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Abstract 
A parton model for hA interactions at high energies is developed based on the assumption 

that parton amplitudes do not depend on virtualities provided only nonplanar diagrams are 

retained in the elastic amplitude. It is shown that although the AGK rules are exactly 
fulfilled in the model the interference between the direct and spectator mechanisms of particle 

production restores the conservation of energy. Conditions are studied under which Glauber­
like formulas result for the amplitude and crosss-sections. The difference is analyzed between 
the predictions of the proposed model and current models of hA interactions based on the 
probabilistic interpretation of the Glauber theory. 
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1.lntroduction There exist two versions of the parton model for hA interactions in the 

current literature. The original idea of ( 1 ) developed in ( 2 ) starts from a parton wave 

function of the incoming hadron, which gets slightly deformed in the process of interaction 

in its low-energy component part. The spectrum of produced states then essentially coin­

cides with the rest part of the wave function, that is, the spectator part. Less ambitious 

constituent parton models (e.g. ( 3-5 ) ) assume that partons which form the incoming hadron 

independently interact with nucleons of the target by interchanging some extended objects 

(e.g. coloured strings) with the spectrum of produced particles determined by their decay. 

However both type of parton models leave open some cruciaJ questions. First, they do not 

produce in a convincing manner a Glauber-like form of the elastic amplitude (and the total 

cross-section) ,  which agrees well with experimental facts. Rather the Glauber probabilities 

are postulated for n-fold hN interactions inside nuclei ( 5 ) . Second, they have problems with 

energy-momentum conservation. 

It is the aim of the present paper to propose a slightly more general parton model for 

hA interactions, which clarifies upon these points [ 6,7 ) . The model is quite in the spirit of 

the original version of [ 2 )  with the only difference that elementary amplitudes are separated 

from the wave function not by their short range in rapidity but rather by the topology of 

the corresponding Feynman diagrams. This enables us to establish exat energy momentum 

conservation in the model. On the other hand, as a price, elementary amplitudes now become 

extended in rapidity and their spectrum overlaps with that of spectators. The model is thus 

an interpolation between the two extreme cases: that of the wave-function model of ( 2 ) , 

where all the spectrum comes from spectators, and of constituent parton models with the 

spectrum due to interactions. Under some rather general assumptions the model leads to 

the Glauber formula for the hA elastic amplitude and the total cross-section. The inclusive 

cross- sections consist of two parts in our model. One, coming from spectators, behaves like 

A213 for heavy nuclei. The direct part coming from interactions exactly satifies the AGK 

rules [ 8 ) and is proportional to A .  A simple case with only one type of partons is discussed 

here. Generalizations to more realistic situations as well as corresponding numerical results 

are postponed for future publications. 

2 .The hA amplitude. As in [ 1 ,2 ) the starting point is that in the hA scattering long 

before the interaction the fast incoming hadron decays into weakly virtual partons each of 

which subsequently once interacts with one of the nucleons from the target nucleus and finally 

joins with the others to form the outgoing hadron (Fig. 1 ) .  By definition Bn is two particle 

irreducible with respect to each pair of lines Pi , p'; . Separating the n-fold nuclear form factor 

from t.he hA amplitude in the standard manner we get for the hA elastic amplitude at fixed 

impact parameter 

( 1 )  

where T is the usual nuclear profile function and Wn the high-energy part, which i s  an integral 

of a product of Bn and n forward parton-nucleon amplitudes a over parton momenta Pi and 

transferred longitudinal momenta qiz ·  
The amplitudes a depend o n  their energies and i n  general o n  parton virtualities. Our 

basic asumption is that the dependence of a's on parton virtualities may be neglected. It is 

implied that first one has to drop all planar diagrams taking the asymptotical value for the 
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amplitude when Ph ___. oo and only aftewards in the nonplanar contribution, which survives in 

that asymptotical limit, one considers partonic amplitudes as not depending upon virtualities. 

We compare Wn with the n-fold form-factor Fn of the incoming hadron ( Fig. 2) integrated 
over all q;_ and with q;+ = q;1- = 0. Instead of parton amplitudes a it contains parton 

form-factors f. We assume that the latter do not depend on virtualities either. Then Fn 

goes over to Wn if the form-factor f as a function of the light-cone variable P+ coincides 
with a(p+ ). In a quantum field theory such a form-factor can be generated by a composite 

operator j(x) = .p(+l (x)a0(-i8_ ).p(-l(x) where ± components of the unrenormalized field ¢ 
are defined according to the frequency sign with respect to x+ . The " bare" amplitude ao 
has to be 2-particle irreducible in the t-channel. In terms of j we find 

where up to a normalization factor a( x+ ) is a " charge" associated with the " current" j :  

a(x+ ) = (mv'2)-1 J dx_d2x1-j(x) 
and < Ph i ( Ip' h >) is the final (inicial) hadron state. 

(2) 

(3) 

To calculate (2) we introduce a complete set of bare N-parton states and the corresponding 
wave-function llf(k;) . Then we find 

iWn = j Il(da;iao(a;))Pn(a;) 
1 

Here a; = k;+/Ph+ · The quantity 

(4) 

(5) 

is the probability for n bare partons to have their "-f' components of momenta k;+ = CtiPh+ . 
From (5) it follows that Pn obey the energy conservation sum rule: 

(6) 

Another sum rule can be deduced for a separate term PnN in the sum over N in (5): 

(7) 

The probabilities p are evidently real. Therefore in our model the AGK cutting rules will 

be exactly fulfilled in spite of the dependence of the amplitudes a0(s) on energy (see [ 9 ] ) .  
3.lnclusive cross-sections. Various contributions to the inclusive cross-sections can 

be obtained by cutting diagrams for the forward elastic scattering amplitude and fixing the 
registered particle in one of these cuts. It divides into a direct part coming from observing 
the particle in the cut parton-nucleon amplitude a0 and a spectator part with the particle in 
the cut p or lines of active partons. According to the AGK cutting rules in the direct part 
all contributions with additional parton interactions cancel and we are left with the impulse 
approximation proportional to A: 

(8) 
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Here .io(ai , a) is a bare inclusive cross-section to observe a particle with the longitudinal 

momentum °'Ph+ produced by a hadron with the longitudinal momentum °'lPh+ incident on 
a nucleon at rest. 

For the spectator contribution we have to consider the same structure as (2) with an 

additional particle in the initial and final hadronic states !iPh ,  k > where k refers to the 
observed particle. As one can see from Fig. 3 only the disconnected part of the corresponding 
partonic wave function <l>N(k;) contributes to the absorptive part of interest. So we represent 
if>N as a sum over i = 1 ,  . . .  N of disconnected parts with k; = k. We then split <l>N in two 

terms containig summation over i in the limits from 1 to n and from n+l to N respectively. 
Then the product of terms with i :::>: n + 1 gives rise to the absorptive part corresponding to 
the observation of spectators: 

D�1l(a) = -2Re jITCda;iao(o:i ))pn+1 (a, a;) 
1 

(9) 

The mixed product of terms with i � n and i :::>: n + 1 describes the observation of active 

partons: n-1 
D�2l(a) = -2 Reniao(o:) j II (do:;iao(o:;))Pn(o:, o:;) 

1 
(10) 

The last contribution with i � n in both inicial and final states corresponds to a planar 
diagram contribution and we neglect it. As a consequence of (6) the sum Dn of (9) and (10) 
satisfies the sum rule 

j adaDn(a) = 2ImWn ( 1 1 )  

For the cross-sections i t  implies that particles described by the spectator contribution carry 
all the energy available. 

The contribution D�2) does not exist for n = 1 as in that case there is no interaction in 
one of the parts of the cut amplitude. This leads to a correction term which results in an 

additional contribution to the cross-section proportional to A. In (8) J�1) has to be replaced 
by ' 

Ji(a) = j da1p1 (a1 ).io(o:1 , o:) - p1 (a)uo(o:) (12) 

where uo = 2 Im ao is  a cross-section for parton- nucleon interaction. The elementary inclusive 
cross-section .io has to satisfy the energy conservation sum rule: J o:daj0( o:i ,  a) = o:1 u0( o:1 ) 
With this sum rule we find from (12) 

j adaJ1(a) = 0 (13) 

Together with (11) this demonstrates the conservation of energy in our inclusive cross­
sections. 

4.Glauber cross-sections. Two conditions are needed to secure that the hA amplitude 
(1) coincide with the Glauber one. First one has to assume that the elementary amplitude 
ao does not depend on energy, that is on a. As we shall see this does not imply that the 
resulting hadron-nucleon cross-section is independent of energy. With constant a0 using (7) 
we obtain 

(14) 

where numbers p�o) are defined according to p�o) = LN�n N!/(N - n)!poN The probabilities 

PoN give the distribution in the number of partons in the projectile. If we impose a second 
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condition, namely, that PON are Poissonian, then the sum over N gives p�o) = An where A is 
the mean number of partons. Together with (14) it leads to the Glauber formula for the hA 
amplitude with the hN amplitude given by ).a0 . The hN cross-section will depend on energy 

if A depends on it. 
The spectator part of the inclusive cross-section also simplifies for constant a0. For the 

corresponding absorptive part we get 

(15) 

where the distribution p�l) is defined as p�o) with P1N(et) instead of PON· If we assume the 
Poissonian form for the latter then we get sum rules 

(16) 

With a parametrization 
(17) 

the conditions ( 1 6) require: In = (n + A - 1),8 - 1 , c;;-1 = B (,8 + 1 , In + 1). Assuming ( 17) one 
can perform the summation over all n for the spectator part of the inclusive cross section. 

For heavy nucleus A > > 1 one obtains the cross-section 

(18) 

which means that the spectator part is proportional to A213. 
Thus we come to the conclusion that at least in this simplified case and choice of p�l) 

the total inclusive cross-section contains two contributions: the direct one, proportional to 
A, and the spectator one, proportional to A213 . 
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Fi gures 

Fi g. 1 
T h e  hA e l a s t i c  s c a t t e ri n g 

a m p l i t u d e  

Fi g. 3 

Fi g. 2 
T h e  n - f o l d  f o rm - f a c t o r  o f  t h e  

proj e c t i l e  

T h e  di a gra m f o r  t h e  s p e c t a t o r  m e c h a n i s m  o f  p a rt i c l e  

produ c t i o n .  On l y  t h e  d i s c o nn e c t e d  p a rt o f  t h e  w a v e  f u n ct i o n  c o n t ri b u t e s  


