step process. First 

we classify all chiral algebras and their representation theory, then we look for all auto­

morphisms of the fusion rule algebras. 

• Exercise 6.6 No New Condition., on F. For a unitary diagonal (i.e. hr, = hi-i) theory, 

assuming Fis real and the fusion rules are zero and one, show that the operator product 

coefficients may be written 

a.) Use the polynomial equations to show that dis totally symmetric. 

b.) Substitute the above equation ha.ck into the full set of equations for dij/e on the 

plane. Show that the resulting identities are guaranteed by the polynomial equations. 

• Exercise 6.7 Open Problem. How general is the result of the previous exercise? Do 

the equations for the torus one-point function follow from the other identities? (Felder and 

Silvotti (38] have shown that for the discrete series the answer. is yes, by direct calculation.) 

What about non-unitary theories? What about arbitrary fusion rules? Is this true for the 
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non•diagonal theories - when a non-trivial automorphism is used to pair left and right 

movers? 

• Exercise 6.8 Modular Invariance of Ai1
) Character". 

a.) Find the automorphisms of the fusion rule algebra for the level k SU(2) WZW 

model. 

b.) Impose other necessary conditions, e.g. the monodromy invariance of the two­

point function. 

c.) Using the above point of view interpret the other modular invariants of Ai1
) 

characters. 

• Exercise 6.9 A utomorphi"m" of Kac-Moody Fu.,ion Rule.,. Using Verlinde's formula 

for Nijlc and Kac's formula for S1.;, show how automorphisms of the extended Dynkin 

diagrams can define automorphisms of the fusion rule algebra. An application of this fact 

can be found in [39]. 

• Exercise 6.10 the d-coefficient" and gauge invariance. How does d transform under 

th~ gauge transformations of rescaling the chiral vertex operators? Show that the equations 

ford are gauge invariant. 

• Exercise 6.11 Modular invariant.! for the rational toru.!. As we will see in section 10 

below, the Gaussian model at radius squared R2 = {q has a chiral algebra which depends 

only on the quantity pq·. Compute the automorphisms of the fusion rule algebra of the 

rational torus and show that they define the different models for which pq = p' q', but 

p/q #- p' /q'. 
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The analogy between conformal field theory and group theory continues to hold for 

the combination of left movers with right movers. We can add to the table at the end of 

section 5 a few more rows: 

Functions on the group 

Product of functions on the group 

Average over the group 

of a product of functions 

Physical fields 

Operator product expansion 

Physical correlation function 

• Exercise 6.12 Ana.logy with group theory. Explain the table. Show that it corresponds 

to the diagonal theory. 

The equations for the ope coefficients d can be interpreted as defining a metric !241 

on the vector space of the conformal blocks. Therefore, if all the d's are real and positive 

( and therefore we can pick the gauge d = I), the vector space of the conformal blocks is 

a Hilbert space. This interpretation will play an important role in the following sections 

where this Hilbert space will appear in the quantization of a quantum mechanical system. 
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7. 2D Duality vs. 3D General Coordinate Invariance 

Many people have noticed that RCFT's lead to knot invariants [20][40] [41] [27][42] [43]. 

One way of producing knot invariants is to view the B matrices as "transition amplitudes" 

of conformal blocks, then defining an appropriate trace (Markov trace) on these amplitudes 

the resulting polynomials are, in fact, knot invariants. There is an alternative formalism, 

used in [40] and elaborated upon in [42}[43] which dispenses with the need for a trace at the 

cost of introducing some new moves. With these new moves the knot invariant becomes 

the transition amplitude for proceeding from the "null block" to itself with an intervening 

knot projection. We will present these results from our point of view using the formalism 

of the previous sections. 

Consider the planar projection of a knot from S 3, e.g. 

A projection of a knot on a plane 

We assign a number to this figure by using the graphical formalism described above. 

For this, we label every line by a representation of a chiral algebra and also label the areas 

bounded by the lines by such representation. We assign factors of B to 
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Graphical rules for computing a knot invariant 

The knot that we consider is a "framed knot." It looks like a ribbon and hence 

,,r,.. j 

/ 
/ 
/ 
/ 

I ~ J 

A non-trivial operation on a framed knot 

The operation in the figure corresponds to a factor of e2.,..iA, in the knot invariant. \Ve 

also need to introduce two new operations on lines for pair creation/annihilation: 

~ 

kV 

Pair creation and annihilation moves 

The factors for these operations are determined by requiring that: 
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( I. ) I 
( 2.) 

( 3.) 

Consistency conditions on pair creation and annihilation 

We make the an&atz 

and deduce from the first consistency condition that 

Since for a closed graph there is always an equal number of O:i and /3;., we can set, without 

loss of generality, a.; == /Ji = ✓f • . 

This result leads to a new interpretation of Deligne's condition discussed earlier. It is 

simply the requirement that the value of a circle is a trace. _Hence it should be an integer 

in group theory. 
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(I . 
J 

E. 

Deligne's condition 

In RCFT it is the relative dimension, as explained in the above. We will see below how 

this follows from the three-dimensional viewpoint. 

• Exercise 7.1 No more conJiJtency condition.,. Show that consistency conditions (2) 

and (3) are automatically satisfied by using the polynomial equations discussed above and 

this value of A)k and Cjk. 

The non-trivial problem in knot theory is to prove that this procedure leads to a knot 

invariant. In other words, different projections of the same knot to two dimensions lead to 

the same result for the knot invariant. From the discussion in the previous sections and 

these exercises, it is clear that the polynomial equations guarantee this fact and we indeed 

find a knot invariant from every RCFT. 

• Exercise 7 .2 Reidemei,ter Move,. In the combinatorial approach to knot theory one 

must check the Reidemeister moves 
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I 

2) )( 

The three Reidemeister moves. 

Check these using the above formalism. Note that the first move is only satisfied 

up to phase. This may be fixed by discussing framed links or by introducing the writhe, 

following Kauffmann [44]. 

The analysis can easily be generalized to graphs with vertices, which are the analogs 

of the fusing move of conformal field theory. Define fusing and defusing moves 

X R. 

1 l\ k 

"l Fusing and defusing 
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• Exercise 7 .3 Con,i.dency condition, on fv.,ing and defv.,ing. Impose the relations 

jJ y 
Consistency conditions on fusing and defusing 

Derive ~ /i = F [' '] J!1c:. Normalize the constants f such that if one of the lines 
vF; le: •o ' ' 

corresponds to the identity representation, this line can be dropped from the graph and 

find the rules 

( 7 .1) 

1 

(7.2) 

1. 
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• Exercise 7.4 Another conJiJtency check. Use the hexagon to show that 

1 
t 

• Exercise 7.5 Simplt: calculationJ. Use the rules to compute the invariant of the 

graphs 

1 

Two simple graphs 
d1;1c Use exercise 6.6 to write the second graph as -,.=-==== when the conditions of that 

JF,F;F1c 

exercise are fulfilled. 

Using these rules one can compute invariants of knotted graphs. As in the case without 

the vertices, the polynomial equations guarantee the consistency. 

• Exercise 7 .6 Gauge invariance. Show that the invariant of knot without vertices is 

gauge invariant, i.e. it does not change if we rescale the CVO's and correspondingly the 
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duality matrices. How do knots with vertices transform under such a rescaling? Interpret 

it. 

It is convenient to pick the "good gauge" 

F [i il = [¥•Fi kO • • F 
J J k 

(7.3) 

Write the fusing and the defusing rules in this gauge. Show that when the conditions of 

exercise 6.6 are fulfilled dijk 1 in this gauge. Evaluate the two graphs in exercise 7.5 in 

this gauge. This gauge was used in [40] [42]. 

• Exercise 7.7 Symmetrie3 of F. Use the pentagon to show that 

[i i] [j k] [k k] [i j] Fno l l Fpi n l = Fpo l l Fn1c l P (7.4) 

In the good gauge of exercise 7.6 this becomes 

Define tt·pi [~ ~] = ,JF:F;,Fpi [~ ~] and use the symmetries of exercise 3.5 to show that 

u· [i j] y;rr [' m] 
H mn k l = n lcj n i 

tt· [j l] 
- nm i k (7.5) 

ff' [l j] 
nm k i 

These symmetries generate a tetrahedral symmetry generalizing the symmetry satisfied by 

SU(2) Racah coefficients. Use the results of exercises 7.5 and 7.6 to explain the origin of 

this symmetry. 

• Exercise 7.8 Proof of the la3t equation on the toru3. 
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The graphical formalism presented here is a very convenient tool in manipulating the 

duality matrices using the fundamental equations. We'll demonstrate this fact now by . 
showing that the definition (4.3) of Si;(P) in terms of Band F satisfies the last equation 

on the torus Sa = bS. Consider the graph 

2 
J 

Graph used to prove Sa= bS 

For simplicity, work in the good gauge. Use 

to show that the graph has the value 

Now, deform the graph to f 

J.. 

A deformation of the same graph 

which differs from the original graph by a factor of e1"'(a., -a,). Prove the identity 
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. 
1 

L 
s 

s l'l 
J.Q r 

) 

'l 

and use it to deform the graph to 

J. 

L 
5 

the original graph is equivalent to this graph 

Turn this graph upside down and evaluate it. Use the symmetries of F and the expression 

for S(p') to write it as 

(7.8) 

Now express the a monodromy 
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k 

the general a monodromy 

and the b monodromy 

k k 

f 
b 

1 

the general b monodromy 

in terms of F and phases. Equate the two different expressions of the same graph (7.7) 

and (7.8) and use the expressions for these two monodromies to show that 

Sa= bS 

Therefore, this expression for S satisfies the last equation on the torus. Hence, this equation 

can be dropped from our list of axioms and be replaced by this definition of S. 
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• Exercise 7.9 more identitiea for graph,. Use the pentagon to show that 

I. 

k 
1 

J 
7 

2. Ff (t k] 
p~ 1 i. 

In all the manipulations with knots in S 3 we use only the polynomial equations on 

the plane. We do not need the torus equations. Therefore, quasirational as well as rational 

theories lead to knot invariants in S3 • 

In the above discussion we have simply defined Si;(P) as a combination of certain 

duality matrices, exactly as in the axioms for a MTC. In order to see directly why, with 

this definition, S should be related to the modular group of the torus we must pause and 

discuss Witten's observation [27) that 2-dimensional duality (as axiomatized by the notion 

of a modular functor) is equivalent to 3 -dimensional general covariance. 

One recent application of the knot invariants arising in RCFT has been to the con­

struction of invariants of three manifolds [27] [41] [43] [45]. These applications are simply one 

facet of the current interest in studying the geometry and topology of manifolds via quan­

tum field theory, through the general notion of topological QFT's. These were introduced 

by Witten and recently axiomatized by Atiyah. In 2 + 1 dimensions the Atiyah-Witten 

axioms, which summarize the formal properties of path integrals for topological field the-
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ories, are closely connected to the notion of a modular functor. To see this recall that the 

Atiyah-Witten axioms a.re [46] [47], 

Axioms for a Topological Field Theory 

Data: 

I. A map from closed oriented d-manifolds to complex finite dimensional vector spaces 

E _. ?-i(E). 

2. A distinguished vector Z(Y) E ?-i(E) associated to d + !-manifolds such that 

E = BY. (In particular if Y is closed Z (Y) is a complex number.) 

Conditiona: 

I. Naturality. If f : E 1 ----. E2 is an automorphism there is an isomorphism ri(f) : 

?-i( E i) _. ?-i(E2) satisfying 1-i( Ji h) = ri(fi )ri(b ). There is a similar naturality condition 

on the vectors Z(Y). 

2. Duality. ?-i(E*) ?-i(EY, 

3. Multiplicativity. ?-i(E 1 U E2 ) 2= ?-i(Ei) © ?-i(E2). Moreover ?-i(</>) 2= C. 

4. Gluing. If Y and Y' are glued along a d-manifold E ( with opposite orientations for 

E) to form f' then 

Z(}') = {Z(Y), Z(Y')) 

The above makes sense since the opposite orientations of E allow us to pa.ir a space with 

its dual. 

5. Completeness. The states Z(Y) for all Y with BY= E span ?-i(E). 

(Note: Atiyah adds a sixth axiom that Z(Y*) = Z(Y)*, but we will not need this.). 

Clearly for the case d = 2 the above notion is very close to that of a modular functor, 

in particular in any attempt to pass from one to the other the vector spaces 1-i(E) are 

surely the same. Nevertheless, there are some things to prove. The precise connection 

was worked out in [48] [49]. To pass from a modular functor to a topological theory the 

main problem is to construct the vector Z(Y) from the data of the modular functor. This 

was done in [48] [49] by choosing a Morse function, using the data of the modular functor 

to define "transition amplitudes" between critical points of the Morse function and then 
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checking that the choice of Morse function does not lead to ambiguities. To pass from the 

topological theory to the modular functor the main problem is to produce the finite set of 

labels ( of "representations") and their fusion rule algebra, etc. An argument that this can 

be done is presented in [48]. The labels a.re a basis for the vector space 1t(tanu). 

The advantage of the point of view of modular functors and topological field theories is 

that for any system satisfying the axioms one can compute quantities for nontrivial graphs 

and nontrivial manifolds via the gluing axiom. In particular, one can compute various 

quantities using the notion of surgery. 

If 1t(I:) is an n dimensional vector space, any collection of n + 1 vectors Z, E 1t(I:) 

is linearly dependent; i.e. there are coefficients a, such that :E, a,Z, = 0. This leads to 

a linear relation between the invariants of different manifolds. Let Z, = Z(}~) for n + 1 

different }"i. Then, 

(7.9) 

where ~ is obtained by gluing Y to Y, along some d-fold I:. 

Rather than continuing in complete generality, we focus on the particular topological 

field theory corresponding to a RCFT. As explained above, the labels of the representations 

label a basis of 1t(T2 ). The three manifold Y can have links carrying these labels (also 

links with vertices) and these links may terminate at the boundary of Y. For example, for 

Y a three ball with the link 

J 

a link in a three ball 

we find a vector v E 1t(Sf;1c) where Sf;1e is a sphere with three labeled points i,j, k. By the 

correspondence of a topological field theory and RCFT, ?t(Sf;1e) !'::::' Vi;1e and its dimension 
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is N.;1e (if Nijle > 1, we should specify the kind of coupling which is used in the vertex in 

the link). Continuing.to assume for simplicity that Niile = 0,1, the vector v E 'H(Sf;1:) 

corresponding to 

k 

. 
1 

-- J 

~t[~~] 

~~ [;;] 

another link in a three ball 

is proportional to the original one i3 xv. 

Now, consider a complicated three manifold Y with a link 

a complicated link 

J 

Remove the three ball which looks like the previous figure ( the dashed line) to obtain the 

three manifold Y. By the gluing axiom 

Z(Y) = (v, Z(Y)) = z*(v, Z(Y)) = z* Z(Y') 

where Y' is t.he same as Y except that the ball is replaced by the simple link. This 

procedure simplifies the computation of Z(Y) by relating it to a simpler object Z(Y'). 
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• Exercise 7.10 Interpretation of previou.s reault.s. 

a.) Use this understanding to interpret the first relation in exercise 7.9. Express :i: in 

terms of the duality matrices. 

b.) Repeat this analysis for the sphere with four labels ijlcl. Show that the vectors 

. 
7 

a basis for 'H(Sf;1r:d 

for all p span 'H(Sf;1r:,)· The vector of a given p corresponds in the RCFT to the conformal 

block with the representation pin the intermediate channel. The second relation in exercise 

7.9 expresses duality in RCFT. Interpret it from three dimensions. 

c.) Cut the tetrahedron graph (the first figure in exercise 7.5) along the lines i,j,l,n 

and express the invariant of the graph as an inner product of two vectors in 'H(S;;,n). Use 

part b of this exercise to explain why the tetrahedron graph is proportional to F. 

d.) Interpret the equations for the ope coefficients d as determining a metric on 1-{ as 

mentioned in the end of section 6. Use this fact to interpret the second graph in exercise 

7.5 as d;;1c 
JF;F;F• 

e.) Interpret the gauge invariance as a freedom in the normalization of the vectors in 

?t(E). 

This interpretation is more powerful when combined with the notion of surgery {27J. 

First notice that ?t(T2 ) is spanned by Vi = Z(Mi) where Mi is a solid torus with a line 

with the label i around the non-contractible cycle. Consider a three manifold }'i with a 

closed line with the label i. Removing a solid torus Mi surrounding the line from }'i, we 

find the three manifold Y. By the gluing axiom, Z(l'i) = (Z(Y), vi)• Now consider another 
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three manifold X obtained by interchanging the a and b cycles 1 on the boundary of J.1, 

and then gluing it back to i ... The relevant inner product is 

i j 

As before, we succeeded to express Z of some manifold in terms of Z's of other (simpler) 

manifolds. Using this procedure it is possible to compute Z for every manifold {27]. 

• Exercise 7.11 Ambiguity in ,,urgery. Show that the ambiguity associated with the 

choice of the b cycle corresponds to the application of Tin RCFT. Therefore, it is related 

to the fact that the lines have to be framed. How does the framing remove the ambiguity? 

• Exercise 7.12 Some calculation8 u8ing aurgery. 

a.) The invariant for two parallel nonbraiding ( "cabled") lines Wi, "tt7
; in 5 2 x 5 1 is 

Noij• Why? 

b.) Think of 5 2 x 5 1 as two solid tori whose toroidal boundaries are identified via 

the identity map ( u1, u2) -+ ( u1, cr2 ). Change the identification to the transformation: 

5 : ( u 1 , u 2 ) -+ ( u 2 , u1 ). Shov; that the resulting three-manifold is just 5 3 . 

c.) Suppose the two solid tori of part (b) contain lines Wiand W; respectively. Each 

line wraps along the noncontractible direction. Show that the resulting configuration in 

5 3 is just: 

A configuration of lines in 5 3 

1 The a cycle is the contractible cycle inside Mi; however, there is an ambiguity in what 
we mean by the b cycle. We will return to this ambiguity shortly. 
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and therefore the invariant of this graph is 5ij. 

d.) Using the graphical formalism described above, compute the figure in part ( c) and 

rederive the formula 

(BB ~] B [~ ~]) 00 

FiFi 

we derived in a previous exercise. Notice that the graphical rules did not include an overall 

normalization factor of 500 for every graph in 53
• This factor is natural from the surgery 

point of view if the invariant in part a of this exercise is normalized to be Noij· 

e.) Compute the invariant for two cabled lines Wi and W; in 5 2 x 5 1 as before but 

this time connected by a line with the label p: 

1 

a configuration in 5 2 x 5 1 

f.) Perform surgery as above using 5(p) and turn this into 

1 J 

the previous graph after surgery 

in S 3 . Compute this graph using our rules and derive equation ( 4.3). (Because of the 

framing, there is a phase ambiguity. The phase e-i,rA,. is determined by consistency.) 
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• Exercise 7.13 Verlinde 'J formula from Surgery. We outline a slightly modified proof 

of E. Witten of Verlinde's formula. 

a.) Consider the configuration: 

A configuration used in the proof of Verlinde's formula 

Using the graphical rules and the above formula for S in terms of B show that this has 

the value: 

b.) Rewrite the above as 

Ld 
1. 

Use the identity F p- 1 = 1 and the braiding/fusing identity to rewrite this as: 
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From this derive Verlinde's formula. 

• Exercise 7.14 a and b monodromieJ for the two point function on the toroJ. Relate 

the graph 

. 

' 
graphical formulas for the b monodromy 

in 5 2 x 5 1 to the b monodromy. Use surgery to relate it to the figure used in exercise 7.8. 

Find a graph in 5 2 x 5 1 for the a monodromy and use surgery to relate it to the figure 

used in exercise 7.8. Thus making the previous proof of So,= b5 somewhat intuitive. 

We see that the information in surgery is equivalent to the information in the equation 

Sa.= b5 which in turn is equivalent to the formula for S(p) in terms of F and B. 

We have seen that a RCFT defines a modular functor, which has been argued to 

give rise to a topological 2+ 1 dimensional theory. Recently L. Crane [45] ha.s shown 
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more directly that the data F, B, S can be used to construct invariants of framed 3-folds 

through the use of some theorems from combinatorial topology. For example, to identify . 
the invariant associated to a closed 3-fold Y we use a "Heegaard splitting" whereby Y 

is represented as a glued pair of handle bodies Y1, Y2 which have as a common boundary 

the surface I::. Y1 is glued to Y2 via a nontrivial diffeomorphism <t, of I::. Among the 

conformal blocks 1-l(I::) there is a distinguished (normalized) vector Xo defined by the 

condition that the trivial representation be present on all internal lines. Representing <P by 

the duality matrix Z(<t,) we have the invariant Z(Y) = (Xo,Z(</>)xo), Since the Heegaard 

decomposition is not unique it is nontrivial that Z(Y) is an invariant. Using known facts 

about Heegaard splittings Crane shows that the axioms of an MTC guarantee that Z(Y) 

is unambiguous up to a factor of e21ric/24 . Yet another approach, due to Reshetikhin and 

Turaev [41] will be mentioned in the following section. 

So far the discussion was very general and did not depend on a particular three 

dimensional theory. In [27] \Vitten considered the Chern-Simons-Witten gauge theory in 

three dimensions. This is a topological field theory and therefore the general analysis in 

this section applies there. Moreover, this theory can be solved exactly [27] and explicit 

expressions for the duality matrices can be obtained. The study of this theory is the 

subject of sections 9 and 10. 
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8. Quantum group solutions of the polynomial equations 

This section contains some remarks intended for those already familiar with ha.sic facts 

about quantum groups. Thus we assume some familiarity with [50] {40]. A nice review of 

the subject is [51]. 

If A is a Hopf algebra then the category of its finite dimensional representations Rep(A) 

has a tensor product which may be defined by the comultiplication A. From the axioms 

satisfied by a comultiplication there wil1 be an associativity constraint satisfying a pentagon 

consistency relation. In the previous terminology, the F matrix will exist and will satisfy 

the pentagon relation. In general there will be no commutativity constraint, i.e., there will 

be no analog of n. If A is a quasitriangular Hopf algebra (see [50], essentially it means 

that the comultiplication and opposite comultiplication are conjugate by a "universal" R 

matrix.) then there is a commutativity constraint, but in general f2 2 ¥- 1. In this case 

there will be two hexagon conditions. These hexagon conditions are equivalent to Drinfeld's 

formulae (A® l)R = R13 R23 and (1 ® A)R = R12 R23 . In this case Rep(A) is a braided 

monoidal category. In [41] a central extension of a quasitriangular Hopf algebra is defined 

which these authors call a "ribboned Hopf algebra." The extra conditions specified for a 

ribboned Hopf algebra are such that in this case Rep(A) is a "compact braided monoidal 

category," which in our terms means that when F, B matrices are suitably identified with 

quantum group Racah coefficients (in a way precisely analogous to the discussion of group 

theory above) then the genus zero axioms of a MTC are fulfilled. (Except, perhaps, for 

the finiteness of the index set /.) Correspondingly, in (41 J Rep( A) for a ribboned Hopf 

algebra is used to define invariants of knotted graphs 2 in JR.3 . 

An important special case of ribboned Hopf algebras is provided by the quantized 

universal enveloping algebras U9(Q) for a Lie algebra Q. Applying the machine of (41} one 

may obtain invariants of knots in S3 for any deformation parameter q. However when q 

is "rational," which means that qn = 1 for some integer n, something more remarkable 

happens. In this case one may truncate the set of representations to a set of 'good' or 'type 

II' representations [52] [53], characterized as a minimal compl~te set of representations with 

2 More precisely, invariants of colored directed ribboned tangles. 
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nonvanishing quantum dimension, such that the truncated space of representations defines 

a modular tensor category. 

The most famous and well-known example of this phenomenon is provided by 

Uq{sl(2)). In this case it has been shown that the braiding and Racah matrices for the 

case q e2?ri/(k+ 2 ) are identical to those of the conformal field theory su{2)k when we 

restrict the class of representations and invariant tensors to the "good" ones generated by 

irreducible representations of dimensions~ k + l and couplings satisfying the su(2}A, fusion 

rules. The proof of this statement may be obtained as follows. One first computes the 

braiding matrices for spin 1 /2 operators !20] and notices the exact correspondence with 

the corresponding quantum group objects. In conformal field theory the other braiding 

matrices may then be obtained by successive use of the braiding/fusing relation. Then one 

proves that it is valid to truncate the quantum group braiding/fusing relation so that it 

only includes the good representations. Another argument, using properties of Hecke and 

TLJ algebras has been advocated by Alvarez-Gaume, Gomez, and Sierra [51]. VVith the 

coincidence of F, B matrices one may define Sas in ( 4.3) and hence the restricted quantum 

group representation theory defines a 1ITC. Analogous statements exist for other Uq(Q) 

and full proofs for all cases have been published in !54]. The coincidence of F, B matrices 

has been widely noted and discussed. Just a few references include [20][54][15][55) [56] [.Si] 

[58] [51 ]. 

These observations allow one to give very explicit formulae for braiding/fusing matri­

ces ( which are more easily obtained by using quantum group technology). For example, 

very explicit formulae where written down in (40]. As a simple example we quote the well­

known result for a braiding matrix of two spin 1/2 fields. The relevant space of conformal 

blocks is two-dimensional corresponding to intermediate spins j ± ½ and we have 

B [½ ½] _ 1/46 _ -1/4 ~ 
rs . . - q r,11 q S 

J J j 

where S · - sin ,r( 2i+l) Alternatively this may be written :J - k+2 • 

[
! l] 1 ( -q-UH/4) 

B j J = [2j + 1] /q- 112 [2j]!2j + 2] 

where [n] = (qn/2 _ q-n/2)/(ql/2 _ q-1/2). 
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In [41] Reshetikhin and Turaev represent 3-manifolds via surgery on links and use the 

surgery procedures of Witten to reduce the invariants of three-folds to those associated to 

links ( or tangles). Their pa.per can be viewed as another construction of a three-dimensional 

topological field theory, starting from the MTC associated to the representation theory of 

Uq(.d(2)) for q1c+ 2 == 1 (and, in principle, to other Uq(9).) The link or tangle invariants are 

computed essentially as transition amplitudes of conformal blocks, along the lines described 

above. 

The fact that the type II representation theory of Uq(9) for rational deformation 

parameters coincides with the MTC of a canonically associated RCFT is still something 

of a mystery. The statement of this fact has been formulated in a number of conformal 

field theoretic constructions [51 ][57][59] [60] but these descriptions make use of the fact 

rather than explain it. Another connection of CFT to quantum groups has been noted in 

[61]. In [27] 'Witten proposed one approach to this problem, which, if successfully brought 

to conclusion would yield an adequate explanation. More recently Witten has proposed 

a different explanation in [62]. In the remainder of this section we present an alternative 

interpretation of Witten 's idea. 

We begin by noting that the quantum 3j symbols themselves may be seen to form an 

algebra. Namely, using the formalism of [40] we have 

J-> 1V\. 

1 

Graphical representation of a 3j symbol with one line carrying spin 1. 

which we will take to define the matrix elements of three operators Ta=-l,O,+l· By the 

very definition of Racah coefficients we may write 
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1 

where 

3j symbol for coupling three spin 1 representations. 

and we will denote the Racah coefficient by A;. 

Clearly the above formula may be regarded as defining an algebra for the Ta operators, 

the structure constants being defined by the 3j symbols for three spin 1 representations 

and the Racah coefficient A;. That is, we may write: 

L [~~ 1] TtJT-, = A;Tcz 
IJ,-r fJ1 

For example, for U9{-,l{2)) one may easily compute: 

q- 112T+To - q112ToT+ = A;T+ 

T+T- - T_T+ = (q112 
- q-112 )T; + A;To 

q-112T0T_ - q112T_To = A;T-

for any value of q. This is precisely the algebra derived in [62]. The reason for this is that 

graphs are computed with quantum Racah or 6j symbols. But, upon analytic continuation 
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away from lql = 1 the 6j symbols have large spin limits which are precisely 3j symbol1 

More precisely we have [40] 

lim l • {a+ a 1 ;} a.-oo i 
= ima, ..... oo j a+ l 

1 [ 1 J 
l ~a] - [2j + 1]1/2 -Q l 

Q.+.£. 

Thus Witten 's lassoing and limiting procedure produces the algebra of 3j symbols. 
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9. Chern-Simons-Witten gauge theory - Quantization 

The discussion in .section 7 was quite general. It can be made much more explicit in 

a particular field theory - the CSW theory[27J. This is a particular example (we will later 

mention a conjecture that this is essentially the only example) of a topological field theory. 

The theory is a gauge theory based on the gauge field A = A: Ta dz" in some Lie algebra 

g with action 

s }!__ f Tr(AdA + !
3

A3) 
41r }y 

for a three manifold Y. For simplicity we limit ourselves here to SU(N) gauge theory with 

a trace in the fundamental representation (TrT 0 Tb = -6°0). 

Clearly, the action is independent of the metric on Y. To prove that the theory is 

indeed topological, one needs to show that the measure of the functional integral is also 

independent of the metric. In what follows, we will assume that this is the case3 . 

Perhaps the easiest way to understand the theory is by canonical quantization. Sup­

pose we have a Riemann surface :E and consider the theory on the 3-dimensional manifold 

y =:EX IR. 

If we canonically quantize the theory we obtain a space of physical states H (:E) asso­

ciated to the surface .E. Witten showed that these states have a natural interpretation in 

terms of the WZW model for g-current algebra at level k. Specifically: 

closed surface e> Ht = { 

surface pierced by 
Wilson line in :;, 
Representations i1, · · • in 

vector space of 
conformal block for 
partition function 
on'E 

conformal blocks for n-point 
function on Hr, for n :fields 
in the representations: ii · · · in 

Moreover for 3-manifolds interpolating between two surfaces 'E1 and :E2 the path integral 

gives a transformation H(E1) --+ H(.E2 ). Witten shows that these transformations a.re 

3 In [63] Witten showed that the existence of the central charge in two dimensions is 

related to some dependence on the metric on Y - the theory depends on the "framing on 

Y". 
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just the duality transformations on the space of blocks. Why is it true? We will explain 

these matters in a simple physical way. 

Choose A0 = 0 gauge: If ~ ha.s no boundary then 

S = - t:'3 TrA·-A· k J .. d 
4.,,. 

1 
dt ' 

We then have a first order Lagrangian and therefore, the phase space is the space of gauge 

fields on ~- The symplectic structure on this space leads to the commutation relations 

where J ,5( 2 )( z - w )d2 z = 1. It is convenient to pick a complex structure T on ~ and to 

write 

The wave functions in holomorphic quantization are holomorphic functions of Az, 1P 

"'IJ(Az ). The Hilbert space is the space of all these functions. The physical space is the 

subspace of the Hilbert space which is invariant under the Gauss law. 

• Exercise 9.1 Gau.!.!' law. Show that 

u(t:) = _i Tr(t:F) .k J 
4.,,. 

generates an infinitesimal gauge transformation by t:: 

so 

(u( i), A] = -Di 

[u(t:1),u(t:2)] = u([i1,i2]) 

By integrating u{ i) the operator generating a finite transformation g = e~ is 
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Now how does it a.ct on physical states? We certainly must have: 

to find f, we impose the group law: 

U(h)U(g):::: U(gh) 

and find: 

f(A;gh) = f(A;h) + f(A"';g) mod 271'ik 

The solution is: 

So 

This is the key equation. From it we may get the independent physical states as 

follows. 

Physical states are invariant under the Gauss law - so we are looking for linearly 

independent solutions to the equation 

Now, given any functional ,Po we can generate such a solution by 

,Pp1i.11 • :::: j DgU(g )1/Jo 

i.e. we can write: 

t/iphy•(A.i) = J Dg eikS(g;A. ,o)t/io(A!) 

We will now carry this out for three examples: E = T2, the torus; I: = S2 pierced by 

Wilson lines and E = Disk. 
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:E = T2 

From general principles we expect that Hr; will be the space of characters of the affine 

Lie algebra. The easiest thing to do is choose a complex structure z = o-1 + -ro-2 so we 

represent the torus by a parallelogram as usual. Define A.z: = r'!,1_=--/ 2 • So 

(In the equations above the factor Imr was in the definition of the delta function.) 

Now we use a basic fact: we can always gauge A.z: to the constant Cartan: 

with h in the complexification of the gauge group where a is constant in the Cartan 

suba.Igebra. So - by the Gauss law it suffices to know the values ,t,[a.z:] because ,t,[Az] = 
e-iA:S(h,4 ,o),t,[a). Now if we take the family of testfunctions for J,, where J is a constant 

in the Cartan subalgebra, 

then the corresponding physical states are 

where S(g, Az, A1) is the gauged WZV1l action: 

S(g,Az,A,) = !! j Trg- 18gg-1lig +ikf 

-!! J Tr[Ag- 18g + A8gg-1 + gAg- 1 A - AAJ 

The value of this path integral is well-known, it is just 

where 
u.mi • -ilmr 

V'.\(a) = e- 21r 
4 X.\(f, ,-,, a) 
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where x~ are the Weyl-Kac characters. Thus - as we vary J we sweep out a space of states 

spanned by the characters. 

• Exercise 9.2 The Weyl Alcove. Consider quantization of the Chern-Simons-Witten 

gauge theory on the torus with a real polarization, that is, ,p = ,/,[A1 (:r: )]. Take the gauge 

group to be connected, simply connected and simply laced. 

a.) Derive the Gauss law and show that ,p has support on those A1 which are com­

ponents of a fiat connection. Thus the wavefunction is determined by its value for A1 

constant and in the Cartan subalgebra. 

b.) Show that the Gauss law for the gauge transformations preserving the constant 

Cartan force '¢ to be a periodic delta function whose support is at A 1.11eight /ff' x kAroot 

where 11.weight {A root) is the weight (root) lattice and Wis the Weyl group. The elements 

of this coset are in a natural one-to-one correspondence with the integrable highest w~ight 

representations of level k of the associated Kac-Moody algebra. 

• Exercise 9.3 .Moduli Space of Flat Connection8. 

a.) In his original paper Witten first imposed the constraints and then quantized 

the resulting phase space. Show that this phase space is just the moduli space of flat 

connections on E. 

b.) A fl.at connection is characterized by its holonomies, up to conjugation. Show that 

the real dimension of the resulting phase space is (2g - 2)dimG for the gauge group G on 

a surface of genus g > 1. 

c.) Use the WKB approximation to show that the number of physical states grows as 

A:(g-l)dim.G and compare with exercise 3.8. 

96 



I:= S 2 punctured by Wilson lines 

The Wilson lines for finite transition amplitudes are 

where the Wilson line carries some representation j and m1,m1r are states in the repre­

sentation j as in the following figure 

two sphere's with Wilson lines 

Since the Hamiltonian of the theory is zero, finite time amplitudes are the same as 

overlaps of wavefunctions. So we see that the wavefunctions in the case with punctures 

are simply wavefunctionals valued in the tensor products of representations: 

We know how Wilson lines transform under gauge transformation, so it is clear that the 

action of the Gauss law is just: 

As before, we may use the basic fact that we can gauge away A,: i.e. A.= -8.hh-1 Thus 

physical wavefunctions are completely determined by their value at Ai: = 0: 

i"~'•[Az = OJ = J Dg e'u(,) ®, p(g-1(Pi))fo(-8gg-1 ) 

Now ;fa is an arbitrary functional of the holomorphic current, so, by the holomorphic KM 

Ward identities we obtain a basis of physical states: 

,$,(Ai:)= e-ilrS(~) ® Pi(h(P.))fp(z1, ... in) 
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From this example we see that the transition function given by the path integral for braided 

Wilson lines is indeed !he appropriate duality matrix. 

• Exercise 9.4 Knizhnik-Zcmolodchikov equation,. 

a.) From the discussion of wavefunctions above write the Gauss law for the case of 

the sphere with sources as: 

u(e) = 4: / TreF + LT.,4E"(A) 

We would like to see how the wavefunctions change as the positions P1 of the sources 

change. 

b.) Show that 
a 

[O,u(E)]= oziu(f) 

c.) Writing physical states as path integrals show 

J ile(s-~ JTrA9-
1 a9) ( ) - - .w 1 ~ 

Oi,P[A; P,JIA=O = Pi(To.)A;(Pi) Dge ®i Pi g- (zi,Zi) 1P )A=o 

For simplicity (and WLOG) take ,$0 to be a constant tensor. 

d.) We must define the singular product of operators at A. We do this by point 

splitting, then making an appropriate subtraction, which will be uniquely determined from 

self-consistency. Use the conformal field theory operator product relation (for a proof see 

[23].): 

l"(()Pi(T")g- 1(z;.,z,:) = (~iii+ (k + h)8ig- 1(z;.,z.) + 0(( - zi) 

where his the dual Coxeter number and Ci= C2(Vii) is the Casimir of the representation 

y;., to deduce that we must define the singular product of operators by 

: Pi(T")l"(z,)p,(g-1 (zi,zi)): = lim [P1(T")J"(()P1(9-1(zi,ii)) ,....... . 

- ,- Ci_ - h8,g-1(z,,z,)] 
- z,: 
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e.) Plugging in thls definition and using the Kac-Moody Ward identities for J show 

that physical states satisfy the Knizhnik-Za.malodchikov equations {23] 
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Finally, we consider the case o{ E with a boundary. In the case where E is a disk, Ht; 

is the chlral algebra of the theory[27] . 

We consider the path integral on D x JR. Let us try to "evaluate" the path integral 

J DA iS --e 
vol G 

In order to do that we must decide on the appropriate boundary conditions. These are 

determined by demanding no boundary corrections to the equations of motion: 

oS = k f Tr(oAA) + 2k f Tr(oAF) 
41r J8DxR 11' lvxR 

So we choose A0 = 0 on the boundary. The gauge group appropriate for these boundary 

conditions is G = {g: D x 1R-+ Gjg)8DxR = 1} 

so 

Now let's decompose_ A into time and space components: 

A= Ao +A 

8 -
d=dt-+d 

&t 

kl (-8-) kj (-- ·) S = 
4

71" Tr A &t A dt + 
2

1r Tr A0 dA + A 2 
• 

Next, do the integral over A0 giving 

We can solve this to get 

A= Ju u-1 

for U : D -+ G, since D is simply connected. 

Moreover, one can argue that there is no J acobia.n 

DA.i(F) = DU 
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• Exercise 9.5 No Ja.cobict.n. Show that in the change of variables 

J DAh(F)O(A) = J DUO(-u- 1aU) 

for gauge invariant functionals O. 

Finally, we plug A = -duu- 1 back into the Lagrangian to get: 

where 'fl is the angular coordinate on the rim of the disk, and r stands for the Wess-Zumino 

functional. As is well known, this does not depend on the values of U on the interior - so 

we can divide out the volume of the gauge group to get the path integral 

J DU eiks.., •• (U) 

where 

U : 8D x Ill-+ G. 

Quantization of this system is well-known to give the chiral algebra of the W ZW 

model {2]. 

• Exercise 9.6 A Di,k with a aource. Work out the analogous change of variables for 

the case of a disk with a source in a representation .\. Represent the source by a quantum 

mechanics problem with the action [64) 

J dtTr.\w- 1(8o + Ao)w(t). 

Integrate over Ao to find a constraint on A. Show that the holonomy of the flat connection 

around the source is determined by the representation of the source. Find the effective 

action on the boundary of D x Ill. Its quantization leads to the representation .\ of Kac­

Moody [65]. Use this Lagrangian to find the set of ,\ 's which lead to inequivalent effective 

field theories and hence to the set of integrable representations of Kac-Moody. 
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• Exercise 9. 7 Two 1ource1 on S 2
• Repeat the analysis of the previous exercise for this 

case and prove that the Hilbert space is one dimensional if one source is in the conjugate 

representation to the other source and it is empty otherwise. 

From these remarks we see that we can also learn about descendents from the 2 + 1 

dimensional viewpoint. Moreover, note that the quantization on the disk allows us to 

define a 2 + 1 dimensional analog of a chiral vertex operator. Consider the following solid 

pants diagram threaded by three Wilson lines joined together with an invariant tensor a: 

~/ / / 

Solid pants diagram 

The different boundaries are meant to reflect corresponding boundary conditions on the 

gauge field. From the above exercises we see that the path integral defines an operator 

from 1-{; ® 1-{lc to 1-{i• Moreover, from general principles of CSW theory this operator has 

the braiding and fusing properties of a chiral vertex operator. Thus it is natural to suppose 

that it i., a chiral vertex opera.tor at some canonical value of z, but this has not yet been 

demonstrated. 

Not all aspects of RCFT have been understood from the 2 + 1 dimensional viewpoint. 

We end with the following exercise, part ( c) of which is an open problem: 

• Exercise 9.8 Nontnvia.l Modular lnva.nanta. 

a.) Show that the natural inner product on quantum wavefu.nctions for CSGT with 

connected and simply connected gauge group defines a pairing of representations corre­

sponding to the diagonal modular invariant. 

b.) Give the 2 + 1 dimensional interpretation of the unitarity of the matrix S. 
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c.) Find a natural interpretation of the nontrivial modular invariants especially exer­

cise 6.5 from the 2 + 1 dimensional viewpoint. 
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10. Chern-Simons-Witten gauge theory - Other RCFT's 

In the previous section we saw how KM theories can be reconstructed from connected 

and simply connected gauge groups in three dimensions. It is therefore natural to ask if 

other RCFT's can be similarly related to CSW theory for different gauge groups. Here we 

will show that all known examples of RCFT arise from CSW theory for some gauge group. 

Among the other known RCFT's there are three kinds: 

1. Extended algebras. Examples include the rational torus, chiral algebras of Dn 

modular invariants(W-algebras ), and other modular invariants obtained by orbifolds of 

WZW theories. 

2. Coset models. Examples include various discrete series 

3. Orbifolds of the above. 

The holomorphic part of each of these theories can be given a CSGT interpretation: 

1. Extended KM algebras 

Most chiral algebras include high spin fields. Some of them can be obtained by adding 

extra holomorphic operators to a KM algebra. Theories not finitely decomposable in terms 

of KM or Virasoro representations might be finitely decomposable with respect to this 

larger algebra. For example, to form extended algebras one usually uses the "spectral 

flow" transformation associated to automorphlsms of extended Dynkin diagrams. Thus, 

if we wish to extend level kg-current algebra we begin with (J E Center(G) and write 

9 = eh" for some weight vectorµ. (For simplicity we take G = SU(n), the discussion can 

be generalized.) The integrable level le representations a.re given by the points in the Weyl 

alcove 

The transformations A ...,.. A+kµ is equivalent, via the affine Weyl group to a transformation 

A - µ(A) of hlghest weight representations. For example for SU(2) level le the spin j 

representation transforms by j...,.. lc/2 - j. 

Equivalently, we may consider the change in the currents obtained when the boundary 
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conditions are twisted by the multiple-valued "gauge transformation" 

O(z) = z8 ( l 0.1) 

which acts by 

(10.2) 

In modes we have: 

(10.3) 

i i 1 2 Ln -+Ln + f:J Hn + 2/cf:) 6n,O 

(E,H correspond to simple roots and Cartan elements, respectively) and in the special case 

of SU(2) this becomes: 
s s k 

Jn -+ Jn + 26no 

Jf ._ Jf±I (10.4) 

1 8 k 
Ln -+ Ln + 2Jn + 2Dno 

In general, for any subgroup Z C Center(G) we can "mod out" by this action thus 

obtaining the extended chiral algebra 

A well known example is the rational torus. The toroidal c = 1 model with a boson 

¢ ~ <p + 21r R has a U (1) KM symmetry generated by J = 8¢ when R2 = {q is rational 

there are extra holomorphic fields generated by 

which generate a large algebra. 

It can be shown that this process of extension of the algebra: 

corresponds in CSW gauge theory to a change in the gauge group. Namely we can have 

an Abelian gauge field.with action 

S = ik jAdA 
871" 
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but it makes a big difference if the gauge group is R or R/Z = U(l). 

If the gauge group i! R, the allowed gauge transformations are A -+ A - df:( :c) where 

f : Y -+ R is a well-defined function. In that case: 

1.) We ca.n sea.le k out of the a..ction 

2.) The observables in the theory are the Wilson lines 

Recall that the value of a defines a representation - this corresponds to a continuously 

infinite set of representations in CFT. 

3.) No two Wilson lines are equivalent. 

On the other hand, if the gauge group is U(l) then around non contractible cycles E 

is only well-defined modulo 2,r, and this leads to some consequences: 

1.) The theory only makes sense for k = 0 mod 4 

2.) The observables are 

3.) Two Wilson lines can be equivalent 

• Exercise 10.1 Level le U(l) Current Algebra. 

a.) Compute explicitly the expectation values of Wilson lines in ss for the a.belian 

case: 

where 4>i; is the linking number. 4>,i is a.mbiguous-but may be regularized a.nd defined up 

to an integer. 

b.) Show that the cross terms are invariant under the change n -+ n + t. Show that 

the invariance of the self-linking number requires le = Omod 4. 

c.) Perform a (singular) gauge transformation A -+ A + def, where ¢, is a.n angular 

variable around some Wilson line. Show that this changes Wn -+ W 1 L. This illustrates 
n+2,. 
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how changing the gauge group from JR to U(l) = JR/Z brings about an identification of 

Wilson lines. 

d.) If k = 4N we refer to the corresponding CFT as U(l)N, "level N U(I) current 

algebra." Show that the conformal field theory is just the holomorph.ic part of the rational 

torus R 2 = p/2q where pq = N. 

e.) The Wilson line Wk which is a non-trivial operator if the gauge group is JR 
1 

behaves like the identity operator when the gauge group is U(l ). The reason for th.is is 

the following. In the U(l) theory one needs to sum over U(l) bundles. The non-trivial 

bundles can be characterized by an insertion of an 'tHooft operator [66] in the functional 

integral of the JR theory. Using part c of th.is exercise, show that the 'tHooft operator is 

equivalent to ff' i, Since we have to sum over the insertions of such operators, the value 
3 

of the functional integral is not modified if we add another one. Hence, th.is operator 

behaves like the identity operator. The two dimensional analog of th.is is the fact that the 

representation ~ eztend, the IR KM chiral algebra. Th.is field becomes a descendent of the 

identity operator (under the larger chiral algebra) and its conformal blocks are the same 

as those of the identity. 

f.) Show that the above considerations extend to any even integral lattice. 

g.) Quantize the theory by canonical quantization on T 2 as in the previous section. 

Find the different states as the different representations of U(l )N and write their wave 

functions in terms of theta functions of higher level [67). 

h.) Quantize the theory on a manifold with boundary. Find the extended chiral 

algebra by quantization on the disk (hint: because of the boundary conditions, there are 

non-trivial bundles corresponding to the insertion of ! in the R theory) and the different 

representations by quantization on a disk with a source. 

i.) Show that the center of A(U(l)N) is simply Z/2NZ. (Hint: We normally th.ink 

of the gauge group of a U(l) gauge theory, which is generated by 

for smooth functions f as an abelian group. However we now allow functions like fp ~ <p 
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for¢ an angular coordinate centered at any point P. Show that 

so that the group becomes nonabelian. Note that the elements of the center are in one-one 

correspondence with the representations of the rational torus chiral algebra.) Interpret the 

existence of this center from the two dimensional point of view {hint: the chiral algebra 

contains charged fields). 

• Exercise 10.2 G = S0(3) SU(2)/71..2 

a. Show that the only representations which survive have odd dimension. Show 

moreover that to avoid global anomalies, or to have the extending Wilson line be invisible 

we must have k = 0mod4. 

b. Show that by the singular gauge transformation we can prove equivalence of the 

Wilson lines 

c. Show that the Wilson line ll"A:;4 is in fact not the simplest operator in the theory, 

rather we have w.14 = o+ + o- where the operators O± cannot be simply expressed in 

terms of Wilson lines. 

d. Find an expression for ()= in terms of SU(2) theory. (Hint: consider a three point 

vertex of Wilson lines with one in the representation k/2.) 

Quite generally one can show that all known extended algebras are obtained from 3 

dimensional CSW gauge theories by changing the gauge group by 

G-G/Z 

where Z is a 1ubgroup of the center of G. 

In going from G to G = G / Z, three changes in the possible representations take place: 

a. Selection rule: of the representations of G current algebra only those which are 

invariant under Z should be kept. 
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b. Identification: different irreducible representations of G related by the s pectral fl 

ow operation are combined into one G irreducible representation. 

c. Fixed point: if the spectral flow has a fixed point, there are different G representa­

tions which are the same as G representations. 

These three rules generalize the three parts of the previous exercise. 

• Exercise 10.3 The three rt.t.lea from canonical quantization. Derive these three rules 

from canonical quantization on the torus. Hints: 

1. Rule a follows from gauge transformations which wind around one cycle 

2. Rule b from gauge transformations which wind a.round the other cycle. 

3. Rule c is the most subtle. Twisted bundles on the torus are labeled by the subgroup 

Z used to divide the universal cover to obtain G. These bundles may be defined by cutting 

out a disc and using the transition function g( cp) = eu,,e where cp is an angular coordinate 

and (J is a weight vector. The flat gauge fields which are sections of the associated ad(G) 

bundle are characterized [68] by conjugacy classes of solutions of 

(10.5) 

where A, B E G describe holonomies of the flat gauge field. 

As a simple example, consider first the nontrivia.l.ly twisted S0(3) bundle on I:1 . 

Without loss of generality we may rotate B into the maximal torus, ta.king B = e-Z1ri-zT
3

• 

Then A must be of the form wA 1 where w is in the Weyl group and A 1 is in the maximal 

torus. By conjugating with elements of the maximal torus we may set A 1 to one. Show that 

there is exactly one solution, z = l / 4 up to conjuga.c:y. Thus the moduli space of twisted 

flat gauge fields consists of one point, and quantization gives one further state. Recall that 

in the conformal field theory there are two representations 1l;;_. of the A,(S0(3)) chiral 

algebra. Only one of these was accounted for from the quantization in the untwisted &eetor, 

the other comes from the twisted sector. Compare these two different irreducible repre­

sentations with o± in exercise 10.2. As an example, show that A(S0(3)4) = A(SU(3)i) 

and recognize the two different representations of the S0(3) theory as 3 and 3 of SU(3). 

These remarks generalize to arbitrary groups. Twisted bundles with transition func­

tion ge have one flat connection for the conjugacy class of each (discrete) solution z,w of 
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wzw- 1 + IJ = zmodA,.t where :r: is in the Cartan subalgebra and w is in the Weyl group. 

Using the conjugacy fr~edom we can require that :r: is in the positive Weyl chamber, show 

that this equation then becomes exactly the condition for a weight z = '>./'It. to be fixed 

by the spectral fl.ow µ.9. Thus, the states arising from quantization on the discrete set 

of points in the moduli space of twisted flat bundles exactly correspond to the different 

irreducible representations 1-<.f arising from the representations fixed by subgroups of the 

spectral flow. 

Using these considerations we can easily find new quantization conditions on k in 

the non-simply connected case (generalizing the k = 0mod4 in the U(l) theory). The 

conformal dimension of the extending representation must be an integer. From the three 

dimensional point of view, this condition is the statement that there is no dependence on 

the framing of the 'tHooft operator which is used to described the twisted bundles - no 

global anomalies. The conformal dimension of the representation ). is ~A = ).2((~:~). If 

the spectral flow is generated by the representation µ, the extending representation is kµ 

and its dimension is ~k# = k~\~"+,+h~P). The condition on k is that this number should be 

an integer. The same result has been obtained by other considerations in [69]. 

2. Coset models G / H 

They may be obtained as follows: we take gauge fields 

A11
, Aii"ELie(G) a denote directions in Lie(G)/Lie(H) 

Ba. ELie( H) 

and action 

S = k1CS(A) - k2CS(B) 

We must be careful to take the gauge group (G x H)/Z where Z is the common center of 

H embedded in G. 

To see that this prescription is correct consider the quantization on the disk D x R, 

and let us reconsider the boundary conditions. Variation gives 

6S = ~ j Tr(c5AA) - kz j Trc5BB + 
471' 471' 

bulk terms 

BDxR BDxR 
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One possibility is to choose Ao = Bo = 0 which leads to a G x H theory. However, when 

H C G and k2 = lk1 ( l is the index of the embedding) we may choose instead the boundary 

conditions: 

{ 
A~ = B" 
A;= O 

Performing the change of variables we had before we write (we have chosen l 1 for 

simplicity) 

A= -dUU1 

and get, as before 

j D).DU DV exp [ikSwzw(U) - ikSwzw(V) 

+ik I Tr).(8'f'uu- 1 - a'f'vv-1)] 

where ). is a Lagrange multiplier enforcing the boundary condition Aa. = B". 

Making the change of variables U ---+ gV, -8<l'Vv- 1 --+ a.II', and).--+ a.t we get the 

path integral 

j da.dgeikS(g,a.• ,a.t) 

which is the gauged WZW model, which is well-known [70J to be the path integral repre­

sentation of the coset models. Actually, it is quite easy to see why this must be so. The 

phase spaces are the coadjoint orbits of the pair of G and fI representations (A,).): 

(LG/T) x (LB /T)* 

which, upon quantization give the space of states: 11.A ® 1-t;. Now we may impose the firat 

clau constraints: ,rH(8,uu-1 ) - 8,vv- 1 ('IT'H is a projection from G to H) which is an 

H-current algebra with le = 0 to obta.in the physical states: 

where the final symbol is the space of states in the coset model, defined by the decompo­

sition 11.A = EB.>. 'HA,.>.® 'H>., 
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• Exercise 10.4 Ezample of a Coaet. 

a.) Show, using CFT, that the coset model U(l)N x U(l)M /U(l)N+M for the case 

that N,M have no common factors is equivalent to the rational torus U(l)L for L = 
NM(N+M). 

b.) Consider the expectation values of Wilson lines in S3 for the action: 

N jAdA+ M f BdB- N +MJCdC 
2~ 2~ 2~ 

where A, B, C are three abelian gauge fields. Show that the expectation value is consistent 

with the result of part (a). 

c.) Show that the quantization of this theory on T 2 leads to the correct answer only 

'f h . U(l)xU(l)xU(l) I • l t' • , h • 1 t e gauge group 1s z7--·-. n 1mp emen mg our prescnptton, we ave to view 

the chiral algebra U(l )N as non-abelian. See above, exercise 10.1.g. 

• Exercise 10.5 The N = 0, 1 diacrete aerie, and the role of the center. Study the 

coset su~J(;)~~?)i For l = 1 this is the Virasoro discrete series and for l = 2 the super 

discrete series. The 3d gauge group is SU( 2)xS~;2)xSU(2). The representations are labeled 

by three spins j 1,j2,j3 corresponding to the three SU(2). Use rule a above to show that 

j 1 + J2 + is must he an integer. Use rule b above to show that the representation (j1 ,h,j3 ) 

is identified with the representation ( ½ - i1, 4 J2, 11; 1 - is). Use rule c to show that if 

both k and l are even, there are two different representations labeled by (i, f, !f1). Rule 

c applies in the superdiscrete series (l = 2) when le is even. What is the difference between 

the two representations in this case? 

• Exercise 10.6 c = 7 /10 This conformal field theory can he represented by a coset 
5Jc~>~'. Notice that in the coset we use U(2) rather than SU(2) x U(l). Why? What 

are the irreducible representations of U(2)2? What is the three dimensional gauge group? 

(Don't forget the common center.) What are the irreducible representations of the coset? 
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• Exercise 10.7 Witten'.s Triple Co.set,. In [63) Witten proposed a generalization of 

the coset construction. Recall that in the coset construction the fields in the chiral algebra 

A(G/H) are all the fields in A(G) which commute with the fields in A(H). In particular, 

A( G / H) is a subalgebra of A( G). Thus, if we have a triple of inclusions K C H C G then 

we may consider the fields in A(G) which commute with the fields in A(H/K). Witten 

defines this subalgebra of A( G) to be the triple coset algebra A( G / H / K). In this exercise 

we show that the construction of these algebras do not involve any new constructions other 

than those described above. 

a.) As a warmup consider the explicit triple SU(N - l)i C SU(N)i C SU(N + l)i. 

Using the Frenkel-Kac construction of level one current algebra in terms of free scalar fields 

show that the triple coset is just SU(N - 1) x U(l)N(N+l)/2 -

b.) More generally, show that A( G / H / K) always contains the subalgebra A( G / H) x 

A(K). Moreover these have the same central charge and are unitary theories. Thus 

A(G/H/K) may be expected to be at most an extended algebra of A(G/H) x A(K). 

Show that this is indeed the case by decomposing characters: 

G """' G/H H Xo = ~ Xo,~ X~ 
~ 

"""' H/K K G/H = ~ x~,P Xp Xo,~ 
~,P 

_ """' H/K """' K G/H 
- ~ x~,P ~ XJ'(p)Xo,l'P) 

[~,P] J£EC(.A(H))nC(.A(K)) 

where [.\,p) denotes equivalent pairs in the coset module. Thus, in particular, the character 

of the chiral algebra is just 

"""' K G/H 
~ X,,.(o)Xo,,,.(o) 

p,EC(.A(H))nC(.A(K)) 

which is a finite extension of A(G/H) x A(K). 

c.) Show that this theory may be obtained from 2+1 dimensions using the (schematic) 

action CS(G) - CS(H) + CS(K) with gauge group (G x H x K)/Z and Z is generated 

by (8, 8, 1) for 8 E C(G) n C(H) and by (1,8, 8) for 8 E C(H) n C(K). 
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3. Orbifolds 

The MTC of rational orbifolds is fairly complicated in general. In the special case of 

a rational orbifold obtained from a theory with a trivial MTC, the rational orbifold MTC 

has a rather beautiful description given in [111[71]. H the finite group G is the orbifold 

group, the index set I consists of pairs (g, a) where g is a conjugacy class in G and a is 

an irreducible representation of the centralizer subgroup of the conjugacy class. The basic 

data of the MTC can be described in terms of group co~omology 4 • In particular, the 

fusion rules are elegantly described as a multiplication law in the equivariant K-theory of 

G. Fortunately, one can demonstrate by rather general arguments that the holomorphic 

half of any rational orbifold model can be obtained from a 3D CSW gauge theory based 

on gauge groups which are not connected 5
• 

Let G be a connected group with a discrete automorphism group P. Then one can 

construct the semi-direct product group P I( G. Quantizing the system on the disk and 

repeating the steps above, we find that the effective action is the WZW action for a field 

U on the boundary which takes values in G. The phase space is LG/G and leads to A(G), 

but because of P gauge invariance, the Hilbert space has to be truncated to the P invariant 

states (the states are in representations of P because Pis an automorphism of G). This 

can be seen by considering the CSGT on D x S1 . The functional integral in trus case 

leads to the trace over the Hilbert space (since the Hamiltonian of the 3D theory vanishes, 

this trace is infinite). In the functional integral we need to sum over P bundles. This sum 

projects out the states which are not P invariant. Therefore, A(P I( G) = A(G)/ P. This is 

the chiral algebra of the orbifold constructed as G / P. By quantizing the system on other 

two surfaces with boundaries we obtain the other representations of the orbifold model. 

Orbifolds and cosets are very similar in both two and three dimensions. In 3D we 

reduced the chiral algebra of the G theory by enlarging the gauge group. In 2D both 

theories are obtained by considering a G theory and gauging either a continuous subgroup, 

4 This is also true of theories with "abelian fusion rules" as explained in appendix E of 

[15]. 
5 Initial work with E. Witten first suggested that 0(2) would reproduce the rational 

orbifold. This work motivated the general construction for orbifolds. 
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H /Z (to obtain G / H) or a discrete automorphism group, P (to obtain G / P). Finally note 

that the gauge group (G x H)/Z of the coset CSGT can also be written as (H/Z) r.<: G 

which is the same as the prescription for orbifolds. In the classical limit of these theories 

the integral weight fields have a closed ope. Therefore, there should be a one to one cor­

respondence between these representations of the chiral algebra and representation spaces 

of some group. Thls group is the gauge group of the 3D theory. 

• Exercise 10.8 The rational orbifold from 0(2). Check that the 0(2) CSW gauge 

theory on T 2 leads to the correct number of representations. First use conformal field 

theory to find that for the rational orbifold of level N there are N + 7 representations. 

When quantizing on T2 the Hilbert space has several sectors. Show that from topologically 

trivial bundles (those which can be considered to be S0(2) bundles) there are N + 1 states. 

Find six twisted 0(2) bundles leading to six more states. Hence, the total number of states 

is N + 7. 

• Exercise 10.9 A more complicated orbifold. Study the orbifold SU(2)1c/Z2 xZ2 , where 

we take the quotient by 180° degree rotations around orthogonal axes. Unlike the previous 

exercise here two interesting subtleties arise. First, some of the twisted components of the 

Hilbert space have more than one state. Second, some of the twisted components in fact 

contribute no quantum states for some k's, because of a global anomaly in the appropriate 

sector. Show that the number of quantum states is (llk+32)/2 if le is even and {llle+ll)/2 

if le is odd. Derive the same result by the two dimensional considerations of [11]. 

The lesson that we learn from thls is that all known RCFT's are equivalent to some 

CSW gauge theory for some compact gauge group. An arbitrary compact group may be 

disconnected ( the quotient of G by its connected component being some finite group) and 

in tum the connected component may have a finite-sheeted cover consisting of a product 

of tori and simply connected simple factors. From the previous constructions we see that 

this full level of generality is needed to order the zoo of known rational conformal field 

theories. 
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When working with arbitrary compact groups a further subtlety arises which is ana­

lyzed in detail in [69] 9 • In order to write the Chern-Simons action in the form 

S = - Tr(AdA + -A3
) k 1 2 

4,,. y 3 

one needs a trivial G-bundle over the three-manifold Y. By definition, the path integral for 

theories with G not connected and simply- connected include nontrivial G-bundles and one 

must find another definition of the action. This problem was solved in {69J. The upshot 

is that the appropriate data needed to specify the action is an element of the cohomology 

group l E H-i(BG; Z). For a connected, simply-connected, simple group, H-t(BG; Z) = 7l.. 

and l is simply the integer, usually called k, multiplying the Chern-Simons term. For 

arbitrary connected compact groups the data is equivalent to a nondegenerate symmetric 

invariant bilinear form on the Lie algebra, needed to define the notion of a trace. In the 

disconnected case there can be torsion and one must express the data as an element of 

H 4 (BG; 71..). 

In conclusion, the MTC's of all known RCFT's are orga.nized by simply specifying the 

pair (G,l) where G is a compact gauge group and..\ is a cohomology class in H 4 (BG;7l..). 

e We thank Dan Freed for very useful discussions on these matters. 
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11. Conclusions and Conjectures 

In these lectures we tried to formulate RCFT in an axiomatic way. We were led to 

define certain axioms which have - rather remarkably - an analog in the TK approach to 

group theory. Even more remarkably, it is known in the group theory case that a single 

additional axiom: F,- 1 E Z+ defines the representation theory of an algebraic group. (To 

obtain a compact group one has to say a bit more.) Moreover this crucial integrality 

condition has an analog in RCFT. Thus we conjectured that by adding some axioms to 

the polynomial equations on F, B, S we will define RCFT purely axiomatically. Making 

further progress from this point on is difficult: We know that reconstruction will be subtle 

because there exist nontrivial chiral algebras with one representation and no holonomy ( e.g. 

those obtained from even self-dual lattices of dimension O mod 24). This raises a serious 

question as to how good the notion of a modular functor or a modular tensor category is 

at identifying a RCFT. Based on the absence of counterexamples we may hope that the 

only ambiguity comes from tensor products with c = 24 purely holomorphic CFT's. 

Another difficulty is that it is not exactly obvious what we should say about Fi-l. 

There should be some physical reason based solely on the defining axioms of conformal 

field theory for why these numbers should take on special values but no one has succeeded 

in elucidating such a reason 7
. Moreover, it is not obvious that there are not additional 

axioms with no group theoretic analog (just as there are additional polynomial equations 

with no group theoretic analog). Nevertheless it ought to be clear from our discussion 

that RCFT defines some mathematical structure generalizing group theory. Of course, 

reconstruction is much easier if you know what it is you are trying to reconstruct! 

We saw in sections nine and ten that three-dimensional CSW gauge theories can be 

used to define the MTC of all known RCFT's by taking an appropriate compact gauge 

group (perhaps neither connected nor simply connected) and action (defined by an appro­

priate symmetric invariant nondegenerate bilinear form, or, more precisely, by an appro­

priate dass in B 4 (BG; Z)). Taking account of the general structure of compact groups we 

7 It has been pointed out by many authors that F,- 1 is an index for inclusions of finite 

von Neumann algebras. This is clearly the most fruitful interpretation from which to 

embark on an investigation of the analog of Deligne's condition. 
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saw that the full generality is needed to describe CFTs and that the extension from the 

case of simply-connected simple groups is not entirely trivial. Based on these observations 

one naturally guesses th"at the object we are trying to reconstruct is none other than com­

pact CSW theory, and therefore that all RCFT's are equivalent to some compact CSW 

theory. 

The equivalence between compact CS\V theories and RCFT's is not one to one. First. 

there are CS\V theories which do not correspond to any RCFT. For instance, if we repeat 

the G / H construction with H which is not a subgroup of G or with the two coupling 

constants, kG for G and kH for H which are not equal (or not proportional according to 

the index of the embedding) then the resulting theory does not describe the MTC of the 

holomorphic half of a RCFT. Also. different CS\\. theories might lead to the same RCFT. 

For instance, it is known that the same RCFT can sometimes be described as a coset in 

two different ways. Other identifications arise for low levels. for example SU(2) 1 is the 

same as U ( lh . According to the philosophy of this paper, these isomorphisms should be 

viewed as the CFT version of the isomorphisms in the Cartan classification of Lie algebras 

for algebras of small rank. e.g. su(2) 3: so(3), su(4) 3: s0(6). etc. 

• Exercise 11.1 A Sampling of bomorphisms. In the literature on CFT there are often 

several different realizations of the same theory. Identify the following isomorphisms: 

a.) SU(.N)i ::::: m_.\'-l /.\rt where .\rt is the root lattice. 

b.) U(1)2 ~ 0(2)1. 
) SU(2)NxU(l)_,.., ~ SL'(}\.) 1 xSU(.\')ixSU(Xl-2 

c. Z2 = z,.., 

d.) S0(3)4 ::::: SU(3)i 

e.) (SU(3)/7l3)3 ~ S0(8)1 

f.) SU('l)ixSU£;1xSU(Z)-2 ::::: (Esh X (Es)1 x (Es)-2 

g ) SU('l), xSU('l)i xSU(2l--4 ~ SU(3)i x SU(3) 1 x SU(3)-2 
• Z2 - Za 

There is, at present, no general point of view on how to classify these isomorph.isms. 

The relation between the three dimensional and the two dimensional theories a.rises 

in two related ways. The Hilbert space of the theory on a manifold without a boundary is 
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the space of conformal blocks. In this case one can study the dimensionality of the vector 

space and the action of the duality matrices. A more detailed connection between the 

theories arises upon quantization on a manifold with a boundary. Then all the states in 

the chiral algebra and in all its representations can be realized. 

As we have mentioned, it is sometimes the case that two different theories have the 

same duality matrices. However, the structure of the representations is different. For 

instance, if we tensor a theory based on a c = 24 self dual lattice with any theory C the 

duality matrices are those of the theory C. The only difference is in the structure of the 

chiral algebra and its representations. 

Correspondingly we may formulate a weak and a strong version of the conjecture 

alluded to throughout these lectures. The weak version states that the duality properties 

are reproduced by some CSW theory with compact group. More formally, we may state 

Conjecture 1: The modular functor of any unitary RCFT is equivalent to the modular 

functor of some CSW theory defined by the pair (G, .l.) with G a compact group and 

.\ E H 4(BG; Z). 

Let us make some remarks about this conjecture. First, as discussed at the end of 

section ten, if G is connected then .\ may be thought of as the data needed to specify the 

normalizations of the traces in the Chern-Simons action. Alternatively, from the quantum 

group point of view, .\ specifies the appropriate roots of unity required for various quantum 

deformations of relevant simple groups. Second, we expect that the gauge group must he 

compact for a simple reason. In the WKB appro:ximation one obtains one quantum state 

for each unit of volume of phase space. The moduli spaces of noncompact groups are 

noncompact and hence quantization will lead to an infinite number of quantum states, 

that is, an infinite number of conformal blocks, so the corresponding two-dimensional 

theory cannot be rational. Recent work of H. Verlinde [72) suggests that this reasoning 

might be too naive at strong coupling, and that noncompact phase spaces might actually 

lead to finite dimensional spaces of states. Nevertheless, rational conformal field theories 

which do seem to be related to noncompact groups also have a description in terms of 

compact groups. Third, we limit our considerations to unitary theories because CSW 
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theories, which are simply quantum mechanical systems with a finite number of degrees of 

freedom, are automatically unitary. Every known example of a unitary RCFT fits in with 

conjecture 1. The situation for nonunitary RCFT's is much less well understood, although 

there is some preliminary evidence that the correct organizing principle may be found in 

the theory of compact supergroups [73}. 

We have taken pains to state conjecture 1 precisely because it is the conjecture we 

understand best and in which we have the most confidence. Further conjectures in this 

section will be stated somewhat more loosely. We hope we have convinced the reader 

that there are substantial reasons for b~lieving conjecture 1 is correct. As we have dis­

cussed, one might imagine a proof to proceed along lines very similar to the theorems of 

Deligne and Doplicher-Roberts. On the other hand, it would be fascinating if there were 

examples of "sporadic" modular tensor categories arising from conformal field theories. In 

the introduction we pointed out that an alternative statement of the conjecture says that 

all RCFT's have already been found. It was probably first stated by Emil Martinec [7} 

that the nontrivial RCFT's are essentially exhausted by the coset construction, and this 

was repeated in [9]. It has been reiterated many times in private by Bazhanov, Frohlich, 

Gawedzki, Goddard, Reshetikhin, and perhaps others. 

Conjecture 1 is a weak conjecture in the sense that it's truth would only classify 

modular functors of RCFT's. One may hope that a stronger version of the conjecture is 

true, namely 

Conjecture 2: The chiral algebra of any unitary RCFT is the physical Hilbert apace for 

canonical quantization of some CSW theory for an appropriate choice of compact gauge 

group, symmetric bilinear invariant nondegenerate form, and boundary conditions. 

Obviously there is no counterexample to this conjecture, but there do exist some 

examples of chiral algebras which remain to be interpreted along the lines sketched above. 

Most notably, the chiral algebra of the Monster module remains uninterpreted 8 • 

8 We would like to thank W. Nahm for pointing this out to us. 
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• Exercise 11.2 Open Problem. Obtain the chiral algebra of all known c = 24 theories 

with trivia.I monodromy from quantization of some CSW theory on D x JR. 

• Exercise 11.3 Dual of a RCFT. Consider a RCFT with F, S, n, fl, c. Show that 

since F, S, n satisfy the polynomial equations so do F' = p-1 , S' = s-1 , O' = n-1 . 

The conformal dimensions of these two solutions are related by fl' = -flmodl and c' = 
-cmod8. Sometimes there exists a RCFT with F', S', O' (remember, a solution of the 

polynomial equations does not guarantee that there exists a RCFT with these duality 

matrices). We define this theory as the dual of the original one. 

a.) Show that a theory with one primary field is self dual. 

b.) Show that the coset of a self dual theory by the chiral algebra A is a RCFT which 

is dual to the RCFT based on A. 

c.) Construct a self dual theory by appropriately coupling a theory and its dual. 

d.) Use the self dual theory based on E(8)i x E(8)i and part (b) of this exercise 

to show that the Ising model is dual to E(8)2. A more sophisticated example of this 

phenomenon was studied in [74} where it wa.s shown that a certain exceptional modular 

invariant of F( 4) KM is dual to SU(3)2. Using part c a new self dual c = 24 theory can 

be constructed. 

e.) Show that the duality matrices of the dual theory can be obtained from three 

dimensions by reversing the sign of the action - reversing the orientation. Since exercise 

10.2 is still an open problem, it is not clear if all the states in the chiral algebra and in its 

representations for every theory (in particular for the F( 4) theory of [741) can be obtained 

from three dimensions. 

• Another conjecture, related to those above was posed by E. Witten [75] 

Conjecture 3: All three dimensional topological field theories are CSW theories for some 

appropriate (super)-group. 
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As we have seen, any modular functor defines a three dimensional topological field 

theory so that the tru!h of conjecture 3 may be expected to imply that of conjecture 1, 

assuming there is no surprising need to resort to noncompact groups or supergroups. 

Finally we should note that there has recently been much progress in abelianizing 

WZW theories [76] [77] [78] [79] [80] [81] [82] [83] and there has been related progress 

on abelianizing certain coset models. From thls work one is naturally lead to wonder if 

Kadano:ff's old idea that all CFT's are related to the gaussian model might in some sense 

be correct. More precisely, taking into account some of the recent bosonization results, 

reference [80] states 

Conjecture 4: The chiral algebras and representations occuring in RCFT may always be 

expressed as cohomology spaces for sequences of Fock modules, and all CVO's of RCFT's 

may be expressed through free field constructions. 

The ultimate reduction of RCFT to free field theory would not be in contradiction 

with the group-theoretic interpretation. Indeed, it is well-known that one can construct 

representations of groups with harmonic oscillators. 

We hope that the truth or falsehood of these conjectures will be established in the 

near future. Looking beyond the subject of RCFT there are several horizons emerging 

involving various generalizations, extensions, and applications of the concepts we have 

used above, but which we have not even mentioned. It is not our intention to discuss these 

future directions here, should they bear fruit there will be no lack of opportunity for future 

discussion. 
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