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Abstract

A parton model for hA interactions at high energies is developed based on the assumption
that parton amplitudes do not depend on virtualities provided only nonplanar diagrams are
retained in the elastic amplitude. It is shown that although the AGK rules are exactly
fulfilled in the model the interference between the direct and spectator mechanisms of particle
production restores the conservation of energy. Conditions are studied under which Glauber-
like formulas result for the amplitude and crosss-sections. The difference is analyzed between
the predictions of the proposed model and current models of hA interactions based on the
probabilistic interpretation of the Glauber theory.
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1.Introduction There exist two versions of the parton model for hA interactions in the
current literature. The original idea of [ 1 ] developed in [ 2 ] starts from a parton wave
function of the incoming hadron, which gets slightly deformad in the process of interaction
in its low-energy component part. The spectrum of produced states then essentially coin-
cides with the rest part of the wave function, that is, the spectator part. Less ambitious
constituent parton models (e.g. [ 3-5 ]) assume that partons which form the incoming hadron
independently interact with nucleons of the target by interchanging some extended objects
(e.g. coloured strings) with the spectrum of produced particles determined by their decay.
However both type of parton models leave open some crucial questions. First, they do not
produce in a convincing manner a Glauber-like form of the elastic amplitude (and the total
cross-section), which agrees well with experimental facts. Rather the Glauber probabilities
are postulated for n-fold hN interactions inside nuclei [ 5]. Second, they have problems with
energy-momentum conservation.

It is the aim of the present paper to propose a slightly more general parton model for
hA interactions, which clarifies upon these points [ 6,7 ]. The model is quite in the spirit of
the original version of [ 2] with the only difference that elementary amplitudes are separated
from the wave function not by their short range in rapidity but rather by the topology of
the corresponding Feynman diagrams. This enables us to establish exat energy momentum
conservation in the model. On the other hand, as a price, elementary amplitudes now become
extended in rapidity and their spectrum overlaps with that of spectators. The model is thus
an interpolation between the two extreme cases: that of the wave-function model of [ 2 ],
where all the spectrum comes from spectators, and of constituent parton models with the
spectrum due to interactions. Under some rather general assumptions the model leads to
the Glauber formula for the hA elastic amplitude and the total cross-section. The inclusive
cross- sections consist of two parts in our model. One, coming from spectators, behaves like
A?/3 for heavy nuclei. The direct part coming from interactions exactly satifies the AGK
rules [ 8 ] and is proportional to A. A simple case with only one type of partons is discussed
here. Generalizations to more realistic situations as well as corresponding numerical results
are postponed for future publications.

2.The hA amplitude. Asin [ 1,2 ] the starting point is that in the hA scattering long
before the interaction the fast incoming hadron decays into weakly virtual partons each of
which subsequently once interacts with one of the nucleons from the target nucleus and finally
joins with the others to form the outgoing hadron (Fig. 1). By definition B, is two particle
irreducible with respect to each pair of lines p;,p’;. Separating the n-fold nuclear form factor
from the hA amplitude in the standard manner we get for the hA elastic amplitude at fixed
impact parameter

A
A= CRT™ (D)W, (1)

where T is the usual nuclear profile function and W, the high-energy part, which is an integral
of a product of B, and n forward parton-nucleon amplitudes a over parton momenta p; and
transferred longitudinal momenta g;,.

The amplitudes a depend on their energies and in general on parton virtualities. Our
basic asumption is that the dependence of a’s on parton virtualities may be neglected. It is
implied that first one has to drop all planar diagrams taking the asymptotical value for the
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amplitude when p, — oo and only aftewards in the nonplanar contribution, which survives in
that asymptotical limit, one considers partonic amplitudes as not depending upon virtualities.

We compare Wy, with the n-fold form-factor Fy, of the incoming hadron ( Fig. 2) integrated
over all ¢;_ and with ¢;4+ = gi1 = 0. Instead of parton amplitudes a it contains parton
form-factors f. We assume that the latter do not depend on virtualities either. Then F,
goes over to Wy, if the form-factor f as a function o the light-cone variable p; coincides
with a(p4). In a quantum field theory such a form-factor can be generated by a composite
operator j(z) = ¢(*)(z)ag(—i6-)¢(~)(z) where £ components of the unrenormalized field ¢
are defined according to the frequency sign with respect to 4y . The ”bare” amplitude aq
has to be 2-particle irreducible in the t-channel. In terms of j we find

8%(pn — #/1)iWn = mv2 < pal(ia(z+))"Ip'n > ()
where up to a normalization factor a(z4) is a ”charge” associated with the ”current” j:
a(z4) = (mx/i)“/dx_d%lj(z) 3)

and < pi| (|p'y, >) is the final (inicial) hadron state.
To calculate (2) we introduce a complete set of bare N-parton states and the corresponding
wave-function ¥(k;). Then we find

iW, = / ﬁ(da;iao(ai))/’n(ai) O
1

Here a; = ki4+/pr+. The quantity

d%k; d k;
pule) = Y NY(N =) [ H = I g 2ens o = RN GRIE (5)
ooy 20; 2k
n n
is the probability for n bare partons to have their ”+” components of momenta k;y = a;ph+-
From (5) it follows that p, obey the energy conservation sum rule:

[adapii(aad = (1= 3 ) pules) ®)
1
Another sum rule can be deduced for a separate term p,n in the sum over N in (5):

[ deprii (e = (= m) pon(a) ™

The probabilities p are evidently real. Therefore in our model the AGK cutting rules will
be exactly fulfilled in spite of the dependence of the amplitudes ag(s) on energy (see [ 9]).

3.Inclusive cross-sections. Various contributions to the inclusive cross-sections can
be obtained by cutting diagrams for the forward elastic scattering amplitude and fixing the
registered particle in one of these cuts. It divides into a direct part coming from observing
the particle in the cut parton-nucleon amplitude ag and a spectator part with the particle in
the cut p or lines of active partons. According to the AGK cutting rules in the direct part
all contributions with additional parton interactions cancel and we are left with the impulse
approximation proportional to A:

19(@) = 4 [ dpp(B)so(8, ) ®
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Here jo(a;, ) is a bare inclusive cross-section to observe a particle with the longitudinal
momentum apirt produced by a hadron with the longitudinal momentum aips+ incident on
a nucleon at rest.

For the spectator contribution we have to consider the same structure as (2) with an
additional particle in the initial and final hadronic states {ps,k > where k refers to the
observed particle. As one can see from Fig. 3 only the disconnected part of the corresponding
partonic wave function ®n(k;) contributes to the absorptive part of interest. So we represent
®pn as a sum over ¢ = 1,...N of disconnected parts with k; = k. We then split ®» in two
terms containig summation over i in the limits from 1 to n and from n+1 to N respectively.
Then the product of terms with i > n + 1 gives rise to the absorptive part corresponding to
the observation of spectators:

DP(a) = ~2Re [ [[(dosiao(a)put(a ) (9)
1

The mixed product of terms with ¢ < n and ¢« > n + 1 describes the observation of active
partons:

n-1
D@)(a) = -2 Reniao(a)/ [ (daiiao(@:))pn(a; i) (10)
1

The last contribution with i < n in both inicial and final states corresponds to a planar
diagram contribution and we neglect it. As a consequence of (6) the sum D,, of (9) and (10)
satisfies the sum rule

/adaDn(a) = 2ImW, (11)

For the cross-sections it implies that particles described by the spectator contribution carry
all the energy available.

The contribution Ds‘z) does not exist for n = 1 as in that case there is no interaction in
one of the parts of the cut amplitude. This leads to a correction term which results in an
additional contribution to the cross-section proportional to A. In (8) Jfl) has to be replaced
by,

(@)= [ darpr(@n)io(an, @) - pr(@)oo(a) (12)

where g9 = 2Imagis a cross-section for parton- nucleon interaction. The elementary inclusive
cross-section jo has to satisfy the energy conservation sum rule: [ adajo(a;, @) = ajog(a1)
With this sum rule we find from (12)

/adaJl(oz) =0 (13)

Together with (11) this demonstrates the conservation of energy in our inclusive cross-
sections.
4.Glauber cross-sections. Two conditions are needed to secure that the hA amplitude
(1) coincide with the Glauber one. First one has to assume that the elementary amplitude
ag does not depend on energy, that is on a. As we shall see this does not imply that the
resulting hadron-nucleon cross-section is independent of energy. Wich constant ag using (7)
we obtain
iW, = (iag)"pl® (14)

where numbers ps,o) are defined according to ps‘o) =Y n>n N!/(N —n)!pony The probabilities

pon give the distribution in the number of partons in the projectile. If we impose a second
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condition, namely, that pox are Poissonian, then the sum over N gives ps}o) = A" where A is
the mean number of partons. Together with (14) it leads to the Glauber formula for the hA
amplitude with the hN amplitude given by Aag. The hN cross-section will depend on energy
if A depends on it.

The spectator part of the inclusive cross-section also simplifies for constant ag. For the
corresponding absorptive part we get

Dn(a) = —Re(iao)"p) () (15)

where the distribution psll) is defined as pslo) with p;n () instead of poy. If we assume the

Poissonian form for the latter then we get sum rules

/dapgll)(oe) = A"(X +n); /ada pD(a) = A» (16)

With a parametrization
A(@) = eadaP (1 - a)™ (17)

the conditions (16) require: v, = (n+A—1)8—1,¢;! = B(8+ 1,7, + 1). Assuming (17) one
can perform the summation over all n for the spectator part of the inclusive cross section.
For heavy nucleus A >> 1 one obtains the cross-section

Ia(e) = P(1 — )P /B(B+ 1,70+ 1) (18)

which means that the spectator part is proportional to A2/3,
Thus we come to the conclusion that at least in this simplified case and choice of psll)
the total inclusive cross-section contains two contributions: the direct one, proportional to

A, and the spectator one, proportional to A%/3,
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Figures

Fig. 1 Fig. 2
The hA elastic scattering The n-fold form-factor of the
amplitude projectile
T I
Fig. 3

The diagram for the spectator mechanism of particle
production. Only the disconnected part of the wave function contributes



